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Abstract

This thesis investigates crystallization in polycrystalline silicon-on-insulator
(SOI) films amorphized by the implantation of silicon. Polycrystalline
silicon films are deposited onto an oxidized silicon wafer by low-pressure
chemical-vapor deposition, implanted with silicon ions, and annealed. The
crystalline fraction and grain density are measured by transmission electron
microscopy as a function of implant dose, anneal time, and anneal temper-
ature. These measurements are analyzed to determine the crystallization
parameters of implanted polycrystalline SOI.

At low implant doses, the films are nearly amorphous; but enough crys-
talline material is left that the subsequent anneal reproduces the morphol-
ogy of the as-deposited films. As the dose is increased, fewer grains sur-
vive; and the grains in implanted and annealed films are larger than in the
as-deposited films. At still higher doses (the "channeling regime"), only
grains which exhibit ion channeling survive; and the annealed films have
larger grains and are textured as well. At large doses (complete amorphiza-
tion) the final grain size saturates at 1-2 jum. The crystallization behavior
at complete amorphization indicates that the final grain size is dictated
by steady-state nucleation and growth rates after a transient time. The
transient period is the time necessary to produce a steady-state cluster
(microcrystal) population, which is a prerequisite to steady-state nucle-
ation. The nucleation rate for doses between the channeling regime and
complete amorphization is a strong function of implant dose. This is at-
tributed to a population of clusters which is eradicated as the implantation
dose is increased. This population is extinct at complete amorphization.

Thesis Supervisor: Dr. L. Rafael Reif
Title: Associate Professor of Electrical Engineering
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Chapter 1

Introduction

This thesis investigates crystallization in polycrystalline silicon-on-insulator

(SOI) films amorphized by the implantation of silicon. The crystalliza-

tion process determines grain size which has a large effect on the electrical

properties of the film and, consequently, on the characteristics of thin-film

transistors (TFT's) well.

Silicon-on-insulator technology has become a subject of great interest

and several techniques of film preparation have been investigated.l - 9 Some

techniques involve the melting of a deposited film: laser recrystallization

of polycrystalline silicon;' lateral epitaxial growth from seeding windows

by melting;2 and graphoepitaxy using a laser3 or strip-heater oven4 as a

heat source. Other methods operate at lower temperatures, utilizing solid-

phase processes: lateral solid-phase epitaxy; 5'6 seed selection through ion

channeling (SSIC);7'8 and secondary grain growth.9

A layer of low-defect single-crystal SOI would expand the capabilities

of VLSI enormously. Thin film transistors built in high-quality SOI would

result in larger packing densities leading to larger memories, faster circuits,
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and smaller chip sizes. The additional fabrication steps, however, increase

the cost per wafer while decreasing yield.

The high processing temperature required by some SOI technologies

cannot be combined with current VLSI processes because of the dopant

diffusion and thermal stress it would cause. VLSI fabrication is more easily

adapted to the lower-temperature SOI technologies which use solid-phase

crystallization processes. In this regime, lateral solid-phase epitaxy prob-

ably produces the highest-quality SOI. It does, however, require seed win-

dows and therefore poses some restrictions on VLSI layout. Also, the lateral

growth distance is only on the order of 5 /tm for undoped films.5 (A growth

distance of 24 m was achieved6 with 3x102° phosphorus atoms/cm s, but

such material would be useful only as a conductor.)

Silicon-on-insulator applications other than VLSI are also attractive.

SOI could be used to build devices and circuits on various substrates: on

transparent substrates for flat-panel displays; on inexpensive substrates for

solar-cells; and on different semiconductor materials for hybrid monolithic

integration. Novel devices using SOI can also be envisioned.

Functional thin film transistors do not require a single-crystal layer of

silicon, though the channel mobilities do correlate with the crystallinity. In

fact, TFT's have been fabricated on amorphous as well as polycrystalline

silicon films.'1 - '2

Amorphous TFT technology has an advantage of lower processing tem-

peratures than for polycrystalline silicon films. Channel mobilities of TFT's

on amorphous silicon,l° unfortunately, are quite low: less than 1 cm 2/V.sec

for electrons.
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In polycrystalline silicon films deposited by chemical-vapor deposition

(CVD), the morphology is a function of film thickness. Thin films con-

tain small grains. Thick films consist of a bottom layer of small grains

with the remainder containing columnar grains. In all cases, the grain size

is less than the film thickness. A 5000A layer of polycrystalline silicon

deposited by low-pressure chemical-vapor deposition (LPCVD) has a grain

size1 3 between 500A and 900k. The channel mobility in TFT's built on poly-

crystalline silicon is higher than for amorphous silicon, but lower than for

single-crystal MOSFET's because of grain-boundary effects. One method

of reducing grain-boundary effects is by hydrogen passivation.`4 Another is

by reducing the number of grain boundaries (larger grain size). In small-

grain polysilicon, ll the channel mobility is on the order of 10 cm 2/Vsec for

electrons.

Larger grain size can be produced by first amorphizing the polycrys-

talline film by implantation and then recrystallizing it by a low-temperature

anneal (550°C-700°C) .8 15'16 In such a procedure, grain size of a few microns

can be achieved. Recently, TFT's built on films prepared in this way12 had

a channel mobility of more than 100 cm 2/V.sec for electrons.

The goal of this thesis is to characterize the crystallization behavior of

self-implanted polycrystalline silicon films, providing an understanding of

how two major parameters (implant dose and anneal temperature) affect

the texture and grain size in implanted and annealed films.

Ion implantation amorphizes a polycrystalline film according to the

dose. As the dose is increased, more grains are amorphized. Certain crys-

tal orientations (relative to the implant direction) are harder to amorphize

12



due to ion channeling 7 - when the ion path is coincident with an axis or

plane of high symmetry, the ion travels between the rows or planes of atoms

and causes little damage. Because of the channeling effect, orientation ef-

fects should be apparent over a range of doses (called the "dose-window")

where "oriented" grains survive the implant and other (randomly-oriented)

grains are amorphized. These oriented grains serve as seeds in a subsequent

anneal. This process is called "seed selection through ion channeling", or

SSIC.

The post-implant anneal crystallizes the film. Any grains that survive

the implant will grow until they impinge upon one another. When there

are no surviving grains, crystallization is from grains which nucleate spon-

taneously.

Models of the amorphization and crystallization processes are derived in

Chapter 2. Amorphization is a function of the implant dose. (The ion en-

ergy and target temperature are also factors, but they are not varied in this

thesis.) Classical nucleation theory (atomic scale) is presented. Crystalliza-

tion in thin implanted films (microscopic scale) is then considered from two

sources: from existing seed crystals (hereafter referred to as seeded crystal-

lization); and from nucleated crystallites (hereafter referred as spontaneous

or nucleated crystallization).

Chapter 3 explains the experimental methods common to the experi-

ments presented here (Chapters 4-7): film growth; implantation; furnace

anneal; preparation for transmission electron microscopy; and collection of

data, including error estimation. Also, the morphology of the as-deposited

film is described.
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The experiments presented here (by chapter) are:

4. Dose Dependence of Final Grain Size in Amorphized and

Recrystallized Polycrystalline Silicon Films. 8 This experiment

involves several samples of polycrystalline silicon. Each is implanted

with silicon. The dose is varied from 1x1014 to 5x101 ions/cm 2 in

order to produce a different degree of amorphization in each sample.

The samples are then completely recrystallized by a low-temperature

anneal. The experimental results (final grain size as a function of

implant dose) are compared with a model (from Chapter 2) which

accounts for channeling effects. Also included and providing further

evidence of the channeling effect are the results of related experiments

by Kung et al.19-2 1 using X-ray pole-figure analysis to investigate the

{110} texture of implanted and annealed films.

5. Temperature Dependence of Crystallization Parameters in

Silicon Films Amorphized by Implantation. 2 3 In this experi-

ment, several polycrystalline silicon films are implanted with 5x 1015

ions/cm2 , enough to destroy virtually all seed crystallites. At each of

five temperatures (580°C, 590°C, 600°C, 630°C, and 640°C), crystal-

lization parameters are determined from the collected data (density

of grains pg versus anneal time, and amorphous fraction X versus an-

neal time). Activation energies are then determined, based on the

calculated parameters at the five anneal temperatures. The activa-

tion energies determine some of the thermodynamic parameters used

in classical crystallization theory (Chapter 2).
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6. Crystallization in a "Seeded" Amorphous Film.22 In this ex-

periment, a polycrystalline silicon film is implanted with 2x1015

ions/cm2 . This dose is selected to produce an amorphous film with

approximately 25 grains/Im 2 . The film is then annealed at 580°C for

varying lengths of time. The density of crystallites and the crystalline

fraction (as a function of anneal time) indicate that the source of crys-

tallization is probably due to microcrystals, not due to seed grains as

originally presumed. (Crystallization was originally thought to be

due to seed grains since nucleation in amorphous silicon produces

less than one grain per square micron.)

7. Dose Dependence of Crystallization Parameters in Silicon

Films Amorphized by Implantation. 24 This final experiment

shows how the crystallization parameters vary with implant dose.

Three doses are used: 4x1015, 5x10 15 , and 6x1015 ions/cm2 . The

parameters are determined at 630°C. T'hese results are combined with

data from the previous experiments to provide a global picture of the

effect of implant dose on crystallization.

Chapter 8 reviews the theoretical and experimental results of this work

and includes several suggestions for future work.
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Chapter 2

Theory of Implantation
Damage and Subsequent
Crystallization

2.1 Introduction

This chapter contains the theory which served as the original hypothesis

of this work: the effect of implantation on the structure of polycrystalline

silicon, the classical theory of nucleation and growth, and the crystallization

behavior of films from seed grains and from nucleated grains.

The effects of implantation on crystallinity in single-crystal silicon have

been investigated intensively 25- 3 2 and are fairly well described. In this

chapter, implantation effects are extended theoretically into the domain of

polycrystalline films. The theory is presented here as it was hypothesized

before any experimental confirmation. A modification indicated by sub-

sequent data (Chapters 4-7) is outlined in the concluding section of this

chapter.

The classical theory of nucleation and growth provides the theoreti-

16



cal background necessary for understanding crystallization processes on an

atomic scale, where implantation effects are manifested.

Crystallization is analyzed on a microscopic scale because data are col-

lected on the microscopic scale. Density of grains p,(t) and crystalline

fraction X(t) are the two quantities measured to determine the crystalliza-

tion parameters. Crystallization of polycrystalline films is assumed here to

arise from two sources: the growth of seed grains; and/or the growth of

grains nucleating at a steady-state rate. Given a constant growth velocity

v9 and either an initial density of seeds p, or a constant nucleation rate r,,

crystallization becomes a geometrical problem. This was first treated by

Johnson and Mehl33 and by Avrami.3 4 3 6 One other crystallization param-

eter, ro is also used - it is the initial transient time, during which little

nucleation occurs. The measurements used in this thesis are: the crys-

talline fraction x(t) and the density of grains p,(t) in partially annealed

films; and final grain size Aa in 100% recrystallized films. These quantities

are derived here in terms of the crystallization parameters (vg, rn, pa, and

To) which, in turn, are found in terms of some thermodynamic parameters

used in classical nucleation theory. In later chapters, the crystallization

parameters vg, r, p,, and r0 are extracted from the crystallization data

(X(t), p(f), and AG) using the theory developed in this chapter. From v,,

rn, p,, and r0, thermodynamic parameters of the classical nucleation theory

are found.
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2.2 Implantation Damage in Polycrystalline
Material

In this section, the model of implantation damage in polycrystalline silicon

is developed. Ion implantation damage is first described in a crystalline

material. Then the basic model is developed. This theory treats the impact

positions of the ions as random on an atomic scale, as opposed to uniform

on a microscopic scale. Ion channeling is then described and its effects are

included in the model.

2.2.1 Ion Implantation

When a high-energy ion enters a target, it loses energy through coulombic

interactions with electrons and with target nuclei. Because electrons are

much lighter than ions, each interaction is small. The cumulative effect,

therefore, is to uniformly slow any incident ion. The trajectory can be

greatly influenced, however, by interactions with target nuclei, depending

on the relative masses. These interactions are usually analyzed to determine

the implant profile (the position profile of the final ion positions).

The ion energy transferred through collisions with the nuclei is called

"damage energy" since an ion-nucleus interaction can impart enough energy

to a target nucleus to displace it. (In fact, the energy transferred can be

high enough that the displaced nucleuls needs to be treated as a secondary

energetic ion in detailed damage-energy calculations.3 7 '3 8 ) In a crystalline

material, implantation produces a degree of amorphization which depends

on the implant dose. Since all energy lost is ultimately manifested as heat,

18



it is also possible for some self-annealing to occur. To minimize heating

during an implant,. therefore, low implant current and/or reasonable heat-

sinking is required.

To first order, the amorphization (lattice damage) caused by a beam

of high-energy ions is proportional to the damage energy which, in turn,

is proportional to the ion dose. This model has been used to calculate

the amorphization dose as a function of energy. A critical damage energy

for single-crystal silicon of 12 eV/atom has been determined by Narayan

et al.32 Assuming damage is uniform and the depth of the damage is known,

the dose required to amorphize a layer of silicon can be easily found. The

value of 12 eV/atom, it should be noted, is not the energy required to

knock a silicon atom out of its lattice position. It is no more than the

average damage energy per atom that needs to be deposited to ensure that

no significant crystalline areas remain.

The assumption that the amorphization damage is proportional to dose

is adequate in some cases. The paper by Narayan et al., however, also

shows that the amorphous region contains microcrystallites. This is because

on the atomic scale the ion trajectories are random (not uniform); some

small volumes are less damaged than others. If an implanted layer is being

regrown epitaxially, the microcrystallites (which are of the same orientation

as the substrate) have little or no effect. In amorphized polycrystalline

silicon on oxide, however, these microcrystallites are of major importance

since they may serve as seeds in the absence of a seeding substrate.

