
AUTO-CASSETTE:

(THE AUTOMATIC CLIPPING SERVICE FOR TV

NEWS)

by

Aya Konishi

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL
ENGINEERING AND COMPUTER SCIENCE IN

PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

BACHELOR OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1986

Copyright (c) 1986 Massachusetts Institute of Technology

Signature of Author _ Z-, V I -

Department of Electrical IEngineering and Computer Science
June 2, 1986

Certified by
Walter Bender

Thesis Supervisor

Accepted by
Professor David Adler

Chairman, Undergraduate Thesis Committee
SS. Ita. t*':

JtlN 8 1986

.R A F1I Archives

AUTO-CASSETTE:

(THE AUTOMATIC CLIPPING SERVICE FOR TV NEWS)

by

Aya Konishi

Submitted to the Department of Electrical Engineering and Computer
Science on June 2, 1986 in partial fulfillment of the requirements for the

degree of Bachelor of Science.

Abstract

This project describes the design and implementation of an electronic clipping service for
broadcast television. The system, Auto-Cassette automatically records on video tape
pertinent programming from various broadcast sources, and provides a rich environment for
viewing this tape. In essence, the computer watches television for the user, electing to store
those items of potential interest, and then provides to the user ways to randomly access
information on the tape. This includes a "table of contents" of the tape. The user then
selects from the table of contents and subsequently watches a sequential presentation. To
give the project scope, input to the system is limited to news-related programming.

This work was sponsered in part by IBM Entry Systems Division.

Thesis Supervisor:
Title:

Walter Bender
Principal Research Scientist, The Media Lab, MIT

-3-

Dedication

To my parents.

-4-

Acknowledgements

I thank members of the Media Lab, especially the NewsPeek group, for providing help and

support for my project. I'd especially like to thank my thesis advisor, Walter Bender, who

had given me so much time and effort.

I also thank my friends, Bill Saphir and Pat Jennings, for always being there when I needed

advices on my programs.

This work was sponsered in part by IBM Entry Systems division.

-5

Table of Contents

Abstract
Dedication
Acknowledgements
Table of Contents
List of Figures

1. Introduction

1.1 Project Overview
1.2 Design Overview

2. Design
2.1 Overview
2.2 Capture
2.3 Edit
2.4 Presentation

2.4.1 Selection
2.4.1.1 The Table
2.4.1.2 The News

2.4.2 Playback

of Contents Approach
Break Approach

3. Implementation
3.1 The Top Level Implementation
3.2 Capture

3.2.1 Hardware
3.2.2 News Retrieval System
3.2.3 The Capture System

3.3 Edit
3.3.1 Matching Interests
3.3.2 Headline Extraction

3.4 Selection
3.4.1 Display_Page
3.4.2 Get_Touch_:[nput

3.5 Presentation

4. Possible Extensions
4.1 Multiple Sources
4.2 History Mechanism
4.3 Further Enhancements

4.3.1 Capture
4.3.2 Edit
4.3.3 Selection
4.3.4 Presentation

5. Evaluation

6. Appendix A

2
3

4

5
6

7

7
7

10
10
10
11
12
13
13
14
16

17

17
17
17
19
19
21
23
24
25
25
28
29

31
31
31
32
32
33
33
33

35

37

-6-

List of Figures

Figure 2-1:
Figure 2-2:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 5-1:

Selection section in progress
Valid Area for each command
The block diagram for Auto-Cassette
The block diagram for the NR system
The module dependency diagram for the editing section
The module dependency diagram for Selection section
The module dependency diagram for Playback section
An Example of Table of Contents

14
15
18
20
22
26
30
36

.7-

Chapter 1

Introduction

1.1 Project Overview

The Auto-Cassette project involves the design and implementation of an electronic clipping

service for broadcast television. The system automatically records on video tape pertinent

video programming from broadcast sources, and provides a rich environment for viewing

this tape. In essence, the computer watches television for the user, recording those items of

potential interest on tape, and then provides to the user ways to randomly access this

information at the "end of the day". This includes the creation of an on-line "table of the

contents" for the tape. The user then selects from the table of contents and watches a

sequential presentation. The project has been limited to news-related programming.

Auto-cassette provides a time efficient way of viewing the television news. As the result of

the system, the edited program does not contain information that the user does not want to

see, nor does the user have to wait for the information of interest. The personalization

process is very important in an age when there is too much information available for any

one person to absorb.

1.2 Design Overview

The hardware environment of Auto-Cassette is an extension of the typical household

television system; local storage and computation have been added. Tie broadcast is no

longer directed at the television receiver, but rather at the home computer. The local

storage enables one to view the broadcast asynchronous to its reception. Computation is

used in both the storage and the retrieval of video information. A video tape recorder is

used to store broadcast television. The computational component is used to selectively

record incoming material and to facilitate subsequent viewing.

