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ABSTRACT

A versatile crossed molecular beams apparatus with a "universal" mass
spectrometer detector has been designed and constructed. Doubly differ-
entially pumped beams cross at 9000 The angular differential cross section
is measured in the plane of the two beams by the rotatable detector which
scans an angular range of 1300°o There are a total of seven differentially
pumped chambers.

A beam source of polyatomic free radicals has been developed which
has produced beams of methyl and ethyl radicals of sufficient intensity
to carry out reactive scattering experiments.

The product alkyl halide angular distributions from the reactions:
CH3 + C 2 , Br2, I2, ICZ and C2H5 + Br2, have been measured at thermal
energies. Without exception the reaction products peak backward in the
center of mass coordinate system with respect to the incoming radical.
Trends in the angular distributions are very similar to trends observed
in the reactions of D atoms with the same halogens (MCD 72).
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Introduction

The ability to observe single collisions between reactive species

in molecular beam experiments has existed for nearly two decades. For

many years the field of Molecular Beams remained separate and distinct,

with little interplay between it and other areas of more "traditional"

chemistry. This isolation was due in large part to the limited scope of

chemical systems amenable to study by surface ionization detection tech-

niqueso With the development of the "universal" mass spectrometer detector

came the potential for extending molecular beam research to areas of

inorganic and organic chemistry previously unexplored by these techniques.

In this spirit we set out to demonstrate the possibility of studying

organic free radical reactions in molecular beams. The first successful

angular distribution measurements of polyatomic free radical reactions

are presented in Part II of this thesis.

In order to carry out these studies we designed and constructed a

versatile crossed beams apparatus with a rotatable mass spectrometer

detector. In the broadest terms it is capable of measuring the angular

differential scattering cross section of any binary collision process of

chemical interest, There is no fundamental limitation which dictates

the range of chemical species or energies to be studied. A description

of this apparatus with emphasis on the design criteria for studying

neutral-neutral reactions at thermal energy is presented in Part I,
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Part I

CROSSED MOLECULAR BEAMS APPARATUS

WITH MASS SPECTROMETER DETECTOR



11

A. Introduction to Non-Alkali Beam Experiments

The work described here commenced in the fall of 1967. At that time

molecular beam studies of chemical reactions yielding neutral products

were limited to atom-molecule reactions involving a surface ionizable

species. The "universal" detector had not as yet been successfully

adapted to the study of reactions in crossed beams, though work on this

problem was in progress in several laboratories. Reactive signals had

been seen from the reactions of D + H2, H + D2, and D + Br2, but it was

impossible to elucidate any detail in these experiments (DAT 63, FIT 63,

FIT 65, DAT 67).

In addition to the successes of the "supermachine" described here,

the work in other laboratories has also come to fruition. Two apparatuses

are described in detail in the literature (LEE 69, BIC 70), and a number

of studies of non-alkali atom-molecule reactions have been published

(LEE 69b, LEE 68, BEC 68, CRO 69, CRO 70, GED 70, GRO 70, SCH 70, MCD 72).

On the more negative side however, only halogen atom and deuterium atom

reactions have been reported, An appreciation of the relative difficulty

of non-alkali experiments is necessary in order to understand why only a

limited number of systems have been studied and why at least three ma-

chines built for "universal" detection of reaction products have not yet

performed successfully.

In contrast to the complexity of "supermachines", the apparatuses

employed in the early alkali experiments were relatively simple. The

two beam sources and the detector were typically located in a single

chamber. The products were detected by surface ionization which is spe-

cific for alkali metals and their salts. Therefore only the partial
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pressure of the alkali species had to be low, and liquid nitrogen cryo-

pumping sufficed in maintaining adequately low background signals,

Differential pumping of the sources or detector was not necessary. This

enabled all components to be placed close to the intersection volume,

thus minimizing /R2 intensity losses. Add to this the unit efficiency

of hot wire detection and the large cross sections of most of the early

alkali reactions (on the order of 100 A2)o In retrospect it is not

difficult to see why it was possible to do experiments using relatively

weak, nearly effusive beams and analogue current measurements of the

scattered products.

The increased difficulty of non-alkali experiments is due to several

factors. The maximum efficiency of electron bombardment detection is

% 0o1%o Furthermore, in order for the apparatus to be generally useful,

02
signals from reactions with total cross sections of order 1 A must be

measurable. From these rough figures, if all other factors remain con-

stant, the signal from a typical non-alkali reaction would be a factor

of 105 smaller than that from an alkali reaction. This does not include

the increased problem of interfering background at the mass of the reac-

tion products, As mentioned above the background in alkali experiments

is not particularly troublesome because of the low vapor pressure Bf the

alkali metals and salts at liquid nitrogen temperature. Many non-alkali

reactants and products do not have this favorable property. To make

things worse, the background partial pressure at the mass of interest

< -14
must be reduced to " 10 torr because of the relatively small signals

expected. Therefore different and more drastic pumping schemes are

required. In addition to the ultrahigh vacuum requirements, the system

must be able to handle heavier gas loads as well, since more intense
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beams are necessary to make up for the typically smaller cross sections.

In every respect the problems faced in designing a non-alkali "super-

machine" are of greater magnitude and demand more sophisticated tech-

nological solutions than those encountered in the early alkali work.

Presented in the sections which follow is a description of an

apparatus whose design has successfully overcome these difficulties for

at least one class of non-alkali reactions never before studied by molec-

ular beam techniques (see Part II).

B. Apparatus Design Criteria

The design of any experimental apparatus is based on an analysis of

signal to noise considerations. The true signal in crossed beams reac-

tive scattering experiments comes from the formation of product molecules

in the intersection volume as a result of collisions between reactant

beam molecules. Product molecules so produced which scatter directly

into the detector are measured as a function of laboratory scattering

angle. Present at all times is an interfering background signal which

comes from the detection of product molecules (or molecules of the same

mass as product molecules) formed in some other way. Residual atmuspheric

gases, collisions of beam molecules with the ambient background gas, and

molecules formed in the intersection volume but indirectly scattered into

the detector after repeated wall collisions, are common sources of back-

ground. In principle at least, the true signal can be separated from

the background signal by means of beam modulation. This simply consists

of interrupting or chopping one beam so that reactant molecules in that

beam arrive at the intersection region in bunches with a given frequency.
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The true signal will arrive at the detector with the same frequency, while

the background signal is a constant DoCo signal, Two detector channels

are synchronized with the beam chopper so that one channel (Signal Chan-

nel) is active only when true signal is arriving at the detector. The

other channel (Background Channel) is only active between bunches of true

signal. The signal channel thus records true signal plus the DoCo back-

ground signal, and the background channel records only the background

signal. The difference between the two channels is the true signal.

The complications introduced by a modulated contribution to the back-

ground are discussed below,

The limiting source of noise in these experiments is the statistical

variations in the true signal and in the background (LEE 69). Following

the arguments given in (LEE 69) and (KIN 72) we find that during a time

interval t, the total number of events counted at the detector is

N1 = (S+B)t in the signal channel and N2 = eBt in the background channel.

S and B are the concentrations of molecules contributing to the signal

and background, respectively, and the counting rate produced by a unit

concentration where is an efficiency factor for the entire detection

train. A statistical fluctuation of one standard deviation is N where

N = N1 + N2, the total number of counts accumulated by the detecto in

time t Since the signal accumulates linearly with time and the statis-

1/2
tical noise increases as t , by counting sufficiently long at one

angular setting the signal to noise ratio R can be made arbitrarily

large. Practically speaking t must be kept on the order of 103 seconds

to allow the entire angular distribution to be measured within a reason-

able length of time. The counting time required to achieve a desired
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sSt R2 (S+2B)

R (N 1/2 is given by t = 2 Under usual conditions S<<B and
(N1+N2 ) s

t B 2 , which emphasizes the need to maximize both S and S/B If we take

R2 /t _ P as a measure of the performance of the apparatus, and ask what

the fractional improvement in P is for a fractional change in the vari-

ables S, B, and we find:

aP/p anP 1

SPe ae/E w ,Be ,B

(atnP \ 2B
6P 1 Eg I = 1+ - ' 2

s tnS S+2B

B ,S

Therefore increasing the signal is roughly twice as effective in increas-

ing the performance of the apparatus as is increasing the detector

efficiency or reducing the background. Nevertheless, the design must

focus on all three factors simultaneously; for experience has shown that

neglecting to optimize the design for any one of these factors has disas-

trous results. Every feature in the design of the vacuum system, detec-

tion system, and the beam sources was incorporated either to maximize the

signal, maximize the detection efficiency, or minimize the background.

It should of course be mentioned that the variables , S, and B

are not necessarily independent, as implied in the previous discussion.

For example, factors which increase S may also increase B, and the inter-

relationship of these variables may depend on the particular chemical

system which is studied. Optimization of a particular variable implies

a maximization of R and not necessarily a maximum or minimum value of
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the variable itself,

C. General Construction of Apparatus

Figures 1 and 2 depict the basic features of the apparatus. The

central unit of construction is a large box (main chamber) with inside

dimensions 26" x 221/2" x 111/2" The box has a rotatable lid 25" in

diameter. Additional chambers are mounted on each vertical face of

the main chamber, An 8" diameter port is located in each face. The

concept of a central chamber on which all other components are supported

allows for maximum versatility in adapting the apparatus to the specific

requirements of each experiment. In Fig. 1 four chambers can be seen

mounted on the outside walls of the main chamber, while two chambers

are located inside. 5.4" diameter ports are bored in the bottom of the

main chamber for differential pumping of the two chambers located inside

the main chamber. A 14" diameter pumping port is also bored in the

bottom of the main chamber. One entire side of the main chamber is

removable if less hindered access than through one of the 8" ports is

necessary. Two additional ports are bored in the main chamber and five

in the rotatable lid for general purposes such as electrical or lqaid

nitrogen feedthroughs. The location of sixteen tapped holes on the top

corners of the main chamber serve to mount a step ladder, the drive gear

assembly for the lid, and brackets for removing the lid from the chamber.

An electric chain hoist which travels on an I-beam suspended above the

apparatus is used for lifting the lid and other heavy pieces into place.

The rotatable lid carries the mass spectrometer detector and its

pumping system. The lid is rotated manually with a 20:1 reduction gear
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Figure 1

Horizontal Cross Sectional View of Apparatus

a. Main chamber

b. Source pumping chamber 1

c. Removable bulkhead separating source
chambers 1 and 2

d. Source pumping chamber 2

eo Liquid helium cryopump chamber

f. Detector buffer chamber

g. Detector chamber

h. Beam source mounting flange

r. Electron bombardment ionizer

DP. Oil Diffusion pump

TiSP. Titanium sublimation pump

L Heo Liquid helium cryopump

The scanning range of the detector should be

1300 instead of 120°o
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Figure 2

Vertical Cross Sectional View of Apparatus

bo Source pumping chamber 1

e. Liquid helium cryopump chamber

f. Detector buffer chamber

g. Detector chamber

ho Beam source mounting flange

i. Beam source tube

j. Beam source tube alignment and
support pins

k. Rotatable lid

lo Detector chamber back flange and
mounting bench

m. 3 element einzel lens

no Spherical lens

o. 5 element high voltage cylindrical lens

p. Channeltron electron multiplier

r. Electron bombardment ionizer

DPo Oil diffusion pump

TiSP. Titanium sublimation pump

L He. Liquid helium cryopump

QMSo Quadrupole mass spectrometer

The detector pumping system, which mounts on the

rotatable lid is not shown; neither are the exten-

sive liquid nitrogen cooled cold shields.
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drive. It is supported by a circular ball bearing which must withstand

the total weight of the lid ( 300 lbs.) and the pressure difference

when the main chamber is evacuated ( 7,000 lbs.).

The entire apparatus is constructed of type 304 stainless steel.

The main advantage of stainless steel over other materials such as brass

or aluminum is that it is chemically inert and presents a low outgassing

surface to the vacuum. The 300 series was chosen because it is non-

magnetic. The most troublesome property of stainless steel is its hard-

nesso Even for a skilled craftsman machining time is roughly a factor

of two longer for stainless steel than for brass, aluminum, or other

soft metals. (A novel approach in the choice of construction materials

which has the advantages of both stainless steel and a softer metal was

taken by R. W Anderson at the University of California, Santa Cruz. His

chamber is fabricated from soft steel which is inexpensive and easy to

machine. After construction the interior of the chamber was nickel-

plated so as to be corrosion resistant.)

The conventional method of joining two pieces of stainless steel is

to heliarc weld them. Certain disadvantages accompany this method. Weld-

ing introduces strains into the metal which must be relieved by annealing

before the final machining is completed. Stress relieving prevents the

gradual distortion of surfaces due to such strains. In high vacuum work

it is always advisable to weld oints on the inside seam which faces the

vacuum. This eliminates the possibility of small trapped volumes which

create troublesome virtual leaks. The smaller the piece the more diffi-

cult it is to weld inside oints. Finally, heliarc welding is a process

which leaves a piece dirty by ultra-high vacuum standards and chemical

cleaning is often necessary. In an attempt to eliminate these diffi-
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culties hydrogen brazing was used instead of heliarc welding. In one

step in the brazing furnace, the pieces are oined, stress relieved,

and cleaned. Furthermore, brazing inside joints is no particular problem

regardless of the size of the piece. Although this method appeared to

have many advantages over heliarc welding, it turned out to be a more

time-consuming process. This is due to the long cycle times ( 12 hours)

for brazing and the fact that horizontal and vertical joints cannot be

brazed simultaneously.