In 1981, Komem and Hall1 5 reported a dose dependence of the final grain

size in polycrystalline silicon films which were implanted with germanium

19



and annealed. They found that an annealed film which was implanted with

a dose of 2 x 1015 ions/cm 2 was similar to the as-deposited fim; however, as-

annealed film which was implanted with a dose of 4 x 1016 ions/cm2 consisted

of large (over 1 im) dendritic grains, about 10 times larger than in the

as-deposited film. By transmission electron microscopy (TEM), the two

as-implanted films were amorphous - there were no observable differences

in crystallinity. The ability of the low-dose sample to recover its original

morphology was attributed to "memory" of grain boundaries - it was

suggested that at a sufficiently small dose, the grain boundaries survive

and block crystallization. In this work, the memory effect is attributed to

microcrystallites rather than to grain-boundary memory.

2.2.2 Survival Probability of Grains in Polycrystalline
Material

The implant dose controls the degree of amorphization of a polycrystalline

film. On an atomic scale, the impact positions of the ions are random

(not uniform). This means that at a given dose, grains may survive the

implant due to chance - either few ions may hit a grain or those that hit

may be more concentrated than average, leaving some part or parts of the

grain relatively undamaged. The model developed here assumes that upon

implantation, each grain is in one of two states: a grain may be completely

amorphized; or enough crystalline structure survives to serve as a seed in

a subsequent anneal. The trace crystallinity in as-implanted films is too

small to be measured by conventional methods like transmission electron

microscopy (TEM) or Rutherford back-scattering (RBS). In Chapter 4, the

20



probability that a grain survives the implant, PG is found experimentally

by recrystallizing the film at a low temperatures (7000C) and determining

the average final grain size: AG = AdP/PG. This assumes that (1) there

is no spontaneous nucleation and (2) each surviving grain results in only

one seed (multiple crystalline regions within a single grain "unite" upon

annealing). The first assumption is accounted for later in this chapter.

The second, however, is maintained throughout this work in view of the

ability of epitaxial regrowth to reclaim microcrystals in the amorphized

layer of single-crystal silicon, as noted above.

In addition to treating the impact positions as random rather than uni-

form, the volume of damage associated with each ion is modeled as an

effective area AD which depends on the implant parameters (ion energy,

ion-target combination, and target temperature). This is an effective area

because crystal structure may survive at any depth. Moreover, this is an

average effective area because the cascades (paths of primary and secondary

ions) due to identical ions may vary significantly. At high energies, a pri-

mary ion displaces target nuclei at large irregular intervals. At low energies,

the damage is more dense.

The probability of a grain surviving an implant is analogous to the

probability that a tile in a room is not completely covered when one tosses

in a large number of coins. In this analogy, the tile represents a grain

of polycrystalline silicon and each coin represents the damage caused by

a single ion. This problem has two parameters (AdeP and AD) and one

variable, the dose Q (represented in the analogy by the number of coins

per unit area) and is solved in Appendix A. The solution is written here as
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Figure 2.1: Normalized final grain size versus normalized implant dose for
several values of normalized damage area AD based on Eqn. (2.1). All
quantities are normalized to the initial grain size AGP

- In (1 - PR) = 2Q2AdPAD exp (-QAD) (2.1)

and is valid for QAD > 4.6. The superscript on PG denotes that this is the

survival probability in the absence of channeling - as described further on,

damage in grains which exhibit channeling effects is modeled by modifica-

tions to Eqn. (2.1). Figure 2.1 shows a theoretical plot of the normalized

final grain size versus normalized implant dose with all areas normalized to

APe- the dose Q is in units of ions/A P, and AD is unitless.G --
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2.2.3 Ion Channeling

Implantation damage is a function of dose, ion species, and implant energy.

In crystals, it is also a function of the implant angle. When the path of the

ion is nearly parallel to a high-symmetry axis of the crystal, the ion usually

channels (passes between rows of atoms); as the ion nears any row of atoms,

the cumulative interaction with the row deflects it away even though the

interaction with each nucleus in the row is small. Little damage occurs in

this case and the trajectory of the ion is straight and much longer than

in a random (non-channeling) direction. 3 9- 4 ' The orientation-sensitivity of

amorphization was shown dramatically by Nelson and Mazey17 who im-

planted {100}, 110}, and {111} silicon wafers from a point source at close

proximity. Each position on a wafer, therefore, corresponded to implanta-

tion in a particular crystallographic direction. The degree of amorphiza-

tion in these wafers could be qualitatively determined optically. All major

planes and axes exhibited less amorphization than other (random) direc-

tions. Other research of channeling damage has also been done, 44- 46 but

none demonstrate the effect in such a visual form. The major channeling

direction is <110>, as is suggested in Fig. 2.2, which shows perspective

views of silicon along <100>, <110>, and <111> channels.

2.2.4 Channeling Effects in Polycrystalline Silicon

Channeling also occurs in polycrystalline silicon, but only in properly ori-

ented grains. Channeling through polycrystalline silicon was reported in

1979 by Seidel.47 When implantation was used to phosphorus-dope the
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(a) <100>

(b) <110>

(c) <111>

Figure 2.2: Perspective views of silicon along the (a) <100>, (b) <110>,
and (c) <111> channels.

24



polycrystalline silicon gate of an NMOS enhancement-mode transistor, it

became a depletion-mode device, even though the implant depth was less

than the gate thickness. This effect was eliminated by any of three meth-

ods: amorphization of the top of the gate material; thermal oxidation of

the top of the gate material; or reduction of the implant energy.

A novel low-temperature SOI process, proposed in 1981 by Reif and

Knott,48 utilizes the orientation-dependence of implant damage to selec-

tively amorphize polycrystalline silicon:

1. Deposit polycrystalline silicon on a thermally oxidized wafer. How-

ever, any non-seeding substrate able to withstand 625°C (deposition

temperature of the silicon film) is suitable.

2. Implant with enough silicon ions to amorphize the film only where

no channeling occurs. By implanting from appropriate angles, only

grains of one orientation should survive. Hereafter, these grains are

called "oriented grains", meaning that they are oriented with respect

to the ion beam such that the ions channel. Other grains are called

"randomly-oriented grains". This step is called "seed selection by ion

channeling", or SSIC.

3. Anneal at a low temperature to crystallize using the surviving grains

to seed the film.

The implant dose must fall within a range of values called the "dose win-

dow": if the dose is too small, grains of random orientations survive the

implant; or if the dose is too large, all the grains are amorphized.

The dose window should be apparent from a plot of final grain size as
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a function of implant dose - within the dose window, the final grain size

should be larger than the as-deposited grain size, and yet it should be only

a weak function of dose. Equation (2.1) can be modified to include grains

which exhibit channeling. The forms used here assume that a fraction f of

the as-deposited grains exhibit channeling effects and that the same degree

of channeling occurs in each of these grains. This is a simplification of what

is actually expected because different orientations support different degrees

of channeling.

Three models are considered here for the survival probability, Pg, of an

oriented grain:

1. Assume implantation damage is negligible below a critical ion dose

Qc (so that PG = 1) and that above Qc the damage is the same as for

randomly-oriented grains. For oriented grains, survival probability is

found at doses above Qc by substituting (Q-Qc) in place of Q in

Eqn. (2.1):

- In (1 - PC) = 2(Q - QC)2A ' AD exp [-(Q - Qc)AD)] (2.2)

2. Assume that implantation damage is due to a dechanneling fraction

fd of ions. The survival probability is found by substituting fdQ in

place of Q in Eqn. (2.1):

-In (1 - PC) = 2fd2 Q2 A 'PAD exp (-fdQAD) (2.3)

3. Assume that the volume and magnitude of ion damage in oriented

grains can be treated in a manner similar to damage in random grains.

26



In this case, the survival probability is found by using a smaller ef-

fective damage area AO in place of AD in Eqn. (2.1):

- n (1 - PGC) - 2Q2 A PA exp (-QAD) (2.4)

2.2.5 Density of seeds

The density of seeds p, in an implanted polycrystalline silicon film is the

sum of the density of randomly-oriented surviving grains and oriented sur-

viving grains:

Ps = [(1 - fc)P + (fc)P] A, (2.5)

where f, is the fraction of grains that exhibit channeling effects. The

survival probability of a randomly-oriented grain, pR, is calculated by

Eqn. (2.1). The survival probability of an oriented grain, Pc, is calculated

by one of three modifications to Eqn. (2.1): Eqn. (2.2), (2.3), or (2.4).

In the absence of nucleation, the grain size upon crystallization is AG,, =

1/p,. From the theory presented so far, two plateaus should be observable

in a plot of final grain size AG versus implant dose Q: at low doses, few

grains (oriented or randomly-oriented) are amorphized completely so that

AG .ACp ; and within the dose window, most randomly-oriented grains are

completely amorphized though few oriented grains are so that AG ~ A pd/f, .

2.3 Crystallization

Nucleation during crystallization affects the grain size and texture of the

annealed film. Since nucleation increases the density of crystallites, the final
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grain size is smaller than indicated by Eqn. (2.5). Furthermore, nucleated

grains are not expected to conform to the orientation selectivity of ion

channeling within the dose window. The following sections describe the

classical theory of nucleation and growth, crystallization due to a steady-

state nucleation rate, crystallization from seed grains, and crystallization

from a combination of seed grains and nucleated grains. The nomenclature

used here is loosely based on the nomenclature in a paper by Kelton et al.49

on transient nucleation.

2.3.1 Parameters of nucleation theory and crystalliza-
tion behavior

The parameters used here can be divided into two sets: parameters which

are used with thermodynamics to describe crystallization on an atomic

level; and the crystallization parameters which are more directly measured,

such as growth velocity, nucleation rate, and characteristic crystallization

time.

The three energies used here to describe crystallization on an atomic

level are:

* The difference (per atom) in Gibb's free energy between the amor-

phous and crystalline phases (AGa-_);

* The energy required (per interface atom) to maintain an interface

between the two phases (AG,,,f); and

* The activation energy Ed associated with the unbiased jump fre-

quency v of an atom at the interface. (The unbiased frequency is
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the frequency at which an interfacial atom would change phases given

that there is no net change in energy.)

As shown in this chapter, these three energies are related to the

temperature-dependence of the "microscopic-scale" parameters of crystal-

lization:

* A growth velocity v, which is assumed to be time-independent;

* An initial transient period r0, during which no nucleation occurs; and,

* A steady-state nucleation rate r starting at time t = r0.

(There are also characteristic times of crystallization for growth from seed

grains, r,, or from nucleated grains, rn, but these can be described as func-

tions of v,, r, and the initial seed density p,.)

2.3.2 Classical theory of nucleation and growth

The classical theory of nucleation and growth postulates the existence of

crystalline clusters so small that they are unstable, tending to shrink be-

cause the energy required to maintain the crystalline-amorphous interface

outweighs the Gibb's free-energy difference between the crystalline and

amorphous phases.

Consider an amorphous medium with no clusters. With time, the sys-

tem tries to reach thermodynamic equilibrium, for which the relative pop-

ulations (by cluster size n) of clusters can be easily determined from the

total free energy of formation (interfacial energy - phase energy differ-

ence). Since the interfacial energy is proportional to the surface area (radius
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squared) and the energy difference between the phases is proportional to the

volume (radius cubed). clusters larger than a critical size n' grow to mini-

mize the free-energy of the system. In other words, the system cannot reach

a thermodynamic equilibrium cluster population in an amorphous medium

- the "super-critical" clusters grow until the system is crystalline. The

system can, however, approach steady-state within the amorphous fraction,

in which one can observe a steady-state nucleation rate (per amorphous

volume), even though the amorphous fraction decreases with time.

According to classical theory, microcrystallites (containing only a few

atoms) nucleate frequently. Because of a large surface-to-volume ratio these

tend to shrink. From thermodynamic considerations, however, a few be-

come large enough that further growth is energetically favorable. Growth

in the microcrystalline regime occurs by the same basic mechanism as

growth in the "macrocrystalline" regime: the rate at which each atom at an

amorphous-crystalline interface makes a transition between the amorphous

state and the crystalline state is a function of the energy levels of the two

states. Growth is energetically favorable when the free energy of the system

is lowered by the transition of an interface atom from the amorphous to

the crystalline states.

The free energy of formation AG,, of a cluster of size n consists of two

components: the Gibbs free energy difference between crystalline and amor-

phous phases (proportional to volume, or n); and the energy required to

maintain the amorphous-crystalline interface atom (proportional to surface

area, or n2/3). The Gibbs free energy difference between the amorphous and

crystalline phases is denoted here as AG_,- and is in units of eV/atom. It is
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taken to be positive. That is, the energy of each atom in the cluster is lower

than the energy of an atom in the amorphous phase by AGa_,. The inter-

facial energy is denoted here as AG,,,, and is in units of eV/surface atom.

The free energy of formation of a cluster size n may be written

AG = Cn2/3AGjurf - nAGa-, (2.6)

where C is a geometrical parameter related o the the shape of the cluster.

At small cluster sizes, the interfacial energy outweighs the energy differ-

ence due to the phase change - the net free energy of formation AG, is

positive. The maximum free energy of formation, denoted AG*, can be

found from Eqn. (2.6) and occurs at what is called the critical cluster size,

n'. This energy enters into the temperature dependence of the steady-state

nucleation rate rn.

