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ABSTRACT

MODELS OF NON-STEADY-STATE ECONOMIC GROWTH

AND A DYNAMIC MODEL OF THE FIRM

Harvey E. Lapan

Submitted to the Department of Economics on July 26, 1971 in partial
fulfillment of the requirement for the degree of Doctor of Philosophy.

The paper investigates the behavior of a growing economy for
cases in which the steady-state conditions are not fulfilled. The
first chapter, which deals with one-sector models in which the
steady-state conditions are not met, investigates how the economy
behaves as the aggregate effective capital-labor ratio for the
economy tends to zero or infinity. Similarly, Chapter 2 investigates
two-sector models in which the steady-state conditions are not
fulfilled either because there are different rates of Harrod neutral
technical progress in each, sector, or because some capital-augmenting
technical progress is present in the investment sector. It is found
that these non-steady-state models parallel the steady-state growth
paths in that the rates of growth of the variables tend (in most
cases) to constant limits. However, differences arise between the
non-steady-state models and the steady-state model when factor shares
and the marginal product of capital are considered. Finally, each of
these chapters investigates how factor-augmenting technical progress
should be allocated within the economy, and considers under what
circumstances the steady-state path is found to be optimal.

In Chapter 3 the results of the first two chapters are briefly
summarized, and then the behavior of the non-steady-state economy is
compared and contrasted to the characteristics of an economy in which
the steady-state conditions are met. Though there is some similarity
between these cases, it is found that these non-steady-state economies
cannot replicate some of the major characteristics of the steady-state
path. Since it is seen that the occurrence of a steady-state is quite
unlikely, and since the non-steady-state economy does not generate all
the accepted characteristics of a growing economy, it must be concluded
that there is a basic dilemma facing the branch of economic theory that
attempts to replicate the stylized facts of economic growth.



The final chapter approaches the topic of growth from a
different perspective by investigating how an isolated firm in a
growing economy decides what growth rate and initial size to choose.
Subsequently, the chapter considers how changes in technical progress
or in cost parameters affect the decisions made by this isolated
firm.

Thesis Supervisor: Robert M. Solow

Title: Professor of Economics
Massachusetts Institute of Technology
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Chapter 1. The Bertrand-Vanek Model of Disequilibrium Growth -

A Synopsis and Extensions

I. Introduction

The modern theory of economic growth has progressed a long

way since the razor-age instability that characterized the so-called

Harrod-Domar model 16, 21]. Professor Solow's classic 1956

article 45], which showed how, by allowing smooth substitutability

in the production function one could replace the instability of the

Harrod-Domar model with the stability now characteristic of the neo-

classical growth models, opened the flood-gates for a seemingly end-

less stream of papers modifying and extending the basic one-sector

model. These extensions included the introduction of labor-augmenting

technical progress into the one-sector world, so that the model could

explain the increasing output per worker that seemed characteristic of

the real world [48]. Further modifications were pursued by allowing

the smooth substitutability of the Solow model to be replaced by

putty-clay or clay-clay models in which the capital-labor ratio was

(at least ex post) a technologically given datum [5, 24]. These models

showed that, assuming that Harrod neutral technical progress was

embodied in new machinery, the stability of the one-sector Solow model

prevailed, and all the fundamental results of this model held for the

vintage models.

Other extensions of the one-sector model included attempts to

explain the occurrence of this technical progress by resorting to the
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notion of learning-by-doing [2], as well as models that explored how

these one-sector models should be "controlled" in order to maximize

society's welfare [34, 37, 38]. While the one-sector model was being

extended, two-sector models arose. These models, for the most part,

emulated the convenient stable behavior that the one-sector models

possessed [57, 58]. Though it is true that stability is not guaran-

teed in these two-sector models, various conditions were developed [7,

57, 58] that provided for their stability. Consequently, the stability

of the model being assumed, extensions were made by allowing for the

presence of very special cases of factor-augmenting technical progress

[15, 54], and papers were produced that explored optimal behavior in

these models [43, 51].

Needless to say, a complete review of the growth literature

would be both exhaustive and unnecessary (for the most recent, and in

our opinion, best coverage of the various growth models, see Burmeister

and Dobell [9]). Yet, even with a cursory glimpse of the literature,

one is struck by one concept that runs through all these models - the

notion that a steady-state must exist. Consequently, all the extensions

1Broadly speaking, a steady-state may be defined as that state
of the world in which the effective capital-labor ratio tends to a

positive, finite limit. As a result of the constancy of the effective

capital-labor ratio, the output-factor elasticities and the marginal

product of capital all tend to positive, finite limits, and consequently

output and capital grow at the same constant rate. Also, output per

person is either constant in this steady-state, or else it grows at a
constant rate if some labor-augmenting technical progress is present.

In addition, for the two-sector models, the effective capital-labor ratio

in each sector is constant, as is the proportion of labor allocated to
each sector. While these results seem to comply well with reality, the

conditions needed for a steady-state to occur are quite stringent ones.
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of the one- and two-sector models are made within this constraint.

This is not to say that the economists producing these models

were unaware of the possibility of non-steady-state models - rather,

they chose to expand the steady-state models rather than to investigate

the "darker" side of the growth model that would occur if the steady-

state conditions were not fulfilled. The works of Kennedy [27],

Samuelson [42], and more recently, Chang [11] show the implicit concern

of economists about the possibility of non-steady-state models.

However, rather than investigate what would happen if the steady-state

did not occur, these models concentrated on developing mechanisms that

would assure the occurrence of the steady-state path. As is well-known,

these models assumed that a transformation curve between capital- and

labor-augmenting technical progress existed, and they attempted to show

under what conditions society (through individual entrepreneurial

decision-making) would choose the steady-state path. Though these

models are both interesting and informative, it is not clear to us that

either a transformation curve as postulated exists, or that entrepreneurs

behave as is assumed by these models.

Where, then, do all these new growth models leave us? Surpris-

ingly, they are not very far removed from the instability of the

original Harrod-Domar model. The steady-state condition for a one-sector

model (under the usual assumption that the aggregate production function

exhibits constant returns to scale) is a rather singular one indeed -

there can be no capital-augmenting technical progress (or else the

aggregate production function must be Cobb-Douglas). If any capital-

augmenting technical progress occurs, there is no steady-state, and the
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effective capital-labor ratio rushes away to infinity (for constant

returns to scale and positive capital-augmenting technical progress).

The steady-state conditions for a two-sector model are even more

stringent - there can be no capital-augmenting technical progress in

the investment sector, and Harrod neutral technical progress must occur

at the same rate in each sector (there can be Hicks neutral technical

progress in the consumption sector). If Cobb-Douglas production

functions occur in either sector, these conditions can be weakened;

if both production functions are Cobb-Douglas, then a steady-state

will occur.

The singularity of the conditions needed for a steady-state

(barring some guiding hand, as in the Kennedy-Chang models) is quite

apparent, and it was to this problem that Professor Vanek turned his

attention. In two earlier papers, Vanek 60, 61] considered the

behavior of a one-sector growth model, assuming that capital-augmenting

technological change did occur (though he maintained the assumption of

constant returns to scale). In a subsequent paper, Bertrand and Vanek

[4] further extended this model by allowing the aggregate production

function to assume any (constant) degree of homogeneity.

The purpose of this paper is to extend the basic one-sector

Bertrand-Vanek model and to consider two-sector models in which the

steady-state conditions are not fulfilled. As we shall see, the

fundamental problem in the one-sector model (when the steady-state

conditions are not fulfilled) is that the effective capital-labor ratio,

instead of tending to some finite limit, rushes away to either zero or

infinity. Thus, for example, if constant returns to scale prevails, the
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presence of any capital-augmenting technical progress causes society

to produce machinery faster than its effective labor force is growing

(unless the savings rate declines at a very special rate over time), so

that continual capital-deepening occurs. Consequently, the effective

capital-labor ratio (in this case) tends to infinity, and what happens

to the economy depends upon how effectively the new capital can be used.

Therefore, as one would expect, the aggregate elasticity of substitution,

since it indicates how effectively society can absorb this new capital,

plays a fundamental role in determining how this economy will behave.

In the two-sector model, our troubles are twofold. First of all,

if capital-augmenting technical progress occurs in the investment sector,

a problem equivalent to the one-sector case occurs in that society is

producing capital faster than its effective labor force is growing, so

that continual capital-deepening occurs. Consequently, the aggregate

effective capital-labor ratio tends to infinity, and the elasticities of

substitution in each sector (for reasons already explained) become

important in determining the asymptotic behavior of the economy.

Secondly, however, the two-sector model has an additional problem that

is unique to it (compared to the one-sector model), since it entails

continual reallocation of factors between the sectors. This problem

arises if Harrod technical progress occurs at different rates in the

two sectors (assuming that all technical progress is factor-augmenting,

and is classified as Harrod and [or] Hicks neutral technical progress),

so that, under competitive pricing (or efficient allocation of resources),

a continual shifting of factors between the sectors occurs even if the

aggregate effective capital-labor ratio were to remain constant.



Consequently, as we have already observed, the likelihood of a

steady-state solution is quite small. On the other hand, as we shall see

in Chapter 3, although the asymptotic equilibrium does meet some of the

stylized facts of a growing economy, it fails to satisfactorily explain

either the distribution of income within the society or the motivation

for continuing investment. This seeming paradox should be kept in mind

when reading the three chapters that deal with aggregate growth models,

for it necessitates, in our opinion, the disaggregation of the growth

model and a closer inspection of the micro-economy that is -implicitly

embedded within this aggregate model. Our fourth and final chapter

attempts to take a small step in this direction by considering how a

single, isolated firm determines both its optimal size and growth rate.

Our basic approach in this thesis will be to ask two separate

questions. First, we shall inquire how an aggregate economy would behave

if the steady-state conditions were not met, and how this economy would

differ (at an empirically observable level) from a steady-state economy.

Secondly, we investigate the different question that asks how a central

planner should allocate factor-augmenting technical progress (to

maximize certain criteria), assuming that a trade-off exists between

various types of factor-augmenting technical progress ( la Kennedy).

Our main interest in this latter question is to ascertain under what

conditions a central planner (or the invisible hand, as in the cases of

Kennedy-Chang) would choose to place the economy in a steady-state path.

In this first chapter we shall present the basic Bertrand-Vanek

model, we shall consider the steady-state possibilities that they

suggest, and we shall extend their analysis by considering the asymptotic
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growth rates of the variables if a steady-state does not occur. In

addition to considering how factor-augmenting technical progress should

be allocated within this economy, we shall present a model that, due

to the relationship between the "degree of homogeneity" of the

production function and the effective capital-labor ratio, causes a

steady-state (in a special sense of the word) to exist in the long-run.

Our second chapter investigates the asymptotic behavior of a

two-sector model, assuming that the steady-state conditions are not

fulfilled. Since, as explained earlier, the two-sector model faces two

distinct problems, our approach is to consider each of these problems

separately. First, we consider how the one-sector analogue of continual

capital-deepening effects the two-sector model. Subsequently, we

temporarily assume away the problem of capital-deepening, and we ask

instead what would happen if Harrod neutral technical progress occurred

at different rates in the two sectors. Finally, we combine these two

separate problems and show how any combinations of factor-augmenting

technical progress can be analyzed. In doing this we exhibit the

asymptotic growth rates for all variables in this two-sector model, and

we consider how a central planner should allocate various types of

factor-augmenting technical progress.

Our third chapter briefly summarizes the results of our first

two chapters and then proceeds to detail the ways in which the

asymptotic equilibrium differs (at an observable level) from the steady-

state path. Though we present some suggestions that might enable the

asymptotic equilibrium to duplicate the stylized facts of growth,

persistent doubt remains as to the likelihood of a steady-state solution



or as to the ability of the asymptotic equilibrium to duplicate these

stylized facts. Consequently, we suggest that further investigation

into the microeconomic characteristics of the economy, particularly in

so far as factor-pricing and investment decisions are concerned, is

essential.

Our last chapter then attempts a small step in this direction

by analyzing an isolated firm in a growing economy. In this partial

equilibrium model, which is based upon a paper by Professor Solow [49],

we investigate how various types of technical progress (and changes in

factor costs) effect the decisions made by the firm.

Let us now turn our attention to the basic Bertrand-Vanek model.

II. The Basic Bertrand-Vanek Model

As previously indicated, most one-sector growth models have

clung to the assumption that there is no capital-augmenting

technological progress and that the production function is homogeneous

of degree one everywhere. The Bertrand-Vanek model, which we plan to

discuss in this section (and which is more general than Vanek's two

earlier papers), relaxes both of these assumptions, though it does

assume that the degree of homogeneity of the production function is a

constant (but not necessarily equal to one). With their model, they

show that the existence of a steady-state is a rather singular affair,

and thus that growth theory (in this respect) has not come as far as one

might at first presume from the razor-edge instability of the Harrod-

Domar model.

In this chapter we plan to follow the basic Bertrand-Vanek
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model, elaborating on it in certain areas. For example, we extend

somewhat their discussion of the singular cases in which a steady-state

can exist. Also, we discuss in more detail the asymptotic growth rates

of the variables, and we also consider what would happen if the degree

of homogeneity of the production function were not constant.

Let us now outline the basic Bertrand-Vanek model:

a) All technological progress is assumed to be factor-
augmenting, and the production function is
assumed to have a constant degree of homogeneity.

1) Q = F(Ke bt,Leat ) = (Leat)hf(u) ; h = degree of homogeneity

u (Kebt)/(Leat ) (z)/(x) ; (L/L) = n

b) Factors are paid proportionally to their marginal product.

2) W (aQ/aL)/h ; R = (aQ/aK)/h

$n - [(aQ/aL)(L/Q)] ; Ok - [(aQ/aK)(K/Q)l ; $k + n = h ;

k ' On 

c) Capitalists and Workers save at constant rates (skasnl0):

If hl, this obviously represents competitive pricing.
However, for hl, it is more difficult to rationalize this pricing
assumption. One possible explanation for this assumption, based on
the presence of externalities that account for the non-constant

returns to scale, is presented in a paper by John Chipman, "External
Economies of Scale and Competitive Equilibrium," Quarterly Journal
of Economics, August 1970, pages 347-385.
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3) S = sQ= [(Sk k)/h + (nfn)/h]Q ; sk > s s n ;

S is the gross savings of the community

d) Capital depreciates at a constant rate c:

4) S = K+ cK ; (K/K) = [(sQ)/K] - c

Equations 1) - 4) are the basic ingredients of the Bertrand-

Vanek model. Consider the rate of change of the effective capital-

labor ratio:

(a+n)ht5) (u/u) = (K/K) + b - a - n = se f(u)]/K + b - a- n - c}

{[{se [(a+n)h-(an-b)]tf(u)}/u] + b - a - n - c}

A steady-state path implies that we can find a solution such

that [(u/u) = 0], or else that we can redefine the effective capital-

labor ratio so that, in those new units, the system will approach a

constant, finite, non-zero effective capital-labor ratio. Two

possibilities immediately occur (Bertand and Vanek, pages 750-1):

i) Cobb-Douglas production function - all technological
change reduces to the special case of labor-
augmenting technical progress

ii)3 The parameters are such that: (a+n)h = (a+n-b)

3For h=l, this reduces to the standard neoclassical steady-
state condition that there be no capital-augmenting technical progress
(b=O); otherwise, it implies: [b = (l-h)(a+n)]. Essentially this says
that a steady-state can occur only if the rate of capital-augmenting
technical progress is Just enough (and no more) to offset the decrease
in the effective capital-labor ratio that would occur as the economy
grows (due to decreasing returns to scale). For increasing returns to
scale, the interpretation is comparable, except that the capital-
augmenting technical progress must be negative (technical regression).
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After we discuss the Bertrand-Vanek model in which there is no steady-

state, we shall briefly consider these steady-state possibilities. At

that time we shall find that, while these constitute necessary conditions

for a steady-state, they are not sufficient. However, let us first

present the basic Bertrand-Vanek model before we discuss this problem

in more detail.

Following their analysis (their equations 8, 11, 12, 13,

and 14):

6) k (K/K) = (sQ)/K - c

7) (k/k) = [(k+c)/k][(a+n)h - k + (k+b-a-n)T]

8) T - k + E*n[(a-l)/(ah)] ; E [(ds/dk)(fk/s)]

1 > E 0 ; sk a sn > 0

9) k = [(a+n)h - (a+n-b)T]/(l-T) ; T 1;

k is the value(s) of k such that (k/k) =0 .

10) (k/k) [(k+c)/k(l-T)(k-k)

Bertrand and Vanek's procedure is to consider changes in the

rate of growth of capital and to study the locus of k (call it k ) such

that [k=0]. Equation 10) indicates that if T < 1 (and k > -c, as it

must be for s > 0 and non-zero, finite u), then whenever k < k, k

increases; and whenever k> k, then k decreases. Therefore, the k

locus is, for T < 1, similar to an asymptote; and if k tends to a

constant value as u , then k will tend to k (assuming that u > 0).

If T > 1, then k will diverge from the i locus.

These five equations are really the essence of the Bertrand-
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Vanek analysis; the rest of the task is merely to see what type of

behavior these equations imply. As we have seen, k is important in

determining the behavior of k; and k, in turn, depends only upon T

(and the various parameters). From the definition of T, we can place

limits on its potential values:

11) Min[O,(a-l)/a] s T s Max[h,(a-l)/a]

Since whether T 1 or T < 1 is obviously important, it

follows that the value of the parameter h is quite important (that is,

it is important whether there is increasing, constant, or decreasing

returns to scale). However, we have seen that it is also critical

whether:

12) h [(a+n-b)/(a+n)] . Therefore, let us write:

13) h* - [(a+n-b)/(a+n)] ; h h* + 6 . Then we find:

14) k {(a+n-b) + [(a+n)6}/(i-T)]}

Clearly, we can not say much more about k or T unless we

are willing to make some assumption about the production function or the

savings assumption.4

4Bertrand and Vanek briefly discuss this in a footnote on pages
748-9. They state that T is monotonic in u if: h > E[(a-l)/a]; this,
we believe, is not necessarily true. They apparently fail to consider
the changes in E caused by changes in u in arriving at the above

condition. Secondly, they state that k (the actual rate of growth of
capital) is monotonic in T - we are sure that they meant to say that k ,
the so-called "stationary locus", is monotonic in T. It is clearly
possible for k to first increase, then decrease - or vice versa. We
shall discuss the time path of k later in this chapter.
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(dk/dT) = {[(a+n)6]/(!-T) 2 } 0 as 6 > o .

Therefore, k is monotonic in T (though it is discontinuous at T=1).

Considering T, if sk sn (and hence, E=O), we find:
n

T k ; (dT/du) 0O as a > 1 .

Consequently, T

substitution is

If sk

assume that the

definition of T

is monotonic in u if sk-Sn and if the elasticity of

everywhere bounded from unity.

> s > 0 , the problem is more complicated. For simplicity,

production function is a C.E.S. function. From the

and E we can demonstrate the following:

17) T = %k + En[(a-l)/(ah)] ; E = [(sk-Sn) k]/[(Sk-Sn) k + hsn ] ;

n= (h-k)

If sn = O, then E = 1, and therefore:

18) T = k{ - [(a-l)/(ah)]} + [(a-l)/a] ,

which is monotonic in *k (or constant if h = [(a-l)/a]); note that

this result differs from the Bertrand-Vanek condition for the monotonicity

of T - see footnote 4). Therefore, T varies between h and [(a-l)/a]

in this case.

Finally, if sk > sn > 0 , we can show:

19) T = + {(h-$k)[(a-l)/(ah)][(sk-sn)k]/[( skn) + hsn]

If we take the derivative of this expression we find that T is

monotonic in k unless:

15)

16)
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20) s k > sn > 0 and h< [(Sk-sn)/sk][I a-ll/] (+ h < 1)

which differs from the Bertrand-Vanek criteria (page 749) unless

a > 1, and = h .

Since k is monotonic in T, and k is monotonic in u (if a is

bounded from one or else the function is a C.E.S. function), it follows

that k is monotonic in u unless condition 20) is fulfilled. However, if

h > 1, k is not continuous in u - there is a point of discontinuity at

T = 1 (it is possible that h> 1 and that T < 1 everywhere ,

provided that a is not everywhere bounded from one).

If the production function is of the C.E.S. variety, and if

equation 20) holds, then there will be a single interior extreme point

in k as a function of u.

Armed with this knowledge, we only need to know the behavior

of k as u+O or as u-s in order to complete the graph of k. Since

we have assumed a C.E.S. function (or else sk=s and that a is bounded

from one), sky 0 or Sk h as u-*O or as u- . Thus:

21) k- 0 implies k - (a+n)h if s # 0;

k k implies k [(a+n-b) +a{(a+n)h - (a+n-b)}] if sn = 0

22) 9k h implies k + [(bh)/(l-h)]

These values hold regardless of the nature of the function, and

they determine the asymptotic behavior of k, assuming that a is bounded

from one as u-+O and as u- .

Figures I-III exhibit the path of k, assuming that either

s= s and a bounded from one, or else that the function is a C.E.S.k n
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function, and that condition 20) is not fulfilled.5 If the function is

of the C.E.S. variety, but condition 20) is valid, then the curves will

look basi6ally the same except that there will be one interior extreme

point; the boundary values will be the same. (In the figures, the dotted

lines represent the path of (k,u) for given initial conditions.)

From equation 10), given the k curves, we can depict the path

of k in the (k,u) plane:

10) (k/k) = [(k+c)/k](l-T)(i-k)

As previously noted, whenever k < k, if T < 1, then k will

increase; and when k > k, T < 1, k decreases. Thus, we can see that

for h 1, whenever 6 > 0 (implies h > [(a+n-b)/(a+n)], u+- , and

for 6 < 0, u - 0. Similarly, the growth rate k approaches the

"stationary rate" k as u -+ 0 or as u-s , providing that k is

finite. If k is inifinite (h=l, a> 1), k tends to infinity. For h=l,

a < 1, 6 < 0, k tends to minus infinity, and k, the asymptotic growth

rate, tends to its lower bound, [-c]. Thus, in these cases the

asymptotic growth rate is independent of initial conditions, and depends

only upon the various parameters of the problem. We note that in all

cases the asymptotic growth rate is larger for a > 1 than for a < 1,

given the values of the other parameters.

When we consider the case h > 1, the result is slightly

5If sk > s = O, then the asymptotic value of k as 0k + is

{(a+n-b) + a[(a+n)h - (a+n-b)l] , instead of ust [(a+n)h] , as we have

seen in equation 21). Otherwise, the diagrams can represent that case

as well.
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different - the asymptotic growth rate of the system may depend upon

the initial conditions. For example, we see that for 6 > O, h > 1,

a > 1, then ke-; however, if 6 > O, h > 1, a < 1, the asymptotic growth

rate tends to -c (as u+O) or to (a+n)h (as uno-), depending upon the

initial conditions (see Figure III). It would seem that u-s is the more

likely result, though the other result is possible (providing that

[(bh)/(l-h)] > -c ).

Similarly, if 6 < O, h > 1 (implies b < 0), for a 1 there is

a unique asymptotic growth rate to which the system tends -c]. However,

if a > 1, it is possible that either k-+ or k + (a+n)h [o in the

former case, and u 0 in the latter case].

Since, given the initial effective capital-labor ratio, s, the

aggregate gross savings rate, determines the initial rate of growth [k(O)],

it is possible in these two cases [6>0, h>l, a<l or 6<0, h>l, a>l] that

a larger savings rate could lead to a larger asymptotic growth rate -

contrary to the normal neoclassical result. This relation, though, is

a step function - there might exist a critical savings rate [given u(0)]

such that below that critical savings rate the system would tend to the

smaller growth rate, whereas for larger savings rates the system would

tend to the larger growth rate. Of course, for initial values of u, the

savings rate might not be sufficient to alter the growth rate of the

system (asymptotically).

In summary, if the function is a C.E.S. function, or if sk = sn

6Bertrand and Vanek noted this possibility (page 746) for the
case h>l, 6>0. However, they did not elaborate on the elasticity

condition, and they did not consider the case h > 1, < 0, a > 1
(because they assume b 0).
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(and a is bounded from one), then there is a unique asymptotic growth

rate to which the system tends for h 1; and this growth rate will,

in general, depend upon all the parameters of the model. For h > 1, it

is possible that initial conditions may effect the asymptotic growth

rate. These asymptotic growth rates are finite except for h 1, a> 1,

6 >0 and perhaps h > 1, a > 1, 6 < 0. Also, if > 0, u, the effective

capital-labor ratio, tends to infinity except perhaps in the case 6 > 0,

h > 1, a < 1. Similarly, for 6 < 0, u + 0, except perhaps if 6 < 0,

h > 1, a> 1.

A. Asymptotic Growth Rates - General Case

Now that we have completed our study of the special case

discussed above, we can turn our attention to the more general case in

which no restrictions are placed upon the production function (or the

savings parameters).

As we have seen from equation 14):

14) k = (a+n-b) + [(a+n)6]/(l-T) ; 6 = h - [(a+n-b)/(a+n)]

As long as T < 1, k must always either be greater or less than (a+n-b).

But we know that T < 1 if h < 1; therefore, for h < 1, we know that k

always lies above or below (a+n-b) [we are excluding the case 6= 0].

Similarly, from equation 10):

10) (k) =(k [(k+c)/k(l-T)(-k)

As long as T < 1, then k increases when below i, and decreases

when above k. Suppose 6> 0; then k > (a+n-b). Whenever k < (a+n-b),
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it increases (though u decreases); since the growth rate (k/k) is

positive (if k < O, it is still true that k > 0), k must increase

and eventually reach and surpass (a+n-b). When this occurs, u begins to

increase; but since k > (a+n-b), it follows that k will remain above

(a+n-b), and thus u-+. If k approaches a limit as u-+ (as it will if

a is bounded from, or tends to, one), then k will approach k. Should k

fluctuate between two limits, then k similarly will fluctuate between

those limits.

Similarly we can show that if 6 < 0, h < 1, then eventually u 0,

and k approaches the limiting value of k as u+O, or else it fluctuates

between the limits of k should a fluctuate between being greater than

and less than one.

In summary, when h < 1, 6 > 0, then u, and k approaches the

asymptotic value of k (determined by Ok) as u-+; and when h < 1, 6 < 0,

then u -+ 0, and k tends to the asymptotic value of k as u + O. There is,

of course, no necessity that the path of k be monotonic.

If h = 1, the situation is much the same. It is now possible

that T = 1, but since we expect the output-labor elasticity to be

positive for non-zero, finite values of u (T=1 implies k=1 , n=0 for h=l),

T can only be one asymptotically. Therefore, k is again always either

larger or smaller than (a+n-b). The only real difference between this

case and the previous case is that the limit of k need not be finite.

Thus, if a > 1 as u, then the limit of k is unbounded and, for 6 > 0

(and a > 1), k tends to infinity since, from equation 7) with h=l:

(k/k) = [(k+c)/k][(a+n-k)(l-T) + bT]7)
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and for finite k, (k/k) -+ [(k+c)/k]b as T - 1. Thus, in this case,

k-s as u-, for h = , 6 > 0, a > 1.7

Similarly, for h = , 6 < O, a < l, k * -a as u - O. We

have already seen that for 6 < 0, u -+ 0; however, there is a lower

bound on the rate of growth of capital (due to depreciation) equal to

-c. Thus, in this case, k -+ -c.

For h > 1, however, the story is slightly more complicated. In

general, it is now possible for T to exceed one, and thus we can not say

that k > (a+n-b) when 6 > 0 and that k < (a+n-b) when 6 < 0. As an

example, suppose that 6 < 0 for h > 1 (this implies b < 0). Then:

7Though Bertrand and Vanek do not explicitly discuss the

growth rate of K, they find it implausible that (/K) shoud tend to
infinity since (pages 747-748): "The capital-labor ratio in efficiency
units will be increasing so that it could be expected that k would
eventually decrease, leading to a T less than unity (that is, this
would necessarily happen if the marginal product of capital eventually
became zero with increasing [x/z])." This statement is wrong on three
counts:

i) If a > 1, then k will increase, not decrease, as the

effective capital-labor ratio increases.

ii) Obviously, it is possible for the marginal product of
capital to tend to zero and for k to remain

greater than zero. If u (the effective capital-
labor ratio) tends to infinity and if a > 1, then
the marginal product of capital may tend to zero,
but k - h > 1.

iii) Even if u tends to infinity, the MPK may not tend to
zero (even if the Inada conditions hold) since:

MPK = etf(u)

(For sn=0, the MPK tends to a positive constant

[a<l], though k*O. For more information on the

asymptotic behavior of the MPK, see Chapter 3).

Consequently, they consider the case in which k [=(K/K)] +-
as an exceptional one; if they are speaking "empirically", we can
hardly disagree. However, as an a priori possibility, it is ust as
likely as the case in which k - 0 and K + (a+n)h.



14) k= (a+n-b) + [(a+n)61/(l-T)

10) (k/k) - [(k+c)/k](l-T)(k-k)

Consider the minimum value of k such that k > (a+n-b) :

23) Min k such that k > (a+n-b) , 6<0, = [(bh)/(l-h)] > (a+n-b)

If k(O) < [(bh)/(l-h)] , then k must decrease since, for T > 1, k(O) < k

and k < O, while for T < 1, k(O) > k , and again k < O. Thus, once

k < [(bh)/(l-h)], it must decrease, eventually fall below (a+n-b), and

hence u-+O. As u-O, the asymptotic growth rate tends to Max[lim(k), -c],
u+O

or else it fluctuates between the appropriate limits should a (and k)

fluctuate. However, if k(O) > [(bh)/(l-h)] , it is possible that k > k ,

T > 1; in this case, k would increase without bound, and uX. Note,

however, that T>l as u- implies a 1, so this case cannot occur if

a < 1 as u. (However, it may occur if a fluctuates between being

greater and less than one; the larger the intervals in u for which a < 1,

the more likely k is to fall, and hence stay, below [(bh)/(l-h)].)

Similarly, for 6 > 0, h > 1, it is now possible for k < (a+n-b).

This time we are interested in the maximum value of k such that

k < (a+n-b) :

24) Max k such that k < (a+n-b), 6> 0, = [(bh)/(l-h)] < (a+n-b)

As in the other case, if k(O) > [(bh)/(l-h)] and k(O) < k ,

T < 1, then k increases; and if k(O) > k , T > 1, again k increases.

Thus, once k > [(bh)/(l-h)] , it must become larger than (a+n-b), and

hence u--. However, if k(O) < [(bh)/(l-h)],and T > 1, then k decreases,

8If T=l, from equation 7) we can see:

(k/k) = [(k+c)/k][(a+n)(h-l) + b] < 0 since h < [(a+n-b)/(a+n)]

34
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approaching (-c) as its lower limit. For T > 1, as u-O, this implies

a < 1; thus this case cannot occur if a 1 as u+O.

in summary, if 6 > 0, then u except possibly for the case

6>0, h>l, a<l as uO. Similarly, if 6 < 0, then u-+O with the possible

exception of the case 6<0, h>l, a>l as u. The asymptotic growth rate

is determined by the value of k as u tends to infinity or zero, depending

upon which case we are considering.

As we have seen, there is no difference between the general

case and the case in which the production function is a C.E.S. function

when we are considering the asymptotic behavior of the system. However,

should we allow a to fluctutate between being asymptotically greater and

less than one, a difference would emerge. Finally, we see that there is

no need for the time path of k to be monontonic. Also, in our two

;perverse" cases it is possible, as explained earlier, for the savings

rate to alter the asymptotic growth rate of the system (though only two

growth rates are possible if a does not fluctuate between being greater

and less than one).

This completes our review of the basic Bertrand-Vanek model

(and our modifications of it). Before considering the two possible

steady-state cases, let us now consider the growth rates of the other

variables.

B. Asymptotic Growth Rates of Other Variables

Given the growth rate of capital, we are able to calculate the

growth rates of the other variables from their definitions:

25) u = [(Ke )/(Leat)] ; (u/u) = (k+b-a-n) ; k = (K/K)
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26) Q = e n)htf() ; (Q/Q) = (a+n) n + (k+b)$k

27) (C/L) = (l-s)(Q/L) ; (/C)- (L/L) = (Q/Q)- n since

s-O asymptotically, and we assume sk < 1 (hence, s < 1).

28) W = [(Q/L)/h] = e[(a+n)h-n]t[hf(u) - uf'(u)]

(W/W) = (a+n)h - n + k(u/u)[1 - (a-l)/(ah)]

29) R = [(aQ/aK)/h] = [e tf'(u)]/h , X [(a+n)h - (a+n-b)] ;

(R/R) = + [*k{(h-l)/h} - { n/(oh)}](u/u)

In some cases (for example, h=l, 6>0, a>l) we are faced with an

expression for (R/R) involving: [0-a]. In these cases we can use

l'HSpital's rule to evaluate the expression. In most other cases, the

results are quite straightforward. Table I summarizes the growth rates

for the above variables. In some cases, the asymptotic growth rates

depend upon which savings assumption is used - these cases are so

indicated in the Table. Also, for 6 < O, it is possible that k would

tend to some finite value, which might be either greater or less than

[-c] - the rate of depreciation of capital. Naturally, capital cannot

decrease at a rate faster than [-ci (barring direct consumption or

disposal of capital) - again, these cases are so indicated in the Table.

From Table I we can study the asymptotic behavior of the

various variables. As an example, suppose we are interested in per

capita consumption. From Table I we can readily see that whenever 6>0,

ab is sufficient to guarantee that per capita consumption is always

increasing (assuming a>O). However, for decreasing returns to scale it

is possible that per capita consumption actually declines over time if

capital-augmenting technical progress occurs more rapidly than labor-
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TABLE I - Asymptotic Values and Growth Rates of Variables

Asymptotic Values Asymptotic Growth Rates

a u Ok On
k__n____

6[h-(a+n-b) >0
(a+n)

Limit as u -+ X = [(a+n)h - (a+n-b) 

h<l [-*b>O] >1 h o [X/(1-h) [(bh)/(l-h)]

[(a+n)(h-O)+bO*]k kt
s > 0
n

s = O
n

2) h- [Eb>O]

(a+n)h<1 0 O

<1

>1

0o o

co 1

h Xo

0

(a+n-b) + a

co

s > 0
n

-l

s = 
n

3) h>l

co f*<l 1-· [b/(l-0J) kk k k

co 0

<1 c 0

>1 h

1 b

1 ob

[(a+n) + (b4*)

k

(a+n)

[(a+n-b) + b]

0 0

co 0>l h-l)

1 (h-l)

OD f<l h-Ok k]k k k

h X

[(a+n)h - (a+n-b)4]
k

(1- *)k(

(a+n)h

<1 0 O h X [(a+n-b) + Xa]

PERVERSE CASE u+O AND k(O) < [(bh)/(l-h)]

<1 0 h 0

-1 0 f>l h-O*

(b-c-a-n) -c

(b-c-a-n)

Cases U

1)

K

I

s >0
n

<1 co O

s
n

= 0

--- -

+1

-1

4.1

+l

-C

c <h h-O*o )k k k



- Continued

Cases

6>0

1) h<l [b>O]

a>1

cal, 0*<h

c<l, s >0n

C<1, s =0n

2) hl [-+b>O]

c>1l

-+1l, 0*<1

0<l, sn>0

a<l, s =0n

Q -

Asymptotic Growth Rates

(C/L) W= [(aQ/aL)/h]

Growth Rates as u - -

[bh/(1-h)]

Same as K

(a+n)h

(a+n)h

Same as

(a+n)

(a+n)

K

A/(l-h) + (a-b)

i/(-k) .+ (a-b)

A + (a-b)

+ (a-b)

a+[bf*/(l- *)]

a

a

A/[(1-h)o] +(a-b)

Same as (C/L)

A + (a-b)

+ (a-b)

Same as (C/L)

a

a

R=[ (aQ/aK)/h]

0

0

0

[(a-l)/a]b

0

3) h>l

a>1

a+l, * 1

0<1, sn>0

c<l, s =0
n

PERVERSE CASE

a<1

a+l, >l

0

o

Same as

(a+n)h

(a+n)h

K i/(1-k) + (a-b)

(h-l)n + a

(h-l)n + a

u-+O AND

h(b-c)<O h(b-c) - n

((a+n)h +
f(b-c-a-n)]

[(a+n)h -n I

*(b-c-a-n)]

Same as (C/L)

(h-l)n + a

(h-l)n + a

k(O) < [(bh)/(l-h)]

[((-l)/a][h(b-c)
-n-(b-c-a-n)]

P. Same as (C/L)

A

0

[(a-1)/a]

O

[bh+c(l-h) ]'<O

[(a+n)h +c +
0*(b-c-a-n) ]
It

TABLE I

37a
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TABLE I - Continued

Cases

6<0

1) h<l:

s >0
n

s 
n

Asymptotic Values Asymptotic Growth Rates

a u Ok On u K

Limit as uO

>1 0 0 -h

>1 0 0 h

41 0 O h-O #

Ac

[A/(l-ok)]

(a+n)h

t[(a+n-b) + Ao]

t[(a+n)h - (a+n-b)$*]

t[(bh)/(l-h)]<1 0 h 0 [A/(l-h)]

2) h=l [4-b<O]

s > 0
n

s = 0
n

3) h>l [-)b<O]

> 0
n

s = 0
n

>1 0 0

>1 0 0

-1 0 0<1

<1 0 1

>1 O 0

>1 0 0

1 0 O*>

-1 0 0 *<1

1

1

k

0

h

h

h-k 

h-

b

[b/(l-0*)]

(b-c-a-n)

Aa

(b-c-a-n)

(a+n)

t[(a+n-b) + b]

t[(a+n)+ (bf$)/(1-)]

-c

(a+n)h

t[(a+n-b) + Ao]

-C

t[(a+n)h - (a+n-b) *]

(-Wx)

PERVERSE CASE

<1

>1

-+1

0 h

u-* AND

h

= ~1

0

k(O)

0

h- #k

(b-c-a-n)

> [(bh)/(l-h)]

co

-c

t In these cases it is possible that the given rates of growth for K are
less than [-c]; in that case, [-c] becomes the growth rate for K,
and the other growth rates (for other variables) are correspondingly
modified.
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TABLE I - Continued

Asymptotic Growth Rates

Q (C/L) W = [(aQ/L)/h]

Growth Rates as u -+ 0

(a+n)h

(a+n)h

Same as K

[bh/(l-h)]

(a+n)h - n

(a+n)h - n

/( ~-nk) + (a-b)

[(b+n)h-n]/(l1-h)

(a+n)h - n

(a+n)h - n

Same as (C/L)

A/[(1-h)a] +(a-b)

R-[ (aQ/aK)/h]

[(a-1)/a]x

0

0
O

a

2) h=l [b<O]

>1, s >0O (a+n)
n

al, s =0 (a+n)

ol, k*<1 Same as

o<l (b-c)

a

K

a

a + [b(l--)]

(b-c-n)

a

Same as (C/L)

[(b-c-n)-a(1-a)]

(a)

[(a-1)/a]b

0

0

b

3) h>l [+b<C

c>1, >0n

a>1, s =0

o-L, *>1

oa1, *<1

a<l

(a+n)h

(a+n)h

[(a+n)h +
, (b-c-a-n)]

Same as K

h(b-c)

(h-1)n + a

(h-1)n + a

[(a+n)h -n +
9*(b-c-a-n)]

x/(-+k) + (a-b)

h(b-c) - n

(h-1)n + a [(a-)/o]X

(h-1)n + a 0

Same as (C/L) [(a+n)h +c +
* (b-c-a-n) ]
k

Same as (C/L) 0

[h(b-c) -n - [bh + c(l-h)]
{(a-1)/a}(b-c-a-n)]

PERVERSE CASE

a>1

-1, k

u .- AND k(O) > [(bh)/(l-h)]

Cases

6<0
1) h<l

a>l, 

o>1, 

a+1, 

o<l

s >0
n

=0
n

k

· .,, . , , -
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augmenting technical progress.