A close-caption decoder has been modified to provide its output to the computer rather than

to a character generator. Hence the computer is provided with an ascii transcript of the

broadcast. This data, along with the television schedule, is used to determine detailed

information about the programming; e.g. we know not only that we are watching ABC

Nightly News, but that the lead story is about President Reagan's reaction to the current

Middle East crisis.

The ascii transcription is passed onto the Edit system. The Edit system functions as a filter.

Sequences which are of interest to the user are identified by a boolean operations on

keywords. Stories are sorted by an algorithm which takes into account order of

transmission (the generally most important stories are broadcast first), and the result of the

filter mechanism (stories which match closest to the user profile are given priority in the

presentation).

No matter how well the Edit system performs, it will always lag somewhat behind in its

perception of the interests of the user. Hence it is crucial to provide a table of contents and

a method of resequencing the material. Two methods of presenting the contents of the tape

were proposed initially. Only one was implemented within the context of this thesis. The

first method is to create a table of contents by extracting headlines from the stories, along

with a still frame illustration. The second method is to create short video sequences for

each news story which give the flavor of the story, but not any of the details. These

sequences would be reminiscent of "News Break," the short interruptions to the regular

broadcast which the local stations use to inform their audience as to what will be featured in

that evening's new broadcast.

The table of contents is used to refine the editorial process, i.e. to select a subset of what is

available and to resequence these selections. The input mechanism is a "touch sensitive"

-8-

-9-

display. Touching a headline causes that story to be queued for subsequent viewing. After

the selection process, the video is played sequentially.

-10-

Chapter 2

Design

2.1 Overview

The input to the Auto-Cassette system is the ABC Nightly News, broadcast daily at

7:00PM. This news program was selected because it is currently the only national network

news broadcast with closed-captioning. The news is recorded on a video tape, and text

from the closed-caption is stored on a magnetic disk. The closed-captioned text is a

transcription of the audio on the tape. By making use of this data, the system then provides

a interface to the news items on the video tape.

Functionally, the system can be divided into three sections.

1. Capturing the broadcast news onto video tape (Capture)

2. Making a database of stories (Edit)

3. Presenting information on each stories (Selection & Playback)

Each of three modules is naintained separately. Each section is explained in detail below.

2.2 Capture

The first section of the system deals with the retrieving and storing of the database. The

environment is an extension of the typical household home video system. The hardware

consists of television receiver, a computer-controlled video recorder, a closed-caption

decoder and a personal computer.

Simultaneous to the broadcast, the system records the video portion of news onto a video

tape and the captioning portion of it on the hard file of the personal computer. Timecode is

stored along with the captioning in order to maintain a correspondence between the video

and the transcript. The captioning is then filtered and the text of each story (news item) is

-11-

put into separate file. The system also creates an index file where the name of the text file

and the beginning location and the ending location on the video of all the stories are kept.

In the second pass over the tape, the system grabs a single frame of video from each story,

and stores the image on the personal computer.

2.3 Edit

After the news has been captured and partitioned into individual stories, the editing process

begins. This sub-system functions as the primary filter of stories and as a sorter. The Edit

system only selects those articles which match the user's interests to pass onto the

presentation system.

The Edit system makes use of information regarding what kind of articles are of interests to

the user. This information is maintained in a keyword file, provided by the user. The

words in the file are matched against the text of the news stories. Each line of the file

contains a (set of) word(s), to be matched. If a story contains any keyword, it is passed to

the Presentatiofi system. In the absence of the keyword file, the user is presented with

every story.

This method of filtering was chosen for two reasons. It is simple and efficient to

implementation. Word-matching takes relatively short time to run. Also, it is easy to

modify. To change the filter, one need only to add or eliminate keywords from the file. On

the other hand, research in this area indicates that this method is rather inefficient. 1 Editing

could be improved by application of more intelligent modeling of the stories, but this is

outside the scope of this thesis. Other methods are discussed in Chapter 4.

Another function of the Edit system is sorting of stories. The information accumulated by

the capture system must be put into a data structure which can be accessed efficiently by the

1See [Blair 85].

-12-

Presentation system. The Presentation system needs the following information for each

story: a headline, the location of the representative still picture, the date of transmission,

and the location and length of the story on the tape. All of the above information is

computed or collected during the editing process. The main advantage to doing this

compilation before hand rather than during the presentation, where the data is used, is time

efficiency for the user. Since the presentation is visible to the user, any computing that can

be done before hand should be done. Also, if the specification of file format changes, only

the Edit system needs to be modified. Changes need not propagate to the presentation.

