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ABSTRACT

Chapter 1.
A general catalyst system for the synthesis of tetra-ortho-substituted biaryls via the
Suzuki-Miyaura cross-coupling reaction is described. It was found that the most efficient
catalyst system is based on a phenanthrene-substituted biaryl phosphine ligand. Utilizing
this ligand, a number of tetra-ortho-substituted biaryls were synthesized in good to
excellent yields.

Chapter 2.
A procedure for the arylation of methyl and cyclic ketone enolates with o-halonitroarenes
was developed. An unusual additive effect of phenols on the outcome of the reaction was
observed and explored. This process has provided for the regioselective synthesis of a
wide variety of substituted indoles from commercially available materials.

Chapter 3.
The first method for the asymmetric copper-catalyzed conjugate reduction of ca,3-
unsaturated esters containing P-heteroatoms was developed. We found that this system
tolerated the presence of both lactams as well as azaheterocycles in the P-position of
various enoates. This has led to the asymmetric synthesis of a number of interesting [5-
amino acid derivatives.

Chapter 4.
A copper-catalyzed conjugate reduction reaction that allows for a variety of y-aryl
containing a,p3-unsaturated butenolides to be reduced in both high enantiomeric and
diastereomeric excess was developed. While a number of catalysts based on chiral
bisphosphines were found to successfully perform this transformation, optimal
enantioselectivity was obtained when employing the commercially SYNPHOS ligand.

Thesis Supervisor: Stephen L. Buchwald

Title: Camille Dreyfus Professor of Chemistry
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Introduction

The use of transition metal-mediated reactions in organic synthesis has become of

increasing importance over the past several decades."'2 In particular, a variety of methods

have been developed to allow for the formation of a number of types of bonds, including

C-C, C-H, C-N, C-O, C-S, and C-P. These developments have allowed for the synthesis

of myriad complex molecules in a manner never before possible.lb

While a number of transition metals have been employed for these classes of

reactions, catalysts based on palladium and copper have recently emerged as capable of

performing a number of transformations in high yield, while maintaing low loadings,

high functional group tolerance, and mild reaction conditions. Many of these features

have been obtained through the proper choice of supporting ligands for the metal catalyst.

A great deal of research has been undertaken in the development of new ligands and their

use in various transition metal-catalyzed processes.

One area in which palladium catalysis has had a major impact in chemistry has

been in the formation of carbon-carbon bonds. Of the several methods that have been

developed, cross-coupling reactions (in particular the Suzuki-Miyaura reaction) have

emerged as some of the most powerful and widely utilized transformations. In these

reactions, the palladium catalyst typically undergoes oxidative addition with an

electrophile (such as an aryl halide). The palladium(II) species can then react with a

nucleophilic organometallic species to form a new palladium species that can then
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undergo reductive elimination to generate the cross-coupled product and regenerate the

catalyst (Figure 1).la

Figure 1.

.lc-X
I Drl
nI-n'

Elec-Nuc

Elec ,X
PdLn LnPd..~~~~~~~ / _.

NUC tilec

Nuc

In addition to palladium catalysts, copper catalysts have also emerged as powerful

tools in organic synthesis. In addition to oxidative couplings and cross-couplings,2

copper catalysts have also proven to be quite efficient for conjugate addition and

reduction chemistry.3 In particular, significant progress has been made in utilizing

copper catalysts for the selective 1,4-reduction of unsaturated carbonyl,4 nitro,5 and

nitrile6 compounds, including enantioselectively. An example of this type of

transformation in shown in Figure 2.

O O

~..~ L*Cu-H

R 

Figure 2.

The research presented in this thesis addresses the development of new or

improved reactions or reaction conditions of importance to the synthetic organic
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community through the use of transition metal catalysis. The work is presented in two

sections. In the first section, progress made in the area of carbon-carbon bond formation

through the use of palladium-catalyzed cross-coupling reactions will be discussed.

Additionally, the significance of the cross-coupling reaction will be demonstrated

through the synthesis of highly substituted indoles. The second portion of this thesis will

be dedicated to research in the area of asymmetric copper-catalyzed conjugate reductions

of a,I-unsaturated carbonyl compounds. The utility of this reduction chemistry will be

demonstrated in the total synthesis of the natural product, eupomatilone-3.

References

(1) For general reviews see: (a) Metal-Catalyzed Cross-coupling Reactions, 2; de

Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004. (b) Hegedus, L. S.

Transition Metals In the Synthesis of Complex Organic Molecules; University Science

Book: Mill Valley, CA, 1994. (c) Li, J. J.; Gribble, G. W. Palladium in Heterocyclic

Chemistry: A Guide for the Synthetic Chemist; Permagon, 2000. (d) Miyaura, N. Topics

in Current Chemistry: Cross-coupling Reactions-I-A Practical Guide, 2002, 219, 1-241.

(e) Fairlamb, I. J. S. Ann. Rep. Prog. Chem., Sect. B, 2004, 100, 113.

(2) (a) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004, 248, 2337. (b)

Hassan, J.; S6vignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102,

1359.

(3) (a) Riant, O.; Mostefai, N.; Courmarcel, J. Synthesis, 2004, 2943. (b) Alexakis, A.;

Benhaim, C. Eur. J. Org. Chem. 2002, 19, 3221.

10



(4) (a) Hughes, G.; Kimura, M.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11253. (b)

Jurkauskas, V.; Sadighi, J. P.; Buchwald, S. L. Org. Lett. 2003, 14, 2417. (c) Jurkauskas,
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Jurkauskas, V.; Buchwald, S. L. J. Am. Chem. Soc. 2000, 122, 6797. (e) Appella, D. H.;

Moritani, Y.; Shintani, R.; Ferreira, E. M.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121,

9473. (f) Yun, J.; Buchwald, S. L. Org. Lett. 2001, 3, 1129. (g) Lipshutz, B. H.;

Servesko, J. M.; Peterson, T. B.; Papa, P.; Lover, A. A. Org. Lett. 2004, 6, 1273. (h)

Lipshutz, B. H.; Servesko, J. M. Angew. Chem., Int. Ed. Eng. 2003, 42, 4789. (i)

Lipshutz, B. H.; Lower, A.; Noson, K. Org. Lett. 2002, 4, 4045.
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Introduction

The Suzuki-Miyaura cross-coupling reaction is among the most powerful C-C

bond forming transformations available to synthetic organic chemists.' Owing to a great

deal of research on this transformation, it now enjoys a broad scope and wide functional

group tolerance. A possible catalytic cycle for this reaction is shown below.lb Oxidative

addition of the electrophilic component (R-X) to a ligated palladium (0) species generates

a new palladium (II) species. This species can undergo transmetalation with the boronic

acid to generate a new palladium (II) species. Reductive elimination of this complex

provides the desired product and regenerates the active catalyst.

R-X
I DILnru

R = alkyl, vinyl, aryl

X = , Br, CI, OTf, OTs

R' ,,,, X
PdLn nPd

I/ \,

Base + R'-B(R")2

R'= alkyl, vinyl, aryl
R" = OH, O-alkyl, alkyl, F

While this reaction has been widely studied and utilized, at the time of this work,

reactions involving sterically hindered coupling partners (where R and R' are both 2,6-

disubstituted arenes) had realized only limited success2 '3 (subsequent to this work, there

have been reports of various palladium-catalyzed cross-couplings involving sterically

encumbered substrates).4 The ability to perform these hindered cross-couplings is of

14
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interest due to the presence of hindered biaryls in numerous natural products and

polymeric materials.' Additionally, overcoming this limitation would aid in the

development of more general asymmetric syntheses of axially chiral biaryl

compounds. 16 b However, a general method for the coupling of two hindered arenes,

particularly where each reactant possesses two ortho substituents, had yet to be

realized. '3' 5 Foglesong has reported a Suzuki-Miyaura coupling to prepare an

unsymmetrical biaryl with tetra-ortho-substitution in 12% yield.3a As part of his elegant

work, Fu reported a single example of the preparation of a tetra-ortho-substituted biaryl

in 76% yield (Negishi coupling), however, two ortho substituents were smaller than a

methyl group." As part of our ongoing studies of the Suzuki-Miyaura coupling reaction6 ,

we have found general catalysts to prepare tetra-ortho-substituted unsymmetrical biaryls

in modest to excellent yields.

a, R = Cy, R' = NMe 2
b, R =Cy, R'= H
C, R = Cy, R'= i-Pr
d, R= i-Pr, R' = NMe2 Me

f, R = Ph, R' = NMe 2
R = t-Bu, R' = H

PR2
PR2

1 2 3a, R =Cy 4
b, R = Ph

Figure 1. Hindered biarylphosphine ligands

Results and Discussion

In initial studies with biphenyl-based ligands la-c, significant amounts of arene

resulting from the reduction of aryl bromide were observed (Table 1, entries 1-3).7 The

use of ligands bearing either di-iso-propyl- or diphenylphosphino- groups yielded
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increased amounts of mesitylene byproduct (entries 4 & 5). Increasing the size of the

phosphine alkyl groups to tert-butyl resulted in the production of less than 1% of the

desired biaryl. Doubly ortho- substituted ligand 2 furnished a slightly improved catalyst.

Phenanthrene-based ligand 3a gave superior results both in terms of reaction rate and

biaryl:arene ratio (entry 8). The reaction proceeded to completion in less than 24 h with

4 mol% Pd and 8 mol% 3a, affording the biaryl in 91% yield (GC) along with 9%

Table 1. Ligand Effects in the Coupling of Hindered Reacting Partners a

Me Me Me Me Me

Me Br +(HO)2B Mel + Me H
Me Me Me Me Me

Entry Ligand Conv (%) Biaryl (%)b Biaryl / Aryl-H

1 la 47 33 2.3

2 lb 20 10 0.9

3 Ic 74 40 1.9

4 Id 68 34 1.6

5 le 49 25 1.3

6 If 21 <1 <0.3

7 2 56 48 5

8 3a 100 91 10

9 3ac 57 50 7.4

10 4 20 16 4.1

a Reaction conditions: 1.0 equiv ArBr, 1.4 equiv Ar'B(OH) 2, 3.0 equiv K3PO4, toluene, 2 mol% Pd2(dba) 3,

8 mol% ligand, 110 °C, 17-24 h. b GC yield. 0.5 mol% Pd2(dba) 3, 1.2 mol% ligand used.
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mesitylene. The phenanthrene ring of 3a appears critical as lower conversion and

biaryl:arene ratios were observed with naphthyl-based ligand 4 (entry 9). In all cases,

<4% homocoupling of either reactant was detected. While detailed studies on the origin

of the reduction of the aryl halide have not been undertaken, it is evident from the ligand

screen that phenanthrene based ligands are particularly successful in preventing this side

reaction. One hypothesis on the origin of the reduction product is that unligated

palladium initiates a radical reaction that generates an aryl radical. This radical can then

abstract a hydrogen atom from a number of potential sources, including the boronic acid,

boric acid, or the ligand. This would give rise to the reduced aryl bromide and likely

precipitate palladium black (which is observed in all cases, but to a lesser extent in the

case where phenanthrene based ligands are employed). Therefore, the lower amount of

reduction could be evidence that there is a unique binding of the phenanthrene portion of

ligand 3a (which has been observed in the solid state) that is unique relative to the other

biaryl phosphine ligands examined, and allows for more of the palladium to remain

ligated.8

Phosphine 3a and diphenyl analog 3b proved in general to be excellent ligands for

Suzuki-Miyaura cross-coupling reactions to form sterically hindered tetra-ortho-

substituted biaryls in good yields (Table 2). Ortho substituents such as methyl, 1 alkyl,

phenyl and alkoxy groups are accommodated by these catalyst systems. It proved

necessary to use 2.0 equiv of the boronic acid to effect complete consumption of the aryl

bromide in some cases, presumably due to competitive protodeboronation (entries 2, 3, 5-

7, 11)2 of the boronic acid. While la was not suitable as a ligand for the synthesis of

biaryls with four methyl groups, it could be used to prepare products in which one or two

17



Table 2. Electron-neutral cross-couplings employing 3a/b

Entry ArBr Ar'B(OH) 2 Product L mol% Pd/ L Yd,a %

Me

1

2

Me

3 B

Me

(HO) 2B 

Me

Ph

(HO)2 B

Ph

(HO) 2B 

-OAc Me

4 Br (HO) 2B/

Me

5 (Br) / X (HO) 2 B6 (IMe
Me

Me N Me

Me Me 3a

Me

Ph
Me Me 3b

Me

Ph

- NMe 3 b

N NMe
3a

OAc

Me N Me 3a

3a

4/8 82

4/8 70 b,c,d,e

2/4

4/8

90 b,c,e

98

1/1.2

1/1.2

a Reaction conditions: 1.0 equiv ArX, 1.5 equiv Ar'B(OH) 2, 3.0 equiv K3PO4, Pd2(dba) 3, ligand, toluene,

110 °C. Isolated yields (average of 2 runs) of compounds estimated to be >95% pure as determined by 'H

NMR and GC or combustion analysis. b 2.0 equiv Ar'B(OH) 2 used. c o-Xylene as solvent. d 120 °C. 

Experiments performed by Dr. Jingjun Yin.
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Table 3. Electron-neutral or -rich cross-couplings employing 3a/b

Entry ArBr Ar'B(OH) 2 Product L mol% Pd/L Yld,a %

OMe OMe
3b 2/2.4

OMe

2 /\Br

MeO

(HO)2 B la 5/10

3 Br

OMe

Me

(HO) 2B 

Me

Me Me

, <OMe
N, 7

la 5/10

Me

N
4 o Br

Me

Me

N-

MeN

Me

MeO

(HO)2 B/

MeO

MeO OMe

e Me
NMeNMe
N- ee

3a 5/6 5 8 b,d,e

OMe

/6 \Br
Me

(HO)2 B 
3a 4/4.8

a Reaction conditions: 1.0 equiv ArX, 1.5 equiv Ar'B(OH) 2, 3.0 equiv K3PO4, Pd2(dba) 3, ligand, toluene,

110 °C. Isolated yields (average of 2 runs) of compounds estimated to be >95% pure as determined by 'H

NMR and GC or combustion analysis. b 2.0 equiv Ar'B(OH) 2 used. c o-Xylene as solvent. d 120 °C. 1.0

equiv 2,6-dimethylphenol as additive. f Experiments performed by Dr. Jingjun Yin.

19
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MeO

(HO)2B-/

MeO

93 b,c,f

7 8 f

89

Me

(HO) 2B

Me

3b 10/12 60
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of the four ortho substituents were methoxy groups (entries 8, 9). In several examples, o-

xylene was found to be a superior solvent to toluene (entries 2, 3, 5-8). In addition to

hindered aryl bromides, we were interested in employing aryl chlorides as coupling

partners in this reaction. Pd-catalyzed cross-coupling reactions with unactivated aryl

chlorides have received considerable attention recently.2 f'4 '9 In cases where phosphine

ligands that have been used for this purpose, the ligands employed are usually electron-

rich di- or trialkylphosphines. Thus, it was surprising that during our investigation of this

reaction, it was found that employing 3b as the supporting ligand, 9-chloroanthracene

was coupled in good yield (entry 7). Additionally, we became interested in expanding

the scope of this reaction to include heteroaryl halides. It was observed that several

heteroaryl halides could be employed in this reaction (Table 2, entries 10 and 11),

although they did require the use of high catalyst loadings and elevated temperatures.

Additionally, it was found that the reaction of the pyrrazole benefited from the addition

of 1 equivalent of a phenol additive.

Unfortunately, the reaction conditions described above were not suitable when the

aryl halide possessed an ortho electron-withdrawing group. In these cases, significant

amounts of the corresponding phenol, presumably due to water present in the K3 PO4

and/or boronic acid, were isolated. The use of DPEphos as ligand resulted in decreased

phenol formation, and further inhibition of this side reaction was realized by the inclusion

of freshly activated 4A molecular sieves. Utilizing this modified system, a number of

hindered aryl bromides with ortho electron-withdrawing groups were efficiently coupled

with 2,6-dimethylphenyl boronic acid (Table 3). The DPEphos-based system could also

20



be used with unactivated aryl bromides (entry 4). Unfortunately, the 3b/Pd catalyst

system failed to chemoselectively activate the bromide. In other cases where 3b- and

DPEphos- based systems were compared (where the aryl halide did not contain an ortho-

electron withdrawing group), the 3b/Pd-catalyst afforded higher conversions of the aryl

halide and higher biaryl:arene ratios.

Table 4. Cross-couplings of electron-deficient aryl bromides employing DPEphos

Entry ArBr Ar'B(OH) 2 Product mol% T (°C)/ Yld,a %
Pd t(h)

Me Me

1 \ Br (HO) 2 B

NO2 Me

Me

(HO)2B' 

Me

10 130/
48

Me Me
5

CO 2Me 5

'N -

Me Me 5

f fCHO
'N 

Me

4 Br

CI

Me

(HO) 2B 

Me

6 120/
24

a Reaction conditions: 1.0 equiv ArBr, 2.0 equiv Ar'B(OH)2, 3.0 equiv K3PO4 , Pd2(dba)3, DPEphos

(L:Pd=1.2:1), toluene, activated 4 A mol. sieves. Isolated yields (average of 2 runs) of compounds

estimated to be >95% pure as determined by H NMR, and GC or combustion analysis. b Experiments

performed by Dr. Jingjun Yin.
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3

69

87

8 9 b

110/
21
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Conclusions

In summary, we have described a general catalyst system for the synthesis of

tetra-ortho-substituted biaryls via the Suzuki-Miyaura cross-coupling reaction. The most

efficient catalyst described is based on the phenanthrene-substituted ligand 3a.

Additionally, it was found that aryl halides containing electron-withdrawing substituents

in the ortho-position performed best in hindered cross-coupling reactions when DPEphos

was employed as the supporting ligand.

Experimental Section:

General Considerations. All reactions were carried out under an argon atmosphere in

flame-dried glassware. Toluene was purchased from J. T. Baker in CYCLE-TAINER®

solvent delivery kegs, which were vigorously purged with argon for 2 h. The toluene was

purified by passing through two packed columns of neutral alumina and copper (II) oxide

under argon pressure.'o Anhydrous 1,2-dimethoxyethane (DME) and o-xylene were

purchased from Aldrich Chemical Co. in a SureSeal® bottle and was used without further

purification. Flash chromatography purifications with silica gel were performed using

Silicycle ultra pure silica gel (230-400 mesh) packed columns. DPEphos and

tris(dibenzylideneacetone)-dipalladium were purchased from Strem Chemical Company

and used without further purification. K3PO4 was purchased from Fluka. 2-Phenyl-1-

naphthylboronic acid", 2-methyl-i-naphthylboronic acid'2, and 2-methoxy-1-

naphthylboronic acid'3 were prepared from the corresponding aryl bromides and n-BuLi

and B(OMe)3 following the procedures previously described. 1-Bromo-2-

carbomethoxynaphthalene'4 was prepared according to literature procedures. 1-Bromo-2-

22



naphthylmethanol was prepared as described previously. 5 Ligands la-f, 2, and 4 were

prepared according to literature procedures.'6 'H and 3C NMR spectra were recorded on

a Varian 300 MHz NMR spectrometer. IR spectra were recorded on a Perkin Elmer 1600

series FT-IR spectrometer. Elemental analyses were performed by Atlantic Microlabs

Inc, Norcross, GA. Yields in Tables 2 and 3 refer to isolated yields (average of two runs)

of compounds estimated to be _95% pure as determined by 'H NMR, and GC analysis or

combustion analysis. The procedures described in this section are representative, thus the

yields may slightly differ from those given in Tables 2 and 3.

Br 

~ I H

1-Bromo-2-formylnaphthalene. Pyridinium chlorochromate (323 mg, 1.5 mmol) was

added in one portion to a stirring solution of 1-bromo-2-naphthylmethanol (237 mg, 1.0

mmol) in dichloromethane (4.0 mL) at room temperature. Diethyl ether (10 mL) was

added to the reaction after 1.5 hours. The reaction mixture was then filtered through a

plug of silica gel eluting first with diethyl ether, followed by dichloromethane and finally

ethyl acetate. The filtrate was then concentrated and the resulting brown solid was

purified by flash chromatography on silica gel eluting first with hexane, then with 3:1

hexane : ethyl acetate, to yield 209 mg (89%) of the title compound as a white solid

whose spectra were in agreement with those reported in the literature. 7
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Br

I OAc

1-Bromo-2-acetoxymethylnaphthalene. An oven dried Schlenk flask with magnetic stir

bar was charged with 1-bromo-2-naphthylmethanol (474 mg, 2.0 mmol) and

dimethylaminopyridine (12 mg, 0.1 mmol). The flask was then evacuated, backfilled

with argon, and this process was then repeated. Triethylamine (0.42 mL, 3.0 mmol) and

dichloromethane (4 mL) were added and stirring was initiated. Acetic anhydride (0.21

mL, 2.2 mmol) was then slowly added to the reaction mixture. When addition was

complete, the reaction mixture was allowed to stir at room temperature for 90 minutes.