Similarly, for 6 < 0, a b suffices to guarantee that per

capita consumption is declining in the long run. However, for a > b

it is possible (though not necessary) that per capita consumption would

be increasing over time. Thus, the value of 6 alone does not suffice

to determine how per capita consumption behaves; rather, we need to

consider all the parameters, and specifically whether capital- or

labor-augmenting technological progress is occurring at the faster rate.

(In this discussion we have ignored the two "perverse" cases mentioned

earlier in this chapter).

C. Steady-State Possibilities

Before considering how technical progress should be allocated

within this economy in order to maximize the discounted stream of

consumption (and welfare), let us briefly consider the two steady-state

possibilities mentioned by Bertrand-Vanek (pages 750-751):

i) a = 1 everywhere (Cobb-Douglas production function)

ii) [(a+n)h = (a+n-b)]

As we shall see, either of these conditions is merely a necessary, but

not sufficient, condition for the existence and stability of the steady-

state path.

Consider case i) first:

30) Q = (Kebt)k(Leat)(h-k) ; ( ok constant)

Using Vanek's pricing assumption:

31) s = [skok/h] + [Snn/h] S ss ; s* is a constant, and defined



to be the average gross savings rate. If k 1, we can write:

32) Q = Kk[Loexp 1(a+n)h-(a+n-b)k)t/(l-k) } ] ( 1 - k ) k 1

= Kk(L A)(1-k) ; L L ent0 0

Define w = [K/LoA] ; then:

33) (w/w) = s*Q/K - c - [(a+n)h - (a+n-b)4k]/(l-k)

* (kl) - c - [(a+n)h - (a+n-b)4k]/( k)

If k < 1 (or k < h < 1), a unique stable equilibrium to

equation 33) exists. However, if ~k > 1, then no equilibrium exists if:

34) -c + [(a+n)(h-%k) + bk]/(4k-l) _ 0 ;

If c=O and b O, then the expression in equation 34) will be positive, and

no steady-state equilibrium exists, despite the fact that the production

function is Cobb-Douglas. Otherwise, there exists a unique w* such that:

34') At w*, (w/w) = ; and (w/w) ~ 0 as w w*

Therefore, for k > 1 either no equilibrium exists, or else a unique

unstable equilibrium exists. Finally, if k = 1, we find:

35) Q K[L ])6 ; 6 = [(a+n)h - (a+n-b)]

K = s*K[LO]
( h -l )e

and no steady-state exists (in which the MPK and Q/K are constant)

unless 6 = O, which is really ust case ii). (Even if 6 = 0, in general,

the effective capital-labor ratio will tend to zero or infinity. However,

the MPK and Q/K and the shares of each factor - under Vanek's pricing

assumption - will tend to constant values) Thus, in the case of Cobb-

Douglas production functions it must be that k<l or 6=0 (the latter being



our second special case) for a steady-state to exist and to be stable.

Consider now the second case:

ii) [(a+n)h =\(a+n-b)] + 6 = o

This case represents the other steady-state possibility proposed by

Bertrand-Vanek. Consider (u/u) :

36) (u/u) = s*f(u)/u + b - a - n - c ; [s* = (Sk k/h) + (s nn/h)]

For a steady-state to exist it must be true that:9

37) b c (a+n+c)

Since 6 = O, equation 36), which shows the rate of growth of the effective

capital-labor ratio, does not explicitly depend on time, and so it

would appear that we are in the traditional neoclassical world. However,

we must remember that for bO, the production function does not exhibit

constant returns to scale. From equation 36) we find:

38) d(u/u) [(sk-sn)f"/h] + [snf(k -1)/2
du

If < 1 everywhere, then this expression is never positive (assuming

k > Sn and f"<O; note that for h>l, it is possible that f">O,

especially for a C.E.S. function). Therefore, if the Inada conditions

hold, then a unique, stable steady-state exists.1 0

9This condition must be fulfilled since h [(a+n-b)/(a+n)]>O.

Therefore, h>O implies (a+n-b)>O, and thus [b < (a+n+c)] if c0.

1 0The Inada conditions are overly strong - it suffices that:

skf(O) > (a+n+c-b) and lim[f(u)/u] < (a+n+c-b)
us+
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However, suppose h>l (b<O), so that it is possible that k>l .

In that case:

39) d(u/u) > 0 for k > 1. (for simplicity we assume that Sk=sn).
du

Several possibilities now arise:

a) If [sf(u)/u] > (a+n+c-b) for all values of u, then u,
and no steady-state equilibrium exists.

b) A unique unstable equilibrium exists if ~k > 1 everywhere
and lim[sf(u)/u] < (a+n+c-b).

u-O

c) Many equilibria (stable and/or unstable) may exist.

For example, suppose that sk=sn, and that the production

function is a C.E.S. function. Then:

40) d(f/u) = (f/u 2)(k-1) ) , and therefore (f/u) has only one
du

interior extreme point, which is a maximum (minimum) for a<l (a>l), and

it occurs at u* such that *k(U*) = 1. In this case, there are

three possibilities:

i) No equilibrium exists and ue (u-*O) for a>l (a<l).

ii) There are two values of u such that (u/u) = 0, the first

value of u being a stable (unstable) equilibrium,

the second an unstable (stable) equilibrium for

a > 1 (a < 1).

iii) One equilibrium occurs at the tangency between (sf/u) and

the line (a+n+c-b). This tangency occurs at u* such

that 4k(U*) = 1, and it is stable (unstable) for

u<u* and unstable (stable) for u>u* if a>l (a<l).

Thus, the Bertrand-Vanek statement that a steady-state will exist



if either =l or [(a+n)h = (a+n-b)] proves to be a necessary, but not

sufficient, condition for the existence and stability of the steady-state

path. Particularly, if h>l (as seems possible; however, b<O does not

seem too plausible), then no steady-state will result in case i) if $kl;

and in case ii), for h>l, it is possible that there are none, one, or

several equilibria, some of which may well be unstable.

D. The Savings Rate and the Bertrand-Vanek Steady-State

In the previous section we have seen that, even if the Bertrand-

Vanek conditions for a steady-state are fulfilled, there may not be a

steady-state equilibrium (or it may be unstable). For the case h<l, 6=0,

a steady-state will occur and the savings rate serves to determine the

effective capital-labor ratio, as in the traditional neoclassical growth

models.

However, if h>l (and 6=0), the savings rate may play an even

more influential role. We have seen in the prior section that in this

case several possible roots of [(u/u)= 0] may occur, some of which are

stable, others unstable. Particularly, if the function is a C.E.S.

function, there may be two roots to the (u/u) = 0 equation. For a< 1,

given s, if u is initially "too small", then u will tend to zero; other-

wise, it will tend to its steady-state value. Conversely, for a>l,

if u(O) is "sufficiently large", then u will tend to infinity; otherwise

it will tend to its steady-state value.

How does a change in the savings rate affect this system? In order

to answer this question, consider Figure 4 (page 44). If we consider the

case a< 1, we see that if u(O) < u , then u+O; if u(O) > u, then uu*;



FIGURE IV Effect of the Savings Rate on the Bertrand-Vanek

Steady-State Growth Model - Assuming Increasing
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and u(O) = u corresponds to the unstable equilibrium. As s increases,

u0 decreases an and u increases. If the initial u [u(O)] exceeds u, then

the only effect of an increase in the savings rate is to increase the

effective capital-labor ratio to which the system tends. However, if

u(O) < uo , it is possible that an increase in s may lower u sufficiently

so that the economy may tend to the stable root (instead of the

effective capital-labor ratio tending to zero). That is, for given u(O)

there may exist a s (it is possible that u tends to zero for all s 1)

such that:

u*
41) u u as s s

o0

Obviously, the role of the savings rate is potentially more important

in this model than in the normal steady-state model.

Similarly for a>l, there exists a u such that:

42) u as u(O) 

As we can see from Figure IV, an increase in s decreases u and increases

u*. Consequently, it is possible that, for given u(O), there may exist

a s such that:

43) u + u as s > s

U*

Therefore, assuming the Bertrand-Vanek steady-state exists, an

increase in the savings rate, in addition to increasing the stable

steady-state root, also increases the probability (for given initial
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conditions) that, for o<l, the system will converge to that locally

stable root; whereas for a>l, an increase in the savings rate increases

the probability that u-+. Consequently, a slight increase in the savings

rate may prove more rewarding in this system than in the conventional

11,12
steady-state models.

Now that we have considered the effects of the savings rate on

this steady-state model, let us investigate how technological progress

should be allocated between capital and labor in order to maximize

society's welfare.

III. Kennedy-Von Weizsgcker Revisited

A. Maximizing the Asymptotic Rate of Growth of Consumption

As has been done by others for the special case of constant

returns to scale, we can pose the following question:

"If a planner faces a transformation curve relating the rate of
capital-augmenting technical progress to the rate of labor-
augmenting technical progress, how should he allocate
technological progress within this society?"

Specifically, assume the following transformation curve exists:

llNote that, if desired, the increase in the savings rate need

only be temporary, until such time as u(T) is "sufficiently large" to
either approach u* (a<l) or to tend to infinity (a>l). Once this point
is reached, the savings rate could be decreased again, if that were
deemed desirable.

12If h>l, bO, then un (barring the perverse case). However,

if h<l, it is possible that successive increases in n (for given rates
of technical progress) may change the economy from an explosive one
(6>0, u), to a steady-state economy (6=0), to a decaying economy

(6<0, uO).



44) b t(a) ; ' s " < 0 ; R(A) = 0 and (0O) = B.

In equation 44), a represents the rate of labor-augmenting technical

progress and b the rate of capital-augmenting technical progress. 3

Before attempting to maximize the discounted stream of

consumption, let us attempt to answer a slightly easier question -

what should the planner do if he desires to maximize the asymptotic rate

of growth of per capita consumption? First, consider the case h<l.

Define:

45) h* = [(a+n-b)/(a+n)]

As we have seen, if h < h* (6<0), then u+O; if h > h*, u ; and if

h = h*, a steady-state exists, is unique and is stable (for b0). Given

h, the degree of homogeneity of the production function, there exists an

a, b(A) such that:

> < 15
46) h > h* as a ; a. Also, define:

1 3Though this is not necessary, we shall suppose for simplicity
that neither a nor b can be negative. However, this assumption can
readily be relaxed. The assumption that there can be no "technical
regression" is implicitly adopted by Bertrand-Vanek; Kennedy, however,
does permit negative rates of factor-augmenting technical "progress".

14 If h>l (b-0), al, then the asymptotic rate of growth of
consumption may not exist - it will be unbounded. However, if k (=[/K])
tends to infinity, for a>l, then $k* h and T+ h. Therefore:

(k/k) -+ [(k+c)/k][k(h-l) + b]
In this case, in order to maximize the rate of growth of the rate of
growth of consumption (which is still unbounded for h>l) all technical
progress should be capital-augmenting.

1 5For h<l, aA, b=O guarantees that h<h*. However, it is
possible that if Bn, then h<h* - that is, if h[(n-B)/n], then
h<h*, u*O and no steady-state is possible. We shall ignore this
possibility; the proper behavior in this case is readily ascertainable
from examining Table I.
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47) = [(a+n)h - (a+n-b)] ; (a) 0 as a 

From Table I we can see that:

[d(C/L)]/[C/L] = [A/(1-%k)] + (a-b) for h<l, k = [(uf')/f]
dt

In equation 48), A depends only upon a (given the values of the other

parameters), whereas k depends upon , the elasticity of substitution,

as well as on the behavior of u ( and hence on [a-A]).

Therefore, we find:

49) Ok + h if a > , o

Ok c*, O<c*<h if

Ok + O if a > , a

< 1

> 1

or a < , a > 

or if a+l, u+0, a>A, or al41, un, a<a

or a < , a <1

Returning to equation 48), and letting Z = [(C/C) - n], we find:

(dZ/da) = [(h-%k) + b'(a)Ok]/(l-%k) ; b'(a) = (db/da)

From equation 50) we can determine how to allocate technical progress in

order to maximize the asymptotic rate of growth of Z. Thus, suppose

a < 1 as u-NO and as u-s :

a<l: a>a implies [kh] and thus

a<& implies [k -0] and thus

(dZ/da) [(b'k)/(l-4k)] < 

(dZ/da) -+ [h/(l-0k)] > O

From equation 51) we can see that if a<1 as uO, it does not pay to

increase a above ; similarly, if a<l as u-, it does not pay to

decrease a below . Thus, in this case we find that we do best to

choose a = , and hence to choose the steady-state solution.

If a>l, on the other hand, it always pays to move away from ;

50)

51)

48)
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in fact, if a>l as uO and as u+m, then the point a=& is a minimum,

and we must compare the two boundary solutions (a=A, b=O or a=O, b=B)

to see which gives the larger rate of growth of per capita consumption.

If a=l everywhere then, as previously discussed, a steady-state

exists (we are assuming h<l) and the rate of growth of consumption is

maximized when:

(db/da) = -[(h-$k)/ k] ; k a constant

Finally, we need to consider the case in which a-l as u-O or as

u-+. Let k+C* as u-+O, and let $k as u. The growth rate of per

capita consumption is:

52) [d(C/L)]/[C/L] = [A/(1-k)] + (a-b)
dt

For a given k (c* or c) there is a unique (a,b) which maximizes this

expression, determined by:

53) a*, b* such that b'(a*) = -[(h-c*)/c*] ; or

a , b such that b'(a) = -[(h-c)/c ]

Consider the following expression:

54) M = Max[{X/(1- k)} + (a-b)] = M($k)
{a}

Thus, M is a function of k alone. Consider how M changes as k changes:

55) (dM/d k) {[(b-a)/(l-Pk)] + [M/(1-k)] +

[(Ok(db/da) + (h-0k))(da/dk)]/(l-k)}

Since M is maximized over a, we can find from equations 53) and 55):
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56) (dM/d k) [(b-a) + M]/(l- k) = [2/(1-.k) ]

Thus, an extremum occurs at X = 0. For the second derivative we find:

57) (d2M/da2) {= [(b'-l)(da/dok) + (M/dok)]/(l-*k) +

[(b-a) + M]/(1-k)2 } = [(b'-l)(da/d k)/(l-pk)

since (dM/d4k) = 0 at an extremum.

However, from equation 53) it is clear that:

58) (da/d k ) < 0 ; (b'-l) < 0

In other words, the larger is the asymptotic value of the output-capital

elasticity, the more technical progress that should be allocated to

capital-augmenting technology. Therefore:

59) M = Max[{X/(1-4k)} + (a-b)] ; at k = k a a and
a

M is a minimum; 4k> ~k implies a < , (dM/dk) > 0 ;

0k< k implies a > , (dM/d k ) < 0

It is clear that no interior maximum exists for M (though it

is possible that aO for <k < $k < h, and a--A, b=O for ~k > k > 0);

boundary maxima occur at ~k = 0 and at gk = h.

60) M(O) = (A+n)h - n ; M(h) = [(Bh)/(l-h)] - n

M(O) > M(h) as h ; [(A+n-B)/(A+n)] ; h < 1

Figure V (page 51) exhibits the behavior of M. Note also that M(4k ) 0

as - > .

Suppose, as an example, that o+1 as u+O, and that a>l as u-e.
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FIGURE V - Graph of the Maximum Rate of Growth of Consumption as a

Function of the Output-Capital Elasticity

M

[(Bh)/(l-h) -n]

[(A+n)h -n]- - -

M

=k=O ^ h rkk %k

Let k c* as u+-O:

61) c* > k implies a* < a (and uso). Hence, choose a = a

c* = *k implies a* = a (steady-state). Hence, choose a = a

c* < k implies a* > a (and u-+O). Hence, choose a = a*

That is, if c* is greater than 4k' the corresponding a* would be such

that u-, contradicting the assumption that uO. Therefore, the best

that we can do in this case is to choose the steady-state case, a.

However, for c*< *k we can do better by letting aa* (and uO).

We have already seen what we should do if a>l as u-+:

62) Choose: a=O, bB; [d(C/L)]/[C/L] = [(Bh)/(l-h) - n] = M(h)
dt

Therefore, if c* > k' and a+l as uO, but >l as u-, we

would do best by letting a=O, b=B since M(h) > M(ik). If c* < k'

A
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then M(O)>M(c*)>M(Ok);' if M(O)M(h), again we do better by choosing

a=O, b=B. However, if M(O)>M(h), then there exists a k such that:

63) M(Ok) = M(h) c < k <O implies M(c*) > M(h)

< c < k implies M(c*) < M(h)

Consequently, if c*>O*, again we do better by letting a=O, bB;

however, if c*<< , then we will obtain the larger growth rate by

choosing aa*, b=b* (and u+O).

We could consider the other cases in exactly the same way;

these results are summarized in Table II. It is obvious that quite a bit

of information is needed to make the proper choice (especially when o-l).

If h=l, then a steady-state is possible only for b=O. Otherwise,

(assuming b is non-negative) h > [(a+n-b)/(a+n)], and u+-. Therefore,

we need not worry about the asymptotic value of a as uO. In this case

it is rather easy to decide how to allocate technical progress. Once

again, Table II summarizes these results.

Finally, for the case of increasing returns to scale, a steady-

state is not possible under the assumption that b is non-negative unless

c - 1 - and we have discussed this case earlier. For a 1, it must be

true that u-+ (excluding the perverse case), and we can readily decide how

to allocate technical progress by looking at the growth rates in Table I.

Table II summarizes the decision rules under the criterion of

maximizing the asymptotic rate of growth of per capita consumption, 6

16Or, if the rate of growth is unbounded, we maximize the

asymptotic rate of growth of the rate of growth of consumption.
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TABLE II - Allocating Factor-Augmenting Technical Progress

1) Define

2) Define

A, such that: h = [(a+n-b6)/(6+n)] ; b'(a) = -[(h-k)/$ k ]

a*, a such that: b'(a*) = -(h-c*)/c* ; b'(a) -(h-c)/c

Limit a as

U-O U-*

I) hk< 

o>l o>l

0>1 aol

a>l 0<1

a-+l o>l

Decision Rule

I) h<_l

a=A, b=O or aO,b=B as h [(A+n-B)/(A+n)]

(If equality, then either a=A,b-O or a=O,b=B).

-k c as u + :

a) c <k - a=A, b=O

b) c > k h [(A+n-B)/(A+n)] + a=A, b=O

c) c > k h > [(A+n-B)/(A+n)] , then there exists

a , > k such that:

i) c < k < h + a=A, bO

ii) h > c > k a=-, bA

iii) c = 9k + choose either i) or ii).

a=A, b=O

~k * c* as u-O :

a) c* k a=O, b=B

b) c* < k h [(A+n-B)/(A+n)] a=O, b=B

c) c* < k ' h < [(A+n-B)/(A+n)] , then there

exists a fk such that:

i) c* > $k + a=O, b=B

ii) c* < * -~ a=a*, b=b*

iii) c* = * + choose either i) or ii)
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TABLE II - Continued

Limit a as

u+O U4.0

a -+1 a-l
~k c*

a)

b)

c)

d)

G-*-l a<l

c<l a>l

c<l ol

a<l a<l

II) h-l_

NOT

c-+l

RELE-

VANT

o<l

Decision Rule

as u+O and k c as u.

C* > km , c > k ~ a=a, b=b
*k c k -a=a*, bb*

QC < k 'c > k , then either a=a

[a*(h-c*) + b*c* + n(h-l)] > [a(h-c

(l-c*)

(If equality, either a=a* or aa ).

$k c* as u-O

a) c* < k 

b) c* > k 

a=O, b=B

k c as u-)k

a) c > k *

b) c c k +

a=a , b=b (Stei

ady-State)

I1

or a=a as:

) + c + n(h-1)]

(l-c )

a=a*, b=b*

a=- , bB

a=a , b=

a--a , b

ady-State )

II) h=l

a-O, b-B

*k ~ c as u

a) c > k aa,

b) c ' 'k - a=A,

a=A, b=O (Steady-State)

b=

b=O

(Steady-State)

(Steady-State)

(Steady-State)

. .
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TABLE II - Continued

Limit a as

U-__ Decision Rule

III) h>l III) h>l

a>l a=O, b=B

af+1 Ok c as u*

a) c >1 + a=a, b= (but k)

b) c <l1 a=a, b

<l a=A, b=O

assuming that a, b > O. As we can see from the above table, a steady-

state will be chosen if h 1 and a < 1 (as uO and as u, where

relevant). For h < 1, a steady-state solution is not desirable if

a>l either as uO or as u-*-; it may, but need not, be chosen if a*l

as u-+O or as u-0c. Clearly, for the case of increasing returns to

scale, a steady-state solution is not possible under our assumptions

If constant returns to scale prevails, and if the elasticity of

substitution tends to one as the effective capital-labor ratio tends to

infinity, then a steady-state is possible only if the (a,b) transformation

curve is not vertical at the axis (a-A, b=O) - that is, only if 1k > 0.

In general, then, under the assumptions of this model, and the

criterion for allocating technical progress that we have adopted, it is

possible that we may seek a steady-state solution. Whether or not such

a result is likely depends upon one's belief about the values of the
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relevant parameters. Let us now turn our attention to a more important

problem - that of maximizing the discounted flow of per capita

consumption.

B. Optimal Technical Change la Nordhaus [ 32]

In the previous section we have considered how technical progress

should be allocated in order to maximize the asymptotic rate of growth

of consumption, and we have discussed the circumstances that are likely

to lead the planner to choose a steady-state solution. In this section

we shall present and extend Prof. Nordhaus' model which demonstrates

how technical progress should be allocated between labor-augmenting and

capital-augmenting technological change. Since his paper considers

only the case of constant returns to scale, we must expand his model in

order to permit the production function to assume any (constant) degree

of homogeneity.

Not surprisingly, the results (of the model) are not greatly

changed by this modification. Naturally, in order to handle the case

of increasing returns to scale (and in order to permit a steady-state

solution), we must permit negative rates of capital-augmenting technical

progress. In fact, the permissible range of negative rates of capital-

augmenting technical progress must be unbounded if we are to "permit"

the existence of a steady-state solution.

As Prof. Nordhaus points out, his paper (and hence our

modification of it) shows that the steady-state is optimal only if

the system starts with the "proper" initial conditions. He has not

shown (and neither can we) that the steady-state is optimal for arbitrary
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initial conditions (assuming the elasticity of substitution is less

than one). Since this problem is not readily modified, it must be

considered a serious handicap of the analysis. Similarly, we shall see

that when the degree of homogeneity of the production function exceeds

one, a high rate of time preference is needed to guarantee convergence

of the integral and optimality of the steady-state solution. This

factor also raises questions about the usefulness of the following

analysis when increasing returns to scale are assumed.

The objective of Nordhaus' model (and of ours) is to maximize

the discounted stream of per capita consumption. Since our model is

essentially identical to his, we shall not repeat all of his equations,

but instead we shall list only those equations for which our model

differs from that of Prof. Nordhaus. The model is a simple one-sector

model with capital- and labor-augmenting technical progress. Adopting

his notation, we write:

64) Y = F(K,L) = (UL)hf(x) ; x [(AK)/(L)]

65) (X/X) = g(I/.) - g(s)

66) K = sY- K ; k (K/L) ; k = sE(h-l)f(x) - (6+n)k

These three equations represent the basic ones of the model; what

follows is the Hamiltonian, and the equations obtained from seeking to

optimize the Hamiltonian.

67) H = e-Pt[(-s)h L(h-1)f(x) + p{shL(h-1)f(x) - (6+n)k} +

P2emtg(B)X + p 3erti]

In the above equation, k, X, and are the state variables, s and B the
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control variables, and the pi's the conjugate variables. 7

From the Hamiltonian (Nordhaus' equation 12) we obtain the

.behavioral equations (his equations 13-17); as always, our formulation

reduces to his for the case of constant returns to scale (h=l).

68) Pi = (p+6+n)p1- V[(h)L(h-) )i]f'(x)

69) P2
= [p-m-g(8)]p2 - v[ L(h-l)-l]emtxf'(x)

70) P3 = (P-r-8)p3- ve- "(hl)L(hl)[hf xf']

71) v = (l-s+spl)

72) s(t) maximizes (l-s+spl) implies v = max(l,p)

73) (BH/a) = p2 emt '()+)A pert = 0; pe 0, g" < O +- (a2H/a2)<0

74) lim(e-Ptp(t)] = lim[e (m P)t2(t)] = lim[e(r)tp3(t)] 0
t-)-o t-)o to+aW

The last equation represents the transversality condition; as is well-

known, it is not a necessary condition (in the case of infinite time).

Also, of course, the initial conditions must be satisfied.

Following Nordhaus, we seek a stationary solution to the above

equations. Letting pi be constant and (x/x) = 0, we find:

75) (h-1)(+n) + g(B) = 0 determines 8, g(6) such that:

h = [ (O+n-g(8))/( B+n) 

This solution for is unique, given g', g" < 0, and corresponds to

our earlier results. Clearly, if h > 1, g(a) < 0; thus, in order to

17Actually, p2e and p3e are the original conjugate

variables; the values of m and of r are to be determined.
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allow a steady-state solution in the case of increasing returns to

scale, it is necessary to extend the transformation curve into negative

values of capital-augmenting technical change. From equations 69) and 70)

we obtain the stationary values of P2 and p3:

76) v u~ ; X *eg()t ; L = L e
0

77) P = [v(*)h(L )(h-l)(x*)lxf]/[p+g()] ; m = [ - 2g(¢)]

78) p = [v(u*L )(h-1)(hf - xf')]/[p-+g()] i r -g()

These equations are identical to those found by Nordhaus,

when h=l and B = h (the latter h, in his notation, does not

represent the degree of homogeneity of the production function),

g(R) = O. Clearly, the non-negativity of p, p requires:

79) p > [ - g(8)] . From equation 73):

80) g'() = -[(-)/a] or a = [l/(l-g'()) ; [(/K)(K/)/h

Equation 80) uniquely determines x* if a is everywhere bounded from one.

Again following Nordhaus, we can determine the values of the

other parameters. If P1 < 1, s=O, x < 0; and for p > 1, sl, and

consumption is zero (which must be a minimum if the integral converges).

Therefore, for a stationary-solution (which is optimal) we must have that

pl=l, and therefore from equation 68):

81) (*) (h-l)X* = [(p+6+n)/{(L )(h-l)f,(X*)}]

Equation 81) can be used to determine A* or *; note that one of them

is still undetermined (or both are undetermined, but mutually

constrained). For x=0O, using the above results, we find:
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82.) s* = ha(x*){[6+n+-g(B)]/[p+6+n]} ; a- [(xf')/(hf)]

Equations 75) - 82) are the basic equations of the model

(corresponding to Nordhaus' 23 - 29) that determine the stationary

state values that satisfy all the conditions imposed upon it. Note

that not everything is determined - for h=l, #* and L are free to be

determined by initial conditions. For hl, one constraint is imposed

upon three of the parameters (*, X*, , ).8

Before following Nordhaus further and showing that this solution

is at least locally optimal for <l, let us ask what constraints must

be placed on p, the rate of time preference, in order to permit the

optimality of this solution.

First, consider the equation for s*; we know that it must be

true that the savings rate is less than one. Consider:

83) Z ha ={(h/[l-g'(~)]} = {[B+n-g(.)]/[(j+n)(l-g')]}

Therefore, Z depends only upon B., which depends upon h (and [dB/dh] 0).

84) (dZ/d ) = [(l-Z)/(+'n)] + [(Zg")/(l-g')]

For h 1, Z < 1; since Z is continuous in (the derivative exists

everywhere, > -n; there may, of course, be an upper bound on ),

Z > 1 implies Z = 1 for some . But, at Z = 1:

85) (dZ/dB) < 0 at Z = 1

18Earlier in this chapter we saw that for h>l, even if

h=[(a+n-b)/(a+n)] , there might be no steady-state solution. Equation 81),
and a sufficiently large value of p (so that s < 1) eliminate this
potential problem.
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contradicting the fact that Z < 1 for h ' 1. Thus:

86) ha < 1 and p > [ - g()] - s* < 1

Similarly, to guarantee the non-negativity of p and p we

also need p > [ - g()]. In the steady-state:

87) (C/C) = + nh ; therefore, [(C/C) - n] = + n(h-1)

Convergence of the integral thus requires:

88) p > [ + n(h-l)] = B + n[(-g)/(B+n)] = - [ng(O)/(+n)]

For g < 0 (h > 1), equation 86) is a stronger restriction on p; for

> 0 (and ~ > O), equation 88) is the stronger restriction. Finally,

for g > O, -n < < 0, equation 86) is again the stronger restriction

(but neither is important since p > 0 will suffice in this case).

Finally, if the transversality conditions are to be

satisfied, we need:

89) > Max[{ - 2g(8)}, -g(i)]

For h > 1 (g < 0), p > [ - 2g(8)] becomes the strongest condition

(though it does not necessarily have to be fulfilled). Thus, assuming

the transversality conditions must be satisfied, we must place the

following restrictions on p to guarantee the optimality of the

stationary state solution:

90) h > 1 + p > [ - 2g(8)] ;

h = 1 + p > where g(g) = O ;
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90) h<l (and , g > O) p > [{~ - (gn)}/(~+n)] - this is for

convergence of the integral

h<l (and g>O, 0 >>,-n) -+ p> -g

Thus, which condition is the strongest depends upon the value

of h; in general, the restrictions on p are not unreasonable for h 1.

However, for h > 1, the necessary value of p may be very large indeed,

depending upon the value of h and the shape of the transformation

curve. In general, for h > 1, the convergence of the integral (and the

feasibility of the stationary solution) becomes quite suspect indeed.

Let us now return to the question of the optimality of the

stationary solution; we shall assume that p is sufficiently large to

fulfill all the conditions discussed above. The method Nordhaus follows

is to linearize the transformation curve (between capital- and labor-

augmenting technical change) around the stationary solution and to

convert the problem into one which has only one state variable and two

control variables.

Since the process would be identical to what Nordhaus has

already done, with the exception of allowing for the fact that the

degree of homogeneity is not necessarily equal to one, we shall not

bother to redo his analysis. Suffice it to say that a < 1 is again

a necessary condition for a maximum.

Nordhaus shows that the Hamiltonian is concave in k, the state

variable, when it is maximized over the control variables - and this

suffices to guarantee the local optimality of the solution. For our

problem, the work is not quite so simple, but the result is the same.

We find:
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91) H* = Max[H] is concave if and only if [h - (A+1)] < 0
(control)

where A [-g'(')] > 0

But we have already shown:

92) ha(x*) = h/(1-g')] < 1 + [h - (l-g')] [h - (A+1)] c 0

Thus, Nordhaus' solution is equally valid for h 1 (except

that technical progress is no longer only labor-augmenting) - that

is, the stationary solution is optimal if:

a) a <'1

b) p is "sufficiently" large

c) The initial conditions coincide with the stationary
optimal solution.

Condition c) is a very strong one - it tells us nothing about

behavior away from the "optimal" solution. Similarly, condition b)

can prove quite strong (and quite myopic) for h > 1.

Before leaving this section, let us make one further

observation. We have already seen that when we considered maximizing

the asymptotic rate of growth of consumption, the stationary solution

was best for h 1, and a < 1 as x 0 and as x + a. From Table I we

can also readily see that for h > 1, the stationary solution is also

best under this criterion (assuming negative rates of capital-

augmenting technical change are permissible) if a < 1 as x + 0 and as

x . However, as noted earlier in this chapter, it is possible

that no steady-state solution occurs in this case. That is:

94) Q = F(Kegt,Let); if h = [(+n-g)/(B+n)] > 1, then it is

possible that: (x/x) = [s(f/x)-(+n+6-g)]<O for all xO, sl
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Obviously, in this case one could not move directly to the

stationary solution. However, if the planner could control the

allocation of technical progress, he could originally allocate more

technological change to capital-augmenting technical progress in order

to effectively change the initial conditions for the steady-state

problem. As an example:

95) t T; g = g*, * 0; therefore, = eg , = o = 1, t T

(x/x) = {se[(hl)n+g*]tf(x)}/x - (n+6-g*)

t > T; X (eg*T)(e [t - T ] ) ; = eh t - T ]
=( g*X)[ [t-] ; =eBttr] ; h = [(+n-g)/(+n)]

(x/x) = {[seg Tf(x)]/[en( h)Tx] } - [6+n+6-g] > 0

for some x.

In other words, by originally allocating more capital-augmenting

technical progress than would be allocated in the steady-state, the

planner can guarantee the existence of a steady-state solution. After

the initial adjustment period, the economy could then be placed back

into its stationary path. Of course, the determination of the optimal

T, of the rates of technical progress during the adjustment period, and

of the savings rate (if it is under the planner's control) is precisely

the ob of the Pontryagin problem. Nevertheless, this section should

serve to clarify our earlier remarks and should point out that a steady-

state solution exists (under the above assumptions) if the planner has

control over the allocation of technological progress (and if negative

rates of factor-augmenting technical change are feasible). If not, it

is possible (for increasing returns to scale) that no stationary

solution exists, even if we can find , g(A) such that h [+n-g)/(4+n)].
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IV. Factor Shares

In this chapter we have seen that if the steady-state conditions

are not fulfilled the economy will approach an asymptotic equilibrium in

which the growth rates tend to constant limits (if they are finite),

assuming that a is bounded from, or tends to, one. Since this result

corresponds to one of the characteristics of the steady-state model, it

would be interesting to determine how factor shares behave in this

asymptotic equilibrium. However, the determination of factor shares

obviously depends upon the pricing assumption that is made - and it is

this subject that we shall discuss in this section and, in more detail,

in Chapter 3.