2.4 Presentation

The Presentation system is the only sub-system of Auto-Cassette with which the user

interacts directly. The presentation generates a the Table of Contents from information

provided by the Edit system. Ideally, the Edit section should provide a pre-edited tape,

which is sequenced according to a good guess of the user's interests. In this project, this

method was not realized because of the inability of our hardware to edit the tape. Several

other system limitations influenced the design of the Presentation system. Both the

rendering of the table of contents and searching for stories on the video tape are time

consuming. One design criteria was to minimize the impact of delays.

Since the matching of user's interests and stories done in the editing section can not always

correlate with the user's current interests, the system must also provide a method for a user

to resequence the stories. Therefore, the main functions of the Presentation system are

displaying the contents of news items, letting the user select what to watch, and playing the

video of selected stories. There are many ways to go about doing these. One way is to

Playback each story immediately after selection by the user. Hence the user selects a story,

then the system plays that story back, then the user selects another story and the system

plays that one back, and so on. Control goes back and forth between the selection function

-13.

and Playback function. Another way is to let the user select all the stories at the beginning,

and they play them back in the order he has chosen. This way, the control of the program

goes only once to the selection section and then to Playback section. It was decided to use

the latter approach because of time efficiency in switching back and forth between the

selection and Playback sections.

2.4.1 Selection

Two methods for a user to select and resequence stories were proposed: the Table of

Contents, and the NewsBreak. With the Table of Contents approach, the information about

each story is displayed to the user in a way reminiscent of the 'contents' page in a

magazine. The NewsBreak approach would show an abbreviated video clip of each story.

Only the Table of Contents approach was implemented because of anticipated problems

with the NewsBreak approach.

The input to the selection section is the file created by the Edit system.

2.4.1.1 The Table of Contents Approach

The approach which was implemented is an interactive table of contents. On a TV display

with a touch-sensitive device, the system displays a one or two sentence headline, a

"related" still image, and an indication of length of each story. The headline, the still image

and length are all passed on from the Edit system. There are usually four article on one

screenful. Since the entire table of contents will not fit on one screenful at once, a paging

mechanism is used. The screen is diagrammed in Figure 2-1.

At any time, the user by touching the portion of the screen, has the options of either

selecting a story for viewing, going to the next or the previous page, or ending selection

process.

When the user touches either the headline or the "related" still image of a story, that story is

'selected'. The color of the headline is changed to indicate the reception of the 'select'

-14-

Figure 2-1: Selection section in progress

command. The user may touch the same story more than once, but the touches after the

first one are ignored and would not be registered. The touches in the "invalid" region are

also ignored. The system keeps getting the input until the user indicates the "end of input"

by touching the appropriated section on the screen. Both the previous-page command on

page 1 and the next-page command on the last page, are ignored. Figure 2-2 shows the

valid area to touch for each command.

The order of presentation (of selected stories) is the same as the order in which the articles

were selected. After the user indicates the 'end of input', the selection section ends and

passes the flow to the presentation section. The Playback section plays the video of the

selected stories.

2.4.1.2 The News Break Approach

The NewsBreak approach is to show a tightly edited video sequence of each story included

on the tape. This is intended to be similar to "News Break", a preview of the evening's

news used widely by local broadcasters. In this approach, the user is shown a sequence of

short video segments which are a portion of each story which has been recorded. The user,

-15-
prev_page

end of input Figure 2-2: Valid Area for each command nextpage

as he watches each item in the sequence, can decide whether or not he would like to view

the entire story.

This approach has an advantage over the Table of Contents in that it provides much more

information about the stories. Even 10 seconds of video is likely to contain much more

information than a headline and a representative still image. A video is also more visually

attractive and entertaining. But it is very hard to re-edit already tightly edited video. For

example, it would be difficult to stop the video without cutting off speaker's voice abruptly.

It is unclear that the tightly edited broadcast lends itself well to re-editing. Also, since the

video is sequential rather than parallel access, NewsBreak requires more time on the user's

part. If we only show 30 seconds of each story, to watch NewsBreak of all the stories (~20)

would take 10 minutes, which is too long. The Table of Contents is inherently parallel

accessible. Because of these reasons, the Table of Contents approach was adapted and

implemented.

select 1 I2r

select 2

select 3

1N X~~ I~~WI~v

select 4

A,
X I

-- _

-16-

2.4.2 Playback

Since the stories are not necessarily sequential on the tape, the tape player must search

before playing each story. Stories are played back in selected order. Ideally, the system

should have two play back decks, so that one deck can be searching for next story while the

other is playing current story. Our implementation only used one tape deck, and therefore

must account for the search delay. While the tape is searching, the illustration and headline

of the next story, which were used in the table of contents, are displayed.