The reaction mixture was then filtered through a plug of silica gel eluting first with

hexane, then with 3:1 hexane: ethyl acetate. The remaining eluent was then concentrated

in vacuo to give 549 mg (98%) of the title compound as a white solid whose spectra were

in agreement with those reported in the literature.'8

PCY2

2-(9-phenanthryl)phenyl-dicyclohexylphosphine. (3a) A round bottomed flask with a

magnetic stirbar was charged with 9-bromophenanthrene (7.71 g, 30.0 mmol) and

magnesium turnings (1.40 g, 57.5 mmol). The flask was then evacuated and refilled with

argon. THF (50 mL) was added via syringe, and the mixture heated in an oil bath at 60

°C until the bromophenanthrene was consumed (as judged by GC analysis of an aliquot
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that had been quenched with MeOH). 2-Bromochlorobenzene (4.78 g, 2.92 mL, 25

mmol) was then added dropwise via syringe over the course of approximately 20 min.

The mixture was allowed to stir at 60 °C for 2 h, at which point the flask was removed

from the oil bath and the mixture was permitted to cool to room temperature. Copper (I)

chloride (3.22 g, 32.5 mmol) was then added, and stirring was continued for 5 min. At

this point, dicyclohexylchlorophosphine (7.54 g, 7.25 mL, 32.5 mmol) was added

dropwise via syringe. The resulting mixture was stirred at room temperature for 2 days,

and hexane (90 mL) was added to the flask. The mixture was then filtered on a Biichner

funnel. The filtered solid was then transferred to a beaker and stirred for approximately

15 min with ethyl acetate (250 mL) and conc. NH4OH (250 mL). The organic layer was

separated, washed with brine, dried over Na2SO4, filtered and concentrated in vacuo. A

mixture of ethyl acetate and hexane (1:1, 125 mL) was added to the residue. The white

solid that did not dissolve was filtered and dried in vacuo, and was identified as the pure

title compound (2.43 g). The filtrate was concentrated and redissolved in a minimal

amount of CH2Cl2. Hexane was added to the cloud point, and the mixture was

concentrated in vacuo until white crystalline material became visible. After standing, the

white solid was filtered to provide an additional 1.68 g of the title compound. The

combined yield was 4.11 g (37%): mp 141-142 °C; 'H NMR (300 MHz, C6D6) 8.51

(m, 1 H), 7.75 (m, 1 H), 7.63 (m, 3 H), 7.43-7.20 (m, 7 H), 1.90 (m, 1 H), 1.70-1.52 (m,

11 H), 1.22-0.98 (m, 10 H); 13C NMR (75 MHz, CDC13) 6 148.9, 148.5, 139.5, 139.4,

136.3, 136.1, 133.0, 132.5, 131.4, 131.2, 130.3, 130.1, 128.7, 128.6, 128.0, 127.1, 126.8,

126.5, 126.3, 122.9, 35.6, 33.5, 31.0, 30.2, 30.0, 29.8, 28.9, 27.8, 27.7, 27.3, 27.1, 26.6;

31p NMR (121 MHz, CDC13) d -11.9; IR (CHCl3, cm') 3074, 3054, 2925, 2850, 252,

25



2163, 2009, 1493, 1447, 1428, 1001, 905, 851, 724; Anal. Calcd. For C3 2H 35P: C, 85.30;

H, 7.83. Found; C, 85.43; H, 7.96.

PPh2

2-(9-phenanthryl)phenyl-diphenylphosphine. (3b) A round bottomed flask with a

magnetic stirbar was charged with magnesium turnings (0.260 g, 10.7 mmol). The flask

was then evacuated and refilled with argon. This evacuation/refill procedure was then

repeated. A solution of 9-bromophenanthrene (1.50 g, 5.83 mmol) and THF (8 mL) was

added via syringe to the magnesium, and the mixture heated in an oil bath at 60 °C until

the bromophenanthrene was consumed (as judged by GC analysis of an aliquot that had

been quenched with MeOH). The reaction mixture was allowed to cool to room

temperature, and 2-bromochlorobenzene (568 [tL, 4.86 mmol) was then added dropwise

via syringe. The mixture was allowed to stir at 60 °C for 2 h, at which point the flask

was removed from the bath and the mixture allowed to cool to room temperature. A

solution of diphenylchlorophosphine (1.05 mL, 5.83 mmol) in THF (2 mL) was added

dropwise via cannula. The resulting mixture was stirred at 60 °C for 17 h. The reaction

mixture was allowed to cool to room temperature, and the solvent was removed in vacuo

to yield a viscous brown oil. Water (l5mL) was added and the product was extracted

into ether (3 x 25 mL). The combined organic layers were filtered through silica gel, and

the solvent was removed in vacuo. The mixure was purified by flash chromatography
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eluting with 20% toluene/80% hexanes. The resulting impure product was dissolved in a

minimal amount of CH2C12, filtered through Celite, and triturated by the addition of

EtOH. The solid was collected and dried in vacuo to yield 538 mg of the desired ligand

as a white solid (21%): mp 136-138 C; 'H NMR (300 MHz, CDC13) 6 8.76-8.70 (m,

2H), 7.66-7.14 (m, 21H); 13C NMR (75 MHz, CDC13) 8 136.2, 136.1, 134.7, 134.4, 134.0,

133.6, 131.6, 131.5, 130.9, 130.4, 130.3, 129.2, 129.1, 128.9, 128.8, 127.5, 126.8, 123.1,

122.7; 31P NMR (121 MHz,CDCl 3) -13.6; IR (CHC1 3, cm ) 3072, 3056, 2925, 2856,

1602, 1584, 1.493, 1478, 1466, 1451, 1436, 1380, 1358, 1181, 1164, 1140, 1129,1119,

1090, 1069, 1044, 1027, 1000, 780, 768, 751, 697; Anal. Calcd. For C32H 23P: C, 87.65;

H, 5.29. Found; C, 87.62; H, 5.3.

General Procedure for Pd-Catalyzed Suzuki-Miyaura Couplings of Aryl Halides

and Aryl Boronic Acids. (Tables 2 and 3) A flame-dried resealable Schlenk tube was

charged with the indicated amounts of Pd2(dba)3 (0.5 mol% refers to 1 mol% of Pd),

ligand, the solid reactant(s) (1.0 equiv of the aryl halide, 1.5 or 2.0 equiv of the aryl

boronic acid, and, if indicated in the Tables, 4 A molecular sieves (freshly activated by

flame-drying under vacuum), and K3PO4 (3.0 equiv). The Schlenk tube was capped with

a rubber septum, evacuated and backfilled with argon. The liquid reactant (if the aryl

halide is a liquid) and toluene (or o-xylene as indicated in the Tables) (2-6 mL/ mmol aryl

halide) were added through the septum. The septum was replaced with a teflon screwcap.

The Schlenk tube was sealed, and the mixture was stirred at the indicated temperature

(100-130 C) for the indicated time (18-48 h) until the starting aryl halide had been

completely consumed as judged by GC analysis. The reaction mixture was then cooled
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to room temperature, diluted with dichloromethane or ether (10 mL), filtered through a

pad of silica gel with ether, and concentrated in vacuo. The crude material was purified

by flash chromatography on silica gel.

Me Me

Me ,Me

Me

2,2',4,6,6'-Pentamethylbiphenyl. (Table 2, entry 1): The general procedure on a 0.5

mmol scale with toluene (1.0 mL) gave 92 mg of the title compound (82%) as a colorless

liquid: IH NMR (300 MHz, CDCl 3) 6 7.17-7.08 (m, 3 H), 6.94 (s, 2 H), 2.32 (s, 3 H),

1.90 (s, 6 H), 1.86 (s, 6 H); 1
3C NMR (75 MHz, CDCl 3) 8 150.2, 140.2, 137.2, 136.3,

135.9, 135.4, 128.5, 127.7, 127.6, 126.9, 21.3, 20.1, 20.0, 19.9; IR (CHC13, cm ) 2943,

2917, 2856, 1464, 850, 768, 753; Anal. Calcd. For C,7H20: C, 91.01; H, 8.99. Found; C,

90.92; H, 9.12.'9

Me

- O ~ QAc

2-Acetoxymethyl-2'-methyl-1,1'-binaphthyl. (Table 2, entry 4) The general procedure

on a 0.2 mmol scale with toluene (1.0 mL) gave 66 mg (97%) of the title compound as a

white solid: mp 104-105 °C; 'H NMR (300 MHz, CDCl 3) 6 8.00 (d, J = 8.7 Hz, 1 H),

7.90 (m, 2 H), 7.68 (d, J = 8.4 Hz, 1 H), 7.48 (m, 2 H), 7.38 (m, 1 H), 7.22 (m, 3 H), 7.10
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(d, J = 8.4 Hz, H), 6.99 (d, J = 8.7 Hz, 1 H), 4.84 (ab pattern, 2 H), 2.05 (s, 3 H), 1.85

(s, 3 H); 13C NMR (75 MHz, CDCl 3) 6 170.9, 136.7, 134.9, 133.6, 133.3, 133.2, 132.7,

132.3, 132.1, 128.8, 128.3, 128.3, 128.2, 126.8, 126.5, 126.4, 126.3, 125.9, 125.2, 65.0,

20.9, 20.8; IR (CHCI3, cm l) 3054, 3012, 2952, 2919, 2858, 1739, 1509, 1362, 1233,

1027, 814; Anal. Calcd. For C24H 20 0 2: C, 84.68; H, 5.92. Found; C, 84.56; H, 6.02.

Me Me

9-(2',6'-Dimethylphenyl)-anthracene. (Table 2, entry 5) The general procedure using 9-

bromoantharacene on a 0.5 mmol scale with o-xylene (1.0 mL) gave 120 mg (85%) of the

title compound as a white solid: mp 145-146 °C; H NMR (300 MHz, CDCl3) 8 8.54, (s,

1 H), 8.12-8.10 (m, 2 H), 7.53-7.48 (m, 4 H), 7.44-7.31 (m, 5 H), 1.80 (s, 6 H); 13C NMR

(75 MHz, CDCl 3) 8 138.0, 137.7, 135.8, 131.8, 129.7, 128.8, 127.9, 127.7, 126.4, 126.0,

125.9, 125.4, 20.1; IR (CHC13, cm') 3047, 2916, 1440, 884, 845, 738; Anal. Calcd. For

C22H,8: C, 93.58; H, 6.42. Found; C, 93.29; H, 6.48.

Me Me
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9-(2',6'-Dimethylphenyl)-anthracene. (Table 2, entry 6) The general procedure using 9-

chloroantharacene on a 0.5 mmol scale with o-xylene (1.5 mL) gave 121 mg (86%) of the

title compound as a white solid. See above for the spectral data.

Me Me

OMe

1-(2',6'-Dimethylphenyl)-2-methoxynaphthalene (Table 3, entry 3) The general

procedure on a 0.4 mmol scale with toluene (1.0 mL) gave 90 mg (86%) of the title

compound as a white solid: mp 96-98 °C; H NMR (300 MHz, CDCl 3) 6 7.92 (d, J = 9.0

Hz, 1 H), 7.86 (m, 1 H), 7.40 (d, J = 8.7 Hz, 1 H), 7.37-7.26 (m, 3 H), 7.20 (m, 3 H),

3.85 (s, 3 H), 1.93 (s, 6 H); 13C NMR (75 MHz, CDCl 3) 6 153.6, 137.5, 135.9, 133.0,

129.3, 129.1, 128.2, 127.5, 127.4, 126.7, 124.5, 123.7, 123.4, 113.6, 56.5, 20.3; IR

(CHCl 3, cm') 3062, 3014,2939, 2919, 1621, 1594, 1507, 1465, 1331, 1272, 1256, 1246,

1148, 1094, 1067, 1021, 808, 772; Anal. Calcd. For C 9H, 80: C, 86.99; H, 6.92. Found;

C, 86.69; H, 6.87.

MeN Me

Me/,N Me
O-N

4-(2',6'-Dimethylphenyl)-3,5-dimethylisoxazole. (Table 3, entry 4) The general

procedure on a 0.5 mmol scale with toluene (1.5 mL) gave 58 mg (58%) of the title

30



compound as a yellow solid: mp 105-107 °C; 'H NMR (300 MHz, CDCl3 ) b 7.20 (m, 1

H), 7.13 (m, 2 H), 2.18 (s, 3 H), 2.04 (s, 6 H), 2.03 (s, 3 H); 13C NMR (75 MHz,

CDCl 3)6 165.2, 159.6, 138.2, 128.7, 128.4, 127.6, 114.8, 20.4, 16.5, 11.3, 10.5; IR

(CHCl3, cm l ) 3068, 3024, 2964, 2954, 2927, 2861, 2246, 2159, 2030, 1638, 1465, 1445,

1410, 1233, 998, 920,778, 727; Anal. Calcd. For C 3H, 5NO: C, 77.58; H, 7.51; N, 6.96.

Found; C, 77.74; H, 7.57; N, 6.48.

N-NMe

4-(2',6'-Dimethoxyphenyl)-1,3,5-trimethylpyrazole. (Table 3, entry 5) The general

procedure on a 0.3 mmol scale at 120 °C with toluene (0.8 mL) gave 40 mg (55%) of the

title compound as a light yellow solid: mp 98-99 °C; 'H NMR (300 MHz, CDCl 3) 6 7.27

(t, J = 8.4 Hz, 1 H), 6.63 (d, J = 8.4 Hz, 2 H), 3.77 (s, 9 H), 2.07 (s, 3 H), 2.04 (s, 3 H);

13C NMR (75 MHz, CDCl 3) 61158.5, 146.9, 138.2, 111.1, 103.9, 55.8, 41.8, 36.2, 16.6,

12.8, 10.8; IR (CHC13, cml ) 3066, 3010, 2941, 2923, 2840, 1623, 1594, 1507, 1466,

1443, 1434, 1376, 1331, 1272, 1248, 1113, 1067, 1021, 808, 778, 731, 679; Anal. Calcd.

For C 4H,,N 2 0 2): C, 68.27; H, 7.37. Found; C, 68.16; H, 7.37.
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2-methoxy-2'-methyl-1,1'-binaphthyl. (Table 3, entry 6) The general procedure on a

0.25 mmol scale with toluene (0.8 mL) gave 61 mg (82%) of the title compound as a

white solid. Spectroscopic data for this compound were in agreement with those reported

in the literature.2

Me

NO2

2,2'6-Trimethyl-6'-nitrobiphenyl. (Table 4, entry 1) The general procedure on a 0.25

mmol scale at 130 C with activated 4A molecular sieves and toluene (1.5 mL) gave 41

mg (68%) of the title compound as a yellow solid: mp 123-124 °C; IH NMR (300 MHz,

CDCl 3) 67.75 (d, J = 8.3 Hz, 1 H), 7.54 (d, J = 7.7 Hz, 1 H), 7.41 (t, J = 7.7 Hz, 1 H),

7.25-7.11 (m. 3 H), 1.98 (s, 3 H), 1.94 (s, 6 H); 13C NMR (75 MHz, CDCI3) 6139.1,

135.7, 135.4, 134.5, 134.4, 128.1, 128.0, 127.7, 121.6, 20.1, 19.9; IR (CHC13, cm') 3060,

2968, 2912, 1520, 1362, 798, 747; Anal. Calcd. For C,5H,5NO2: C, 74.67; H, 6.27.

Found; C, 74.67; H, 6.25.
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Me Me

[ g CO 0
2Me

1-(2',6'-dimethylphenyl)-2-carbomethoxynaphthalene. (Table 4, entry 2) The general

procedure on a 0.20 mmol scale with activated 4A molecular sieves and toluene (1.2 mL)

gave 52 mg (90%) of the title compound as a white solid: mp 71-73 °C; 'H NMR (300

MHz, CDCl 3) 6 8.03 (d, J = 8.5 Hz, 1 H), 7.94-7.91 (m, 2 H), 7.60-7.54 (m, 1 H), 7.43-

7.33 (m, 2 H), 7.29-7.22 (m, 1 H), 7.18-7.15 (m, 2 H), 3.67 (s, 3 H), 1.83 (s, 6 H); 1
3C

NMR (75 MHz, CDCl 3) 6 168.1, 141.2, 138.2, 136.4, 135.3, 131.9, 128.3, 127.9, 127.7,

127.54, 127.53, 127.2, 127.1, 126.9, 126.0, 52.2, 20.4; IR (CHC13, cm) 3060, 2948,

2918, 1729, 1240, 1132, 768; Anal. Calcd. For C20HI80 2: C, 82.73; H, 6.25. Found; C,

82.79; H, 6.35.
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Chapter 2.
An Annulative Approach to Highly Substituted Indoles: Unusual Effect of Phenolic

Additives on the Success of the Arylation of Ketone Enolates

36



Introduction

The synthesis of indoles has occupied organic chemists for well over a century.'

The combination of traditional and modem methods has provided accessibility to a wide

variety of structural variations of this important class of heterocycles.2 9 Still, a general,

mild, and efficient method to access 4-, 5-, 6- as well as 5,6- and other polysubstituted

indoles from simple and readily accessible (non aryl iodide) precursors has proved

elusive. Herein we disclose a method, based on the Pd-catalyzed arylation of ketone

enolates, that concatenates simple ketones with widely available chloro- and

bromoaromatics,'l° to provide a wide range of polysubstituted indole derivatives. The

success of the method is due to an unexpected additive effect in the ketone arylation

process: the inclusion of a catalytic quantity of a phenol in the enolate arylation of o-

halonitroarenes effects a remarkable increase in the efficiency of the transformation.

Despite the emergence of the palladium-catalyzed ketone arylation reaction," to our

knowledge, o-halonitroarenes have never previously appeared as coupling partners in this

reaction.

NMe2 NMe2 Ph

la b -c 

Cy2 P t-Bu2P t-Bu2 P
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Results and Discussion

Our first attempts to couple ketone enolates with o-halonitroarenes furnished trace

product along with the persistent formation of 2-nitrophenol. Any attempt to lessen the

quantity of this phenolic impurity also resulted in suppression of product formation,

indicating that the phenol might be performing a beneficial role. In fact, we found that

addition of 20 mol% phenol, in combination with phosphine la, led to the development

of a highly efficient process for coupling o-halonitroarenes with ketones. Moreover, the

products of the arylation reaction of ketones with o-halonitroarenes allowed for the

synthesis of substituted indoles in a straightforward manner following previously

described reductive cyclization procedures.9 2

The substrate scope of this reaction was found to be quite broad, as is depicted in

Table 1. Both electron-rich and -deficient o-bromo or o-chloro nitroarenes were effective

coupling partners using mild reaction conditions. The reactions were carried out at 35-50

°C (save entry 9) in toluene using K3PO4 as the base in the presence of 20 mol % of a

phenol additive (4-methoxyphenol was found to be optimum in most cases).
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Table 1. Synthesis of 2,n-substituted indoles

Pd2(dba)3 , la,
K3 PO4

Phenol
350-800C
15h-27h

TiCI 3
,NO2 NH4 OAc H R

EtOH, rt R H
H 

Entry Aryl Halide Indole T (C) /t (h) Yield (%)a

F3C1, Cl

NO 2

CI

Cl NO2

EtO2C" NO2

Me

NO2

, BBr

F3CP
2 IL.NPh

H
MeO

Cl H

4 n-Bu

EtO 2C H

5

6 I \ CO 2Et

H

6 O 26 ....~CI
EtO2C NO2

7 Me NO2

8Me Br
MeO NO2

7

Et0 2 C

8 n-Bu

Me- N
H

MeO 

9 MeO n-Bu
MeO NH

a 20 mol% of phenol, 2 mol% Pd, 4 mol% la with 2.2 equiv ketone on a I mmol scale. Isolated yields

(average of two runs) of compounds estimated to be >95% pure as determined by 'H NMR and GC or

combustion analysis. b 4 mol% Pd, 8 mol% Ligand. 2.0 equiv ketone used. d 6 equiv ketone used. lc

used as ligand. f Experiments performed by Dr. J. Rutherford.
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Table 2. Synthesis of 2,3,n-substituted indoles

Pd2(dba)3, la

K3 PO4, 35-50°C

20 mol%
p-methoxyphenol

E

R1=NO 0
NO2 R

0

0 2N.

NaH, E+

THF, RT

OR
E+ , THF, 50°C

TiCI 3

EtOH/ NH4OAc
RT

Entry Aryl Halide Electrophile Indole Yield (%)

1

EtO2CIiN02

EtO2KC' NO 2

MeO NOBr

3Me NO2
Meo N0 2

MeO Br
4MeO NO2

Meo ' ~ `NO2

Br

NO2

Me,],Br

Me : 'NO2

F3 CI NO2

Mel

BrCO 2Me

BrCO 2Me

Mel

Mel

Mel

Mel

Me

Et2C Ph
EtO 2C LA

n
Me

MeO

ePh
MeO h

Me

Me

H
Me

N """""`Ph
Me N

H
Me

F3I~ NMe
F3 0 H

a Reaction conditions: 1.0 equiv ArX, 2.0 equiv ketone, 2.5 equiv K3PO4, 0.2 equiv 4-methoxyphenol, I
mol% Pd2(dba) 3, 4 mol% la, 1 mL toluene, 22 hours. Isolated yields (average of two runs) of compounds
estimated to be >95% pure as determined by 'H NMR and GC or combustion analysis. b 1.1 equiv ketone,
2.0 equiv K3PO4. 6.0 equiv ketone. d 1.5 equiv iodomethane, I mL THF added upon completion of
ketone arylation.
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Acetophenone derivatives, as well as alkyl methyl ketones, including acetone,

were viable substrates in this process. However, the current reaction conditions are

successful only when arylating either methyl or cyclic ketones. Mitigating this limitation

was that the arylated ketones I could be deprotonated and efficiently alkylated with

several electrophiles, and subsequently submitted to the reductive cyclization conditions

to give 2,3,n-substituted indoles in moderate to excellent yields (Table 2). In our first

alkylation protocol, the ketone arylation process was carried out followed by aqueous

workup and isolation of the crude product. Without purification, this material was

alkylated with the electrophile (1.1 equiv) using NaH (1.2 equiv) as the base in THF at

room temperature to give II. Alternatively, we found that upon completion of the ketone

arylation reaction, addition of iodomethane and THF (as a co-solvent) to the crude

reaction mixture, and then heating at 50C provided the same intermediate II as obtained

above. In both cases, the alkylated material was carried on crude to the reductive

cyclization step. This method allows for the independent variation of the three substrate

components, providing a route to numerous indoles not previously readily available.