One of the principal assumptions of the Bertrand-Vanek analysis

is that factors are paid proportionally to their marginal (value)

products, with the constant of proportionality being the reciprocal of

the degree of homogeneity of the production function. As a

consequence of this definition, the factor shares are proportional to

the output-factor elasticity for the respective factors (again, the

constant of proportionality is the reciprocal of the degree of

homogeneity). This definition for factor-pricing, plus Euler's theorem,

guarantee that factor shares will add up to one, in consonance with the

economic interpretation of these definitions.

It is well-known that when constant returns to scale prevails,

the above factor-pricing definition can be Justified by certain

reasonable assumptions on economic behavior (known as perfect

competition). However, if hil, these assumptions prove more dubious, and

we can not readily fall back on plausible economic behavior to confirm
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or lend credence to this factor-pricing definition.1 9

The reason why the factor-pricing assumptions are important

is obvious - in an asymptotic "equilibrium", in which the effective

capital-labor ratio tends to infinity (or zero), if the elasticity of

substitution of the production function is bounded from one, the

output-factor elasticity for one of the factors must tend to zero. If

we assume the "pseudo" competitive pricing. mechanism outlined above,

then one of the factor shares must tend to zero, an occurrence that

does not appear to be consistent with reality.2 0

However, as is clear, when the degree of homogeneity is not

equal to one, this assumption for factor-pricing no longer seems

particularly plausible. If we are interested in constant factor shares,

we can directly make this our assumption - by assuming that in the "real"

world labor is paid in proportion to its average, not marginal, product

(presumably this type of behavior could arise due to market imperfections,

such as collective-bargaining). If labor receives a constant fraction

of its average product, then constant (and non-zero) factor shares

follow by definition. Alternatively, it is possible to show that if

monopolistic practices exist, even if *k0 , capitalist's share will

approach some positive constant limit, due to monopolistic profits. For

1 9 See footnote 2, page 19, for one possible explanation of

this factor pricing-assumption.

It may not seem reasonable that the output-factor elasticity
(for some factor) tends to zero - however, the question is really what
is the empirical manifestation of this result. For example, *k+0 does

not necessarily imply that the MPK tends to zero (if s n=O, a<l, $k0,

but the MPK tends to some positive limit as u*+). If the output-factor
elasticities are not directly tied to factor shares, then we have no
direct observation of their values.
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more discussion on this subject, see Chapter 3 of this thesis.

Certainly there is no theoretical reason (at least, none

proven above) to adopt this postulate of average product pricing -

but neither does there appear to be a reason for postulating

"pseudo-competitive" factor pricing, as Bertrand-Vanek do. However, if

h 1, it is perhaps more plausible to assume that one factor (probably

labor) is paid its full marginal value product, while the other factor

(capital) is paid as a residual.2 1 If this were so, then it is possible

that both factors would have non-zero and asymptotically constant shares,

even if the effective capital-labor ratio tends to zero or infinity. As

an example, suppose that labor is paid its full marginal value product,

and that h ' 1. We find in that case:

96) 1 h > [(a+n-b)/(a+n)] ; a > 1 Share Labor + 0

Share Capital + 1

a < 1 Share Labor + h
Share Capital + (l-h) 0

h < [(a+n-b)/(a+n)] 1 ; a > 1 Share Labor + h

Share Capital + (l-h) 0

a < 1 Share Labor + 0
Share Capital + 1

Although this definition does not guarantee non-zero factor shares, it

does admit of that possibility. And it is, we believe, a more plausible

assumption than the Bertrand-Vanek factor-pricing assumption.

21If increasing returns to scale prevails, this definition might

lead to a situation in which one factor received more than the total
output. Hence, the assumption h 1. For h > 1, it seems likely that
oligopolistic situations would arise - for more on this problem, see
Chapter 3 of this thesis.



68

The adoption of either the average-product pricing assumption

or the marginal-product pricing assumption in only one market would not

alter the basic results of the Bertrand-Vanek growth model. Under the

assumption of average-product pricing the factor shares are constant and

hence so is the aggregate savings rate (assuming k, sn are constants) -

thus, this case is equivalent to the Bertrand-Vanek case in which Sk=S 

Under the assumption of marginal-product pricing in only one factor

market (the labor market), the aggregate savings propensity is always

positive (assuming sk-sn 0, Sk>0, h<l) and depends upon only the

output-capital elasticity.

97) W = (aQ/aL) ; s = [n(h-~k) + Sk({k + (l-h))] > 0 ; sk sn

E - [(ds/dk)(k/S)] = [(SkSn)k /+[( S k-Sn)k + Sk(1-h) + nh]}

Therefore, 0 E h < 1

Since s, the aggregate savings rate, is always positive, and

since E, the elasticity of s with respect to k' is never greater than

one, the Bertrand-Vanek model is essentially unaltered by this

alternative pricing assumption. Furthermore, since s > (sk>sn, Sk >0)

always, this assumption is asymptotically equivalent to the Bertrand-

Vanek model with s > 0.
n

In summary, since there is (in general) no steady-state,

asymptotically the output-factor elasticity of one of the factors will

tend to zero if the elasticity of substitution is bounded from one. We

2 2In Chapter 3 we shall show that the basic Bertrand-Vanek
model is virtually unchanged by various factor-pricing assumptions.
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have seen that the Bertrand-Vanek pricing assumption implies that one of

the factor shares tends to zero, a result in conflict with reality.

However, we have also seen that if constant returns to scale does not

occur there is not a strong theoretical Justification for adopting the

Bertrand-Vanek pricing assumption. Consequently, we have considered two

alternative assumptions that might yield non-zero factor shares for each

factor. In general, it is possible to assume some combination of these

two assumptions:

98) W = al(Q/L) + a2(aQ/aL) ; a , a2 > o

[WL/Q =al+ + a2 (h- k) O (al+ a 2h) < 1

In this way we could guarantee that factor shares would be non-zero.

To determine what factor-pricing assumption is most plausible,

it is necessary to study the microeconomic behavior of the economy - it

certainly does not suffice to study the aggregate production function.

However, this constitutes a different direction than that which we

choose to follow - our major purpose in the preceeding discussion was

simply to illustrate that it is not a necessary (or even logical)

consequence of the Bertrand-Vanek model that one of the factor shares

must tend to zero.

V. Variable Degree of Homogeneity of the Production Function

In this chapter we have seen that the presence of capital-

augmenting technical progress makes a steady-state solution impossible

unless the degree of homogeneity of the production function (assumed to
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23
be constant) is equal to a very particular value. Since there is no

reason to believe that this singular case should occur, it would seem

that the a priori probability of a steady-state solution, assuming that

the rates of technical progress are exogenous, is virtually zero.

However, we shall show in this section that if the "degree of

homogeneity" of the production function is a decreasing function of

the effective capital-labor ratio, then the economy will tend to a

constant effective capital-labor ratio (barring perverse cases), and

that this long-run equilibrium will possess most of the characteristics

of a normal steady-state equilibrium. Let us now investigate why this

is so.

In a recent article KoJi Okuguchi [17] has shown, for a slightly

more general production function, that a steady-state will exist only

for very special values of the parameters. That is, Okuguchi assumes:

99) Q = F(Kelt , t) (eYtL) /b]f(x) ; x = [(KePt)/(Let)l/b] ;

(L/L) = n

For b=l, ah (h, the degree of homogeneity in the standard case), this

becomes the production function considered in this chapter. Okuguchi

shows that, for this production function, a steady-state can exist

only if:

100) [(l-a)/b] = [p/(n+y)]

2 3We have seen that if the production function is Cobb-Douglas
a steady-state may exist. Also, we have seen that if the savings rate
declines at ust the proper rate ( if 6>0), then a steady-state will
occur. Neither of these possibilities seems particularly likely to us.
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which is analogous to the Bertrand-Vanek condition when bl, a=h.

Though this production function is (possibly) different from

the one assumed by Bertrand-Vanek, we see that again a steady-state

will not normally occur. The question then seems to be - is there some

ignored mechanism that promotes the steady-state, or should we abandon

the notion of a steady-state?

We have already discussed one possible mechanism - the notion

that a trade-off exists between the types of technical progress. If

technical progress is then allocated optimally a steady-state will be

chosen under certain (fairly plausible) conditions. Nevertheless, it

is not very apparent why technical progress would be so allocated in

a "free enterprise" economy - there is no microeconomic explanation

of this behavior, especially when we dispense with the assumption of

constant returns to scale.

Another possibility for promoting the steady-state is that the

production function need not be homogeneous, but rather that the degree

of homogeneity depends upon the effective capital-labor ratio. Thus:

101) = F(Kebt,Lea t ) = (Leat)h(x)f(x) ; x = [(Kebt)/(Le )]

This production function, while not a general one, includes

the homogeneous production function as a special case. Specifically,

suppose h decreases as x increases (as will soon be apparent, this is

not an innocent assumption, but rather it is a critical one). In this

2This assumption presents the possibility (likelihood) that
the marginal product of one of the factors might be negative, when that
factor is varied alone.
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case, assuming h(O) > [(a+n-b)/(a+n)] and h(-) < [(a+n-b)/(a+n)] ,

there exists a unique x* such that:

102) h(x) [(a+n-b)/(a+n)] as x - x*

For simplicity, assume workers and capitalists save at the

same (constant) rate:

103) k (x/x) ={[se tf(x)]/xl - [(a+n-b)+c] ; X - [(a+n)h - (a+n-b)]

Depending upon the values of the parameters, it may be that:

104) k(x*) - 0 as {[sf(x*)/x*] - (a+n-b+c)} 0

Thus, even under this assumption, it is unlikely that x* is an

equilibrium in the sense that if we started at x(0) = x*, we would

probably not remain there for all time. However, suppose we follow

our earlier procedure and consider how (x/x) changes over time:

105) k = (k+a+n-b+c){[(a+n)h-(a+n-b)] + k[(Ok-l) + (a+n)hnt]}

where25 k = (xf'/f) , n [dh/dx][x/h] < 0; h > k > 0

Let us now investigate what happens to x (the effective

capital-labor ratio) asymptotically. In order to do this, we shall

divide the analysis into two parts:

i) x(0) < x* -+ h > [(a+n-b)/(a+n)]

2 5Note that k is not the output-capital elasticity of the

entire production function since it does not include the changes in h
due to changes in x. k corresponds to the output-capital elasticity,

assuming h is constant. Thus k>0 does not imply that the MPK>0.
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ii) x(O) > x* + h.< [(a+n-b)/(a+n)]

where x(O) is the initial value of x. Consider the first case:

i) x(O) < x*

Again, there are several cases that need to be considered.

First, let us assume that k(O) > 0 (k(0) is the initial rate of growth

of x - naturally, it depends upon x(O), as well as on all the

parameters); if this is so, then x will initially increase. However,

from 105) we can see that once k > 0 (x < x*), it must remain positive

since, at k = 0:

105) k = (k+a+n-b+c)[(a+n)h-(a+n-b)] > 0 at k=O for x < x*.

Thus, if initially k > 0, it must remain positive (for x<x*), and hence

x -* x*.

Next, suppose k(O) < 0 - it is necessary to further subdivide

this case into two parts:

a) k < 1

b) > 1. 27

Suppose k < 1 - then, from 105) for k < 0, it is clear that k > 0

for x < x* (n < 0). Consequently, k increases (though x will initially

decrease); assuming Ok remains less than or equal to one (a > 1), k

remains positive, and hence k must eventually reach zero. But, as we

26For s > 0, x finite, from 103) we can see that (k+a+n-b+c) > 0.

2 7 Since k < h, it follows that for x near x*, h<l (assuming b>O).

Therefore, k>l is possible only for x "sufficiently small" (and less

than x*), and it implies that a < 1. We note that this case (a<l, h>l)
corresponds to one of the perverse cases discussed earlier in this
chapter.



have already seen, k > 0 at k=0 (x<x*); therefore, k becomes positive,

x increases, and we can return to the analysis of our previous

paragraph.

Finally, suppose *k > 1 initially (x small, a<l). From 105),

for k < 0:

105) k = (k+a+n-b+c){[(a+n)h-(a+n-b)] + k(a+n)hnt + k(Ok-l)}

Thus, it is possible that k < 0 for k > 1. If this occurs, k

decreases (towards its lower bound, -c), as does x (towards zero).

However, if n, the elasticity of the degree of homogeneity with respect

to x, is bounded below zero (n < e < 0), then eventually k must become

positive.28 Once this occurs, k increases, and it tends towards zero;

but, as before, k > 0 at k=O (x<x*), so k must become positive,

remain positive, and consequently x tends towards x*. Once again,

therefore, we can return to our prior analysis.

On the other hand, if TirO as xO, it is possible that k < 0

for all time, and consequently k + (-c) and x-O. Obviously, this

case corresponds to the perverse one discussed earlier in this chapter

since, if n0O, then for h>l, a<l, it is possible that xO (instead

28 k > 0 if [(a+n)h-(a+n-b) + k(a+n)hnt + k(%k-l)] > 0. For

x < x*, [(a+n)h-(a+n-b)] > 0, and therefore > 0 if:

[(a+n)hnt + (k-1)] < [(a+n)hnt + (h-l)] < 0 (for k<O).

But this last expression will be negative if:

t > [(l-h)/{(a+n)hn}] = [(h-l)/{(a+n)hlnI}] -+ k > 0

If Inl > 0 , it follows that such a t must exist, and eventually

i must become positive.
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of x-), as discussed earlier.

Therefore, barring this perverse case, we can see that if

x(O) < x*, eventually k [=(x/x)] > 0, and x must eventually increase.

Furthermore, for x < x*, k > 0 at k=O, and thus x must tend to x*.

Similarly, it can be shown that if x(O) > x*, then eventually x must

decrease and approach x*. 29

What happens as x + x*? Again, there are several possibilities,

depending upon whether k(x*) - 0. We have seen that (barring the

perverse case), for x(O) < x* , eventually k(x) > 0, and x -+ x*. If

k(x*) > O, it follows that x not only reaches x*, but eventually it

will exceed x. By continuity, for t sufficiently large, if k(x*) > 0,

there exists an x such that:

k(x) - 0 as x - x
< >

Furthermore, as to, it is clear that x -* x* (n 0). Therefore, x

must tend to x, which in turn tends to x*, and thus x tends to x*

asymptotically (barring the perverse case).

Similarly, if k(x*) < 0, for t large enough (so that nt

'dominates" [ -1]), there exists an < x* such that k(x) - 0 as
k <

x - x , and again (after sufficient time has elapsed) x - x + x* ,

so that x converges to x* (again, barring the perverse case). Finally,

29If b 0, then h < 1 for x > x* , so from 105), x > x*
implies k<O for k>O (since k < h < 1) and no perverse case is

possible. However, if b < 0 and h[x()] > 1 and In -+ O, then a

perverse case may arise for a>l (%k>l), so that x-+. Again, this case

is equivalent to one of the perverse cases (6<0, h>l, a>l) discussed
earlier in this chapter.
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if by chance k(x*) = 0, then x coincides with x for all time. In this

case, if x(o) = x*, x remains at x* (barring any unforeseen shocks to

the system), and if x(O) < x* [x(0) > x*], then x -+ x* and never

x > X* [x < x*].

In summary, if h decreases monotonically as x increases, then

eventually x must approach the finite, non-zero effective capital-labor

ratio (x*) such that: h(x*) = [(a+n-b)/(a+n)] , assuming that

n [ = (dh/dx)(x/h) ] is bounded below zero. If x(O) < x*, then x x*

always, if k(x*) < 0, whereas if k(x*) > 0 then, for large t, x > x*.

Similarly, if x(O) > x*, then x x* always if k(x*) 0; whereas if

k(x*) < 0, eventually x < x*. Needless to say, the path of x need not

be monotonic.

Therefore, we have shown that if the "tdegree of homogeneity" of

the production function depends upon the effective capital-labor ratio

in the manner defined above, then the economy will approach a finite,

non-zero effective capital-labor ratio. Furthermore, all the growth

rates will approach constant, finite rates as x - x ( + x*). For

example:

106) Q = e(an)ht f(x) implies:

(Q/Q) = (a+n)h[l + n(x/x)t] + k(x/X)

From 105), as x - 0 (as it must, since x x*, x* constant), we find:

107) k = (x/x) - {[(a+n)h-(a+n-b)]/[(1- k) - ahnt]} 0 as x x*

Therefore:

108) kt = (x/x)t * {[(a+n)h-(a+n-b)]/[((l-$k)/t)-ahn]}* 0 as x x*
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Hence, [k(x/x)] and [t(x/x)] tend to zero as t tends to infinity and

x tends to x*, and consequently we find asymptotically:

109) (o/Q) (a+n)h ; [(C/C) - n] - [(a+n)h-n] = (a-b)

Therefore, in this asymptotic steady-state, consumption per capita will

be increasing, remaining constant, or decreasing as the rate of labor-

augmenting technical progress exceedsequals, or is less than the rate

of capital-augmenting technical progress. Similarly, we could readily

exhibit the growth rates of the other variables. Also, since kO and

h+h* (the "degree of homogeneity" will be asymptotically constant), the

marginal product of each factor will be positive, and consequently this

model will (asymptotically) exhibit almost all of the "normal" steady-

state properties (the output-factor elasticities are constant, as is

30the marginal product of capital, and so forth).

Clearly, if n > 0, then either this equilibrium is unstable

(if k(x*) = 0), or else no equilibrium exists, and the effective

capital-labor ratio will tend to either zero or infinity. Needless

to say, we have not demonstrated why h should behave in the "desired"

manner. However, it does not seem unreasonable to us to assume that h

is not constant everywhere, especially if some factor of production

(other than capital or labor) is fixed or else varies exogenously; ust

how the degree of homogeneity varies with the effective capital-labor

3 0Note, however, that the effective capital-labor ratio to
which the system tends, and hence the long-run value of the marginal
product of capital, is independent of the savings rate, unlike the
normal steady-state result. In this model, the savings rate only
effects how quickly the economy tends to its steady-state
equilibrium (barring the perverse cases).
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ratio is another question.

VI. Conclusion

In this chapter we have discussed the Bertrand-Vanek model, in

which factor-augmenting technical progress can occur for each factor,

and in which the degree of homogeneity of the production function is a

constant, though not necessarily equal to one. The basic conclusion

from this model is that a steady-state is very unlikely to occur, and

thus we must be content with considering the asymptotic growth path.

In this "asymptotic equilibrium" the elasticity of output with respect

to one of the factors must tend to zero if the elasticity of

substitution of the production function is bounded from one, and hence

so must the share of that factor tend to zero, if we adopt the Bertrand-

Vanek factor-pricing assumption. However, for the case of non-constant

returns to scale there appears to be no logical reason to choose

between the various possible pricing definitions (at least at the

macroeconomic level), and thus we could define (assume) a pricing

scheme in which both factor shares would remain non-zero.

Also, if we postulate a Kennedy-Von Weizsicker model in which

there exists a trade-off between capital- and labor-augmenting

technical progress, we find that for a<l a steady-state is a (or may

be a) desirable property that the economy should seek to obtain.

However, this approach presupposes the existence of a "central planner"

(or some invisible hand); in order to discuss this problem for a free

enterprise economy, it would be necessary to better define the

microeconomic properties of that system. When we do not have constant

returns to scale in the production function this task can become quite
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complicated (and indeterminate).

Finally, we have exhibited a special model in which a steady-

state will probably be achieved. If the "degree of homogeneity" of the

production function is a monotonically declining function of the

effective capital-labor ratio, then (excluding two perverse cases) the

system will tend to a finite, non-zero effective capital-labor ratio,

and the growth rates for the variable will be (asymptotically)

constant and finite. The ultimate equilibrium effective capital-labor

ratio is independent of the savings propensity, but it does depend

upon the parameters of the problem, including the rates of capital-

and labor-augmenting technical progress, the rate of growth of

population, and the relationship between the "degree of homogeneity"

of the production function and the effective capital-labor ratio.

We now leave our study of the one-sector model with

persistent doubts as to the likelihood of the occurrence of a steady-

state equilibrium. Let us now turn our attention to two-sector

models of economic growth.
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Chapter 2. Two-Sector Models of Unbalanced Growth

I. Introduction

In the past chapter we have followed Prof. Vanek's approach

and have investigated the asymptotic behavior of variables when Hicks

neutral (or any capital-augmenting) technical progress is present in a

one-sector model. In this chapter we plan to extend the analysis by

considering two related problems:

1) Hicks neutral technical progress in the investment sector

2) Harrod neutral technical progress in only one sector

It is well-known that if there is Hicks technical progress in

the consumption good sector then a steady-state does indeed exist (if

Harrod neutral technical progress occurs at the same rate in each

sector); the problem of Hicks neutral technical progress in the

investment sector is like (though more difficult than) the problem

studied in the first chapter. On the other hand, the problem of Harrod

neutral technical progress in only one sector (or at different rates in

the two sectors) is a different problem since it necessitates factor

reallocation between the two sectors, even if the aggregate capital-

labor ratio (or effective capital-labor ratio) were held fixed. At the

end of this chapter we shall show how, by using the analysis from Parts I

and II, any type of factor-augmenting technical progress can be treated.

Before turning to the analysis, let us make a few remarks. Just

as in the one-sector model, where the existence of a steady-state hinged

upon a very particular degree of homogeneity of the production function,

given the other parameters, the corresponding constraints for the two-
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sector model seem ust as unreasonable. That is, assuming both

production functions are homogeneous of degree one, then, for a steady-

state to exist it must be true that Hicks technical progress, if it

occurs at all, is restricted to the consumption goods sector; and that

Harrod neutral technical progress, if present at all, must occur at the

same rate in each sector. To us these assumptions seem quite strong

and unwarranted (until some mechanism can be shown to exist that

causes this pattern of technical progress). Therefore, we consider

it quite important to examine what happens to the economy if the

steady-state conditions are not fulfilled, and to consider how this

economy would differ from the textbook steady-state economy.

As we shall see, the non-steady-state economy will tend to a

state in which the growth rates of the variables (if finite) approach

constant limits, assuming that the elasticities of substitution are

bounded from, or tend to, one. However, this asymptotic equilibrium

deviates from the traditional steady-state results in several respects,

not the least of which concern factor shares in each sector (and for

the economy as a whole), and the asymptotic value of the marginal

product of capital. These differences of the asymptotic equilibrium

from the steady-state results, and the implausibility of the steady-

state path itself, seem to pose a difficult dilemma for modern

growth theory. We shall have more to say on this topic in Chapter 3.

Let us now turn to our analysis of the two-sector model. In

this first section we shall investigate the problem of Hicks neutral

technical progress in only the investment sector, a problem that is

quite similar to the one-sector model studied in Chapter 1.
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II. Hicks Technical Progress in the Investment Sector

In this section we shall attempt to determine what happens to

the economy if Hicks neutral technical progress occurs only in the

investment sector. To investigate this problem we shall use a

traditional two-sector model (such as Uzawa, [58], [59]), and we

shall employ the approach Vanek used in studying the one-sector

model [4]. As we shall see, our results in this case do not differ

greatly from those found in the one-sector model.

Specifically, we assume that there are two sectors - the

consumption good sector (C), and the investment good sector (M). The

production functions are assumed to be homogeneous of degree one in

capital and labor, and Hicks technical progress is assumed to occur at

rate A in sector M (whether or not it occurs in the consumption good

sector is immaterial). Thus, using traditional notation:

1) C- F(KcLc ) Lcfc(kc ) Lyfc(kc)

2) M eAtF (KL) = eAt (k) a L(ly)eAtf(k)m m m m mm

3) y (Lc/L) , (l-y) (Lm/L) ; ki = (Ki/Li) ; y = [(k-k )/(kc-km)]

Since the rewards to factors must be equated in each sector (under

competition), it is found that the capital-labor ratio in each sector

depends only upon the wage-rental ratio ():

4) ,= [( -k cf)/f] = [(f -k f)/f] > 0, f O

The Inada conditions are assumed to hold .(when possible; for a C.E.S.

function, aol, not all four conditions can be satisfied). Also, so that

we need not worry about uniqueness of equilibrium, the capital-intensity
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condition is assumed:

5) k > k for all w.
c m

As is well-known, it would suffice to postulate that the elasticity of

substitution in the consumption good sector (c) is greater than one

[17]; however, there are times when we wish to explore the case in

which c < 1 - hence we assume that the factor-intensity condition holds

(as becomes large, this implies that ac > a ).

Furthermore, we assume that the consumption good is the

numeraire, so that P, the price level, is the price of the investment

good in terms of the consumption good. Since the return on capital

must be the same in each sector, we find:

At
6) p [( e-tf )/ f ] ; P P ; P = 1

c m m c

When it is not ambiLguous we shall omit the independent variable - thus,

[fc(kc)] - f 
c c

Finally, to complete the model we need a savings assumption.

It is possible to follow Vanek and assume that capitalists and workers

have different savings behavior; or, alternatively, we could assume

that they both save at the same rate. As we have seen in the one-

sector model, there is no asymptotic difference in these cases as long

as workers do some savings. Therefore, we shall investigate two cases:

a) Sk= 3n=s

b) sk > s =
n

We omit the case k>s n>0; the reason that this case is unimportant is

that, clearly: s, s s (where s is the average savings rate for
n
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the economy), and as the capital-labor ratio tends to infinity, s will

approach some positive limit (given that the elasticity of substitution

is bounded from, or tends to, one). Consequently, this case is

asymptotically equivalent to case a). On the other hand, if case b)

pertains, then s may approach zero, and since the essential problem in

this model is that physical investment (for a constant s) tends to

increase forever, allowing s to approach zero may afford some new

behavior.

We could, if we wished to complicate the model, assume that

the owners of capital in the consumption goods sector have a different

savings propensity than the owners of capital in the investment sector

(for example, Stiglitz [52]). However, since in our model capital is

completely malleable, we really see no Justification for this

complicating assumption.

The savings rate allows us to complete our model, and

determines our basic equations - the market equilibrium equation and

the capital-accumulation equation. Under the two savings assumptions

(for the rest of this part of the paper, a subscript a denotes that

sk=s =s , whereas a subscript b denotes that sk>sn=0; naturally,

we assume that savings equals investment) we have the following

relationships (for simplicity, we assume that there is no depreciation):

7a) S = s(C + PM) = PM= PK

7b) S = (C + PM) = PM PK ; s = sk(share capital) = sk[k/(w+k)]

Using this equation, we find our market equilibrium equation, which

must hold at all times:
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8a) sy(w+kc) - (l-s)(l-y)(w+km ) 0

8b) skky(w+kc) - (+k-skk)(l-y)(w+k) = 0

These equations define w as a function of k (if they are monotonic -

kc k suffices); note that time does not appear explicitly in
C m

either equation.

Assuming that investment equals savings, and that there is no

depreciation, we find the following equations:

9a) (K/K) = {[(l-y)eAtf ]/k}

9b) (K/K) = {[(l-y)eAtf ]/k}

These are the capital-accumulation curves; since s does not appear

explicitly, they appear to be the same. However, since s affects the

relationship between w and k, they are not, in fact, the same curves.

Following Vanek's analysis, we define:

X = (K/K) ; [(k/k) = X - n] ; we seek X such that (X/X) = 0.

In general, X will depend upon k. X is what Vanek refers to as a

'quasi-asymptote" for the rate of growth of capital.

10) (x/X) = {[d(l-y)][l/(l-y)] + A + a (k/) - (X-n)
dt

where a is the competitive share of capital in the investment sector.m

From equation 8a) or 81), we can determine w as a function of k,

and hence we can calculate the total derivatives needed in 10):

11) (km/km) - [(dkm/dw)(w/k)][(dw/dk)(k/w)](k/k) = (a /a)(X-n)m m] , is the aggregate elasticity of

a 2 [(dk/dw)(w/k)) , is the aggregate elasticity of
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substitution for the economy as a whole.

Similarly, using the definition of (-y), we find its total

derivative:

11') {[d(l-y)]/(l-y)} = [{[yackc + (l-y)amkm](1/a) - k}(X-n)]/(kc-k)
dt

From equations 10) through 11') we determine (X/X) :

12) (X/X) = (TX - Tn + A) where:

13) T = [ackc + oa(1-y){k(1-a ) + km} - kca]/[a(kc-k)]

Defining X to be the locus such that (X/X) = O, we find:

14) X = n - (A/T) ; T 0 O

(If A=O, X=n, the normal steady-state case). Substituting back into

equation 12):

15) (X/X) = -T(X-X)

If T < 0, then whenever X > X, (X/X) > 0, and X increases; if X < X,

(x/X) < 0, and X will decrease. Thus, whenever T < 0, the X locus is an

asymptote in the sense that, whenever X > X , X decreases, and whenever

X < X , X increases. If T > 0 (as we shall see, this is not possible for

k k or a > 1), this relationship is reversed, and X moves away
C m c

from the X locus. Thus, the sign of T is critical. In order to find T,

we must first calculate a; since the values of T and a depend upon the

savings assumption, we shall get different results for our two cases.

[(1-s)sw(kc-km)2 + cc k(+k )2(1-s) + ask (+k ) 
16a) a = 

[s(k -km) + (+k )][kc(w+k ) - sw(k -km)]
c in m c m c m
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[as (k-k) + ac(w+k )(w+k m-skk) + mk sk(w+kc)

16b) ab (+k )[(w+k m) + k(k km)

Clearly, a a > everywhere; this need not be true for ab (b < 0

implies that the market equilibrium curve "bends back" in the (k,w)

plane - that is, to each k, there may be more than one w satisfying the

market equilibrium conditions. In this case we can not express as a

unique function of k). However, clearly ab > 0 if (see Drandakis [17]

or Burmeister [7]):

i) k k or ii) a + a 1
ic m c 

(Since, as we shall see, for Ta < 0 it suffices that kc k or ac > 1,

we adopt the factor-intensity hypothesis so that we are free to study

different values of the elasticities). Note that if a = a = 1, thenc m

a = 1 in both cases; otherwise, the value of a will depend upon w.

With this information, we can now determine the value of T;

observe that T will appear as a function of , but since, from the

market equilibrium equation, depends upon k, T depends upon k.

{- (l+m(--s)k (w+k )(k -k )+(l-s)k c (+k )2o +
17a) T =c m m c m c

a a sk (w+kc) ]1/{(+kc)(w+k )[k (+k) - sw(k-k )a 
mm c c m c m cm a

17b) T = [(-w)/{(w+k )ab}]

Since the sign of Ta is related to the condition that a unique

equilibrium exists (AO), Ta < 0 whenever:

i) kc - k or ii) c > 1
c m c

Clearly, Tb < 0 whenever ab > 0; and we have already seen under what
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conditions cb is positive (note that Tb may be negative while Ta

is positive).

Assuming the factor-intensity condition holds, we have:

Ta , Tb < 0 always, and hence X = [n - (A/T)] n (A > 0).

A. Special Cases

Before considering the general case, we shall consider three

special cases:

i) k =k ( c = a c i 1)
c m c m c

ii) k = k and a = a = 1
c m c m

iii) k # k , but a = a = 1
c c m

Case i) is comparable to the normal one-sector model except that

technological change occurs only for the investment good, so that

the price of this good will decline over time. On the other hand,

cases ii) and iii), in which both production functions are Cobb-Douglas,

are very special cases since steady-states will occur in each of these

two cases (for any type of factor-augmenting technical change). Let us

now briefly consider these special cases.

i) k = k (implies a = am)
c m c m

From 17a), by substituting in for aa, we find that whenever

k = k (and a = a ):
c m c m

18a) T = [(-w)/(w+k)] ; similarly,
a

18b) Tb = [(-,.)/{oc (+k)}]
b ~C

since k = k = k and a = ac = a . For T we find:C m C m a
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19a) (dTa/dw) 0 as a- 1

The result for Tb is not readily ascertainable since, in general, it will

depend upon the third derivative of the production function. If we

assume that aoc(and am) is a constant, then the condition for Tb is

identical to 19a):

19b) (dTb/dw) - 0 as a - 1 for ac, a constant

However, we are more interested in the asymptotic behavior of

Ta, Tb (given that they are negative elsewhere). Clearly, under

competitive pricing:

20a) Ta = -(l-a) ; 20b) Tb = -[(l-a)/ac] , where (l-a)

is the aggregate share of labor in the economy. Since both Ta and Tb

are negative, but finite, everywhere it follows that X > n everywhere

(and hence k tends to infinity). Therefore:

21a) a > 1 -+ [X+ ]; a < 1 IX ' (n+A)]; a - 1 + i{n + A/(1-a)}]

21b) a > 1 -+ [X a]; a 1 [-* (n+Ao)]; a- 1 - [X {n + A/(1-a))]

(a is the asymptotically constant share of capital as a - 1).

Thus, for a > 1, X will grow without bound, whereas for a 1,

X has a finite limit to which it tends. For a 1, the asymptotic

growth rate is larger under the first savings assumption, while for

a + 1, the two growth rates are the same.

Note that this result corresponds to our one-sector result

that, for h = 1, X grows without bound whenever a > 1, whereas for

a ' 1, it approaches a finite limit.
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ii) k = k ; a a = 1
c m c m

The case a = 1 is a rather special case since

X = [n + A/(l-a)] is constant for all k, and consequently a steady-

state equilibrium exists, rather than Just an "asymptotic

equilibrium". Thus:

22) M = eAtKaL(- a) = KL e{At/(l-a)]( (l- a)
min m m

Note that the growth rate corresponds to the rate of growth of

population plus the rate of Harrod neutral technical progress in M.

Technical progress 'takes place only in M; however, for sector C we

can write (kc=km):

23) C = KaL(1 - ) e-AtKa[L e{At/(l-a)}](l- a)
c c C C

Therefore, we can envision the situation as one in which Harrod neutral

technical progress -takes place at the same rate in each sector, as well

as Hicks neutral technical progress at a negative rate in sector C

(and hence a steady-state exists).

Therefore, in this special case a steady-state exists, and in

that steady-state:

24) k = [K/(Le {A/(l-a)}t)] is constant

25) (K/K) = n + [A/(1-a)] ; (C/C) = n + [(aA)/(l-a)]

iii) kc 0 km cc am

26) C = KdL(l-d) M = eAtKfL( l- f ) d fcc mm

Once again, we can envision the technical progress in M as being Harrod
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neutral, and in C as being a mix of Harrod neutral technical progress

at the same rate as in M, plus a negative rate of Hicks neutral

technical progress in C:

27) M = Kf[L e[(At)/(l-f)]](1-f)mm

28) C = [e A(1d)/(l-f)]t]Kd[L e[(At)/(l-f)]](l-d)

A steady-state exists in which k = [K/(Le /( )] approaches a

constant value, so that:

29) (K/K) n + [A/(l-f)] ; (k/k) = (w/w) = [A/(1-f)]

30) (C/C) = n + (dA)/(l-f)]

Therefore, if a = m = 1, there is a steady-state equilibrium; and if
c m

k = k m am = a < , then there is a finite asymptotic rate of growthc m m c

for the economy, whereas if a > 1, the rate of growth is unbounded.

So far, we are not far from our one-sector world. Let us now turn to

our more general case.

B. General Case - k > k
c m

Even in our more general approach we shall maintain the factor-

intensity hypothesis to guarantee the non-positiveness of Ta and Tb.

Because of the complexity of the expressions for Ta and Tb it is not

possible to exhibit their path (and hence the path of X) for all k

(without assumptions on third derivatives of the production function).

However, since Ta, Tb -0 everywhere, we have:

31) x i n - (ATi) > n (Ti 0 0); i = a, b; and since:
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32) (X/X) = -T(X-X) , (k/k) = (X-n),

k tends to infinity. Therefore, we can be content with considering

the asymptotic values of Ta and Tb.

In order to calculate the asymptotic values of Ta and Tb we

first must calculate the asymptotic values of a and a b. Though we

are principally interested in the case k > k , w,, we also
C m

calculated the limits for k < k and as w + 0.
c m

From Table I (on the following page) we can see that

asymptotically ab > 0 in all cases, even if k < k or [ca +a ] < 1.
c m c m

Since:

lb) Tb -w/(w+k )[/a

we know that asymptotically Tb must be non-positive in all cases.

Also, from the Table we can see that as w-, then a ab in all

cases; whereas, as + O, b
> a in all cases.

Given ab, it is quite clear that the asymptotic behavior of

Tb depends only upon a . If a > 1, then as kn, T 0; if a < 1,

Tb [-l/b]. Finally, if a + 1, then Tb - -[(1 -a)/a b ] , where
m b m b

(l-a*m) is the asymptotically constant share of labor in sector M.