The forward reaction rate k,_n,+l is the rate that a cluster grows from

n to n+l atoms. The reverse reaction rate k,+l,, is the rate that a cluster

shrinks from n+l to n atoms. These rates are found by defining an unbiased

atomic jump frequency v at the amorphous-crystalline interface. Since is

probably closely related to the jump rate in the amorphous phase, it can be

characterized by the activation energy, Ed, of self-diffusion in amorphous

silicon:

v c exp (-Ed/kT). (2.7)

Since all reaction rates are proportional to v, Ed enters into the activation

energies for transient time r0, steady-state nucleation rate r, and growth

velocity vg.

31



The reaction rates are also proportional to the number of atoms at the

cluster surface and may be written in the following form:

k,.,+l oc n2/3 exp (-Ed/kT) exp [(AG,,+ - AGn)/2kT], and

knl,, oc n2/3exp(-Ed/kT)exp[(AG, - AG,+l)/2kT]. (2.8)

A complete analysis of the reaction rates (Eqn. (2.8)) and AG,

(Eqn. (2.6)) provides values for the crystallization parameters transient

time, nucleation rate, and growth velocity within the scope of classi-

cal theory. The activation energies of the crystallization parameters, as

shown below, are related to AG', AGa-, and Ed. The transient time is

the effective time to reach a steady-state nucleation rate from the initial

conditions (no clusters). At steady-state, the number of clusters N, of

each cluster size n is time-independent and the net forward reaction rate

(Nnkn-n+l - Nn+lkn,,+l-,) is equal to the steady-state nucleation rate r,

for all n. Growth velocity is found from the net forward reaction rate for a

large cluster.

2.3.3 Transient nucleation time

A number of analyses of transient nucleation have been published. 5 - 4 In

each case, a characteristic time rt associated with transient nucleation was

found to have the same temperature dependence. Assuming that the free

energy of formation is a weak function of temperature, the form is

rt T/k, (2.9)

where k* is the forward (or reverse) reaction rate at the critical cluster size.

From Eqn. (2.8),
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k* oc n'2/3 exp (-Ed/kT).

Kashchiev's theoretical results,64 which are in good agreement with ex-

periment, indicate that the transient time r0 is proportional to rt, so that

ro c Texp (Ed/kT). (2.11)

The linear temperature term in Eqn. (2.11) contributes kT to Ero (defined

here as the slope of ro on an Arrhenius plot):

d Idn(ro)

d(1/kT)
Ed - kT. (2.12)

Since Eqn. (2.11) does not have a true Arrhenius form, Eo in Eqn. (2.12)

is not a true activation energy. For the anneal temperatures used in this

thesis, however, kT varies only slightly around 0.075 eV. The Arrhenius

form is taken here to be exp (E/kT) for times (0 and n,) and exp (-E/kT)

for rates (r, and v)

2.3.4 Nucleation rate

The theoretical temperature dependence of the steady-state nucleation

rate 49 is

1
r aoc exp [-(Ed + AG.)IkT]. (2.13)

The product of Eqns. (2.11) and (2.13) is:

Torn = exp (-AG IkT) (2.14)

and the maximum free energy of formation of a cluster can be written as

AG = Er - E, (2.15)

where EIn is the absolute slope of r, on an Arrhenius plot.

33

(2.10)



2.3.5 Growth rate

The growth rate can be found from the net forward reaction rate for a

large cluster. Addition of one atom to a large cluster does not significantly

change the surface energy. The change in free energy, then, is -AG_-.

From Eqn. (2.8), assuming AG.-_ > 2kT,

dn
d- -kn-- n.+l -knolndt

oc n2/ 3 exp (-Ed/kT) x

[exp (AG_,.I2kT) - exp (-AG_,I2kT)

oc n 2/ 3 exp[-(Ed - AG_./2)/kT]. (2.16)

Because n is proportional to the radius cubed (r3 ), Eqn. (2.16) is easily

solved for v, (= dr/dt):

Vg, c exp [-(Ed - Ga-_.2)/kT] . (2.17)

The Gibbs free energy difference between the amorphous and crystalline

phases, therefore, is:

AGa_, = 2(E,, - Ed), (2.18)

where E,, is the activation energy of the growth velocity.

2.3.6 Crystallization due to nucleation

Crystallization due to nucleation of grains is analyzed in Appendix B using

steady-state nucleation and growth rates. Whereas the nucleation rate is

initially zero (assuming no clusters initially) and rises during a transient
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period towards a steady-state value, we assume here that this can be rea-

sonably modeled by no nucleation during an effective transient time r0 and

a steady-state nucleation rate r, thereafter. This can be represented by a

shift of the time axis: t - t-r0.

From Eqn. (B.6) the crystalline fraction in a film of thickness as a

function of anneal time becomes

X(t) = 1 - exp {-[(t- ro)/rs} (2.19)

where T, is the characteristic crystallization time due to nucleation and is

given by

= 1/ ' V, 2Er (2.20)

The density of grains (from Eqn. (B.10)) is still

pn(t) = ernrn g(u), (2.21)

but the normalized time parameter u is now redefined as (t - ro)/r,. The

function g(u) is defined in Eqn. (B.9). For t << r,, g(u) u and the density

of grains is linear in time: p,(t) = Ern(t-ro). For t > r, g approaches r (4).

The solid lines in Figure 2.3 are theoretical curves of the crystalline

fraction and the density of grains versus normalized anneal time assuming

a constant nucleation rate. The density of grains is normalized to the final

density.

2.3.7 Crystallization from seed grains

Crystalline fraction is determined in Appendix C as a function of anneal

time for crystallization from an initial seed density p, assuming no nucle-

ation:
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Figure 2.3: Theoretical plots of (a) crystalline fraction and (b) density of

grains (normalized to final density) versus normalized time. The solid lines

are for crystallization due to a constant nucleation rate. The dashed lines

are for crystallization due to seed grains.
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(2.22)X = 1 - exp [-(t/r.)2],

where r, is the characteristic time of crystallization in a seeded film:

, = 1/ 2p,. (2.23)

The dashed lines in Figure 2.3 are theoretical curves of the crystalline

fraction and the density of grains versus anneal time (normalized to r,)

assuming crystallization from seed grains.

2.3.8 Competition between seeded and spontaneous
crystallization

In implanted polycrystalline silicon films, seed grains which survive im-

plantation may compete with grains that nucleate spontaneously. The

crystalline areas resulting from these two sources may be considered in-

dependent, as is done in Appendices B and C The crystalline fraction as a

function of time, then, is

1 - exp It/,] 2 t <TO (2.24)
X(t) = 1 - exp (-[(t- o)/n] 3 -[t/] 2} t > o (2.24)

where r, and r, are defined in Eqns. (2.20) and (2.23) respectively.

The density of grains versus time is given by

Ps(t) = p + .er. [1 - x(t')] dt'. (2.25)

Because of the complicated form of X in Eqn. (2.24), this can only be solved

numerically (by computer) or approximately (by a Taylor series expansion

of the integrand, for example).

The final grain size is smaller than 1/p, because any nucleation increases

the density of grains. Also, the final grain size is larger than 1/[p, + p,(oo)]
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since fewer grains nucleate than in an unseeded film because the amorphous

fraction within which nucleation occurs is smaller. (p,(t) is the density of

grains assuming no initial seeds exist.)

2.4 Conclusions

The theory developed in this section predicts the crystallization behavior of

implanted polycrystalline films and is embodied by Eqns. (2.24) and (2.25)

and associated equations - crystalline fraction X and density of grains pg

are the two quantities determined experimentally as functions of implant

dose, anneal temperature, and anneal time and from which parameters of

the crystallization model are extracted.

The dose dependence is found in the parameter p, (in Eqn. (2.25)) as

determined by Eqns. (2.1) through (2.5). The temperature dependence is

found in the crystallization parameters r0, r,, and v. in Eqns. (2.11), (2.13)

and (2.17). The time dependence is found in X and p, in Eqns. (2.24)

and (2.25).

This theory predicts three plateaus in the plot of final grain size versus

implant dose:

1. At low doses, the small degree of amorphization has little bearing on

the morphology of the annealed film. Enough crystalline structure

of each grain is retained to serve as a seed. The final grain size,

therefore, should be approximately the same as before the implant

and the texture should be unchanged.

2. At intermediate doses, a fraction of the grains are amorphized en-
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tirely. Neighboring grains which survive the implant grow into the

space formerly occupied by these grains. The resulting average grain

size is therefore assumed to depend only on implant dose. Channel-

ing effects should result in a "dose window", where most grains are

amorphized and those that survive the implant do so because they

are oriented with a major crystallographic direction parallel to the

ion beam. Within this window, the final grain size should not be a

strong function of implant dose and the annealed film should contain

only grains that exhibit channeling effects.

3. At large doses, so few grains (oriented or otherwise) survive the im-

plant that crystallization proceeds by the growth of homogeneously

nucleated grains. Because nucleation and growth rates are strong

functions of temperature, the grain size in this regime depends on

anneal temperature but not on dose.

From this theory, orientation effects should be apparent in the second

plateau only - the first plateau contains randomly-oriented grains from

the as-deposited film and the third plateau contains nucleated grains.

The experimental results of this work support the theory as presented

but requires a basic refinement: the microcrystals which survive implanta-

tion above 2x 1015 ions/cm2 are small enough that they must be regarded

as sub-critical clusters. This resllts not in seeded crystallization, but in

crystallization due to a large nucleation rate. (This does not necessarily

preclude seed selection by ion channeling, since the clusters may retain the

orientation of the as-deposited grain.)
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The as-implanted cluster population is a strong function of implant dose

and is also a function of cluster size. In Appendix A, an intermediate func-

tion PA is defined as the distribution by size of the undamaged regions. This

function includes the as-implanted cluster population. However, since PA is

not explicitly determined, a first-order model is proposed here. Consider a

cluster with cross-sectional area Ac and thickness se. For a single ion hit,

assume that the probability of annihilation is proportional to e, since at

large implant energies the distance between ion-nuclei interactions can be

large. The "annihilation dose", then, is Q' = CQ~E, where C is a constant.

The survival probability is given by

Pc = exp(-Q'Ac)

= exp (-CQAcE,)

= exp (-C'Qn), (2.26)

where C' is a constant. A more exact formulation would consider that

the clusters do not exist initially, but are a result of amorphizing most of

a crystalline material. This could be represented by a dose offset, which

would probably be a function of cluster size. The major point raised by

Eqn. (2.26) is that the number of clusters of size n should decrease expo-

nentially with implant dose and, furthermore, large clusters are amorphized

faster than small clusters. From Eqns. (2.26) and (B.11), the final grain size

increases exponentially with dose if the nucleation rate can be considered

proportional to the number of clusters.

For the films used here, at doses below approximately 5 x 1015 ions/cm2 ,

the initial cluster population is so large that the film recrystallizes before
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a steady-state distribution is achieved. Above 5 x 1016 ions/cm2 , the initial

cluster population is so small that no nucleation occurs during the tran-

sient time. Around 5x1016 ions/cm 2, few enough clusters exist that the

nucleation rate is low during the transient period and the final grain size is

actually larger than can be achieved at higher or lower doses.
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Chapter 3

Experimental Method

This chapter describes how the polycrystalline silicon films are grown,

implanted, annealed, and prepared for transmission electron microscopy

(TEM). The last sections describe TEM and how the data is extracted

from the micrographs.

3.1 Film Growth

Two-inch [100] lightly-doped n or p-type silicon wafers are cleaned using a

standard RCA clean.

Immediately after the clean, the wafers are placed into a quartz-tube

furnace to grow a thermal 1000A SiO2 film according to the following menu:

* 15 minutes at 1100°C in N2;

* 46 minutes at 1100°C in 02; and,

* 15 minutes at 1100°C in N2.

One wafer is then set aside to check the oxide thickness.
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The remainder are immediately transferred to an LPCVD system to

deposit a layer of polycrystalline silicon. The deposition is accomplished

by pyrolytic decomposition of silane (SiH4) at approximately 640°C. The

deposition rate is 135A/minute.

Film thicknesses used here vary between 1000o and 1600A and are

measured using a Nanospec thickness meter.

3.2 Implantation

All implants are carried out at room temperature using 100 KeV Si+ ions

at 0° incidence. The beam current is maintained at less than 10 A to

minimize wafer heating.

According to implant-range tables," the projected range for these im-

plants is 1469A and the straggle (standard deviation) is 567A.

The projected range and straggle for the damage profile are estimated

from results published by Brice,s3 in which damage profiles are calculated

for silicon implanted with phosphorus ions - since silicon and phosphorus

have nearly the same atomic mass, the damage caused by silicon ions is

assumed to be very similar. According to Brice, the peak damage for

100 KeV phosphorus ions is at approximately 60% of the projected ion

range. The peak damage for silicon, then, is near 1000A. Since the straggle

of the damage profile of 100 KeV phosphorus ions is approximately 40% of

the projected ion range, the straggle in silicon is about 600A.
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3.3 Recrystallization

The implanted films are diced into several pieces. Each piece is RCA cleaned

prior to the anneal. The anneal is performed in a three-zone quartz-tube

furnace in an N2 ambient.

3.4 Preparation for Transmission Electron
Microscopy

Each annealed sample is prepared for TEM by either lift-off or backside

etching.

For lift-off, an sample is scribed and submerged in HF, an oxide etch

which is very selective over silicon. After the HF etches the underlying

oxide, it is carefully decanted, leaving most of the recrystallized film on

the sample. De-ionized water is then poured on top of the sample. This

action is usually violent enough to break off several pieces of film which

float on the surface of the water. Some of these bits are then scooped up

onto copper TEM specimen grids.