To date, we have only observed such a remarkable phenol additive effect in the case of

electron-deficient aryl halide substrates. Moreover, its magnitude is significantly larger

for o-halonitrobenzene derivatives than for other substrates containing electron

withdrawing groups. In order to delineate the reason for the effect of the added phenol, a

series of experiments were performed as outlined in Figure 1. From these, we found that

no desired product was formed in the presence of an excess of the phenolic addititive, or

in its absence. However, good results were obtained when the reaction was performed in

the presence of a catalytic quantity of a phenol. There are several plausible explanations
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Br

NO2 +

Entry

1 2.2 eqL

2 2.2 equ

3 2.2 equ

4 2.2 equ

5

6

O

Me'-Pr

Base

liv K 3 PO4

fiv K3 PO 4

iv K3 PO4

liv K3 PO4

none

none

Pd2(dba)3 , la

Toluene, 50 °C, 14 h

Base / Additive

Additive

none

0.2 equiv phenol

0.2 equiv KOPh

1.2 equiv KOPh

1.2 equiv KOPh

0.2 equiv KOPh

NO 2

Res 0
i-Pr

Result

Low Conversion
No Desired Product

50% Conversion
Desired Product

50% Conversion
Desired Product

Low Conversion
No Desired Product

Low Conversion
No Desired Product

10-20% Conversion
Desired Product

R'
0 2N /

L, 111

H /OMe

R'

)2N

Iv

to account for these observations. The simplest of these is that the formation of an

intermediate palladium phenoxide (e.g., IV) stabilizes an otherwise unstable intermediate

preventing catalyst decomposition.'3 A second explanation is that intermediate m serves

as a Lewis acid while the phenoxide serves as a base to deprotonate the coordinated

ketone. 4 A third explanation is that IV can coordinate to the ketone, facilitating

deprotonation with concomitant formation of a Pd-O bond. At present we have been

unable to differentiate between the possibilities discussed above. However, we favor the

third, intermediacy of a complex of type IV, as a dramatic decrease in efficiency is seen

as more hindered phenols are used with the same substrate combination.
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Conclusions

In summary, we have described a procedure for the arylation of methyl and cyclic

ketone enolates with o-halonitroarenes. The success of this reaction was found to be

dramatically impacted by the presence of catalytic quantities of phenolic additives. This

process has provided for the regioselective synthesis of a wide variety of substituted

indoles from commercially available materials.

Experimental Section:

General Considerations. All palladium-catalyzed reactions were carried out under an

argon atmosphere in oven-dried glassware. Toluene was purchased from J. T. Baker in

CYCLE-TAINER15 solvent delivery kegs, which were purged with argon for 2 hours and

purified by passing the toluene through two packed columns of neutral alumina and

copper(II) oxide under argon pressure. All other reagents were used as purchased

without further purification. 2-Bromo-5-fluoronitrobenzene and 3-chloro-4-

nitrobenzotrifluoride were purchased from Marshallton Research Laboratories. All other

halides and ketones were purchased from Aldrich or Alfa-Aesar. 4-Methoxyphenol was

purchased from Acros and phenol was purchased from Aldrich. An aqueous titanium(III)

chloride solution, 20% in 3% hydrochloric acid, was purchased from Alfa Aesar and each

bottle was titrated with potassium bromate prior to use. The solutions were routinely 1.3
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- 1.5M TiCl3. Potassium phosphate was obtained from Fluka as a granular solid. Other

sources of potassium phosphate are powders or hard solid pieces and often resulted in

reduced rates when utilized in the reactions. More consistent results could be obtained

when the potassium phosphate pieces were ground into a powder, but the current

preferred source for potassium phosphate is Fluka. Pd2dba3 was purchased from Strem

Chemical Company. 2-Dicyclohexylphosphino-2'-dimethylaminobiphenyl 6 , 2-di-t-

butylphosphino-2'-dimethylaminobiphenyl'6 andl-(di-t-butylphosphino)-o-terphenylI7

were synthesized according to literature procedures. 2-Dicyclohexylphosphino-2'-

dimethylaminobiphenyl and 2-di-t-butylphosphino-2'-dimethylaminobiphenyl are also

commercially available from Strem Chemical Company.

Reported yields are the isolated yields of compounds determined to be greater

than 95% pure as determined by proton NMR spectroscopy and gas chromatographic

analysis. New compounds were characterized by elemental analysis or high resolution

mass spectrometry combined with proton and carbon NMR spectroscopic analysis.

Elemental analyses were performed by Atlantic Microlabs, Norcross, GA. IR spectra

were obtained on a Perkin Elmer 1600 series FT-IR spectrometer. NMR spectra were

recorded on a Varian XL 300 instrument with chemical shifts reported in ppm relative to

trimethylsilane or residual deuterated solvent. Gas chromatographic analyses were carred

out on a Hewlett Packard 6890 instrument with a FID detector and a HP-1 10m x 0.1 mm

i.d. column.

44



General Procedure for the One-Pot Synthesis of Indoles: Arylation of Ketones with

Ortho-nitro Aryl Halides Followed by Reductive Cyclization.

The synthesis of all compounds followed this general procedure. Details such as

temperature and time are included in Table 1.

To an oven-dried resealable Schlenk tube containing a stir bar, Pd2dba3 (0.01

mmol), the ligand (0.04 mmol), K3PO4 (2.3 mmol), and the phenol (0.2 mmol) were

added. If a solid, the ortho-nitro aryl halide (1.0 mmol) was also placed into the tube.

The tube was fitted with a rubber septum and was evacuated and backfilled with argon

twice. Toluene (2 mL) and the ketone (2.2 mmol) were syringed into the tube. If a

liquid, the ortho-nitro aryl halide (1.0 mmol) was added via syringe to the reaction vessel

as well. The tube was sealed with a teflon screw cap and was stirred at the indicated

temperature (35 - 80 °C) for the indicated time when the starting halide was judged to be

completely consumed by GC analysis (15-26.5h). After allowing the reaction to cool to

room temperature, the reaction mixture was extracted with a total of 10 mL ethyl acetate

and 10 mL water. The separated organic layer was concentrated in vacuo. The material

was used, without purification, for the next step.

To a 100 mL round-bottom flask, aqueous TiC13 (16.5 mmol), aqueous

ammonium acetate (15 mL; 6.6M), and ethanol (5 mL) were added. The flask was fitted

with a rubber septum and a needle, connected via tubing to an argon tank, was inserted to

provide a constant argon purge. Ethanol (15 mL) was added to dissolve the crude ketone.

45



If the crude mixture was not completely soluble in ethanol, ethyl acetate (2-3 mL) was

also added. The crude ketone solution was slowly added by syringe to the titanium

trichloride solution and the resulting mixture was stirred at room temperature for 15 min

(except for the cyclization of 2-isopropylindole, which was stirred at room temperature

for 2.5 h).

The reaction mixture was extracted with diethyl ether (3 X 25 mL). The

combined organic extracts were washed with saturated sodium bicarbonate, followed by

brine, dried over sodium sulfate, and concentrated in vacuo. Purification of the crude

product was carried out by column chromatography on silica gel.

F

8 nBu
Me N

H

2-Butyl-5-fluoro-6-methyl-lH-indole (Table 1, entry 13).

The general procedure was followed using 4-methoxyphenol. Column chromatography

over silica gel eluting with 5:95 ethyl acetate:hexanes gave 144 mg (70%) of the title

compound as a yellow solid: mp = 109-111 °C; 'H NMR(CDCI 3, 300MHz) 67.71 (bs,

1H), 7.13 (m, 1H), 7.04 (m, 1H), 6.17 (m, 1H), 2.75 (t, J = 7.4 Hz, 2H), 2.38 (s, 3H), 1.68

(quint, J = 7.4 Hz, 2H), 1.44 (hext, J = 7.4 Hz, 2H), 1.01 (t, J = 7.4 Hz, 3H); ' 3C NMR

(CDC13, 75 MHz) 8155.3, 140.9, 132.4, 127.3, 118.5 (m), 111.67 (m), 104.3 (m), 99.5,

31.5, 28.3, 22.7, 15.6, 14.2; IR (CDC13, cm -') 3473, 2960, 2931, 1466, 1175, 1092, 859;

Anal. Calcd for C,3H, 6FN: C, 76.06; H, 7.86; Found: C, 76.08; H, 7.86.
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9 MenBu
MeO N H

2-Butyl-5,6-dimethoxy-lH-indole (Table 1, entry 14).

The general procedure was followed using 4-methoxyphenol. Column chromatography

over silica gel eluting with 1:5 ethyl acetate:hexanes gave 175 mg (75%) of the title

compound as a bright yellow oil: H NMR(CDCI 3, 300MHz) 67.96 (bs, 1H), 7.06 (s, 1H),

6.70 (s, 1H), 6.16 (s, 1H), 3.93 (s, 3H), 3.83 (s, 3H), 2.71 (t, J = 7.4 Hz, 2H), 1.71 (quint,

J = 7.4 Hz, 2H), 1.44 (hext, J = 7.4 Hz, 2H), 1.00 (t, J = 7.4 Hz, 3H); '3C NMR (CDC13,

75 MHz) 6145.8, 144.5, 138.7. 130.0, 121.4, 101.9, 98.7, 94.5, 56.4, 56.2, 31.6, 28.1,

22.6, 14.1; IR (CDCl 3, cm-') 3736, 3477, 2960, 2937, 1486, 1314, 1200, 1123, 1009, 841,

725; Anal. Calcd for C14H19NO 2: C, 72.07; H, 8.21; Found: C, 71.94; H, 8.25.

General Procedure for the Synthesis of 2,3-Substituted Indoles : Arylation of

Ketones with Ortho-nitro Aryl Halides Followed by Alkylation, then Reductive

Cyclization.

Procedure A. Details such as temperature and time are included in Table 2.

To an oven-dried resealable Schlenk tube containing a stir bar was added Pd2dba3 (0.01

mmol), the ligand (0.04 mmol), K3PO4 (2.3 mmol), and 4-methoxyphenol (0.2 mmol).

If a solid, the ortho-nitro aryl halide (1.0 mmol) was also placed into the tube. The tube

was fitted with a rubber septum and was evacuated and backfilled with argon twice.

47



Toluene (2 mL) and the ketone (2.0 mmol) were added via syringe to the tube. If a

liquid, the ortho-nitro aryl halide (1.0 mmol) was added by syringe to the reaction vessel

as well. The tube was sealed with a teflon screw cap and was stirred at the indicated

temperature (35 - 50 °C) for the indicated time when the starting halide was judged to be

completely consumed by GC analysis. (24 h) The reaction mixture was allowed to cool

to room temperature, then diluted with 1: 1 ethyl acetate: 2N NaOH. The layers were

separated and the aqueous layer was extracted two times with ethyl acetate. The

combined organic layers were washed with brine, dried over magnesium sulfate, filtered,

and concentrated. The residue was then dissolved in THF (2 mL) and the electrophile

(1.1 mmol) was added. This solution was then added to a stirring suspension of sodium

hydride (52 mg, 1.3 mmol, 65% as a dispersion in mineral oil) in THF (2 mL). The

reaction was allowed to stir at room temperature for two h, and then concentrated to

dryness. The residue was then carefully dissolved in ethanol (4 mL) (this will also

quench any residual NaH) and slowly added to a stirring solution of TiCl3 (13 mL, 16

mmol) and ammonium acetate (16 mL, 6M) in ethanol (16 mL). When the addition was

complete, the reaction mixture was allowed to stir at room temperature for an additional

fifteen min, and was then diluted with diethyl ether. The layers were separated and the

aqueous layer was extracted three times with diethyl ether. The combined organic layers

were then carefully washed with saturated aqueous sodium bicarbonate, brine, dried over

magnesium sulfate, filtered and concentrated. The residue was then purified by flash

chromatography over silica gel to give the desired indole product.
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General Procedure for the Synthesis of 2,3-Substituted Indoles: Arylation of

Ketones with Ortho-nitro Aryl Halides Followed by Alkylation, then Reductive

Cyclization.

Procedure B. Details such as temperature and time are included in the Table 2.

The method of procedure A was followed to prepare the arylated ketone. At this

point, under a positive pressure of argon, the screw cap was removed and THF (1 mL)

and methyl iodide (94 tL, 1.5 mmol) were added. The screw cap was replaced and the

reaction flask was placed back in a 50 °C oil bath and left for 18 h. The reaction mixture

was allowed to cool to room temperature, then diluted with a 1: 1 mixture of ethyl

acetate: water. The layers were separated and the aqueous layer was extracted two times

with ethyl acetate. The combined organic layers were washed with brine, dried over

magnesium sulfate, filtered, and concentrated. This residue was then dissolved in ethanol

(5 mL) and slowly added to a stirring solution of TiCl 3 (10 mL, 14 mmol) and ammonium

acetate (11 mL, 6M) in ethanol (10 mL). When addition was complete, the reaction

mixture was allowed to stir at room temperature for an additional fifteen min, then the

reaction mixture was diluted with diethyl ether. The layers were separated and the

aqueous layer was extracted two times with diethyl ether. The combined organic layers

were then carefully washed with saturated aqueous sodium bicarbonate, brine, dried over

magnesium sulfate, filtered and concentrated. The residue was then purified by flash

chromatography over silica gel to give the desired indole product.
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Me

p Ph 10

EtO2C N

3-Methyl-2-phenyl-lH-indole-6-carboxylic acid ethyl ester (Table 2, entry 1).

General procedure A was followed at 50C. Column chromatography over silica gel

eluting with 1 :1:8 ethyl acetate:dichloromethane:hexanes gave 167 mg (60%) of the title

compound as a light yellow solid: mp = 133-135 °C; H NMR (CDC13, 300MHz) 88.43

(bs, H), 8.17 (m, 1H), 7.85 (m, 1H), 7.62 (m, 3H), 7.51 (m, 2H), 7.41 (m, lH), 4.42 (q, J

= 7.2 Hz, 2H), 2.50 (s, 3H), 1.45 (t, J = 7.2 Hz, 3H); 13C NMR (CDC13, 75 MHz) 6167.8,

137.5, 135.1, 133.5, 132.7, 129.0, 128.0, 124.0, 120.7, 118.5, 113.1, 109.2, 99.9, 61.0,

14.8, 10.0; IR (CDCl 3, cm -') 3465, 2981, 1698, 1320, 1285, 1216, 1096, 770; Anal. Calcd

for C18H17NO2: C, 77.40; H, 6.13; Found: C, 77.09; H, 6.04.

.

3-Methoxycarbonylmethyl-2-methyl- H-indole-6-carboxylic acid ethyl ester (Table

2, entry 2).

General procedure A was followed at 35C with 6.0 equiv of ketone. Column

chromatography over silica gel eluting with 1:4 ethyl acetate:hexanes gave 188 mg (68%)

of the title compound as a yellow solid: mp = 107-110 °C; 'H NMR (CDCl 3, 300MHz)

68.34 (bs, 1H), 8.03 (m, 1H), 7.80 (m, 1H), 7.51 (m, 1H), 4.41 (q, J = 7.2 Hz, 2H), 3.72

(s, 2H), 3.70 (s, 3H), 2.45 (s, 3H), 1.44 (t, J = 7.2 HZ, 3H); '3C NMR (CDCl 3, 75 MHz)

6172.3, 167.9, 136.7, 134.4, 132.1, 123.2, 120.9, 117.5, 112.7, 105.3, 60.9, 52.3, 30.3,
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14.8, 12.3; IR (CDCl 3, cm-') 3751, 3651, 1735, 1698, 1314, 1301, 1270, 1208, 1021;

Anal. Calcd for C,5H17NO4: C, 65.44; H, 6.22; Found: C, 65.49; H, 6.29.

C0 2Me

aMeO Ph 12

MeO N
H

(5,6-Dimethoxy-2-phenyl-1H-indol-3-yl)-acetic acid methyl ester (Table 2, entry 3).

General procedure A was followed at 50C. Column chromatography over silica gel

eluting with 1:3 ethyl acetate:hexanes gave 230 mg (70%) of the title compound as a

yellow solid: mp = 43-45 °C; 'H NMR (CDCl3, 300MHz) 68.1 (bs, 1H), 7.61 (m, 2H),

7.46 (m, 2H), 7.39 (m, 1H), 7.11 (s, 1H), 6.89 (s, 1H), 3.97 (s, 3H), 3.92 (s, 3H), 3.84 (s,

2H), 3.75 (s, 3H); '3C NMR (CDC13, 75 MHz) 6172.7, 147.5, 145.3, 134.8, 132.7, 130.2,

129.0, 127.9, 127.7, 121.9. 105.4, 101.0, 94.5, 56.6, 56.4, 52.3, 31.4; IR (CDCl 3, cm')

3724, 3465, 2956, 1733, 1484, 1341, 1245, 1216, 1160, 1003, 700; HRMS calc:

325.1314; found: 325.1295.

Me

:MeO C Ph 13

MeO N
H

5,6-Dimethoxy-3-methyl-2-phenyl-lH-indole (Table 2, entry4).

General procedure B was followed at 50C. Column chromatography over silica gel

eluting with 1:9 ethyl acetate:hexanes gave 212 mg (79%) of the title compound as a

yellow solid: mp = 157-158 °C; 'H NMR (CDCl3 , 300MHz) 67.87 (bs, 1H), 7.53 (m,

2H), 7.43 (m, 2H), 7.32 (m, 1H), 7.01 (s, 1H), 6.89 (s, 1H), 3.97 (s, 3H), 3.93 (s, 3H),
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2.45 (s, 3H); '3C NMR (CDC13, 75 MHz) 8147.3, 145.0, 133.6, 132.8, 130.2, 128.9,

127.4, 126.9, 122.9, 108.6, 100.8, 94.4, 56.6, 56.4, 10.3; IR (CDC13, cm -') 3749, 3691,

1482, 1243, 1216, 1000, 722; HRMS calc: 267.1259; found: 267.1245.

Me

I \Me 1 4

H

2,3-Dimethyl-H-indole (Table 2, entry 5).18

General procedure A was followed at 50C with 6.0 equiv of ketone. Column

chromatography over silica gel eluting with 1:3 ethyl acetate:hexanes gave 103 mg (71%)

of the title compound as a off white solid. Melting point and spectral data are identical to

those previously described.

Me

, - Ph 15
Me N

H

3,6-Dimethyl-2-phenyl-lH-indole (Table 2, entry 6).

General procedure A was followed at 50°C with 1.1 equiv of ketone and 2.0 equiv of

K3 PO4. Column chromatography over silica gel eluting with 5:95 ethyl acetate:hexanes

gave 198 mg (90%) of the title compound as an off white solid: mp = 122-124 °C; 'H

NMR (CDCl 3, 300MHz) 67.88 (bs, 1H), 7.58 (m, 2H), 7.51 (m, 3H), 7.37 (m, 1H), 7.17

(bs, 1H), 7.02 (m, 1H), 2.53 (s, 3H), 2.50 (s, 3H); 13C NMR (CDC13, 75 MHz) 6136.3,

133.6, 133.4, 132.3, 128.9, 128.0, 127.7, 127.2, 121.4. 188.8, 110.8, 108.7, 22.1, 10.1; IR
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(CDC13, cm-') 3464, 2923, 1461, 1034, 1007, 733, 698; HRMS calc: 221.1204; found:

221.1207.

Me

F3CMe 16
F3C

2,3-Dimethyl-6-trifluoromethyl-lH-indole (Table 2, entry 7).

General procedure B was followed at 500C with 6.0 equiv of ketone. Column

chromatography over silica gel eluting with 5:95 ethyl acetate:hexanes gave 108 mg

(51%) of the title compound as a yellow solid: mp = 156-157 °C; 'H NMR (CDCl3,

300MHz) 67.85 (bs, 1H), 7.53 (m, 2H), 7.33 (m, 1H), 2.42 (s, 3H), 2.27 (s, 3H); 13C

NMR (CDCl3, 75 MHz) 6134.0, 131.7, 127.4, 123.8, 123.0, 122.6, 118.2, 115.8 (m),

107.5 (m), 11.9, 8.7; IR (CDC13, cm -') 3409, 2925, 2865, 1426, 1331, 1275, 1160, 1150,

1108, 874, 820; Anal. Calcd for C,,H,0 F3N: C, 61.97; H, 4.73; Found: C, 61.99; H, 4.78.