Correspondingly, given Table I, we can calculate the value of

Tb as w + 0 and as w-. These results appear in Table II. (It

should be noted that as w+-, for kc .-k, it must be true that

ac a ; whereas, as -+ 0, for k · k , a < a . Hence, from
c m c m C m

Table I we can see that ob 1 as am 1, given k km)

Since, given k k and that k tends to infinity, it follows

that Xb tends to:



93

TABLE I - Asymptotic Value of Aggregate Elasticity of Substitution

Value as war-

Ca ab

ac a
C

Value as w+O

aa ab

a ac

> a
c m

a) > a > 1

b) a > a = 1
c m

c) a > 1,a < :t
c m

d) ac= 1, m < :

e) a < a <1
m c

a < a
c m

a) > a >1
m c

b) a > a = 1
m c

c) a > 1, a < 1
m c

d) o = 1, a < 1

e) a < a <1
C m

k >k
c m

a a
m m

1 1

1 1

1 1

a a
c c

k <k
C m

a a
c c

1 1

1 a
c

1 a
C

a a
m c

k <k
c m

a a
m c

1 a
c

1 a

1 1

a a
c C

k >k
c m

a a
c c

1 1

1 1

1 1

a a
m m

TABLE II - Asymptotic Values of Tb

Value as w - -

0

-[ i/a b]-(l/°~b]

Value as w -* 0

-[l/ob]

0O

c m

1) a = 
c m

2)

3)

a > 1
m

a 1
m

a < 1
m



94

33) am >1 Xb + 

a 1n + {A/(l-a)}]

a <1 a + [n + A{min(a ,l)}]

Thus, for a < 1, (k/k) asymptotically approaches a finite

rate of growth, whereas for a > 1, (k/k) will grow without bound. a
m c

is not very important in determining the asymptotic rate of growth

except that, for am < 1 and ac < 1, the larger a c, the quicker is the

asymptotic rate of growth. As in the traditional result, the savings

rate has no influence on the (asymptotic) rate of growth.

Returning to the case s = sk = n, we see that our task is not

quite so simple. In Table III (on the following page) we present the

asymptotic values of Ta, indicating, where applicable, the determinates

of the sign (as Ta+0, we indicate whether it approaches plus zero or

minus zero - as always, the assumption that k k suffices to
c m

guarantee the non-positiveness of T. ).

From the Table we see that, in most cases, Ta is negative (or

approaches zero from negative values); however, in some cases, T
a

approaches zero from positive values. If we maintain that kc km

then we see that Ta < 0; and, in fact, T a=0 whenever a > 1, and T <Oa a m a

whenever a 1. Thus, once again, the elasticity of substitution of
m

the investment good sector is critical. Using Table III we have:

34) w+: a >1 -l X aJ X n + {A/(l-am)}]m a m a m

a < 1 + X + [n + A]
m a

For a -+ 1 we see that labor's share enters the expression
m

for the asymptotic growth rate due to the (asymptotic) equivalence of
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TABLE III - Asymptotic Value of Ta
a

a , a
c m

1) c =oc m

a) a = > 1
c m

b) a =a = 1
c m

c) a a c1
C m

Value as w -

-0

-(1-a)

-1

Value as + 0

-1

-(l-a )

±O as [(ac + (kc/km )-] c C m->

2) a > a
c m

a) a > a >1
c m

b) a >a =1
C m

c) ac >1, m <1

d) ac = 1 mc

e)' a < a c <1
m c

3) a < a
C m

a) a > a > 1
m c

b) a > a =1
m c

c) a >l, <1m c

d) a = 1, a c 1
m c

e) a <a <1
C m

k >k
C m

-0

-(i-a )m

-1

-1

-1

k <k
C m

-0

-0

+O as [a +a C] 2

-(1-a )

-1

k < k
c m

-1

-(1-a )m

-0

-0

+0

k > k
c m

-1

-1

-1

-(l-a )
m

-O

a denotes the (asymptotically) constant share of capital (under
m

perfect competition) in sector M.

_ _
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Harrod and Hicks neutral technical progress. Whenever a > 1, (k/k)

grows without bound., whereas for am < 1, (k/k) approaches the growth

rate A. Notice that for a 1, a > 1, the two savings assumptions
m C

yield the same asymptotic growth rate. However, for a < 1 and a < ,

the asymptotic growth rate is larger for the economy in which both

workers and capitalists save. And that growth rate is independent of

the savings rate.

In summary, given the capital-intensity condition (or the

appropriate constraints on the sectoral elasticities of substitution)

and that both the production functions are homogeneous of degree one,

the economy will approach a finite asymptotic rate of growth only if

the elasticity of substitution in the investment sector is not

asymptotically larger than one. The elasticity of the consumption

good sector is unimportant in determining the growth rate when both

workers and capitalists save at the same rate; however, if only

capitalists save, then the elasticity of substitution in the

consumption sector can effect the growth rate when a < 1 and a < 1.
m c

Let us now see what happens if we relax the factor-intensity

assumption.

C. Relaxing the Factor Intensity Assumption

Our analysis so far has been predicated upon the assumption

that k k . This assumption has simplified the analysis by
c m

guaranteeing the monotonicity of the market equilibrium curve and the

'stability"1 of the "equilibrium' capital-labor ratio (for a given

instant of time). As we shall see, the assumption is not necessary

in the case in which everybody saves at the same rate, so that, even
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without the factor--intensity assumption, the system will behave as

described above. However, if workers do no savings, the analysis is

more complicated since it becomes necessary to have information on the

third derivatives of the production functions (for sk > Sn = 0, there

is no guarantee of causality of the system unless k k; see

Burmeister and Dobell [9]). Let us now consider our growth model when

the factor-intensity assumption is relaxed.

Consider first the second savings assumption - if kc < k (and

[ac+am] < 1), it is possible that Tb > 0 (b < 0). But b < 0 implies

that the market equilibrium curve is not monotonic and w can not be

expressed as a function of k. Instead, we must treat w as the

independent variable:

22) (k/k) = (ob)(w/)

In order to follow our earlier analysis we must take the derivative of

this equation - and this, in turn, requires knowledge of third

derivatives of production functions. Since we are reluctant to make

such assumptions (even if the functions are C.E.S., the analysis is

quite complicated)., we shall ignore this problem, and examine the case

in which everybody saves at the same rate.

Employing our first savings assumption, we know that the

market equilibrium curve is monotonic. Returning to equation 12):

12) (X/X) = T(X-n) + A

We have already seen that, if T < O, k tends to infinity, and

X > n. Suppose that T > O; if X n, then k increases, as does X, and
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k tends to infinity. If T remains positive asymptotically, it will

tend to zero, and hence X tends to infinity. If T becomes negative,

then what happens to X depends on T's asymptotic value, as previously

discussed. Once X n, it can never become less than n, and

therefore only the asymptotic value of T (as k) matters.

Suppose X < n initially: k will decrease, but what happens to

X (X/X) depends on T as well as X itself (if T < 0, (X/X) > A > 0 ;

however, if T > 0 it is possible that (X/X) < 0). If (X/X) > 0, then

X must eventually reach n, in which case we return to the analysis of

the previous paragraph. Therefore, suppose (X/X) < 0; clearly, X=O is

a lower bound on X (we are assuming no depreciation or consumption of

capital). As k 0, either T becomes negative, or it tends to zero.

Therefore, there exists a k* such that, for k < k*, (X/X) > 0 (k < k*,

Ta < [A/n]). Though k may continue to decrease for a while, X must

increase, eventually reaching n. When X=n, k ceases falling, and then

begins to increase (as X > n), and once again we can return to the

analysis of our previous paragraph. Therefore, as long as T cannot

remain asymptotically greater than zero (and it cannot), k must eventually

tend to infinity. As k tends to infinity, X tends to infinity if T

approaches zero; otherwise, it approaches a finite rate of growth.

In summary, relaxing the factor-intensity condition (for

s=sk=sn ) does not affect the asymptotic behavior of the system, though

it may affect the time path (consequently, it appears possible for k

to first become arbitrarily small, and later to become arbitrarily

large). As long as am < 1, X approaches some finite growth rate; if

a > 1, X approaches infinity, and if a fluctuates between being

greater and less than one, X will fluctuate between its limits.
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Therefore, in the constant savings case we are prepared to drop the

assumption that k > km
c m

D. Growth Rates of Other Variables

As in the one-sector case, we are interested in the growth

rates of all variables, not Just in the growth rate of capital. In

this case, in which Hicks neutral technical progress occurs in sector

M (and there is no labor-augmenting technical progress) our results

are quite straightforward, and are quite similar to the one-sector

model. Later, when we consider different rates of Harrod neutral

technical progress in each sector, as well as Hicks neutral technical

progress in the investment sector, we shall see that the results

become more complicated, and the similarity with the one-sector

model disappears.

For the moment, consider the growth rates of the other

variables:

35) M = K = XK; therefore, (M/) = X + (X/X)

36) (w/w) = [(X-n)/a]

37) (P/P) = -A + (ac - a)(W/W)
c m

38) (R/R) = -(1-a )(W/W)

39) (C/C) = n + (R/R) + max[(w/w),(k/k)]

40) (W/W) = (w/) + (R/R) = ac(W/W)

Obviously, the values of these growth rates depends upon am;

some also depend upon the value of c , as well as which savings
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assumption is employed. For a 1,1 the analysis is straightforward

and consists of merely substituting the asymptotic values of X and a.

into the relations given above. However, for a > 1, the process can

be more complicated, and sometimes entails using l'Hopital's rule. For

example, if am > 1 and ac < 1, we find for (C/C):

39') (C/C) = n - (1-ac)(/w) + (w/w) = n + ac(W/W)

Clearly, (/w) tends to infinity and a tends to zero; in order to

calculate the limit, we can employ l'Hopital's rule2 (or else look at

the time derivative of the expression).

In Table IV (page 101) we present the values of these

asymptotic growth rates, as calculated from equations 35) through 40).

These values are given as depending upon the asymptotic behavior of ac

and am; should a fluctuate between (for example) being greater and
M m

less than one, then the growth rates should fluctuate between their

respective limits.

Several comments about the Table are in order. First of all,

whenever ac < 1, the per capita consumption is not increasing in the

ai < 1 means that asymptotically a. is bounded below unity;

a comparable interpretation holds for ai > 1. For ai = 1, this means

that ai asymptotically approaches one, and ai is the asymptotically

constant share of capital in sector i - assumed to be neither zero
nor one.

2When calculating these limits we needed to assume either:

i) ac' am were non-zero and finite, or :

ii) ac, am changed sufficiently slowly - for example, it
would suffice if the elasticity of a. with
respect to w tends to zero.

Neither of these conditions seems terribly unreasonable to us.
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asymptotic growth path. Since, for a < 1, ac - 0, this means that

the capital-deepening does not serve to increase consumption - all the

benefits of technical progress serve merely to lead to greater outputs

of machinery. Also, it can readily be seen that asymptotically the

rate of growth of consumption is independent of the savings rate, and

that per capita consumption grows at the same rate as the wage rate

(when finite). Finally, we note that when ac > 1, am - 1, the rate of

growth of the price of the investment good tends to zero (though P

tends to infinity), despite the presence of technical progress in

M. This occurs because sector C is better situated to utilize the

ever-increasing stock of capital.

When we consider the case a > 1, we can see that most growth
m

rates become infinite (positively or negatively). We know:

(X/X) = A + (X-n)T ; But T + 0, and XT + 0 (shown by

using l'Hopital's rule). Therefore:

41) (X/X) + A as t - , a > 1

Consequently, the capital stock (and the capital-labor ratio) grows

at an ever-increasing rate - as Nordhaus [32, page 61] says: "Robots

are making robots at an ever increasing rate."

In summary, if a is bounded below unity, or asymptotically
m

approaches unity, the system approaches the growth rates shown in the

Table, which also depend on the asymptotic value of c. If am is

bounded above unity, then most of the growth rates tend to infinity;

and if a fluctuates between these values, so will the respective

growth rates.
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Before considering the case of Harrod neutral technical

progress in only one sector, let us examine one more question: If

a planner has a choice between allocating technical progress to

sector 1M or sector C, where should he allocate it?

E. Allocating Hicks Technical Progress Between the

Investment and Consumption Sectors

So far we have seen that, if am 1 asymptotically, the

economy will approach a path in which the growth rates of the variables

tend to constant limits. Obviously, this case is similar to the one-

sector model studied in Chapter 1, and, as in that chapter, we can ask

how a planner should allocate technical progress within the economy.

(Though we do not explicitly deal with the problem of allocating

research funds, this exercise can be considered as indicating how

research funds should be allocated within the economy). Our principal

interest in this problem is to determine under what conditions a

steady-state path is likely to be chosen by the planner.

Therefore, let us suppose we have the choice of either:

i) Hicks neutral technical progress in sector C at rate A
and none in sector M, or

ii) Hicks neutral technical progress in sector M at rate A
and none in sector C.

Also, suppose our goal is to maximize the steady-state (or asymptotic)

rate of growth of consumption. We would like to know, given this

objective, where to allocate technical progress. We know that if Hicks

neutral technical progress occurs only in sector C, then a steady-state

exists and C grows at rate (n+A). From Table IV we can find the

asymptotic rate of growth of C; comparing these, we show in Table V
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TABLE V - Allocating Hicks Technical Progress Between Sectors

All in One Sector Continuous Trade-Off

( >l +l a <1 a >1 ao a <1
m m m In m

a >1 M M Either M Both Both
c

a *1 M M or C as C M Both Both
c

[ +a 1C a <

a <1 C C C C C C
C

how one should allocate technical progress (under the above criterion).

From Table V we see that it never pays to allocate technical

progress to sector M when ac < 1 - the consumption sector simply cannot

take advantage of the continual capital-deepening. On the other hand,

when ac > 1, you should always allocate the technical progress to M

(you are indifferent if oc > 1, am < 1) - the indirect route of

increasing consumption through capital-deepening is more effective.

Finally, if -+ 1., we need to consider more carefully the value of cam
C I m

Alternatively, suppose we postulate the existence of a

trade-off frontier between technical progress in the two sectors. Let:

a) - the rate of Hicks technical progress in C; and

b) g - the rate of Hicks technical progress in M

42) g g(); g', g < 0; g(O) = A, g(A) = O g, > 0. Thus:

43) (c/c) = Z + [(c/c){g}] - n(g) + ; c (C/L)

In the above equation, n(g) [the rate of growth of per capita
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consumption (asymptotically) due to Hicks technical progress in M is

to be determined from Table IV. From Table IV we find that:

If acc< n(g) 0, and (c/c) is maximized for I = A, g = 0

If ac>l, am 1l n(g) = [(ga)/(l-M)]

Maximizing equation. 43) with respect to yields:

h) 1 + [(g'ac)/(l-a)] 0 o; or g' -[(l-a)/a ]; g" < 

a > 0, a < 
c m

Thus, in this case the optimal solution is to allocate technical

progress until the slope of the transformation curve is ust equal

to the negative of the ratio of the share of labor in M to the share

of capital in C (for ac = am, this is equivalent to the one-sector

Kennedy condition [271). In general, you should allocate some

technical progress to each sector, though a corner solution is possible.

Finally, for am > , ac - 1, consumption grows at an ever-

increasing (and asymptotically infinite) rate if there is any Hicks

technical progress in M. As shown earlier:

45) (X/X)+g ; (c/c) + + (w/w) , a > 
c C

From 45) it is clear that maximization of (c/c) entails a corner

solution - with = 0, g = A. In this case it pays to allocate all

technical progress to sector M.

Therefore, only if oc > 1, and 1 will it pay to allocate

some technical progress to each sector (under the given criterion).

Consider equation 44):

44) g' = -[(l-%xm)/ ] ; gc" < o
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We see that the larger a (or a ), ceteris paribus, the greater the

portion of technical progress that should be allocated to M. That is,

the greater the elasticity of output with respect to capital, in either

sector, the larger the share of technical progress that we should

allocate to M. Naturally, the converse is also true. Finally, as a

and a approach one, the greater is the possibility of a corner solution

in which all technical progress is allocated to M; and as a and a

approach zero, the more likely is a corner solution with all technical

progress allocated to C.

This completes our study of the effects of Hicks neutral

technical progress in the investment sector. We have seen that when

am 1, there exist finite asymptotic growth rates to which the system

tends. Also, we have discussed the problem of allocating factor-

augmenting technological change within this economy. Let us now

attempt to develop a model in which Harrod neutral technical progress

occurs in only one sector.

III. Harrod Neutral Technical Progress in the Consumption Sector

In the previous section we have studied the problem of what

would happen if there were Hicks neutral technical progress in M. In

this part we plan to study a different problem - that in which there

is Harrod neutral technical progress in only one sector. Specifically,

we start by assuming that the technical progress occurs only in sector

C; later we show how this can be generalized to cover the case in

which it occurs in sector M, or in both sectors, tough at different

rates. The problem we are considering in tis section arises not
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because capital tends to grow too quickly, but rather because, even for

a fixed wa, the ratio o the marginal-productivities in at least one

sector will be shifting, and hence factors wil3 be continually

reallocated within the economy. Consequently, this problem is

fundamentally different from either the one-sector model or the

problem ust studied.

As we shall see from the ensuing analysis, the aggregate

(effective) capital-labor ratio for the economy as a whole will tend

to a constant, finite limit, as will the (effective) wage-rental ratio

and the capital-labor ratio (in efficiency units) in the investment

sector. However, due to the presence of different rates of Harrod

neutral technical progress in the two sectors, the effective capital-

labor ratio in the consumption sector will tend to either zero or

infinity. Consequently, this model will differ from the normal steady-

state model principally in terms of the fraction of labor allocated to

each sector and in terms of factor shares in the consumption sector.

To see this, let us assume:

46 ) fM = Fm C = F(K C ,Lced t ) ; d may be positive or

negative.

First of all, it is clear that if a =l, then we are done - the

technical progress in C is equivalent to Hicks neutral technical

progress, and a steady-state exists in that case. Thus, assume # 1.

Furthermore, we shall assume that the elasticity of substitution in C

is bounded from one.

In pursuing the analysis, we employ the normal two-sector
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model. Below we outline some of our basic relations:

47) ki = (Ki/li) x = [ke e- dt ]

i i C

48) = mfm(k m) ; C = L edtf (x)m MC c

49) w = ([edt(f -xfc)]/fc} = [(f -k f')/f']
c c cm mm m

50) P = 1; P P = (fc/)c cm

51) y = (Lc/L) = [(k-km)/(k-k)] ; (l-y) = [(kc-k)/(k-km)]

It is clear that k depends upon w; however, k (and x)

depends upon t as well as w. Thus, even if w is held constant, other

variables change. Since the presence of Harrod neutral technical

progress in only one sector involves this continual shifting in x, it

is clear that there must be a continual reallocation of resources (ac 1).

Consequently, an "equilibrium' can only occur asymptotically.

Below we illustrate how some of the variables shift over time,

assuming that the wage-rental ratio is held constant:

52) [(3x/3t)(l/x)] = -do - [(ak/at)(1/kc)]= d(l-ac )

53) [(3P/at)(./P)] = d(l-a )

54) [((3y/t)(i/y)] = -{[kcd(l-ac)]/(k -km }

55) [(a{l-y}/it)(l/{l-y})] = {[ykcd(l-Oc )]/[(l-y)(k-km)]}

From the above equations it is obvious that the sign of

[d(l-ac)] is important:

56) d(l-oa) > 0 if a) d>O, a<l or b) d<O, a >l
,5) d(1-ac) <0 if a) d< a <l oar bc d a >1

57) d(l- ) < 0 if a) d<O, <1 or b) d>O, a >1
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Finally, adopting the simple savings assumption that everyone

saves at the same rate, we can derive our two basic equations - the

capital-accurmulation equation (58) and the market equilibrium curve (59).

58) k = (l-y)fm - nk = 0 defines L(w,k,t) = 0

59) (l-s)(l-y)(w+km ) - sy(w+k ) = 0 defines H(o,k,t) = 0

We know from the traditional two-sector models that for these

two curves to have a unique (stable) intersection it suffices to have

either k >k or a cil. From equations 56) and 57) we have three
cm c

possible cases:

i) Whenever o >l, a unique intersection exists.

ii) For a <1, d>O, k increases over time (for fixed ), so

that (after sufficient time has elapsed) there will be

a unique intersection.

iii)lowever, for d<O and a <1, neither condition is satisfied

and we can not be certain that a unique equilibrium

exists in this case.

In this latter case it can be shown that as k -0, a >0 suffices to
c m

guarantee that an intersection of these two curves exists and is

unique. Thus, in the first two cases we can be sure of unique

intersections, whereas in the third case a unique asymptotic

equilibrium exists.

The question we now seek to answer is: how do these curves

shift over time and how does their intersection shift? To answer

these questions we must examine the partial derivatives of the implicit

functions defined by 58) and 59).



(IL/"t) = (- )fmrYkd(i-, )]/[(l-y)(k-km)]
' C

Assuming sufficient time has elapsed, k > k
C < 11m

(aL/at) > 0

as d(l-a ) > .c 

in all cases (for t > t* so that the 'proper'

factor-intensity relationships have been established).

(aL/ak) = -[(l-y)fmkc]/[k(kc-k)] > 0

(aL/aw) = {[(l-y)f_]/w}[k oy(w+k ) 

Similarly:

as d(l-c ) <0,C

+ k_(w+k_)(l-y)]
I CC' i mm C

(aL/3a) > 0 as d(l- ) 0

Using the implicit function theorem we find:

(ak/at) kyd(l-c ) > 0 as d(l-a c ) > 0C<

(aw/at)= -{[w(w+k )kcYd(l-ac )]/[kcacY (W+k )+k (1-)(w+k )]}

(aw/at)L=0 < c
L= >

as d(l-a) X O

Therefore, the sign of d(l-a ) is critical in determining

how the curve shifts. Figure I depicts the behavior of this curve over

time. Next, consider what happens to the market equilibrium curve:

(aH/3at) = {[(1-s)(l-y)(w+k )d(l-c )kc (w+k)]/[(k-k)( +k )} > 0

(a/ak) = -{[(1-s)(1-y)(w+k )]/[(kck)y]} > 0

(aa/V) =

as d(l-~ ) 0

(1-s)[w(k-lkm)(k-k)+(w+k)f k (w+k)y+akm(l-y)(w+k) ]

[ (w+k)w(k-km) ]

60)

110

60 )

Thus:

62)

and

63)

64)

65)

66)

67)



(aH/a) 0 as d(l- ) > 0
c

(Note that for both the market equilibrium curve and the capital-

accumulation curve that [dk/dw] > 0).

Using the above equations, we can show how the variables shift:

(Ok/at)H=0 { [k (+k)Yd(l- ) ] / (+ kc) } as- < 0 a s < d(l-c ) > 0

( w/at )F=0 = -[w(w+km)(w+k)k-yd(l -he A

[w(k-k ) (k -k)+(w+k){a ckc y(+k )+ k (1-y)) +k) }

(aw/at)H=0 < 0 as d(l-o ) <> 

Figure II (page 112) depicts how the market equilibrium curve shifts

over time.

So far, we are not able to determine what happens to the

intersection of these two curves - in order to do this we must

compare the magnitudes of the two shifts.3 Thus, if we call (k*,w*)

the (unique) intersection of these two curves at time t, then:

70) a* 0 as I[(ak/3t)(l/k))]L=0I1 I[(3k/t)(l/k)]I=

where the derivatives are evaluated at (k*,*). Or, for simplicity, let:

71) nca = [(k/at)(l/k)]L= ; me =[(ak/t)(1/k)]H= : then:

* > 0 as< 1L [!cal/nmel] > 1 

3We have seen for d < O, a < 1, it is possible that several

intersections may occur. In this case, we assume t is sufficiently

large (kc sufficiently small) to guarantee that only one intersection
occurs.

67')

11l

68)

69)

72)



1.12

Figure I - Shifting of the Capital-Accumulation Curve

Due to Harrod Technical Progress Only in Sector C

k >k
C m

a) d > 0, a < 1

b) d < , ac > 1

k k

w

k <k
c m

a) d < O, a < 1

b) d >O , > 1

1

Figure II - Shifting of the Market Equilibrium Curve

Due to Harrod Technical Progress Only in Sector C

k > k
C In

a) d> , ac <1
b) d <O, a > 1

C

k k

w

k <k
c m

a) d < 0, a < 1

b) d > O, a > 1
C
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But, from equations 63) and 68) we have:

73) [nca/m e] = [k(w+kc)]/[kc ( w+k)] 1 as k k (as d[l-o ]>O).
ca/%e C C > > ~~c c<

Thus, we find:

74) * < O as d(l-ac )
>

W> <C

In other words, if d(l-ac ) < O, then k < k; in this case,

the k = 0 curve intersects the market equilibrium curve from below, and

since the capital-accumulation curve shifts more than the market

equilibrium curve, w* must increase; the reverse holds for d(l-o ) > O.

In order to see what happens to k*, we must consider the

relative shifts of the two curves in the w direction.

k* O as 16 I 16 I

the derivatives are evaluated at (k*,w*).

From equations 64) and 69) we find:

[ ca/me ] = [w(k-k )(kc-k)+(w+k){ kc y(w+km)+amkm(Y-)(w+kc)}]

(w+k)[a ckcy(w+k) + amkm(l-y)(w+kc)]

Therefore:

[6ca/me] > 1
(equality only if k=km or k=k )

m c

Since there can not be specialization (1 > s > 0), [6 a/6m] > 1

(except asymptotically as kc->- or kC-O), and thus k* increases over

time. Table VI (page 114) summarizes how (w*,k*) change over time,

75)

76)

6m [(a/at)(1/a)]H= 0me Hz

77)

77' )

a - aw/at)(i//0l
Ca L__O



TABLE VI - Changes in Equilibrium Values Due to

Harrod Technical Progress in C

ac >1 a <1
C C

d > O k > O, a* · O k > O, w* < O

d < 0 k* > O < 0 k* > O, W* > 0

assuming the uniqueness of the intersection of the two curves.

We have now determined how the "equilibrium" values shift

over time - k* always increases, whereas * may increase or decrease,

depending upon the value of d(l-a ). Clearly, for k > km k

cannot increase forever - an upper bound is established by:

78) k = O , k - k , for y, f(k*) - nk* = ; k* < k*
m

Since k continually shifts over time, our problem is

intrinsically an asymptotic one. Let us now attempt to determine

what does occur asymptotically.

A. Asymptotic Behavior

So far in this section we have seen how the "equilibrium" k

and w shift over time. However, it is clear that no steady-state occurs

in this case (ac l), and therefore our main interest concerns the

asymptotic values of the variables. As we shall see, both k and will

approach finite limits as t. Let us now see how these limits are

determined.
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For any finite (w,k), k must eventually tend to zero or

infinity as time becomes large. Thus, as t-*w:

79) d(l-ac) > 0 - [k+a]; d(l-a ) < 0 - [k-O0] ; [o>>O]

80) But, k implies: (l-y) [(kc-k)/(kc-km)] 1; [>(w,k)>O]
C C

81) And, kc-0 implies: (l-y) + [k/ki] < 1

If d(l-a c) > 0 we can show:

82) k = 0 tends to: [f -nk] = 0
m

83) (l-s)(l-y)(w+km ) - sy(w+kc) = 0 tends to:

83') (w+km) - s(w+k) = O

Equations 82) and 83') are the asymptotic relationships as

k +-; clearly, from 83'), k < k unless s = 1. Since k > k , there

exists a unique intersection between these two curves, and it is

towards this intersection that the economy tends. The value of [k,w]

(the intersection of these two asymptotic curves) depends only upon s,

n, and the production function in industry M - C influences this

equilibrium only insofar as it determines the sign of d(l-oc). From

equations 82) and 83') the value of is determined by:

84) [w/(w+km)] - [(l/s) - (f'/n)] = 0 (w) = 0

Equation 84) has a unique solution () since:

85) *(0) = a, (X) < 0, and i' < 0 when ' = 0.

Thus, if kc tends to infinity, there exists a unique

asymptotic equilibrium. As the economy approaches this equilibrium,
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k* increases, and w* decreases.

Next, suppose that d(l-ac) < 0, so that k -*O. As already
C c

stated, for ac < 1, we can not be sure that a unique equilibrium exists

for all time. However, as k cO, it suffices that am > 0 in order for an

unique intersection to exist between the two curves. As k +O0, our two

equations approach the following limits:

86) k = 0 tends to [(k/km)(fm - nk )] = 0 as k -+O.
m m m c

87) (-s)(l-y)(w+km)- sy(w+k c ) = 0 tends to

87') k[(w+k) - sk - swk = 0 as k -O.
m m m c

As we can see from equation 86), there exists a unique w such

that k= 0 (independent of k); and [ak/aw] < (at k=O). Since 87),

the market equilibrium curve, is upward sloping, a unique (and stable)

equilibrium exists. Hence, is determined from equation 86), and k

from equation 87'), by using the value of obtained from equation 86).

In summary, the presence of Harrod neutral technical progress

(at a positive or negative rate) in sector C leads to an asymptotic

equilibrium in which both k and approach finite limits. If d(l-ac)

is positive, then the "equilibrium" value of (as defined by the

interesection of the k=0 curve and the market equilibrium curve)

decreases over time, approaching its (non-zero) asymptotic limit,

whereas k increases over time. If d(l-ac) is negative, then the

equilibrium values of w and k increase (if a unique intersection exists)

over time, approaching their finite asymptotic limits. Finally, if

a 1, then Harrod neutral technical progress is equivalent to Hicks
C
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neutral technical progress, and a steady-state exists.4

B. Asymptotic Growth Rates

Now that we have seen what happens to w and k asymptotically,

we would like to determine how the other variables behave. Since w and

k tend to constant limits, it follows that k also tends to some
m

constant limit. Consider the following variables:

88) M = L(l-y)f

89) C = edtLyf

90) P = [flf' ]

91) Y

92) (l-y)

Equations 53) - 55) tell us how P, y and (l-y) change for

constant w. Again, we need to divide our analysis into two parts:

d(1-ac ) > 0 and d(l-oc ) < O. Also, we need to consider the case in

which ca -l asymptotically. As already stated, if ac=l everywhere, a

steady-state exists.

i) d(l- c) > 0 and kit, (l-y) 1 and ac - 1

90') (P/P) -+ d(l-ac) + O

4Earlier we assumed ac < 1 or ac > 1 everywhere; since, as

to, xO (d>O) or x+- (d<O), and since acc depends only on x, it

suffices that ac be bounded from unity asymptotically. That is, the

same asymptotic result holds true if ac < 1 [or ac > 1 only

asymptotically, though it may fluctuate between the two for intermediate
values of x.
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91') (y/y) -d(l-ac) < 

92') [d(1-y)]/(l-y) * {[yd(l- )]/(l-y)} 0
dt

89') (c/c) n + d + (y/y) + a (x/x) n

88') (M/M) + n

ii) d(l-a) < and k -.O, (l-y) -* [k/km] ac 

90") (p/p) - d

91") (y/y) + O

92") [d(l-y)]/(1-y) + 0
dt

89") (C/C) + n + d + (.y/y) + a (x/x) +[n + d]

88") (MM) - n

Finally, it is possible that a +1l asymptotically; in this case k may
C C

tend to zero or infinity, but a approaches some non-zero value.

90"' ) (P/P) d(l-ac )

91"') (6/y) + 0

92"') [d(l-y)]/(l-y) -+ O
dt

89"') (C/C) + [n + d(l-ac)]

88" ') (M/M) + n

Thus, if k -o (and a bounded from one) there is no continual
c c

growth in per capita consumption or the price level. The reason for

this is, if d > O, then ac < 1 - the resources are continually

shifted away from C, offsetting the gains from technical progress. On
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the other hand, if d < 0 (technical regression) then x tends to

infinity and the output-capital elasticity tends to one - and this is

enough to offset the negative effect on consumption due to the

technical regression (and the shifting of resources out of C).

Therefore, if ko, then the effect of technical progress is

transitory (oc bounded from one) in the sense that the asymptotic

growth rates of C, M, and P are the same as if there were no technical

progress at all. Finally, consider the asymptotic values of P and C:

93) C = [(l-s)/s]PM P = [f'(x)]/[fl(km)]

If the Inada conditions hold, then P and (C/L) tend to infinity for

d > 0 (since xO, c < 1), whereas P and (C/L) tend to zero for d < 0.

Thus, even though the growth rates of P and (C/L) tend to zero, their

asymptotic values tend to zero or infinity. For d > O, there is a

bonus of greater consumption due to the technical progress, whereas for

d < O, there is a decrease in consumption. However, if the Inada

conditions are not fulfilled (and not all four can hold for a C.E.S.

function unless a=l), then P and (C/L) both have finite, non-zero

limits (as M always does in this case).

However, if kc tends to zero (d>O, c>l or d<O, ac<l), then

the fruits of technical progress show up in the growth rates of the

variables. For example, if d > , a > 1, then the continually

decreasing effective capital-labor ratio in C (x) eventually ceases to

be important since the output-capital elasticity tends to zero, and a

point is reached when no more resources are transferred out of (or

into) C, so that the share of labor employed in C remains constant.

Once this stage is reached, the effect of technical progress dominates
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TABLE VII - Asymptotic Growth Rates of Variables with Harrod Neutral

Technical Progress Occurring Only in Sector C

Variable

M

C

P

Y

(l-y)

W

R

k

(

ao41
C

n

[n+d(l-ac) ]

0

0d(l-a )

d(l-ac )

0

0

d> 0

a>l a<lc c,>

n

[n+d]

d

0

0

d

d

0

0

n

n

0

-d(l-a )

0

0

0

0

.0 c

d< 0

a> 1
c

n

n

-d(1- )

0

0

0

0

0
O

o<1c

n

[n+d]

d

0

d

d

0

0

and C will increase over time (for d,0). Table VII summarizes these

results.

C. Extending the Analysis - Harrod Technical Progress

Only in the Investment Sector

Suppose that Harrod neutral technical progress occurs at rate g

in M and not at all in C:

M = F(KmLeg) ; C = F(KoLc)

This can be rewritten to indicate that Harrod neutral technical progress

occurs at rate g in both sectors, and at rate d (-g) in sector C:

M = F (K,Le gt); C = F(K ,[Le g]edt ) ; d = -g
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As we know, when Harrod neutral technical progress occurs at

the same rate in each sector, a steady-state exists, and the appropriate

variables, when expressed in efficiency units, are constant. Therefore,

we can use our previous analysis to study this case, except that we now

interpret our variables as being expressed in efficiency units. For

example, in this case and k (the efficiency variables) would both

approach positive, finite values, though X and k would each grow

asymptotically at rate g. Also, consumption per capita would grow at

rate g plus the rate determined from Table VII with [d = -g].

Consequently, (C/L) would grow at rate g if ao > 1, and it would not

(asymptotically) grow if ac < 1. Thus, we are prepared to handle the

occurrence of Harrod neutral technical progress in M alone, or at

different rates in the two sectors.

Similarly, if capital-augmenting technical progress also occurs

in C, we can treat this as Hicks neutral technical progress in C plus

some negative rate of Harrod neutral technical progress in C. Again,

our analysis would be identical to that Just completed, except that

consumption, the price level, the wage rate and the rental rate (in

numeraire units) would all grow at the additional rate of Hicks neutral

technical progress in C, as well as at the rates determined from

Table VII.

Finally, if Hicks neutral technical progress occurs in M (it can

also occur in C), and Harrod neutral technical progress occurs at the

same rate in each sector, then the analysis would be identical to that

performed in Part I, except that the variables would be expressed in

efficiency units.

Therefore, the only case we can not yet treat is if Hicks
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neutral technical progress occurs in M and if Harrod neutral technical

progress occurs at different rates in the two sectors. Note, however,

that if am-l, then we can always treat the problem as though Harrod

neutral technical progress occurs at the same rate in each sector (or

else as though there were no capital-augmenting technical progress in M),

and thus our earlier analysis can cope with this case. Similarly, if

a =1, we can arrange it so that Harrod neutral technical progress
c

occurs at the same rate in each sector. Therefore, if:

C = Fc(egtKc, c) ; M = F (eatKm, ebtL )

then the only case we can not yet handle is:

i) a 0, and (b-a) (d-g) and ac am #

The reason our previous analysis can not handle this case is

that, in treating the case of Harrod neutral technical progress in only

one sector we assumed that (w,k) remained finite - and this will not be

true if some Hicks technical progress occurs in M. To treat this case

we must return to (and modify) our analysis of Part I.

Before considering this case, let us briefly summarize our

findings on the asymptotic growth rates in various cases:

ii) a# 0, ac am 1, but (b-a) = (d-g)

When the variables are expressed in efficiency units,
they will asymptotically grow at the rates determined
in Part I, with Hicks technical progress in M at rate a.
Naturally, these rates depend upon the elasticities of
substitution in each sector. To derive the growth
rates of the original variables, one need only add the
growth rates that occur in a normal two-sector model
with Harrod neutral technical progress at rate (b-a)
in each sector.
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iii) a = O, b (d-g)

If a =1, a steady-state exists with Harrod neutral

technical progress at rate b in each sector, and Hicks
neutral technical progress at rate [(d-b)(l-ac ) + gac]

in sector C. If acfl, then Harrod neutral technical

progress occurs at rate b in both sectors, and at rate
(d-g-b) in sector C, as well as Hicks neutral technical
progress in sector C at rate g.

iv) a or a = 1
c m

As explained previously, any problem can be converted
into a type ii) or type iii) problem.