A simple procedure for precision alignment of the beam sources, the

beam collimating apertures, and the detection components has been planned

for in the design. The smaller the collimating apertures the more accu-

rate the alignment must beo Although relatively wide beams and large

detector apertures are used in the present studies, all apertures are

interchangeable and overall tolerances meet the requirements of the small-

est of these. In order to facilitate precision alignment of the various

components that are mounted on the main chamber, all of its opposite

surfaces are parallel, and adjacent surfaces are perpendicular to within

+ .005" overall. The side ports of the main chamber and the rotatable

lid are centered on perpendicular lines which come to within + .003"

of intersecting in the center of the main chamber. Reference lines are

inscribed on each vertical face of the main chamber to aid in locating

these center lines. The walls of the main chamber and the lid are thick

(1.25" and 3" respectively) to insure that atmospheric pressure will not

distort the chamber. The main chamber is essentially an optical bench

on which every other chamber and component is mounted. However, this

only partially solves the alignment problem. Proper alignment refers

to the location of the two beam sources, four beam collimating apertures,
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two detector apartures, and the detection components. The centers of all

these elements must lie in the same horizontal plane within the desired

toleranceso Since the apertures are located in the bulkheads separating

the various chambers, and the beam sources and detection components are

supported by the chambers in which they sit, the problem of positioning

these elements becomes a problem in the design of the source chambers,

the source differential pumping chambers, and the detection chambers.

The original design of these chambers was based on the following notion.

If all chambers are precision machined such that the location of the

apertures with respect to the mounting surfaces is exact within very

close tolerance, then when the various chambers are mounted on the main

chamber, which is also precision machined, the alignment of all apertures

will be correct without adjustment. Furthermore, if the beam sources and

detection components are accurately attached to flanges which can be

precisely mounted on their respective chambers, then the alignment of

these components is determined. Removal and replacement of the flanges

does not disturb the alignment. Without going into the details of how

this is carried out, it can be seen that every component built has criti-

cal dimensions requiring tolerances held typically to .005"0 In prin-

ciple there is nothing wrong with this reasoning but practical coioid-

erations weigh heavily against adopting this design concept. Machining

to close tolerances not only takes longer if perfectly executed but also

is more subject to irreparable errors which cause additional time to be

lost in remachiningo When these factors are multiplied by the number of

jobs requiring high precision, it is not difficult to see how months of

delay were suffered in the construction of the apparatus.

Having experienced these difficulties, when it became necessary to
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rebuild the source differential pumping chambers for other reasons, an

alternative alignment scheme was adopted. Here the apertures are mounted

on small flanges which are screwed to the chamber bulkheads in approx-

imately the correct position. Wide clearance holes in the aperture

flanges allow for adjustment Alignment is accomplished with the aid

of a helium-neon laser after the chambers are in place. Since the pro-

cedure is required only once, the savings in machining time and cost with

this design far outweigh the time saved in alignment with the original

design, In fact, a similar alignment procedure was used originally as

a final check that all tolerances had been heldO Certainly a design is

adequate if it insures the success of the experiment. However, the

difference between an adequate and an optimum design can make a tremen-

dous difference in time and money. Simple alignment of the beam sources

is also accomplished with this design. The first collimating aperture

for each beam is located in the bulkhead between the source chamber and

the source differential pumping chamber. Two locating pins are placed

symmetrically on the flange which holds the aperture. These pins project

into the source chamber and serve as support and alignment pins for the

beam source tube (see Fig. 2)o Therefore alignment of the apertures

insures beam source alignment. Originally the beam sources were supported

only on the flange at the back of the source chamber; there was no support

close to the first collimating aperture. Since the aperture is located

approximately 20" from the back flange, alignment was a difficult task°

Precision machining was required on the source chambers, the source

chamber flanges, and the beam source tubes. Furthermore, since the beam

source tubes are usually heated during an experiment, alignment can be
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destroyed when non-uniform expansions are magnified over a distance of

20", Supporting the source tube close to the collimating aperture

minimizes heating distortions and greatly reduces the number of parts

responsible for the alignment of the beam.

The detector chamber design, which has not been modified, follows

the original alignment concept. The horizontal plane of the beams is

defined by the intersecting center lines of the main chamber side ports.

The bottom surface of the rotatable lid is parallel to this plane and

located a precise distance above it, The bottom of the lid is a refer-

ence point for the location of the detection components and the colli-

mating apertures. The distance from the center of the detector apertures

to the face of the flange which attaches to the lid is held to tolerances

of + .005". A design similar to that adopted for the beam collimating

apertures should be considered if the detector chamber is rebuilt.

Alignment (without adjustment) of the detection components is also pro-

vided for in the construction of the detector chamber. The electron

bombardment ionizer, einzel lens, and spherical lens are mounted on a

bench which is attached to a removable flange on the back of the detector

Chamber (see Fig. 2). This flange is keyed to the cutout in the detector

chamber, and the bench is located with respect to the key such thai the

apertures in the various components lie in the plane of the beams. There-

fore the ionizer may be removed and replaced without disturbing the

alignment. An alternative design based on being able to adjust the

height of the bench would lessen the tolerances on all parts and simplify

the construction,
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Do Vacuum System

The first requirement of the vacuum system is that the beams must

not be attenuated by collisions with the ambient gas particles. This

condition is equivalent to demanding that the mean free path be at least

comparable to the dimensions of the apparatus. A rule-of-thumb relating

the mean free path in air to the pressure is: X(cm) = 5/P(microns).

A pressure of 1 x 10 5 torr corresponds to a mean free path of 5 meters.

If this were the only requirement of the vacuum system, the apparatus

would consist of one chamber pumped by a high speed oil diffusion pump.

However, the need to reduce the background partial pressure of product

molecules in the region of the ionizer to a level comparable to the true

< -14
signal level ( 10 torr) places far more stringent conditions on the

design. What are the sources of background? First there is a contri-

bution which I call static background. This is the signal observed at

the particular mass of interest when both beams are completely shut off

(not just blocked). The partial pressure of air at the mass of the prod-

ucts, outgassing of construction materials, and backstreaming or con-

tamination from certain types of vacuum pumps are common sources of

static background. Secondly there is a dynamic contribution to ti-c

background signal which results from turning on the beams and introducing

reactant molecules into the vacuum system. As reactions occur throughout

the apparatus, the steady state concentration of product molecules

increases, thus raising the background signal, We are confronted with

two distinct problems: How to remove molecules which reside originally

in the region of the electron bombardment ionizer and how to keep mole-

cules which are not produced in the beam intersection region from reach-
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ing the detector?

D - lo Static Background

Static background is proportional to the total pressure of gas in

the region of the electron bombardment ionizer, where neutral particles

are converted to measurable ionso In order to achieve the lowest ulti-

mate pressure in this region the detector is isolated from the rest of

the apparatus in its own chamber and pumped continuously. The detector

pumping system must provide high pumping speeds at low pressures without

contaminating the vacuum, A combination of liquid helium cryopumps and

ion pumps meets these requirements. Ion pumps may be operated continu-

ously, have adequate pumping speed for all gases at low pressure, are

-10
extremely clean, and capable of attaining vacua in the low 10 torr

range. Liquid helium cryopumps operate during experiments and provide

extremely high pumping speeds for all gases except hydrogen and helium.

The limit of the attainable vacuum is set by the outgassing of con-

struction materials and sealing gaskets. This calls for a careful

cleaning of all parts and the use of low outgassing materials wherever

possible. Copper and indium gaskets are used almost exclusively on the

detector chamber. Whenever rubber O-rings are used, they are ungreased

viton. Insulators are all ceramic. The importance of continuous pump-

ing for the reduction of static background cannot be overemphasized.

The detector is sealed from the rest of the apparatus by means of a

valve which covers the first detector aperture. This valve is operated

from the top of the rotatable lid and opened only when the entire appa-

ratus is under high vacuum, The detector chamber is maintained under
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high vacuum with the valve closed, even when the rest of the apparatus

is at atmospheric pressure. Continuous pumping gradually degasses the

walls of the chamber and other components over a period of weeks, and

as this occurs the static background steadily drops. High temperature

bake-out accelerates this process. The region surrounding the ionizer

is certainly the most critical and is baked-out by continuous operation

of the tungsten filament in the ionizer. This filament operates at

" 25000K and dissipates X 25 watts. A copper shroud immediately sur-

rounding the ionizer is heated by radiation to 4250Ko During experi-

ments this shroud is cooled to liquid nitrogen temperature giving a

bake-out differential temperature of , 350o

Fig. 3 shows a typical mass spectrum of static background which

can be attained using the techniques mentioned here. Above about mass

40 the partial pressure of every mass is sufficiently low to allow the

detection of reaction products. However, many reactions which yield

products lighter than mass 40 are practically impossible to study by

electron bombardment detection because of the large static background.

D - 2. Dynamic Background

The vacuum system must be designed such that when the beams are

running, the partial pressure of reaction products in the ionizer back-

-14
ground gas does not exceed ' 10 torr. The background in the ionizer

goes up as a result of reactions in the main chamber where the reactants

are "mixed". Particles from one beam scatter reactively from ambient

background particles of the other reactant. This can be particularly
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Figure 3

Mass spectrum of static background

Figure taken from (LEE 69). The back-

ground in our detector is similar

except at the mass peaks corresponding

to halogen atoms and molecules, zinc,

and cadmium. Large background levels

at these masses gradually built up

during the course of the experiments

discussed in Part IIo
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troublesome if the beam being scattered is chopped, for it can produce

a modulated background signal. Product molecules created in this way

may be directly scattered into the detector if the reactions occur in a

volume element subtended by the detector, If formed at some point not

directly viewed by the detector they flow effusively into the detector

as a result of random wall collisionso In any case the higher the par-

tial pressure of reactants in the main chamber, the higher the product

background at the ionizero Reactive collisions at the walls of the

chamber add to the background in the same way. In order to minimize

the concentration of reactants in the main chamber, both beam sources

are differentially pumped. Most of the gas which flows out of the

source tube does not pass through the collimating apertures to become

part of the beam. It should be obvious that if the source tube is

placed in a separately (or differentially) pumped chamber which connects

to the main chamber only through the collimating aperture, then a large

fraction of the non-collimated gas will be pumped away and never enter

the main chamber. With this arrangement there are two contributions to

the background in the main chamber: the beam gas which passes directly

from the source tube through the collimating aperture, and the ambient

gas in the source pumping chamber which effuses through the collimating

apertures. Simple steady state flow equations can be used to calculate

the relative magnitudes of these contributions. It can be shown that

one differentially pumped chamber makes the two contributions roughly

equal. Remember that without differential pumping the non-collimated

gas is much greater than the beam gas under typical conditions. Another

stage of differential pumping between the source chamber and the main
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chamber essentially eliminates the role of effusion from non-collimated

background gas in comparison to the flow of beam gas. The background

pressure in the main chamber can be further reduced by allowing each

beam to pass into yet another differential pumping chamber after travers-

ing the main chamber, but this is seldom necessary and is not incorpo-

rated in the present design.

High speed differential pumping of the sources and the main chamber

reduces the partial pressure of product molecules within the main chamber

to a level still orders of magnitude greater than the true reactive sig-

nal reaching the-detector. Two stages of differential pumping for the

detector are necessary to reduce the effusion of product molecules into

the detector to the minimum level set by direct-line flow from the main

chamber. The pumping speed for the main chamber and the source chambers

must be large to minimize even the direct-line flow. Differential

pumping of the detector chambers is accomplished by means of liquid

helium cryopumping for the most part.

The problem of dynamic background in neutral-neutral reactive scat-

tering is extraordinary. It does more to complicate the design of the

apparatus than any other single factor.

D - 3. Vacuum System Details

a. Source Chambers

The four source differential pumping chambers are each provided with

an unbaffled NRC VHS 4 oil diffusion pump. Each pump is rated at a speed

of 1200 liters/sec and has a constant pumping speed below 10- 3 torr.

Diffusion pumps are ideally suited to handle the relatively large gas
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loads in source chamber applications where typical operating pressures

-4
are as high as 10 torr, Two Welch 1397 mechanical pumps serve as

fore pumpso Each diffusion pump can be isolated from its respective

chamber by means of an NRC 1283-4 slide valve. The slide valve stem

seals are differentially pumped by a Welch model 1402 mechanical pump.

The source chambers are designed so that the source nozzle is placed as

close as possible to the intersection of the two beams while still

preserving two stages of differential pumping. As one can see in Fig.

2 this has the effect of locating the source nozzle and first collima-

ting aperture a considerable distance from the throat of the diffusion

pump in source chamber lo The pumping speed for the heavy gas loads at

the nozzle is limited by the conductance of source chamber 1. Similarly

the volume between the first and second beam collimating apertures is

necessarily small, and the bulkhead between the two source chambers

hinders the flow of gas to the diffusion pump in source chamber 2. The

pumping speed in the regions of the nozzle and the apertures is con-

siderably less than the rated value of the pumps. One very effective

way to increase pumping speed for condensible gases is to use liquid

nitrogen cryopumping, Liquid nitrogen cooled copper sheets (nickel-

plated to reduce corrosion) are placed close to the source nozzle iad

apertures, covering as much surface in source chambers 1 and 2 as possible.