MeO yBr

MeO' 'NO2

2-Bromo-4,5-dimethoxy-nitrobenzene.'8

The procedure used is adjusted from that reported in the literature. A 250 mL round

bottom flask equipped with a magnetic stir bar was charged with bromoveratrole (3 mL,

20.86 mmol) and glacial acetic acid ( 5 mL). This stirring mixture was cooled to between

-4° and -8°C, then fuming nitric acid (1.77 mL, 41.71 mmol) was added dropwise. When

addition was complete, the reaction mixture was allowed to warm to room temperature,

then stirred at this temperature for an additional 30 min. Water (50 mL) was then added
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to the reaction and the resulting precipitate was collected by filtration and recrystalized

from ethanol to give 4.16 g (76%) of the title compound as light yellow needles. Melting

point and spectral data are identical to those previously described.
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Section 2.
Copper-Catalyzed Asymmetric Conjugate Reduction Chemistry
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Chapter 3.
Copper-Catalyzed Asymmetric Conjugate Reduction As a Route to Novel B-

Azaheterocyclic Acid Derivatives
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Introduction

[-Amino acids and their derivatives are of interest as structural components and

due to their biological activity.' The asymmetric synthesis of these compounds has been

realized through a variety of methods,2 most notably asymmetric Mannich reactions,3

diastereoselective or enantioselective conjugate additions,4'5 and the reduction of [3-amido

a,-unsaturated esters or nitriles.6 7 While the reduction of a,l3-unsaturated esters has

proven to be a particularly powerful tool for this transformation, the various methods

employed are generally limited to substrates that contain a primary amido group in the 38-

position.s

We recently described a versatile system for the asymmetric conjugate reduction

of a wide variety of a,-unsaturated carbonyl compounds.9" ° Appropriately substituted

acyclic a,43-unsaturated esters, cyclopentenones, lactones, and lactams could all be

reduced in high yield and with excellent levels of enantioselectivity. However, to our

knowledge there have been no successful conjugate reductions of substrates containing 13-

heteroatoms. One possible explanation for the absence of this class of substrates is that

deactivation of the enoate can occur by the interaction of a lone pair of electrons on the

heteroatom with the conjugated n-system of the enoate. We therefore reasoned that

suitable substrates for this reaction that contained P-heteroatoms would possess

functional groups in which this interaction is minimized. We report here the first method

for the asymmetric conjugate reduction of a,3-unsaturated carbonyl compounds

substituted with a nitrogen atom in the ,-position. This method allows for the

preparation of a variety of azaheterocycles and derivatives not available by other methods

of asymmetric reduction.
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Results and Discussion

At the onset of this study, it was desirable to have a protocol for the synthesis of

substrates that would allow for the introduction of a variety of nitrogen substituents in the

O-position of a,O-unsaturated carbonyl compounds. In particular, we were interested in

synthesizing compounds with a carbonyl adjacent to the nitrogen atom. The recently

reported copper-catalyzed vinylation of amides and carbamates provided access to these

types of compounds, and appeared to be a general system for the incorporation of a

variety of nitrogen nucleophiles." However, our initial attempts to couple D-iodo

enoates'2 with 2-azetidinone using a copper (I) iodide / diamine catalyst with cesium

carbonate as base in THF were unsuccessful. Only a trace amount of the desired product

was observed employing these conditions previously successful for similar substrate

combinations. Instead, a large amount of the corresponding alkynoate (originating from

elimination of HI from the iodo-enoate) was formed. These results prompted

examination of the effect of a variety of bases and solvents on the outcome of the

reaction. While a variety of solvents and inorganic bases did promote the desired

reaction, it was observed that the combination of potassium phosphate (weak base) in

toluene (non-polar solvent) gave superior results and allowed for a number of vinyl

iodides to be employed in the vinylation of 2-azetidinone, as shown in Table 1.

Moreover, as shown in entry 11, a highly substituted enamide derived from 2-

pyrrolidinone was also successfully synthesized using these conditions.

Extension of this protocol to aromatic nitrogen heterocycles provided access to

another class of ,-amino substituted ct,1-unsaturated esters. While there are published
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systems describing the arylation of nitrogen heterocycles,'3 copper-catalyzed vinylation

of these heterocycles had remained previously unexplored.'4 Using the mild conditions

described above, several vinyl iodides were successfully coupled with both pyrrole and

indole. Sterically demanding systems (Table 1, entries 3,4,5) were also effective with

this protocol, albeit in modest yields.

With a means to access a variety of P-amino substituted a,3-unsaturated esters,

we attempted to carry out their conjugate reduction employing our previously reported

reaction protocol. This entailed the use of copper (I) chloride, (S)-p-tol-BINAP, sodium

tert-butoxide (1 eq relative to CuCI), and PMHS (polymethylhydrosiloxane), a mild and

Table 1. Synthesis of O-Nitrogen-Containing Enoates

R Cul, Me-NH HN-Me R
+ HNR2R3 5 mol% 20 mol%

I >---CO 2 R' - K3 PO4, Toluene R3 R2N C 2 R

65°C

R R R

CO 2 N C0 2R 1 N CO 2R1

R R 1 Yielda Me
1)b Me Et 70 R R1 Yielda R R1 Yielda

2) Pent Me 67 5)C Me Et 41 6) Me Et 83
3) Ph Et 54 7) Pent Me 62

4 )b t-Bu Et 59

R R

N C0 2R1 C0 2R
1

R R1 Yielda R R1 Yielda

8)c Me Et 70 1 1 )d Me Et 70
9) Pent Me 75

10) Ph Et 67

a Isolated yield average of two runs determined to be >95% purity by 'H NMR or GC. b 10 mol% Cu, 20
mol% diamine. 20 mol% Cu, 40 mol% diamine. d 10 mol% Cu, 40 mol% diamine.
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inexpensive hydride source, in toluene.9 While our initial results with this system did

show conversion to the desired product, further optimization was required. Examination

of various copper (I) and copper (II) salts indicated that a number of different copper

sources were effective precatalysts. Interestingly, we found that Cu(OAc)2-H20 was

effective as a precatalyst for the reaction even in the absence of added sodium tert-

butoxide. Several solvents or solvent mixtures could be employed, however, the use of

THF provided faster reaction rates than that observed with other solvents. This rate

enhancement is likely due to greater solubility of the copper precatalyst in THF. An

additional increase in rate was observed, as in previous systems,9 a ' 5 when sterically

hindered alcohols were added to the reaction mixture. Further, when reactions were

performed under an atmosphere of air, the reaction rates were faster than those carried

out under inert atmosphere. This phenomenon has been observed previously in reactions

containing copper-hydride catalysts. 9a, 16 While detailed mechanistic studies on this effect

have not been carried out, there are several plausible explanations. One hypothesis on the

origin of this rate enhancement is that oxygen accelerates the formation of either the

precatalyst or active catalyst. 1 6 A second rationalization could be that trace water in the

atmosphere may facilitate protonation of the copper enolate, helping turn over the

catalyst. It should be noted that in all of these studies the enantiomeric excess of the

product remained unchanged. The combination of these findings led to the protocol for

the reduction of 3-aza-2-enoates, the scope of which was examined and the results are

summarized in Table 2.
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Table 2. Asymmetric Conjugate Reduction

R

R3 R 2 N CO 2R1

Cu(OAc)2 H20 / (S) - BINAP
PMHS, t-BuOH

THF, RT
Air atmosphere

R

R3R2N CO2R1

Entryc Substrate Product R R1 Time (h) Yielda O/oeeb

1

2
3d

4d,e

CO 2 R

5d ,¢
R N Me

Me

R1 02 C

RN9
R'0 2C Me

Me

12 Me

13 Pent
14 Ph

15 t-Bu

Et 1

Me 1

Et 20
Et 24

16 Me Et 24

88

90
87
83

81

87
86
86

83 86

6 CO2R
1 R1 0 2C

7f8 RN R8e R NR N

17 Me

18 Pent

19 Pent

Et 1.25

Me 2

Me 24

96 90

96 86

94 86

9 e,g

1 Od,e

11d
R

C0 2 R'

12 d,e RN

O

CO 2 Et

Me' Ph

R1 02C

R N

0

CO 2R
1

0/
EtO2C

Me Ph

20 Me Et 24
21 Pent Me 24
22 Ph Et 24

23 Me Et 9

24 33

86 80
98 94
96 99

90 82

84 92

14 1 85 89

a Isolated yield (average of two runs) determined to be >95% purity by 'H NMR or GC. b Determined by

HPLC. 5 mol% Cu, 5 mol% BINAP, 4 equiv PMHS, 4 equiv t-BuOH. d 10 equiv PMHS. 10 mol% Cu,

10 mol% BINAP. f 5 mol% Cu, 5 mol% BINAP, 6 equiv PMHS, 45 °C. 8 equiv PMHS.
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Various N-vinyl pyrroles (Table 2, entries 1-4) were reduced in excellent yield

with high levels of enantioselectivity, including the hindered substrate 4,4-dimethyl-3-

pyrrol-1-yl-pent-2-enoic acid ethyl ester (Table 2, entry 4).'7 a,-Unsaturated esters

containing an indole moiety (Table 2, entries 6-8) in the ,-position were also effectively

transformed. In addition, substrates that possessed lactams in the ,-position were also

efficiently reduced. Both -lactam- (Table 2, entries 9-11) and pyrrolidinone-containing

substrates (Table 2, entry 12) gave excellent yields and enantioselectivities under the

reduction conditions employed.

Hindered substrates (containing one or two large substituents at the ,-position

(Table 2, entries 3,4,5,8)) required long reaction times, likely a result of unfavorable

steric interactions. The lower reaction rates necessitated the use 6-10 equivalents of

PMHS, as the reaction of the silane with trace moisture in the atmosphere was

competitive. nterestingly, when attempting to reduce the indole containing substrate 7, it

was found that the reaction could be performed either under the standard reaction

conditions (room temperature) using a slightly higher catalyst loading and longer reaction

time, (Table 1, entry 8) or could be run with a shorter reaction time and with less catalyst

by performing the reaction in a sealed tube under nitrogen at 45 °C (Table 2, entry 7).

These results suggest the enantioselectivity of the system appears to be independent of

temperature over this range.

While substrates with either a heterocycle or a lactam in the 3-position were

viable under the reaction conditions, their reaction rates varied. Typically, substrates

containing a lactam in the ,3-position required longer reaction times than those with a 13-

pyrrole or -indole substituent. A more detailed examination of the reaction rates of
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several substrates was performed and the results are summarized in Table 3.

Interestingly, when an equimolar amount of substrates 8 and 1 were mixed and subjected

to the usual reaction conditions, a decrease in the rate of reduction of 1 was observed.

Similar results were obtained when a mixture of 11 and 1 were submitted to the reaction

conditions as well. Therefore, we propose that the carbonyl group of the lactam moiety

likely coordinates to the copper in a non-productive manner, giving rise to lower reaction

rates of 8 and 11 compared to substrate 1. Additionally, when equal molar amounts

Table 3. Relative Rates in Conjugate Reduction Reactiona

Me Me MeiX8 \ °t a\ ) 11+8 8+11 8+1 11+1
8 CO2Et n 11 CO C 2Et

krel 1 2.6 95 1 2.6 32 32

a k,, of mixed experiments are for the reduction of substrates indicated in bold.

of substrates 8 and 11 were mixed and subjected to the reaction conditions, their rates

were identical to those run in the absence of the second substrate. This result suggests

that although the coordination of the lactam to copper does inhibit the reaction, the more

significant effect on the rate is the interaction of the lone pair on nitrogen with the 3t-

system. The observed higher relative rate for the 8-lactam relative to the f3-lactam is

presumably due to the greater N=C character in the former. The observation that

substrate 1 was the most reactive substrate in the study is consistent with this notion, as

the interaction between the nitrogen's lone pair of electrons and the n-system in this

substrate should be minimal.

The reaction conditions described here are more convenient than those we

reported earlier for asymmetric conjugate reductions, eliminating the use of air- and
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moisture-sensitive CuCI and hygroscopic sodium tert-butoxide. In addition to being

effective for the reduction of P3-heteroatom-containing a,-unsaturated esters, these new

conditions are also successful in the reduction of simple a,S-unsaturated ketones and

esters (Table 2, entries 13,14) affording yields and enantioselectivities comparable to

those obtained using previous systems.9 It is noteworthy that as in previous studies, there

is a change in the absolute stereochemistry of the products originating from the acyclic

ester and the cyclopentenone.9 d 'e This could suggest that the two different classes of

substrate may bind to the catalyst in different orientations.

Conclusions

In conclusion, we have developed a copper-catalyzed vinylation of nitrogen

heterocycles that couples highly substituted vinyl iodides with pyrroles and indole.

Additionally, the first method for the asymmetric conjugate reduction of a,p3-unsaturated

esters containing PB-heteroatoms. We found this system tolerated the presence of both

lactams as well as azaheterocycles in the ,-position of various enoates. Moreover, the

development of this reaction has led to the asymmetric synthesis of a number of

interesting P-amino acid derivatives.

Experimental Section

I. General Considerations.

Unless otherwise noted, THF and toluene were purchased from J.T. Baker in CYCLE-

TAINER® solvent-delivery kegs and vigorously purged with argon for 2h. The solvents

were further purified by passing them under argon pressure through two packed columns
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of neutral alumina (for THF) or through neutral alumina and copper (II) oxide (for

toluene)'6 . Starting materials for substrate synthesis were purchased from commercial

sources and used as is. Ethyl trans-f6-methylcinnamate, PMHS

(polymethylhydrosiloxane), t-BuOH, and N,N'-dimethylethylene diamine were

purchased from Aldrich and used as is.

Yields refer to isolated yields of compounds of greater than 95% purity as estimated by

capillary GC and 'H NMR. Yields reported in this section refer to a single experiment,

while those reported in the tables are the average of two or more runs.

All new compounds were characterized by 'H NMR, 13C NMR, and IR spectroscopy, in

addition to elemental analysis (Atlantic Microlabs, Inc) or HRMS. Nuclear Magnetic

Resonance spectra were recorded on a Varian Mercury 300 or a Varian Unity 300

instrument. Infrared spectra were recorded on an ASI Applied Systems ReactIR 1000

(liquids and solids were measured neat on a DiComp probe). All 'H NMR experiments

are reported in 8 units, parts per million (ppm) downfield from tetramethylsilane. All 13C

NMR spectra are reported in ppm relative to deuterochloroform (77.23 ppm), and all

were obtained with 'H decouling. Melting points (uncorrected) were obtained on a Mel-

Temp capillary melting point apparatus. Optical rotations were taken on a Jasco Model-

1010 Polarimeter at 23 °C. Gas Chromatographic analyses were performed on a Hewlett-

Packard 6890 gas chromatography instrument with an FID detector using 25m x 0.20 mm

capillary column with cross-linked methyl siloxane as a stationary phase. Chiral High

Performance Liquid Chromatography analyses were performed on a Hewlett-Packard
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1100 system with an HP 1100 Diode Array Detector, using the columns and wavelengths

mentioned in section III. Separation conditions were determined from racemic material

that was obtained via hydrogenation over Pd/C of the dehydro-f-amino acid derivatives.

II. Synthesis of Dehydro-1-Amino Acid Derivatives

General procedure A: An oven-dried Schlenk flask with Teflon-coated magnetic stir

bar was allowed to cool to room temperature under nitrogen, and then charged with

copper (I) iodide (0.10 mmol), potassium phosphate (1.5 mmol), and (if a solid) the

nitrogen nucleophile (1.5 mmol). The flask was then capped with a rubber septum,

evacuated, backfilled with nitrogen; this process was repeated one time. Toluene (0.50

mL) was added, followed by the diamine (0.20 mmol), (if a liquid) the nitrogen

nucleophile (1.5 mmol), and the vinyl iodide (1.0 mmol) as a solution in toluene (0.50

mL). The septum was then replaced with a Teflon screw cap under a positive pressure of

nitrogen and the flask was sealed and placed in a 65 °C oil bath with stirring for the time

indicated. Upon complete conversion of the vinyl iodide (as judged by gas

chromatography), the reaction mixture was allowed to cool to room temperature. The

reaction solution was partitioned between water and ethyl acetate, the phases were

separated, and the aqueous phase was extracted 3 additional times with ethyl acetate. The

combined organic layers were then dried over magnesium sulfate, filtered, and the

solvent removed with the aid of a rotory evaporator. The crude residue was then purified

by flash chromatography on silica gel to give the desired compound.
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General Procedure B: A flame dried 25 mL round-bottom flask containing a Teflon-

coated magnetic stir bar was allowed to cool to room temperature under nitrogen, then

charged with copper (I) iodide (0.50 mmol), potassium phosphate (7.5 mmol), and (if a

solid) the nitrogen nucleophile (7.5 mmol). The flask was then capped with a rubber

septum, evacuated, backfilled with nitrogen; this process was repeated one time. Toluene

(2.5 mL) was added, followed by the diamine (1.0 mmol), (if a liquid) the nitrogen

nucleophile (7.5 mmol), and the vinyl iodide (5.0 mmol) as a solution in toluene (2.5

mL). The flask was then placed in a 65 °C oil bath with stirring for the time indicated.

Upon complete conversion of the vinyl iodide (as judged by gas chromatography), the

reaction mixture was allowed to cool to room temperature. The reaction solution was

partitioned between water and ethyl acetate, the phases were separated, and the aqueous

phase was extracted 3 additional times with ethyl acetate. The combined organic layers

were then dried over magnesium sulfate, filtered, and the solvent removed with the aid of

a rotory evaporator. The crude residue was then purified by flash chromatography on

silica gel to give the desired compound.

CO 2Et

M e NQ

3-Pyrrol-1 -yl-but-2-enoic acid ethyl ester

General procedure B was followed and the reaction mixture was allowed to stir for 15 h.

Flash chromatography on silica gel eluting with 5 : 95 ethyl acetate : hexane gave 627 mg
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(70%) of the title compound as a light yellow oil. 'H NMR (300 MHz, CDCl 3) 6: 6.93 (t,

J = 2 Hz, 2H), 6.25 (t, J = 2 Hz, 2H), 5.55 (q, J = 1 Hz, 1H), 4.13 (q, J = 7 Hz, 2H), 2.27

(d, J = 1 Hz, 3H), 1.22 (t, J = 7 Hz, 3H); '3C NMR (75 MHz, CDCl 3) 6: 165.1, 147.6,

121.3, 110.0, 107.5, 60.4, 24.4, 14.3; IR (cm-'): 2358, 1715, 1644, 1482, 1273, 1187,

1082, 1050; Anal. Calcd. for CoH13NO2: C, 67.02; H, 7.31. Found: C, 66.83; H, 7.25.

CO2 Me21

Me

3-Pyrrol-1 -yl-oct-2-enoic acid methyl ester

General procedure B was followed using 0.05 equiv of copper (I) iodide and 0.20 equiv

of N,N'-dimethylethylene diamine and the reaction mixture was allowed to stir for 15 h.

Flash chromatography on silica gel eluting with 3 : 7 dichloromethane : hexane gave 690

mg (63%) of the title compound as a light yellow oil. 'H NMR (300 MHz, CDCl 3) 6:

6.80 (t, J = 2 Hz, 2H), 6.26 (t, J = 2 Hz, 2H), 5.61 (s, 1H), 3.65 (s, 3H), 2.52 (m, 2H),

1.29 (m, 6H), 0.87 (m, 3H); 13C NMR (75 MHz, CDC13) 6: 165.5, 152.9, 121.1, 109.9,

108.3, 51.5, 37.7, 31.2, 26.8, 22.5, 14.1; IR (cm-'): 2952, 2929, 1719, 1638, 1480, 1436,

1246, 1171, 1067, 723; HRMS calc: 221.1410; Found: 221.1406.
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Pent

N C02Et

1

7 5 , 2 1 ppi

7 6 , .--- , SI
?.35 5.51 14.05

LBS~~~~~~~~~~ 

CO 2Et
3 MMel

4,4-Dimethyl-3-pyrrol-1 -yl-pent-2-enoic acid ethyl ester

General procedure B was followed using 1.0 mmol (0.10 equiv) of copper (I) iodide

and 2.0 mmol (0.20 equiv) of N,N'-dimethylethylene diamine, and the reaction mixture

was allowed to stir for 48 h. Flash chromatogrpahy on silica gel eluting with 5 : 95 ethyl

acetate: hexane gave 850 mg (77%) of the title compound as an orange oil. H NMR

(300 MHz, CDCI3) 6: 6.55 (t, J = 2 Hz, 2H), 6.23 (t, J = 2 Hz, 2H), 6.05 (s, 1H), 3.99 (q, J

= 7 Hz, 2H), 1.18 (s, 9H), 1.10 (t, J = 7 Hz, 3H); 13C NMR (75 MHz, CDC13) 8: 164.9,

161.3, 122.4, 116.4, 108.2, 60.6, 38.3, 28.7, 14.2; IR (cm-'): 2973, 1708, 1648, 1484,
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1347, 1266, 1169, 1040; Anal. Calcd. for C13H19NO 2: C, 70.56; H, 8.65. Found: C, 70.45;

H, 8.60.

CO2Et

4 I

3-Phenyl-3-pyrrol-1 -yl-acrylic acid ethyl ester

General procedure B was followed but on double the scale, with 0.50 mmol (0.05

equiv) of copper (I) iodide and 2.0 mmol (0.20 equiv) of N,N'-dimethylethylene diamine.