V) a Q0 and b = (d-g)

This represents the normal steady-state case with
Harrod neutral technical progress at rate b in both

sectors and Hicks neutral technical progress at rate
g in C.

vi) a = 0 and a = 1m

This case is essentially the same as case iii).

vii) a = 0 and ac = 1

In this case a normal steady-state occurs since it can
be converted into a type v) problem due to the
equivalence of Hicks and Harrod technical progress in C.

viii) a 0, (b-a) = (d-g) , and am = 1

The Hicks neutral technical progress in M can be
converted into Harrod neutral technical progress, and
thus this case is equivalent to case iii).

ix) a O, (b-a) = (d-g) , and a = 1

This case is essentially the same as case ii).

X) a = O, b = (d-g), ac am = 1

This is the normal steady-state case, and the
restrictions on the elasticities of substitution are
unnecessary.
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Thus, the only case we cannot yet handle is case i) - let us

now turn our attention to this case.

IV. Hicks Technical Progress in the Investment Sector and

Harrod Technical Progress in the Consumption Sector

So far, we have considered how Hicks technical progress in sector

M or Harrod technical progress in sector C will affect the two-sector

growth model. Specifically, we have found that in the former case the

capital-labor ratio tends to infinity, but the growth rates approach

finite limits for am 1 (and the results are comparable to the one-

sector model. In the latter case, which can only occur in multi-sector

models, the capital-labor ratio and wage-rental ratio for the economy

tend to finite limits, and the principal difference between this case

and the normal steady-state case is that the output-capital elasticity

(and capital's share under competitive pricing) tends to zero or one in

the consumption sector (acl). In this part we shall consider both

cases simultaneously, and we shall find that, though the analysis is

comparable to that for Part I, our results will be more complicated. For

example, the growth rates of the system depend not only on ac and am and

the rates of technical progress, but they also depend on whether Hicks

neutral technical progress in M occurs at a faster rate than Harrod

neutral technical progress in C. Let us now investigate why this is so.

For simplicity, we assume that only Hicks neutral technical

progress occurs in M and only Harrod neutral technical progress occurs

in C; it is quite clear from our previous discussions that all other

cases can be readily incorporated into this case.

Using our previous notation:
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i) a = b, and g = 0, d 0; ac, am 1

For simplicity, we adopt the simple savings assumption: sk = sn.

Our two basic equations, as discussed in Parts II and III, are:

94) X (K/K) = [(l-y)e fm]/k

95) (l-s)(1-y)(w+km) - sy(w+kc) = O defines: H(w,k,t) = 0

We must remember that from equation 95) w is defined as a

function of t as well as of k. Similarly, k (it appears in equation

94) in [l-y]) depends on time as well as on w.

We follow our analysis of Part II, page 85, and find:

96) (X/X) = [{d(l-y)/(l-y)} + a + a (k /k)- (X-n)]
dt

97) (km/km) = {[m(X-n)]/a} , where a = [(dk/dw)(w/k)], depends

on t as well as on k.

98) [d(l-y)/(l-y)] = (X-n)[(l/o){yck+(l-y)a k } - k] + kcyd(l-a c )t mm 
dt

(kc-k)

Thus, comparable to equation 12, page 86:

99) (X/X) = (TX - Tn + A) + {[kcYd(1-ac)]/(kc-k)}

where T and are defined to be the same as in part II, equations 16a)

and 17a), except that they implicitly depend upon time.

As earlier, a is always positive; we have seen that T is

negative if either: i) k k or ii) a 1
c m c

In part III we showed that if tends to a finite limit, then

eventually [d(l-ac)/(kc-k)] > 0. Unfortunately, this is not
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necessarily true if w grows without bound, and so we cannot be sure of

the positiveness of the last term in 99).

From the previous two parts it is clear that both k and w tend

to infinity; therefore, we must be content to consider the asymptotic

growth path. We proceed as in Part II, considering what happens to the

growth rates for various values of ac and am.
c m

Table VIII presents the asymptotic growth rates; several

comments about the Table are in order. First of all, it no longer

suffices (in some cases) to state whether ac is greater than, equal to,

or less than one - in some cases we must further subdivide these

intervals. Secondly, when we write that ac tends to one (or am tends to

one), we assume that it asymptotically approaches one - if ac or am were

unity throughout, then our prior analysis would suffice, as previously

explained. Thirdly, in calculating the limits we assumed (as in Part

II) that ac and am were bounded from zero or infinity - or else

approaches those values "sufficiently slowly" (see footnote 2, page 100).

Though it is true, as we can see from the Table, that k, , and

km always tend to infinity, the same is not true of x (the effective

capital-labor ratio in C). In fact, what happens to x depends upon the

relationship between A and d (the rates of Hicks technical progress in M

and Harrod technical progress in C, respectively), and, in some cases,

am. For example, from the Table we see that for a l, a +l, then:
m c m

sign(x/x) = sign[A-d(l-am)]

When the expression in brackets is positive, x tends to infinity; when

it is negative, x tends to zero. If A = d(l-am ), then the asymptotic

value of x depends upon the initial conditions, the behavior of am as

we+, and so forth. In general, x can tend to either zero or infinity in
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this case. There are other examples in which this problem arises.

If we compare Table VIII to Table IV of Part II, we see that

whenever d=O (hence A>d), the two tables are identical, as expected.

However, when dO, the growth rates of R, W, , C, x, and P will, in

general, depend upon d (as well as A), whereas the growth rates of K,

k, and M depend only upon A and the values of ac and am.
C m

As we can readily see from the Table, the growth rates of K, k,

W, and M are always positive. The growth rates of (C/L) and W are also

positive for A, d > 0; however, if a < 1 and d < 0, then they may be

negative. On the other hand, the growth rates of P and R may be

negative, zero, or positive, depending upon the elasticities of

substitution and the relationship between A and d (the growth rates of P

and R can be positive only if d > A > 0). Therefore, if d > A (and not

both ac' a > 1), then the growth rates of P and R will be non-negative -
m

the technical progress in C "outweighs" the technical progress in M in

this case.

Finally, given Table VIII we can handle the general case in

which both types of factor-augmenting technical progress occur in each

sector:

M F(Kme ,Lmeb t ) e Fm(K,Lme(b )t)mm m mm
c F(,Kcet ,LLced ) F (K L(b-a)ted*t ); d* = (d+a)-(b+g)

cC ( dc a c c c ; )t-

Thus, the general case5 is equivalent to:

5The assumption that technical progress is only factor-
augmenting is a restriction in itself; thus, this represents the
general case, given that restriction .
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TABLE IX - Asymptotic Growth Rates - General Case

Variables Asymptotic Growth Rates

K, k, M, and w [p(a,d*) + (b-a)]

R and P [p(a,d*) + g]

W and (C/L) [p(a,d*) + (b+g-a)]

p(a,d*) is the rate of growth for the appropriate variable obtained

from Table VIII when Hicks technical progress occurs at rate a

in M and Harrod technical progress occurs at rate d* in C,

with d* = [(d+a) - (b+g)].

i) Hicks technical progress in C at rate g

ii) Harrod technical progress in both sectors at rate (b-a)

iii) Hicks technical progress in M at rate a, and

iv) Harrod technical progress in C at rate d*

We already know how to handle parts i) and ii) since they yield

steady-state solutions; furthermore, iii) and iv) are the cases we

have ust studied. Therefore, the growth rates in this general case

will be the sum of the growth rates from the respective parts. Table IX

summarizes the growth rates for each of the variables.

V. Factor Shares

In the previous discussion, we have determined the asymptotic

growth rates of the variables - as we have seen, all the variables

will approach some asymptotically constant (if finite) growth rate,

the magnitude of which depends upon many of the parameters of the



132

problem, However, in general, the effective capital-labor ratio in each

sector will tend to either zero or infinity, and so the factor shares

(under competitive pricing) will tend to zero or one unless the

elasticity of substitution in that sector tends to one. For those who

are firm believers in marginal cost pricing, this result will hardly

seem plausible. However, it should be noted that while the factor

shares in each sector may tend to zero or one, for the economy as a

whole they may approach some intermediate value. Thus, from the market

equilibrium equation we can write:

100) sY = s(C + PM) = PM ; or, C = [(l-s)/s]PM

Clearly, the share of capital for the economy is the weighted

average of the capital-share for each sector:

101) a= [(RK)/(RK + WL)] R(K +K ) /(C + PM)] = [(-s)a + sa]
c m c m

Thus, unless both a and a tend to zero (or both tend to one), a will
c m

tend to some intermediate value.

Therefore, while the factor shares in each sector will, in

general, tend to zero or one, it is quite possible that factor shares

for the economy will be non-zero for both factors. From Table VIII

we can determine the factor shares in each sector, and given s, we can

subsequently determine factor shares for the economy as a whole. We

shall have more to say on this topic and other related issues in

Chapter 3.

VI. Maximizing the Asymptotic Rate of Growth of Consumption

In Part II we discussed the problem of allocating technical

progress (a surrogate for research funds) in order to maximize the
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asymptotic rate of growth of consumption, given that technical

progress had to be Hicks neutral. In general, we found (Table V)

that, unless < 1, the planner should allocate at least some

technical progress to the investment sector, so that a steady-state

would not occur. We can now generalize this discussion to include

all types of factor-augmenting technical progress.

A. Allocating Labor-Augmenting Technical Progress

Between Sectors

As our first example, let us assume that technical progress

is only of the labor-augmenting variety, so that:

M = F(K ,Lmeht) ; C = F (K ,Lcegt) ; h h(g); h, g 0.mm m C c c

g = A, h(A) 0 ; g = 0, h(0) A h', h" < 0

Naturally, h(g) represents the trade-off between technical progress

in the two sectors; though it may seem reasonable for this frontier

to be symmetrical, we do not impose this a priori restriction.

If Harrod neutral technical progress occurs at rate h in M

and at rate g in C, this is equivalent to it occurring at rate h in

both sectors and at rate d [ = (g-h)] in sector C. Thus:

102) (C/C) = [h + 6(d)] , where 6(d) is the rate of growth of

consumption when Harrod neutral technical progress occurs only in C.

Since we have already studied this problem in Part III, we can

immediately write:

103) d(l-ac ) > 0 (C/C) = (n+h); d(l-ac ) < 0 (C/C) = (n+g)

d = o0 (C/C) = (n+g) ; -ac-1 * (C/C) = [n + ach + (l-ac)g]
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If a = 1 everywhere, then a steady-state exists, and C grows at

the same rate as the asymptotic growth rate for the case in which a -l.

Given equation 103), we can make our decision about how to allocate

technical progress, given the (asymptotic) value of ac:

104) aC > 1: g > h (C/C) = n + g ; g = , h = 0

ac > : g < h + (C/C) = n + h; g = 0, h = A

a < : (C/C) = n + Min(h,g) = n + g ; h(g) = g, d = 0
c

a T 1: (C/C) = n + a h* + (1-a )g*; h'(g*) = -[(l-ac)/ac]; h"<O

We can see that for a < 1, one should allocate technical
C

progress equally between the two sectors, so that a steady-state would

exist. If a = 1, one should (barring a corner solution) allocate some

technical progress to each sector, but a steady-state would exist, as

stated previously.

If asymptotically al, then, in general, some technical

progress should be allocated to each sector, but a steady-state will

probably not occur. Finally, if ac > 1, then one should allocate all

technical progress to only one sector, that sector depending upon the

shape of the transformation curve. Thus, as A, the planner should

allocate all technical progress to C, to either sector, or to M.

Therefore, in the case A = A, the planner is indifferent (under this

criterion) as to here technical progress is to be allocated, except

that it all must go to one sector.

So far we have overlooked one factor - if d [=(g-h)] > 0, then x

(the effective capital-labor ratio in C) tends to zero, whereas if d < 0,

x tends to infinity. Clearly, the asymptotic value of a as x-+O may be

different from the value of ac as x. Thus, the planner may have to
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base his decision on the sign of d, as well as the asymptotic value of ac

For example, suppose a <l as x-*O, and a c>l as x+'. From 104), it

is quite clear that the growth rate for ac>l is greater than that for

ac<l. Therefore, the planner must choose x (thus, d<O). This implies

that he should choose g=O, h=A even if A < A.

Similarly, suppose a l1 as xO, and a >1 (or a <l) as x. If

a +1:
C

105) (C/C) = n + ach* + (l-ac)g* ; h'(g*) = -[(1-ac)/ac]

Thus, h* and g* now depend only upon ac. Define:

106) e = [ ch* + (1-ac)g*] ; h'(g*) = -[(1-ac)/a ]

Then it can readily be shown that:6

All of the following results are derivable from the definition
of 8:

e = a h* + (1-ac)g* , where h'(g*) = -[(1-ac)/ac]; (dg*/dac)<O

Thus:
i) (d8/dac) = (h*-g*) + [ac(dh*/dg*) + (l-ac)]I(dg*/dac ) ;

Therefore, (d8/dac) = [(h* - g*) + 0] = (h* - g*) , and

ii) (d2e/da2) = [(dh*/dg*) - l](dg*/dac)] -

-[1 + {(l-ac)/ac}](dg*/da) = -(l/ac)(dg*/dac)>O

Therefore, is a minimum for such that h* = g*; there are no

interior maxima, Just boundary maxima.

iii) (0) = , (1) = A

By continuity, if A A, (assume A > ), then there exists ac such that:

iv) A > , ac > a , (a ) > 

Therefore, depending on the slope of the transformation curve, the
planner may choose either:

h* > g* > 0 or h = A*, g = 0 (for ac > a ).

A comparable result holds for A < A.
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107) Max(A,) > e g where h(g) = 

108) There exists a unique ac such that: (ac) = g; ac ac, e > g
C c C C

109) A = A implies 6(ac) < A
C

if ac(1-ac ) 0

) 'A,
110) If A > , there exists an a such that: a > a -* (Ca ) > X

111) If A < , there exists an a t such that
C ac< a ct- 6(a c) > AOc cc

Given the above properties of 0, we can decide how to allocate

technical progress should a *l. For example, if a l1 as x-*O, and a <1
c c c

as x, we find that, given ac(0) as x0:
C

112) If ac() < c (ac implies h*=g*), then g* > h* 0 (g*, h*

determined from h'(g*) = -[(l-ac(O))/ac(0)]), and

g* > h* implies x-O. Therefore, the maximum occurs at

g*, h*. However, if:

113) a (0) > a , then h* > g* 0, which implies x, and

hence a < .7 Thus, in this case we find:

114) To maximize (C/C) choose: g* = g = h(g) if a c(0) > a , and

choose: g* > h* 0 [where h'(g*) = -(1-ac(O))/ac(O)}]

if a (0) < a

7
For a > ac, h* > g* implies x+X. Given o +l as x+-0, for

fixed ac, it follows that we seek:

i) Max[e] = [ach + (1-ac)g] such that g > h. But since 
{gc

is concave in g (given ac), and since ac > ac, this implies g* g =

the same solution as for a < 1, and hence a steady-state.
C
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Therefore, it is not enough to consider the asymptotic values of

oc, but we also need information about the shape of the transformation

curve (its slope at h(g) = g), and the asymptotic value(s) of ac.

Of course, we must follow the same procedures in all cases in

which a -*l as either x-+O or as x-+ (or both). Thus, if a +l as x-+O and
C C

as x-+, we must consider both the values of ac(O) and of ac(o).

Table X (on page 138) summarizes the results for all possible cases.

B. Allocating Technical Progress Within the Consumption Sector

Alternatively, we might suppose that the planner has to decide

how to allocate factor-augmenting technical progress within C (somewhat

analogous to the one-sector Kennedy model).

115) M = F(K,L) ; C = F(Kce ,Lce gt ) = e (KcLce )mm c c C CCC

Letting d = (g-h), we have:

116) (C/C) -+ [h + 6(d)], where 6(d) is the rate of growth of

consumption that results from Harrod neutral technical progress in C

alone. However, it is obvious that this problem is the same as the one

just discussed. That is, under the criterion of maximizing the

asymptotic rate of growth of consumption, the problem is comparable if

the choice is either:

i) Between Harrod technical progress in C or in M

ii) Between varying amounts of factor-augmenting technical

progress within C.

In either case, the planner should reach the same decision as to how

to best allocate technical progress (in so far as the occurrence of a
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TABLE X - Allocat:ing Labor-Augmenting Technical Progress

Between Sectors

Either C = F (Kc,Lcet) , M = F (K L eht)

Or C = Fc(Keht Legt) , M = Fm(Km ,Lm)

h = h(g); g, h > 0; h(O) = A; h(X) = 0 ; h', h"< 0

x is the effective capital-labor ratio in C.

Limit

x-+O

a >1

a as

a >1
C

a >1 a -1c c

a >1
C

a +1
c

a <1

a >1
c

A= A

g=O, h=A (x-*c) or

g=A, h=O (x-O)

g=X, h=O (x-O)

g=X, h=O (x-+O)

g=O, h=A (x->3)

A> X

g=O, h=A (x+)

There exists a* :
c

a a* , g=A, h=O
C C

a > a* , h*>g*>O
C C

h'(g*)=-(l-a c )/ ac

and x.

g=, h=O (x-O)

g=, h=A (x+')

g=A, h=O (x-+O)

g=X, h=O (x-+O)

g=, h=O (x+O)

There exists a*:
C

a> * g=O, h=A
C C
a < a*, g*>h*>O,
C C

h'(g*)=-(l-ac )/a
and x-+O.

a -1 a +1 In this case it is unimportant whether A - .
c c The values of ac(0) and of a (-) are critical

There exists an a such that: h* g* and xsteady-state
c <

tO

as a - a
c< c

1) If ac (O)= ac (), then h' = -(l-ac)/ac; hg if acf C

2) a c()> c' c(°)- c; h' =-(l-ac ())/a c(); -*

3) a (C) ac(O)<& ; h' =-[1-a (0)1/a (0); x-OC c' aC c
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TABLE X - Continued

Limit a as
c

x-+O x+ct

a -1 a +1
c c

(Continued)

A. = A A > X A < 

4) ac() < ac(O) = c = h* ; Steady-State

5) ac(O) > a(x) = ac ; g* = h* ; Steady-State

6) ac( )< , a (0) > a; g*= h* ; Steady-State

7) ac()> c ac(0) < c ; let: h(gl) = -[1-a c()]

C

h2(g2) -[l-ac(o)]/a () ;

Let: 61 = [a c()hl + {1-a ()}gl]

62 = [ac(O)h2 + {l-ac(O)}g2]. Then, choose:

gl or g2 as 61 62 (61=62, indifferent

between gl and g2)

a-+1 a <1 Define a such that h* g*as a >c c c < g" as ac 

1) a(0) a c choose g* = h* ; Steady-State

2) a(O) < c ; choose g* > h* > 0 (x-+O), where
C C

h'(g*) = -{[1-ac(0)]/ac (0)}

ac<1 ac>1 g=O, h=A (x+) g=0, h=A (x+-) g=O, h=A (x+)

a <1 a -l Define a such that h* g* as a > a
C C C< CC

1) ac () ac ; choose g* = h* ; Steady-State

2) ac () > ac ; choose h* > > 0 (x+w) where:

h'(g*) = -{[1-ac()]/ac(-)}

a 1 a <1
c C

g* = h* > g* = h* > 0 g* = h* > 0

(Steady-State in all three cases)
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steady-state is concerned), and the asymptotic growth rates are the same

in the two cases. Also, there can only be a steady-state if

asymptotically ac < 1 (as xO and as x-), if a c = 1 everywhere, or

perhaps if a - 1 (a necessary condition is that c 1 asymptotically

as x0 and as x+X).,

C. Allocating Capital-Augmenting Technical Progress

Between Sectors

As another example, suppose that we have the following:

117) C F(K e t, Lc ) ; M = F(Kmeht,L) . This can be rewritten as:c C C mm m

c= gt (Ic Le-ht (h-g)t) M ehtF (Km,Lmeht)

h, g > 0 ; h = h(g); h', h" < 0; h(0) = A, h(X) = 0

Consequently, this case is equivalent to:

i) Hicks technical progress in C at rate g

ii) Harrod technical progress in both sectors at rate (-h)

iii) Harrod technical progress in C at rate (h-g)

iv) Hicks technical progress in M at rate h

From our earlier discussions we know that:

118) (C/C) = g + (-h) + 6[h,(h-g)] , where 6[h,(h-g)] is the

rate of growth of consumption when Hicks technical progress takes place

at rate h in M and Harrod technical progress takes place at rate (h-g)

in C. These rates are readily ascertainable from Table VIII, page 127.

From Table VIII we can see that an important consideration in

determining the growth rates is whether the rate of Hicks technical

progress in M is greater than the rate of Harrod technical progress in C:



119) That is, it is important if: h d or h d(1-a)

However, since d = (h-g), and since h, g > 0, it follows that:

120) h > d always, with equality only if g = 0. Also,

121) h > d(l-a m ) always (a > 0).
m m

Thus, many of the different possible subcases are eliminated

from Table VIII, and since h > d, x (the effective capital-labor ratio

in C) always tends to infinity. Therefore, unlike the previous problem,

we need not worry about the asymptotic value of c as xO.
c

Table XI presents the decisions that the planner should make,

which depend upon the values of the elasticities of substitution. From

the Table we see that whenever ac < 1, it does not matter (under this
c

criterion) what decision the planner makes - in any case, the asymptotic

growth rate of per capita consumption will be zero. This is true simply

because capital-augmenting technical progress in either sector

eventually leads to capital-deepening in C, and since the elasticity of

substitution in C is less than one, this capital-deepening is of little

use in increasing the asymptotic growth rate of consumption.

On the other hand, if ac > 1, then am is the determinant of our

actions. Since ac > 1, capital-deepening in C can lead to increasingc

consumption levels. If am > 1, the technological progress in M will

lead to an ever-increasing rate of growth of capital, and therefore we

should direct all our technical progress to sector M. On the other

hand, if ac < 1, then the investment sector can not (asymptotically)

benefit from the capital-deepening, so in this case we should direct all

our new technology to sector C - directly increasing the level of

consumption. Finally, if am - 1, then technological change should be
m

141
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TABLE XI - Allocating Capital-Augmenting Technical Progress

Between Sectors

C = Fc(Kc e gt,L c ) ; M = F(Kmeht ,Lm)

a ac Allocation Rule

h = h(g), h, g O ;

h', h" < O; h(O) = A, h(A) = 0

(C/C)

a >1 a >1
m c

a +1

a <1c

g O, h = A

g = 0, h = A

Indifferent n

a +1 a >1
m c

c

a <1
c

h'(g*) -[(1-am)/am]

h'(g*) = -[(1-a )/a ]
m m

Indifferent

n + {(amh* + (1-am)g*]/(l1-a)}

n + a {[a h* + (1-a )g*]/( 1-a )}
c m m m

n

a <1 a >1
m c

a -+1

a <1
c

g = , h = 0

g = , h = 0

Indifferent

n + A

n + a 
c

n

divided between the two sectors (the allocation of technological change

does not depend on whether ac > 1 or ac 1).

In this case there can only be a steady-state if h=O, ac=l

everywhere, or else if both ac and a equal one. Consequently, a

steady-state is very unlikely to occur in this case.

Finally, we also see that, unlike the previous cases, the shape

of the transformation curve (given its concavity) is unimportant except

in the case am 1.m
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D. Allocat:ng Technical Proess Within the Investment Sector

Another possible alternative is to assume that there exists a

trade-off between capital- and labor-augmenting technical progress in

the investment sector, and to ask what decision the planner should make

about allocating this technical porgress if he seeks to maximize the

asymptotic rate of growth of consumption. Thus, assume:

122) C = Fc(Kc,L ) ; M = F (Ke hLe g ) ; h=h(g); h,g > 0, h', h<O

Equation 122) can be rewritten as:

123) M = ehtFm(Kn,Le ( g -h)t) ; C = F(K,Le(g-h)te(h- g)t)

Following our previous procedure, we find:

124) (C/C) = (g-h) + 6[h,(h-g)] , where 6[h,(h-g)] is the rate

of growth of consumption as determined from Table VIII (h is the rate

of Hicks technical progress in M, (h-g) the rate of Harrod technical

progress in C). However, from equation 124) it is apparent that this

is equivalent to the problem that we have just investigated, so that

Table XI applies equally well to this case. Once again, a steady-state

will be chosen only if:

i) a a - 1 or ii) a < 1, a E 1
m c M c

E. Induced Technical Progress in Each Sector

As our final case we shall investigate what decision the

planner should make (under the criterion of maximizing the asymptotic

rate of growth of consumption) if there is a Kennedy-type trade-off in
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each sector. Specifically, assume;

125) C = F(Kedt ,Le ) ; M = F(Kebt ,Le a t )

b = b(a) ; a, b O; b', b" < O; b(O) = B, b(A) = 0

d = d(g) ; g, d O; d', d" < O; d(O) = D, d(G) = 0

Professor Chang [11] has studied this model under the assumption

that each firm seeks to maximize the rate of reduction of per unit costs,

given constant factor prices. In his model he found that there is a

locally stable steady-state equilibrium (assuming sk > sn = 0) if:

i) k k and ii) a , a < 1 everywhere
c m · c m

This result is, of course, akin to Professor Samuelson's [42] one-sector

model in which he showed that the "Kennedy" equilibrium was stable only

if the elasticity of substitution were less than one.

In investigating this case, we are interested in determining

under what conditions the planner will choose a steady-state solution.

As we shall see, the most likely case for the occurrence of a steady-

state solution corresponds to the Chang case, ac < 1, am < 1 (however,

unlike in Chang's model, these are only asymptotic restrictions on ai).

However, unlike the Chang case, it is possible that a steady-state

would be chosen even if a > 1, or if a -+ 1. On the other hand, if

ac > 1, then the planner will never choose a steady-state since the

consumption sector can profit from the continual capital-deepening that

occurs in the asymptotic equilibrium if there is capital-augmenting

technical progress in either sector.

Clearly, all the information that we need to solve this problem

is contained in Table VIII. We must consider each case separately (for

different values of the elasticities), and determine whether the
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planner should choose a steady-state solution.8

i) am > 1, aC > 1

In this case, if some capital-augmenting technical progress is

present in the investment sector, then the rate of growth of consumption

is unbounded. Furthermore, since the rate of growth of the rate of

growth of capital depends upon the rate of capital-augmenting technical

progress in M, it follows that we should allocate as much capital-

augmenting technical progress to sector M as is possible, and

consequently a steady-state solution is not desirable in this case.

ii) am > 1, a 1

Though the rate of growth of capital is unbounded in this case,

the rate of growth of consumption is finite since the consumption sector

cannot profitably avail itself of the continual capital-deepening. If

any capital-augmenting technical progress occurs in M, then we find:

126) (C/C) = n + g , and maximization of 126) implies d=O, g=G.

The values of (a,b) are unimportant, provided that b > 0. On the other

hand, if no capital-augmenting technical progress occurs in M, we

find from Table VII:

126) (C/C) = n + d + A + Min[O,(g-d-A)] ; b=O, a=A.

Maximization of 126') yields: g* = (d* + A), assuming that this is

feasible (that is, that G A). If we compare our results from 126) to

8Chang assumes that ac, a < 1 everywhere; we are interestedonly in the ymtot
only in the asymptotic values of c and of a 
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those for 126'), we find that for G > A, it pays to have some capital-

augmenting technical progress in M, and so we would choose d=O, gG,

b > O (and hence there is no steady-state). If G = A, then we would

lose nothing (in terms of the rate of growth of consumption) by choosing

the steady-state solution, whereas if G < A (and d ' O), a steady-state

is not possible since either capital-augmenting technical progress will

occur in M, or else Harrod technical progress will occur at different

rates in the two sectors.

Thus, the planner is unlikely to choose a steady-state in this

case.

iii) am 1, a > 1

From Table VIII we can show:

127) (C/C) = n + d + (a-b) + Max[{b/(l-am)}, (g-d+b-a)] =

n + Max[{d + a + [(amb)/(l-am)]}, g]

In general, the planner will not seek a steady-state solution

in this case. If:

D + Max[a + {(a b)/(l-am )}] D + Max(A,B) > G,
{a} m m

then the planner should choose dD, g=O, and (a*,b*) such that:

b'(a*) = -[(1-am)/amI

Obviously, there is no steady-state solution under these circumstances.

On the other hand, if::9

9This is possible only if: D + Max(A,B) > G, which implies
that the d(g) curve is skewed, and that the technical progress
transformation curve is smaller in M than in C. There seems to be
no reason to believe that this case should occur.
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D + Max[ a + {(a b)/(1-a )}] < G,
{al

the planner should choose d0, g=G; the values of (a,b) do not affect

the asymptotic rate of growth of consumption. However, even if he

chose a=A, b=O (so that there is no capital-augmenting technical progress

in M), Harrod neutral technical progress would still occur at different

rates in the two sectors. Furthermore, even if we allowed b to be

negative, so that a G, there could be no steady-state solution in

that case because of the presence of capital-augmenting technical

progress (at a negative rate) in sector M.

Thus, the planner will not choose a steady-state in this case.

iv) a + , a c 1

In this case we find:

128) (c/C) = n + [ad + (l-a)g] + a[a + (amb)/(l-a)}]

Maximization of equation 128) yields: d'(g*) = -[(l-ac)/c], and

b'(a*) = -[(l-a)/am. In general, b* 0, so that no steady-state

solution will be chosen (we are not considering Cobb-Douglas functions -

we have discussed this case earlier). Even if b=0, a=A (a corner

solution), there is no a priori reason to expect g*, d* to be such that:

[(g* - d*) = A], though it is possible that this may occur. Thus,

while it is possible that the planner may seek a steady-state solution

in this case, such an occurrence would be a singular result indeed.

v) am + 1, < 1
Proceeding as in other sections, we find:

Proceeding as in other sections, we find:

129) (C/C) - n + d + (a-b) + Min[{b/(l-am)}, (g+b-d-a)]. Therefore:
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129') (C/C) = n + Min[g, {a + d + [(a b)/(l-am)]}].

Letting H = Max[a + {(a b)/(l-am)}] > A, we see that maximization of
{a}m m

(C/C) implies choosing (d*,g*) such that: g* = d* + H . (If d*, g*

exist - for H > G, and g, d > 0, no such d*, g* exist). Therefore,

if H ' G, then (a*,b*) and (d*,g*) are determined. For H < G, d > 0,

whereas for H = G, d* = 0. In either case, however, it "pays" to

maximize the expression [a + {(a mb)/(l-am )}], and clearly there is no

reason to expect this to yield b* = 0. However, it is feasible that

b*=O, a*=A, and if this occurs, then the planner would seek a steady-

state solution. This result, however, corresponds to a corner solution,

and consequently a steady-state solution is quite unlikely.

On the other hand, if H > G, (and d > 0), it is clear from

129') that g determines the rate of growth of consumption, and hence

we should choose d=O, g=G. However, since H > G, and since (C/C) = n+G,

nothing is gained by maximizing [a + {(amb)/(l-am)}], provided that

we choose a, b such that this expression is at least equal to G.

Specifically, if A G, then nothing is lost (asymptotically) by

choosing a=A, b=O (and d=O, g=G). Consequently, the planner could

choose a steady-state solution if A = G; if A > G, the planner need

not choose any capital-augmenting technical progress, but a steady-state

will not occur since Harrod technical progress occurs at a quicker rate

in M than in C.

In summary, while a steady-state solution might be chosen in

this case, such an occurrence would be a singular result, and thus we

do not expect the planner to choose a steady-state path in this case.
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vi) a <1, o 0 1
m c

In this case the growth rate of consumption is:

130) (C/C) = d + a - b + n + Max[b,(g+b-a-d)] = n + Max[g,(a+d)]

Since the elasticity of substitution in M is less than one, there is

nothing to be gained from capital-augmenting technical progress in M.

Therefore, the planner should allocate technical progress as follows:

a) If G > [A + D , then choose: d=0O, g=G ; (a,b) unimportant

b) If G < [A + D] , then choose: dD, g=O ; a=A, bO

c) If G = [A + D] , then choose either case a) or case b)

Case b) would seem to be the most plausible one, and clearly it does

not provide a steady-state solution. Even if case a) pertains, there

will not be a steady-state since, for bO, a=A<G, and hence Harrod

technical progress occurs at different rates in the two sectors.

Therefore, no steady-state solution will be chosen in this case.

vii) a < 1, a + 1

Proceeding as in prior sections, we find:

131) (C/C) = n + aca + [a d + (-ac)g] . In order to maximize

the rate of growth of consumption, we would choose: aA, b, and

(d*,g*) such that: d'(g*) = -[(l-ac )/ac] Note that once again there

is no reason to allocate any capital-augmenting technical progress to M

since the elasticity of substitution in that sector is less than one.

There can be a steady-state in this case only if: [g* - d*] = A.

Since a is a parameter, there is certainly no reason to expect this

equality to hold (if G < A, there can never be a steady-state), though

it might occur by chance. Thus, we conclude that a steady-state
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solution would be a singular occurrence in this case.

viii) a < 1, a 1m c

This case coincides with Chang's assumptions on the

elasticities of substitution, and it yields the best chance for a

steady-state solution. We find:

132) (C/C) = n + d + a - b + Min[b,(g+b-d-a)] = n + Min [g,(a+d)]

From 132) it is clear that there is no reason to allocate any

capital-augmenting technical progress to M - therefore we choose aA,

b=O. Furthermore, if possible, we should choose g*, d* such that:

g* = [A + d*]. Therefore, if G A, a unique steady-state solution

exists and will be chosen by the planner in this case (if G > A, then

there will be both Hicks and Harrod technical progress in C, whereas if

G = A, then only Harrod technical progress will occur in each sector).

If G < A, a steady-state solution is possible (and will be chosen) only

if we permit d to be negative, and if Max(g) A. Should we maintain

our restriction that d be non-negative, then only labor-augmenting

technical progress will occur in each sector, but it will occur at

a faster rate in the investment sector.

From the preceeding analysis we have seen that the only case in

which the planner is likely to choose a steady-state solution is if the

elasticity of substitution in each sector is less than one (Not

surprisingly, this case corresponds to Chang's results for the stability

of the steady-state solution in a laissez-faire economy). We have seen,

however, that the steady-state path might be chosen if am 1, ac < 1,

or ac - 1, am 1, though these possibilities correspond to singular

cases. If a > 1, no steady-state solution is ever desirable because of
C
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the ability of the consumption sector to productively employ the ever-

increasing capital stock (in efficiency units).

VII. Conclusion

In this lengthy chapter we have studied two-sector models of

growth that, in general, do not lead to steady-state solutions. We have

determined the asymptotic growth rates of variables for these non-

steady-state models, and we have presented a generalized framework that

can handle any combinations of factor-augmenting technical progress in

this two-sector world.

Finally, we postulated the existence of trade-offs between

certain types of factor-augmenting technical progress, and we have

investigated how a central planner should allocate technical progress,

assuming that he was trying to maximize the asymptotic (or steady-state)

rate of growth of consumption. Basically, we found that his decision

would depend upon the asymptotic values of the elasticities of

substitution in each sector, as well as on the nature of the

transformation curve between different types of technical progress. In

some cases he may deem it desirable to seek a steady-state solution,

while in others he will not. While we have not considered every

possible trade-off between types of factor-augmenting technical

progress, we have explored five particular cases. It is quite lear

that other cases could readily be treated within the context of the

model used in this chapter.

This concludes our study of the growth rates of variables for

one- and two-sector models in which there is no steady-state path. In

the next chapter we shall compare the characteristics of this non-steady-
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state path to those characteristics attributed to the one- and two-

sector steady-state models. As we shall see, these two models

(the steady-state and the non-steady-state models) differ principally

in the values of the observed factor shares (under competitive or

"pseudo-competitive" pricing) and in the motivation for investment in

the non-steady-state case.
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Chapter 3: A Summing Up - The Steady-State and the Asymptotic Path:

Progress and Problems

I. Introduction

The previous two chapters have dealt with the conditions needed

for a steady-state to occur, and they have examined how the economy will

behave if no steady-state path exists. We have found, like others

before us, that the conditions needed for a steady-state to exist are

quite stringent, and that there appears to be little reason to believe

(a priori) that these conditions are in fact fulfilled. On the other

hand, we shall see in this chapter that the asymptotic equilibrium can

not, in general, duplicate all the stylized facts of growth. The

failure of the asymptotic equilibrium to explain the observed relation-

ships in a growing economy and the implausibility of a steady-state

equilibrium illustrate the dilemma facing the theory of economic growth.