-17-

Chapter 3

Implementation

The system was implemented on a SUN Microsystem Network at the Media Laboratory.

The software environment was Berkeley UNIX version 4.2 and the "C" programming

language. The hardware environment included a Datacube frame buffer, an AMPEX video

tape recorder, an Elographics touch sensitive device, and a Grass Valley video switcher.

3.1 The Top Level Implementation

The input to the system is the television broadcast and the output is a video tape with a table

of contents and an interface to watching it. It is divided into four modules: capture, edit,

selection and Playback. The Figure 3-1 is a the block diagram for the modules.

In the subsequent chapters, each module is explained in detail.

3.2 Capture

3.2.1 Hardware

A computer-controlled video recorder is used for the capture and play back of the television

signal. A closed-caption decoder has been modified to divert the captioning to a serial port

on the computer. Still images are grabbed from the video by a frame-buffer with an acquire

cycle. The same framebuffer is subsequently NTSC encoded and used for the Table of

Contents display. A video switcher is used to move between the encoded frame buffer

output and the video tape recorder.

-18-

Auto-Cassette

-19-

3.2.2 News Retrieval System

The News Retrieval System was developed at the Architecture Machine Group at MIT. 2 Its

input is a television broadcast and its output is a recorded video tape and text and image

files stored on the personal computer. The text files contain the closed-captioning portion

of the broadcast. The captioning has been partitioned into individual stories. The system

detects the beginning of a new story by locating story delimiting characters inserted by the

broadcaster. The video portion of the input is recorded on a tape. A heuristic is used to

find relevant stills. Half way into each story, the system grabs a picture from the video and

stores it as a bitmap on disk. The block diagram of the system is shown in Figure 3-2.

3.2.3 The Capture System

This section retrieves the information stored by the News Retrieval System and puts it in a

data structure easily usable by the "Auto-Cassette" system. The section consists a single

module which has one procedure, create article list(.
main (argo, argv)

/* Main procedure for captureAedit sub-system.
* Calls create article list() and make toc().
*/

struct article article list0lO0] ;
createarticle listdate)
int *date;

/* This module takes the infornation from date.index
in '-mb/news/stories, and creates data structure
articles article list[].
Th e rtie_ list[declared externally. */

create_article_list() takes as it's input data captured by the News Retrieval System, stored

in the index file (date.index), and puts it into a data structure, article_listf] for use by the

edit system. The specification of article-list[] is as follows.

2 See [Bove 83].

-

.20-

Hardware I ...

.... S..o ..areotare

Figure 3-2: The block diagram for the NR system

-21-

struct article {
char text 40];
char image [40];
char date[20];
int location;
int length;

The text and image fields of an article are UNIX file names. These files contain the text of

the story and a bitmap of a "representative" still picture from the story. The date field is not

really necessary at this time, since all of the articles are from the same tape. It is included

for possible future extension of the database to multiple dates and sources. The location

field represents the offset in frames of a story from the starting time code on the video tape.

The length is the length of the story in frames.

3.3 Edit

The Edit system has two functions: matching interests, and headline extraction. The main

procedure, make_tocO takes article_list[] as (external) input, and creates a toc[]. The data

structure, toc[] is defined as follows.
Struct toc_entry {

char headline[1000];
char image[30];
int location;
int length;

} toc[100];

The toc[] contains only stories which match the users' interests. The most of the entries are

copied from the article_list[] except headline.

Figure 3-3 shows the module dependency diagram for the editing module. make_toc(

which is the main procedure in this cluster, calls two sub-modules; match interests() and

grab_headlines(). make toc(first runs match_interests() on each article in the

article_list[], and if it matches one of the user's interests, it calls grab_headlines(on the

article and puts the result in toc[]. Match_interests() and grab_headline() both call sub-

procedures to complete their tasks.

-22-

Figure 3-3: The module dependency diagram for the editing section

-23-

3.3.1 Matching Interests

Matching is done in a procedure called match interests(filename). The list of interests are

provided in the file "interests.lst". This procedure

calls word match(text, file) which does the actual work of matching words.

word match(text, file) is used in the greetings elimination process also.
match interests (filename)
char *filename;

/* This procedure opens the file, and calls
word match(text of the file, "interests.lst".
If word match returns or -1,
match interests returns 1, meaning "include this story".
Otherwise, it returns 0 meaning "don't include this story."

*/

word_match(text, file)
char *text, *file;

{
/* This procedure checks if any words given in the
file is contained in the case that there i no words
in the file, or the file is not found.
It is case sensitive, and ignores any preceding and dangling
blank spaces of any line.