The reaction mixture was allowed to stir for 36 h. Flash chromatography on silica gel

eluting with 5 : 95 ethyl acetate : hexane gave 1.3 g (54%) of the title compound as an

orange solid. MP: 44-46 °C; 'H NMR (300 MHz, CDCl 3) 6: 7.33 (m, 5H), 6.73 (t, J = 2

Hz, 2H), 6.30 (t, J = 2 Hz, 2H), 6.01 (s, 1H), 4.16 (q, J = 7 Hz, 2H), 1.24 (t, J = 7 Hz,

3H); 13C NMR (75 MHz, CDC13) 6: 164.9, 150.8, 137.3, 131.0, 128.8, 123.2, 109.9,

109.7, 99.9, 60.6, 14.4; IR (cml'): 1719, 1627, 1480, 1275, 1150, 1088, 1071, 773, 729,

692; Anal. Calcd. for C15sH 5NO2: C, 74.67; H, 6.27. Found: C, 74.80; H, 6.28.

CO 2Et

Me N

3-lndol-1 -yl-but-2-enoic acid ethyl ester

General procedure A was followed on a 1.5 mmol sclae using 0.075 mmol (0.05 equiv)

of copper (I) iodide and 0.30 mmol (0.20 equiv) of N,N'-dimethylethylene diamine. The

reaction mixture was allowed to stir for 14 h, and after flash chromatography on silica gel

eluting with 3 : 7 dichloromethane : hexane gave 205 mg (60%) of the title compound as
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a light purple oil. H NMR (300 MHz, CDC13) 6: 7.60 (m, 1H), 7.19 (m, 4H), 6.62 (m,

1H), 5.92 (q, J = 1 Hz, 1H), 3.89 (q, J = 7 Hz, 2H), 2.34 (d, J = 1 Hz, 3H), 0.87 (t, J = 7

Hz, 3H); 13C NMR (75 MHz, CDCl3) 6: 164.6, 147.3, 135.9, 129.3, 127.0, 122.5, 121.2,

120.7, 113.5, 111.3, 104.4, 60.4, 24.1, 13.9; IR (cm-'): 2983, 1719, 1648, 1459, 1358,

1229, 1181, 1131, 1046, 739; Anal. Calcd. for C,4H,5NO2: C, 73.34; H, 6.59. Found: C,

73.19; H, 6.54.

C0 2Me

Me"

3-indol-1 -yl-oct-2-enoic acid methyl ester

General procedure B was followed on a 8.0 mmol scale using 0.40 mmol (0.050 equiv)

of copper (I) iodide and 1.6 mmol (0.20 equiv) of N,N'-dimethylethylene diamine. The

reaction mixture was allowed to stir for 15 h, and after flash chromatography on silica gel

eluting with 3 : 7 dichloromethane : hexane gave 1.5 g (69%) of the title compound as a

light pink oil. 'H NMR (300 MHz, CDCl3) 8: 7.63 (m, 1H), 7.17 (m, 4H), 6.61 (m, 1H),

5.97 (s, 1H), 3.45 (s, 3H), 2.65 (m, 2H), 1.23 (m, 6H), 0.87 (m, 3H); '3C NMR (75 MHz,

CDCl 3) 8: 164.9, 152.2, 136.1, 127.2, 122.5, 121.3, 120.6, 113.2, 111.0, 104.2, 99.9, 51.6,

37.5, 31.3, 26.7, 22.4, 14.1; IR (cm-'): 2952, 2931, 1719, 1708, 1648, 1455, 1436, 1281,

1223, 1210, 1173, 1133, 764, 739; Anal. Calcd. for C,7H2,NO2: C, 75.25; H, 7.80.

Found: C, 75.24; H, 7.79.
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CO 2Et
5

Mei N- M e

Me

3-(2,4-Dimethyl-pyrrol-1 -yl)-but-2-enoic acid ethyl ester

General procedure A was followed on a 2.0 mmol scale using 0.40 mmol (0.20 equiv)

of copper (I) iodide and 0.80 mmol (0.40 equiv) of N,N'-dimethylethylene diamine. The

reaction mixture was allowed to stir for 17 h, and after flash chromatography on silica gel

eluting with 1: 1 dichloromethane: hexane gave 170 mg (40%) of the title compound as

a light yellow oil. 'H NMR (300 MHz, CDC13) 8: 6.32 (s, 1H), 5.86 (q, J = 1 Hz, 1H),

5.82 (s, 1H), 4.06 (q, J = 7 Hz, 2H), 2.16 (d, J = 1 Hz, 3H), 2.07 (s, 3H), 2.06 (s, 3H),

1.16 (t, J = 7 Hz, 3H); 13C NMR (75 MHz, CDCl 3) 6: 164.4, 149.1, 128.9, 119.5, 116.5,

115.4, 110.1, 60.4, 25.3, 14.2, 12.3, 12.1; IR (cm-'): 2979, 2929, 1719, 1708, 1656, 1414,

1221, 1140, 1044, 783; HRMS calc: 207.1254; Found: 207.1248.
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3-(2-Oxo-azetidin-1 -yl)-but-2-enoic acid ethyl ester

General procedure B was followed using 1.0 mmol (0.20 equiv) of copper (I) iodide

and 2.0 mmol (0.40 equiv) of N,N'-dimethylethylene diamine. The reaction mixture was

allowed to stir for 3 h, and after flash chromatography on silica gel eluting with 1 : 3

ethyl acetate: hexane gave 600 mg (66%) of the title compound as a white solid. MP:

48-50 C; 'H NMR (300 MHz, CDCl3 ) : 4.93 (m, 1H), 4.11 (q, J = 7 Hz, 2H), 3.89 (t, J

= 5 Hz, 2H), 3.01 (t, J = 5 Hz, 2H), 2.27 (d, J = 1 Hz, 3H), 1.27 (t, J = 7 Hz, 3H); 13C
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NMR (75 MHz, CDC13 ) 6: 167.2, 165.0, 146.9, 99.7, 59.9, 43.6, 37.1, 22.4, 14.5; IR (cm-

'): 1764, 1702, 1621, 1264, 1196, 1140, 725; Anal. Calcd. for C9 H, 3 NO3 : C, 59.00; H,

7.15. Found: C, 59.17; H, 7.18.

3-(2-Oxo-azetidin-1 -yl)-oct-2-enoic acid methyl ester

General procedure B was followed on a 7.0 mmol scale using 0.35 mmol (0.050 equiv)

of copper (I) iodide and 1.4 mmol (0.20 equiv) of N,N'-dimethylethylene diamine. The

reaction mixture was allowed to stir for 24 h, and after flash chromatography on silica get

eluting with 1: 3 ethyl acetate : hexane gave 1.25 g (79%) of the title compound as a

light yellow oil. 'H NMR (300 MHz, CDC13) 8: 5.00 (m, 1H), 3.85 (t, J = 5 Hz, 2H), 3.67

(s, 3H), 3.01 (t, J = 5 Hz, 2H), 2.56 (m, 2H), 1.54 (m, 2H), 1.29 (m, 4H), 0.89 (m, 3H);

13C NMR (75 MHz, CDC13) 6: 166.6, 165.6, 151.4, 99.5, 51.3, 43.3, 36.9, 34.9, 31.4,

28.4, 22.6, 14.2; IR (cm-'): 2952, 1764, 1708, 1611, 1407, 1254, 1183, 1123, 820; Anal.

Calcd. for C,2HgNO3: C, 63.98; H, 8.50. Found: C, 63.61; H, 8.50.

rtnFt

O

3-(2-Oxo-azetidin-1 -yl)-3-phenyl-acrylic acid ethyl ester

General procedure B was followed on a 10 mmol scale using 0.50 mmol (0.050 equiv)

of copper (I) iodide and 2.0 mmol (0.20 equiv) of N,N'-dimethylethylene diamine. The
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reaction mixture was allowed to stir for 23 h, and after flash chromatography on silica gel

eluting with 1: 3 ethyl acetate: hexane gave 1.65 g (67%) of the title compound as a red

oil. 'H NMR (300 MHz, CDC13) 6: 7.43 (m, 5H), 5.68 (s, 1H), 4.22 (q, J = 7 Hz, 2H),

3.72 (t, J = 5 Hz, 2H), 3.15 (t, J = 5 Hz, 2H), 1.31 (t, J = 7 Hz, 3H); '3C NMR (75 MHz,

CDCl3) 8: 166.0, 165.0, 146.1, 134.7, 130.6, 128.9, 128.3, 108.9, 60.5, 42.1, 37.2, 14.5;

IR (cm-'): 2977, 1764, 1702, 1609, 1383, 1275, 1152, 1109, 1027, 781, 696; Anal. Calcd.

for C14H 5NO3 : C, 68.56; H, 6.16. Found: C, 68.51; H, 6.23

CO 2 Et
11

Me N

3-(2-Oxo-pyrrolidin-1 -yl)-but-2-enoic acid ethyl ester

General procedure A was followed on a 2.0 mmol scale using 0.20 mmol (0.10 equiv)

of copper (I) iodide and 0.40 mmol (0.2 equiv) of N,N'-dimethylethylene diamine. The

reaction mixture was allowed to stir for 19 h, and after flash chromatography on silica gel

eluting with 1 :3 ethyl acetate: hexane gave 250 mg (64%) of light yellow oil. H NMR

(300 MHz, CDC13) 6: 5.69 (q, J = 1 Hz, 1H), 4.12 (q, J = 7 Hz, 2H), 3.64 (t, J = 7 Hz,

2H), 2.45 (t, J = 7 Hz, 2H), 2.11 (quint, J = 7 Hz, 2H), 2.03 (d, J = 1 Hz, 3H), 1.25 (t, J =

7 Hz, 3H); 13C NMR (75 MHz, CDCl 3) 6: 174.1, 164.7, 147.0, 114.4, 60.2, 48.4, 31.8,

21.7, 19.1, 14.4; IR (cm-'): 2981, 1719, 1702, 1638, 1401, 1264, 1175, 1129, 1050, 845;

Anal. Calcd. for C,0 H15NO3 : C, 60.90; H, 7.67. Found: C, 59.7; H, 7.69.

III. Asymmetric Conjugate Reduction of Dehydro-P-Amino Acid Derivatives
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General Procedure: A 1 dram vial equipped with a Teflon-coated magnetic stir bar

was charged with copper (II) acetate monohydrate (0.05 equiv), and S-BINAP (0.05

equiv). The vial was capped with a screw-on top with a teflon center, through which a

glass pipette filled with calcium sulfate was inserted. THF was then added to the vial via

syringe and this was allowed to stir for approximately five min. Then PMHS (4.0 equiv)

was added to the vial and this was again allowed to stir for five minutes. Finally, a

solution of the substrate (0.33 molar in the total volume of THF) and t-BuOH (4.0 equiv)

in THF was added to the vial and allowed to stir for the time indicated. Upon complete

conversion of the starting material as judged by gas chromatography or thin layer

chromatography, the reaction was worked up in one of two ways:

Workup A: The reaction mixture was diluted with ethyl acetate, and then partitioned

between water and ethyl acetate. The phases were separated and the aqueous was

extracted three times with ethyl acetate. The combined organic layers were dried over

magnesium sulfate, filtered, and the solvent removed with the aid of a rotory evaporator.

The crude residue was then purified by flash chromatography over silica gel.

Workup B: The reaction mixture was loaded directly onto a silica gel column and

purified by flash chromatography.

CO 2Et
12(

Me-NB

3-Pyrrol-1 -yl-butyric acid ethyl ester
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The general procedure was followed and the reaction was allowed to stir for 1 h.

Workup A, eluting with 5: 95 ethyl acetate: hexane gave 80 mg (88%) of the title

compound as a colorless oil. Chiral HPLC analysis (Daicel Chiralpak® OD column

(0.46cm0 x 25 cm), 0.7 mL/ min, 5% i-PrOH/ Hexane, 254 nm, 280 nm, retention times:

8.32 min (major), 9.81 min (minor)) showed 81% ee. 'H NMR (300 MHz, CDC13) 6:

6.72 (t, J = 2 Hz, 2H), 6.15 (t, J = 2 Hz, 2H), 4.60 (sext, J = 7 Hz, 1H), 4.12 (q, J = 7 Hz,

2H), 2.74 (ABX, dd, J = 15 Hz, 7 Hz, 2H), 1.53 (d, J = 7 Hz, 3H), 1.22 (t, J = 7 Hz, 3H);

13C NMR (75 MHz, CDCl 3) 6: 170.9, 118.6, 108.2, 60.9, 52.0, 43.4, 21.9, 14.3; IR (cm-'):

2979, 1735, 1181, 1167, 1088, 1034, 721; HRMS calc: 181.1097; Found: 181.1090. aD

(589 nm, 0.45 g/ 100 mL CHC 3) = -17.5.
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CO 2Me
13

Me

3-Pyrrol-1 -yl-octanoic acid methyl ester

The general procedure was followed and the reaction was allowed to stir for 1 h.

Workup A, eluting with 1: 9 ethyl acetate: hexane gave 57 mg (85%) of the title

compound as a colorless oil. Chiral HPLC analysis (Daicel Chiralpak® OD column

(0.46cm0 x 25 cm), 0.7 mL/ min, 5% i-PrOH/ Hexane, 254 nm, 280 nm, retention times:

7.24 min (major), 9.66 min (minor)) showed 87% ee. 'H NMR (300 MHz, CDCl 3) 8: 6.68

(t, J = 2 Hz, 2H), 6.14 (t, J = 2 Hz, 2H), 4.38 (m, 1H), 3.63 (s, 3H), 2.75 (m, 2H), 1.77

(m, 2H), 1.23 (m, 6H), 0.84 (m, 3H); 13C NMR (75 MHz, CDCl 3) 8: 171.5, 119.0, 108.1,

56.8, 52.1, 41.9, 36.1, 31.5, 25.9, 22.6, 14.2; IR (cm-'): 2956, 2931, 1737, 1490, 1262,

1246, 1165, 1090, 1069, 719; HRMS calc: 223.1561; Found: 223.1573. aD (589 nm, 0.11

g/ 100 mL CHC 3) = -12.0.
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14 CO2 Et

3-Phenyl-3-pyrrol-1 -yl-propionic acid ethyl ester

The general procedure was followed using 10 equivalents of PMHS and the reaction

was allowed to stir for 20 h. Workup B, eluting with 5 : 95 ethyl acetate : hexane gave

105 mg (87%) of the title compound as a yellow oil. Chiral HPLC analysis (Daicel

Chiralpak® OJ column (0.46cm0 x 25 cm), 0.7 mL/ min, 3% i-PrOH/ Hexane, 254 nm,

280 nm, retention times: 31.84 min (major), 35.30 min (minor)) showed 83% ee. 'H

NMR (300 MHz, CDCl3) : 7.25 (m, 3H), 7.16 (m, 2H), 6.74 (t, J = 2 Hz, 2H), 6.15 (t, J

= 2 Hz, 2H), 5.66 (m, 1H), 4.09 (q, J = 7 Hz, 2H), 3.18 (ABX, dd, J = 15 Hz, 7 Hz, 2H)
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1.16 (t, J = 7 Hz, 3H); 3C NMR (75 MHz, CDCI3) 8: 170.4, 140.7, 128.9, 128.2, 126.5,

119.8, 108.6, 61.2, 59.5, 41.3, 14.2; IR (cm-'): 2979, 1737, 1490, 1372, 1264, 1156, 1084,

1021, 721; HRMS calc: 243.1254; Found: 243.1252. a D (589 nm, 0.10 g/ 100 mL CHC 3)

= -6.5.
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Me

4,4-Dimethyl-3-pyrrol-1 -yl-pentanoic acid ethyl ester

The general procedure was followed using 10 mol% catalyst and 10 equivalents of

PMHS, and the reaction was allowed to stir for 22 h. Workup A, eluting with 5 : 95 ethyl

acetate : hexane gave 92 mg (83%) of the title compound as a yellow oil. Chiral HPLC

analysis (Daicel Chiralpak® AD-H column (0.46cm0 x 25 cm), 0.5 mL/ min, 1% i-
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PrOH/ Hexane, 254 nm, 280 nm, retention times: 12.99 min (major), 13.98 min (minor))

showed 86% ee. H NMR (300 MHz, CDC13) 6: 6.64 (t, J = 2 Hz, 2H), 6.09 (t, J = 2 Hz,

2H), 4.18 (m, 1H), 4.02 (m, 2H), 2.84 (m, 2H), 1.14 (m, 3H), 0.94 (s, 9H); 3C NMR (75

MHz, CDC13) 6: 171.5, 120.9, 107.2, 65.8, 60.9, 36.1, 35.6, 27.2, 14.2; IR (cm-'): 2966,

1737, 1370, 1299, 1248, 1152, 1094, 1030, 721; HRMS calc: 223.1567; Found:

223.1568. aD (589 nm, 0.50 g/ 100 mL CHCI3) = -9.4.
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3-(2,4-Dimethyl-pyrrol-1-yl)-butyric acid ethyl ester
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The general procedure was followed using 10 equivalents of PMHS and the reaction

was allowed to stir for 24 h. Workup B, eluting with 1: 9 ethyl acetate: hexane gave 52

mg (83%) of the title compound as a colorless oil. Chiral HPLC analysis (Daicel

Chiralpak® OD column (0.46cm0 x 25 cm), 0.6 mL/ min, 4% i-PrOH/ Hexane, 254 nm,

280 nm, retention times: 8.11 min (major), 9.34 min (minor)) showed 86% ee. 'H NMR

(300 MHz, CDC13) 8: 6.39 (s, 1H), 5.69 (s, 1H), 4.54 (sx, J = 7 Hz, 1H), 4.12 (q, J = 7

Hz, 2H), 2.70 (ABX, ddd, J = 15 Hz, 7 Hz, 2H), 2.23 (s, 3H), 2.06 (s, 3H), 1.43 (d, J = 7

Hz, 3H), 1.23 (t, J = 7 Hz, 3H); 13C NMR (75 MHz, CDCl 3) 6: 171.0, 128.2, 118.2, 113.2,

108.0, 60.8, 47.8, 42.8, 22.0, 14.3, 12.2, 12.1; IR (cm-l): 2981, 1725, 1376, 1096, 1081,

1038, 904, 731; HRMS calc: 209.1410; Found: 209.1415. aD (589 nm, 0.10 g/ 100 mL

CHC 3) = -2.3.
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CO2Et

Me N

3-lndol-1-yl-butyric acid ethyl ester

The general procedure was followed and the reaction was allowed to stir for 1.25 h.

Workup B, eluting with 1: 9 ethyl acetate : hexane gave 111 mg (96%) of the title

compound as a colorless oil. Chiral HPLC analysis (Daicel Chiralpak® OD column

(0.46cmo x 25 cm), 0.7 mL/ min, 5% i-PrOH/ Hexane, 254 nm, 280 nm, retention times:

13.3 min (major), 21.66 min (minor)) showed 90% ee. 'H NMR (300 MHz, CDC13) 6:

7.64 (m, 1H), 7.43 (m, 1H), 7.21 (m, 2H), 7.11 (m, 1H), 6.54 (m, 1H), 5.04 (sext, J = 7

Hz, 1H), 4.06 (q, J = 7 Hz, 2H), 2.84 (ABX, ddd, J = 15 Hz, 7 Hz, 2H), 1.64 (d, J = 7 Hz,

3H), 1.15 (t, J = 7 Hz, 3H); 13C NMR (75 MHz, CDC13) 8: 170.9, 135.7, 128.7, 124.1,

121.7, 121.2, 119.7, 109.7, 102.2, 60.9, 48.5, 42.2, 21.0, 14.2; IR (cm-'): 2956, 1750,

1397, 1245, 1206, 1169, 1011; HRMS calc: 231.1254; Found: 231.1257. aD (589 nm,

0.11 g/ 100 mL CHC 3) = +16.8.

84



1%.'SIPLE
date A" 2 C663 d.
olv.nt C! DS Sv

ACSUISITIOS Ad
efrq 211.651 di
tn HI dr
at 3.see
no 37576 vt
Sw 5336. 
b s,.
be IS -m

tt 115. h

t. Ifto
nt 16
ct IS d
ClOCk n Mlt
gidn not uSi

FLAGS p
-ln n vs

n
y

h.~~~~~yip y c
he

r
th
In
ii

a 7 6 5 4 3 2 1 ppm

1.06 2.14 1.06 2.31 1.23 3.48
1.26 1.16 1.25 1.26 3.61

18

Me

3-1ndol-1-yl-octanoic acid methyl ester

The general procedure was followed 10 mol% catalyst and 10 equivalents of PMHS,

and the reaction was allowed to stir for 23 h. Workup B, eluting with 1 : 9 ethyl acetate :

hexane gave 110 mg, 96% of the title compound as a colorless oil. Chiral HPLC analysis

(Daicel Chiralpak® OD column (0.46cm0 x 25 cm), 0.7 mL/ min, 5% i-PrOH/ Hexane,

254 nm, 280 nm, retention times: 10.17 min (major), 20.77 min (minor)) showed 85%

ee. 'H NMR (300 MHz, CDC13) 8: 7.62 (m, 1H), 7.44 (m, 1H), 7.18 (m, 3H), 6.53 (m,

85



1H), 4.84 (m, 1H), 3.54 (s, 3H), 2.84 (m, 2H), 1.92 (m, 2H), 1.21 (m, 6H), 0.81 (m, 3H);

'3C NMR (75 MHz, CDC13) : 171.5, 136.3, 128.6, 124.5, 121.7, 121.1,119.6, 109.8,

102.4, 53.2, 52.0, 40.9, 35.3, 31.5, 25.9, 22.6, 14.1; IR (cm-'): 2931, 1737, 1459, 1306,

1194, 1167, 737; Anal. Calcd. for C,7H23NO2: C, 74.69; H, 8.48. Found: C, 74.67; H,

8.43. aD (589 nm, 0.10 g/ 100 mL CHCl 3) = -2.2.