The conductance to the pumping surface is very large, and sticking coeffi-

cients at liquid nitrogen temperature determine the pumping speed. The

cold shields are supplied with liquid nitrogen by two gravity-feed dewars

(Linde CR-10) mounted atop the #1 source chamber. Stainless steel Swage-

loks and nickel gasket Cajon high vacuum couplings are used to make liquid

nitrogen connections inside the vacuum.
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The problem of low conductance is unavoidable because the source

nozzle and collimating apertures must be located close together and

near the intersection zone. However, the larger the volume of the

chambers, the easier it is to provide the highest possible conductance

to the pumps from these restricted volumes, In this respect our appara-

tus is too small. If the main chamber were twice the size it is now,

the source pumping chambers could be made in such a way that the remov-

able bulkhead would present much less of an obstruction to the flow of

gas. The space within source chamber 1 could also be enlarged consider-

ably. The size of the apparatus should be determined by pumping speed

requirements.

All gaskets for source chamber flanges are viton rubber O-rings,

making access to the chambers particularly simple. There is no need for

gaskets between adjacent source chambers or between source chamber 2 and

the main chamber. Far more gas leaks through the apertures connecting

these chambers than through the metal to metal seals formed where the

chambers are screwed together. The O-ring grooves which are machined

on the inside walls of the main chamber for the purpose of vacuum seal-

ing source chamber 2 from the main chamber are unnecessary.

b. Main Chamber

The main chamber is equipped with a combination of liquid helium

cryopumps and a titanium sublimation pump. A custom-made Janis liquid

helium cryopump is located opposite each beam source (see Figures 1 and

2). They are mounted in T-shaped chambers which attach to the main

chamber. The pumps are located so that the beams impact directly on

the cryopumps. This produces some of the effect of differentially
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pumping the beam after it traverses the main chamber even though an 8"

diameter port connects the two chambers. A liquid nitrogen cooled chevron

baffle surrounds the liquid helium reservoir to reduce the boil-off rate,

A 14" Ulteh Boostivac Titanium Sublimation pump is mounted under the main

chamber. It has very high pumping speed for many gases at low pressure.

Important exceptions are rare gases, light hydrocarbons, and halogens.

The combination of sublimation and helium cryopumping provides a total

pumping speed in the main chamber in excess of 13,000 liters/seco Experi-

ments to date have shown that the liquid helium pumping suffices. The

titanium pump turns out to be more trouble to operate than it's worth,

and plans are being made to replace it with a 10" oil diffusion pump.

Originally oil pumps were avoided in the main chamber because it was

feared that backstreaming of pump oil would contaminate the detector

chamber. However, the vapor pressure of silicone oil (especially Dow

Corning 705) is low enough at liquid nitrogen temperature so that this

is not a problem. The most pronounced advantages of an oil diffusion

pump over the sublimation pump are constant pumping speed and high speed

for helium, This last point is essential for running seeded nozzle beams

of heliumo

A liquid nitrogen cooled cold shield lines the main chamber. It

is nickel-plated copper, cooled by conduction, and fed by a 25 liter

gravity-feed dewar mounted on the side of the main chamber (Linde CR-25).

A Welch model 1397 mechanical pump, baffled by a Granville-Phillips

molecular sieve trap, is connected to the main chamber for the purpose

of "roughing" the vacuum system down to the micron pressure range. A

CVC 2" oil diffusion pump with a Granville-Phillips liquid nitrogen
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baffle has also been added below the titanium pump to assist in pumping

the system down and to provide pumping speed for rare gases at low

pressure. Of course this pump will not be necessary when the titanium

pump is replaced by an oil diffusion pump. Gaskets on the main chamber

consist of viton rubber O-rings where seals are likely to be broken

frequently and copper where ease of access is not crucial. This divi-

sion is unnecessary. Since the presence of rubber in the main chamber,

like that of diffusion pump oil, does not contaminate the detector back-

ground, there is no real need for copper gaskets which have several

disadvantages. Copper sealing surfaces (knife edges, hemitorroidal

surfaces, etc.) are difficult to machine in comparison to O-ring grooves.

Many more screws are necessary to compress copper gaskets, and the gas-

kets are not reusable. The rotatable lid is vacuum sealed by means of

a double Tec-ring (Tec Seal Corporation) arrangement similar to that

described in (LEE 69). A Tec-ring is an 0-ring made of graphite impreg-

nated teflon. The teflon ring has a stainless steel helix at its core

to give the ring springiness. The graphite lubricates the surface to

facilitate rotation. The gap between the Tec-rings is differentially

pumped by the same mechanical pump which pumps the slide valve stem seals.

The vacuum system is vented through a small bellows seal valve locbed in

one of the ports of the titanium well.

c. Detector Chambers

The pumping system for the detector chambers is located on top of

the rotatable lid. Each of the two chambers is pumped by a Janis liquid

helium cryopump, a 20 liter/sec Ultek Model 22-020 ion pump, and an Ultek

Model 10-490 titanium sublimation pump. The ion pumps were added when
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the detector isolation valve was installed, and since that time the

titanium pumps are rarely used. They aid in the initial pump-down of

the detector and are useful if small air leaks develop during the course

of an experiment. They have much higher pumping speed for atmospheric

gases than the ion pumps do, but when the cryopumps are charged, this

additional speed is unnecessary. It is deceptive to state that the

total speed of the pumps in each detector chamber is in excess of 5,000

liters/sec, because the speed at the electron bombardment ionizer (where

it counts!) is severely limited by conductance to the pumps. Both

detector chambers are necessarily small in the regions of the apertures

and the ionizer. The distance across each chamber is a few inches and

the chambers are crowded together to reduce 1/R2 intensity losses of the

product beam. Consequently it is impossible to locate the pumps directly

above their respective chambers. Molecules must negotiate several cor-

ners to get to the pumpso The passages to the pumps are constricted at

the bends in our chambers and conductance is greatly reduced. If the

main chamber had considerably more height, the additional volume could

be effectively utilized to increase the conductances.

High speed pumping for condensibles in the region of the ionizer

is provided by a liquid nitrogen filled copper box which surrounds he

ionizer on three sides. This arrangement does not have all the advan-

tages of the "fly-through" design described in (LEE 69), but nevertheless

has a large favorable effect on the background level. Liquid nitrogen

connections for the cold box are made inside the vacuum using nickel

gasket CaJon couplings. Nitrogen is supplied by a gravity feed dewar

located on the lid (Linde CR-10).
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All detector pump gaskets are copper while indium wire gaskets seal

the detector chamber to the lid and the back flange to the detector cham-

ber. A gasket made of viton rubber sheet seals the detector aperture.

Rubber O-rings are used in the bellows valves between the ion pumps and

the titanium pumps. No noticeably high background signals result from

this limited use of rubber.

E. Detector

A block diagram of the "universal" detector is shown in Figure 4.

This chapter discusses the scheme depicted in the diagram. Neutral

particles entering the detector are ionized by electron bombardment.

The ions are extracted and focused by an einzel lens into an electro-

static spherical lens which bends the beam 90° into a quadrupole mass

filter. Mass selected ions are accelerated and focused onto an elec-

tron multiplier where each ion initiates a detectable pulse of elec-

trons. These pulses are amplified and counted by gated scalers which

are synchronized with the modulation of one of the beams. The overall

efficiency of the detector is estimated to be 5 x 10 . The greatest

losses are due to the low efficiency of electron bombardment ioniza-

tion which is at best a few tenths of a percent

E - 1o Electron Bombardment Ionizer

The ionizer is shown in Figure 5. Brink's design (BRI 67) was

adopted with slight modifications. The most desirable features of this

design are the "long" ionizing region (filaments parallel to the beam

e.
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Figure 4

Block Diagram of "Universal" Detector

The detection scheme shown here is

discussed in Section I-E of the text.

Typical operating conditions are given

next to each detector element. The

voltages on the 5 cylindrical lenses

shown just above the quadrupole mass

filter all have units of kilovolts,

The ionizer, extractor, and einzel

lens are shown in detail in Figure 5.
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Figure 5

Electron Bombardment Ionizer

a. Grid support plate. The 38 mm diameter
ionizer entrance aperture is omitted.

b. Cylindrical Grid

c. Cylindrical Repeller

d. One of four .008" dia. tungsten wire
filaments,

e, Metal tab is spot welded to the filament
while the spring (g) is compressed.

f. Stainless steel filament guide slides in
boron nitride insulator (h). When
filament is hot, the guide extends
through the hole in plate a.

g. Tantalum wire compression coil spring
expands to take up slack in the hot
filament.

ho Boron Nitride insulator

i. Ionizer assembly support bench

J. Alumina support rods, precision ground

k. Extraction grid 1

1. Extraction grid 2

m. Einzel lens

The arrow attached to the right-hand end of

each filament denotes a nickel wire lead which

is spot welded to the filament.
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axis) and the convenient cylindrical geometry. The neutral product beam

enters the ionizing region through a circular aperture. This region is

surrounded by a cylindrical grid which accelerates electrons into the

ionizing region. The grid bias determines approximately the potential

at which the ions are formed. Four tungsten wire filaments (0.008" dia.),

parallel to the grid axis, are equally spaced around the grid. The

difference between the grid bias and the filament bias determines the

electron energy. Any combination of filaments may be used but typically

only one is operated. Electrons are accelerated toward the grid and

reflected by the outer cylinder (Repeller) which is biased slightly

negative with respect to the filaments. Electrons thus "bounce" back

and forth through the ionizing region until they are collected by the

grid. This current is a measure of the filament emission and is monitored

continuously. A weak extraction field draws positive ions out of the

ionizing region. Once extracted the ions are accelerated to ground

potential at grid #2. Placing the extraction grids close together makes

the field lines parallel to the axis of the ionizer by minimizing fring-

ing field effects, This tends to collimate ions which are directed off

axis as they enter the extraction field.

There are two requirements of the ionizer which are independent of

the rest of the detector. (i) A substantial fraction of the neutral

particles entering the detector must be ionized and collected, (ii) The

ionization efficiency must be independent of the neutral flux into the

detector. In addition the ion beam must (iii) have an energy of less

than 50 eV for adequate mass separation in the quadrupole and (iv) have

an energy spread of only a few volts for high transmission through the

spherical lens.
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Most discussions encountered in the literature dealing with electron

bombardment ionizers concentrate on the first requirement (i). They

correctly emphasize the fact that large electron fluxes and electron

dominated space-charge are desirable not only in maximizing the ioniza-

tion efficiency but also in creating a potential minimum on the grid

axis which aids in extracting positive ions. Unfortunately the second

requirement (ii) precludes the utilization of large negative space-charge.

Electron space-charge contributes to the potential field inside the grid

and therefore affects the focusing for ion extraction. Space-charge

neutralization varies directly with the neutral flux and therefore so

does the extraction efficiency. Electron emission must be kept low enough

so that this does not present a major problem. One way around this problem

would be to use a very strong extraction field so that changes in space-

charge would cause only small perturbations in the focusing. Unfor-

tunately this results in large potential gradients in the ionizing region

which widens the energy spread of the ions (iv) beyond acceptable limits.

A compromise is reached between the desirability of high ionization

efficiency and the need-to suppress undesirable space-charge effects.

Space-charge effects are most pronounced at high fluxes close to one

of the beams. Normal operation of the ionizer allows measurements tc

be made to within + 7.50 of each beam. Measurements can be made closer

but the electron emission must be drastically cut. Since the range

mentioned depends on the pumping speed for the particular beam particles

of interest, it should not be taken as an absolute value for every experi-

ment.

The operating conditions of the ionizer are determined by a maxi-



mization of the signal to noise ratio for a particular reaction product.

No simple model can explain the optimum settings for the various elements.

A couple of examples will serve to illustrate this point. In the experi-

ments which have been performed to date the optimum electron energy

(grid bias minus filament bias) was found to be X 35 eV whereas refer-

ence to tables of ionization cross sections versus electron energy shows

that the ionization cross section peaks between 100-150 eV. Also we

found that operating at less than the maximum electron emission gave

better signal to noise.

The ionizer is constructed of type 304 stainless steel sheet and

tubing. The grid surrounding the ionizing region is made by spot weld-

ing platinum wires between two stainless steel rings which form the ends.

The grid is then spot welded to the front plate of the ionizer. The

repeller is a stainless steel cylinder which has approximately 50% of

its surface area drilled out to increase the pumping speed in the ioniza-

tion region. Tantalum wire compression coil springs maintain filament

tension. By not passing current through the springs as is commonly done

their useful lifetime is increased. Insulators are alumina, boron nitride,

or steatite. All ionizer elements are stacked on alumina rods and spaced

with alumina tubes ground to size. The entire assembly is screwed to-

gether and mounted on the detector bench as one unit. All electrical

leads are bare copper wire, insulated where necessary with ceramic beads

or tubing. The apertures of the extraction grids are covered with electro-

formed nickel mesh (150 lines/inch) which has been spot welded in place.



46

E - 2. Einzel Lens

As shown in Figure 5 the einzel lens is part of the ionizer assembly.

The lens consists of three apertures equally spaced. The outer two

plates are maintained at the beam potential (Ground) so that the ion

energy is not altered by the lens. The inner electrode potential deter-

mines the focal length and can be adjusted to give maximum transmission

through the spherical lens. In practice variation of the inner electrode

voltage over a range of almost 50 volts on either side of the maximum has

little effect on the signal transmitted through the entire detector.