RESULT (integer) :
1 there is a match
0 there is no match
-1 File not found

*/

The word match works as follows. The file contains the sets of words which would be

matched against the text. Each line of the file denotes one set of the words, and it can

contain any number of words. Each set is treated as a group and all the words in a set must

appear consecutively. For example,
TEE GOVERNMENT Or WEST GERMANY TODAY EXPELLED 2 LIBYANS FROM THEIR
EMBASSY IN BONN IN WEST GERMANY.

This sentence would match with "GERMANY" and "WEST GERMANY", but not with

"WEST GERMANY POLICY" or "EAST GERMANY".

.24-

3.3.2 Headline Extraction

The other editing function is to extract a headline from the text of the news stories. The

news stories on the broadcast TV news are already edited tightly, and they closely follow a

format of: (greetings), headline [by the anchor man], body of story [by a reporter]. The

system takes advantage of the rigid formatting. The first non-greeting line is considered to

be the headline. The greeting is recognized by using the wordmatch(text, file) procedure.

file, in this case, is a file which contains possible greetings such as "Hello" and "This is the

Nightly News". This scheme works well. Here is an example of a typical story and its

headline.

> THIS IS JOHN MCWETHY.
THERE ARE TWO AMERICAN
AIRCRAFT CARRIER TASK FORCES
IN THE MEDITERRANEAN.
BOTH HAVE HAD THEIR ORDERS
CHANGED IN THE LAST
24 HOURS.
THE "CORAL SEA" WILL NOT BE
HEADING FOR HOME.
THE "AMERICA" WILL NOT MAKE
A PORT CALL IN FRANCE.

JOHN MCWETHY, ABC NEWS,
THE STATE DEPARTMENT.

The headline extracted was:

THERE ARE TWO AMERICAN
AIRCRAFT CARRIER TASK FORCES
IN THE MEDITERRANEAN.

-25-

3.4 Selection

The "Auto-cassette" system adapted the table of contents approach for its basic input

method. Two of the reasons are its straight forward implementation and its ease of use. It's

main function is type set0 which takes the toc[l (kept in an external variable) as input.

The type setO module is divided into two sub-modules. One module, displayjpage(page

number:int), takes care of updating the screen, and the other, get_touch input(takes care

of getting touch inputs from the user. These modules interact frequently because each input

causes the screen to be updated in some manner. They also have to be running concurrently

to allow the user to input commands even while the screen is being updated.

type set(calls displayage(I) in order to draw the first page of the Table of Contents.

Then gettouch input(is called until the interaction with to the Table of Contents is

completed.

Each of the sub-modules are explained in detail below. See Figure 3-4 for the module

dependency diagram for this section.

3.4.1 Display Page

The displaypage(page_number) is responsible for drawing a single page of the Table of

Contents. The page number is passes as an argument, while the number of stories and the

number of story headlines per screen are set in the external variables, numarticles and

num_div. Using this information and an array, toc[], displaypage0 renders the screen as

was described in Chapter 2.

The task of updating screen is divided into two parts: the image portion and the text portion.

Accordingly, two sub-procedures were implemented: display_pictures(page number:int)

and type_setheadlines(page_number:int]. display page(forks and creates two

processes, each running one of the sub-procedures. The main reason in dividing the task is

-26-

draw type_set

image text

IF

frameto
t imecode

I

4-

mark_

article

member

%̀
0

% -- This procedure belongs to play_video_module

Figure 3-4: The module dependency diagram for Selection section

Select
[~~ [[] [I[]]]]]

type_set

display_pageI -~~~~~~~~~~~get_touch input

draw

pictures

I

type_set

headlines

video_

search

next_page

delimiter

prevy_page

time_code
_add

,,

i

. . .~~~~~~~~-

I

_ .

I

-
.

!

-

.27-

the time efficiency. Since the drawing of pictures is time-consuming (1 to 2 seconds for

each still), if it is done sequentially, the user would have to wait before he can either 'read'

the next headline or select a story. On the other hand, this implementation allows input at

all times. Because type set headlines() returns immediately and passes the control of the

program back to the gettouch inputO, the two procedures which serve the main functions

of selection section, typeset() and get touch input(run concurrently.3.

typeset headlines(extracts the headline field of each story in toc[] and type_sets it on

the screen. In this implementation, four story's are displayed on the screen, but the number

is arbitrary, and can be set in the include file "autocassette.h". This number is chosen

because it seemed to be the best considering the size of the picture and the text. The

colormap used is specified in 'news.cm'. The text is written on the screen using the soft-

fonts (2 bits per point) on which four shades of color is used to display text in stead of one.