For backside etching, the back of a 2.5 mm square sample is first ground

using a Gatan Dimple Grinder until it is an estimated 20-40 /m thick at

the center. (The radius of curvature is 1 cm.) The sample is then placed

face down in apiezon wax (black wax) and submerged in an anisotropic

silicon etch: 3 parts CH3COOH, 4 parts HNO3, and 1 part HF. This etches

through the silicon wafer to the oxide layer. When a membrane forms (after

5 to 10 minutes), the sample is dipped in HF to remove the oxide. The

black wax is removed using trichlorethylene, acetone, and methanol.
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3.5 Measurement Methods

3.5.1 Transmission Electron Microscopy

Transmission electron microscopy (TEM) operates by passing a a wide col-

limated beam of high-energy electrons (100-200 KeV, in this case) through

a thin sample. Before hitting the sample, the beam is collimated and di-

rected by a series of electromagnetic lenses. After passing through the

sample, the beam is no longer collimated, but consists of a transmitted

beam and several diffracted beams. These are focused and steered using

additional electromagnetic lenses. Three types of micrographs are typical of

TEM work: diffraction patterns, bright-field images, and dark-field images.

The diffraction pattern is obtained by focusing the transform plane of

the sample onto a phosphorescent screen (for viewing) or onto a negative

(for micrographs). The diffraction pattern yields qualitative information

on the crystallinity and quantitative information concerning crystal orien-

tations. Amorphous material produces diffuse rings. Smail-grain polycrys-

talline material produces sharp rings which are actually the superposition

of the diffraction patterns of the various grains. For large grained materials,

individual spots in the rings can be observed.

The bright-field image is obtained by focusing the transmitted beam.

The brightness of the resulting image is a function of the absorption and

diffraction of the specimen. Amorphous silicon tends towards a uniform

grey. Crystals will be light or dark, according to how much light is

diffracted. The bright-field image is a good indicator of amorphous and

crystalline regions. For the films used in these experiments, however, the
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bright-field image is not very good for resolving abutting grains.

The dark-field image is obtained by focusing some of the diffracted

beam. A bright image is the result of a crystallite which diffracts in a

particular direction. A black image is the result of a crystallite which does

not diffract in that particular direction. Amorphous silicon diffracts small

numbers of electrons and, so, appears dark, but not black. The dark-field

image provides a fair method of estimating grain size even though grains

are abutting.

To determine grain density and crystalline fraction, bright-field micro-

graphs of the films are taken at a magnifications of 5,000-50,00x. Each

micrograph covers an area of 275-2.75 m2, depending on the magnifica-

tion. Between four and eight bright-field micrographs of each sample are

usually taken to reduce statistical errors.

It is important to note that the crystalline fraction is not measured by

TEM. Measurement from micrographs actually gives the "projected crys-

talline fraction". For example, a grain which is 100Ax10OAx l00A in a

1000A film obscures an amorphous volume of 900AJx 100Ax 100A. Zellama

et al.66 calculated crystalline fraction in silicon films from resistivity (sensi-

tive to the true crystalline fraction) and therefore needed to allow a time for

crystals to grow to span the thickness of the film. Because TEM measures

the projected crystalline fraction, however, we do not need to worry about

accounting for volumes less than the film thickness - the projected area of

a grain will be 7rv 2t2 whether or not it is larger than the film thickness. Any

grains that nucleate above or below a previously-nucleated grain serve the

same function as the virtual grains utilized in Appendix B to calculate the
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crystalline fraction for a steady-state nucleation rate: these grains do not

contribute to the projected crystalline fraction and they do not contribute

to the measured density of grains.

Grain size in completely recrystallized film is determined from a dark-

field micrograph taken at a magnification appropriate to the grain size:

large enough magnification that the area can be measured, and small

enough that many grains are included.

3.5.2 Density of Grains

The density of grains can only be determined for partially recrystallized

films. In the films over approximately 30% recrystallized, several clumps

contain an indeterminate number of grains - abutting grains in these films

cannot be readily resolved. In films less than 30% recrystallized, there are

few such clumps and the grains can be accurately counted. Each grain lying

across boundary of a micrograph is counted as half. Similarly, any grain

on the corner of a micrograph contributes only 0.25 towards the total grain

count n,,i,. When the total micrograph area is Ac, the density of grains

is

Pg = no,Pic/Aic. (3.1)

Fron, a statistical viewpoint, the number of grains appearing in a mi-

crograph may be modeled as a Poisson process. The standard deviation of

the number appearing, then, is Vi and the standard deviation of the

grain density is given by

g = P9 / (3.2)

47



3.5.3 Crystalline Fraction

Unlike grain density, the crystalline fraction can be measured on every mi-

crograph. An image analyzer is used to total the crystalline or amorphous

portions of each micrograph, whichever proves easier. The crystalline frac-

tion is

X = AX,piC/Apic = 1 - A,pic/Apic, (3.3)

where AXpic is the total crystalline area and A,,pic is the total amorphous

area.

The statistical error of this measurement depends on whether Aa,~c

or Ax,pic is measured and on the distribution of sizes of the crystalline or

amorphous regions. When the density of grains is also determined, the

standard deviation of X is taken to be

a = 1.34(x/ /gi). (3.4)

The factor of 1.34 enters assuming a uniform size distribution (by radius)

of the grains - this is the case for grains which nucleate at a steady-state

rate. When the grains are all the same size, a factor of unity is be used

instead.

When the crystalline area in a micrograph is not composed of discrete

grains, the above statistics do not apply. In the absence of formulas de-

scribing the statistical size distribution of amorphous regions or of large

crystalline regions, one of two methods is used to estimate the error:

1. When there is a large number of regions nr,pic which contribute to the

measured area, the fractional error is taken to be 1//,i,;
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2. Otherwise, the fractional error is taken to be a/sfii where Np is

the number of micrographs taken and is the standard deviation of

the Npi, areas measured.

3.5.4 Grain Size

In the polycrystalline silicon films used here, grains in a TEM bright-field

image cannot be resolved. The average area can only be determined by a

dark-field image. In dark-field micrographs, only some grains can be readily

resolved, partly because of contrast, and partly because of characteristic

shape.

So few grains can be accurately measured that a nonstandard technique

is used in which two grains are selected: one which appears larger than the

average size, and one which appears smaller than the average size. The

areas of these two grains are a loose bound to the average area. Because this

is such a subjective method, the average area is only roughly determined:

the two grain sizes differ by as much as a factor of five.

3.5.5 Experimental sources of error

In addition to statistical errors, the data may vary due to inconsistent pro-

cessing parameters during deposition, implantation, or anneal: deposition

temperature or time, ion dose or energy, or anneal temperature or time.

* Deposition temperature. The LPCVD system operates by the thermal

decomposition of silane (SiH4) gas diluted in N2 as it flows over the

wafers. Since the silane is more depleted for the last wafers than for
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the first, the system uses a temperature gradient so that the deposi-

tion rate is approximately the same for all wafers. The film morphol-

ogy, therefore, may vary from wafer o wafer within one run.

• Deposition time. The shortest deposition time used is 7.5 minutes for

a 1000A film. The deviation is estimated to be 15 seconds, mostly

due to irregularities in the start-up transient.

* Ion dose. The ion dose is expected to be consistent because it is mon-

itored by the ion implanter by integrating the detected beam current;

however, it may vary up to 10% across a wafer due an irregular scan

of the ion beam.

* Ion energy. The ion energy may vary by 10 KeV, or 10%. This affects

the depth distribution of the implant damage.

· Anneal temperature. Fluctuations in the temperature within the an-

neal tube have been observed, though these are usually less than 1°C.

There have been occasions when the nitrogen supply had run out dur-

ing an anneal. The effect this has on the anneal temperature is not

known.

* Anneal time. The shortest anneal time used is 15 minutes. The devia-

tion is estimated to be 5 seconds. The length of the rising temperature

transient is not known, but is considered here to be insensitive to the

anneal temperature. The thermocouple used to calibrate the temper-

ature exhibits a transient time of about 5 minutes. The boat which

is used to hold the samples may have a similar time constant.

50



Figure 3.1: TEM micrograph of an as-deposited polycrystalline silicon film:
the bright-field image is on the left, the dark-field image is on right, and
the diffraction pattern is inset.

3.6 Morphology of the as-deposited film

Figure 3.1 is a micrograph of the as-deposited polycrystalline silicon. The

grain size is 100-300A. The texture of the films used here (thicknesses of

1000-1500A) is not known. For 4400A films deposited in the same system,19

the grain size is larger and the texture is {110} within approximately 20°

of normal incidence. The thinner films used in this thesis are probably not

as uniformly oriented.
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Chapter 4

Dose Dependence of Final
Grain Size

This chapter investigates the dose dependence of final grain size and com-

pares experimental results with the model developed in Chapter 2.

In 1981, Komem and Hall published a paper 15 on the effect of dose in

polycrystalline films which were amorphized by implantation with germa-

nium and recrystallized. Two implant doses were used (2x1015 ions/cm 2

and 4x1016 ions/cm2 ) and two results were obtained: at the lower dose,

the recrystallized film had a morphology similar to the original film; at the

higher dose, the recrystallized film contained large (1 /Am) dendritic grains,

about 10 times larger than in the as-deposited film. By transmission elec-

tron microscopy (TEM), the as-implanted films were both 100% amorphous

and the ability of the low-dose sample to recover its original morphology

was attributed to to surviving grain boundaries.

The ability of the low-dose sample to recover its original morphology is

attributed here to microcrystallites rather than to grain-boundary memory.

The model is developed in Chapter 2. In this chapter, the final grain size
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AG is determined experimentally as a function of dose Q in self-implanted

1600A LPCVD polycrystalline silicon films and the parameters of the model

are fit to the curve of AG versus Q.

4.1 Experiment and Results

1600A polycrystalline films are implanted at doses ranging from 1 x1014 to

5 x 10l' ions/cm 2 and annealed in N2 at 700°C for 30 minutes. TEM samples

of as-implanted and as-annealed films are prepared by lift-off. Diffraction

patterns and bright and dark-field images are recorded. The final grain

size is determined from the dark-field images by selecting two grains, one

deemed larger and the other deemed smaller than the average. This gives

a range within which the grain size is assumed to lie.

Micrographs of films implanted at 3 x 1014, 5 x 1014, 1 x 1015, and 5 x 1015

ions/cm 2 are shown in Fig. 4.1 before and after anneal. Even at lx 105

ions/cm 2 , a few grains are visible in the dark-field image of the as-implanted

film, though far fewer grains are visible than exist in the annealed film.

A plot of final grain size AG versus implant dose Q is shown in Fig. 4.2.

The bars indicate the range within which the final grain size is estimated

to be.

The model developed in Chapter 2 uses several parameters, which are

determined experimentally from a fit to the data shown in Fig. 4.2:

* AdP, the initial grain size, is measured in an as-deposited film by

TEM;

* AD, the effective damage area, is fit to the transition region (of A:
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(a) As-imlanted. 3x 1014 ions/cm 2

(b) As-implanted. 5x 10 t ions/cm2

(c) As-implanted, lxlO5 ions/cm2

(d) As-implanted. 5x 1015 ions/cm 2

As-annealed

As-annealed

As-annealed

Figure 4.1: Micrographs of as-implanted and as-annealed films for four im-
plant doses: (a) 3x10 T4, (b) 5x1014, (c) x 10'5 , and (d) 5, 105 ions cm'.
Diffraction patterns are inset. The left half of each micrograph is 
bright-field image while the right half is a dark-field image.
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Figure 4.2: Final grain size of implanted and annealed polycrystalline sil-
icon versus implant dose. The bars are the experimental bounds of the
grain areas. Each parameter of the model is shown with the feature it cor-
responds to. The solid, dotted, and dashed lines represent the three models
of ion-channeling effects described in the text.
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versus Q) before the channeling plateau;

f* , the oriented fraction of the as-deposited grains, is determined by

the height of the channeling plateau relative to the as-deposited grain

size;

* One of three parameters to account for ion channeling is fit to the

transition region after the channeling plateau (a channeling dose offset

Qc, a dechanneling fraction fd, or an effective channeling damage area

AD); and

AG,, the final grain size due to nucleation alone, is determined by

the height the final plateau and is compared with the value calculated

from the crystallization parameters (nucleation rate and growth ve-

locity) using Eqn. (B.11).

The solid, dotted, and dashed lines in Fig. 4.2 correspond, respectively, to

the "channeling-dose offset", "dechanneling fraction", and "effective chan-

neling damage area" models of the channeling effect.

A paper by Zellama et al.5 6 contains values for nucleation rate r, and

growth velocity vg at temperatures of 560-600°C. Extrapolating this data

to 700°C gives an estimate of r, between 3x109 and 6x 101 /cms.sec and an

estimate of vg between 45 and 75 A/sec. Using values of 1.3x 101°0 /cm3Ssec

and 50 A/sec, the final grain size from Eqn. (B.11) is 2 ,/m2 (corresponding

to a diameter of 1.6 m) in agreement with the value of AG,, fit to the data

in Fig. 4.2.
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4.2 Discussion and Summary

The model developed in Chapter 2 for the dose dependence of the final

grain size is supported by the experimental data presented here. This

model calculates the percentage of grains which survive the implant using

the statistics of the impact positions of the ions in conjunction with an

effective damage area. A channeling plateau exists, as predicted, but it

is not flat. The slope is assumed to be caused by different degrees of

channeling in the various grains - each orientation could be characterized

by a unique channeling parameter (Qc, fd, or AC), but the resulting model

becomes unwieldy and does not lend any additional insight into the physics

involved.

The effective damage area used to model the damage is a very rough

approximation to reality. Ion damage is a function of depth and might be

represented better by a damage volume with a cross-sectional area depen-

dent on depth, though analysis is probably intractable.