CO 2Et
20

MeN
0

3-(2-Oxo-azetidin-1-yl)-butyric acid ethyl ester

The general procedure was used with 10 mol% catalyst and 8 equivalents of PMHS,

and the reaction was allowed to stir for 24 h. Workup A, eluting with 1: 3 ethyl acetate:

hexane gave 80 mg (86%) of the title compound as a light yellow oil. Chiral HPLC

analysis (Daicel Chiralpak® OD column (0.46cm0 x 25 cm), 0.7 mL/ min, 5% i-PrOH/

Hexane, 254 nm, 280 nm, retention times: 24.29 min (minor), 26.25 min (major))

showed 84% ee. 'H NMR (300 MHz, CDC13) 8: 4.14 (m, 3H), 3.23 (m, 2H), 2.85 ( t, J =

4 Hz, 2H), 2.55 (ABX, ddd, J = 15 Hz, 7 Hz, 2H), 1.24 (m, 6H); 13C NMR (75 MHz,

CDC13) 8: 170.8, 166.9, 60.8, 45.2, 39.6, 36.5, 35.7, 18.4, 14.2; IR (cm-'): 2977, 1750,

1719, 1393, 1374, 1246, 1206, 1183, 1028; Anal. Calcd. for C9 Hi 5NO 3: C, 58.36; H,

8.16. Found: C, 58.5; H, 7.89. aD (589 nm, 0.10 g/ 100 mL CHCl 3) = -8.3.
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C0 2Me
21

N 3

Me

3-(2-Oxo-azetidin-1 -yl)-octanoic acid methyl ester

The general procedure was followed using 10 mol% catalyst with 10 equivalents of

PMHS, and the reaction was allowed to stir for 24 h. Workup B, eluting with 1: 1 ethyl

acetate: hexane gave 110 mg (98%) of the title compound as a colorless oil. Chiral

HPLC analysis (Daicel Chiralpak® OD column (0.46cm0 x 25 cm), 0.6 mL/ min, 2% i-

PrOH/ Hexane, 254 nm, 280 nm, retention times: 42.55 min (minor), 44.24 min (major))

showed 94% ee 'H NMR (300 MHz, CDCl 3) 8: 4.02 (m, 1H), 3.65 (s, 3H), 3.24 (m, 2H),

2.87 (m, 2H), 2.55 (ABX, ddd, J = 15 Hz, 7 Hz, 2H), 1.57 (m, 2H), 1.23 (m, 6H), 0.87

(m, 3H); '3C NMR (75 MHz, CDC13) 8: 171.6, 167.6, 52.1, 49.7, 38.1, 36.9, 35.9, 32.7,

31.5, 26.1, 22.6, 14.1; IR (cm-'): 2979, 1737, 1727, 1461, 1306, 1289, 1179, 1038, 1025,

737; Anal. Calcd. for C,2H21NO3: C, 63.41; H, 9.31. Found: C, 63.44; H, 9.33. aD (589

nm, 0.10 g/ 100 mL CHCl 3) = +8.3.

2

0
3-(2-Oxo-azetidin-1 -yl)-3-phenyl-propionic acid ethyl ester

The general protocol was followed using 10 equivalents of PMHS and the reaction was

allowed to stir for 24 h. Workup B, eluting with 1: 9 ethyl acetate: hexane gave 118 mg

(96%) of the title compound as a yellow oil. Chiral HPLC analysis (Daicel Chiralpak®

OD column (0.46cm0 x 25 cm), 0.7 mL/ min, 5% i-PrOH/ Hexane, 254 nm, 280 nm,
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retention times: 33.50 min (minor), 34.75 min (major)) showed 99% ee. 'H NMR (300

MHz, CDCl3) 6: 7.32 (m, 5H), 5.07 (m, 1H), 4.13 (q, J = 7 Hz, 2H), 3.24 (m, 2H), 3.11

(m, 1H), 2.86 (m, 3H), 1.22 (t, J = 7 Hz, 3H); 13C NMR (75 MHz, CDCl 3) 6: 170.7,

167.4, 138.7, 129.1, 128.3, 127.2, 61.1, 54.5, 38.4, 37.7, 36.2, 14.3; IR (cm-'): 2979,

1752, 1719, 1389, 1245, 1165, 1030, 700; Anal. Calcd. for C,4Hl7NO3: C, 68.00; H, 6.93.

Found: C, 67.71; H, 6.91. aD (589 nm, 0.10 g/ 100 mL CHCl 3) = -16.3.

C0 2Et
23

0
3-(2-Oxo-pyrrolidin-1 -yl)-butyric acid ethyl ester

The general procedure was followed using 10 mol% catalyst with 10 equivalents of

PMHS and the reaction was allowed to stir for 9 h. Workup B, eluting with ethyl acetate

gave 56 mg (92%) of the title compound as a yellow oil. Chiral HPLC analysis (Daicel

Chiralpak® OD column (0.46cm0 x 25 cm), 0.7 mL/ min, 5% i-PrOH/ Hexane, 254 nm,

280 nm, retention times: 28.35 min (minor), 29.57 min (major)) showed 81% ee. 'H

NMR (300 MHz, CDC13) 6: 4.54 (sext, J = 7 Hz, 1H), 4.07 (q, J = 7 Hz, 2H), 3.32 (m,

2H), 2.50 (ABX, ddd, J = 15 Hz, 7 Hz, 2H), 2.32 (m, 2H), 1.96 (m, 2H), 1.19 (m, 6H);

'3C NMR (75 MHz, CDC 3 ) : 174.5, 170.8, 60.6, 44.4, 42.6, 39.0, 31.4, 18.1, 17.9, 14.1;

IR (cm-'): 2979, 1729, 1686, 1422, 1285, 1177, 1094, 1042, 1028; Anal. Calcd. for

C,0H, 7NO3: C, 60.28; H, 8.60. Found: C, 60.44; H, 8.58. aD (589 nm, 0.11 g/ 100 mL

CHCI3) = -1.6.
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24 CO2Et

Me

3-Phenyl-butyric acid ethyl ester

The general procedure was followed and the reaction was allowed to stir for 3 h.

Workup A, eluting with 5: 95 ethyl acetate: hexane gave 62 mg (85%) of the title

compound as a colorless oil. Chiral HPLC analysis (Daicel Chiralpak® OB column

(0.46cm0 x 25 cm), 0.5 mL/ min, 0.5% i-PrOH/ Hexane, 254 nm, 280 nm, retention

times: 20.32 min (minor), 21.64 min (major)) showed 92% ee. Spectral data were the

same as those previously reported.9e

25 

Ph

3-Phenethyl-cyclopentanone

The general procedure was followed and the reaction was allowed to stir for 1 h.

Workup A, eluting with 1: 10 ethyl acetate : hexane gave 47 mg (82%) of the title

compound as a colorless oil. Chiral HPLC analysis (Daicel Chiralpak® OB column

(0.46cm0 x 25 cm), 0.5 mL/ min, 0.5% i-PrOH/ Hexane, 254 nm, 280 nm, retention

times: 6.49 min (minor), 7.34 min (major)) showed 92% ee. Spectral data were the same

as those previously reported.'9

89



References

(1) For reviews on the biology of ,-amino acids see: (a) Juaristi, E. Enantioselective

Synthesis of -Amino Acids, 1997, (Wiley-VCH, New York). (b) Gellman, S. H. Acc.

Chem. Res. 1998, 31, 173. (c) Seebach, D.; Matthews, J. L. Chem. Commun. 1997, 2015.

(2) For reviews on the synthesis of ,-amino acids see: (a) Ma, J. A. Angew. Chem., Int.

Ed. 2003, 42, 4290. (b) Liu, M.; Sibi, M. P. Tetrahedron 2002, 58, 7991. (c) Juaristi, E.

Enantioselective Synthesis of /3-Amino Acids, 1997, (Wiley-VCH, New York).

(3) (a) Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964. (b)

Kobayashi, S.; Matsubara, R.; Kitagawa, H. Org. Lett. 2002, 4, 143. (c) C6rdova, A.;

Watanabe, S.; Tanaka, F.; Notz, W.; Barbas, C. F., III. J. Am. Chem. Soc. 2002, 124,

1866.

(4) For recent examples of catalytic asymmetric conjugate addition see: (a) Sibi, M. P.;

Chen, J. Org. Lett. 2002, 4, 2933. (b) Sammis, G. M.; Jacobsen, E. N. J. Am. Chem. Soc.

2003, 125, 4442. (c) Myers, J. K.; Jacobsen, E. N. J. Am. Chem. Soc. 1999, 121, 8959.

(5) For recent reviews on asymmetric conjugate additions see: (a) Krause, N.; Hoffmann-

Roder, A. Synthesis 2001, 171. (b) Sibi, M. P.; Manyem, S. Tetrahedron 2000, 56, 8033.

(6) For a recent review on the synthesis of n-amino acid derivatives via asymmetric

hydrogenation see: Drexler, H. J.; You, J.; Zhang, S.; Fischer, C.; Baumann, W.;

Spannenberg, A.; Heller, D. Org. Process Res. Dev. 2003, 7, 355.

(7) For other catalytic enantioselective syntheses of P-amino acid derivatives see: (a)

Davies, H. M. L.; Venkataramani, C. Angew. Chem., Int. Ed. 2002, 41, 2197. (b) Nelson,

90



S. G.; Spencer, K. L. Angew. Chem., Int. Ed. 2000, 39, 1323. (c) Zhou, Y. G.; Tang, W.;

Wang, W. B.; Li, W.; Zhang, X. J. Am. Chem. Soc. 2002, 124, 4952. (d) Hodous, B. L.;

Fu, G. C. J. Am. Chem. Soc. 2002, 124, 1578. (e) Wenzel, A. G.; Jacobsen, E. N. J. Am.

Chem. Soc. 2002, 124, 12964.

(8) For a recent example of hydrogenation of unprotected P3-enamine esters and amides

see: Hsiao, Y.; Rivera, N. R.; Rosner, T.; Krska, S. W.; Njolito, E.; Wang, F.; Sun, Y.;

Armstrong, III, J. D.; Grabowski, E. J. J.; Tillyer, R. D.; Spindler, F.; Malan, C. J. Am.

Chem. Soc. 2004, 126, 9918.

(9) (a) Hughes, G.; Kimura, M.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11253. (b)

Jurkauskas, V.; Sadighi, J. P.; Buchwald, S. L. Org. Lett. 2003, 14, 2417. (c) Jurkauskas,

V.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 2892. (d) Moritani, Y.; Appella, D. H.;

Jurkauskas, V.; Buchwald, S. L. J. Am. Chem. Soc. 2000, 122, 6797. (e) Appella, D. H.;

Moritani, Y.; Shintani, R.; Ferreira, E. M.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121,

9473. (f) Yun, J.; Buchwald, S. L. Org. Lett. 2001, 3, 1129.

(10) For other recent examples employing chiral copper hydride catalysts see: (a)

Lipshutz, B. H.; Servesko, J. M.; Taft, B. R. J. Am. Chem. Soc. 2004, 126, 8352. (b)

Lipshutz, B. H.; Shimizu, H. Angew. Chem., Int. Ed. Eng. 2004, 43, 2228. (c) Lipshutz,

B. H.; Servesko, J. M. Angew. Chem., Int. Ed. 2003, 42, 4789. (d) Czekelius, C.; Carreira,

E. M. Angew. Chem., Int. Ed. 2003, 42, 4793. (e) Lipshutz, B. H.; Caires, C. C.; Kuipers,

P.; Chrisman, W. Org. Lett. 2003, 5, 3085.

(11) Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Org. Lett. 2003, 5, 3667.

91



(12) Synthesis of the vinyl iodides: (a) Piers, E.; Wong, T.; Coish, P. D.; Rogers, C. Can.

J. Chem. 1994, 72, 1816. (b) Rossi, R.; Bellina, F.; Mannina, L. Tetrahedron 1997, 53,

1025.

(13) (a) Antilla, J. C.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 11684.

(b) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123,

7727.

(14) For examples of Pd-catalyzed coupling of nitrogen heterocycles with vinyl halides

see: Lebedev, A. Y.; Izmer, V. V.; Kazyul'kin, D. N.; Beletskaya, I. P.; Voskoboynikov,

A. Z. Org. Lett. 2002, 4, 623.

(15) (a) Lipshutz, B. H. in Modern Organocopper Chemistry, ed. Krause, N. (Wiley-

VCH, Weinheim), 2002, pp. 175-179. (b) Stryker, J. M.; Mahoney, W. S.; Daeuble, J. F.;

Brestensky, D. M. in Catalysis in Organic Synthesis, ed. Pascoe, W. E.; (Marcel Dekker,

New York), 1.992, pp. 29-44. (c) Daeuble, J. F.; Stryker, J. M. in Catalysis of Organic

Reactions, eds. Scaros, M.; Prunier, M. L. (Marcel Dekker, New York), 1995, pp. 235-

247. (d) Chen, J. X.; Daeuble, J. F.; Brestensky, D. M.; Stryker, J. M. Tetrahedron,

2000, 56, 2153. (e) Chen, J. X.; Daeuble, D. M.; Stryker, J. M. Tetrahedron, 2000, 56,

2789.

(16) Sirol, S.; Courmarcel, J.; Mostefai, N.; Riant, O. Org. Lett. 2001, 3, 4111.

(17) For deprotection of pyrrole to the corresponding amine: (a) Kashima, C.; Maruyama,

T.; Fujioka, Y.; Harada, K. J. Chem. Soc., Perkin Trans. 1, 1989, 1041. (b) Convery, M.

A.; Davis, A. P.; Dunne, C. J.; MacKinnon, J. W. Tetrahedron Lett. 1995, 36, 4279.

92



(18) (a) Pangborn, A.B.; Giardello, M.A.; Grubbs, R.H.; Rosen, R.K.; Timmers, F.J.

Organometallics 1996, 15, 1518. (b) Alaimo, P.J.; Peters, D.W.; Arnold, J.; Bergman,

R.G. J. Chem. Ed. 2001, 78, 64.

(19) Gadwood, R.C.; Mallick, I. M.; DeWinter, A. J. J. Org. Chem. 1987, 52, 774.

93



Chapter 4.
Dynamic Kinetic Resolution of a,P-Unsaturated Lactones Via Asymmetric Copper-

Catalyzed Conjugate Reduction: Application in the Total Synthesis of
Eupomatilone-3
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Introduction

Eupomatilones 1-7 are a family of lignans' isolated from the Australian shrub

Eupomatia bennettii, found in the tropical and subtropical forests of New South Wales

and Queenland.2 This family of lignans is considered "degraded" due to the unique

cleavage of the Ca-linkage in one of the phenylpropanoid units. All seven members of

this family contain a highly oxygenated biaryl motif, as well as the C4-C5 cis

stereochemistry in the butyrolactone ring. While the biological activity of the members

of this family remain unknown, there are structural components similar to known

antimitotics such as colchicines.'

Me

o-'\

MeO0 Me

MeO Me
MeOMe OMe

eupomatilone-3 3-epi-eupomatilone-6 eupomatilone-6
(Gurjar) (revised by Coleman)

Figure 1. Some members of the Eupomatilone family of lignans

Of all the members of the eupomatilone family, there are only three reported total

syntheses, all of which were directed toward the synthesis of Eupomatilone-6.3 In 2004,

Gurjar and co-workers reported the synthesis of Eupomatilone-6 as originally proposed

by Carroll and Taylor.3c However, the spectroscopic data for synthetic Eupomatilone-6

was not in agreement with the data gathered on the natural material. More recently,

Coleman and Gurrala have revised the structure of Eupomatilone-6, along with the

product produced by Gurjar (now believed to be 3-epi-Eupomatilone-6).3d They also
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disclosed the synthesis of Eupomatilone-4 in this work. Despite this research, the total

synthesis of the enantiomerically enriched members of the Eupomatilone family has

remained an unsolved problem.

We became interested in the synthesis of Eupomatilone-3 due to its interesting

structural features, in particular the biaryl motif, along with the cis-orientation of the C4-

C5 substituents on the lactone portion of the molecule. Our retrosynthesis of this

compound is shown below. It was envisioned that a diastereoselective alkylation could

Ae

Br
MeOl % CO2Me

0
0

occur at C2 as the final step in the synthesis. The necessary precursor containing the cis-

geometry of the C4-C5 substituents could be formed by a diastereoselective copper-

catalyzed conjugate reduction of the corresponding a,j3-unsaturated lactone.4 b The

selectivity of this reaction can be tuned based on appropriate ligand choice, as shown by

the elegant work of Lipshutz,5 as well as our own research.4 The unsaturated lactone

could be prepared via ring closing metathesis
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P(p-tol) 2

[ ~P(p-tol) 2

SYNPHOS MeO-BIPHEP MeO-xylylBIPHEP p-tolBINAP

1 2 3 4

Figure 2. Chiral ligands commonly employed in copper-catalyzed conjugate reduction

chemistry

as described by Hughes and Buchwald.4 b Subsequently, preparation of the requisite

chiral alcohol could be accomplished utilizing an asymmetric reduction of the

corresponding enone.

SPhos RuPhos

5 6

The enone should be available in a few synthetic steps from the biaryl ester. Our recent

progress in palladium-catalyzed cross-coupling technology utilizing the monophosphino

biaryl ligands shown above led us to predict the rapid and efficient synthesis of the

desired biaryl compound employing one of these methods.6

Results and Discussion

Initial investigation in this synthesis was begun by Dr. J. Milne, who sought to

synthesize the highly substituted aryl bromide 10. While there have been several reports

on the preparation of this material, a combination of several routes was chosen in order to
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optimize yield while minimizing the number of steps.7 Methylenation of the

commercially, available methyl gallate 7, followed by bromination gave bromophenol 9.

Alkylation of this material then

Scheme 1.

CO.Me COoMe COoMe COoMe

a b Br , c Bra

50% l 66% 95%
HO HO MeO

8 O-J 9 O-/ 0 .-/

Experiments performed by Dr. J. Milne. Isolated yield average of two runs determined to be >95% purity

by H NMR or GC. a) CH212 (1 equiv), K 2CO3 (1.2 equiv), DMSO, 120 °C. b) NBS (1.1 equiv), MeOH,

CH2C12, -78 °C to RT. c) 1) NaH, THF. 2) Me 2SO4.

gave the aryl bromide 10 that is required for the cross-coupling reaction. With an

expedient route to the aryl bromide, investigation of the palladium-catalyzed cross-

coupling reaction could commence.

Emanating from our interest in palladium catalyzed cross-coupling reactions, we

recently reported a highly efficient catalyst system derived from the biaryl phosphine

ligand RuPhos for the Negishi cross-coupling of a variety of arylzinc reagents (including

electron-rich arylzinc reagents) with a number of aryl bromides and chlorides.6 b It was

believed that this system would allow us to efficiently cross-couple aryl bromide 10 with

the arylzinc reagent derived from 3,4,5-trimethoxybromobenzene. In fact, using 0.5%

Pd2(dba)3 / 1% 6 in THF at 80 °C for 24 hours gave the desired product in 93% isolated

yield. While this reaction was quite efficient with a catalyst loading of 1 mol%

palladium, attempts to lower the loading below this level were unsuccessful.8 In this

manner, significant quantities of the biaryl 11 necessary for the completion of the

synthesis could be obtained.
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Scheme 2.

ZnCI Br ,_, , ,_, ,

MeO'

OMe

Pd2(dba)3 MG M6VJkL
RuPhos -

THF, 80 °C -... 0)
Qqo/, 11 .. -

MeU M MeO u

Experiment performed by Dr. J. Milne

With the biaryl ester synthesis complete, the next step required preparation of the

corresponding enone 13. This process was begun by preparing Weinreb amide 12 from

the methyl ester. Initial results employing Grabowski's procedure for the formation of

Weinreb amides from esters were disappointing.9 However, by employing the less

hindered base methylmagnesium bromide (instead of i-propylmagnesium chloride),

increasing the concentrations of each reagent, and allowing the reaction to warm to room

temperature, a good yield of the desired amide was obtained. Initially, 4 equivalents of

the Grignard reagent were added to a suspension of the starting ester (1 equiv) and amine

(2 equiv). Additional N,O-dimethylhydroxylamine hydrochloride and base were added if

thought to be necessary after the reaction was analyzed by TLC. Unfortunately, it was

observed that the multiple addition of excess reagents led to the formation of an

unidentified byproduct. Therefore, if only a small amount of ester remained, it was

preferred to stop the reaction and recover the starting material to avoid formation of the

byproduct. Subsequent treatment of the Weinreb amide with isoproprenyllithium at 0 °C

and warming to room temperature provided the desired enone 13 in 86% yield.
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87%

e c

80%

Me

86%

e d

67%

e
de -

85%

Experiments carried out by Dr. J. Milne. Isolated yield average of two runs determined to be >95% purity

by 'H NMR or GC. a) Me(MeO)NHoHCI (3 equiv), MeMgBr (6 equiv), -20 °C, THF. b)

isoproprenyllithium (2 equiv), 0 °C, THF. c) NaBH 4, CeC13, MeOH, 0 °C. d) 1) n-BuLi, 0 °C, THF. 2)

acryloyl chloride,, 0 °C. e) 17 (0.05 equiv), CH 2CI 2, reflux.