This behavior is expected. The principles of operation and a discussion

of design parameters of the lens are discussed in (SPA 48) and (SEP 67).

The reader is referred to these articles for further detail.

E - 3. Spherical Lens

The function of the spherical lens is to deflect the ion beam 90°

with minimum losses. This enables the quadrupole mass filter, the final

stage of accelerating lenses, and the electron multiplier to be mounted

vertically. Although not necessary, this scheme saves a considerable

amount of space in the main chamber and allows for easy electrical

access to the detection components which project up through the rotat-

able lid. These advantages justify the use of the spherical lens since

losses incurred in deflection are small compared to those due to the

electron bombardment ionization efficiency.

In addition to deflecting the ion beam, the spherical lens has bi-

directional focusing properties for a diverging beam, making it more
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ideal than a cylindrical condenser lens which gives focusing only in

the radial direction (PUR 38, MCD 63).

The trajectory of a charged particle through an electrostatic field

depends on its kinetic energy. Every electrostatic lens exhibits focus-

ing distortions due to the energy dispersion of the beam. In analogy

to geometrical optics where light rays of different wavelengths have

different focal lengths, this energy distortion is called chromatic

aberration. Whereas the energy dispersion of spherical lenses has been

successfully exploited for the purpose of energy analysis of ion beams,

our application demands that the dispersion be reduced to a minimum. A

first order theory predicts that the energy dispersion is proportional

to the radius of curvature of the lens (PAO 67, MCD 63). Consequently

the lens should be made as small as possible. One should keep in mind

however that the simple theory breaks down as the radius of curvature

approaches the spacing between the electrodes. Within this theory the

energy resolution, AE/E, is a constant. For the maximum ion energy

acceptable to the mass filter, X 50 eV, the energy spread in the beam

must be only a few volts for high transmission through the spherical

lenso Even if a large portion of the ions are transmitted, the diver-

gence of the beam will be increased by the dispersion, and this reduces

the transmission through the mass filter. Given our present design

these factors point out the importance of having a small energy spread

in the ion beam. However the fact that AE/E is constant suggests that

accelerating the ion beam to higher energy would relax the requirement

on the energy spread. After passage of the beam through the spherical

lens with high transmission and minimum divergence, a stage of deceler-
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ating lenses could be used to inject the ions into the mass filter at

the proper energy. There are other advantages to this scheme as well.

If a larger energy spread were tolerable, higher extraction voltages

in the ionizer could be used to increase the extraction efficiency and

possibly reduce space-charge effects (see Section E - 1.). In addition

the focusing of every lens would be improved at higher energy since

chromatic aberration of the lens varies inversely with the voltage

(SPA 48). Although presently the necessary decelerating lenses do not

exist, serious consideration should be given to this scheme if major

changes are made on the detector. Of course mounting the ionizer directly

below the mass filter would eliminate the need for a 900 deflection lens

altogether. Ions could be extracted vertically. However I believe that

any major change in the detector should also include placing the ionizer

in a separate chamber as described in (LEE 69) to gain the advantages

of a "fly-through" design. This would be virtually impossible with the

ionizer directly below the mass filter.

The lens consists of two 600 x 90° spherical segments, with radii

of 09 + .0005" for the convex surface and 1.1 + .0005" for the concave

surface. The electrodes are made of type 304 stainless steel and insulated

from their mountings by 1/8" diameter sapphire balls. For the dimensions

of our particular lens, the theoretical value of the focusing voltage,

Vf, for a particle with kinetic energy, E, is given by: Vf = 04E

(PUR 38). The experimental value is very close to the predicted value

(GEN 67)° The voltage on the convex electrode is -Vf/2 and that on the

concave electrode is +Vf/2. Beam particles at ground potential which

enter the lens midway between the electrodes do not change energy as



49

they enter the field.

E - 4h Quadrupole Mass Filter

The quadrupole mass spectrometer is ideally suited to the require-

ments of the "universal" detector. It has numerous advantages over the

magnetic mass analyzer, not the least of which is its compact size,

enabling it to be easily incorporated into a rotatable detector. Other

favorable factors are its relatively large entrance aperture and relative

insensitivity to ion energy spread. Most importantly the resolution can

be varied with a potentiometer to fit the requirements of the experiment.

Since the resolution and transmission are inversely related, extremely

high transmission can be achieved in cases where resolution is not an

important factor.

The original literature references are PAU 53, PAU 55, and PAU 58,

but the best discussion of the operating principles and the details of

our particular commercial unit are found in the manual supplied by

Extranuclear Laboratories. Points worth mentioning here are the factors

which influence the ionizer and ion optics design.

Ions of the correct e/m (charge to mass ratio) spiral down the axis

of the quadrupole and emerge from the exit aperture. Ions of incorrect

e/m follow paths of exponentially increasing radii and are removed from

the quadrupole axis. For mass separation to occur., the ions of incorrect

e/m must remain in the transverse fields long enough to miss the exit

aperture. The maximum allowed axial energy for unit mass resolution in

a quadrupole 9" long operated at a typical frequency of XV 1.5 MHz. is

roughly 50 eV.
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The maximum distance of an ion's trajectory from the axis depends

on its initial distance from the axis and its transverse energy. The

distance increases as the resolution is increased. Even ions of the

correct e/m can be removed if they are injected too far off-axis with

too much transverse velocity. Approximate equations for the upper limits

of these factors are found in the operating manual and serve as guide-

lines in the design of ion optics.

The operation of the quadrupole mass filter has not been trouble-

free, and since the problems either still exist or may recur at any

time, they warrant mention. We have been perfectly satisfied with the

electronics, but the mechanical design of the poles has caused two

major problems. (i) The poles are not well insulated from the case,

The original insulators were made of boron nitride and were only 0.020"

thick. Possibly due to contamination by iodine, the surface of these

spacers broke down continually at high voltage levels. New ones were

made of aluminum oxide, efforts were made to clean up the vacuum, and

these measures eliminated the problem, at least temporarily. Extra-

Nuclear Laboratories informed us that more recent models have thicker

insulation. (ii) A more intractable problem involves the power coupling

to the poles. The exact cause of the trouble is not known, but the

symptoms are large spurious ion signals coming from somewhere in the

quadrupole when the power input is high. The signal is definitely an

ion current and not RF pickup. The power connection to the poles is

made through a stainless steel pointed rod pressed up against a steel

strap which is screwed to the poles. A likely trouble spot is the

junction of the pointed rod and the strap. A more permanent connection,
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one less susceptible to arcing, might alleviate this problem.

E - 5. Final Focusing and Accelerating Lenses

Mass selected ions exiting the quadrupole have gained transverse

kinetic energy. A final stage of lenses is necessary to refocus the

ions and accelerate them to the energy required for efficient detection.

A stack of five cylindrical tube lenses are located between the quadru-

pole and the electron multiplier. Typical operating voltages are shown

in Fig. 5, and an excellent discussion of tubular lenses is found in

(SPA 48).

E - 6. Ion Counting System

a. Channeltron Electron Multiplier

Various pulse counting techniques are available for detecting

individually every ion reaching the detector. These techniques differ

mainly in the way in which ions are converted to voltage signals.

Schemes which have been successfully used in molecular beam experiments

include the secondary electron-scintillator-photomultiplier chain (LEE

69), the secondary electron-semiconducting wafer combination (GEN 67,

GOU 66), and the electron multiplier. The most important factors affect-

ing the performance of pulse counting devices are efficiency and gain.

The gain must be high enough to allow for discrimination against elec-

tronic noise without concomitant loss of signal pulses. The gain need

not be particularly stable, however.
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Originally the detector in our apparatus was a lithium drifted

silicon, Si(Li), semiconducting wafer (GEN 67) preceded by an aluminum

secondary electron surface. Repeated malfunctioning of the semiconduct-

ing wafer, purchased from Kevex-Ray Corporation, caused us to replace

it with an electron multiplier. This was followed by several episodes

where the Sorenson 30 KV D.C. power supply which biased the secondary

electron surface literally burned up. Consequently, the aluminum sur-

face was removed, and positive ions were collected directly by the multi-

plier. A Bendix Channeltron Electron Multiplier (capped output) was

chosen because it had been successfully used in our laboratory to count

K ions from a surface ionization detector. It has advantages over other

types of electron multipliers in that it can be exposed to atmospheric

pressure and requires only one high voltage lead. It demonstrates high

efficiency (EGI 69, BUR 67), has an initial gain greater than 107, and

an output pulse width of X 40 nsec. I contend that the only advantage

the other two detection schemes mentioned above have over the Channeltron

is negligible gain fatigue. We found that after about a year of operation

the gain had fallen below the level necessary to discriminate electronic

noise from signal pulses, and a new Channeltron was installed. However

the cost is small compared to the operating expense of the apparatus, and

the relative simplicity of the Channeltron argues strongly in favor of its

use.

It should be mentioned in passing that Professor Yuan Lee pointed

out to us after the Channeltron had been installed that the problems we

had with the semiconducting wafer might be related to our failure to keep

it reverse biased when not in operation. Apparently reverse biasing keeps
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the lithium atoms in place and preserves the intrinsic properties of

the doped semiconductor.

b. Pulse Counting Electronics

The detector electronics are shown in block diagram in Fig. 4. They

consist of Canberra Industries' "1400 Series of Modular Nuclear Instru-

ments". The most important consideration in choosing pulse counting

electronics is the maximum counting rate possible. The output pulse

width of the Channeltron is 40 nsec and this sets an upper limit on

its count-rate capability. Suppose for the sake of a rough estimate that

there is a 50 nsec deadtime per pulse. That is to say that if two ions

arrive at the multiplier within 50 nsec of each other they will be re-

corded as a single pulse. If 106 ions/sec are incident on the detector,

then there will be 50 msec of deadtime per second of counting time. 5%

of the signal will be lost on the average. In order to make full use of

the range of the Channeltron, the electronics must be fast enough to

handle at least 106 pulses/second. The Canberra electronics are not

that fast but are suitable for almost any reactive scattering experiment.

Typically reactive signals fall between one and a few hundred counts per

second. The total count-rate arriving at the detector (signal plus back-

ground) must not exceed a few kilohertz to allow extraction of the signal

in areasonable length of time. High count-rate capabilities only become

necessary when the true signal is ten or a hundred times larger such as

might be the case in elastic scattering experiments.

The maximum count-rate of the Canberra system is limited by the

relatively slow fall time of the preamplifiero The output of the preamp

is a tail pulse with a rise time less than 50 nsec. and a 50 sec. fall



time. Since the main amplifier differentiates the preamp output, it does

not "see" the slow fall time. However the DC level at the preamp output

builds up if the pulses come too close together. Each successive pulse

adds before the previous pulse returns to zero. This effect saturates

the preamp at count-rates above ' 50 kilohertz,

The main amplifier output is an adjustable gaussian pulse with a

minimum deadtime of X 2 sec. Therefore using a faster preamp would not

increase the count-rate capability of the system by very much0

The DC. Restorer improves the count-rate performance by correcting

for base line overshoot and re-establishing the system baseline to the

initial level whenever a true pulse is not detected.

The Single Channel Analyzer (SCA) is a noise discriminator. The

Channeltron pulse amplitude distribution is such that very few signal

pulses are lost if the discrimination level is set at one-tenth the most

probable pulse amplitude at the amplifier output. Typically the main

amplifier gain is set to give a most probable pulse height of 15 volts.

Under these conditions the electronic noise is usually 005 volts. There-

fore discrimination at 0.15 volts satisfies the requirements of the Channel-

tron and rejects all electronic noise. For every input pulse above the

discriminating level, the SCA puts out an 8 volt pulse, 0.4-2.5 sec

wide, These pulses are fed into two gated scalers and a linear ratemeter.

The Timer/Scaler is the master of the data collection. Its START

button initiates the counting by enabling the scalers for a preset number

of chopper cycles (count mode) or a preset time (time mode).

After each counting period is terminated by the Timer/Scaler, the

Teletype Scanner transmits the serial BCD (Binary Coded Decimal) outputs
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of the scalers, the Timer/Scaler, and two digital voltmeters either to

a model 33 Teletype or a PDP-8/L computer.

F. Beam Modulation System

Beam modulation and phase sensitive detection have become standard

techniques in molecular beam scattering experiments. Several references

to various applications can be found in (BIC 70). The justification for

such techniques was given in Section I - B above and is not repeated here.

A block diagram of the beam chopper is shown in Fig 4.

F - 1. Rotary Chopper

A slotted cylinder rotated about its symmetry axis chops the beam at

twice the driving frequency of a hysteresis synchronous motor (Globe

53A118-2). The beam is modulated typically at 100 Hz0 A Dynakit Mark

III 40 Watt audio amplifier amplifies the sine wave output of a Krohn-Hite

440 AR oscillator and drives the Globe motor. The 900 phase shift required

by the motor is supplied by a capacitoro The potentiometer in the amplifier

output equalizes the amplitudes in the two leads, The power to the motor

is controlled by the variable output of the oscillator and is always

operated at the minimum power necessary to keep the chopper in sync.

The chopper is located in source differential pumping chamber 2.

F - 2. Diode Signal Amplifier

A light -and photodiode arrangement provide a reference signal for the

scaler gates. A schematic of the diode signal amplifier is shown in Fig. 6.
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Figure 6

Schematic Diagram of: Photodiode Signal

Amplifier, Delay and Gate Generator, and

Synchronizer

Each section of this circuit is described

separately in the text.