Three related experiments were performed by Kung et al. 19- 21 to demon-

strate seed selection by ion channeling (SSIC) using X-ray pole-figure analy-

sis of the {110} texture in self-implanted polycrystalline films. Thick poly-

crystalline films (4400-4800A) were required to overcome noise involved

with the measurement. Also, unlike the films reported in this thesis, the

implants were performed at 210 KeV and at low temperatures (80 K) in

order to damage the entire thickness and maximize the channeling effect.

(Channeling is enhanced at lower temperatures because of reduced thermal

vibrations in the crystal lattice.)
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* The first experiment 19 showed that a dose of 1 x 10 ions/cm2 and

subsequent anneal produced films with a {110) texture confined to

within 4 of the surface normal; whereas, the {110) texture of the

as-deposited film was only within 20° of the surface normal.

* The second experiment20 showed that texture of the film tracked with

the implant angle when implanted at 0°, 1°, or 3 from normal inci-

dence.

* The third experiment2 1 correlated final grain size and the enhanced

{110} texture with the implant dose.

From the data in the third experiment, the {110} texture can be cor-

related with the dose-dependence of the grain size, yielding an unexpected

result: The annealed films exhibiting the highest degree of orientation cor-

respond to a dose near the bottom of the "channeling plateau". From the

model developed in Chapter 2, however, one would expect the highest de-

gree of orientation to occur just below the nucleation plateau; that is, just

before spontaneous nucleation affects the final grain size.

Since the films reported in this thesis are of a different thickness and im-

planted under different conditions, not all findings of this thesis necessarily

apply to Kung's films. Lacking other evidence, however, it is assumed the

thin films used here have a dose-dependent texture similar to Kung's.
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Chapter 5

Temperature Dependence of
Crystallization Parameters in
Amorphized Silicon Films

This chapter describes an experiment to study the temperature dependence

of nucleation and growth in a polycrystalline silicon layer amorphized by

self-implantation. TEM measurements provide three basic crystallization

parameters: transient time 0 (time before the onset of nucleation), steady-

state nucleation rate r, (per volume), and characteristic time of crystalliza-

tion r, (measured from time r0). The nucleation rate and growth velocity

are assumed to be time-independent (after time r0). The temperature de-

pendence of the crystallization parameters is related to thermodynamic

parameters in the classical theory of nucleation and growth.

From results presented in Chapter 4 (Fig. 4.2), the implant dose used

here (5x1015 ions/cm2 ) is large enough that crystallization by surviving

grains can be neglected. Amorphized films are annealed at various tem-

peratures and times. The crystalline fraction and number of grains are
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determined for each anneal condition and the data is fit by a classical

model of nucleation and grain growth to give three crystallization param-

eters (o0, rn, and rn) at each temperature. Growth velocity is calculated

using Eqn. (2.20). The final grain size is extrapolated using Eqn. (B.11).

The parameters are compared to values reported the literature for the

crystallization of silicon films deposited in the amorphous state. The major

references are Zellama et al.,5 6 Koster,57 and Blum and Feldman. 8 Epitax-

ial <111> regrowth rate data, which is also referenced, was reported by

Csepregi et al.69

Thermodynamic parameters within the classical theory of nucleation

and growth are found using the temperature dependence of ro, r, and v.

in conjunction with Eqns. (2.12), (2.15) and (2.18).

5.1 Experiment and Results

Several 1000A polycrystalline films are implanted at 5 x 1016 ions/cm 2 .

Pieces are partially annealed at temperatures of 580°C, 590°C, 600°C,

630°C, and 640°C. The anneal time at each temperature is varied over

a time scale which is a function of anneal temperature. (The 580°C anneal

times range from 50 to 100 hours, while the 640°C anneal times range from

2.5 to 4 hours.) TEM samples of the films are prepared by lift-off. Crys-

talline fraction and grain density for each anneal time are measured from

several bright-field micrographs at a magnifications of 5,000-10,000x.
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5.1.1 Density of grains and crystalline fraction

The density of grains and the crystalline fraction are measured from TEM

micrographs. The micrographs in Figure 5.1, for example, show films an-

nealed at 630°C for 4, 5.25, and 7.1 hours, respectively.

The grain density p is measured for films which are less than half

recrystallized. In films over half recrystallized, there are several clusters of

grains in which the grains can not be accurately counted. The data points

in Fig. 5.2 show the density of nucleated grains as a function of anneal time

and temperature.

The data points in Fig. 5.3 indicate the crystalline fraction X as a func-

tion of anneal time and temperature, as calculated using an image analyzer.

5.1.2 Basic crystallization parameters

The model used to extract parameters is based on Eqns. (2.19) and (2.21)

which use the premise that no nucleation or growth occurs during a tran-

sient time r0. Thereafter, the nucleation rate r, and growth velocity va

are assumed to be time-independent. Transient time and nucleation rate

could be derived from the density of grains versus anneal time for a se-

ries of isothermal anneals; while, transient time and crystallization time

could be derived from the crystalline fraction versus anneal time for a se-

ries of isothermal anneals. Since this method yields two values for transient

time, these three parameters are derived instead by a single weighted least-

squares fit of the data to Eqns. (2.19) and (2.21).
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(a) 5 x 10 s' ions/cm 2 , 4 hours at 630°C

(b) 5xlO ions,

(c) 5x 101O ions/cm 2, 7.1 hours at 630°C

Figure 5.1: Bright-field micrographs of films implanted at 5 x 101' ions'cm
and annealed at 6300C for three anneal times: (a) 4 hours, (b) 5.25 hours.
and (c) 7.1 hours. Diffraction patterns are inset.
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Figure 5.2: Density of grains versus anneal time at several temperatures in
polycrystalline silicon implanted at 5x1015 ions/cm2 . Each solid line is fit
to the data from a set of isothermal anneals by minimizing Eqn. (5.1). The
dashed lines are calculated at ±1°C from the anneal temperatures using an
Arrhenius model for growth and nucleation parameters.
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Figure 5.3: Crystalline fraction versus anneal time at several temperatures
in polycrystalline silicon implanted at 5x1015 ions/cm 2 . Each solid line is
fit to the data from a set of isothermal anneals by minimizing Eqn. (5.1).
The dashed lines are calculated at ±1°C from the anneal temperatures
using an Arrhenius model for growth and nucleation parameters.
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The following error criterion E is minimized with respect to r0, er,, and

nG

E(ro, Er,,,r) = W E[err,g(u) -pp,i 2

i=l

+ E [1 - exp(-u?) - Xi]X (5.1)
i=l

where nG is the number of grain-density data points collected and n is

the number of crystalline-fraction data points collected. The weight W

normalizes the grain-density data to the highest measured density of grains

so that both sums are of the same order of magnitude. The transient

time and crystallization time enter the equation in the normalized-time

parameter ui = (ti - r0)/n,. The function g(u) is defined is Eqn. (B.9).

The solid lines in Figs. 5.2 and 5.3 are the results of fitting r0, ern, and

r, to the data for each temperature. However, three of the data points,

though shown, are not used in the fit: the 96 hour anneal at 580°C, and

the 27 and 31 hour anneals at 600°C. The reason these three data points

deviate so far from theory is subject to conjecture. Some possibilities are:

the growth rate may decrease due to impurity segregation; the different

wafers received slightly different implant doses, which could affect any of

the parameters; or, some of the samples may have become contaminated.

Figure 5.4 shows transient time as a function of temperature. The

activation energy (solid line) is 2.7 eV. The literature contains no previous

report of transient time values in silicon, although Koster 57 did show that

the nucleation rate was time-dependent in freestanding amorphous silicon

films prepared by electron beam evaporation at room temperature.

From Eqn. (2.12) and using kT of 0.075 eV, the experimental tempera-
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Figure 5.4: Transient time as a function of temperature in polycrystalline
silicon films amorphized by self-implantation. The solid line is fit to the
data and corresponds to an activation energy of 2.7 eV.
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ture dependence of r0 indicates that the activation energy for self-diffusion

in amorphous silicon, Ed, is 2.8 eV.

Figure 5.5 shows the nucleation rate as a function of temperature. The

activation energy (solid line) is 5.1 eV. Also shown are values from papers

by Zellama et al.66 and by Koster. 7 Zellama measured growth nucleation

rates in amorphous silicon films which were deposited at room temperature

and at 570°C. Both of these papers cite an activation energy of 4.9 eV. For

amorphous silicon films deposited at room temperature, however, Zellama

found an activation energy of 9 eV. The high value could be in error if those

films exhibited a transient time for crystallization.

From Eqn. (2.15) and the temperature dependence of r0 and r, the

maximum free energy of formation of a cluster AG* is 2.4 eV.

Figure 5.6 shows the characteristic crystallization time r, as a function

of temperature. The activation energy (solid line) is 3.9 eV. The data from

the literature are from Zellama et al.,E6 Koster,5 7 and Blum and Feldman.6 8

Blum and Feldman measured optically a crystallization time in amorphous

silicon films prepared by electron beam evaporation at 200°C-300°C and

calculated an activation energy of 3.1 eV. This activation energy is not

related to a particular crystallization process; but, rather, is the result of a

number of processes, as can be seen in the definition of r, (Eqn. (2.20)).

The dashed lines in Figs. 5.2 and 5.3 illustrate the effect of varying

the temperature by ±10C. These lines are estimated by calculating (for

each temperature) Tr0, r, and r,, assuming the Arrhenius forms plotted in

Figs. 5.4- 5.6. These lines indicate the error that could be introduced by a

variation in anneal temperature of ±1°C.
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Figure 5.5: Nucleation rate as a function of temperature. The nucleation
rate from this work is from polycrystalline silicon films amorphized by
self-implantation. The data from the literature is from silicon films de-
posited in the amorphous state. The solid line is fit to the data from this
work and corresponds to an activation energy of 5.1 eV.
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Figure 5.6: Crystallization time as a function of temperature. The char-
acteristic crystallization time from this work is from polycrystalline silicon
films amorphized by self-implantation. The data from the literature is from
films deposited in the amorphous state. The solid line is fit to the data from
this work and corresponds to an activation energy of 3.9 eV.
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6.1.3 Growth velocity

Growth velocity v, is calculated from Er, and rn using a form of Eqn. (2.20):

Vg = A (5.2)

Figure 5.7 shows v9 as a function of temperature. The activation energy

(solid line) is .3 eV. Also shown are data from several sources: Zellama

et al.5 6 (E,, of 2.4-4.9 eV); Koster 7 (E,, of 2.9 eV); and Csepregi et al.?5

(E., of 2.35 eV). The data from Csepregi et al. is the slow <111> epitaxial

regrowth velocity.

The growth velocity extracted here is lower than that reported in the

literature and it is also has a larger activation energy than expected.

From Eqn. (2.18), Ed, and the temperature dependence of v, AGo_

can be determined. The activation energies found here, however, yield

a negative value (-1.0 eV/atom), which is not realistic. The activation

energy of vg must be less than Ed (2.8 eV) to be consistent with classical

theory. The grains observed here exhibit twinning, which is typical in

crystallized silicon films. Possibly, grain growth does not proceed by the

same mechanisms used to describe growth of small clusters.

5.1.4 Final grain size

The final grain area AG is calculated from Eqn. (B.11) using nucleation rate

r, and growth velocity vg. Figure 5.8 shows the extrapolated final grain

diameter, which is the diameter of a circle of area AG. The graph shows

that a slightly larger grain size can be achieved by crystallizing at lower

temperatures.
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Figure 5.7: Growth velocity as a function of temperature in polycrystalline
films amorphized by ion implantation. The growth velocity from this work
is from polycrystalline silicon films amorphize by self-implantation. The
data from Zellama and from Koster is from films deposited in the amor-
phous state. The data from Csepregi is the slow <111> epitaxial regrowth
velocity. The solid line is fit to the data from this work and corresponds to
an activation energy of 3.3 eV.
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Figure 5.8: Grain size as a function of temperature, extrapolated from the
growth and nucleation rates. The solid line is fit to the data and corresponds
to an activation energy of 0.6 eV.
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The grain size in completely recrystallized films is found from TEM

dark-field images to be approximately 1-2 ,um, in agreement with the values

extrapolated from partially crystallized samples.

5.2 Summary and Discussion

Crystallization parameters are found as a function of temperature for a

polycrystalline silicon film amorphized by self-implantation. The sponta-

neous nucleation rate r, and recrystallization time T, are consistent with

values found in the literature, even though the films in those experiments

were deposited in the amorphous state.

A significant transient time r0 is found in the implanted films. This

has not been reported before for silicon, although Koster67 did show a

time-dependent nucleation rate in an amorphous silicon film deposited at

room temperature, but did not give a value for the transient time. The

presence of a transient time might explain the anomalous activation energy

measured for nucleation rate in room-temperature deposited films in the

paper by Zellama et al.5 6

Implanting polycrystalline films at a high dose probably ensures that no

crystalline clusters exist. During the transient time, the cluster population

approaches a quasi-equilibrium distribution which leads to a steady-state

nucleation rate. Films deposited in the amorphous state at elevated tem-

peratures could have a significant cluster population, resulting in a negli-

gible transient time. In films deposited at room temperature, the cluster

population could be small enough to result in an observable transient time.
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Other researchers have observed two optical states of amorphized

silicon60-62: the defect-saturated (as-implanted) state, and the thermally-

stabilized (annealed) state. The defect-saturated state is characterized by

a refractive index 12% larger than in crystalline silicon. After two hours at

500°C, the refractive index drops to only 8% larger than in crystalline sili-

con and is then stable until crystallization. The refractive index was found

to correlate with the dangling-bond density. Since the defect-saturated

state lasts for only two hours at 500°C (and presumably less time at higher

temperatures) the transient time observed here appears to be related nei-

ther to these optical states nor to the high density of dangling bonds in the

as-implanted films.