Somehow the theory must be able to explain the observed empirical

relationships without placing the types of constraints (and seemingly

unreasonable ones) on the system that must hold if the steady-state

equilibrium is to occur. Though we have no ready answer to this

dilemma, it is instructive to consider what constraints must be placed

on the economy to achieve the steady-state path, and to investigate Just

how the asymptotic equilibrium deviates from the basic properties of the

steady-state. In addition, it is helpful to consider what assumptions

(or types of behavior) would enable the asymptotic equilibrium to meet

the stylized facts of growth. It is these issues that we shall consider

in this chapter.
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Specifically, if we consider the one-sector model studied

earlier, we find:

1) (x/x) = [(se f(x)l/x] + b - a - n - ; ( A is the rate of
depreciation).

2) 6 = (a+n)h - (a+n-b)] ; x = [(Kebt)/(Leat)]

Obviously, if 6 = 0, then a steady-state solution will exist for a

constant s (given the other normal" neo-classical assumptions); other-

wise, it is most unlikely that a steady-state should exist.

Specifically, if 6 Q0, then it is clearly impossible to main-

tain indefinitely a fixed value of x (since s is bounded by one), and no

steady-state solution is feasible (a 1). An example of this case is

if no capital-augmenting technical progress is present (b = 0), and if

decreasing returns to scale prevails h 1). Economically, this says

that as growth takes place in factor inputs, output grows at a slower

rate, and so in order to maintain the same effective capital-labor

ratio, we must- invest a continually larger fraction of output.

Eventually, all output would be invested, but this still would prove

incapable of providing enough new machines to maintain the steady-state

path, and hence a steady-state cannot be maintained for all time.

Alternatively, if 6 > 0, then it is clear that if:

-6t3) s s e

then a steady-state solution will exist, and otherwise it will not (1).

Note, however, that this implies that the fraction of resources devoted

to investment declines over time - an assumption that does not appear

to be empirically validated.

We might, in order to Justify this very special saving behavior,
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seek some economic mechanism that would predict this declining savings

rate. For example, it might be assumed that investors seek to maintain

a constant marginal physical product of capital:

4) R = (aQ/aK) = e 6 tf'(x)

However, from 4) it is apparent that this assumption will not maintain

a steady-state path (6 # 0):

5) d(aQ/aK) = 0 implies 6 = [(l1-k)/a](x/x) ,
dt

where k represents the elasticity of output with respect to capital.

In general, it is very difficult to think of any compelling

economic mechanism that serves to maintain the steady-state path. We

have also seen that the problem is even more difficult in the two-sector

(or multi-sector) model since, in addition to needing the proper fraction

of output to be invested, we also have to worry about the problem of

continual reallocation of resources within the economy due to differing

2
rates of technical progress in each sector. Therefore, in the two-

sector model, even if the production function of the investment good is

Cobb-Douglas, there still will not normally be a steady-state because

there is no guarantee that Harrod neutral technical progress occurs at

1 Some possibilities discussed earlier are a Cobb-Douglas

production function, a Kennedy-Samuelson innovation frontier, or a

continually declining (as x increases) "degree of homogeneity" of the

production function. None of these seems to be very compelling as
a priori assumptions or arguments.

2Chang [11], in a Kennedy-type model, tries to provide a
mechanism to eliminate this problem. However, as in the Kennedy

model, it is rather dubious that the process that Chang envisions
actually occurs in a decentralized economy.
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the "proper" rate in the consumption sector.

Since there does not appear to be any compelling reason to

believe that the conditions for a steady-state will be fulfilled, it

becomes imperative to compare the behavior of this "non-steady-state"

economy to those characteristics attributed to an economy generating a

steady-state path. In our previous chapters we have seen that if the

elasticity of substitution is bounded from one,3 then the "non-steady-

state" economy will approach a path in which the physical variables

grow at constant rates (Table I, page 37, and Table VIII, page 127).

How, then, does this asymptotic path differ from the "reality"

that the steady-state purports to describe? The basic properties of

the steady-state growth path are:

1) Output and Capital grow at the same constant rate

2) Output/Capita grows at a constant (non-negative) rate

3) Effective capital-labor ratio tends to a constant, and thus:

4) The marginal product of capital and the output-elasticity of

each factor tends to a finite, positive value

5) The share of each factor tends to a non-zero value

6) Wages grow at a constant (possibly zero) rate

7) A constant fraction of output is saved and invested4

On the other hand, the basic properties of the asymptotic path

3If a > 1 and h _ 1, b 0 (and not equality for both h and b),

then many of the asymptotic growth rates become infinite. However,
since this case does not seem plausible (and most studies show a < 1),
we shall consider only cases in which the growth rates are finite. Also,
a need not be bounded from one - it may tend to one (but not fluctuate
between being greater than, equal to, and/or less than one).

4For convenience, this is normally treated as an assumption.
However, this proposition would hold true if the proportion of invest-
ment to output were an increasing function of the MPK, and hence 7)
can be interpreted as a result, not an assumption, of the steady-state
model.
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(assuming that the growth rates are finite, that a is bounded from, or

tends to one, and that sk > s > 0)5 are as follows:

1) Output and Capital grow at the same asymptotic rate

2) Output/Capita grows at an asymptotically constant rate

(which may be negative)

3) The effective capital-labor ratio tends to zero or

infinity, and thus:

4) The output-elasticity of one factor tends to zero (if a is

bounded from one), while the marginal product of

capital probably tends to zero (for more on this,

see Part III of this chapter)

5) The share of one factor (under the Vanek pricing assumption)

tends to zero if a is bounded from one, or tends to

some non-zero constant value if a tends to one

6) Wages grow at an asymptotically constant rate (which may be

negative)

7) An asymptotically constant fraction of output is saved and

invested

From the above lists we can see that the basic differences

between the steady-state path and the asymptotic path are in properties

3) - 6). However, property 3) is not a directly observable magnitude,

but rather the constancy of the effective capital-labor ratio is

normally inferred from properties 4) to 6) of the steady-state model.

Property 4) itself is not directly observable in the real world, but

rather is normally construed to be reflected in the relatively constant

factor shares and in the approximately constant real interest rate.

5If s=0, and if the growth rates are finite, then, for a < 1,

h > [(a+n-b)/(a+n)], or for a > l, h < [(a+n-b)/(a+n)], the growth
rates of Q and K will be different. Similarly, if s = 0 and ifk - 0,
then the share of output being invested tends to zero. See Table I,
page 37, in Chapter 1, for further details.
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From an empirical point of view, then, the two models differ in

their ability to explain the relatively constant real interest rate and

the relatively constant non-zero factor shares. In order to discuss

factor shares (proposition 5), it is necessary to make some assumptions

about factor pricing. However, if we relax the assumption of constant

returns to scale, then the traditional assumption of competitive

pricing holds little special merit, and we are called upon to consider

other models of pricing factor inputs.

Therefore, the asymptotic path appears to explain the constant

growth rates of the physical variables as well as the steady-state path

does. One problem encountered with the asymptotic path is when we

consider the distribution of income within the society. Another

problem encountered is that the MPK may tend to zero in the asymptotic

path, and then we are logically compelled to explain why investment

still occurs. Therefore, it is our opinion that the asymptotic growth

model lacks the following parts:

i) A mechanism for explaining factor pricing

ii) An explanation of the causes of investment

Before we attempt to discuss these issues, let us briefly

consider how a change in the factor pricing assumption would affect the

6 Vanek's assumption that factors are paid proportionally to
their marginal products (the constant of proportionality being the
reciprocal of the degree of homogeneity) holds little general
relevance, though Prof. Chipman [12] shows that this type of factor
pricing might result if deviations from constant returns to scale were
due solely to externalities. The Chipman model is a quite special one,
however, for it assumes that each firm behaves as though constant
returns to scale prevails, that each firm is a very small part of the
market, and that externalities are due solely to total industry output.
Furthermore, it seems to us that this approach avoids the essentials of
non-competitive pricing.
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the growth path reached in this asymptotic equilibrium.

II. Factor Pricing and Asymptotic Growth Rates

In this section we intend to show that the asymptotic behavior

of the economy is independent of the factor pricing assumption.

Recalling the Vanek pricing assumption, we can write:

6) W = [((aQ/L)/h] ; R = [(aQ/aK)/h]

It is quite clear that if a proportional savings function is assumed,

then total savings is independent of the distribution of income within

the society. Suppose that the Cambridge savings assumption is adopted:7

7) S = sk(RK) + sn(WL) ; S = gross savings

We have already investigated how the growth path behaves for the factor

pricing assumption of 6) and the savings assumption in 7); in this case

the system will approach constant growth rates for Q and K (h < 1 or

a < 1). Consider the following factor pricing assumption:

8) W (l-a)(aQ/aL) ; 1 a 0 .

R = [(Q - WL)/K] = [(l/h)(aQ/aK) + (a + (l/h) - l)(aQ/aL)(L/K)]

If a = 0, this reduces to the assumption that labor is paid the value of

its marginal product (a most dubious assumption for h > 1) ; for

7Naturally, we are assuming that the government policy is
designed to maintain full-employment, so that savings equals investment.

If h > 1, it seems most probable that competition will break
down in either the factor market or the product market or both. Later
in this chapter we shall discuss a situation in which (for h > 1)
competition is maintained in the factor market, but is replaced by

oligopolistic behavior in the product market. If h > 1, and if labor
is paid its marginal value product, then its total share might exceed
one.
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a = [1 - (l/h)], this becomes the Vanek pricing assumption. 9 From 7)

and 8) we find:

9) S = k(RK) + Sn(WL) = [(aQ/aL)(L/h){sk - (sk-Sn)(l-a)h +

Sk( aQ/aK) (K/h)]. Let:

10) s* = [sk - (sk-sn)(l-a)h] ; 0 s* < sk if 1 > a [(h-l)/h]
n k k n n 

Upon making this substitution into 9), we arrive at the following:

11) S = s*[(aQ/aL)(L/h)] + Sk[(aQ/K)(K/h)]. 10

Clearly equation 11) is fundamentally identical to the basic Vanek

savings equation, though the values of the parameters may differ.

However, if workers do no savings out of their income (s n=0), for

the Vanek pricing assumption we can show:

12) S = K = k[(aQ/BK)(K/h)] ; (K/K) = sk[(aQ/aK)/h]

For a < 1, and/or h < 1, (K/K) approaches a constant, finite limit, and

so must the marginal product of capital. However, under the more

general pricing assumption in 8) we have:

13) S sk[l + h(a-l)][(aQ/aL)(L/h)] + sk[(3Q/aK)(K/h)] ; sn - 0

Therefore, if [1 + (a-l)h] > 0, then (Q/aK) + 0, since the effective

capital-labor ratio tends to infinity and a < 1.

9As we shall briefly discuss later, this assumption can be
derived by assuming perfect competition in the labor market, but
momopolistic practices in the product market. In that case, (l-a) is
the marginal revenue (for P=1, the numeraire), so that a may be
interpreted as the reciprocal of the elasticity of the demand curve.

10Economically, a > [(h-l)/h] may be interpreted as placing a
limit on the elasticity of demand as a function of h. If h < 1, then
market power is unlikely, and hence a=0, in which case:

s* = [s h + sk(1-h)] > 0.n n k



Nevertheless, it seems rather singular a case to assume s = 0;

if sk sn > 0, and s* > 0, as seems plausible, then the growth ratesn "
approached by these two systems will be identical since the growth

rates are independent of the savings parameters.

Thus, in the general case in which something is saved out of

each type of income (and a [(h-1)/h]), the growth path of the system

is independent of the factor pricing assumption (for those cases that

we have considered). This is tautologically true if everybody saves at

the same rate (for all types of income).

Now that we know that the growth path of the system does not

depend on the factor pricing assumption (unless s =0; naturally, this
n

statement is made within the limits of the previous analysis), let us

briefly consider the asymptotic behavior (and values) of certain

variables for the growth models studied in the previous two chapters.

III. Asymptotic Values of Variables

As has been continually emphasized, the system studied in the

previous chapters will approach an "equilibrium" in which the physical

quantities (Q, K) will grow at constant rates. However, we would like

to know how some of the other variables behave. For example, what

happens to the following variables in this asymptotic equilibrium?

i) (Q/K) and (Q/aK) .

Let us first consider the one-sector model. If we assume that

everyone saves at the same rate, we know:

14) (K/K) = s(Q/K) ; for simplicity, assume no depreciation.

Restricting our attention to those cases in which the growth rates

161
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remain finite, we have found:ll

15) a < 1, (K/K) [(a+n)h] ;

> 1, h < 1, (K/K) + [(bh)/(l-h)]

-+ 1, (K/K) - [(a+n)h - (a+n-b),]/(l-,*) . 12

Therefore, from 14), if (K/K) approaches a positive, finite limit

then (Q/K) tends to a constant, positive, finite limit. However, if

a < 1, then k + O, so that (Q/aK) + O. If a > 1, then (aQ/aK) also

tends to a finite limit (for h < 1).

Next, suppose that sk > sn > . In that case:

16) (K/K) = [(s/h)(aQ/aL)(L/Q)(Q/K) + (sk/h)(aQ/aK)] ; 13

From our earlier table on growth rates (Table I, page 37) we know that

the growth rates for 16) are equivalent to those for 14). Since x,

then 0k 0 and n -* h if a < 1. However, *k = [( Q/aK)(K/Q)] + O,

implies either (aQ/:aK) 0 or (K/Q) + O. However, from 16) it is clear

that for finite (K/K), (Q/K) is finite (sn > 0), so we conclude that

(aQ/aK) + O. Therefore,

17) a < 1, (K/K) * [(sn/h)(Q/K)h] l [sn(Q/K)] ; (aQ/aK) o

On the other hand, if a > 1, then k + h, n * 0, and:

1 1 In the ensuing discussion we shall assume that
6 = [(a+n)h - (a+n-b)] > 0, so that x-~ (barring the perverse case
discussed earlier) - this assumption seems most plausible to us.
Clearly, for 6 < 0, the discussion is quite symmetrical.

12it is the asymptotic value of [(aQ/aK)(K/Q)] as xX; if -k* 0,

the results are comparable to those for a < 1; if k 1, the

growth rates are unbounded.

1 3As explained earlier in this chapter, this can be interpreted
as a more general form of the capital-accumulation curve, valid for
different types of factor pricing assumptions.
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18) > 1, (K/K) [(sk/h)(aQ/aK)]. 14

Finally, if a 1, k + f < 1, we find:

19) a - 1, (K/K) = (Q/K)[(sn/h)(h-%*) + *(sk/h)]

and (Q/K) as well as (aQ/aK) tend to finite limits.

Finally, if s = 0, we have:

20) (K/K) = [(sk/h)(Q/aK)] .

Since (K/K) tends to a finite limit (a<l, or h<l), (Q/aK) also

approaches a finite, nonzero limit. If a < 1, (Q/K)-)w since k + 0;

for a > 1, (Q/K) will also approach a finite, nonzero limit. The table

on the following page summarizes these results under the assumption

that all growth rates are finite and that x+-.

From the table we see that there are many possibilities,

depending upon the values of the parameters. However, if a < 1 (which

is the most prevalent empirical result), then (Q/aK) -+ 0 unless sn = 0;

and the assumption that s = 0 is a very strong one, since sn can be

interpreted not only as the propensity of workers to save, but it also

depends upon the "degree of exploitation" of workers by capitalists, and

the capitalists propensity to save (see page 160). Thus, if we assume

h > 1, and that a is bounded from unity, then in order to achieve finite

growth rates we are forced to assume that a < 1, and hence the MPK tends

to zero (sn 0). Should the MPK tend to zero, we then are obligated to

rethink our savings assumption, and to delve into the investment

This result follows from: [(aQ/aK)(K/Q)] - h; if (Q/K) is
finite, then [(aQ/aL)(L/Q)](Q/K) - 0; if (Q/K) is infinite, then so
must be [Q/aK] (since k tends to h), violating the assumption that

(K/K) is finite.
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TABLE I - Asymptotic Values of the Average and Marginal Product of Capital

Cases (K/K) (Q/K) (aQ/3K) k

I) a < 1

a) Sk-Sn >0 [(a+n)h] [(a+n)h]/s 0 0

b) k>s n=0 [(a+n)h+(l-a)(a+n-b)] X [(K/K)(h/sk)] O

II) a - 1 [(a+n)h - (a+n-b)o~] [(K/K)(l/s)] [(K/K)(O*/s)] *k
( < 1) 

III) a > 1 [(bh)/(l-h)] [(bh)/s(l-h)] [(bh2 )/(1-h)s] h

(h < 1)

In the above table, s [sn + (sk - Sn)(Ok/h)]

behavior of the capitalists.

In the previous chapters we have considered how the marginal

product of labor (MPL) changes over time. As is apparent from Table I

in Chapter 1 (page 37), the MPL increases over time if h 1. For

decreasing returns to scale, if labor-augmenting technical progress occurs

at least as rapidly as capital-augmenting technical progress, then the MPL

will also increase over time in that case. However, if h < 1, it is

possible that for some values of the other parameters, the MPL will

decrease over time.

It is clear that the situation is considerably more complex in the

multi-sector case because of the presence of more than one good. In this

case, it is possible to think of the marginal product of capital in terms

of the consumption good or the investment good.1 5 Similarly, one must

1 5Since the ultimate purpose of investment (presumably) is consump-
tion. it might be argued that only the MPK in consumption units matters.
However, it is quite possible that there are several consumption goods, one
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speak of the output-factor elasticities for each sector, and so on.

Assuming the same two-sector model as discussed earlier, it is

possible to compute the asymptotic behavior of some of the variables.

Since constant returns to scale is assumed, the competitive factor pricing

mechanism is more plausible, and hence it can be argued that the output-

factor elasticities can be interpreted as the competitive factor shares in

16
each sector. As has already been pointed out, Harrod neutral technical

progress in each sector at the same rate leaves the growth model unaltered

(when variables are expressed in efficiency units). Therefore, it suffices

to limit our attention to considering Hicks technical progress in M and

Hicks and Harrod technical progress in C. Assuming that Hicks neutral

technical progress occurs at rate a in M and at rate EL in C, and that

Harrod neutral technical progress occurs at rate d in C (d may be

negative), we would like to find the asymptotic values of:

21) (Lm /L) ; ac a, a; (aC/aK c) , (aM/aK)

a. represents the share of capital in sector i (under competitive pricing),

and a is the share of capital in the economy as a whole. In Table VIII,

page 137, we have computed ai, as well as (K/K). Using the market

1 5of which (at least) is produced in the same way as machines, so that the
MPK in investment units also represents the MPK in terms of some consump-

tion good. (If a constant fraction of income is spent on this new
consumption good, the basic growth model is unaltered). In this case, the
choice of numeraire units seems quite arbitrary.

16The assumption of constant returns to scale (CRS) is made to
avoid discussing the multi-sector allocation problem. If the degree of
homogeneity is the same in each sector, and if the Vanek pricing
assumption is made, the subsequent analysis (for h l)does not differ
much from that already performerd. However, the Vanek pricing assumption
has little Justificatic'n, and the issue of factor-allocation within the
economy should not be dismissed so lightly.
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equilibrium equation, the marginal product equations, and the basic

differential equation , we can readily derive the following:

22) (K/K) = (M/KF:) = [(L eatf )/K] = [K /(Ka )](eatf')
m m m m m

23) [K/(Ka)] - [s/(l-s)][Kc/(Kac)]

24) [Lml{L(l-am)}] = [s/(l-s)][Lc/{L(l-a )1]

Since we already know (K/K), we can calculate (aM/aK) [ (eatf')] if

m~m m
we can find [Km/(K )]. Using the above equations we can then derive

the asymptotic values shown in the table on the following page.

As is apparent from the Table, a great variety of behavior is

possible, depending upon the values of the parameters. It is interest-

ing to note that the marginal product of capital in machine units never

becomes infinite (for finite values of [K/K]); this corresponds to the

one-sector results. On the other hand, the MPK in consumption units

will always tend to either zero or infinity, depending upon the values

of the parameters.llr It is difficult to say what constitutes the most

plausible case, but it should be pointed out that if ac and am are both

bounded from unity, those cases for which (aM/aKm ) is nonzero

correspond to rather high shares for capital ( = [l-s]). Also, in

every case except a + 1, an + 1, the factor shares in at least one of

the sectors tends to zero (or one). Thus, it cannot be claimed that this

model explains the observed factor shares in the real world and the

1 7The ambiguity in the table in the case am + 1, a = d(l-am ),

stems from the inability to determine what happens to the effective
capital-labor ratio in sector C. It should be noted that if om 1,

this case would correspond to a steady-state solution.
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TABLE II - Asymptotic Values in the Two-Sector Growth Model

(aM/3Km ) = [n + {a/(l-am)}][(l-s)a + sa ]/s
c m

(L/L) = {[s(l-am)]/[s(1-am) + (l-s)(1-ac)]} ;

R (aC/K )

(R/R)

g + Min[O, Max{[d-(a/am)],

[(a-a)/ac ]} 

Same as above [ = g]

Same as a bove [ =g]

(d-a)(l-ac) ]

(d-a)(l-ac)] = g

(d-a) (1-ac)]

a <1m

a or a < 1
m c

Value R
if g=O a a

0 0 0

f'(C)=
C

f'(o)=
c

0

f, ()=
c

0

0

0 0

1 0

ac
c

ac

ac

0

0

0

a

0

0

(1-s)

(l-s)a

(l-s)ac(-uC

a >1:
c

a>d

a=d

a<d

a - 1:

a <1:
c

a>d(l-am)

a=d(l-am)

a<da(-a )
m

g + Max[O,{(d-a)/c},
{d - (a/a )}]

Same as above [ =g]

Same as above

rf ()= 

fc (-)=
c o

0

1 0

1 0

0 0

g + Min[O, {d - [a/(l-am)]] 0 0

Same as above 0 or - 0 or 1

Same as above f' ( 0)= 1

(l-s)

(l-s)

0

a sam m

am [(1-s)ac+sam]

am [(l-s) + sam]

Case

a < 1:
m

a <1:
C

a>d

a=d

a<d

(a -1:

a>d

a=d

a<d

[g +

[g +

[g +
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TABLE II - Continued

Case

a +l:
m

a -+1:
C

a>d(l-a )

a=d(l-am )

a<d(l-a )

a >1:

a>d(l-aM)

a=d(l-a )

a<d(l-a )

(R/R)
Value R
if g=O a a

-n

g + (l-ac )[d{a/(l-am)}] 

g + (1-ac)[d-'a/(-am) }]

g + (-ac,)[d-{a/(l-am)}]

g + Max[O,{d-[a/(l-am)]}]

Same as above [ =g]

Same as above

a

o ao am [(l-s)ac +sa ]

or ac am )a m

co a a [(1-s)a+saM ]
c m c m

f'()= 1

0 or 0 or 

0

a [(l-s) + sam]

a [(l-s)a +sa ]m c m

a sa
m m

apparent constancy of the real interest rate over time (presumably

reflecting the marginal product of capital).

In summary, we have seen that in both the one- and two-

sector models the asymptotic value of the MPK may tend to zero, though

this result seems more likely to occur in the one-sector case. Also, we

have seen that the asymptotic path leaves much to be desired in its

attempt to explain observed factor shares. Let us now comment briefly

on these problems.

IV. Factor Pricing and Factor Shares

As observed repeatedly in this chapter, as well as in

previous chapters, the asymptotic path fails to explain the distribution

of income within the society if the elasticity of substitution is

bounded from one (under the Vanek pricing assumption). That this result
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is inevitable becomes apparent immediately upon realizing that the

effective capital-labor ratio must tend to either zero or infinity in

this "asymptotic equilibrium".

Where does this leave us in attempting to explain reality in

this "asymptotic" world? We have stated earlier that the steady-state,

though it performs well in mapping reality, is a singular result indeed;

and the asymptotic path apparently does not satisfactorily explain the

income distribution in society. Clearly, something must give, and it is

our feeling that the weakest link in the chain is the factor pricing

assumption. If the assumption of constant returns to scale is dropped,

no great ustification remains for resorting to competitive pricing.

Even if we accept the notion of constant returns to scale, the world we

seek to explain does not, in our eyes, duplicate the competitive world

that the model presumes.

For simplicity, we shall concentrate on the one-sector model.

If decreasing returns to scale prevails, then it is still possible to

maintain the assumption of competitive pricing.18 Assuming h < 1, if

labor is paid its marginal value product, then the share of labor should

equal (h - k ). For a < 1, k - 0 (assuming the effective capital-labor

ratio tends to infinity), and so labor's share tends to h, leaving the

residual, (l-h), for capitalists. Thus, if the economy experiences

decreasing returns to scale, and if a < 1, as seems plausible, then

under competitive pricing the share accruing to each factor will

18However, it now becomes necessary to go beyond the aggregate
model and to observe the size of each firm. Clearly, with non-constant
returns to scale, the aggregate output is likely to depend upon
industry structure and the number of firms present in each industry
(assuming that it is not externalities that account for the decreasing
returns to scale).
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approach some positive limit.1 9 Though this would appear to concur with

reality, it does ignore the all-important question of what determines

the firm size in the micro-economy, and how are the decreasing returns

to scale manifested?

If h > 1, as seems possible, then competitive pricing is

meaningless. In this circumstance one would expect to see the economy

dominated by major firms (industries), and an alternative pricing

assumption is needed. As a simple alternative, it is possible to

imagine that firms have market power, so that marginal revenue deviates

from price, but that they behave as perfect competitors in the factor

market (this latter assumption is made for simplicity). In this case,

firms would hire each factor until its marginal revenue product

equalled its cost. Assuming each firm had comparable production and

demand conditions, the allocation of factors within this economy (for

given W, R) would be identical to that for a competitive economy.

How would factor shares in such a world behave? Since each

firm possesses market power, we know:

25) W = MR(aQ/aL); [(WL)/(PQ)] = (MR/P)(3Q/3L)(L/Q) = (MR/P) n

Even if n ( = [h-k1]) tends to h > 1 (and thus k + 0), labor's share

may well be less than one.20 Letting n represent the elasticity of

1 9This assumes that the effective capital-labor ratio tends

to infinity, which in turn assumes that there must be some capital-

augmenting technical progress (since we have assumed h < 1).

200f course, it must be less than, or equal to, one for it to
have any economic meaning (assuming free disposal). What guarantees
that this will be so? Clearly, the number of firms that can profitably

operate depends on h; the larger h, ceteris paribus, the fewer the
number of firms that; can survive (under our assumptions), and hence

the greater the disparity between MR and P must be.
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demand, we have:

26) [(wL)/(PQ)] = [(n-l)/n]n h[(n-l)/n] for on h

Thus, depending upon the elasticity of demand, labor's share may be

significantly less than one. Clearly, for the viability of business

(under the above assumptions) it must be true that:

27) h[(<-l)/,] < 1

This relationship tells us that the degree of increasing returns to

scale places an upper bound (in absolute value) on the elasticity of

demand, presumably through affecting the number of firms in the market.

It is possible to formalize the above presentation (though in

a static sense) by assuming Cournot behavior in the product market,

competitive behavior in the factor market, and to utilize this

information to determine factor shares. If we do this, assuming there

are two products, each facing unitary elastic demand (as in the growth

models), and that there are N firms in each market2 1 (it is quite

simple to allow a different number of firms in each market), we find:

28) [(WL)/(PQ)] = n[(N-l)/N] - h[(N-l)/N] , for *n - h

[(RK)/(PQ) = k[(N-1)/N] 0 for n + h, k ' 0

[(Profits)/(PQ)] =' {1 - h[(N-l)/N]} ; = [(1/N)] for h = 1.

Thus, it is quite plausible that, even though the output-elasticity of

capital tends to zero, its observed share, when combined with

2 1As stated earlier, h places limits on the number of firms
that can survive in the market. This appears clearly in the second
order conditions (for the above model) for a relative profit maximum
as N [(2h)/(h-1)] , h > 1.
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monopolistic profits, approaches a positive limit. For example, if

h = 1.2, and N = 3, then:2 2

29) [(WL)/(PQ)] -+ .8 ; [(RK)/(PQ)I + [(Profits)/(PQ)] + .2

It is quite obvious that the approach pursued above is quite

naive; nevertheless, it does readily illustrate a possible explanation

of the relative constancy of observed factor shares within the context

of the asymptotic equilibrium. What is needed is a more dynamic

approach to this problem, one that explains how the market position of

the firms change through time due to advertising, their individual

investment decisions, and so forth. Though we have not pursued this

problem further, the next chapter does deal with the problem of how

firms decide what growth rates to pursue, and how changes in various

parameters affect this decision.

Before concluding this chapter, there is one more fundamental

problem that must be discussed. In this past section we have attempted

to show that once we leave the competitive framework, the "asymptoitc

equilibrium" is as capable as is the steady-state equilibrium of

explaining the relaltive constancy of factor shares. However, even if

our preceding comments are valid, there still remains the more

fundamental problem of the zero marginal product of capital and the

incentives for investment.

2 2Obviously, nothing is special about the values used here.
Though the proofs of the above statements are omitted, they can readily
be demonstrated by using the normal macro-demand equations and by
dividing the economy into two industries, the firms in each industry
pursuing Cournot behavior. For brevity, the work is not included here.
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V. Investment Decisions and the Marginal Product of Capital

The most fundamental failing of the asymptotic equilibrium

(in our opinion) is its inability to explain both the observed interest

rate and the consequent investment decisions of the firm. In equilib-

rium it is assumed that investment is carried out until the marginal

product of capital equals the real interest rate (barring capital

gains); however, in the previous sections we have seen that, in

general, the marginal product of capital does not tend to a constant,

positive limit but rather normally tends to zero.2 3 If this happens,

the logical question is why any investment takes place, given that the

interest rate is positive.

Unfortunately, we have no definite answers to this problem.

One apparent answer that may suggest itself is that capital is the

bearer of progress, and as such new investment provides society with

new technology (vintage capital). Though the assumption of vintage

capital is, in our opinion, a plausible one, it does not answer our

problems. We have considered a vintage clay-clay model (with Hicks

neutral technical progress). and have found that the marginal product of

capital (of the newest vintage) still tends to zero, while the growth

rates of the system are identical to those in the non-vintage case

(for a 0). 24 Thus, even though technology is embodied in the

2 3In the one-sector case, if al2, then the MPK tends to a
positive limit (if the growth rates are finite). Also, for s =0, the

MPK tends to a positive limit. In the two-sector case, the MPK in
capital-numeraire units may tend to zero or a finite limit (for finite
growth rates); in terms of the consumption good as the numeraire unit,
anything can happen to the MPK.

24Our work on this model is omitted simply because of the
identity of its results to those of the non-vintage case.
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new machines, the marginal product of each additional machine tends to

zero because the economic lifetime of the machines (under competitive

pricing) tends to zero (for discrete time, there will be unused machines

of even the newest vintage). Though we have not investigated the putty-

putty or putty-clay vintage models, we feel strongly that even in these

cases the MPK will tend to zero ( for a < 1).

A second, and more promising, alternative is to assume that the

level of technology depends upon the amount of past investment (learning-

by-doing). In this case the social MPK will remain positive even if the

extra output generated directly by an additional machine (the private

MPK) tends to zero. For example, suppose technology takes the

following form:2 5

30) Q =F(K,Leat) -K[f(. )] ; L= Leat , = (K/L), A l 1

Assuming that everyone saves at the same constant rate, and that a < 1,

we can show:

31) (K/K) + [(a+n)/(l-X).] , and

32) (aQ/aK) = [{KXf(k)}/k](;+k) = {(K/K)(l/s)(,+Ok)}; therefore:

32') (aQ/aK) > [{A(a+n)}/{s(l-))}] > O , a < 1

In other words, since the extent of technological efficiency depends

upon the amount of investment, further investment, even if it

2 5This form. of technical progress is postulated because of its
similarity to the Arrow learning-by-doing model [2]. Actually, the
production function is ust a special case of increasing returns to
scale, with h = (1 + ), and k *+ X as F4*-.
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contributes nothing directly to output, does increase output through

improving technology.

There are several obvious problems that arise from the above

formulation. In 32) we have found the social MPK; however, if the

world is composed of small businesses, the private MPK still tends to

zero, so the private motivation for investment is still lacking. If

instead the world is composed of large businesses, then, even though

some externalities may still occur, the private MPK will (in general)

exceed zero, should their investment constitute a "sizeable" portion

26
of total investment.

The other problem that arises is that the production function

in 30) does not exhibit constant returns to scale (as pointed out by

Arrow, among many others). Obviously, both factors cannot be paid their

social marginal products. Under the Arrow assumptions, competition

prevails and labor receives its marginal value product, leaving capital

"underpaid" (giving rise to the need for, or desirability of, capital

subsidies). However, it is quite clear that if this technology tends to

lead to large enterprises (by not being a total externality), there is

no reason to assume that competitive pricing prevails, and the private

MPK may well remain positive (Also, we must then discuss non-competitive

pricing, as in the last section).

Though learning-by-doing technical progress can conceivably

help to explain the presence of continuing investment despite the fact

26This line! of inquiry leads us to ponder whether this learning-
by-doing technology is passed on to all firms, or if it can be
internalized. Following this line of reasoning would lead us into
discussions of market structure and hence disaggregate investment
decisions. We feel that this latter course is one that needs to be
investigated (in a dynamic framework).



176

that the physical marginal product of capital tends to zero, we feel

that it is fundamental (especially when the steady-state does not exist)

to inquire just why investment takes place at all. For example, if

instead of assuming that the value of investment is proportional to

income, we assume that the investment demand for each sector is

proportional to its output, we find that a steady-state will exist if

Hicks neutral technical progress does not occur in at least one of the

sectors. 2 7 (The normal result is that there can be no capital-augmenting

technical progress in the investment sector). Though this condition is

still quite strong, it is weaker than the corresponding result in the

normal two-sector model.

Obviously, there are other possibilities that could be

investigated. It is our opinion (because of the failure of the

"asymptotic equilibrium" to fully replicate the stylized facts of

growth) that it is quite essential to consider a more disaggregated

model in order to determine what investment for the economy as a whole

will be.

The two-sector model is considerably more complicated because

of the large variety of results that may occur (as is seen from Table II

of this chapter, page 167). When there are several consumption goods,

we do not know which to treat as the numeraire; consequently, it is

unclear (in the absence of specific utility functions) just what is

27This assumes that Harrod neutral technical progress occurs at
the same rate in each sector. If there are more than two sectors, then
there can only be Hcks neutral technical progress in one sector if a
steady-state solution is to exist (assuming that investment is as above,
and that the demand for each good is unitary elastic).
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meant by the interest rate or by the marginal product of capital.

However, should we consider the capital good to be the numeraire unit,

then in a large number of cases the MPK in terms of this good (which

might also be a consumption good) is finite, but nonzero, so that in

this case the "investment question" is less critical than in the one-

sector model.

In summary, we have seen that our aggregate growth model

presents us with quite a dilemma. On the one hand, the properties of

the steady-state equilibrium seem to coincide quite well with our

observations of the real world, but the chances of such a steady-state

occurring seem quite small indeed. On the other hand, the asymptotic

equilibrium appears to explain the relatively constant growth rates

observed in the economy, but it does not readily account for the

observed factor shares or the presence of continuing investment despite

positive interest rates (for a < 1). Whereas in the steady-state

equilibrium the MPK tends to a positive, finite limit (so that the

ex post observation of a constant fraction of output being invested is

quite plausible), in the asymptotic equilibrium the presence of

continuing investment as the MPK tends to zero (but interest rates

remain positive) is:more suspect. Obviously, then, the problem of

explaining the stylized facts of a growing economy has not been settled

quite so well as the literature might lead one to conclude. Accordingly,

it is our feeling that more attention must be devoted to explaining the

"whys" of investment, principally through a more disaggregate view of

the economy. In our final chapter we hope to take a small step in that

direction by considering the growth decisions made by an isolated firm

in a growing economy.
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Chapter 4: Technology and the Growing Firm - A Simple Model

I. Introduction

So far in this thesis we have considered aggregate models of an

economy, and we have studied how various types of technological change

affect the growth behavior of this economy. In this chapter we shall

adopt a slightly more disaggregate view and shall investigate how

different types of technical progress affect the decisions of a growing

firm.

Specifically, we shall adopt the model of a firm as developed

by Professor Solow 1491. In that paper Prof. Solow formulated a simple

model of a growing firm in order to investigate how the (qualitative)

behavior of a classical profit-oriented firm might differ from that of

the more "modern" growth-oriented firm. Though we shall not be

pursuing this question at any length, the model developed by Prof.

Solow is readily adaptable to our needs.