The result is a better visual quality of video text displays. 4 In Auto-Cassette, five sets of

four entries in the colormap are allocated to specify the color of each headline. Initially, the

text is written in a shade of blue. The sub-procedure type set text(text, x-orig, y_orig,

width, length) type sets text in a rectaliner region specified by (x _orig, y_orig, width,

length. type_set headlines(also displays the time of each story the left corner of the

illustration. Time is calculated from the length field. This calculation assumes the

broadcast started at 7:00PM.

drawpictureO loads the picture into the framebuffer. One of its arguments is the name of

the file in which the picture is stored.

3See Section 3.4.2

4 See [Schmandt 83]

-28-

3.4.2 Get Touch Input

The get touch input(procedure is a loop which polls the touch screen, waiting for input

from the user. On the screen, each region is assigned to a command. The procedu;e

analyzes input from the touch screen and decides which command is being issued. It then

executes the command. The loop is exited upon the receipt of the 'end selection process'

command. The input can be one of the following: 1) go to next page, 2) go to previous

page, 3) select this story, 4) end selection process, 5) invalid command. get touchinput(

calls next page(), prevpage(, mark article(. exit() or nothing respectively. The

next page(and prevpage() call display_page(page_nuinber) with appropriate page

number, which is (curpage + 1) or (curpage - 1). curpage is an external variable which

holds the value of the current page number. Upon receipt of the 'select' command,

get touch input(first stores the number of the article selected in an external variable int

storylist[], if it is not already in the list, then calls markarticle(). mark article(

changes the entries in the colormap which correspond to the story being selected. The

result is that the headline is changed from blue to red. Because of the separate

addressability of the colormap and the bitmap, changing the color of text is independent

from other activities on the screen. It can be concurrent with writing text or loading

images. Hence, story selection can be instantaneous.

The interaction between the display and the input is complicated. Since get touch input(

is running while the pictures are being drawn, it is possible to get input while the screen is

not completely drawn. When either a 'next-page', 'prev-page', or 'end' commands is

received, the system must terminate any on-going drawpictures() processes before calling

another instance of display_page(). To do so, the gettouch_input() remembers the

process id of the on-going draw.picture() process. This information is passed to

display_pageO as an argument.

-29-

3.5 Presentation

At this point, the user, having selected the articles, watches the tape. The presentation

module, playvideoO is responsible for two things: controlling the video tape recorder and

controlling the framebuffer. Since these two jobs must be dealt with concurrently, again,

we use fork() system call to have two processes: one running play story() and the other

running put nextpictureO. . While play story(is playing story N on video tape

recorder, the put next pictureO puts up a picture and headline from the next story (N + 1)

into the frame buffer. When play story(finishes playing story N, the display is switched

to the frame buffer. By then, the picture for story N+1 has been drawn, so the user sees

something on the screen right away. The frame buffer is displayed until the first process

finishes searching for story N+I on video tape. The display is then switched back to,

playing the story N+1.

videosearchO is a sub-procedure called by play video(to search for the next story on the

tape. The search was done from the play videoO rather than in play story() because there

was a need to separate the searching for the next story, and the playing and stopping the

video. Since there is no way to tell the video to "start playing and stop N seconds from

now.", the system must constantly check to stop playing. That function is done in

ok_tostop(). ok to stop loops around infinitely comparing the current timecode and the

timecode to stop until the difference is smaller than the specified accuracy period. The

checking usually takes as long as 30 to 50 frames to pass by. This is the minimum amount

of time allowed to lapse between each checking, considering the accuracy period of 5

frames, so one loop is executed right after another. While playstory() is waiting for

ok tostop(to return OK, put next_picture(draws the still image for the next story.

-30-

play_story

ok to stop

% -- this procedure belongs to

videosearch

type_set module

Figure 3-5: The module dependency diagram for Playback section

Playback

play video

vpr_startplay

vpr_stop

putnext_picture

|

I I I

-31-

Chapter 4

Possible Extensions

4.1 Multiple Sources

The Auto-Cassette only deals with news from one showing of a news show. An extension

would be to include news from multiple sources. This extension is easy as long as the

multiple sources are not broadcast simultaneously. For example, the local news which

precedes ABC Nightly News is also closed-captioned and could be used for a source for

Auto-Cassette. These could be put on the same tape, and be treated as one large news

show. It might be useful to cite the source of each news article. In that case, the

programmer might want to add an extra field in both article and toc entry data structures.

A potential bottleneck is the amount of news that can fit on one tape. Capturing

simultaneous broadcasts require a hardware extension. Two tuners and two decks would be

required to capture both ABC and NBC news at 7:00PM.