The solid-phase crystal growth velocity V9 and final grain size AG are in-

ferred from r, and T,. Because the growth velocity is lower than expected,

it may be a function of anneal time or grain size, in which case the Avrami

equation is no longer valid. The low growth velocity could be due to con-

tamination. The activation energy of V9 is higher than expected - in fact

it leads to the erroneous conclusion that the crystalline phase is unstable.

The activation energy of the growth velocity is found by assuming that the

mechanism responsible for cluster growth (phase transitions of individual

atoms at the amorphous-crystalline interface) is also responsible for crystal

growth.

It is probably not possible to ulse anneal cycles to exploit the transient

time in order to obtain a much larger grain size than has been achieved

to date. To exploit the transient time, the film needs to be annealed just

long enough to produce a few seeds. Then the film must then be cooled
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in such a manner that the population of clusters decreases. Films which

were deposited at elevated temperatures exhibited no transient time, even

though they were probably stored at room temperature. This indicates

that cooling a partially annealed sample will probably freeze the cluster

distribution.

The transient time can probably be utilized in epitaxial lateral over-

growth. The overgrowth distance should be proportional to r0 + rn.

The growth rate in silicon can be greatly enhanced by implantation dur-

ing an anneal63 (hot implantation). It may be possible to exploit the effect

of implantation to achieve large grains. In material with a few nucleated

grains, a hot implant may inhibit the nucleation rate while enhancing the

growth rate of existing grains.

This experiment demonstrates that the crystallization behavior of poly-

crystalline silicon films amorphized by self-implantation is similar to the

crystallization behavior of silicon films deposited in the amorphous films.

It is found, however, that nucleation and growth in amorphized films pro-

ceed only after a transient time, which is a function of anneal temperature.

This has been observed before only in amorphous films deposited at room

temperature. From the temperature variation of crystallization, two ther-

modynamic parameters of the classical model of nucleation are calculated:

the maximum free energy of formation of a crystal cluster is 2.4 eV; and

the energy of self-diffusion in amorphous silicon is 2.8 eV. The grain size in

completely recrystallized films is found by dark-field TEM to be 1-2 iam.

This is in agreement with the calculated final grain size, as extrapolated

from the nucleation and growth rates of partially crystallized films.
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Chapter 6

Crystallization in a "Seeded"
Amorphous Film

In Chapter 4, the three plateaus in the plot of final grain size as a function

of implant dose are explained in terms of an effective damage area AD as-

sociated with every ion. Below a dose of 3x1014 ions/cm2 few grains are

completely amorphized, though the level of amorphization is large enough

that few crystalline areas are apparent from transmission-electron diffrac-

tion images. Above a dose of approximately 3x1015 ions/cm2 crystalliza-

tion appears due to nucleation by random cluster formation. At interme-

diate doses (6x 1014-2.5 x 10i5 ions/cm2 ), the final grain size is a relatively

weak function of implant dose. In the model of Chapter 2, this plateau

was predicted and attributed to ion channeling - over this range, some

grains are assumed to survive because the ion channeling that occurs in

specifically-oriented grains results in less damage than that produced in a

randomly-oriented grain.

In a related experiment published by Kung and Reif,21 three plateaus

were again observed, but the <110> texture was found to be strongest at
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the lower end of the channeling plateau. If this plateau were indeed due to

ion channeling, the <110> texture would have been stronger at the highest

dose of the channeling plateau.

The experiment presented here examines the crystallization behavior of

polycrystalline silicon implanted at 2x1016 ions/cm2 (at the upper end of

the channeling plateau) to determine whether the grains in the annealed

film grow from seed grains (grains which survived the implant), as assumed

in the model of implant damage in polycrystalline films. This is a more

direct method of assessing the as-implanted state than by measuring the

grain size after 100% crystallization.

6.1 Experiment and Results

A 1500A polycrystalline film is implanted at 2x 101 ions/cm 2 and diced

into several pieces which are then annealed at 580°C in N2 for durations

of 15 minutes to 3 hours. Where possible, TEM samples of the films are

prepared by lift-off. For anneal times less than one hour, here, the films

do not lift off the substrate and TEM samples are prepared by backside

etching, instead. Grain density pg and crystalline fraction X are measured

from several bright-field micrographs at a magnification of 50,000x.

Figure 6.1 shows bright-field micrographs and diffraction patterns of

films annealed at 0.5, 1.5, and 2.5 hours.

A plot of the density of grains pg as a function of anneal time is shown in

Fig. 6.2. The density of grains is measured for anneal times up to one hour.

(At longer anneal times, individual grains cannot always be resolved.) The
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(a) 2x 10' ions/cms, 0.5 houm at 50°C

(b) 2x 101 ions/cm2, 1.5 hours at 580°C

(c) 2 x 10s ions/cm 2, 2.5 hours at 580°C

Figure 6.1: Bright-field Micrographs of films implanted at 2 x 10'5 ions/cm 2

and annealed at 580°C for four anneal times: (a) 0.5 hours, (b) 1.5 hours.
and (c) 2.5 hours. Diffraction patterns are inset.
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Figure 6.2: Density of grains as a function of anneal time at 630°C for poly-
crystalline silicon implanted at 2 x 1015 ions/cm2 . The solid line corresponds
to theory (Eqn. (2.21)) assuming crystallization is due to a steady-state nu-
cleation rate of 6.7x101 0/cn 3.sec.

solid line corresponds to theory (Eqn. (2.21)) assuming crystallization is

due to a steady-state nucleation rate of 6.7x101/cm 3.sec.

If crystallization were from seeds, the density of grains would be con-

stant; so, this indicates that crystallization is from nucleated grains. At

580°C, the nucleation rate in amorphous silicon5 6,s7 is about lx 107/cm3.sec

and is approximately the same as the nucleation rate in amorphized poly-

crystalline silicon (Chapter 5), nearly four orders of magnitude smaller than

the steady-state nucleation found here. This large nucleation rate could be

attributed to a large number of microcrystalline clusters in the as-implanted
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Figure 6.3: Crystalline fraction as a function of anneal time at 630°C for
polycrystalline silicon implanted at 2x1015 ions/cm 2 . The dashed line is
the best fit of theory assuming seeded growth (Eqn. (2.22)). The solid line
is the best fit of theory assuming nucleated growth (Eqn. (2.19)).

film, which would enhance the nucleation rate.

The crystalline fraction X is calculated using an image analyzer and is

shown in Fig. 6.3. The solid line is the theoretical crystalline fraction assum-

ing spontaneous crystallization (Eqn. (2.19)) for a characteristic crystalliza-

tion time r, of 1.58 hours. The dashed line is the best fit of Eqn. (2.22),

which corresponds to seeded crystallization. This indicates again that crys-

tallization is due to nucleated crystallites.

Using the above values of nucleation rate and characteristic crystalliza-

tion time, the growth rate v from Eqn. (2.20) is 14 A/minute, approxi-

80

^ -
-



mately the same as the slow <111> epitaxial growth rate.59 Note that v.

is an average growth rate. The growth rate is also estimated from direct

measurements of the largest grains. Since the grains are elliptical, there is a

fast and a slow growth rate. Direct measurements indicate that the growth

rate is 25 A/minute along the major axis and 9 A/minute along the minor

axis. The effective radial growth rate (as used in Eqn. (2.20)) is the geo-

metric mean of these. As determined by direct measurement of the largest

grains, the effective radial growth rate is 15 A/minute, in good agreement

with the value found using the Avrami-Johnson-Mehl formulation.

From the vahles for r, and v, the final grain size is extrapolated to be

0.15 um using Eqn. (B.11). This is comparable to the value estimated from

the dose-dependent study of grain size (Fig. 4.2) which is approximately

0.25 im.

A cross-sectional TEM (XTEM) sample has been prepared from the film

annealed for 0.75 hours. The micrographs in Fig. 6.4 show the single-crystal

silicon substrate (bottom layer) with a 1000A oxide above it. The next layer

is the 1500A film which has been implanted and partly recrystallized. Note

that the grains are at the top surface, indicating that nucleation is occurring

at or near the top surface. Therefore, nucleation can be treated as a surface

nucleation rate, and the results of Chapter 4 (AG vs. Q) apply for thinner

films as well. (The films in Chapter 4 are 1600A thick.)
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(a) XTEM at 60,000x

(b) XTEM at 200.000x

Figure 6.4: Cross-sectional TEM bright-field micrographs of a film im-

planted at 2x 101 ions/cm 2 and annealed at 5800C for 0.75 hours, at mag-

nifications of (a) 60,000x, and (b) 200,000x. From the bottom up, the

layers are: the single-crystal silicon substrate; a 1000I oxide; and a 1500A

partially recrystallized film with grains at the top surface.
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6.2 Summary and Discussion

The experimental results presented here demonstrate that for a polycrys-

talline silicon film implanted at 2x1015 ions/cm 2 , crystallization is from

nucleated crystallites, and not from seeds which survived the implant. The

nucleation rate for this film is considerably larger than in amorphous sil-

icon or in polycrystalline silicon amorphized at a larger dose. This could

be because implantation leaves microscopic regions (clusters) which are not

fully amorphized. Such regions would enhr.nce the nucleation rate.

In Chapter 2, to determine the dose-dependence of final grain size we

had assumed that a grain either survives the implant or is amorphized

completely. The results presented here, however, indicate that a range of

states may exist - an amorphized grain can exhibit a large nucleation

rate (due to microcrystals), which apparently decreases with increasing

implant dose. To first order, the number of these clusters should drop

exponentially with implant dose, accompanied by an exponential drop of

the "implantation-induced" nucleation rate.

The equations governing the crystallization behavior include a sur-

face nucleation rate Er,, from which r, has been calculated. Because

implantation-induced nucleation here is a surface phenomenon, the value

of r, will vary with the film thickness and only Er, should be used. Simi-

larly, spontaneous nucleation has been generally considered to be a surface

phenomenon and perhaps should be treated as such. However, as in the

literature, the practice of stating bulk nucleation rates is continued in this

thesis.
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Chapter 7

Dose Dependence of
Crystallization Parameters in
Amorphized Silicon Films

The nucleation rate in amorphized polycrystalline silicon films (5x10'6

ions/cm 2 ), determined in Chapter 5, is near the nucleation rate in silicon

films deposited in the amorphous state.5 6,' 7 Also, the characteristic crystal-

lization time determined in Chapter 5 is comparable to the crystallization

time in films deposited in the amorphous state. 6, 5 7'658 Transient nucleation,

however, has not been reported except by Koster5 7 for amorphous silicon

films deposited at room temperature. It is suggested in Chapter 5 that this

is because there are few clusters in silicon films deposited at sufficiently low

temperature and in films amorphized at sufficiently high doses. The films

of Chapter 5 are considered here to be "100% amorphous", more amor-

phous than deposited amorphous silicon, which has an as-deposited cluster

population.

The experiment presented in this chapter investigates the dose depen-
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dence of the measured crystallization parameters (r,, r, r0) and derived

parameters (v9, AG) near the "complete amorphization" dose of 5xi0 16

ions/cm 2 .

7.1 Experiment and Results

Three 1500A polycrystalline films are implanted at 4x1015, 5x1015 and

5x10 Is ions/cm 2 . Small pieces are partially annealed at 6300 C for anneal

times ranging from 0.25 to 5 hours. TEM samples are prepared by backside

etching. The crystalline fraction and grain density for each dose and anneal

time are determined from several bright-field micrographs at magnifications

of 5,000-10,000x. The crystallization parameters are then extracted for

each dose.

7.1.1 Density of grains and crystalline fraction

The density of grains and the crystalline fraction are measured from bright-

field TEM micrographs, such as shown in Fig. 7.1. The density of grains

pM(t) is indicated in Fig. 7.2 and the crystalline fraction x(t) is indicated in

Fig. 7.3. The solid lines are fit to theory by minimizing Eqn. (5.1). The 1,

1.5, and 2 hour data points from the 5x10 15 ions/cm 2 implant are from a

different area of the wafer than the other points and, though self-consistent,

do not fit well with the remaining results. In the rest of this chapter, these

are called the "5-x1015 ions/cm 2" results and the other data points are

called the "5+ x 1015 ions/cm 2 " results because the different crystallization

parameters can be attributed to the variation of implant dose across the
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wafer.

These plots indicate that crystallization takes longer as the dose in-

creases, even though the characteristic crystallization time is longer at

5x1015 ions/cm2 than at the higher dose. Only at the higher dose is a

transient nucleation time observed.

7.1.2 Crystallization parameters

The source of the dose-dependence of the crystallization time is rooted

in the nucleation rate. All growth velocities here are within 10% of the

growth velocity found in Chapter 5 for a 1000A film implanted at 5x1015

ions/cm 2 and annealed at 630°C. The nucleation rate, however, is sensitive

to the cluster population and, therefore, is sensitive to the implant dose.

Figure 7.4 shows the normalized nucleation rate as a function of implant

dose. Also included is a "2x1015 ions/cm2 " data point (=1500A) from

Chapter 6. The normalized nucleation rate is calculated using Eqn. (2.20):

r,/rn = (n/rn') - (7.1)

where r' and Irn are values from Chapter 5 for 100% amorphous silicon.

This form is used for the following reasons:

* The crystalline fraction is measured over a large range of anneal times;

whereas, the grain density is only measured for X(t) < 30%. The

crystallization time, therefore, may be considered more reliable.

* The "5+ x 1015 ions/cm2 " data includes no grain density information.