Diode Signal Amplifier

The terminal ust above R4 should be labeled

VDS (+ 15 volts)o

Synchroni zer

N3 output is connected to pin 3 of mono 4.

Q output (pin 6) of mono 4 is used.

Each circuit bounded by the dotted line

occupies a separate chassis in the elec-

tronics racks.



LU

J

LLJI-OCr

LdI-ciJ

C)

n)

0

rT
Ldz
LL
(9

LL

C(D

z

Z

(5

U)

c:
[C0r
a-
0-ci

LL

IJ
-_

9z
(5

LO
LLJ

(5

n
~

Li
rN
:2
C
a
:I
2

uh-
Z



58

The circuit is a voltage divider with two operating states followed by a

non-inverting amplifier with a gain of 1,000. Such high gain is not

necessary but it insures that the amplifier saturates quickly when the

diode begins to conduct. When the diode is non-conducting, R6 is adjusted

to set point A to ground potential. R6 corrects for small leakage currents

in the diode which might raise the voltage at A high enough to saturate

the amplifier. When light causes the diode to conduct, the voltage at

A is determined by R4, R5, and VDSo The diode D clips the negative portion

of the amplifier output. The output waveform is a positive going square

wave which fires once for every chopper cycle.

F - 3. Delay and Gate Generator

A schematic of this circuit is shown in Fig. 6, and the timing sequence

of the circuit is depicted in Fig. 7. The reference diode signal is delayed

by MONO 1 (monostable multivibrator) to account for any constant phase, *,

between the modulated beam and the diode signal and for the flight time

of the beam from the chopper to the detector. The delay time can be varied

by toggling in Cll and C9 and adjusting Rlo The output of MONO 1 is a

square wave whose falling edge is in phase with the modulated signal reach-

ing the detector,

MONO 2 is added to the circuit for another application which is men-

tioned below. In this circuit its effect is nil. C2 is disconnected and

R2 is set to zero. MONO 2 triggers off the falling edge of MONO 1 and

puts out a 40 nsec square wave.

MONO 3 generates the signals which gate the scalers on and off, The
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Figure 7

Timing Diagram of Delay and Gate Generator

Voltage vs. Time is plotted for several

points in the circuit shown in Figure 6.

There is a mistake in this figure. The

Beam Signal At Detector should be inverted

so that the falling edge of Mono 1 Output

coincides with the rising edge of the Beam

Signal At Detector. This gives the proper

zero phase between the Beam Signal At

Detector and the Signal Gate, The dis-

cussion in the text (I-F. 3) is not

affected, because the photodiode signal is

used as a reference point for the discussion

and not the signal itself,
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external capacitance and resistance are adjusted to give a square wave

output with 50% duty cycle. Since the width is variable this circuit can

be adapted to a wide range of chopping frequencies. The Q output, after

inversion by T3, is a square wave in phase with the signal reaching the

detector and it gates the signal channel scaler. The Q output is the

inverse of Q and when inverted by T4 is exactly 1800 out of phase with

the beam signal. This of course is the background channel gate.

F - 4. Scaler Gate - Timer/Scaler Synchronizer

The synchronizer eliminates any error, however small, due to pushing

the START button on the Timer/Scaler during the middle of a chopper cycle.

Ordinarily the scaler whose gate is high when the START button is pushed

immediately begins to accumulate counts. In this way one channel could

be open for as much as one-half chopper cycle longer than the other channel

in any given counting time. Although this error is insignificant in most

cases, this circuit insures that both channels are open for exactly the

same time.

The timing sequence and the circuit are shown in Figs. 8 and 6 respec-

tively. Logic truth tables for the integrated circuit components are found

in the "TTL Integrated Circuits Catalogue from Texas Instruments (#CC201)".

Points to note in Fig. 8 are: (i) Both gates are low (scalers inhibited)

before the START button is pushed. (ii) The first leading edge of the

Signal In waveform, after the START button is pushed, triggers the flip-

flop which allows the input signals to pass the nand gates (3 and 4).

Thus the scalers begin accumulating counts exactly in phase with the signal.
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Figure 8

Timing Diagram of the Scaler Gate-Timer/Scaler

Synchronizer

Voltage vs. Time is plotted for several points

in the synchronizer circuit shown in Figure 6.

Discussion of the synchronizer is in the text

(I-F. ).
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(iii) When the Timer/Scaler has registered n preset counts, the scalers

have accumulated pulses for exactly (n-l) complete chopper cycles. (iv)

When the preset number of counts is registered on the Timer/Scaler, the

GATE OUT signal goes low, the flip-flop changes state, and nand gates 3

and 4 block the gating signals.

F - 5. Relay Beam Flag and Chopper

The beam which is not modulated may be interrupted in the second

differential pumping chamber by means of a flag attached to the movable

tongue of a relay. When the solenoid is energized, the flag is pulled

out of the beam path. This device may also be used to modulate the beam

at very low frequencies (1-4 Hz). The flag and circuit for driving the

relay are shown in Fig. 9a. The upper left-hand corner of the figure

shows the switching circuit for manual flagging. When the switch is

closed, the capacitor discharges through the relay giving a current tran-

sient which energizes the solenoid. The voltage across the relay falls

to a low D.C. level which is just enough to hold the flag out of the beam

path. When the switch is opened, the flag springs back to interrupt the

beam. The chopper circuit is essentially the same with the toggle switch

replaced by two transistors. Fig. 9b shows the energizing waveform for

the relay as well as the timing sequence for the gates.

Ordinarily the relay flag is not used to modulate the beam, but the

gating circuitry has been constructed. For low chopping frequencies each

half cycle (Beam ON and Beam OFF) is long compared to the flight times of

molecules, and no time of flight (TOF) delay is necessary. The square wave

output of a Krohn-Hite 440 AR oscillator supplies the desired frequency.
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Fi gure 9

a) Relay Beam Flag and Chopper Circuit

b) Timing Diagram for Relay Chopper

a) The junction just below the 260
ohm resistor is connected and
this should be denoted with a
heavy dot at the junction.

b) Voltage vs. Time is plotted for
several points in the gate
generator circuit in Figure 6.

Discussion of the chopper circuit is

in the text (I-F. 5).
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This signal is connected to the Diode In input of the Delay and Gate

Generator (Fig. 6). The duty cycle of the modulation is determined by

MONO 1. The Q output, once inverted, is the relay driving signal and

the signal channel gate. MONO 2 may be adjusted to give a deadtime

between the gates when the modulation duty cycle is less than 50%. The

Q output of MONO 3 is the background gate. The gates are synchronized

with the Timer/Scaler just as they are when the rotary chopper is used.
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Part II

MOLECULAR BEAM STUDY OF POLYATOMIC

FREE RADICAL REACTIONS
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A. Introduction

After almost two decades of experimentation molecular beam research

is only just beginning to fulfill the promise made to the chemical com-

munity that beam "kinetics" would contribute significantly to many areas

of "traditional" chemistry, providing new insights on a microscopic level

into old problems. Several laboratories are involved in this endeavor.

The Harvard group under Herschbach is studying the nature of halogen atom '

displacement reactions in organic compounds such as allyl bromide. Studies

at Chicago under Lee on fluorine atom-olefin reactions are beginning to

answer questions about intramolecular energy transfer which relate directly

to theories of unimolecular decomposition. In the same spirit of applying

molecular beam techniques to an ever widening range of chemical problems,

we have undertaken to demonstrate the possibility of studying polyatomic

free radical reactions in crossed beams. The first successful results

have recently been communicated (MCF 72).

The study of free radicals comprises a considerable portion of

"traditional" chemistry. By the late 1800's, vapor density measurements

had demonstrated the existence of atomic free radicals at high tempera-

ture. Nevertheless, the hypothesis that free radicals occurred as ilter-

mediates in many gas phase reactions at ordinary temperatures remained

largely conjectural until the 1920's, when the now classic experiments

of Wood (WOO 20, WOO 21, WOO 22, WOO 22b) on atomic hydrogen and Paneth

(PAN 29) on methyl proved the transient existence of free radicals under

relatively mild conditions. In spite of their importance, free radicals

remain notoriously unyielding to direct study by conventional methods due
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to their extreme reactivity. This characteristic makes them ideally suited

for molecular beam experiments; and indeed, atomic free radicals have

received a great deal of attention in molecular beam studies (see section

I-A).

We pursued the logical next step, the study of simple polyatomic

radicals, CH3 and C2H5. Presented here are measurements of the angular

distribution of reaction products for CH3 + C 2, Br2, I2, ICt and C2H5 +

Br2 reactions at thermal energy. These systems were chosen because of

the relative ease of producing CH3 and C2H5 in the gas phase and because

02
of the expected relatively large cross sections ( 1 A ). Although these

first measurements represent only a modest excursion into the vast terri-

tory of free radical chemistry, it is hoped that they serve as a bell-

wether to molecular beamists and as an omen of things to come to those

impatient critics of molecular beam "kinetics".

B. Halogen Molecule Beam Source

The halogen beam originates from a typical nozzle source. The advan-

tages, of course, of this type of source are high center line beam inten-

sities accompanied by narrow velocity distributions. We were primarily

concerned in the experiments reported here with obtaining beam intensities

sufficiently high to observe reactive scattering. In each experiment the

source pressure and nozzle-to-skimmer distance were optimized to give

maximum signal at an electron bombardment beam monitor located in the

main chamber ' 18 inches from the halogen nozzle. This is the extent to

which the beam was characterized. Information concerning the absolute beam
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intensities and the velocity distributions is at best indirect. A beam

attenuation measurement of a few percent was one indication of high inten-

sity. An absolute flux can be estimated from the source pressure, size

and geometrical arrangement of the nozzle and collimating apertures, and

the beam monitor readings. These approximate calculations always indi-

cated that the intensities were comparable to those obtainable by other

workers. See for example Fig. 2 in (GOR 71). In this reference absolute

intensity measurements are made on a potassium nozzle beam which show

that up to about 50 torr pressure behind a .006" nozzle the center line

intensity can be calculated from the effusive flow formula, and at increased

source pressure the intensity levels off. We observe this leveling off and

attribute it to background scattering in the source chamber. For bromine,

this intensity saturation is observed above 100 torr source pressure (nozzle

diameter .010"). Table I gives typical operating conditions for the halo-

gen sources and their measured relative intensities. To convert beam moni-

tor signals to relative fluxes, each current measurement must be divided by

the halogen velocity (Table III) and by the electron bombardment ionization

cross section. The ionization cross section is assumed to vary directly

with molecular polarizability (LAM 57). The halogen polarizabilities are

(in A3): 4.6 for C 2 (HIR 54c), 6.2 for Br2 (BIR 69), 97 for I2 (BIR 67),

and 7.5 for ICt (BIR 69).

The velocity distributions were not measured. Nevertheless, it is

believed that an accurate value for the most probable velocity can be cal-

culated and an upper bound for the width of the distribution easily esti-

mated. In Fig. 2 of (McD 72) a measured iodine nozzle beam velocity dis-

tribution is given. The experimental conditions reported there are quite
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Table I

Halogen Molecule Nozzle Beam Source

Operating Conditions
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similar to ours. Within a few percent the peak velocity can be calculated

by assuming complete conversion of transverse translational energy and

rotational energy into axial motion. Assuming infinite Mach number M,

the most probable velocity for this type of flow is given by v =

v f Fii i, where k = Boltzmann's constant, T = nozzle temperature,

m = molecular mass, and y = ratio of heat capacities (7/5 for diatomic

gases). The first factor is the most probable velocity of a Maxwellian

distribution in an oven at temperature T o Even if the distribution is

characterized by a Mach number as low as 6, the peak velocity is lowered

only by X 7% from the value predicted with Mach infinity. For the purpose

of constructing Newton diagrams, we assumed Mach 6 and calculated peak

velocities using the formula:

v2 2kTo y-M 2 ) -L YM2

S m 2 2

which reduces to the above formula if M = X (OWE 48, ASH 66). The halogen

beam velocities calculated in this way are given in Table III.

Based on a comparison of our operating conditions with those given for

12 in (MGb 72), we estimate that the full width at half maximum is less than

15% of the peak velocity for any of our halogen beams.

The source tube and nozzle are constructed of type 304 stainless steel.

Nozzles of various diameters were made and are easily interchangeable. The

nozzle is held in place by a retaining nut; a soft metal gasket prevents

even small leaks. The source is designed to be movable from outside the

vacuum so that the optimum nozzle-to-skimmer distance can be found during

an experiment. The front end or nozzle end of the source tube slides on

pins as depicted in Fig. 2. The source tube extends through the vacuum wall
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at the back of the source chamber and is vacuum sealed by a 0.5" 0-ring

compression sealo This O-ring is well greased and the source tube slides

back and forth manually, A flexible monel hose connects the source tube

to the gas handling system.

The skimmer for the nozzle source is made by rolling 0001" tantalum

foil into a 60° cone and grinding off the tip to form an orifice of X

0.040". The skimmer is heated with a Watlow cartridge heater to prevent

condensation.