4.2 History Mechanism

The Auto-Cassette system does not allow users to watch old articles. The system could be

modified so that'articles more than one day old are kept on the tape. The user would see the

table of contents of the 'unseen' articles, but upon request, he can also see the 'already

seen' articles. In this case, the date field in the article and tocentry becomes very useful.

This leads to the idea of having a relational database. In this database, the articles of the

same topic would be categorized together and sorted according to the time of transmission.

In the table of contents, relations between stories would be indicated. The user might touch

a region to specify that he wants to see the related articles, and smaller table of contents of

-32-

the related articles would be shown. Another approach is to let the user select a topic and to

create separate table of contents of all the articles in the topic. This extension can be

implemented but requires a substantial amount of work on the existing system. There must

be a procedure which can figure out what categorize the articles. The maintenance of this

database needs to be done at the Editing and Selection levels. The system would need to

maintain the history of its usage, and must be constantly updated.

4.3 Further Enhancements

At this point, Auto-Cassette is very simple. The implementations as well as algorithms

have been kept straightforward and simple. Below are some areas which would benefit

from more sophistication.

4.3.1 Capture

Improvements on existing functions
The capturing system could be improved in several ways. One is in the
delimiting of each news item. The beginning of each news item, determined
by the NR system is not very accurate. It tends to be a little later than the
actual beginning of the story. Another enhancement could be to distinguish
news items from commercials.

* Multiple sources
To be considered is the use of more than one source of information .

* Other Databases
The input we can get from the TV broadcast is not only the text available. We
can get sources such as wire services, as well as capture other video inputs.

* Better picture selection
The selected illustrations are not necessarily representative of the news item.
There might be a better way of selecting these pictures so that they tell us
something more about the news item.

-33-

4.3.2 Edit

· Interest Matching
The pre-matching of interests are done by a simple word-matching method.
This method works well if the user's interests are very specific, but does not
work well if the user knows the general area of his interests but not any
specifics. Suppose he is interested in international affairs in general, but does
not really want to specify any country names. Then, this method fails unless
the text contains words such as "INTERNATIONAL" or "WORLD". An
alternative method, is to have a set of key words for a topic. For example, any
of "INTERNATIONAL", "SOVIET UNION", "LYBIA", "WORLD",
"UNITED NATIONS" can be matched for the topic, international affairs. This
will require substantial changes in word match().

* Headline Extractor
The headline extraction is done by getting the first non-greetings sentence of
the text from the closed-caption. It would be useful to construct a headline
better than the ones used by the Auto-Cassette. This will require substantial
amount of work in grab headlines().

· More personalization
One way to give more personalization is to keep a record of what articles have
been watched previously. Then the user would not need to see the an article on
the table-of-contents after he watched it.

* Edit deck
We can also create another video tape with only the articles which are pre-
matched to the user's interests. This will eliminate the need for searching in
the "play-back" section. But this change will require better understanding of
the user's interests.

4.3.3 Selection

NewsBreak

The NewsBreak did not get incorporated in the Auto-cassette at this point, but it is an

interesting idea to explore. See the design and the implementation section for details.

4.3.4 Presentation

*Still image during searching
Auto-Cassette presents a still image and a headline of the next news item while
it is searching for the next news item. Even though this is better than
presenting a blank screen, it does not give to the user any new information.-
With a minor change in the play_video(), this space can be made useful. For
example, it can show the length of the next news item and the expected length

-34-

of the search. Another idea is to indicate which section of this 'selected'
version of news the user is watching now.

Adding Video Controls
Another feature that could be added is to provide video functions such as
'stop', 'restart', 'ff' while playing the video. We can split the output device's
screen into two sections, one for playing video and and another for getting
touch input for the video functions. To implement this, the play videoO needs
to fork, and one process needs to do the basic video functions that playvideo(
does, and another process needs to get touch input. These two processes must
interact with each other using interrupts. The system must keep external
variables which contain information on where to stop, so that after being
'stopped' and 'restarted' by a user, it will still stop at the end of a news item
and go to the next one.

-35-

Chapter 5

Evaluation

The Capture system seems to work well except that delimiting of stories is not precise. The

system often would start playing a couple seconds after the story actually started, which can

be annoying to the user. Otherwise, the capturing of closed-captioned text and still image

work well.

The Edit systems' headline extraction is sufficient. Among 100 or so valid stories (not

commercials) looked at, only few of them had a headline irrelevant to the story. The

interests matching works well as long as the keywords provided are specific.

The Layout section's interaction with the user was most carefully designed and therefore

proved to the best part of the system. Any touches were executed immediately. Figure 5-0

is an example of table of contents. It includes two screenfuls of table of contents for The

Nightly News on ABC broadcasted on March 12, 1986.