Equation (7.1) assumes that vg and E which determine r, are the same as v,'

and E' which determine rA'. Since implantation-induced nucleation occurs
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(a) 4 x '.0 ions/cm2 , 1 hour at 630°C

(b) 4x 10I1 ions/cm 2 , 1.5 hours at 630°C

(c) 4 x 101 ions/cm 2, 2.5 hours at 630°C

Figure 7.1: Bright-field micrographs of films implanted at 4 10' ions, cn,'
and annealed at 630°C for three anneal times: (a) I hour, (b) 1.5 hours,
and (c) 2.5 hours. Diffraction patterns are inset.
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Figure 7.2: Density of grains versus anneal time at 630°C of polycrystalline
silicon implanted at 4x1015, 5x10' 5 , and 6x101 s ions/cm2 . Each solid line
is fit to the data from a given dose by minimizing Eqn. (5.1).
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Figure 7.3: Crystalline fraction versus anneal time at 630°C of polycrys-
talline silicon implanted at 4x101s, 5x10'5 , and 6x1015 ions/cm2. Each
solid line is fit to the data from a given dose by minimizing Eqn. (5.1). The
two curves for the "5 x 1015 ions/cm 2" sample are fit to data from different
areas of the wafer.
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Figure 7.4: Nucleation rate enhancement versus implant dose. Nucleation
rates are normalized using the crystallization times found in Chapter 5.

only near the surface (Chapter 6), the film thickness e should be irrelevant.

Also, all values of v. are within 10% of the values found in Chapter 5 for

equivalent temperatures.

Using the dose dependence of r, based on the data points at 4 x 1015 and

5x 1015 ions/cm2 in Fig. 7.4, the difference between the "5-x 10 15 ions/cm2 "

nucleation rate and the 5+ x1015 ions/cm 2 " nucleation rate can be at-

tributed to a difference of 3x1014 ions/cm 2 , or 6% of the implant dose.

The wafer-uniformity of the implant is estimated to be 10%.

The extrapolated nucleation rate using Fig. 7.4 at 6x1015 ions/cm 2 is

so low that during the transient time few grains nucleate and the film will

recrystallized due to grains which nucleate after the transient time r0.
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For a dose of 5x1015 ions/cm2 , the initial nucleation rate is less than

the steady-state nucleation rate observed in the film implanted at 6x 1016

ions/cm 2 and the corresponding final grain area AG is extrapolated to be

marginally larger than in the high-dose sample. The grain size at a dose

of 5x1015 ions/cm 2 is larger than can be attained at either higher or lower

doses! At this dose, the nucleation rate (which has been dropping with

increasing dose) is lower than the steady-state nucleation rate, but the

characteristic time of crystallization rn associated with the nucleation rate

is on the order of the transient time required to reach steady-state nucle-

ation. For grain-size enhancement, the crystallization time must be smaller

than approximately r0' + r,' and larger than T,'. (The prime (') indicates

values for 100% amorphous material.) When the crystallization is much

larger than r0' + nt', steady-state spontaneous nucleation is responsible for

much of the crystallization. When the crystallization time is smaller than

Tn,, the nucleation rate must be higher than the steady-state spontaneous

nucleation rate (for the same growth velocities). Because ro0 and n,' are

similar, there is only a very small range of implant doses for which AG will

be larger than in 100% amorphous material. Additionally, the increase in

size is marginal. (From Eqn. (B.11), decreasing the nucleation rate by a

factor of 2 results in an enhanced grain diameter of 2, or a 26% increase.)

7.1.3 As-implanted cluster distribution

A simple model developed in Chapter 2 states that the number Nn of clus-

ters surviving a high-dose implant (2x1015 ions/cm 2 or larger) is propor-

tional to exp (-C'Qn) where C' is a constant, Q is the implant dose, and n
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is the cluster size. At sufficiently high doses, virtually no clusters will exist

and the material is 100% amorphous.

The nucleation rate is a function of the size-distribution of these clus-

ters (denoted N,) as well as the total population. In 100% amorphous

material (no clusters initially) N, will evolve with anneal time, approach-

ing a steady-state distribution N,(oo). The crystallization behavior of the

"5x10156 ions/cm 2" film, however, indicates that the size-distribution of

clusters attained by implantation is not the same shape that is attained

during any stage of an anneal from an initial zero-cluster condition. If this

were the case, the crystallization behavior would be the same as if a higher

dose were implanted and partly annealed. This fact provides some insight

into the as-implanted distribution of cluster sizes.

The sketch in Fig. 7.5 illustrates the evolution of Nn with time. Each

solid line represents a snapshot of N, in material which is initially 100%

amorphous. This is analogous to the voltage response in a variable trans-

mission line with a step input and a small load resistor. As drawn, the

solid lines in Fig. 7.5 indicate a negligible nucleation rate for t < r0 and a

steady-state nucleation rate thereafter.

Each dashed line represents a snapshot of Nn with an initial distribution

of clusters. The dashed lines are drawn to result in a small nucleation rate

for t < r0 and a steady-state nucleation rate thereafter.
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Figure 7.5: Hypothetical time-evolution of the size-distribution of clusters,

Nn. The solid lines are for 100% amorphous material (no clusters initially).

The dashed lines are for material which is nearly 100% amorphous. In

either case, the system approaches the steady-state distribution N,(oo)
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7.2 Summary and Discussion

Three sources of crystallization have been now been identified in self-

implanted polycrystalline silicon films: crystallization from seed grains sur-

viving the implant, from microcrystals surviving the implant, and from

spontaneously nucleated grains.

Crystallization from seed grains, while hypothesized, has not been

demonstrated experimentally by the crystallization behavior of implanted

polycrystalline films. Three related experiments by Kung et al.19- 2 l, how-

ever, indicated a range of doses which resulted in enhanced {110} texture,

presumably due to seed grains which survived the implant due to ion chan-

neling.

Spontaneous crystallization is observed in heavily implanted material

and (except for transient time) it is found to be similar to crystallization

of silicon films deposited in the amorphous state. The transient time is the

time required to reproduce the steady-state cluster population eradicated

by implantation and should be observable in implanted amorphous SOI as

well.

Implantation-induced nucleation was noG foreseen, but is found by ex-

periment in this chapter and in Chapter 6. In hindsight, seeds which survive

the implant can be any size. In fact, the distribution of sizes (by area) is

used as a function (PA) in Appendix A in order to calculate the survival

probability of a seed grain. A convenient dividing line between "clusters"

and "seed grains" is the critical cluster size n. Above a dose of 2x1015

ions/cm2 , the number of clusters containing more than n' atoms is swamped
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by the number of clusters containing fewer than n* atoms.

It should be noted that the nucleation rate due to clusters surviving the

implant can be time-dependent, according to the size-distribution of the

clusters. For the experiments in this thesis, however, a time-independent

cluster nucleation rate seems to be a reasonable approximation.
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Chapter 8

Conclusions

8.1 Summary

This thesis determines the crystallization behavior in self-implanted poly-

crystalline SOI films. Polycrystalline silicon films are first deposited on

thermally-oxidized silicon wafers by LPCVD and then implanted in order

to partly or entirely amorphize the film. The crystallization behavior is in-

vestigated by analyzing TEM micrographs of a series of samples annealed

isothermally. By measuring grain density X and crystalline fraction p ver-

sus anneal time, the source of crystallization (seed grains or nucleating

crystals) and crystalline growth rate is determined. For growth from nu-

cleating crystals, values for the nucleation rate and (where applicable) the

transient time (during which negligible nucleation occurs) are extracted.

The density of seeds in the as-implanted film is estimated from the

grain size AG in 100% recrystallized samples (Chapter 4), taking steady-

state spontaneous nucleation of grains into account. A model developed

in Chapter 2 and based on an effective damage area AD conforms well to
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experiment. Estimating the as-implanted state on basis of the final grain

size, however, results in an oversimplified model, as indicated by subsequent

experiments.

The crystallization behavior of heavily-implanted films (Chapter 5) is

very similar the the crystallization behavior of films which were deposited

in the amorphous state.5 6 '57'68 Crystallization is from grains which nucle-

ate at a steady-state rate r,. Unlike films deposited in the amorphous

state, however, an initial transient time is observed, during which little

or no nucleation occurs. This is because the microcrystals which are in

amorphous silicon films (deposited above room temperature) are not in

heavily-implanted films.

For films with a grain size below the spontaneous-nucleation limit, the

final grain size was originally attributed to seed grains, grains which partly

survive the implant. However, the crystallization behavior of a "seeded"

film (Chapter 6) indicates that crystallization is due to a very high spon-

taneous nucleation rate, nearly four orders of magnitude larger than in the

amorphized film of Chapter 5. Also, cross-sectional TEM indicates that

the nucleation occurs at or near the surface.

In view of this phenomenon, three sources of crystallization are now

considered in self-implanted polycrystalline silicon films: seed grains sur-

viving the implant, microcrystals surviving the implant, and spontaneously

nucleated grains. A seed grain and a microcrystal are both small volumes

which by chance (and possibly aided by channeling) survive the implant.

The difference between a grain and a microcrystal is the size - seeds are

larger than critical cluster size and, therefore, growth is energetically fa-
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Figure 8.1: Summary of implant effects as a function of dose. Experiments
included herein are also shown.

vorable; whereas, microcrystals are smaller than critical cluster size and

although growth is not energetically favorable a fraction will grow (due

to thermodynamics) until further growth becomes favorable, contributing

to the nucleation rate. The fraction which becomes "super-critical" is a

function of the cluster size n - smaller cluster sizes are more likely to

shrink.

The effect of implantation on crystallization behavior is summarized in

Fig. 8.1, which also indicates the doses used in the experiments of Chap-

ters 4-7. By implantation, a polycrystalline film becomes amorphous in a

fairly complex manner:
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* At low implant doses, the film is nearly amorphous, but enough crys-

talline material is left that a subsequent anneal reproduces the mor-

phology of the as-deposited film.

* As the dose is increased, fewer grains survive and the grains in the

implanted and annealed film are larger than in the as-deposited film.

* At still higher doses (the "channeling regime"), only grains which

exhibit ion channeling survive; the annealed film has larger grains and

is textured as well. Within the channeling regime, the seed size in the

as-implanted film decreases with increasing dose until the annealed

grain size is determined by an implantation-induced nucleation rate

(due tc clusters).

· At large doses (complete amorphization) the final grain size saturates

at 1-2 im. The crystallization behavior in this regime indicates that

this occurs by a steady-state nucleation rate after a transient time.

The transient period is the time necessary to produce a steady-state

cluster (microcrystal) population, which is a prerequisite to steady-

state nucleation.

Furthermore, over a very small range of doses just before complete amor-

phization, the implantation-induced nucleation rate is less than the steady-

state nucleation rate. Because of the low nucleation rate during the tran-

sient time, a small increase in grain size is observed. The grain size can be

only marginally enhanced because the transient time r0 is roughly the same

as the characteristic time of spontaneous nucleation, r,. From the results

of Chapter 5, r0/r, is 0.35 at 580°C and rises to 1.05 at 640°C; any process
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which needs to take advantage of crystal growth during the transient time

should produce better results at higher temperatures. This also applies,

for example, to solid-phase lateral epitaxial overgrowth from seed windows

into an implanted silicon film.

This thesis explains both theoretically and experimentally the crystal-

lization behavior of implanted polycrystalline silicon and provides insights

into the structure of as-implanted polycrystalline materials.

8.2 Suggestions for future work

This thesis provides many insights into implantation effects in polycrys-

talline materials. Several points have been raised which merit future work.

8.2.1 Implant conditions

* Kung et al.'9 found that the {110} texture disappeared at an implant

angle of 5 from normal incidence. By finding the dose dependence

of implanted silicon at this implant angle and comparing the results

with those of a 0° implant, the effect of channeling can be quantized.

* The goal of seed selection through ion channeling (SSIC) is to pro-

duce uniformly-oriented polycrystalline silicon. To date, only axially-

oriented films have been attained. Two approaches may need to be

tried:

- Implant at 0° and 600 and anneal. Previous dose-dependent

results cannot be used to find the dose required since damage is
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not linear; so, several doses will have to be tried. Furthermore,

the relative doses may need to be tailored.

- Implant at 0 and anneal, and then at 600 and anneal. The

first dose should be picked to maximize the {110} texture. The

second dose needs to be to determined.

In either case, the implant energy at 60° must be larger than at 0°

since the film is effectively twice as thick.

* The implant-energy dependence of the effective damage area AD is

easily modeled: since the least amount of damage occurs at the sur-

face, where the ion energy is largest, the effective damage area is

probably inversely proportional to the average distance between col-

lisions. Experimental confirmation involves finding the dose depen-

dence of final grain size as a function of implant energy.

· The target-temperature dependence of AD may be difficult to model

quantitatively, though it can be found by experiment.

8.2.2 Seeded crystallization

* Seeded crystallization has not been found here. By observing the crys-

tallization behavior of a film implanted at a dose lower than 2 x 1015

ions/cm2 (used in Chapter 6), perhaps seeded crystallization in im-

planted films can be documented.

* Through observing the crystallization behavior of seeded films, the

final grain size can be accurately determined and compared to the

model of final grain size versus implant dose. The "seed density vs.
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dose" data may then be correlated with the {110)} "texture vs. dose"

data.

* Careful examination of TEM diffraction images of individual grains

in a partially recrystallized film may indicate the fraction of seeds

which are selected due to channeling at an optimal SSIC dose.

8.2.3 Implantation-induced nucleation

* The temperature dependence of implantation-induced nucleation

should be investigated. Whether it follows the temperature depen-

dence of the spontaneous nucleation rate is unclear since it is not a

steady-state process.

* By observing the crystallization behavior of seeded films, the final

grain size can be accurately determined for a better comparison to

the model of final grain size versus implant dose.

o Implantation-induced nucleation can be investigated theoretically.