Next, the biaryl enone needed to be converted to the corresponding chiral

secondary alcohol 14. A variety of chiral ketone reduction conditions were attempted

including CBS reduction and ruthenium catalyzed transfer hydrogenation.'°"'

Unfortunately, in all cases attempted, no desired alcohol was observed. In most attempts,

there was no conversion of the starting ketone. Under forcing conditions, decomposition

products began to be formed, with still no desired product detected. To try to circumvent

this problem, the enone was subjected to a Luche reduction to provide the racemic allylic
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alcohol.'2 A kinetic resolution via palladium-catalyzed oxidation was then attempted

following the procedure described by Stoltz.'3 However, despite varying temperature,

solvent, and catalyst loadings, no conversion of the alcohol was ever observed. At this

point, it was decided to carry on this racemic alcohol in the hopes of generating the

desired stereochemistry in the lactone through the use of a kinetic resolution via copper

conjugate reduction of the unsaturated lactone.4d The racemic alcohol was then acylated

with acryloyl chloride to give the diene 15 in 67% yield. This material was then treated

with the 2nd generation Grubb's catalyst 17 to generate the desired unsaturated lactone 16

in 85% yield.4 b It should be noted that the best results for the ring closing metathesis

were obtained when the catalyst was added slowly over a period of eight hours.

With the ability to synthesize the unsaturated lactone, the asymmetric conjugate

reduction reaction was explored. The reduction reaction was attempted employing our

standard conjugate reduction conditions at -30 °C in a 1:1 mixture of THF: CH2C12

(dichloromethane was necessary due to the poor solubility of the lactone in THF).4 It was

observed that at 50% conversion, the desired cis-compound was isolated in 46% yield

and 87% ee. It is interesting to note that only the cis-isomer was ever detected. To

conclude the synthesis, the enantiomerically enriched conjugate reduction product 18 was

deprotonated with NaHMDS, followed by treatment with iodomethane to give the target

natural product eupomatilone-3 in 83% yield. NOE experiments were carried out on

synthetic eupomatilone-3 and confirmed the desired relative stereochemistry. In addition,

the spectra for synthetic Eupomatilone 3 were in agreement with those obtained from the

natural material.'
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Scheme 4.

0
Me0 ~

PMHS, -PrOH

CuCI2.2H 20, t-BuONa
(R)-p-tolBINAP

CH2 CI2/THF (1:1), -30 °C

46%,87%ee

fIa\NaHMrn TIF_ IR, ; -: -.,, Ii,
NOE

83%

Experiments performed by Dr. J. Milne 1 diastereoisomer observed

Isolated yield average of two runs determined to be >95% purity by 'H NMR or GC.

Utilizing this synthetic route, we were able to achieve our goal of synthesizing

Eupomatilone-3. While the target was obtained in 8 steps from the known aryl bromide

10 in 12% overall yield, the synthesis still required additional attention. In particular,

three points needed to be addressed: 1) lowering the amount of palladium catalyst

required for the cross-coupling reaction; 2) reducing the overall length of the synthesis;

and 3) overcoming the severe limitation of performing a kinetic resolution at a late stage

in the synthesis.

Work began by addressing the first problem with the synthesis: lowering the

catalyst loading for the cross-coupling reaction. As previously mentioned, earlier
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attempts at lowering the catalyst loading in the Negishi cross-coupling reaction had

proven unsuccessful. Therefore, other possible cross-coupling reactions that would allow

for this reaction to be successfully carried out at lower catalyst loadings were

investigated. In particular, the Suzuki-Miyaura cross-coupling reaction utilizing a

catalyst based on the recently reported monophosphino biaryl SPhos was examined.6 ac

To this goal, the cross-coupling of aryl bromide 10 with the commercially available

3,4,5-trimethoxybenzeneboronic acid was attempted in THF at 80 °C with 1 mol %

palladium catalyst. It was found that this reaction was indeed successful, and the desired

product was obtained in 93% isolated yield. After obtaining this result, the efficiency of

this reaction at lower catalyst loadings was examined. In fact, this reaction still

proceeded at 0.1 mol% palladium. As the catalyst loading was continued to be lowered

down to 0.01 mol%, it was found that after 18 hours, the reaction had failed to reach

complete conversion. However, by increasing the ligand : palladium ratio from 2: 1 to 4

: 1, the reaction was then found to reach complete conversion not only at 0.01 mol%, but

as low as 0.005 mol% (50 ppm) palladium.6a' c Attempts at performing this reaction at

even lower catalyst loadings were less successful, giving incomplete coversion after 24

hours even in the presence of excess ligand. With the ability to form biaryl 11 in high

yield using a Suzuki-Miyaura cross-coupling reaction, we chose to proceed with the

synthesis.

Scheme 5.

B(OH) 2 Br Pd 2(dba) 3

+ SPhos 
MeO 0

THF, 80OC -/92% 1 1Me Me010 92% 1 1 MeCLO _TMeO MeO

MeO
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With the ability to rapidly construct the biaryl portion of Eupomatilone-3,

investigation began into how to transform this material to the natural product in a more

efficient manner. The next objective was to improve the preparation of the butenolide

precursor 16 to be used as the substrate for the copper-catalyzed asymmetric conjugate

reduction reaction. When examining this motif, we were inspired by the work of

Knochel and his synthesis of a variety of butenolides from the reaction of stabilized vinyl

Grignard reagents with aldehydes.'4 To apply his method to our synthesis, the material

first needed to be transformed from the methyl ester to the corresponding aryl aldehyde.

This was achieved by borane reduction of ester 11 to the benzyl alcohol 19, followed by

oxidation with MnO2 to give the desired benzaldehyde derivative 20 in essentially

quantitative yield. Reaction of this aldehyde in THF at -40 °C with the vinyl Grignard

reagent 21 (formed in situ from the corresponding vinyl iodide'5 ) provided the desired

unsaturated lactone in 75% yield.
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Scheme 6.

OMe OMe

b

quant.

--j 21

ClMg Me

C

76%

d
e

>85%

O Me

85% MeON Eupomatilone-3

MeO 0

Isolated yield average of two runs determined to be >95% purity by 'H NMR or GC. a) BH3-THF, THF,

60 °C. b) MnO2, CH2C12, RT. c) THF, -40 °C. d) CuCI2-2H2 0, (R)-SYNPHOS, NaOt-Bu, PMHS, t-

BuOH, THF, CH2C12, RT. e) NaHMDS, THF, 0 °C, then Mel.

With the ability to rapidly access the unsaturated lactone 16, the next problem to

address was how to circumvent the requirement to use the late-stage kinetic resolution.

The optimal solution would be one in which all of the racemic unsaturated lactone could

be converted to the desired cis-saturated lactone with high enantioselectivity and

diastereoselectivity; namely to establish a dynamic kinetic resolution as shown in Figure

3. 6 Previously, success had been found employing 3,5-substituted unsaturated

cyclopentenones in a dynamic kinetic resolution, however, no progress was made with

3,4-substituted cyclopentenone substrates.4d However, we believed that the y proton in
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our system would be sufficiently acidic that by performing this reaction in the presence of

excess base (sodium tert-butoxide) racemization at that center would be viable. Thus, the

dynamic kinetic resolution was first attempted utilizing the conditions

Stating material Fast
(R)-Enantiomer Chiral product(R)-Enantiomer

Fast Asymmetric
conjugate reduction

Starting material
(S)-Enantiomer Slow

Figure 3. Principle of dynamic kinetic resolution

conditions previously found successful for the kinetic resolution, only now the reaction

was performed in the presence of excess base. Unfortunately, no racemization was

obtained when 1.2 equivalents of NaOt-Bu were used at -30 °C, even after prolonged

reaction times. However, when the same experiment was repeated at room temperature,

complete conversion of the starting material to the desired product was observed. Just as

in the kinetic resolution, the product was again obtained as a single diastereomer and in

83% enantiomeric excess. With this promising result, we sought to optimize the

enantioselectivity for this transformation. It was found that replacing p-tol-BINAP with

MeO-BIPHEP allowed for the conjugate reduction to be carried out at room temperature

and provide the desired compound, again as a single diastereomer, but now in 93%

enantiomeric excess (when the kinetic resolution was carried out at -30 °C with MeO-

BIPHEP, the product was produced in 95% ee). With the synthesis of the cis-lactone

accomplished, all that remained to complete the synthesis was to install the final methyl

group in the alpha-position on the lactone ring. This was accomplished as in the previous
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route by enolization of lactone 18 with NaHMDS, followed by alkylation with

iodomethane to give Eupomatilone-3 in 85% yield.

Through re-examination of the synthesis, the problems associated with the first

generation synthesis were all able to be addressed. By switching to a Suzuki-Miyaura

cross-coupling reaction, the biaryl synthesis was able to be completed utilizing only

0.005 mol% of palladium catalyst. Furthermore, taking advantage of the Knochel

butenolide synthesis, along with the development of a dynamic kinetic resolution of the

butenolide via asymmetric copper-catalyzed conjugate reduction, the natural product was

produced in 6 steps from the known aryl bromide 10, and in 48% overall yield.

The scope of this reaction with other substrates was of interest based on our

success with the dynamic kinetic resolution in the synthesis of Eupomatilone-3. The

investigation was initiated by examining a simpler substrate than the one used in the total

synthesis. The simplest substrate would be a lactone containing an unsubstituted phenyl

ring in the gamma position. This material was again readily prepared from reaction of

vinyl Grignard 21 with benzaldehyde in THF at -40 °C. This material was then

subjected to the conjugate reduction reaction conditions we found to be optimal for the

synthesis of Eupomatilone-3. The material was again converted to the saturated lactone

in high yield and as a single diastereomer. However, the enantioselectivity observed for

this product was only 41% ee. Based on this result, we decided to re-examine the effect

of various chiral bisphoshine ligands on the enantioselectivity of the conjugate reduction

reaction. The results of this study are shown in Table 1. After screening several chiral

ligands, it was found that the observed enantioselectivity for this reaction was highest

(67%) when utilizing the commercially available SYNPHOS ligand 1.'7 The observed
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trend seems to follow the trend of decreasing bite angle of the bisphosphine ligand.l8

Presumably, this allows for more interaction of the ligand with the substrate, causing

improved selectivity. Next, a variety of experiments were carried out to determine the

optimal solvent system for this reaction. After examining a number of solvents and

solvent mixtures, we found that the

Table 1. Effect of Ligand on Enantioselectivity in the Conjugate Reduction Reaction

0 5 mol% CuCI2 2H20 0
5 mol% Ugand

1.2 equiv NaOt-Bu
Ph Me 6 equiv PMHS Ph Me

THF, CH2C12, tBuOH, RT

Ligand BINAP BIPHEP xylylBIPHEP SYNPHOS

ee 41% 35% 58% 67%

original solvent system used in the synthesis of Eupomatilone-3 was optimal. Simple

replacement of the dichloromethane with an equal volume of THF still gave the desired

product, however with a significantly decreased level of enantiomeric excess. Moreover,

as previously observed, reactions carried out in the absence of t-BuOH lead to lower

reaction rates (however the enantioselectivity remained unchanged). A proposed

catalytic cycle for this reaction that accounts for these phenomena is shown below. It is

believed the active copper hydride catalyst is formed by reaction of a copper alkoxide

with the silane. This can then preferentially react with one of the two equilibrating

enantiomers of the starting material I or I' from the face opposite the arene substituent.

This would generate a copper enolate II, which can then be protonated by the alcohol to

release the desired product III and generate another copper alkoxide. This species can
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then undergo reaction with the silane to regenerate the active copper hydride catalyst and

turn the cycle over.

Scheme 7.

NaOt-Bu 
L*CuCI - LCuOt-BuI -- -- -- A~ ~ri '

I PMHS -

t-BuO

L*CuOt-E

Me

NaOt-Bu t-BuOH

A. ,.0 

Me I'

Me - 0 Ir-uunAr O
PMHS = (CH 3 )3Si-O fSi- i(CH3 )3Si-O-Si-OSi(CH3) 3 III

After finding the optimal reaction conditions, other lactone substrates were

examined in this transformation. Several y-aryl containing lactones were prepared, again

all from the reaction of vinyl Grignard 21 with the corresponding aryl aldehyde. The

results of this examination are shown in Table 2.

It was found that a substrate containing a methyl group in the ortho position of the

arene gave the product again a single diastereomer, however now in slightly higher

selectivity (77% ee). Changing the substituent on the aromatic ring from a methyl group

to a phenyl ring gave the product in 82% ee. When a lactone containing an electron rich

arene (derived from 2,4-dimethoxy-benzaldehyde) in the y-position was reduced, the

product was produced in 87% ee. Additionally, a lactone containing an arene with an

ortho electron-withdrawing substituent (trifluoromethyl group) gave the reduced product

in nearly identical selectivity (78% ee) as for the lactone containing the methyl group.

109

I __ __ __~
_

I.



This suggests that the enantioselectivity of the conjugate reduction reaction is

independent of the electronic nature of the arene, however, the selectivity is sensitive to

the size of the arene. Interestingly, the enantioselectivity for the conjugate reduction of

y-aryl lactones was highest when employing SYNPHOS as the supporting ligand in all

cases except for the substrate in the synthesis of Eupomatilone-3 (here MeO-BIPHEP

gave slightly higher selectivity, -3%). This implies that one cannot assume that the

ligand with the smallest dihedral angle will give the highest selectivity. Instead, there

needs to be a match between the dihedral angle of the ligand and the size of the substrate

in order to maximize selectivity.
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Table 2. Dynamic kinetic resolution of unsaturated lactones

5 mol% CuC122H 2 0
Ar 0 0 5 mol% (R)-SYNPHOS

1.2 equiv NaOt-Bu
iMe 6 equiv PMHS

THF, CH2 CI2, t-BuOH, RT

Entry Substrate Product

1 00 00
2 2 Me 27

Ph Ph

2 m

23 Me Me

3

Me

0

Me

CF 3

00
26Me

Me

0
30 Me

CF3

00
31 Me

Ar 0 0

Me

ee yield

67%

81%

87%

77%

78%

95%

92%

85%

91%

94%

Isolated yield average of two runs determined to be >95% purity by 'H NMR or GC.

Unfortunately, employing the same reaction conditions for the dynamic kinetic

resolution on lactones containing simple alkyl substituents in the y-position have failed to

give >50% conversion of the starting material. This is presumably due to poor

racemization of the starting lactone. Additionally, the reaction provided both the cis- and
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trans-isomers of the product. Furthermore, the enantioselectivity of the cis-product was

found to be low (<25% ee).

Conclusions

Reaction conditions have bee developed that allow for a variety of y-aryl

containing a,-unsaturated butenolides to be reduced in both high enantiomeric and

diastereomeric excess. While a number of catalysts based on chiral bisphosphines were

found to successfully promote this transformation, optimal enantioselectivity was

obtained when employing the commercially SYNPHOS ligand. Through the use of this

transformation, the total synthesis of Eupomatilone-3 was achieved in 6 steps and in 48%

overall yield.

Experimental Procedures

I. General Considerations.

Unless otherwise noted, THF and toluene were purchased from J.T. Baker in CYCLE-

TAINER® solvent-delivery kegs and vigorously purged with argon for 2 h. The solvents

were further purified by passing them under argon pressure through two packed columns

of neutral alumina (for THF) or through neutral alumina and copper (II) oxide (for

toluene).'9 Starting materials for substrate synthesis were purchased from commercial

sources and used as is. PMHS (polymethylhydrosiloxane) and t-BuOH were purchased

from Aldrich and used as is. SYNPHOS was purchased from Strem Chemicals, Inc.
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Yields refer to isolated yields of compounds of greater than 95% purity as estimated by

capillary GC and 'H NMR. Yields reported in this section refer to a single experiment,

while those reported in the tables are the average of two or more runs.

All new compounds were characterized by 'H NMR, 13C NMR, and IR spectroscopy, in

addition to elemental analysis (Atlantic Microlabs, Inc) or HRMS. Nuclear Magnetic

Resonance spectra were recorded on a Varian Mercury 300 of Varian 500 instrument.

Infrared spectra were recorded on a Perkin-Elmer Model 2000 FTIR instrument. All 'H

NMR experiments are reported in 8 units, parts per million (ppm) downfield from

tetramethylsilane. All '3C NMR spectra are reported in ppm relative to residual solvent,

and all were obtained with 'H decouling. Melting points (uncorrected) were obtained on

a Mel-Temp capillary melting point apparatus. Optical rotations were taken on a Jasco

Model-1010 Polarimeter at 21 °C. Gas Chromatographic analyses were performed on a

Hewlett-Packard 6890 gas chromatography instrument with an FID detector using 25m x

0.20 mm capillary column with cross-linked methyl siloxane as a stationary phase.

Chiral High Performance Liquid Chromatography analyses were performed on a Hewlett-

Packard 1100 system with an HP 1100 Diode Array Detector, using the columns and

wavelengths mentioned in sections II and IV.
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Part H. Total Synthesis of Eupomatilone-3

OMe
Me O 0

11 MeO- -

MeO MeO 0

7-Methoxy-6-(3,4,5-trimethoxy-phenyl)-benzo[1,3]dioxole-5-carboxylic acid methyl ester

A flame-dried 5 mL screw cap vial equipped with a Teflon-coated magnetic stir bar was

charged with Pd(OAc) 2 (1 mg, 0.005 mmol) and SPhos (8.2 mg, .02 mmol), then sealed

with a Teflon centered screw cap. The flask was then evacuated, backfilled with argon,

and this process was repeated one additional time. THF (1 mL) was then added to the

flask via syringe and the resulting solution was allowed to stir at room temperature for 5

minutes. Seperately, a flame-dried 15 mL Schlenk flask equipped with a Teflon-coated

magnetic stir bar was charged with aryl bromide 4 (145 mg, 0.5 mmol), 3,4,5-trimethoxy

benzeneboronic acid (159 mg, 0.75 mmol), and tripotassium phosphate (212 mg, 1.0

mmol). The flask was then capped with a rubber septum, evacuated, backfilled with

argon, and this process was repeated one additional time. THF (1 mL) was then added to

the Schlenk flask while under argon via syringe. Then 5 tL of the catalyst solution

generated in the vial; as described above, was added to the Schlenk flask via syringe,

followed by an additional 0.5 mL of THF that was added to the Schlenk flask to wash

down the sides of the flask. The septum was then replaced with a Teflon screw cap and

the flask was sealed and placed in a 80 C oil bath for 20 h. Upon complete conversion

of the starting aryl bromide ( as assessed by both TLC and GC) the reaction mixture was

allowed to cool to room temperature, then filtered through a small plug of silica gel

eluting with EtOAc. This was then concentrated to dryness with the aid of a rotary
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evaporator. The resulting residue was purified by flash chromatography on silica gel

eluting with 3:1 to 2:1 EtOAc: Hexane to give 173 mg (92%) of the title compound as a

white solid. M.p.: 145-146 C. 'H NMR (300 MHz, CDCl 3) 8: 7.02 (s, 1H), 6.44 (s, 2H),

6.06 (s, 2H), 3.90 (s, 3H), 3.84 (s, 6H), 3.83 (s, 3H), 3.55 (s, 3H); 13C NMR (75 MHz,

CDCl 3) 8: 168.1, 152.5, 148.2, 141.0, 140.0, 137.0, 132.0, 130.1, 125.9, 106.8, 104.2,

102.0, 60.8, 60.0, 56.0, 52.0; IR (cml'): 1728, 1612, 1583, 1434, 1326, 1281, 1240, 1126,

1086, 1044; Anal. Calcd. for C19H20 08: C, 60.63; H, 5.36. Found: C, 60.61; H, 5.33.

OH
MoO

19 MO \O

MeO MeO O

[7-Methoxy-6-(3,4,5-trimethoxy-phenyl)-benzo[1 ,3]dioxol-5-yl]-methanol

A flame dried 25 mL round bottom flask equipped with a Teflon-coated magnetic stir bar

was charged with 5 (850 mg, 2.26 mmol) and THF (5 mL). Then, 11.3 mL of a solution

of BH3 THF in THF (1M) (10 mmol) was carefully added dropwise to the stirring

solution. When addition was complete, the flask was equipped with a reflux condenser

and then placed in a 80 C oil bath and allowed to stir for 14 h. The reaction mixture was

allowed to cool to room temperature, then carefully quenched with water. This mixture

was then extracted with EtOAc. The combined organic layers were dried over MgSO4,

filtered, then concentrated with the aid of a rotary evaporator. The resulting residue was

then purified by flash chromatography on silica gel eluting with 1:1 to 2:1 EtOAc:

Hexane to give 724 mg (92%) of the title comound as a white solid. M.p.: 106-108 C.