Though we do not choose to pursue Prof. Solow's line of

inquiry at any length, we feel that several comments about this subject

are in order. It is our understanding that one reason for the "exist-

ence" of growth-oriented firms is due to the separation of ownership

from control of the business. Given this presumption, it is ironic to

note that what Prof. Solow calls the owner-oriented firm will always

(for all types of technical progress) choose a larger growth rate than a

firm that maximizes its value without any concern for the opportunity

cost of the capital to the original investors. Thus, if we assume that

modern technology has given rise to a class of managers (technocrats?)

who run the corporation without direct control from the owners of the
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corporation, it seexms plausible to assume that the rewards to these

technocrats will depend upon the value of the firm (stock options,

stock dividends, bonuses). If these managers are interested in their

own well-being, then they will choose a smaller growth rate than a firm

which is identical in technology, but is run instead by (or for)

its owners.

The above result is a consequence of the fact that the manager-

run firm, disregarding the opportunity cost on capital, will choose a

larger initial size than will the owner-oriented firm. As a result of

this larger size, the manager-run firm receives a lower per unit price

for output, and hence it finds growth less appealing than its (originally)

smaller owner-oriented counterpart.

The question may arise as to how the manager-oriented firm can

ignore the original opportunity cost of capital. An explanation for

this phenomenon (as for the Williamson, Marris type firms) must of

necessity rely upon some imperfection in the capital markets (perhaps

due to lack of, or imperfect knowledge). Thus, the manager-oriented

firm will attempt to raise more funds (than its owner-oriented counter-

part would) through larger initial stock-offerings, or, in the case of a

take-over of an owner-oriented firm by a manager-oriented firm, through

subsidiary stock offerings. The managers can then use these additional

funds to expand the size of the firm beyond that size which the owner-

oriented firm would choose. However, if people subscribe to these

excessive stock offerings, it must be because of some lack of knowledge

on their part, since they surely must consider the opportunity cost to

themselves of their own funds.

We also feel (given our "classical" bias) that the "growth-
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oriented" theorists fail to fully explain why their firms behave the

way they do. One possible explanation for the "growth-oriented"

behavior, we believe, may be a failure to distinguish (or perceive) the

difference between short-run profits and long-run profits. Specifically,

it may seem that, for given technological and economic conditions, the

firm is growing faster than seems profitable; however, over the long-

run, the faster growth rate will (ceteris paribus) allow the firm to

gain a larger share of the market, and hence allow it to seize some of

the larger profits that accrue to the major firm in the industry. Thus,

the firm is sacrificing short-run profits to obtain more market power,

and hence larger profits in the long-run. To a casual observer it may

appear that the firm is growing more quickly than is optimal, but to one

2
who is privy to all the information, this may not appear to be the case.

1Williamson and Marris [31, 63, and 64] argue that the size of
the staff enters the managers' utility function, causing them to behave
differently than a profit-maximizing firm would. Presumably, in terms
of the Solow model this might mean that L, the size of the labor force,
enters the utility function (as a proxy for staff). Consequently, this
would effect the decisions made by the firm. Williamson also argues
that direct rewards ("emoluments") to the managers enters their utility
function. While this is certainly plausible, this latter assumption
would not affect the operation of a manager-oriented firm (per Solow)
since the bonuses come out of profits. However, if a fixed proportion
of net profits must go to managers as bonuses, this would effect the
operations of an otherwise owner-oriented firm since it is effectively
equivalent to an increase in capital costs to the owners (since part of
the dividend flow does not return to them). In order to see how an
increase in capital costs affects the decisions of the firm, consult the
Appendix to this chapter.

2Naturally, this type of reasoning would lead us into
oligopoly and game theory. Thus, if there are two firms in an industry,
each may choose a larger growth rate than would otherwise be optimal,
hoping to improve their market position. However, if both firms behave
in this way, no additional market power will accrue to either firm (or,
at least, additional market power cannot accrue to both firms), and it
will appear ex post as though each firm, and the industry, is growing
faster than a profit-oriented firm should. However, it is possible that



If we accept the hypothesis that firms might choose larger

growth rates to improve their market position, it is possible that, in

turn, this improved market position may lead them to select even higher

growth rates. Specifically, we shall see that within the context of the

model developed by Prof. Solow, the more inelastic the demand curve,

ceteris paribus, the larger the growth rate chosen by the firm. Since a

traditional definition of monopoly power is in terms of the elasticity

of demand facing the firm, it seems plausible to say that the improved

market position folmd by the growing firm may induce it to grow even

quicker. To carry this analysis much further would necessitate formu-

lating a specific model of the market structure, market demand, and

so forth - and this is something that we have not yet done.

Given our classical bias, and the above remarks, we shall

assume that the firm is, in fact, a "profit-maximizer". Using this

assumption, and the basic Solow model, we shall investigate how

different rates of technical progress (and different price behavior)

affect the growth rate chosen by the firm. But before we do this, we

shall present a bri:ef synopsis of the Solow model of the firm.

II. The Solow Model of the Firm

In this section we shall attempt to present the basic model

developed by Prof. Solow, and to briefly summarize his results. The

basic assumpticns are:

1) Fixed coefficients in production prevails

2neither firm acting alone should lower its growth rate, and thus,
without collusion, these profit-oriented firms will choose a larger
growth rate than would seem to be optimal, and hence they will appear
to be "growth-oriented" firms.
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2) There are constant returns to scale in production

3) There is no technological progress, or else it must be
labor-augmenting (in which case the wage rate is
assumed to grow at the same rate as technical
progress).3

4) Depreciation occurs at rate f

5) The price of capital,, m, and the wage rate (in efficiency
units) a, are constants

6) Demand is iso-elastic, with elasticity n, n > 1

7) In order to cause demand to increase over time, it is
necessary to advertise. For demand to grow at rate
g, a fraction s(g) of gross revenue must be spent on
advertising.

Given these assumptions, the firm is assumed to choose a constant price

and a constant rate of growth (and hence the initial size of the firm)

in order to maximize the present value of the firm. While it may seem

like an "imposition" to force the firm to choose a strategy that

prevails for all time, it must be remembered that this is the essence of

a steady-state model. Also, we shall show later in this chapter that,

if the problem is formulated using the Maximum principle, there is a

3It is the purpose of this paper to relax this assumption. The

assumption made corresponds to those made for aggregate growth models.
However, this assumption seems unrealistic since:

a) There appears to be empirical evidence of capital-
augmenting technical progress being present in
industry

b) Even if only labor-augmenting technical progress occurs, it
seems likely to occur at different rates in each
sector, and the wage rate can not, therefore, grow
at the same rate as productivity in each and every
sector.

4It is assumed that there exist gm, gl such that: s(gm)=O,

s(gl) = 1; s', s" > 
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unique growth rate and initial size of the firm that will allow the

firm to pursue the steady-state strategy.

Formulating the model mathematically, we can write:

1) Q = Min(bK,bL)

2) K = K egt ; bK egt
O O

3) I = K + Depreciation = (f + g)K egt

o= o-n implies: P = (/n0 0 0 0

5) T(g) = [1 - s(g)] ; T(g) is the fraction of revenue not spent
on advertising

6) Dividends D.iv = [TPQ - aL - m(f+g)Kegt] =

[Tb Kegt - aK egt - m(f+g)K egt] ; e = [1 - (l/n)]> 0

7) V = fo[(Div)e-itdt] = [TbKo - [a + m(f+g)]K}/(i-g)].0 

Given the value of the firm,5 the management must choose the initial

size (Ko) and the growth rate (g) in order to maximize V.

However, in making its decision, the firm might take no account of

the initial cost of capital - that is, there might be no opportunity

cost attributed to capital (This could arise if the planners had an

interest in the vaLue of the firm, but did not provide the original

capital). Thus, the question arises as to what criterion should be used

for maximizing the value of the firm. Prof. Solow considers two

possibilities:

5It might be argued that, due to myopia, imperfect capital
markets, and so forth, the value of the firm should be:

V = f[U(D)e-itdt] ; (where U(D) is the utility derived

from dividends), Though we have not investigated this case, it seems
likely that if U" < 0, this assumption would lead the firm to choose
slower growth rates than for expression 7) above.
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I) (aV/aKo) = 0, (aV/ag) = 0

II) (aV/aK) = j, (av/ag) = 0, j - m

Though Professor Solow suggests that in a world of perfect capital

markets it must be true that [(aV/aKo ) = ml, he apparently does not feel

that a compelling argument can be made to guarantee this equality in the

real world. However, if one deducts from the value of the firm the cost

of the initial capital, we have:

7') V* = V - LK .

It is clear that maximization of V* leads to the criterion: Vk=m, Vg=O.

Since V, the value of the firm, is computed by calculating the present

discounted value of' the flow of dividends, it certainly seems appropriate

to deduct from this stream of dividends the initial outlays. Therefore,

we feel that V--m is the "proper" criterion, though we shall explore

both cases.6 Prof. Solow also focuses his attention on two cases

(which we shall call Criterion I and Criterion II):

I) Vk O, V =0

II) Vk m, Vg =

As indicated in the! introduction, Criterion I can be interpreted as

representing the manager-oriented firm, since no consideration is given

to the owners' original outlays, whereas Criterion II is more suitable

for what Prof. Solow calls the "owner-oriented firm".

Given the form of V, and the maximization criterion that is

6As we shall see, when the Maximum Principle is used, the only
steady-state solution implies that Vk=m, Vg=0. This is because in

deciding how much capital to invest, we implicitly attribute an
opportunity cost to the initial capital.
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adopted, one can then proceed to calculate the optimal solution for the

firm. Under the assumption that Vk=O, Vg=O, Prof. Solow proceeds to

sketch each curve (both are negatively sloped in the (Ko,g) plane), and

to show what a maximum solution would look like.7 We can briefly

summarize his results as follows:

a) If the curves never intersect, there is no interior
solution, and the smallest-feasible g is the
optimal solution.

b) There must be some interior relative maximum if:

[(a+mf)/{a+m(i+f)}] > [eT(o)/{T()+iT(0o)}1 > e

Note that for near one (n-*+), this condition will
not be fulfilled, and hence it is possible that in
this case no interior solution exists.

c) If there is more than one intersection of the curves, at
least one of them must be a saddle-point. However,
though Prof. Solow does not point this out, there
would appear to be no guarantee of a unique interior
(relative) maximum, and hence it may be necessary, in
the case of several relative maxima, to compare the
extreme values at each point to determine which is
the global maximum.8

As an alternative, consider the case: Vk = j m, Vg = 0.

Prof. Solow shows that the Vk = j m curve is either always negatively

sloped, or else has at most one change in the sign of the derivative

7From the second order conditions it can readily be seen that:

[dK0/dig](Vk=O)1 < I[dK0/dg](v g=)l at a maximum, and other-

wise the intersection is a saddle-point (no interior minimum is possible).

8This same problem arises when technical progress is considered,
and it proves quite burdensome since we wish to determine what happens
to the growth rate as a result of changes in certain parameters. We
shall assume that (except for singular cases) the same root (inter-
section) remains the dominant one (optimal one), thus enabling us to
consider only how each of the intersections shifts.
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(for = m, the slope is always strictly negative). Furthermore, since

Vkk < 0 everywhere, it follows that the Vk = curve (j > O) lies

inside the Vk = 0 curve. From this fact we can infer:

a) If there is an intersection of the Vk=O and V =0 curves,

then there must be one for the Vk=J > 0 and the

V =0 curves, though the reverse is not necessarily
g 9

true.

b) If there is a unique intersection of these two curves,
the owner-oriented firm will always choose a larger
growth rate than the management-oriented firm. If
there are several interior solutions, then each

relative maximum occurs at a higher growth rate for
the owner-oriented firm. It is possible that as the

Vkj curve shifts inward (as increases) that some

"troots" may be lost; however, the root corresponding

to the largest growth rate can not be lost since,
for K = 0, the V =0 curve must lie below theo g
Vk=j 0 curve.

As a third. alternative (and to allow him to deal with the

growth-oriented firms), Prof. Solow considers the case in which the

initial size of the firm is fixed, and only the growth rate is to be

chosen by the firm. Since we are not mainly interested in comparing

the owner-oriented firm to the management-oriented firm, we shall not

even consider this alternative. We do feel, however, that it is less

plausible to assume the firm will choose a steady-state strategy when

it has no choice over its original size. Thus, if the initial size

is too small, it may choose a larger initial growth rate to increase

9Thus, for V =0, V =O, there might be a boundary solution,
k g

while for Vk=j > 0 V =0, there might be an interior solution.
k 9~~
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the size of the film.1 0

Since our interest lies primarily in the growth rates chosen by

the firm, consider the "growth-rate determining" equations (we shall

assume, as Prof. Solow implicitly does, that a unique interior maximum

exists):

I) Vk Vg = 0 ; [T + (i-g)T']/T = e[a + m(i+f)]/[a + m(f+g)]

II) k= m V = 0; T + n(i-g)T' = 0 ; (or [T + (i-g)T'] = T)kg

As already noted, it is clear that the owner-oriented firm

chooses a larger growth rate than the other firm. How does a change in

the elasticity of demand affect the growth rate chosen by the firm?

First consider the case Vk m, V = 0:
k g

8) [T + n(i-g)T'] F(n,g) = 0 ; F < 0 clearly.

If we consider the second order conditions for a maximum we find:

9) [VkkVgg - (Vgk)(Vg)] > 0 implies [n(i-g)T" + (1-n)T'] < 0 ;

10) Therefore: Fg = [(l-n)T' + n(i-g)T"] < 0 at a maximum. Thus:

11) (dg/dn) = -[Fn/Fg] < O.

That is, by considering the second order conditions, it is

possible to show that the greater the elasticity of demand, the slower

1 0This assertion is borne out by the observation that there is
a unique steady-state solution to the Pontryagin problem. Thus, there

is only one set of initial conditions that will lead the firm to choose
a steady-state path (Assuming the price of output is not fixed for the

firm).

1 1Prof. Solow has suggested in his paper that as n-e, g-i, if

the restrictions on T(g) are ignored (Solow, op. cit., [49]). However,

if T', T" < 0, even if T(i) > 0, then, as n increases, g decreases,
and as n-, T() +* 0, not g - i.
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the firm will choose to grow. If we identify the larger elasticity of

demand with a more highly competitive industry, then it follows that the

more competitive the industry, the more slowly growing the firm will be.

Combined with the assumption that a firm may seek a larger growth rate

in order to increase its monopoly power (and thus decrease n), it can be

seen that these two processes may be reenforcing.

Though we might speculate that the optimal size of the firm

will increase as the elasticity of demand increases (from the static

notion that monopolies underproduce), this is not necessarily so.

Specifically:

12) K {[6b Ti/[a + m(i+f)]ln ; = [1 - (/n)]
0

13) (dKo/dn) = (Ko/n)[ln(bK) + (1/0) + (T'/T)(dg/dO)]

Without further information on T" it does not appear possible to say

what will happen to K as n changes. Economically, it appears that if

K is initially sufficiently small, the increase in the price elasticity

may cause price to fall (ceteris paribus), thereby causing the firm to

contract its output. However, as n becomes sufficiently large, it seems

likely that further increases in n are likely to elicit increases in K .

Similarly, for the case Vk=O, V =0 it can be shown, using

the second order conditions, that an increase in n will lead the firm to

12As usual, the possibility of multiple roots of the equation
[T + n(i-g)T'] = 0 exists. In this case, we can say that each root
associated with a maximum decreases and that each root associated with a

saddle-point increases as n increases. If the chosen growth root does
not change, then our conclusion stands. It seems that, except in
singular cases, a change in n will not lead the firm to choose a
different growth root.
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choose a slower growth rate.l 3 However, since the work is rather

tedious, we shall omit the proof.

This concludes our brief summary of Prof. Solow's paper. In

addition to outlining hisf model, we have found that:

i) The owner-oriented firm will choose a larger growth rate
than the management-oriented firm.

ii) The more competitive is the industry (as measured by the
elasticity of demand facing the firm), the slower

each firm will choose to grow.

In the following sections we shall consider how changes in the

model affect the optimal growth rate for each type of firm. Our first

analysis deals with a problem suggested by Prof. Solow himself - how do

our results change if the firm is allowed to change its price at a

constant rate over time?

III. The Solow Firm and Price Strategy

In this section we adopt Prof. Solow's suggestion and allow the

price to change at a constant rate over time. Adopting his notation:

14) Q Qegt ; P = P e ; thus, Q = (o)-ne (h + n w)t,

g = (h + n), where h is the rate of increase in demand due to

advertising.

15) Div(t) = T(h)b6K-e( g- W )t [a + m(g+f)]K eg t
0 

If the firm adopts a policy of falling prices, eventually

dividends will become negative. If there is free disposal of its

13All the previous warnings regarding multiple equilibria
apply here. From now on we shall assume (for simplicity) that a unique
interior solution exists. If not, our previous cautions must be
considered.
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assets, then the firm should shut down when the dividends fall to zero.

However, it seems unlikely that a firm planning to terminate its opera-

tions in the not-too-distant future would pursue a steady-state path

until its demise. Thus, the framework of this model is not suited to

deal with a falling price situation. Also, it is clear that a policy of

price reduction is not compatible with the notion of a firm interested

in its own self-preservation.1 4

If we assume that a firm pursues a policy of falling prices, as

well as a continuous rate of growth of output until it shuts down, then

its current value would be (assuming it shuts down when dividends fall

to zero):

T it
16) V f 0 [(Div)e dt] ; Dividends equal zero at T such that:

e- = {[a + m(f+g)]/[T(h)beK(e-1)]} . Thus:

le ) [ (i+-g) Tb K [a+m(f+g)]K + 7rK[a m(fg)]]
17) V= - + T(01)

l(i+sr-g) (i-g) j(i-g)(i+n-g)[Tb K- )][ (i- g)/ ]

For falling prices (T > ), this expression exceeds the one developed by

Prof. Solow because he implicitly assumes that the firm must live

forever, forcing it to pay" negative dividends. The last expression

on the right hand side of equation 17) indicates how much the firm saves

by closing its doors when dividends reach zero (instead of continuing to

operate forever).

14Because of oligopolistic markets, it may be that a certain
asymmetry in price changes exists. That is, the firm may be able to
pursue a policy of rising prices without reprisals, but its policy of

falling prices may be followed by competitors, offsetting the initial
advantages of the lower prices (This is, of course, the kinked-demand
curve phenomenon). This problem points out, we believe, the danger of

a partial-equilibrium approach.
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If the firm pursues a falling price strategy, then its optimal

lifetime depends upon all the decision variables of the firm. An

increase in K , ceteris paribus, leads to an earlier shut-down because

the price falls in response to the larger output. Comparably, the

quicker the firm chooses to grow, ceteris paribus, the sooner the firm

will shut-down because a larger fraction of gross revenue is spent on

advertising. An increase in the rate of decline in prices works in two

directions - it leads to lower advertising expenditures (for the same

growth rate for the firm), but it also means prices are falling more

rapidly.

Since expression 17) is a rather difficult one to work with,

and since falling prices do not seem appropriate in a steady-state

model, we shall assume that either:

a) Prices increase or stay the same over time, or

b) The firm must operate forever.

If we make either assumption, we can then derive the expression for the

present value of the firm (which is the same as Prof. Solow's

expression):

18) V = {[T(h)b Ko ]/(i+i-g)} - K {[a + m(f+g)]/(i-g)}

As earlier, there are several criteria that may be used in

determining the optimal values of (g,Ko,r).

I) Vk=V =V =0
g w

II) Vk = m, V = V = 0

Using criterion I, and solving the resulting simultaneous

system, we find:
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19) [T + n(i+ir-g)T'] 0

20) = -{[m(i-g)2]/[a + m(i+f)]} < 0

21) K = [{eTb (i-g)}/{[a + m(f+g)](i+T-g)}]n

From these equations we can see that the management-oriented

firm will choose a strategy of rising prices. How does a change in n

affect g?

19) F(n,r,g) [T + n(i+wr-g)T'] = 0

20) F = (i-g)Tt - n(i+w-g)wT" < 0 (h = [g - n]; < 0)

But, from the second order condition we can show that:1 5

21) F = (.aF/ag) + (.aF/a)(d/dg) < 0

22) Therefore, (dg/dn)-< 0; (.dw/dn) = (d/dg)(dg/dn) < 0

Thus, as in the case of the firm that holds price constant, an increase

in the elasticity of demand will lead to a lower growth rate but,

paradoxically, to more rapidly rising prices. It would be interesting

to know whether the firm with fixed prices or the firm with rising

prices (for the manager-oriented firm) chooses a larger growth rate;

unfortunately, even, though we might expect the constant-price firm to

choose the larger growth rate, we have not been able to demonstrate this.

Fortunately, when we consider our second criterion, our results are more

definitive.

II) Vk =m, = V=0

Using this alternative criterion, and proceeding as before, we

1 5This result follows directly from the second order
condition; for the sake of brevity, the proof is omitted.
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derive: 

23) [T + n(i+w-g)T'] = 0

24) w = 0; therefore, [T + n(i-g)T'] = 0

25) K = {[OTb ]/[a + m(i+f)]}n

The owner-oriented firm, when faced with the opportunity to

vary prices over time, will behave in exactly the same way as his

counterpart firm that is constrained to hold prices fixed over time

(though he can set the initial price level). Thus, all our comments

from the prior section regarding the owner-oriented firm are applicable

in this case. Specifically, the growth rate chosen by the firm depends

only on n and i (and the shape of T(g)), and an increase in either

will decrease the optimal growth rate of the firm.

Also, if we compare our results for criteria I and II, we see

that the owner-oriented firm chooses a smaller initial size (and hence

a larger initial price), but a larger growth rate. Therefore, even

though the management-oriented firm will initially provide the public

with more output at a lower price, it will eventually be dominated (in

total size) and undersold by the owner-oriented firm.

Now that we have considered how firms will vary their prices,

if allowed to do so, let us next consider what effect technical progress

will have on the decisions made by the firms. As we shall see, the

analysis becomes more complicated as a result of this new assumption.

16This result coincides with the steady-state solution obtained
from the Maximum Principle - see Section VII of this chapter.
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IV. The Effect of Disembodied Capital-Augmenting Technical

Progress on the Firm

In this section we- shall consider what effect changes in

technology have upon the decisions of the firm. As Prof. Solow mentions

in his paper, if the technical progress is disembodied and labor-

augmenting, and if the wage rate increases at the same rate as labor

productivity, then the model is unchanged (except for the physical

quantity of labor). However, if the wage rate changes at a different

rate than does the productivity of labor (as is certainly possible in a

many sector model), then the Solow model will be altered. For

simplicity, we shall adopt Prof. Solow's assumption regarding the wage

rate and labor productivity, and instead we shall focus our attention on

the effect of disembodied capital-augmenting technical progress. In a

subsequent section we shall consider how our results change if the

technical progress is embodied in new machinery.

Assuming technical progress occurs at rate c, and that the firm

plans to grow at rate g, we calculate:

26) Q bK egt ; K = K e( g - c )t
0 0

27) Div = TbeKegt - aK egt - m(g+f-c)K e(gc)t

28) V = {[Tb K - aK ]/(i-g)} - {([m(f+g-c)K ]/(i+c-g)}

Note that the larger c, ceteris paribus, the less investment the firm

will undertake. In fact, if c is sufficiently large, the firm may

discard capital over time (if c > f + gl] , where T(g1) = 0, then

clearly capital will be discarded over time). However, since it seems

plausible that f > c, we shall not worry about this possibility.
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The firm's problem is to choose K and g; however, as

there are several possible criteria. We shall explore the two

considered in previous sections:

I) Vk = Vg = 

II) Vk = m, Vg

always,

= 0

For Vk = 0, V -

29) Vk = TbK(6l) - a

0, we can derive:

- {[m(i-g)(f+g-c)]/[i+c-g]} = 0

(i-g)

30) V = K {bK [T+(i-g)T'] - a - [{m(i-g)2(i+f)}/(i+c-g)2 ] = 0

(i-g)2

From 29) and 30) we can see that an increase in the rate of

technical progress, ceteris paribus, will increase the marginal values

of both K and of g:

31) (aVg/ac) > O0 (aVk/ac) > .

Furthermore, since Vkk <

that an increase in c shifts both

Unfortunately, it is not

monotonic for c > 0. For Vk=0 we

32)

0. and [Vgk](V =O) < 0, it follows

the Vk=O and the V =0 curves outward.

possible to show that either curve is

find:

[Vkg](Vk) = {[ebK(e 1)T' - m{ - [c(i+f)/(i+c-g) ]}]/(i-g) ;
kg (Vk=0) = {[bo

32') Vkk < 

For Ko sufficiently small (g sufficiently large), this expression [32)]

will be negative; however, as g becomes small, this expression might
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become positive. Nor is there any guarantee that Vkg changes sign only

once. Therefore, we can not obtain much information about the shape of

the Vk-O curve, except that for small K it must be downward sloping. 17

Let us see if we can learn any more about the shape of the

V =0 curve. Clearly, for V =0 it must be true that g (where
g g"

[T(g) + (i-g)T'(g)] = O); as K + 0, g + . Also, as g 0 0, K0 0

approaches some finite, positive value. Therefore, the V =0 curve

must be negatively sloped at some points. Furthermore:

33) Vgk < 0 for V = 0

34) V = [Ko/(i-g)3 ][beK(e-1)(i-g) 2 T" + {[2mc(i+f)(i-g)2]/(i+cg)3}]
gg~ o o

Without further information on the shape of T, it is not possible to

ascertain the value of Vgg ; however, as K + 0, g + g, and V < 0

(provided that T"(g) £c < 0). Thus, for large g, the V =0 curve will

be negatively sloped; elsewhere, it is not possible to determine its

slope. 18

When the two curves intersect, [Vkg](V =O) = [Vgk](Vg O) , and

thus the Vk- =0 curve must be negatively sloped at any intersection of the

1 7For g > , where [T(g) + (i-i)T'(g)] = 0, [dKo/dg(V 0 ) < 0;

also, if i > (c+f), then d[dKo/dg] < 0. Since [dK /dg] < 0 for c=O,
dc 

it follows that for c > 0, i > (c+f), then [dKo/dg](V =O) < 0.

However, there is no reason to assume that i is as large as is needed
for this result to apply.

If T"=O for g g*, then Vgg > 0 in this range. Since it

is likely that there will be some increase in demand over time even
without advertising, it seems plausible to assume that T"O for some
g* > O. Thus, the V =0 curve is likely to have positive slope for
small values of g. g
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two curves. Furthermore, for a maximum it must be true that:

35) V < 0, Vg < 0, and [VggV - (Vgk ) ] > 

Therefore, if V =0 has positive slope when the curves intersect, the
g

intersection is a saddle-point; and if Vk=0 has a larger slope (in

absolute value), then the intersection is again a saddle-point. Only

if V =0 has a steeper (and negative) slope (dKo/dg) when the curves

cross can the intersection be a maximum.

As Prof. Solow does, we can consider how these curves behave as

they approach the axes. For Vk=0, as K + 0, T + 0 (call the value of

g such that T = 0, gl); similarly, for V =0, as K + 0, g must tend to

(where [T(j) + (i-g)T'(g)] = 0). Since T" < 0, it follows that

< gl; therefore, if the two curves ever intersect, at least one of

these intersections must be a maximum.9 So far, there is no guarantee

that the curves ever intersect; however, if K > K (where Vk[0,K ]=0,

V [0,K ]=O), then there must be at least one interior solution. In

other words, if:

36) [T(O) + iT'(O)] > [a + [mi 2 (i+f)]/(i+c) 2}1 ; (f c)

T(O) [a + {[mi(f-c)]/(i+c)}]J

then the two curves must intersect (for c=O, this reduces to Prof.

Solow's expression that was referred to earlier). If K < K it is

possible that the curves never cross (in which case the smallest

1 9From the fact that g < gl, it follows that the intersection

of these two curves corresponding to the largest g (if there is more
than one intersection) must be at least a relative maximum since the
V g=0 curve must have a steeper slope [(dKo/dg]) at this intersection.
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feasible value of g is the optimal growth rate), or else that the

curves intersect several times.

To summarize:

a) There is no guarantee that the curves are monotonic.

b) The Vk=0 curve has negative slope whenever the Vg=0 curve

lies below it.

c) Both curves are negatively sloped for "large" values of g.

d) If the curves ever intersect, at least one of the inter-
sections must be a relative maximum. Also, the
Vk=0 curve must have negative slope whenever the two

curves intersect.

e) There is no guarantee of the existence or of the uniqueness
of an interior maximum.

The diagrams on the following page indicate some of the possibilities

of the behavior for the V =0 and the V =0 curves; naturally, there are
k g

other possibilities. Obviously, the simplicity of the Solow model

disappears when we consider the possibility of capital-augmenting

technical progress.

Assuming that an interior solution exists, it remains to be

determined how the optimal solution (K*,g*) changes as c increases.

Since both curves are shifted outward, it is not possible to determine

by inspection how the intersection shifts (though at least one of K* and
0

g* must increase). Using the fact that a maximum occurs at the

intersection of the two curves (assuming the proper slopes), and that a

change in c shifts both curves, we can derive (at a maximum):

37) (dg/dc) = (-V gk)(Vkc )[{(cV)/(V kcVgk - 1]

[V V - (Vkg) 2]gg kk kg
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FIGURE I - Possible Behavior of the Vk=0 and the V =0 Curvesk g
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38) (dK/dc) = (-Vgg)(Vkc)[l - {(VgcVkg)/(V c )}g

[VVkk - (Vkg )2]

At a maximum the denominator of each expression must be positive; also,

since V < 0, Vgk < 0, and Vkc > 0, it follows that:

39) sign(dg/dc) = sign[{(VgcVkk)/(VkcV ) - 1] ; and,

sign(dKO/dc) =signt 1 - {(VgcVkg)/(VkcVgg)}]

Thus, from the second order condition it is apparent that at least one

of (dg/dc) and (dKo/dc) must be positive.

It is not possible to determine the value (or sign) of (dg/dc)

for all values of c; however, for c near zero we find:

40) sign(dg/dc) = sign[a + m(f+2g-i)]

Thus, for i sufficiently small (i < f suffices), the management-

oriented firm that faces disembodied capital-augmenting technical

progress will choose a larger growth rate than a firm which does not

possess technical progress. However, if i is rather large, it is

possible that (dg/dc) < 0 (and thus (dKo/dc) > 0).2 0 If (dg/dc) > 0, it

is not possible to determine the sign of (dKo/dc) without further

knowledge of T". 21

2 0In other words, if people are "quite myopic", they may be
tempted to use the fruits of technological progress for immediate
plunder rather than for long-term growth. Thus, firms facing identical
cost and demand conditions (except, presumably, for interest rates), may
respond differently in different societies. Particularly, in a develop-
ing country, where the rate of time preference may be high, technological
change may lead to lower growth rates for the firm (and perhaps for the
economy, depending upon who does the savings).

2 1 Similarly, it is not possible in this case to show that the
firm that has any positive level of technological progress will grow
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The procedure followed to determine the sign of (dg/dc) is

applicable for determining how changes in any of the parameters affect

g or K (In his paper, Prof. Solow, in order to compare the classical

profit-maximizing firm to the growth-oriented firm, performed these

comparative static operations. However, he did this under the assump-

tion that the initial K was given to the firm). Thus, for any

parameter z we find:

41) (dg/dz) = (-V)[(V){[(V V)/(V._)] - 1}]
g.- KZG gZ 1 L KZ gl

[VggVkk- (Vg) 2.gg kk ~~~(kg)

42) (dK /dz) = (-V )[(Vkz){l - [(V zVk)/(Vkz v )]

[VggVkk (vkg) 2 ]

Since the denominator is positive at a maximum, as is (-Vgk ) and (-Vgg),

the sign of each expression depends upon the term in brackets in the

numerator. Therefore, we find:

4 3) Vkz < 0, Vgz > 0

Vk > O, Vgz< 0

VkZ > O VgZ > 0

Vkz < 0, V < 0

implies (dK/dz) < 0,

implies (dKo/dz) > ,

implies at least one of
positive.

implies at least one of
negative.

(dg/dz)

(dg/dz)

> 0.

<0.

(dg/dz), (dK0/dz) is

(dg/dz), (dKo/dz) is

Following this procedure (and assuming c=0), we find:2

2 1faster than the firm with no technical progress. See the appendix
for more details.

22In the appendix we shall consider how any price change ( or
change in technology) affects the growth decisions made by the firm.
This is done in the case of embodied technological progress, as well as
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44) a) (dKo/di) > 0 , (dg/di) < 0

b) (dK/da) < 0 , (dg/da) > 0

c) (dK/dm) ? , (dg/dm) < 

d) (dKo/dn) ? , (dg/dn) < 

As is expected (and as Prof. Solow finds for constant K ), an increase

in the price of capital goods or in the rate of discount leads the firm

to choose lower growth rates. (Remember that 44) was derived by using

the criterion that Vk=O, and by assuming that c=O). In the case of a

change in the discount rate, since this does not represent an increase

in costs per se (but rather a bias against the future), the smaller

growth rate leads the firm to choose a larger initial size.23 However,

an increase in the wage rate actually results in a larger growth rate

for the firm.

We have seen that for Vk=O, Vg=0, the model becomes quite

complicated for c > 0; and we have seen that we cannot reach many

definitive results, even concerning how changes in technological

progress affect the growth rate chosen by the firm. If we adopt the

criterion for the owner-oriented firm things become slightly more

tractable. Let us now investigate this case.

II) Vk m, V = 0

Using this criterion we arrive at the following conditions:

2 for disembodied technological progress. Also, it is done for the
owner-oriented firm as well as for the manager-oriented firm.

23Note the similarity of this result to that which we found for
(dg/dc) - that is, if i is large enough, the firms may take profits
imediately, foregoing the opportunity for growth.
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45) Vk - m = [ K(oe ) - a - {[m(i+f)(i-g)1/(i+c-g)}] = O

.U. e..-1(i-g)

Vg K= [ob K ){T+(ii-g)T'} - a- {[m(i+f)(i-g) 2]/(ic-g)2}] = 0

(i-g)2

Since Vk=m lies inside the Vk-O curve, it follows that if an interior

solution exists in the latter case, than it exists in the former case.

Thus, as in the case c, the owner-oriented firm will choose a larger

growth rate but smaller initial size than the manager-oriented firm.24

Unfortunately, we are still not able to say that either curve is

monotonic. All our previous comments regarding the shapes of the two

curves (see page 198) are also valid in this case. From equation 45)

we can show:

46) T + n(i-g)T' + [[(n-l)Tmc(i-g)(i+f)] O
[la(i+c-g)2 + m(i-g)(i+f)(i+c-g)]J

When c=O,this reduces to the case considered by Solow; if c-> 0,

it follows that in equilibrium (since n is assumed to be larger than

one):

47) [T + n(i-g)T'] < 0

Therefore, the owner-oriented firm with capital-augmenting technical

progress will (at least for small values of c) choose a larger growth

rate than a comparable firm that has no technical progress.

More formally, using the technique described earlier, we find:

2 4The usual warnings regarding multiple roots hold in this case,
as in all other cases.
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48) sign(dg/dc) = sign{(V gcvkk)/(VkVgk) - 1] =

sign { 2[a(i-g) + {[m(i+f)(i-g)2]/(i+c-g)} ]] - 1}> 0 at c=

[a(ic-g) + {[m(i+f)(i-g) 2/(i+c-g)1]

As we can readily see, for c=0O this expression is always positive;

furthermore, for [i > (c+g)], (dg/dc) > 0 everywhere. 2 5 Since, for

convergence, we must assume i > g, if c is not "too large", this

26
condition seems quite likely to be fulfilled. Unfortunately, without

further assumptions on T(g), we cannot ascertain the sign of (dKo/dc).

Though we shall not present the actual computations, it should

be noted that the "neat" solution of a constant price strategy for the

owner-oriented firm disappears in the face of capital-augmenting

technical progress. Even if the firm is forced to operate forever

(thus absorbing some unnecessary losses in the case of falling prices),

the owner-oriented firm with some technical progress will choose to

purs'ue a falling-price strategy.2 7

Obviously, however, this firm would do even better if it

terminated its operations at some point in time, and consequently a

a steady-state model is hardly the proper framework for analyzing this

2 5Note, paradoxically, that the larger i is in this case, the
more certain we are that (dg/dc) > 0; Just the opposite case holds for
the management-oriented firm.

26Though it is not necessarily true that (dg/dc) > 0 for all
values of c, we show in the appendix that the owner-oriented firm with
some capital-augmenting technical progress always chooses a larger
growth rate than the firm that has no technical progress.

27If (PIP) = -, assuming that the firm operates forever, we
find: 0 < = {[m(i+f)c]/[({a(i+c-g)2}/(i-g) 2) + m(i+f)]} c.

If the firm were allowed to shut-down when dividends fell to zero, it
clearly could do even better.
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28
case. Though we do not plan to offer an alternative model at this

time, it is worth observing that the presence of capital-augmenting

technical progress causes "perverse" behavior for the Solow firm

(which is geared to the steady-state), as it does for the neoclassical

growth models.