The size-distribution of clusters surviving the implant can be inves-

tigated and the shape of the resulting nucleation transient can then

be estimated.

* The experimental dose-dependence of implantation-induced nucle-

ation should investigated more thoroughly. Correlated with "seed

density and texture vs. dose" data., this may provide insight into ori-

entation effects by clusters.
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8.2.4 Spontaneous nucleation

* Whether the films used in Chapter 5 are completely amorphous has

not been determined. This may be checked through crystallization

experiments using polycrystalline films implanted at higher doses.

* The source of spontaneous nucleation in silicon has not been found.

It may be a bulk property or it may be surface-induced. This can

be resolved by measuring the nucleation rate as a function of film

thickness.

· The "temperature dependence of the crystallization parameters" re-

sults should be extended to a higher temperature. This probably

requires rapid thermal annealing because r0 and r, decrease rapidly

with increasing temperature.

8.2.5 Electrical properties

* The electrical properties of implanted and annealed silicon should be

correlated with grain size. Larger grains are associated with higher

channel mobility and lower conductivity. The large-grain silicon pro-

duced by implantation contains many twins and defects which may

offset any advantage of large grains.

8.2.6 Silicon-on-insulator technologies

* Solid-phase lateral epitaxial overgrowth experiments may be per-

formed at various temperatures to determine whether the overgrowth

distance increases with anneal temperature, as predicted.
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* A hot implant of a slightly-recrystallized film may inhibit nucleation

while enhancing the growth rate, producing grain sizes larger than

1-2 lm.
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Appendix A

Survival Probability of an
Implanted Grain

In this appendix, we calculate the probability PG that a crystalline grain

of area Ac survives an implant dose of Q (ions per unit area). The model

used here includes the following assumptions:

1. The cascade from a single ion produces some degree of amorphiza-

tion. The degree of amorphization depends on many factors: implant

species, energies, and angles; the target composition; and the target

temperature. The amount and shape of the resulting amorphous zone

varies from ion to ion and is well beyond the scope of this analysis.

The damage produced by an ion, therefore, is approximated here by

an average effective damage area AD, which is some function of the

implant parameters.

2. If a grain is not completely amorphized it is assumed to have survived

the implant.
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3. Amorphization of polycrystalline silicon becomes apparent for doses

larger than about 1014 ions/cm2 . For a grain size on the order of

100A, this is equivalent to roughly 100 ions/grain. The equation for

PG, therefore, is simplified assuming AD < AG.

4. Because AD < AG, in the region of interest most of any grain is

amorphized.

A.1 Analysis in terms of undamaged-area
distribution

The survival probability Pc can be found if the distribution of undamaged

areas is known. This distribution is denoted PA. (The density of undamaged

areas between size au and au + Aau is pA(a,)Aa.) In the region or interest,

the density of undamaged areas should be small (because AD < AG). The

positions of the undamaged areas, therefore, can be considered random

and uncorrelated. This condition implies that the probability that a grain

is completely amorphized (1- PG) is the product of the probabilities that

the area of the grain does not overlap any undamaged areas for all sizes

of undamaged areas. Consider a single undamaged region of area au. The

area over which this region could be located to intersect a given grain is

written here as

Ac'(au) = au + 2CaA + A, (A.1)

where C depends on the shapes of A0c and a. If both shapes are convex

and similar but one is rotated by 180° then C = 1. For sample area Ao,

the survival probability is
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(1-PG) = II 1 GI) (A.2)
i=O 00 AA

where Aau is an incremental area. The product in Eqn. (A.2) can be

changed to a summation by taking the natural logarithm of each side.

Furthermore, for a large sample area, the sum can be replaced by an integral

and the integrand is easily simplified:

In (1 - PG)
i= Aooi n 1- AG'(ia)) AooPA(iAa)Aa u

0 A(a ) OPA

=/fo In 1- A0 AoPA(au)dau

- fAG'(aU)PA(aU)daU
- (au +2C/auAG + A)pA(au)dau (A.3)

A.2 Virtual undamaged-area fraction

The undamaged-area distribution PA can also be related to the virtual

undamaged-area fraction fA(ad), which is the fraction of the sample not

within area ad of any impact position. The parameter ad can be consid-

ered to be a virtual damage area. Since the impact positions are random

and uncorrelated, fA is the product of the probabilities that a point is not

within area ad of each impact position. In a large sample (Aoo - oo),

fA(ad) ad )QAoo

= exp (-Qad). (A.4)
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Note that the amorphized fraction is fA(AD) = exp (-QAD).

For ad > AD, fA can be related to the distribution of undamaged re-

gions. Specifically, an undamaged area a, includes an area a,' which is not

within an area ad of any impact position. (For example, the area a,' would

be the same as au if ad were the same as AD). Assuming the area of a region

is proportional to the square of its radius, the incremental contribution to

fA(ad) by undamaged regions of areas a, to a + Aa is

AfA = { [a. (- -j/ )]} ){Ao,pA(aU)AaU} . (A.5)
A00

The first term in Eqn. (A.5) is the contribution from each region.

second term is the number of such regions in the sample.

By integration of Eqn. (A.5) over the appropriate limits,

undamaged-area distribution PA can be related to the virtual undam

area fraction:

The

the

Laged-

fA(ad) = Iaji (a-i- + AD) PA(a,)da,

where au,min is given by

aMin a- AD)

Substitution of Eqn. (A.4) into Eqn. (A.6) gives

exp (-Qad)= f ,D - ( + PA(au)dau
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A.3 Survival probability

A formula for PG can be found from Eqns. (A.3) and (A.8) using the fol-

lowing substitutions:

A G - RG

AD - RD

2a, r2
2ad rd

au,min ru,min

PA(au)da PR(ru)dru (A.9)

Equation (A.3) becomes

-ln (1 - PG) f= (r + 2CruRG + RG)pR(ru)dr~. (A.10)

Equation (A.8) becomes

exp (-Qr) = (r - d -t RD)2 PR (r) dru. (A.11)
-u,mln

When rd = RD, the lower limit is r,,min = 0 and Eqn. (A.11) becomes

exp (-QR) = r2pR(ru)dru. (A.12)

Note that the first term in the integral in Eqn. (A.10) is the same as the

right-hand side of Eqn. (A.12).

The derivative of Eqn. (A.11) with respect to rd is

-2Qrdexp (-Qr2) = -2 (r, - rd + RD) pR(ru)dru. (A.13)
u.m I 
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When rd = RD, the lower limit is ru,min = 0 and Eqn. (A.13) becomes

/0
-2QRD exp (-QR ) = -2rp(r)dr.. (A.14)

Note that the second term in the integral in Eqn. (A.10) is the same as the

right-hand side of Eqn. (A.14) weighted by -CRG

The derivative of Eqn. (A.13) with respect to rd is

(-2Q + 4Q2rd) exp (-Qrd) = f 2pR(r,)dr,. (A.15)
f',umin

When rd = RD, the lower limit is ru,,,in = 0 and Eqn. (A.15) becomes

(-2Q + 4Q2 R) exp (-QR%) = 2ruPR(rU)dru. (A.16)

Note that the third term in the integral in Eqn. (A.10) is the same as the

right-hand side of Eqn. (A.16) weighted by RG/2

Substituting Eqns. (A.12), (A.14), and (A.16) into Eqn. (A.10) gives

- In (1 - PG) = exp (-QR 2) + 2CQRGRD exp (-QRD)

+ (2Q2R R - QRG) exp (-QR 2)

= (i + 2CQRGRD + 2Q2RGRD - QRg)

x xp (-QR2) (A.17)

Resolving the substitutions of Eqn. (A.9) yields

- In (1 - P) = (1 + 2CQvAGAD + 2Q 2AGAD -QAG)

x exp (-QAD) (A.18)

Because AG > AD and the geometrical factor C is on the order of 1, the

fourth term dominates the second; hence,

-In (1 - PG) ~ (1 + 2Q 2AGAD - QAc) exp (-QAD) (A.19)
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A.4 Range of validity

Since PG monotonically decreases with dose, (1 - PG) monotonically in-

creases, and both sides of Eqn. (A.19) must monotonically decrease. The

derivative (set to zero) is

0 = -AD (1 + 2Q2AGAD - QAG) + (4QAGAD - AG )

= Q2 (AGAD2 ) - Q(5AGAD) + (AG + AD)

; (QAD)2 - 5(QAD) + 1. (A.20)

A lower bound to the valid range of the doses is found by the solutions

of Eqn. (A.20): QAD > 4.6; the smallest dose for which the model is valid

would amorphize the sample 4.6 times if the impact positions were uniform!

Since QAG > QAD > 4.6, Eqn. (A.19) can be simplified further:

beginequation - In (1 - PG) 2Q2 AGAD exp (-QAD). (A.21)
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Appendix B

Spontaneous Crystallization

In this appendix, we calculate the crystalline fraction X,(t), the density of

grains p,(t), and final grain size AG,, due to growth of crystallites which

nucleate at a steady-state rate r in an amorphous film of thickness E. We

assume that the grains grow anisotropically with a steady-state growth ve-

locity Vg and that impinging grains can be treated by superposition (though

no crystalline area will be tallied twice). The film is considered in two di-

mensions only - the nucleation rate (per unit area) is r.

B.1 Crystalline fraction

Within a large sample area Ao, the first nucleation event can be considerer

to occur at time t = 1/erAo,. At a later time t, the amorphous fraction

[1 - Xn(t)] due to this grain is

[1- x(t) - (t - tl)2 (B.1)

Similarly, the second nucleation event can be considered to occur at

time t2 = 2/er,A0o. This will only occur with probability [1 - Xn(t2)].
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Mathematically, however, the possibility of a grain nucleating within a

crystalline area may be allowed - the crystalline fraction is not changed

by such a "virtual" grain since its growth front cannot overtake the growth

front of the grain it has nucleated in. In other words, we consider that

the second nucleation event (which may be virtual) is totally independent

of the first. Similarly, we can consider each grain to have a virtual area

of rv92(t - ti)2 , independent of possible overlap. Because the nucleation

events are independent, the amorphous fraction after the second event is

the product of two probabilities: the probability that a randomly selected

point is not within the virtual area of the first grain, and the probability

that the selected point is not within the virtual area of the second grain.

I1 -X-M]= [1- r(t)] - t) 2 [1 _ X V (t - t 2 (B.2)

This approach may be extended to any time t, at which there will have

been a total of ErAOOt nucleation events, virtual and real:

ernAot [ rv 9

2
(t _ 1 (B.3)

[1- Xn(t) i= (B.3)
i=l A

Solving Eqn. (B.3) involves changing the product over the grains to a

sum by taking the logarithm and changing the sum over the grains to an

integral over time, realizing that within dt', the number of nucleation events

that occur (virtual and real) is ErAodt':

In = In er TrA ,ft [ 7rv 2(t - ti)2 ]
=nE i=n l Ao

Er,Aot In -r Vg2(t - ti)2

- Zln [1~~~~~A,,
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In [1 7rv 2 ( t - t)2 rAdt. (B.4)

For a large sample area, the integrand in Eqn. (B.4) may be expanded:

In [1- xn(t) = - I 7rvg2(t- t')2 Erndt'

Wr 2 t3= - g2Ert3. (B.5)

Equation (B.5) is usually written in the form

Xn(t) = 1 - exp [-(t/r.) ] (B.6)

where r, is the characteristic crystallization time due to a steady-state

nucleation rate:

Tn =1/ Vg 2 Er (B.7)

B.2 Density of grains

Once the crystalline fraction is known, the density of nucleated grains Pn is

easily calculated from the effective nucleation rate, which is r[1l - xn(t)]:

p,(t) = rn [1 - x(t') dt'

= Ernrn J exp(-u' 3)du'. (B.8)

where u is normalized crystallization time, t/r,. The integral in Eqn. (B.8)

is unitless and depends only on normalized time. It is abbreviated g(u):

g(u) = j exp(-u'3)du'. (B.9)

Substituting Eqn. (B.9) into Eqn. (B.8) gives

Pn(t) = ErnrT g(u). (B.10)
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B.3 Final grain size

The final grain size due to nucleation alone Ag,n is the inverse of the final

grain density Pn(oo). From Eqn. (B.9), g(oo) = r (4); so, the final grain

size is

AG, - [rnrn r (4)1

r33 (3 ( n) (B.11)
3(3 
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Appendix C

Seeded Crystallization

In this appendix, we calculate the crystalline fraction X. (t) due to crystal-

lization from an initial density of seed grains, p,.

As in the analysis of spontaneous crystallization (Appendix B), we as-

sume that the grains grow anisotropically with a steady-state growth ve-

locity vg and that impinging grains can be treated by superposition of their

virtual areas. Furthermore, the areas of the seed crystals are neglected,

which is valid when the sample is nearly 100% amorphous initially.

At time t, the virtual area of each grain is

AG(t) = 7rvg2t. (C.1)

The amorphous fraction is the probability that a randomly-selected point

is not within the area of any grain. By allowing the circular grains to be

superimposed, the effect of each grain is independent so that the amorphous

fraction is the product of the individual probabilities. In a sample of area

Aoo, the number of grains is Aoop, and the amorphous fraction is given by

1-x(rv2t 2] APs (C.2)[1 - Xs(t)] =1 A0o
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For a large sample area, the right side of Eqn. (C.2) reduces to

[1 - x,(t)] = exp [-7rv,2pAt2] (C.3)

Equation (C.3) is usually written

X.(t) = 1 - exp [-(t/r)2], (C.4)

where rs is the characteristic time of crystallization due to seed grains alone:

r = 1/ VrVg2p,. (C.5)
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