Typically, halogen vapor is passed from a reservoir located outside

the vacuum wall of the apparatus through a Hoke metering valve, down the

20" long source tube, and out the nozzle. To prevent condensation the source

tube and nozzle are heated Xu 25-500C hotter than the reservoir. The heater

is a .015" diameter tantalum wire insulated with fiberglass sleeving and

wound around the source tube over its entire length. A variac supplies the

power. For the 12 and ICt sources additional heaters are necessary for the

gas transfer tubing outside the vacuum since the reservoirs are heated above

room temperature. Here conventional heating tapes suffice, All vacuum

couplings in the gas handling lines are made with stainless steel Swageloks

(teflon front ferules, stainless steel back ferules). These fittings never

leaked during an experiment even when heated to 150-1750C for the I2 source.

After cooling down, however, they had to be retightened before the next

experiment.

The only real difference between the individual halogen beam sources

is the reservoir For C2 a Matheson cylinder is connected directly to the

metering valve with a section of polyethylene tubing. The tank is regulated

at 'L 5 lbs. pressure. Bromine (Reagent Grade), a liquid with a vapor pressure

> 150 torr at room temperature, is the simplest to handle. It is easily



poured into a glass ampule in the fume hood with the aid of a glass funnel.

The ampule is fitted with a teflon stopcock which connects to the metering

valve. During an experiment the ampule is submerged in water which is

gently heated (Watlow cartridge) to counteract evaporative cooling of the

bromine, This simple scheme maintains the temperature slightly below room

temperature to within .50C. For 12 and ICt, both solids at room tempera-

ture, the glass ampule is filled once again in the fume hood and connected

directly to the metering valve, The low vapor pressure at room temperature

compared to bromine obviates the need of a stopcock for transporting the

material. The ampule is heated with a Watlow strip heater powered by a

variac. Monitored with a thermocouple, the temperature reaches a steady

value after 15 hours of heating. The temperature of the reservoir is

chosen so that the vapor pressure is higher there than in the source tube,

This allows the flow to be metered down, providing a way to make small

changes in the beam intensity without altering the source temperature.

The halogen beam intensity is monitored continually throughout an

experiment. Corrections are made if the beam monitor collector current

ever varies by more than a few percent. The stability of the halogen source

limits the length of time of every experiment. Actual beam running time

has a maximum of 8 - 10 hours, For bromine this corresponds to 30 cc

consumption. Although a careful study was never made, it is believed that

the drastic intensity fall-off is due to the accumulation of halogens on

surfaces cooled either directly by liquid nitrogen or indirectly through

radiation to a liquid nitrogen cooled surface. Eventually the beam becomes

completely blocked. Liquid nitrogen cryopumping accounts for almost 100%

of the pumping speed in the halogen source chamber0 After an experiment
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there is a tremendous amount of halogen trapped in the source chamber and

differential pumping chamber. To avoid disastrous contamination of the

mechanical pumps, the slide valves isolating the diffusion pumps from the

source chambers are closed at the end of each experiment. When the cold

shields warm up, the halogens are trapped in cold fingers attached to the

chambers. The traps are removed and allowed to warm up in the fume hood.

C. Alkyl Radical Beam Source

A rather large body of data on the mass spectrometry of free radicals

has been reviewed by Lossing (MCD 63b). Several references cited in that

review discuss simple methods for generating alkyl free radicals in the gas

phase. The problem which we faced was generating them in sufficiently high

concentrations in a beam to do reactive scattering experiments. The adop-

tion of a pyrolysis source to generate highly reactive atomic free radicals

from homonuclear diatomics was successful (see Section I-A) because at

sufficiently high temperature dissociation equilibrium favors a large con-

centration of atoms. There is no temperature, however, where methyl

radicals (or ethyl) are stable in an equilibrium source, regardless of

the parent compound. To overcome this problem adequately, the source

design attempts to minimize the residence time of the radicals in the high

pressure dissociation region. This is accomplished by a fast flow of vapor

through a short pyrolysis tube, followed immediately by expansion into the

high vacuum where beam molecules suffer no collisions (KAL 69).

Many organometallic compounds of the general formula (R)nM where R is

an alkyl radical, n an integer from 2 to 4, and M is usually a heavy metal
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atom, have very low bond energies (40-50 kcal/mole) and undergo smooth uni-

molecular decomposition at fairly low temperature to produce alkyl radicals.

Both (CH3)2Zn and (CH3)2Cd were used to produce CH3 radicals and (C2H5)2Zn

to produce C2H5 radicals in our studies. Considerations which led to these

choices were commercial availability, toxicity, and the vapor pressure of

the metal. We found in using (CH3)3Bi that since the vapor pressure of Bi

is lower than the source pressure at the operating temperature, clogging

due to condensation was a serious problem. On the other hand, though Hg

would not condense in the source, (CH3)2Hg was rejected because of its well-

known toxicity. Unlike (CH3)2Hg, (CH3)2Zn and (CH3)2Cd decompose rapidly

in air, and we believe that the oxidation products are less hazardous than

the parent compound.

Precautions are taken to minimize our exposure to these chemicals.

(CH3)2Zn, (CH3)2Cd, and (C 2H )2Zn, purchased from Alfa Inorganics, are

shipped in stainless steel ampules which are sealed by needle valves. The

ampule is attached directly to the gas handling system without being opened

first. The compounds are never allowed to flow into the apparatus unless

the pyrolysis tube is hot enough to give essentially complete dissociation.

This rule is violated only when absolutely necessary for the purposes of an

experiment.

The pyrolysis tube is mounted on the end of a source tube which is

identical in construction to the halogen source tube discussed earlier. The

vapor pressure of the organometallic liquids are conveniently high so that

constant temperature of the reservoir can be maintained by means of an ice

bath. The flow rate into the source tube is controlled with a Granville-

Phillips variable leak valve. The pressure in the source tube is monitored
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continuously with a Quartz Spiral Gauge (Texas Instruments).

A simple pyrolysis tube is mounted on the end of the source tube. The

design evolved to a model adequate for the study of these halogen reactions

(angular distribution measurements), but it cannot be said that the optimum

design has been achieved. The pyrolysis tube is shown in Fig. 10. It con-

sists of a cylinder "' 1" long, 02" diameter made by rolling up a piece of

.001" thick Tantalum foil and spot welding the seam. The source is heated

to X 1,5000 K (bright orange) by passing current directly through the source

wall. The entire source tube is heated enough in this way to prevent radia-

tive cooling by the liquid nitrogen cooled surfaces which completely surround

the source tube, The "crinkly-foil" in the end of the pyrolysis tube increases

the thermal contact with the vapor. Without the "crinkly-foil" insert only a

very small fraction of the gas is dissociated. Therefore one has control over

the length of the effective pyrolysis region, and ideally it should be as short

as possible consistent with the requirement of high dissociation efficiency.

The pyrolysis tube and "crinkly-foil" are easily constructed and are replaced

whenever appreciable clogging is observed after an experiment.

The operation of the source was tested and analyzed mass spectro-

metrically. Repeated scans (Quadrupole "Sweep" Mode) of the low and high

mass spectrum of the beam were taken as a function of the heater current

and source tube pressure. During these tests we observed the percentage

decrease of parent organometallic peaks and relative increase of radicals

based on a crude carbon balance. Analysis of the mass spectra indicates

that the total beam flux is at best 7 - 20% radicals, Even though the radi-

cal concentration is very difficult to measure, the mass spectra for a given

set of operating conditions were reproducible, indicating that the composition
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Figure 10

Pyrolysis Source for Alkyl Radicals

A. Type 304 stainless steel flange and
holder for tantalum tube Bo

B, Tantalum tube is rolled up out of
0.001" foil, and slipped into holder,
leaving about 5/8" of tube exposed.

C. Crinkly-foil insert; made from piece
of crinkly-foil, 1/4" x 15/8"o

D. Current lead, copper tubing (1/8" 0oDo,
0.03" wall) 

Eo Mechanical connection between lead, D,
and nickel wire leads, F.

F. Flexible nickel wire leads take up any
expansion strain.

Go Spot welded connection between nickel
wire leads, F, and 002" diao tantalum
leads,

H. Four tantalum leads are spot welded to
the end of tube B Tantalum leads are
used for final connection to tube B to
insure that the end of the tube is not
cooled by conduction through the leadso

The guides for the alignment pins can be seen

in the upper left- and lower right-hand corners

of the figure,
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of the beam is constant with time as expected. The most direct method of

optimizing the source conditions for radicals is to measure the reactive

scattering signal as a function of the source parameters. Typical opera-

ting conditions determined in this way are 0.7-l.0 torr source tube pressure

and 33 amps heater current (Ultek Boostivac Power Unit Model 60-504)°

Major impurities in the beam consist of CH4, C2 hydrocarbons, and

atomic metal. Since small hydrocarbons are not pumped efficiently by liquid

nitrogen cooled surfaces, the methyl source chamber pressure is always

higher than the halogen source chamber pressure even though the actual gas

load in the methyl chamber is lesso The methyl source chamber ion gauge

usually reads X 7-8 x 10-5 torr during an experiment.

The velocity distribution in the beam is assumed to be Maxwellian at a

temperature of 1,5000K. The most probable velocity of such a distribution

is used for construction of Newton diagrams. This corresponds to 1580 m/sec.

for CH3 and 1135 m/sec. for C2H5.

D. Experimental Procedures

Each system studied is a variation on the same experiment: measurement

of the laboratory angular distribution of reactively scattered alkyl halide

products from alkyl radical and halogen molecule collisions. Therefore the

conditions and procedures for each experiment are essentially identical.

The critical apparatus dimensions are:

Distance from the scattering center .
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. . . to the alkyl radical oven ..... . . . .

to the first alkyl collimating aperture . .

to the halogen nozzle . . . . . . .

to the halogen skimmer . . . . . . .

to the second collimating sperture for both beams

to the beam monitor entrance . . .

to the first detector aperture .. ..

to the ionizer entrance . . . . . . .

Beam defining apertures are interchangeable and in these

relatively large apertures were used:

Halogen skimmer . . . 0 . 0 0 0 0 600 coi

Halogen collimating aperture . . . 0.15" c

First alkyl radical collimating aperture 0.20" c

Second radical collimating aperture . 0.18" c

Detector apertures (2) . . . . . 0.15" l

Beam Monitor entrance aperture ..... 0.5"

0 2.5 inches

0 200

. 2.6

o 23

O o06

1506

· 1.9

o 6.2

experiments

ne, 0.04" aperture

dia., 0.25" long

dia., 0.04" long

dia., 0.25" long

dia., 0.4" long

One day prior to an experiment, the apparatus is evacuated. Both the

main chamber "roughing" valve and the source chamber slide valves (all 4 of

them) are opened initially. This enables the two largest mechanical pumps

(Welch 1397) to evacuate the system. This "roughing" procedure can last up

to two hours before the ultimate mechanical pump vacuum is reached. If this

proceeds with no indications of a leak, the butterfly valve is opened and the

2" diffusion pump begins pumping on the system. The slide valves and the

"roughing" valve in the main chamber are closed, and the 2" diffusion pump is

allowed to work overnight. In the morning the main chamber pressure is



usually low on the 10 torr range if everything is alrighto The four

diffusion pumps are turned on first thing; the slide valves are opened

when the diffusion pump side arms (foreline connections) become hot to

the touch. When these valves are opened the main chamber pressure drops

quickly an order of magnitude.

If all the liquid nitrogen transfer lines have not already been blown

dry with compressed air this is done next, Several experiments ended

abruptly when ice clogged a 1 /4" transfer tube and could not be unplugged.

20-30 minutes of "blowing" at each connection seems to be adequate. Next

the liquid nitrogen reservoirs are filled, The source tube and skimmer

heaters are turned on and allowed to stabilize. The beam chopper is turned

on and the gating circuitry checked. Often either electronic noise from the

pulse amplifier or the calibrated output from the oscilloscope is counted to

check the balance of the gating signals. There is ample time for these tasks

due to the slow cooling of the main chamber cold shield, Even though liquid

nitrogen is forced directly through the transfer lines to shorten the cooling

time, three hours elapse before the entire surface approaches liquid nitrogen

temperatureo At this temperature the thermocouple attached to the cold

shield reads 60 mV. It is common practice to have six 160 liter tanks of

liquid nitrogen on hand the day of an experiment. At least four of them are

used.

As soon as possible the beam source reservoirs are installed and degassed

as follows. The contents of the ampule are frozen with liquid nitrogen and

the ampule is evacuated. The ampule is then valved off and the contents warmed

up to room temperature, This cycle is repeated until only a small amount of

gas is liberated, This process was most important for the halogens which were
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transported from the fume hood to the apparatus, Since the organometallic

chemicals are never exposed to the atmosphere the degassing procedure serves

only to check whether or not air has leaked into the ampule. The metal

cylinders never release more than a tiny amount of gas in the first cycle,

and this may well be primarily uncondensed organometallico

About an hour before the liquid helium reservoirs are filled, they are

pre-cooled with liquid nitrogen. Usually 2-3 twenty-five liter tanks of

liquid helium are used during an experiment. Approximately 33 liters are

needed to fill the four reservoirs initially and 20-25 liters to refill them.

The main chamber dewars should retain a charge of helium for 8-10 hourso

Faster boil-off is an indication of a heat leak, probably in the liquid

nitrogen cooled chevron baffle which surrounds the helium reservoir, The

detector helium cryopumps do not have cryogenic baffles and have to be re-

filled every 31/2 - 4 hours. The pressure in the main chamber ion gauge

typically falls to the bottom of the 10- 8 torr scale when helium is added;

the current drawn by both ion pumps is of the order of 1 amp, and a large

share of that is probably due to an electrical leak in one pump.