The Playback section would have better interaction if the communication to video tape

recorder were faster and more reliable.

-36-

16 MILES OFF THE FLORIDA COAST.

THE SUGGESTION THAT THE SHUTTLE
'CHALLENGER' MAY HAVE BEEN LAUNCHED
PREMATURELY BECAUSE OF GOVERNMENT
PRESSURE GOT A NEW TWIST TODAY.

WHEN PRESIDENT REAGAN DELIVERED HIS STATE
OF THE UNION ADDRESS, DELAYED A WEEK BY
THE 'CHALLENGER' ACCIDENT, HE EULOGIZED THE
CREW OF SEVEN, INCLUDING SCHOOLTEACHER
CHRISTA MCAULIFFE, THIS WAY -- WE PAUSE

LATER IN THIS BROADCAST, AMERICAN CITIZENS
HELPING THE SANDINISTAS.

RESENT PUBLIC OPINION POLLS HAVE SUGGESTED
THAT WHEN THE VOICE OF THE PEOPLE WAS
HEARD IN SPAIN'S ELECTIONS TODAY, SPAIN
WOULD DECIDE TO DROP OUT OF NATO.

PRESIDENT REAGAN HE SENT HIS SPECIAL ENVOY
PHILIP HABIB OFF TO CENTRAL AMERICA TODAY.

TODAY'S PHOTO OPPORTUNITY IN THE CONTRA AID
BATTLE FEATURED PRESIDENT BIDING GODSPEED
TO AMBASSADOR HABIB AS HE DEPARTED FOR
CENTRAL AMERICAN TO PURSUE A DIPLOMATIC
SOLUTION, SOMETHING MR. REAGAN'S CAPITOL _

Wh1O IS WINNING THE BATTLE FOR PUBLIC
OPINION? OUR OWN ABC NEWS POLL TAKEN LAST
WEEK FOUND THAT 59% OF THOSE RESPONDING
OPPOSE NEW MILITARY AID FOR THE CONTRAS.

Figure 5-1: An Example of Table of Contents

-37-

Chapter 6

Appendix A

Include files

/*
* autocassette.h
*/
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <local/tsd.h>
#include <local/dq.h>
#include <local/vpr.h>
#define STORYDIR "/u/vmb/news/stories/"

#define IMAGEDIR /u/pix/t"

#define SUFFIX "C.index"
#define IMAGEFILESUF ""

#define MAXLINE 1000
#define GBG 40
#define PLAY 10
#define STOP 11
#define REWIND 12
#define FF 13
#define NOCMD 14
#define ACCURACY 5
#define OK 0
#define NOTOK 1
#define ERR -1
#define NEWSBREAK 1

struct article (char text[40];
char imaget40];
char date£20];
int location;
int length;

struct toc_entry { char headline[1000];
char image40];
int location;
char date[20];
int length;

-38-

/*
*

*/
COLOR.H - used in display

char *default font = "cla17";
char *bigger_font = "cla20";
char *biggest_font = "cla20";
char *colormap = "news2";
int default color[4] = (5,30,60,120); /* WHITE */
int red[4] = (0,1,2,3); /* RED */
int green[4] = {16,17,18,19}; /* GREEN */
int blue[4] = {48,49,50,51); /* BLUE */
int purple[4] = 80,81,82,83); /* PURPLE */
int pink[4] = {112,113,114,115);
int yellow[4] = 96,97,98,99};
int paleblue[4] = 64,65,66,67);
int orage[4] = 32,33,34,35);
int text color[5][4] = (({{8,9,10,11),

{12,13,14,15},
(20,21,22,23},
(24,25,26,27)},
(36,37,38,39)

byte cmvalue_b4][3 = (({{128,128,128),
{112,114,167},
(96,96,197},
(76,76,223)

byte cmvalue r[4][3] = ({128,128,128),
{164,114,114},
(192,96,96),
(220,76,76)
};

Input Files
/*
* Greetings.lst
*/
GOOD EVENING
HELLO
GOOD AFTERNOON
GOOD MORNING
EVENING NEWS

(I

[Blair 85]

[Bove 83]

[Schmandt 83]

-39-

References

David C. Blair and M.E. Maron.
An Evaluation of Retrieval Effectiveness for a Full-Text Document

Retrieval System.
Communications of the ACM , March, 1985.

Victor Michael Bove.
A Flexible Integrated Framestore System.
Architecture Machine Group, MIT, 1983.

Schmandt, Christopher.
Greyscale Fonts Designed From Video Signal Analysis.
Architecture Machine Group, MIT, 1983.