Our next task, one which is a logical extension of this

section, is to investigate how our results change if the technical

progress is embodied in new capital (though it is still assumed to be

capital-augmenting). Since the fruits of technical progress are

bestowed only upon new capital, we should expect the firm to choose a

smaller initial size, but larger growth rate, than in the case in which

technical progress is disembodied. Let us now see if our intuition is

substantiated.

V. Embodied Capital-Augmenting Technical Progress

and the Solow Firm

Before proceeding to the analysis, let us take a closer look at

the model we have been using. The firm is assumed to start with some

"chunk" of capital, and it is assumed to keep adding to this capital so

that the total available stock of capital grows at a constant rate (of

[g-cl). If we think about this, it is apparent that while a finite

amount of capital of vintage t=O exists, only infinitesimal amounts of

28The question arises as to why the firm, instead of shutting
down, does not Just cut its output and raise prices. This approach,
which is not acceptable in the steady-state model, indicates the limit-
ing behavior of our assumptions. However, we feel that a more general
equilibrium approach, properly representing the oligopolistic nature of

the market (and thus giving rise to kinked-demand curve phenomena),
would make a falling-price strategy much less likely to be chosen.
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any other vintage exist ( K(t) = Kt = (gf-c)Koe(c)t is the rate of

flow of machines of vintage t). Though this may seem slightly strange,

it causes no problems as long as all machines are used. However, if

older machines are eventually discarded (due to economic obsolescence),

then at some point in time a discontinuity in output will occur (when

this large block of capital is discarded). As we shall see, this aspect

of the model (plus the fact that the economic lifetime of- capital depends

upon the other variables under the firm's control) will cause us a great

deal of trouble when we consider the case of embodied labor-augmenting

technical progress.

Assuming technical progress is embodied and only capital-

augmenting (or, if any labor-augmenting technical progress occurs, it is

assumed to be disembodied, and for simplicity wages are assumed to grow

at the same rate as the labor-augmenting technical progress), we have:

49) QV = flow of output from capital of vintage v.

Kv = flow of capital of vintage v. Thus,

= bKve ; K = initial block of capital

L = K ecv
V V

Next, assume that depreciation occurs at rate f on capital of all

vintages:

50) Qv(t) = flow output at time t from capital of vintage v

K (t) = amount of capital of vintage v left at time t

Lv(t) = amount of labor used at time t on capital of vintage v

K (t) = K e-f(t-v) t v

(t) = ef(t) t v ; and so forth.

Finally, assume the firm seeks to grow at (a constant) rate g:
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51) K(t) = (g+f)K e(g-C)VJf(t-v) = (g+f)K e(g+fc)v e ; t > v

Qv(t) = b(g+f)K e(g+f)ve-ft therefore,= ; , therefore,

52) Q(t)= f[Qv(t)dv] + Qo( t ) bK egt ; L(t) = K egt and:

Qo(t) = bKoe

Therefore, the flow of dividends at time t is:

53) Div(t) = Tb eg t - aK egt - m(g+f)K(; and thus:

54) V = fo[Div(t)e itdt] = [bKoT - aK] - [m(g+f)Ko ]

(i-g) (i+c-g)

For c=0 this reduces to Prof. Solow's expression; for c > 0, note that

the value of the "vintage" firm is always less than that of the firm in

which technical progress is disembodied (call it V'). That is, we know:

28) V' = ({[b KoT - aK ]/(i-g)} - {[m(g+f-c)K]/(i+c-g)})

Let us now investigate how the vintage firm will behave under

each of our two criteria:

I) Vk = = 0

55) Vk = ({[b K e-1 )T - a]/(i-g)} - {[m(f+g)]/(i+c-g)}) = 0

56) V = [K /(i-g) ][b0K(e-1){T+(i-g)T'} - a - im(i+c+f)(i-g)2 = 0

(i+c-g)

Since Vk , V > 0, the curves for c > 0 both lie outside those for
kc gc

c = , and hence we can not tell by inspection what happens to Ko and g

(except that at least one of them must increase). Also, observe that

the 'k=O and the V =0 curves each lie inside their corresponding curvesk g



208

for disembodied technical progress, and hence all that we can now con-

clude is that either Ko or g (or both) is lower in the vintage case

than in the disembodied case.

As in the previous section, it is not possible to show that the

Vk=0 and the V=0 curves are negatively sloped at all points. However,

all of our prior remarks regarding the slopes of the curves remain

qualitatively unchanged. Thus, when the curves intersect, Vk=O must

have negative slope; and if the curves ever intersect, at least one of

these intersections must be a relative maximum; and so forth.

Will the firm choose a larger growth rate for the case of

vintage technical progress than for the non-vintage case? Since both

curves shift inward (for the vintage model vis-a-vis the non-vintage

model) it is not possible to tell a priori. Remembering that the V =0
g

curve must have a larger slope (in absolute value) at the intersection

of the two curves (for it to be a relative maximum), it follows that if

at the g which optimizes the non-vintage case (call it g), the Vk=O

curve lies above the V =0 curve (for the vintage case), then the
g

optimal g must decrease, and conversely. That is, if:

57) g, K is the optimal solution for the non-vintage case; and

define K1 , K 2 such that: Vk(g,K) 0 and Vg(g, K2 ) for

the vintage case. Therefore, if g' is the optimal solution for

the vintage case, then:

57a) g' g as K2 K2< 1

Using the fact that the pair (g,Ko) is the solution for the non-
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vintage case, we find:2 9

rn .1
58) (/K )l-' -

rA .

Ia + {[m(f+g)(i-g)]/(i+c-g)} - A , and:

[a + Em(f+g-c)(i-g)]/(i+c-g) 

I[a + m(ic+)(i-g)2]/(i+c-g)] B. Thus:

[a + [m(i+f)(i-g) 2]/(i+c-g)2 

59) (K2 /K1 ) = (A/B)n,

However, through simple multiplication it can readily be shown that

A > B. Therefore:

60) (A/B) > 1 implies: (K2/K) > 1, and thus: g' > g

Consequently, we have confirmed our intuition: the vintage

firm will choose a larger growth rate than the non-vintage firm

(assuming they are otherwise identical). Since the Vk=O, Vg=0 curves

shift inward (in the vintage case), the vintage firm must choose a

smaller initial size, given that it chooses a larger growth rate. In

other words, vintage technical progress raises the price of current

machines compared to future machines (effectively), and hence it

induces the firm to "start smaller and grow bigger", compared to its

non-vintage counterpart. In this respect it is like a decrease in the

discount rate.

2 9For Vk=0, [ebeK(1)T - a - {[m(f+g)(i-g)]/(i+c-g)1] = 0 in

the vintage case, and [eb K- 1 T - a - {[m(f+g-c)(i-g)]/(i+c-g)}] = 0

in the non-vintage case. Since this expression is evaluated at the same
g (called g), we readily obtain the ratio (/Ko)[81] ; and similarly

for V =0 we can obtain (K2 /Ko )[ 1 ] Finally, by looking at the ratio

of these ratios, our conclusion follows.

(K2/-%)LU-1J -
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If we next inquire how the onset of technical progress affects

the :irm (if the technical progress is embodied), we can derive for

small values of c (c = 0):

61) sign[dg/dc] = sign[[[a+m(gf] 2 + [(i-g)/(f+g)J] - 1] > O
L[a.,(i+f) ]J

Therefore, the firm will (initially) increase its growth rate due to the

onset of technical progress; unfortunately, it does not appear possible

to say that dg/dc] is positive for all values of c. In other words, it

is possible that for large values of c, a further increase in the rate

of technical progress may cause the firm to choose a lower growth

rate.3 As always, the sign of [dKo/dc] is ambiguous [for (dg/dc) > O]

without further information on the nature of T.

Let us now see how our results change for the owner-oriented

firm.

II) Vk =m, V =0

62) Vk - m = [ebeK(e-l)T - a - {[m(i+c+f)(i-g)]/(i+c-g)}] - 0

(i-g)

63) Vg = [K0/(i-g)2][beK(el){T+(i-g)T
' - a - (i+c+f)-g)]= 0

(i+c-g)

As in prior sections, it is easy to show that the owner-oriented firm

will choose a larger growth rate than the management-oriented firm.

3 As in the disembodied case in which Vk=m, Vg=0, it is

possible to demonstrate that a firm which faces some positive level of
capital-augmenting technical progress will choose a larger growth rate
than a firm that has no technical progress. For these results, and
others, consult the Appendix at the end of this chapter.
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Also, since both curves (Vk--m, Vg=0) for the vintage case lie inside

their counterparts for the non-vintage case, it follows that at least

either the size of the firm or the growth rate of the firm must be

smaller for the vintage firm, compared to the non-vintage firm. How-

ever, proceeding exactly as we did in the management-oriented case, it

can readily be shown that the vintage firm will choose a higher growth

rate, and hence a smaller initial size, than its non-vintage counter-

part. Naturally, the underlying economic reasons for'this result are

the same in this case as they were in the management-oriented case.

When we consider how technical progress affects the firm, we

can readily see that, for small values of c, the growth rate increases

as the rate of technical progress increases. Furthermore, for any

value of c, we find:

64) sign[dg/dc] =

sign{ ([a+{[m(i+c+f)(i-g)]/(i+c-g)}](i-g) [2+ (i+c-g)l] - 11

t[a+{[m(i+c+f)(i-g)2]/(g(i+c-g)) l (f+g)

For c=O, this expression is clearly positive. Though it is not neces-

sarily positive for all values of the parameters, [dg/dcl will be posi-

tive for all values of c if either i > f or i > (c+g) (for small c,

this latter inequality must hold for convergence of the integral for the

value of the firm). 31 Again, it is not possible to determine how a

change in the rate of technical progress affects the size of the firm

(if [dg/dc] > 0).

3 1 As for the embodied case, VkO= and V =0, we can show that

the firm with any positive level of technical progress will choose a
larger growth rate than the firm that has no technical progress. For
further details, consult the Appendix to this chapter.
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Though we shall not bother to exhibit the proof, it can be

shown that for the vintage model, as in the non-vintage case, the larger

the elasticity of demand, the slower the firm will choose to grow:

65) [dg/dn] < for Vk=0, V =0 or for Vk=m, V g=O

As in prior cases, it is not possible to determine how the size of the

firm is changed due to changes in the elasticity of demand without

better knowledge of the values of the parameters and the shape of T(g).

Finally, we can ask how our model will behave if we allow the

firm to pursue an optimal price strategy, in addition to choosing its

initial size and its desired growth rate. Assuming the firm must

operate forever (even with falling prices), we find that, as in the

disembodied case, the owner-oriented firm will choose a falling-price

strategy.32 Thus, unless we can resort to the notion of a kinked

demand curve (or some other oligopolistic practice), the owner-oriented

firm will choose self-annihilation, and the basic assumptions of this

model become quite dubious indeed.

In summary, we have found so far that:

1) The more elastic the demand curve, the slower the firm
will choose to grow.

2) The vintage firm will always choose a larger growth rate
and smaller initial size than its non-vintage
counterpart.

3) For small rates of technical progress, an increase in the
rate of technical progress will lead to larger growth
rates for the firm (except, perhaps, in the manager-
oriented, disembodied firm); for the owner-oriented

3 2Assuming the firm must operate forever, we find:

0 < w = [mc(i+c+f)] < c, where (P/P) =-w.

[m(i+c+f) {[a(inc-g)2]/(i-g)2}]
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vintage firm, this may be true for any rate of
technological progress (if i > [c+g]).

4) As in prior cases, the owner-oriented firm is more growth-
minded than his management-oriented counterpart.

5) The constant price strategy of the stagnant (that is, the
firm with no technical progress) owner-oriented
firm disappears in the presence of technical progress.

It is nice to summarize the results we have obtained so far,

since when we consider a vintage model with labor-augmenting technical

progress we shall find that the problem does not seem to be tractable.

Let us now see why this is so.

VI. Embodied Labor-Augmenting Technical Progress

and the Solow Firm

For reasons outlined earlier, the problem with embodied labor-

augmenting technical progress is much more complicated than those

problems we have considered so far. If the wage rate is increasing over

time at the same rate as technical progress, then it is clear that,

after some period of time has elapsed, it will no longer be profitable

to use machines that are older than some specific vintage. However,

this economic discarding of machines (which does not arise when

technical progress is either capital-augmenting or disembodied) causes

us problems for two reasons:

a) If the firm is portrayed as starting with some initial

amount of capital (of vintage t = 0), and growing at a

constant rate (so that there are only infinitesimal

amounts of capital of other vintages), it is clear that,

when the initial block of capital is discarded, there will



214

be a discontinuity in output.33

b) Secondly, and more fundamentally, the economic lifetime of

the machines depends upon both the growth rate and the size

that the firm chooses. This aspect of the problem makes it

impossible (for us) to arrive at any conclusions.

Also, it is clear that a) and b) interact since the economic life of

capital that is chosen determines when the original chunk of capital is

discarded, and this, in turn, affects the current value of the firm.

It is possible to avoid the discontinuity problem by assuming

that there are only infinitesimal amounts of each vintage. However, for

the firm to reach a constant growth rate in this case it must originally

grow faster than its final steady-state rate of growth (until the first

machine is discarded). This, in turn, makes it difficult to consider the

problem in a Solow framework in which prices are rigid (allowing them to

vary merely complicates the analysis) and advertising expands demand at

34a constant rate. Even if simplifying assumption are made, so that the

problem can be treated in the context of a steady-state growth path, the

solution remains essentially unsolvable.

D This is not a necessary assumption - it is possible to
assume that the firm starts with capital of various vintages (Though
one must still postulate how the magnitude of each type of vintage
capital is determined by the firm, since in this problem the firm is
free to choose its own initial conditions). However, even under this
assumption, the analysis proves intractable because the optimal econom-
ic lifetime of capital (for the firm) is an internal variable.

34For example, we could assume that no sales are made until the
steady-state growth path is reached - output would ust be given away as
an advertising gimmick. Alternatively, we could assume that output is
sold. at a price just sufficient to cover labor costs - and this would
be another advertising scheme (Naturally, this assumes that the price
can be set large enough to cover labor costs; however, for there to be
any long-run profits, this must be possible).
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For example, suppose technical progress is embodied in labor

and occurs at rate d; the wage rate is assumed to also increase at rate

d. f the firm starts with an initial block of capital of vintage o,

and if it seeks to grow at rate g, then we can write:

66) K = (g+f)K e g v

Qv(t) = b(g+f)Ke(g+f)v-ft

If is the age of the oldest machine in use, then we can find:

67) Q(t) = f[QV(t)dv] + Qe -ft = bKegt ; t J

(t-J) - f tQ(t) f(t [j)[(t)dv] = bKo[l - e (gf g ; t > J

Similarly, assuming technical progress is labor-augmenting and

embodied:

68) L(t) = [Ko/(g+f-d)][(g+f)e(g-d)t - deft ] ; t J

L(t) = [(Ko(g+f)}/(g+f-d)][1 - e (g+f-d)]e g ; t > J

Proceeding in this way, we calculate the value of the firm:

69) V = %J[Div(t)e-itdt] + fI[Div(t)e-itdt]

=([{Tb0Ko}/(i-g)][l - e(g-i)J{1 - [1 - e (g )]]

-[{aK0(i+f)}/{(i-g)(i+f-d)}][l - e( i+f-d)j]

-[{m(g+f)Ko}/(i-g)])

We cm either treat as a decision variable for the firm (in addition

to K and g), or else we can assume that is determined such that the

marginal revenue product of the last worker is ust equal to his cost
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(which is equal to the wage rate, assuming perfect competition in the

factor market):35

70) Q = be dvL implies MRP L = [bedV (eTP)] ; Wage Rate = aedt

Therefore, ed(t-v) - [(bTP)/al implies ed = [(ebTP)/a]

Clearly, the larger is g, the sooner machines must be discarded since

a larger fraction of total revenue is devoted to advertising. Also,

the larger firm (with the smaller price) will tend to discard its

older equipment sooner. Unfortunately, even if we make this a priori

substitution, the problem proves intractable.

Economically, it is clear that the embodied technical progress

is actually a burden to the entrepreneur, assuming that wages rise at an

equivalent rate. All the benefits of the technical progress are passed

on to the worker (as is also the case for disembodied labor-augmenting

teckmhnical progress); 3 6 however, since the fruits of technical progress

are not spread over all machines, the capitalist is thereby hurt due to

the technological obsolescence of some of his machines.37 Since an

increase in d, ceteris paribus, decreases the economic lifetime of

machines, it is to be expected that this lowers both Vk and Vg (Vkd,

3 5Presumably, these two methods will give the same result;
unfortunately, both methods prove intractable.

36This indicates that the Kennedy-Samuelson model relies
crucially upon the assumption that firms decide alone what type of
tecmhnological progress to choose. If there were collusive behavior
(for example, pooling research funds), and if they realized the effect
of their decision on wages (but could not wholly offset it with
monopsony power), they may instead choose capital-augmenting technical
progress, even for a < 1.

3 7It is clear that the value of the firm (68) is less than the
value of the firm for the case in which no technical progress occurs.
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Vgd < 0). Thus, it would appear that either K or g (or both) will

decrease as a result of the occurrence of embodied labor-augmenting

technical progress (and the consequent increase in wages).

Unfortunately, we have not been able to take the analysis much

further. We have seen that, with embodied labor-augmenting technical

progress, the faster growing companies will tend to discard their

machines sooner than slower growing companies (other things being

equal). However, due to the complexity of the analysis, we have been

able to conclude little else.

As the final model we present an optimal control formulation of

the Solow firm (with constant technology). We shall see that the only

steady-state path satisfying the equations of motion corresponds to a

case already discussed - that of the owner-oriented firm (Vk--m, V =0).

VII. The Solow Firm and Optimal Planning

In the preceding sections we have investigated how the Solow

firm would respond to various changes in parameters, and we have

demonstrated how this firm chooses its optimal size and growth rate

under two different criteria. Alternatively, it is possible to formu-

late this problem as an optimal control problem, and to investigate how

the firm should behave, assuming that it seeks to maximize the

discounted. value of the flow of dividends. As we shall see, if the

firm starts with a very particular initial capital stock, it will

choose to behave exactly the same as does the owner-oriented firm that

we studied earlier in this chapter.

Thus, suppose that we choose the basic Solow model, except

that we allow prices to change over time. Letting g be the rate of



218

increase in demand due to advertising, we can write:

71) (Q/Q) = [g - n(P/P)]

Assuming that there are no excess machines (that is, the initial stock

of capital is sufficiently small), and that there is no technical

progress:

72) (Q/Qi) implies K = [(Q/Q)(Q/b)]

But, due to investment, we know:

73) mK = s[TPQ - a(Q/b) - mf(Q/b)] ,

where the term in brackets is the amount of funds available for net

investment after advertising expenses, workers, and depreciation have

38
been paid. Therefore:

74) (Q/Q) = [(sb)/m][TP - (a/b) - m(f/b)]

75) (P/P) = [l/nl[g - s(b/m){TP - (a/b) - m(f/b)}]

76) Dividends = (1-s)[TP - (a/b) - m(f/b)]Q

Allowing A1 and X2 to represent the shadow prices, we can formulate

the Hamiltonian as follows:

77) H = {(l-s)[TP-(a/b)-m(f/b)]Q + Als(b/m)[TP-(a/b)-m(f/b)]Q

+ A2(P/n)[g - s(b/m){TP-(a/b)-m(f/b)}]}eit

The control variables are s and g; the state variables are

Q and P. For s we find:

38If [TP - (a/b) - m(f/b)]Q S O, then s = 0. In that case, 72)
should read: m = s'[TPQ - a(Q/b)] - fK , where s' is now the gross
savings rate. However, we are only interested in problems where K is
small initially, so this problem need not concern us here.
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s maximizes [(l-s) + s(b/m){A

= 0

This implies: s E (0,1) as
= 1

Therefore,

1 - [(AsP ) / ( nQ) ]} ];39

{(b/m)[l - {(X2P)/(nQ)}]} 1

Max[(l-s) + s(b/m){l - [(12P)/(nQ)]}]
(S) ~ ~ ~ (2 )/n)}

Y

Y = Max[l,{(b/m)[l

Next, choosing g to maximize 76), we find:

80) T'(g) = [(-A2)/(nyQ)]

FDinally, there are the two Euler equations:

81) [TP - (a/b) - m(f/b)][(l-s) + sl(b/m)] +

82) (TQ[(l-s) + s(b/m){A1 - [(A2P)/(nQ)]}]

1-1
= 0

+ ( 2/n)[g - s(b/m){TP - (a/b) - m(f/b)}] + 2 - iA2 ) = 0

In addition, we also have the differential equations for P and Q

thetaselves. To summarize, we have the following equations:

i) y = Max[l,{(b/m)[A 1 - ((X2P)/(nQ))]}]

ii) T' = [(-A2)/(nyQ)]

iii) (A1 /A1 ) = i - [TP - (a/b) - m(f/b)][{(l-s)/Al} + s(b/m)]

iv) ( 2/X2 ) = i - [(TQy)/X2] - (1/n)[g - s(b/m){TP-(a/b)-m(f/b)}]

v) (Q/Q) =

vi) (P/P) =

s(b/m)[TP - (a/b) - m(f/b)]

(l/n)[g - s(b/m){TP - (a/b) - m(f/b)1]

We seek a stationary solution that satisfies these equations. Clearly,

39If [TP - (a/b) - m(f/b)] 0, then s = 0.

78)

79)

- M 2,P)(nc21]1]

iAl
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s = 1 is not a solution unless the growth rate exceeds i (in which case

the integral does not converge). Similarly, s = 0 is not a solution if

40
there is to be some positive growth rate. Thus, for 0 < s < 1:

83) [A - {(A2 P)/(nQ)] = (m/b)

Also, for g to be constant over time implies:

84) (A2/A2 ) = (/Q) (for y constant)

Using equations 83) and 84), plus the equations of motion, we can

derive:

85) 0

86) p -- (Q/Q) = (x2 / 2) = g = s(b/m)[TP-(a/b)-m(f/b)]

87) (12/A2) = g [T + n(i-g)T'] = 0, which determines g.

Using equations i) - vi), and assuming a steady-state solution, we can

derive the necessary initial conditions for each of the variables (as

well as their subsequent values over time):

88) Q= bKo = {[(im4'f+a)n]/[b(n-l)T] -n ; Q = Qoe

89) p = [Qo]-(ln)

90) s = {[g(n-l)]/[in+f+(a/m)]} < 1 (s is the net savings rate)

91) l = {[nm(i-g)+a+m(g+f)]/[b(n-l)(i-g)]}

OWithout knowledge of T(g) it is not possible to exclude such
a solution. However, we shall assume that T(g) is such that a solution
for g > 0 exists.

4lThis is the same equation found by Prof. Solow for the
owner--oriented firm; as before, it does not appear possible to
guarantee the uniqueness of the solution.
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92) A2 = {[(im+mf+a)n]/[b(n-l)T[(n+l)/n]]}-n[eegt/(i-g)]

These are the only values of the variables, given the values of the

parameters, that will generate a steady-state solution that satisfies

the equations i) - vi) (assuming that g, as determined from 87), is

unique); unfortunately, we have not been able to determine the optimal

path for the enterprise if the initial capital stock differs from the

optimaLl level as determined in 88).

Let us now return for a moment to the static Solow model:

93) V = [Tb K - a - m(f+g)Ko ]/(i-g)} ; Vk = m implies:

94) [eTbeK(l)] = [a + m(i+f)] ; and therefore, using Q = bK :
O 0 O

95) Qo = {[b(n-1)T]/[(mi+mf+a)n]}n 

which is the same value for Qo as we found in 88) for the control

problem. Therefore, the optimal control problem implicitly attributes

an opportunity cost to capital equal to its price. Consequently, the

steady-state solution to the optimal control problem is equivalent to

the optimal solution for the owner-oriented firm that was discussed

earlier in this chapter (assuming that there is no technical progress).

Finally, we can not readily determine the behavior of the firm if it

starts with a capital stock different from that found in 88).

VIII. Conclusion - The Solow Model and the Steady-State

In this chapter we have explored how various forms of

technical progress affect the behavior of a dynamic firm. We have

discussed how changes in various parameters affect the decisions made

by the! firm, and we have seen how different "types" of firms respond

to the same stimuli. Specifically, we have shown that:
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a) For "all" firms, the more elastic is the demand curve, the

slower the firm will choose to grow.

b) For all types of technical progress considered, the owner-

oriented firm will choose a larger growth rate than the firm that

disregards the opportunity cost of the initial stock of capital.

c) The growth rate chosen by the firm will be larger (and the

initial size smaller) if technical progress is embodied, rather than

disembodied (and capital-augmenting).

d) In general, the firm will not choose a constant price

strategy if there is any capital-augmenting technical progress.

e) The optimal growth rate chosen by the firm depends upon all

of the parameters of the model (unless there is no technical progress

and the firm is owner-oriented).

f) For the management-oriented firm, an increase in the rate

of disembodied, capital-augmenting technical progress might lead to a

decli:ne in the growth rate chosen by the firm. If the firm (country)

has a very high rate of time preference, this result is likely.

g) For the owner-oriented firm, an increase in the rate of

technical progress (for small values of the rate of technical progress)

will increase the growth rate chosen by the firm.

h) If technical progress is embodied and labor-augmenting, and

if wages increase at the rate of technical progress, then the quicker

growing the firm is, the sooner it will discard capital as being

econamically obsolete.

i) Embodied labor-augmenting technical progress, if accompa-

nied by wages that increase at the same rate as technical progress,

actually decreases the value of the firm. This, we feel, sheds some
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doubt on the Kennedy-Samuelson results if it is assumed (recognized?)

that decisions on types of technological progress are made by large

corporations that are cognizant of their effect on wages.

There are other results that could be listed; we feel, however, that

the major results have been enumerated above.

The model of the growing firm formulated by Prof. Solow, and

extended in this chapter, though simplistic in style, is an important

contribution because it focuses on what we consider a major factor in

influencing a firm's dynamic behavior - the need to expend a significant

part of its resources to ensure a growing demand for its product. How-

ever, when one attempts to extend the results of this chapter to apply

to the economy as a whole, several weaknesses of the model become

evident:

a) The assumption of Fixed Coefficients - though this

assumption simplifies the analysis, it is not really an important one,

and it could readily be dropped.

b) The Steady-State assumption - clearly, the model is aimed at

providing a picture of a firm that is essentially unchanging over time,

as is the steady-state economy. However, this assumption has been seen

to be quite dubious when we allow the firm (that has capital-augmenting

technical progress) to vary prices.

c) The "Long-Run" - in the Solow model, a firm (and, implicitly,

all firms) may grow at a faster rate than the economy as a whole over

the relevant planning period. This stems from the fact that the long

run is "not that long". Also, the model implicitly assumes that firms'

plans (in terms of expanding demand) are always fulfilled. This brings
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us to our final point.

d) The Partial-Equilibrium Approach - obviously, this model is

a partial equilibrium one - no concern is given to the larger wages

that presumably will occur if a firm grows faster than the economy as a

whole (for an extended period of time), and no attention is focused on

the market structure of the economy.

The fact that the model is partial equilibrium in nature is not

a criticism of the model itself, since its purpose was to analyze how

different firms respond to various exogenous changes. However, if the

model is to be adapted to help explain the growth behavior of an

econcmy (and the demand for investment in that economy), it is our

feeling that it must be embedded in a more general equilibrium approach.

For example, the assumption that the firm faces a demand curve that is

not completely elastic implicitly recognizes the existence of market

power; the logical extension would seem to be to formulate a model

that explicitly recognizes the oligopolistic structure of the market.

In that model, growth might serve to increase market power (and hence

profits) - this is in contrast to asking how the growth rate responds

to anl exogenous change in market structure.

Unfortunately, it is easier to talk of such a model than to

construct it. Nevertheless, it is our feeling that greater understand-

ing of the growth behavior of an economy can only be obtained by

disaggregating the growth model and by attempting to explain how firms

within this growing economy might behave.
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IX. Appendix - Responses of the Firm's Growth Rate

to Parameter Changes

In the main part of this chapter we have shown how changes in

the rate of technological progress affect the growth decisions made by

the firm, for very low levels of technical progress (c 0). In this

Appendix we hope to show that these comparative static results can be

extended. Specifically, we ask:

1) Will the firm with some technical progress always choose a

larger growth rate than the firm with no technical progress (for the

owner-oriented and the management-oriented firm)?

2) How does a change in the price of labor or capital affect

the growth decisions made by the firm?

In addition to attempting to answer these questions for the

owner-oriented and the management-oriented firms, we shall attempt to

answer them for the case of embodied, as well as disembodied, technical

progress.

Consider first how the presence of technological change

affects the growth decisions. We have seen that the firm chooses the

growth rate at which the Vk=O (Vk=m) and V =0 curves intersect,

assuming that they have the "proper" slope. For c = 0, these curves

will (might) intersect at some growth rate - call it g. The onset of

technological change causes both of these curves to shift; if, in the

presence of this new technology, the Vk=0 curve lies above the V =0

curve at the old growth rate g, then the new growth rate (g') must be

greater than g, since the V =0 curve must have a greater slope (in

absolute value) at the maximum.
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As an example, consider the case of disembodied technical

progress (it is capital-augmenting) for the management-oriented firm

(Vk=O). In that case we have:

96) Vk = 0 + [eT(g)beK(e-1)] = {ta+m(i-g)(f+g-c)]/(i+c-g)}

V = 0 + {[T+(i-g)T']b K( - 1) } = {[a+m(i-g)2(i+f)]/(i+c-g)2}
g 0

Let g, Ko represent the optimal solution for the case c=O; let K1

represent the value of Ko such that Vk(Kl,g,c) = 0 for c > 0; let K2

be chosen such that V (K2,g,c) = 0 for c > 0. Then, if g' represents

the new optimal growth rate:42

97) ' >-g as

From 96) we find:

I,^ -, 

98) [K/o 0 t-u' =

[K2 /K ] i

[a + [m(i-g)(f+g-c)]/(i+c-g)}
(a + m(f+g)] J

(e-i) 
[a + {[m(i-g):(f+g-c)]/(i+c-g)' ;

[a + m(i+f)]

Therefore,

99) [K2 /K1 ] 1 as I [a+{[m(i-g)(f+g-c)]/(i+c-g)}][a+ m(i+f)] 1
< 2 2 <

Eta+{[m(i-g) (i+f)]/(i+c-g) }][a+m(g+f)] 1

Without knowledge of the value of the parameters, we can not determine

the value of the ratios in 99); however, if [(f+2g) > (i+c)], this

suffices to guarantee that the growth rate with technical progress will

42As usual, the possibility of multiple roots exists. In that
case, we may talk about the largest such root, which must be a relative
maximum.
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be larger (g' > g)3 (note that for a = O, this is also a necessary

condition).4

However, in the case of embodied technical progress for the

management-oriented firm we find that we can show that the firm with

some positive rate of technical progress will always choose the

larger growth rate. In this case we find:

100) [K2/Ki] 1 as [a+([m(f+g)(i-g)]/(i+c-g)}]a+m(i+f)] 

[a+{[m(i+c+f)(i-g)2 /(i+c-g) }I[a+m(g+f)]

By expanding 100) we can show that [K2/K] > 1; therefore, the firm

with some embodied, capital-augmenting technical progress will choose

a larger growth rate than a comparable firm with no technical progress.

Using the same technique, we can readily show that the owner-

oriented firm which possesses some capital-augmenting technical

progress will choose a larger growth rate than a comparable firm that

receives no advances in technique (this is true for both embodied and

disembodied technical progress). Note that this result does not imply

that an even larger rate of growth of technical progress will lead to

even larger growth rates for the firm; it merely tells us that a firm

43Note that the larger is i (the rate of discount), the less
likely it is that the firm with technical progress will choose a larger
growth rate than the firm with no technical progress.

Observe that if m=0, there is no change in the optimal
growth rate due to capital-augmenting technical progress. This is true
in all cases (of capital-augmenting technical progress) and is obvious,
since if capital is free, it is irrelevant to the firm how much capital
must be "purchased". By continuity, it seems plausible to argue that
the smaller m, ceteris paribus, the less important capital-augmenting
technical progress will be to the decisions made by the owner or
manager. Thus, we would expect the onset of capital-augmenting
technical progress to have a larger effect on decisions in an under-
developed country, where capital costs are high relative to labor costs,
than in a capital rich country.



228

with scue (any) positive rate of capital-augmenting technical progress

will choose a larger growth rate than the firm that is technologically

stagnant (except, perhaps, for the manager-oriented, disembodied case).

In summary, in all cases except the disembodied, management-

oriented case, we can conclude that the presence of capital-augmenting

technical progress will lead the firm to choose a larger growth rate

than it otherwise would if there were no technical progress. For the

case of' disembodied technical progress in the management-oriented firm,

no definitive results can be stated without further knowledge of the

relevant parameters.

Next, let us consider how a change in cost conditions affects

the growth decisions made by the firm. Specifically, we would like to

know how an increase in the wage rate (a) or in capital costs (m) will

affect the growth rate chosen by the firm. Since an increase in a (or

in m) leads to a decrease in Vk and Vg (ceteris paribus), it follows

that either the optimal g or the optimal K (or both) must decrease.
O

Therefore:

101) [dg/da] > 0 + [dKo/da] < 0 ; similarly for [dg/dm].

Fortunately, it is relatively simple to calculate [dg/da] and

[dg/dm] using the technique discussed earlier. If we assume (for

example) an owner-oriented firm, for a = a, we have:

102) Vk ( g K a ) = m; V(g a) = 0

at a maximum. Now let a (or m) increase to a' > a, and define K1 , K2

as follows:

Vk(g,K,a') = m ; Vg(gK 2 ') = ok 9 9 9 'a' 103)
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As before, if g' represents the new growth rate chosen by the firm,

then:

o10) g' g as K2 I E

Clearly, the same technique can be used for changes in capital costs.

As an example, consider the case of an owner-oriented firm

facing disembodied, capital-augmenting technical progress. For a

maximum we have:

105) [eTbeK(e l)] = a + [{m(i+f)(i-g)}/(i+c-g)]0

[T + (i-g)T']beK( 8-l ) = a + [{m(i+f)(i-g) 2 /(i+c-g) 2 ]

0

Using the notation defined above, at g we find:

106) g'; g as K2 K1 , and K2 K as:

107) [a'+{[m'(i+f)(i-g)]/(ic-g)}]la+{[m(i+f)(i-g)2]/(i+c-g)2 ] 1

[a+{Ilm(if) (i-g) ]/(i+c-g) ] at+{ [m(i+f) (i-g)2]/(i+c-g)2} ]

Let as consider changes in capital costs only (m' > m, a' = a ); from

107) we can readily see that:

108) K2 > and thus [dg/dm] > 0 , for c > 0.

(Note that if c = O, then K2 = K1 , regardless of the values of a and m;

this corresponds to Prof. Solow's observation that, in this case, the

growth rate of the firm depends only upon the rate of discount and the

elasticity of demand, in addition to the shape of T(g)). Similarly,

letting a' a, m' = m , we find for this case:

109) K2 < K1 and therefore [dg/da] < 0 for c > 0.

Therefore, in the case of the owner-oriented firm with dis-

embodlied capital-augmenting technical progress, an increase in capital



230

costs actually leads to a larger growth rate, though a smaller initial

size, for the firm. This may be rationalized by realizing that, due to

the technical progress, capital costs in the future (for a given growth

rate) are lower than present capital costs, and thus the decrease in

size as a result of the larger capital costs makes it profitable to

expand the growth rate of the firm. On the other hand, technical

progress, since it is only capital-augmenting, does not offset (in the

future) the larger labor costs, so there is no reason to expect the

firm to choose a larger growth rate as a result of increased labor costs.

We have seen in 108) and 109) above that increased labor

costs have exactly the opposite effect (qualitatively) on the growth

rate as does an increase in capital costs. When we consider all

possible cases we find that this result still holds:

110) sign[dg/da] - sign[dg/dm]

The table on the following page summarizes the effects of changes in

capital or labor costs on both the size of the firm and its growth

rate for all cases.

From the table we can see that, for the owner-oriented firm,

an increase in capital costs actually leads to a more rapidly growing

firm, while for the management-oriented firm, no definitive results are

available (though it can readily be seen that an increase in capital

costs is more likely to lead to a larger growth rate for the firm with

embodied technical progress than for the firm with disembodied technical

progress). If i (the discount rate) is sufficiently large, then

[dg/dm] < 0 - in this case, the high rate of time preference makes

growth more costly, and thus "overcomes" the benefits of capital-
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augmenting technical progress (in terms of lowering future capital

costs). Hovever, as is apparent from the table, [dg/da] is positive

in that case.

There appears to be little else that can be said about the

table, so we shall let it "speak for itself".
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