After the helium is transferred, the beam sources are turned on,

optimized, and monitored for a few minuteso Only after everything is seen

to perform well is the detector isolation valve opened and an angular scan

begun.

An angular scan consists of two measurements at each angular point.

For each measurement the radical beam is modulated at 100 Hz, One measure-

ment of the alkyl halide signal is taken with the halogen beam intersecting

the radical beam (this signal we denote SN). The other is taken with the

halogen beam blocked in the source differential pumping chamber with a beam
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flag (this is SOFF ) If the alkyl halide background had a constant DoCo

level, SOFF would be statistically zero; however, modulating the alkyl

beam always modulates the alkyl halide background even in the absence of

the halogen beam. This spurious signal seems to be related to the fact

that the modulated alkyl beam is not pumped very well compared to species

which condense on liquid nitrogen cooled surfaces, A diagnostic experiment

aided us in deciding that the true reactively scattered signal is given by

S = SON - SOFF' For this experiment a methane beam is used in place of the

alkyl radical beam This is crossed with a chlorine beam, and the angular

distribution of the mass 50 signal (same as CH3C + ) is measured both with

the chlorine beam on (S N) and off (S FF). Of course in this system any

mass 50 signal cannot come from reaction and is probably due to space charge

effects in the ionizer. The signal peaks sharply around the methane beam

and gives small signals out to wide angles. The interesting point for our

purposes is that S = SON - SOFF is statistically zero everywhere; the presence

of the unmodulated halogen beam has no effect on the modulated signal. This

was even true close to the direction of the chlorine beam. If the modulated

background observed in the reactive scattering experiments is of identical

origin, then S will indicate the true reactively scattered signal. This is

an assumption implicit in the experiments. The possibility of a spurious

signal present only when both beams are on is not eliminated, but we see no

evidence for this, Although not necessarily so, such a signal would probably

have its greatest values near one of the beams and most likely be symmetric

around the beam direction, Spurious signals of this nature have been observed

in the D atom, halogen reactions (MCD 72)o

For all the reactions reported here SOFF is typically 10-50% of SON except



when measuring close to the alkyl radical beam, in which case both SON and

SOFF are very large and S is zero within statistical errors. SON and SF F

are accumulated in consecutive counting periods of 100 sec, at each angle.

A complete angular scan can be taken in approximately 11/2 hours. In

general, long counting times on each angular scan are avoided in favor of

short counting times and repeated angular scans in different directions

This procedure helps to eliminate errors from sources such as long term

drift of the beams.

The beam intensities are monitored very closely during an angular scan.

The halogen beam intensity is checked directly with the beam monitor after

every 2-3 points. An accurate method of monitoring the alkyl radical beam

is to watch the source tube pressure and the pressure of ambient gas in the

source chamber simultaneously. As long as the ratio of these two pressures

remained constant, the beam intensity would not vary. A change in the ratio

is an indication of clogging or a pumping problem, both of which affected

the beam intensity. All the data shown here were taken under very steady

beam conditions, with at most a few percent drift over the duration of one

scan. An excellent indication of this is that the reactive signals measured

on various scans at the same angle were usually within the limits set by the

statistical noise expected in counting experiments.

E. Measurements

The angular distribution measurements are shown in Fig. 11. A listing

of the experiments from which these curves result and a presentation of

typical numbers from each experiment are given in Table IIo The first thing
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Figure 11

Laboratory Angular Distributions of Alkyl

Halide Reaction Products

Erel is the relative kinetic energy cal-

culated from the velocities given in Table

III. Error bars indicate two-thirds con-

fidence limits. Solid lines are drawn

free hand through the points.
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Table II

Representative Experimental Results from the

Peaks of the Angular Distribution Measurements

Total average count rate is the average number

of ions per second reaching the electron multi-

plier. RX signal count rate is the difference

per second between the signal channel and the

background channel.
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to notice in Fig. 11 is that the peak of the angular distribution for every

system falls fairly close to the halogen beam direction. At best this is a

hindrance. The problem of spurious signals is usually most severe close to

an intense primary beam° We take comfort in the fact that the curves rise

or fall smoothly as they pass through the region of the beam (measurements

are not made 70 from 900) and that they are not symmetrically distributed

around the beam, Furthermore, different reactions involving the same halo-

gen beam yield satisfyingly different angular distributions. The validity

of the data of course is also supported by more detailed experimental evidence.

We are reasonably certain that the mass calibration of the quadrupole is very

accurate. For each system the quadrupole was calibrated against the prominent

isotope doublet of either chlorine or bromine, These species have high back-

ground levels and are easy to locate in the spectrum, In addition to finding

signal at the expected mass, the signals disappear as the mass spectrometer

is tuned slightly above and below the alkyl halide peak. What are the possible

sources of spurious signal? Even though the radical source is operated at

almost complete dissociation of the organometallic parent compound, the

possibility exists for reactions between the parent compound and halogen

molecules to give alkyl halides, However, reducing the temperature of the

oven below that necessary for dissociation also causes the signal to disappear.

The possibility still exists of a small amount of vibrationally excited R2M

or RM reacting with X2 to give RX. This is ruled out on the grounds that two

different parent compounds ((CH3)2Zn and (CH3)2Cd) give the same angular dis-

tribution for CH3C from CH3 and C2 despite the mass difference of 47 in the

parent compounds, A final point in favor of the validity of the data is found

in comparing these results with the angular distributions of DX products from
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D atom, halogen molecule reactions (MCD 72). The distributions are quali-

tatively similar and roughly speaking the same trends are observedo Per-

haps similarities in the dynamics of these two classes of reactions should

not be unexpected.

Despite the points which have been made, the possibility of a systematic

error in the measurements exists. Since these data represent the first react-

ive scattering experiments to be carried out on the apparatus described in Part

I, an absolute assessment of the performance of the apparatus must be postponed

until either (i) a "known" reactive angular distribution is measured or (ii)

other workers confirm the results presented here.

An unusual feature of the data is the narrowness of the angular dis-

tribution for reactively scattered C2H5Br, the only ethyl radical reaction

studied. The full width at half maximum (FWHM) is at most 400 in the center

of mass (c.m.) coordinate system. The only other system for which the full

width of the distribution is measured is CH3I from ICo The FWHM for this

distribution is approximately 800 in the center of mass system. The C2H5Br

curve shown in Fig. 11 was the result of one run, but two other runs on

different days gave the same angular distribution only with lower signal to

noise. An attempt was made to confirm the results by running a series of

ethyl radical reactions. Electrical breakdown in the quadrupole (se- Section

I-E. 4) prevented running the C2H5 + I2 reaction0 The quadrupole could not be

tuned up high enough to mass select C2H5I without the presence of huge back-

ground levels. An attempt to run C2H5 + C 2 was unsuccessful largely because

of the inability to look directly at the mass of the reaction product.

(C2H5)2Zn is the only ethyl-containing organometallic which was easily

obtainable commercially and consequently all that we had. Unfortunately the

two most prominent isotopes of Zn (mass 64 and 66) have correspondingly iden-
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tical masses to the two isotopes of C2H 5C (29 + 35, 37). Elastic scatter-

ing of Zn completely obscures the reactive C2H5Ct signal. We hoped to see

a signal from the mass 49 fragment (CtCH2 ) which is a factor of 4 smaller

than the parent mass 64 peak, but this proved to be just barely possible.

Small signals were observed but not of sufficient magnitude to give angular

distribution measurements.

Fo Features of the Angular Distributions

A number of observations can be made from the curves in Fig 11. As

we shall see for every system studied, the alkyl halide products are

scattered predominantly backward in the c.m, system with respect to the

incoming radical. Roughly speaking 700 in the labo system corresponds to

900 cm, for all these systems, and a quick glance at Fig. 11 shows that

only the CH3 + ICt + CH3I + C reaction gives an appreciable amount of

scattering in the forward direction.

A transformation of the laboratory measurements to the center of mass

was performed assuming a nominal Newton diagram, A Focal program is based

on the method presented in (HEL 68), and the calculations are performed on

the Digital Equipment Corporation PDP-8/L computer attached to the apparatus.

The kinematics of these reactions, especially the CH3, are so favorable that

this nominal transformation gives a reasonably accurate picture of the cm,

distribution. The most probable Maxwellian beam velocity at 1,500°K is

chosen for the nominal alkyl radical velocity. Because of the relatively

small mass of the methyl radicals (and to a lesser extent ethyl), the large

spread in CH3 velocities is not reflected in the distribution of centroidso
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The halogen beam velocity, which has a much greater effect on the distribution

of centroids, is expected to have a very narrow distribution (see Section

II-B). The nominal velocity calculated assuming isentropic flow from the

nozzle is expected to be accurate within a few percent. Also the large

increase in reduced mass in these reactions causes the methyl halide product

to leave the center of mass with considerable velocity. This reduces the

effect of the spread of centroid velocities on the cmo angular distributionso

With the exception of CH3I from ICt the minimum possible speed with

which the alkyl halide can leave the center of mass point is still greater

than the speed of the center of mass itself. Therefore only one branch of

the c.mo angular distribution contributes to the laboratory distribution.

For CH3I from ICt an iterative procedure is used to separate the relative

contributions of the two branches. A zeroth order differential cross section

is calculated from the angular distribution assuming that only the "fast"

branch of the cm. distribution contributes to the cross section, ("Fast"

refers to the branch with higher laboratory velocity.) The equation relating

the laboratory intensity and the differential cross section is:

(o)
I(e) FAST

FAST )

where I(e) is the measured lab. intensity, JFAST(0) is the transforuation

Jacobian for the "fast" branch, and a (8) is the zeroth order cross
FAST

section mentioned above. The Jacobian includes the velocity factor which

relates I to the product flux. This cross section is used as a first approx-

imation (zeroth order) to the cross section for the "slow" branch0 Now the

"slow" branch can be included in a re-calculation of FAST oTo first order:
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(1) (o)or + SLW ora(1) a(o) J (0)
I(e) = FAST + SLOW or FAST a The general

FATSLWFAST FAST SLOW
FAST SLOW SLOW

equation for the n approximation is:

a (n) (A) JFAST a(n - 1 )

FAST FAST SLOW
SLOW

For the reaction CH3 + ICt + CH3I + C this method converges on a differ-

ental cross section, a which is somewhat smaller than ()but hasential cross section, aFAST' which is somewhat smaller than a bASuT

essentially identical shape.

The results of the coordinate transformation are summarized in Table III.

The center of mass angular distributions are not plotted because the Jacobian

factors vary so slowly that the cm, curves differ only slightly from the labo

curves of Fig. 11. The transformation broadens the distributions somewhat,

but the relevant features of the lab, distributions are retained, The cm.

angles corresponding to these features in the various distributions are

found in Table III. The exact location of the peak of the como distribution

depends on the change in kinetic energy during the reaction (Q), which in

general cannot be determined without product velocity analysis. If none of

the energy released during the reaction goes into relative translational

energy of the products, then Q = 0. The upper limit on Q is set by the

reaction exoergicity which is calculated from bond energy data (VED 6)o

Although negative Q values are possible, they are not considered here. Table

III gives the Q dependence of the peak locationo The last two systems

entered in the table show how little the peak position varies as a function

of methyl velocity° This underscores the favorable kinematic factors of

these reactions as discussed above.

Unfortunately, a large portion of almost every cm, angular distribution
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Table III

Results of lab + c.m. Transformation

Assuming a Nominal Newton Diagram

R· Vel. is the most probable alkyl

radical velocity calculated assuming

a Maxwellian velocity distribution at

15000K. X2 Vel. is the most probable

halogen molecule velocity calculated

assuming isentropic nozzle flow (see

Section II-B.). E is the relative

kinetic energy calculated from these

velocities.

= FINAL EINITIAL
rel rel

The positive value of Q is equal in

each case to the reaction exothermicity

calculated from bond energy data (VED

66). Max. Angle Measured corresponds

to lab angle 1100, beyond which the

detector cannot be rotated.
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lies in a region beyond the range of our detector. Consequently little can

be said about the exact locations of the cm. peaks or the widths of the

distributions. Increasing the velocity of the halogen beam by seeding a

helium nozzle beam with the halogen would solve this problem, Because of

the high velocity of the methyl radicals, the relative kinetic energy would

not be altered significantly. Therefore the circle, centered on the tip of

the centroid, which defines the region accessible to the methyl halide prod-

ucts would remain roughly constant in sizeo However the velocity of the

center of mass increases considerably, and the reactive circle moves toward

and into a region accessible to the detector. Reference to Newton diagrams

indicates that this effect is large and becomes more favorable the heavier

the halogen is. The shift in the center of mass of the system would result

in contributions to the laboratory differential cross section from both

branches of the c.mo distribution, but if velocity analysis of the products

is incorporated, this presents no problem.

A less direct approach to the problem of shifting the center of mass is

to run the reactions with CF3 radicals instead of CH3' If the dynamics are

similar, the center of mass shift brings the products in to smaller laboratory

angles. This expectation is only one of many good reasons to study this vari-

ation of free radical reactions.

In attempting to elucidate trends in the angular distributions the

systems can be grouped in various combinationso

CH + C Br I2_`-3--2` -22-2-

Although the peak is not established for CH3CZ, it is evident that the dis-

tribution is narrow and that it peaks very close to 1800 cm. CH3Br and CH3I

are shifted to smaller angles, and it appears that they peak at roughly the
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same c.m. angle ( 130-160° c.mo). The curves suggest that the angular dis-

tributions become broader as we go from the chloride to bromide to iodide

product.