'H NMR (300 MHz, CDC13 ) 8: 6.74 (s, 1H), 6.43 (s, 2H), 5.95 (s, 2H), 4.30 (s, 2H), 3.86
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(s, 3H), 3.80 (s, 9H), 2.09 (s, 1H); 13C NMR (75 MHz, CDC13) 8: 152.9, 148.6, 141.0,

136.9, 136.4, 133.6, 131.5, 127.4, 107.3, 102.9, 101.3, 62.9, 60.9, 60.1, 56.1; IR (cm-'):

3481, 1584, 1507, 1457, 1410, 1238, 1126, 1059; Anal. Calcd. for C,8H2007: C, 62.06; H,

5.79. Found: C, 62.06; H, 5.82.

20

7-Methoxy-6-(3,4,5-trimethoxy-phenyl)-benzo[1 ,3]dioxole-5-carbaldehyde

A 100 mL round bottom flask equipped with a Teflon-coated magnetic stir bar was

charged with 13 (660 mg, 1.9 mmol) and CH2Cl2 (28 mL). To the stirring solution was

added MnO2 (1.65g, 19 mmol) in one portion. This suspension was allowed to stir at

room temperature for 2 h (at which time complete conversion of the starting material was

confirmed by TLC and H NMR). The reaction mixture was filtered through a plug of

celite, eluting with CH2C12. The solution was then concentrated to dryness with the aid of

a rotary evaporator, then used in the next reaction without further purification.

O Me
MeO O

16 M0O -

MeO MeC 

5-[7-Methoxy-6-(3,4,5-trimethoxy-phenyl)-benzo[1 ,3]dioxol-5-yl]-4-methyl-5H-furan-2-one

A flame-dried 100 mL round bottom flask equipped with a Teflon-coated magnetic stir

bar was charged with 3-iodo-but-2-enoic acid ethyl ester (684 mg, 2.85 mmol), then
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sealed with a rubber septum. The flask was then evacuated, backfilled with agon, and the

process was repeated one additional time. The flask was finally fit with a balloon of

argon. THF (15 mL) was then added to the flask, that was then cooled to -20 °C. A

solution of i-PrMgCl (1.4 mL, 2M in Et2O) was then slowly added dropwise to the

stirring solution of vinyl iodide maintaining a temperature of -20 °C. When addition was

complete, the reaction was allowed to stir an additional 2 h at -20 °C. This solution was

then added via cannula to a stirring solution of 14 in THF (15 mL) in a flame dried flask

under argon at -40 °C. The reaction was allowed to stir at -40 °C for 1 h, then quenched

with saturated aqueous ammonium chloride and allowed to warm to room temperature.

The reaction mixture was then extracted three times with EtOAc. The combined organic

layers were then washed with brine, dried over MgSO 4, filtered, and concentrated to

dryness with the aid of a rotary evaporator. The resulting residue was then purified by

flash chromatography on silica gel eluting with 2:1 to 1:1 Hexane:EtOAc to give 600mg

(76%) of the title compound as a white solid. M.p.: 166-168 °C. 'H NMR (300 MHz,

CDCl 3) 8: 6.52 (d, J=2Hz, 1H), 6.39 (d, J=2Hz, 1H), 6.23 (s, 1H), 5.97 (dd, J=2Hz, 4Hz,

2H), 5.87 (m, 1H), 5.56 (m, 1H), 3.87 (s, 3H), 3.83 (s, 3H), 3.82 (s, 3H), 3.81 (s, 3H),

1.83 (m, 3H); '3C NMR (75 MHz, CDC13) 6:173.5, 168.5, 153.7, 153.3, 153.1, 151.7,

143.3, 131.0, 130.7, 127.6, 117.2, 107.8, 107.7, 104.7, 83.5, 79.0, 61.5, 61.1, 56.4, 14.6;

IR (cml'): 2940, 2252, 1760, 1583, 1477, 1411, 1237, 1127; Anal. Calcd. for C22H 22 0 8: C,

63.76; H, 5.35. Found: C, 63.66; H, 5.33.
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O Me
MeO O

18 M 

MOO MoO OJ

5-[7-Methoxy-6-(3,4,5-trimethoxy-phenyl)-benzo[1 ,3]dioxol-5-yl]-4-methyl-
dihydro-furan-2-one

An oven-dried screw cap test tube equipped with a Teflon-coated magnetic stir bar was

charged with copper (II) chloride dihydrate (2.1 mg, 0.013 mmol), (S)-BIPHEP (7.3 mg,

0.013 mmol), and sodium tert-butoxide (29 mg, 0.30 mmol). The tube was then sealed

with a Teflon-centered screw cap, then evacuated, backfilled with argon, and the cycle

was repeated. THF (2 mL) was then added to the tube and the mixture was allowed to

stir at room temperature for 5 minutes. PMHS (90 FtL, 1.5 mmol) was then added

dropwise and allowed to stir for 5 minutes. Following this, 10 was added as a solution in

THF / CH2C12 / t-BuOH (1.75 mL / 1.25 mL / 375 [AL) and allowed to stir at room

temperature for 24 h, at which point TLC indicated complete conversion of the starting

material. At this point, an equal volume of 3N Hcl was carefully added to the reaction

and allowed to stir for 15 minutes. This was then extracted 3 times with EtOAc. The

combined organics were dried over MgSO4, filtered, and concentrated to dryness with the

aid of a rotary evaporator. The resulting residue was then purified by flash

chromatography on silica gel eluting with 1:6 to 1:1 EtOAc:Hexane to give 89 mg (85%)

of the title compound a white solid. M.p. : 52-54 C. Chiral HPLC analysis (Daicel

Chiralpak® AD column (0.46cm x 25 cm), 1 mL/ min, 50% i-PrOH/ Hexane, 254 nm,

210 nm, 225 nm, retention times: 9.29 min (major), 20.3 min (minor)) showed 92% ee.

1H NMR (300 MHz, CDC13) : 6.73 (s, 1H), 6.41 (d, J=2Hz, 1H), 6.30 (d, J=2Hz, 1H),

6.00 (s, 2H), 5.37 (d, J=6Hz, 1H), 3.91 (s, 3H), 3.85 (s, 3H), 3.84 (s, 3H), 3.82 (s, 3H),
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2.68 (dd, J=8Hz, 17Hz, 1H), 2.26 (m, 2H), 0.74 (d, J=7Hz, 3H); 3C NMR (75 MHz,

CDC13) 6: 176.5, 153.5, 153.2, 148.9, 141.1, 137.4, 136.5, 131.3, 129.1, 126.5, 107.7,

106.4, 101.6, 101.0, 82.1, 61.1, 60.2, 56.3, 56.2, 37.9, 34.4, 15.7; IR (cm-'): 2360, 1780,

1583, 1479, 1410, 1238, 1165, 1058; Anal. Calcd. for C22H240 8: C, 63.45; H, 5.81.

Found: C, 63.32; H, 5.45. aD (589 nm, 2.2 g/ 100 mL CHCI3 ) = -10.9 °.

Me

O Me
MeO 0

MeOe 
MeO MeO 

Eupomatilone-3

A flame-dried 25 mL round bottom flask equipped with a Teflon-coated magnetic stir bar

was brought into a drybox and charged with sodium hexamethylsilazide (66 mg, 0.36

mmol). The flask was sealed with a rubber septum and then removed from the drybox.

A balloon filled with argon was inserted through the septum, then THF (2 mL) was

added. The flask was then cooled to -78 °C. 12 (75 mg, 0.18 mmol) was then added

slowly as a solution in THF (10 mL) over 30 minutes, and then allowed to stir for an

additional 4 h. Iodomethane (224 !tL, 3.6 mmol) was added dropwise, then allowed to

stir for 1 h. The reaction was then allowed to gradually warm to -20 °C. The reaction

was then quenched with water (3 mL) and allowed to warm to room temperature. The

reaction mixture was then extracted three times with EtOAc. The combined organic

layers were then dried over MgSO4, filtered, and concentrated to dryness with the aid of a

rotary evaporator. The resulting residue was then purified by flash chromatography on

119



silica gel eluting with 5:1 to 1:1 Hexane:EtOAc to give 66 mg (85%) of the title

compound as a colorless oil. Chiral HPLC analysis (Daicel Chiralpak® AD column

(0.46cm0 x 25 cm), 1 mL/ min, 50% i-PrOH/ Hexane, 254 nm, 210 nm, 225 nm,

retention times: 5.9 min (major), 7.9 min (minor)) showed 93% ee. H NMR (300 MHz,

CDCl 3) 8: 6.54 (s, 1H), 6.41 (d, J=2Hz, 1H), 6.32 (d, J=2Hz, 1H), 5.99 (s, 2H), 5.48 (d,

J=7.3Hz, 1H), 5.89 (s, 3H), 3.84 (s, 3H), 3.83 (s, 3H), 3.82 (s, 3H), 2.38 (quintet,

J=7.3Hz, 1H), 2.04 (sextet, J=7.3Hz, 1H), 1.16 (d, J=7.3Hz, 3H), 0.77 (d, J=7.3Hz, 3H);

'3C NMR (75 MHz, CDCl 3) 6: 179.6, 153.4, 153.1, 149.0, 141.1, 137.3, 136.6, 131.2,

129.2, 127.5, 108.2, 106.7, 101.5, 100.8, 79.9, 61.0, 60.1, 56.3, 41.9, 41.7, 35.2, 15.3,

14.8; IR (cm-'): 1772, 1583, 1507, 1479, 1410, 1238, 1127, 1086; Anal. Calcd. for

C23H260 8: C, 64.18; H, 6.09. Found: C, 64.35; H, 6.23. aD (589 nm, 2.1 g/ 100 mL

CHC13 ) = -27.4 °.

Part IIm. Synthesis of unsaturated lactones

General procedure for the synthesis of a,p-unsaturated lactones:

All unsaturated lactones examined were prepared following the procedure described by

Knochel' 3.

22 Me

4-Methyl-5-phenyl-5H-furan-2-one
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'H NMR (300 MHz, CDC13) 8: 7.39 (m, 3H), 7.25 (m, 2H), 5.93 (m, 1H), 5.71 (m, 1H),

1.91 (m, 3H); '3C NMR (75 MHz, CDCl 3) 8: 173.6, 168.7, 134.4, 129.6, 129.2, 126.9,

116.4, 86.7, 14.2; IR (cm-'): 2360, 1761, 1646, 1456, 1290, 1147, 1023, 978; Anal. Calcd.

for C,,H, 002 : C, 75.84; H, 5.79. Found: C, 75.76; H, 5.91.

Ph

00
23 Me

5-Biphenyl-2-yl-4-methyl-5H-furan-2-one

'H NMR (300 MHz, CDC13) 6: 7.39 (m, 8H), 7.11 (m, 1H), 5.91 (m, 1H), 5.87 (m, 1H),

1.81 (m, 3H); '3C NMR (75 MHz, CDC13) 8: 173.6, 168.7, 143.3, 139.7, 131.3, 130.7,

129.6, 129.3, 128.6, 128.3, 127.8, 126.7, 117.1, 83.3, 14.4; IR (cm-'): 1762, 1646, 1481,

1437, 1290, 1149, 1021, 974; Anal. Calcd. for C,7H140 2 : C, 81.58; H, 5.64. Found: C,

81.32; H, 5.44.

5-(2,4-Dimethoxy-phenyl)-4-methyl-5H-furan-2-one

'H NMR (300 MHz, CDCl 3) 6: 6.94 (m, 1H), 6.46 (m, 2H), 6.16 (s, 1H), 5.86 (m, 1H),

3.82 (s, 3H), 3.80 (s, 3H), 1.91 (m, 3H); '3C NMR (75 MHz, CDCl 3) 8: 174.1, 169.7,

161.7, 158.6, 128.2, 116.3, 114.8, 105.1, 98.8, 81.1, 55.7, 55.6, 14.2; IR (cm-'): 2941,

1758, 1612, 1508, 1303, 1210, 1159, 1031; Anal. Calcd. for C,3Hi 404 : C, 66.66; H, 6.02.

Found: C, 66.32; H, 5.84.
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Me

25 Me

4-Methyl-5-o-tolyl-5H-furan-2-one

'H NMR (300 MHz, CDC13) : 7.24 (m, 3H), 7.01 (m, 1H), 6.02 (m, 1H), 5.96 (m, 1H),

2.43 (s, 3H), 1.94 (m, 3H); 3C NMR (75 MHz, CDCl3) 8: 173.6, 168.8, 136.8, 132.3,

131.3, 129.4, 126.8, 126.6, 117.2, 83.6, 19.4, 14.3; IR (cm-'): 2980, 1761, 1289, 1173,

1029; Anal. Calcd. for C,2 H, 2 0 2 : C, 76.57; H, 6.43. Found: C, 76.63; H, 6.38.

4-Methyl-5-(2-trifluoromethyl-phenyl)-5H-furan-2-one

'H NMR (300 MHz, CDC13) 8: 7.74 (d, J=7Hz, 1H), 7.54 (ddd, J=7Hz, 2H), 7.21 (d,

II=7Hz, 1H), 6.18 (m, 1H), 6.02 (m, 1H), 1.89 (m, 3H); '9F NMR (282 MHz, CDC13) 6: -

57.3; 13C NMR (75 MHz, CDC 3 ) 6: 173.2, 168.6, 133.2, 132.9, 129.7, 127.7, 126.3,

126.2, 117.4, 81.2, 81.1, 14.2; IR (cml'): 1767, 1315, 1285, 1161, 1114, 1028; Anal.

Calcd. for C,2H9F 30 2: C, 59.51; H, 3.75. Found: C, 59.74; H, 3.74

Part IV. Asymmetric reduction of unsaturated lactones

General Procedure:
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An oven-dried screw cap test tube equipped with a Teflon-coated magnetic stir bar was

charged with copper(II) chloride dihydrate (5 mol%), (R)-SYNPHOS (5 mol%), and

sodium tert-butoxide (1.2 equiv). The tube was then sealed with a Teflon centered screw

cap. Next, the tube was evacuated, backfilled with argon, and this process was repeated.

THF (2.5 mL) was then added to the tube via syringe and the mixture was allowed to stir

at room temperature for 5 minutes. To this mixture was then added PMHS (6 equiv)

dropwise, and then the mixture was allowed to stir for an additional 5 minutes. The

unsaturated lactone (0.3 mmol) was then added to the reaction as a solution in THF (2

mL), CH2C12 (1.5 mL) and t-BuOH (450 [tL). The reaction was allowed to stir at room

temperature until complete conversion of the starting material was obtained (as judged by

TLC or GC). The reaction was then carefully quenched with an equal volume of 3N HCI,

and allowed to stir for 15-30 minutes. The mixture was then extracted three times with

EtOAc. The combined organic layers were then dried over MgSO4, filtered, and

concentrated to dryness with the aid of a rotary evaporator. The crude residue was

purified by flash chromatography on silica gel to give the desired compound.

00
27

4-Methyl-5-phenyl-dihydro-furan-2-one

The general procedure was employed using 52 mg (0.3 mmol) of 16. Purification via

flash chromatography on silica gel eluting with 1:9 EtOAc:Hexane gave 50 mg (95%) of

the title compound as a colorless oil. Chiral HPLC analysis (Daicel Chiralpak® OJ

column (0.46cm x 25 cm), 1.2 mL/ min, 2% i-PrOH/ Hexane, 254 nm, 210 nm, 225 nm,
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retention times: 25.9 min (minor), 30.1 min (major)) showed 68% ee. 'H NMR (300

MHz, CDCl 3) 8: 7.33 (m, 3H), 7.21 (m, 2H), 5.56 (d, J=6Hz, 1H), 2.79 (m, 2H), 2.30 (dd,

J=4Hz, 17Hz, 1H), 0.65 (d, J=7Hz, 3H); 13C NMR (75 MHz, CDCl3) 6: 177.0, 136.2,

128.6, 128.2, 125.5, 84.2, 37.2, 35.1, 15.3; IR (cm-'): 1780, 1456, 1157, 913, 749; Anal.

Calcd. for C, ,H 20 2: C, 74.98; H, 6.86. Found: C, 75.22; H, 6.94. aD (589 nm, 1.3g/ 100

mL CHCl3) = 16.9°.

Ph

28 Me

5-Biphenyl-2-yl-4-methyl-dihydro-furan-2-one

The general procedure was employed using 75 mg (0.3 mmol) of 17. Purification via

flash chromatography on silica gel eluting with 1:9 EtOAc:Hexane gave 69 mg (91%) of

the title compound as a colorless oil. Chiral HPLC analysis (Daicel Chiralpak® OJ

column (0.46cm x 25 cm), 1 mL/ min, 8% i-PrOH/ Hexane, 254 nm, 210 nm, 225 nm,

retention times: 17.4 min (major), 20.8 min (minor) showed 79% ee. 'H NMR (300

MHz, CDC13) 8: 7.53 (m, 1H), 7.40 (m, 5H), 7.25 (m, 2H), 7.2 (m, 1H), 5.67 (d, J=6Hz,

1H), 2.67 (dd, J=8Hz, 17Hz, 1H), 2.21 (m, 2H), 0.64 (d, J=7Hz, 3H); ' 3C NMR (75 MHz,

CDC13) 8: 176.6, 140.5, 140.2, 133.7, 130.0, 128.8, 128.6, 127.8, 127.7, 127.6, 125.8,

82.2, 37.9, 33.9, 15.7; IR (cm-'): 1783, 1479, 1306, 1213, 1164, 987, 756; Anal. Calcd.

for C,7H, 60 2: C, 80.93; H, 6.39. Found: C, 81.21; H, 6.45. aD (589 nm, 5.2g/ 100 mL

CHC 3) = 28.9 °.
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5-(2,4-Dimethoxy-phenyl)-4-methyl-dihydro-furan-2-one

The general procedure was employed using 70 mg (0.3 mmol) of 18. Purification via

flash chromatography on silica gel eluting with 1:3 EtOAc:Hexane gave 60 mg (85%)

of the title compound as a colorless oil. Chiral HPLC analysis (Daicel Chiralpak® OD

column (0.46cm x 25 cm), 1 mL/ min, 10% i-PrOH/ Hexane, 254 nm, 210 nm, 225 nm,

retention times: 9.66 min (minor), 26.0 min (major) showed 87% ee. H NMR (300

MHz, CDC13) 8: 7.21 (d, J=8Hz, 1H), 6.49 (dd, J=2Hz, 8Hz, 1H), 6.46 (d, J=2Hz, 1H),

5.75 (d, J=6Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 2.97 (m, 1H), 2.82 (dd, J=8Hz, 17Hz,

1H), 2.31 (dd, J=4Hz, 17Hz, 1H), 0.67 (d, J=7Hz, 3H); 13C NMR (75 MHz, CDCl 3) 6:

177.3, 160.7, 157.0, 127.1, 117.2, 103.9, 98.4, 81.2, 55.5, 55.4, 37.4, 33.6, 15.3; IR (cm-

'): 1780, 1616, 1590, 1508, 1287, 1210, 1160, 1033, 987; Anal. Calcd. for C13HI60 4: C,

66.09; H, 6.8!3. Found: C, 66.39; H, 6.87. aD (589 nm, 3.9g/ 100 mL CHC 3) = 30.5 °.

Me

00
30 Me

4-Methyl-5-o-tolyl-dihydro-furan-2-one

The general procedure was employed using 56 mg (0.3 mmol) of 19. Purification via

flash chromatography on silica gel eluting with 1:4 EtOAc:Hexane gave 52 mg (91%)

of the title compound as a colorless oil. Chiral HPLC analysis (Daicel Chiralpak® OJ

column (0.46cm x 25 cm), 1 mL/ min, 10% i-PrOH/ Hexane, 254 nm, 210 nm, 225 nm,
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retention times: 12.7 min (major), 13.9 min (minor) showed 80% ee. 'H NMR (300

MHz, CDCl3) 8: 7.4 (m, 1H), 7.23 (m, 3H), 5.76 (d, J=6Hz, 1H), 2.95 (m, 2H), 2.33 (m,

4H), 0.64 (d, J=7Hz, 3H); 13C NMR (75 MHz, CDCl 3) 8: 176.7, 134.4, 133.7, 130.4,

128.0, 126.2, 125.3, 82.1, 37.8, 33.2, 19.3, 15.6; IR (cm-'): 1783, 1462, 1305, 1212, 1163,

987, 912, 750; Anal. Calcd. for C,2H, 40 2: C, 75.76; H, 7.42. Found: C, 75.46; H, 7.23.

aD (589 nm, 2.1g/ 100 mL CHCl 3) = 37.2 °.

CF3

O
31 Me

4-Methyl-5-(2-trifluoromethyl-phenyl)-dihydrofuran-2-one

The general procedure was employed using 69 mg (0.3 mmol) of 20. Purification via

flash chromatography on silica gel eluting with 1:4 EtOAc:Hexane gave 69 mg (93%)

of the title compound as a colorless oil. Chiral HPLC analysis (Daicel Chiralpak® AD

column (0.46cm x 25 cm), 1 mL/ min, 10% i-PrOH/ Hexane, 254 nm, 210 nm, 225 nm,

retention times: 5.63 min (minor), 6.46 min (major) showed 78% ee. H NMR (300

MHz, CDC13 ) 8: 7.68 (m, 3H), 7.47 (m, 1H), 5.97 (d, J=6Hz, 1H), 3.00 (m, 2H), 2.38 (m,

1H), 0.66 (d, J=7Hz, 3H); '9F NMR (282 MHz, CDC 3) 8: -59.5; 3C NMR (75 MHz,

CDC13) 8: 176.5, 136.2, 132.9, 128.7, 127.5, 126.3, 126.2, 117.4, 81.2, 37.5, 35.4, 14.2;

IR (cm-'): 1791, 1457, 1315, 1273, 1162, 1037, 990, 771; Anal. Calcd. for C,2H,,F 302: C,

59.02; H, 4.54. Found: C, 59.32; H, 4.67. aD (589 nm, 2.8g/ 100 mL CHCl 3) = 24.9 °.
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