CH + IC +CH CHHC

Both products are scattered backward in the cm . system though CH 3C is much

more sharply peaked in the backward direction. The CH 3I product is the only

one measured which shows considerable scattering at less than 900 c.mo

(Remember that 900 cm. is roughly 700 labo angle.) In comparing the respec-

tive halide products from ICt with those from C 2 and I2 we see a pronounced

shift forward for CH 3I from ICt and what may be a similar shift for CH 3C.

CH CH + Br

The ethylbromide product peak is shifted to smaller center of mass angles,

and the distribution appears to be somewhat narrower.

G. Total Reaction Cross Sections

Total reaction cross sections, Qr' for the methyl radical reactions

were calculated by Method A of (BIR 67) which is based on normalizing the

reactive to the elastic scattering. The usual comparison of elastic and

reactive scattering for the same system could not be made, however, because

the mass 15 background from the fractionation of methane in the ionizer

was too high to allow observation of elastically scattered methyl0 There-

fore an estimate of the relative fluxes of Zn impurity and CH3 in the

primary beam was made, and the elastic scattering of Zn from 12 was com-

pared with the reactive scattering of CH3 and I20
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A slope of -7/3 was measured for the small angle differential cross

section of Zn from 12. This is the result expected from the classical

formula upon which the method is based.

The Van der Waals force constant, C, was calculated from the Slater-

Kirkwood approximation with 2 and 14 effective electrons for the Zn and

12, respectively (HIR 54a). This assumes that the Zn 3d electrons are

not "outer-shell" electrons. The polarizabilities used were (in A ) 6.1

for Zn (LAN 50) and 9.7 for 12 (BIR 67). The value for the polarizability

of Zn given in (LAN 50) compares favorably with the value for Hg cited in

(KRA 70). A calculation of Zn polarizability by the method outlined in

(HIR 54b) gave a value larger by a factor of 5 The Van der Waals constant,

C, was calculated to be 5.77 x 10 ergs . A most probable relative

energy of 2.81 x 10-3 ergs/molecule was used, The absolute differential

elastic cross section calculated from the small angle formula is:

(dQe = 99 A /str.
dw abs.

Relative differential cross sections for elastically scattered zinc

and reactively scattered CH I (at the peak of the reactive angular dis-

tribution) were calculated, correcting the measured intensities for:

the velocity of the detected particle, the relative ionization cross

sections for Zn (POT 66) and CH I (OTV 56), the relative primary beam

intensities of Zn and CH3 (Zn/CH = 3), the isotopic abundance of Zn

(KIS 65), and the fragmentation pattern of CH3I (ZWO 71)o The ratio of

these two cross sections multiplies the absolute elastic cross section to

give the absolute reactive differential cross section, (dr) , which

02 dwtr. for CH I from the CH + I ~ IEW~j absoturns out to be 2 reaction. A crudeturns out to be ' i A /str. for CH I from the CHB + 12 reaction. A crude
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integration of the c.m, angular distribution yields a value for the absolute

02
total reaction cross section, Qr = 5 A This calculation is accurate only

to within a factor of 3 uncertainty. Interestingly enough it compares favor-

ably with the phenomenological cross section derived from thermal rate data.

Assuming that the cross section does not vary with relative kinetic energy9

Qr is given by the quotient of the rate constant and the average relative

velocity, Qr = k/V. Rate data (TRO 67) for the reaction, CH3 + I2 + CH3I + I,

studied by flash photolysis, was used to calculate a value of 3 A for Qr o

The agreement is surprising since both methods are crude measures of the true

cross section.

Based on the calculation for CH3 + I2, estimates of Qr for methyl react-

ing with Br2, C2, and ICt are 1 5 A for the CH3Br product and 0.35 A for

CH3Ct. No cross section calculation was made for the reaction, C 2H5 + Br2 +

C2H5Br + Br, because no attempt was made to estimate the relative ethyl fluxo

Since the ethyl source was operated under conditions similar to the methyl

source, we might expect the radical fluxes to be the same. If this is true,

then the methyl reaction with Br2 is favored over the ethyl. Intuitively

this is expected.

H. Discussion

The major contribution of the work presented here lies in the demonstra-

tion of the capability of studying polyatomic free radical reactions in beamso

While we would like to be able to interpret the results in terms of the

dynamics of the reactions, lack of knowledge of the product velocity dis-

tributions severely limits the conclusions which may be drawn from these



103

measurements. Without velocity analysis, the exact position of the peak

of the c.m. angular distribution cannot be located and no information

concerning the final energy partitioning in the reaction can be obtained.

The size of the reactive cross sections and the marked backward peaking

in the c.m. system indicate, however, that the dynamics are dominated by

short range repulsion in collisions with small impact parameters.

Guided throughout the course of this work by the intuitive notion

that methyl radical reactions might be dynamically similar to those of

hydrogen atoms, we were particularly interested in the work of Herschbach's

group at Harvard on D atom, halogen molecule reactions (MCD 72)° Indeed,

the similarities in the angular distributions for D and CH3 reacting with

halogens are striking. Both trends observed in the angular distributions

of DX products are carried over to the CH3X distributions.

(1) The form of the c.ma angular distribution of DX products depends

primarily on the atom transferred, the peak of the distribution shifting

to smaller angles as the transferred atom changes from C to Br to I.

Roughly speaking we observe the same trend. The CH3CZ products from C2

and ICt recoil sharply into the backward hemisphere, peaking nominally

beyond 150° . The CH3Br from the Br2 reaction is peaked less strongly back-

ward at 130-150°o The CH3I distribution from the I2 and ICZ reactions

is quite similar to that of CH Br, peaking at X 120-150°o

(2) The DX angular distributions show a secondary variation with the

atom released. The DX products are shifted forward, by 10-20° near the

peaks, when the transferred atom is I and the released atom changes from I

to Br to C. We observe a similar shift of X 20-300 for CH3I from 12 and

ICt and possibly for CH3CZ from C2 and ICto3Ce fo C2 adI



104

The one distinguishing difference between the DX and CH3X angular

distributions is the amount of scattering observed in the forward hemi-

sphere. All DX distributions show considerable scattering in the forward

direction, while for CH 3X this is true only for CH 3I from IClo

The Harvard group interpreted the product angular distributions of DX

in terms of a model which states that "when the momentum arising from exit

repulsion between the heavy atoms is large and impulsive, their trajectories

are perturbed only slightly by the light hydrogen atom. The direction of

recoil therefore corresponds approximately to the angle between the axis of

the target molecule and the initial relative velocity vector at the onset

of the X-Y repulsion." The validity of this interpretation depends both on

the light mass of the D atom and on the knowledge of the final relative

kinetic energy of the products. In our experiments the CH3 radical carries

in roughly twice the momentum carried by the D atom. The exothermicities

of the CH3, halogen molecule reactions are only about half as large as those

of the D, halogen reactions, so that even if the same fraction of energy is

channeled into translation, the perturbation caused by the CH3 is a factor

of 3 larger than that caused by the D atom. Without velocity analysis of

the CH3X products, however, an assessment of the applicability of the model

cannot be made. Perhaps the lack of complete agreement in the obse~¥,ed trends

is related to a breakdown in the model.

The internal degrees of freedom of CH3 are expected to have only a small

effect on the dynamics of these reactions. As the reaction proceeds, the

structure of the radical changes from planar to tetrahedral. The energy

required to bend the methyl to the tetrahedral configuration is estimated

to be less than 6 kcal/mole, which represents the barrier to inversion in
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NH3. CH3 bending is expected to require a smaller amount of energy since

CH3 has one less electron than NH3. The energy can easily be supplied by

the formation of the C-X bond, in which case we might expect a smaller

fraction of the total available energy to end up in translation of the

products for the CH3 reactions as compared to the D atom reactions. The

energy could also be supplied by internal excitation of the CH3 radicals

in the beam. However, we have no information concerning the internal state

distribution of CH3, due to the non-equilibrium behavior of the pyrolysis

source.

Experiments in which methyl-halogen bonds are broken also provide

evidence that there is relatively little energy associated with the puckered

configuration of CH3 . The following examples demonstrate that the CH3

relaxes to the planar structure in such a way that the energy released into

vibration as the bond is broken is small.

(1) A molecular beam study of the reaction, K + CH3I -+ KI + CH3, has

been performed with velocity analysis of the products (RUL 72). About 40%

of the total available energy is partitioned among internal degrees of

freedom in the products. There is some evidence based on the residual

detection of KI in the non-detecting mode that the KI is highly vibrationally

excited; and thus, by difference, the CH3 is internally "cold".

(2) Unpublished molecular beam results comparing the velocity spectra

of KI from the reactions, K + CH 3I and K + CF3I, show indirectly that after

reaction CH3 is no more internally excited than CF3 is, even though CF3

(pyramidal) and CH3 (planar) differ in structure (HER 72).

(3) The photodissociation translational spectrum of CH3I also indicates

that methyl relaxes adiabatically as the C-I bond is cleaved (RIL 72). The
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photodissociation of CH3I into CH3 and ground state I involves the par-

titioning of roughly 60 /mole of energy, of which less than 15% was

found as internal energy of the CH3 radical.

We have no information concerning the final energy partitioning in

these reactions. Work has been started on the addition of a time-of-flight

velocity analyzer to the apparatus described in Part I In the near future,

results of chemiluminescence experiments involving the reactions, CH3 + F2

and CH3 + C 2, will give direct measurements of the energy partitioning

(MCD 72B).
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APPENDIX A

Currently Available Mechanical Drawings

A series Vacuum system

1. Main vacuum chamber

2. Vacuum chamber stand

3. Cryopump chamber

4. Source chamber

5. Side flange

6. Main chamber blank-off flange

7. Pressure release flange

8o Cold shield

9. Cold shield side plate

10. Cold shield extension

11. Cold shield support screw

12. Liquid nitrogen feed tube

13. Cryopump heat shield

14. Diffusion pump spool

15. Source differential pump chamber (obsolete)

15M. Source differential pumping chamber modification

15a. Source differential pumping chamber bulkhead front plate

15b. Source differential pumping chamber copper cold shield

15c. Source differential pumping chamber adjustable aperture

16. Main chamber rotating lid

17. Diffusion pump spool blank-off flange

18. Detector differential pumping chamber

19. Detector chamber back flange

20. Aperture retaining ring

21. Aperture

22. Rotating lid driven gear

23. Radiofrequency feedthrough flange

24. Quadrupole mass filter end plate modification

25. Liquid helium cryopump



113

25a. Plug for helium cryopump

26. Ion counter coupling chamber

27. Rotating lid drive gear

28. Drive gear bearing

29. Platform frame

30. Side flange copper gasket

31. Source chamber clank-off flange

32. Rotating lid installation bracket

33. Ionizer and lens mount plate

36. Detector window retainer

37. Detector window

38. Retainer installation tool

39. Rotating lid center flange

40. Rotating lid flange A

41. Rotating lid flange B

42. Rotating lid vernier

43. Vernier holder

44. Source chamber trap

45. Source chamber liquid nitrogen feedthrough

46. Cryopump radiation shield

B series Beam Sources

1. Beam source assembly (obsolete)

2. Oven support and gas handling (obsolete)

3. Mounting flange (obsolete)

4. Pump-out port flange (obsolete)

5. Source tube (obsolete)

6. Multichannel aperture

7o Source nut

8. Nozzle aperture

9, Methyl beam source tube (2 drawings)

10. Methyl beam source aperture

11. Permanent gas beam source (2 drawings)

'r,
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12. Permanent gas beam source aperture

13. Source tube collar

14. Blank-off flange for source flange ports

15. Source chamber flange (2 drawings)

16. Source tube compression seal feedthrough

17. Ampule smasher

18. Source chamber front plate

19. Skimmer mount

I series Ionizer

1. Ionizer support stand

2. Einzel lens plates No. 2 and No. 3

3. Einzel lens plates No. 2

4. Extracting grid plate No. 4

5. Extracting grid plate No. 5

6. Entrance aperture plate No. 6

7. Ionizer shield spool

8. Filament support

9, Filament support insulators

10. Ionizer support screw insulators

11. Ionizer support rod spacer

12. Ionizer support rods

13. Ionizer assembly

14. Ionizer einzel lens, spherical lens schematic circuit design

15. Filament holder insulator

N series Spherical Lens

1. Support block

2. Concave element

3. Convex element

4. Assembly
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P series Ion Counter

1. Cylindrical lens support rod

2. Cylindrical lens element No. 1

3. Cylindrical lens element No. 2, 3, and 4

4. Cylindrical lens element No. 5

5. Cylindrical lens top support

6. Vacuum chamber

7. High voltage feedthrough flange

8. Liquid N2 feedthrough flange and reservoir

9. Semiconductor mount

10. Semiconductor retainer

11. Semiconductor mount high voltage shield

12. High voltage terminal fitting

13. Anti-corona ball

14. High voltage shield

15. High voltage shield end window

16. Faraday cup

17. Faraday cup shield

18. Cylindrical lens spacers

Z series Test Stand

1. Base plate

2. Blank-off flange

3. Plexiglass blank-off flange

4. Main chamber

5. Connecting spool flange

6. Connecting spool

7. Vacuum stand

8. Ionizer test flange

9. Platform support plate

10. Feedthrough shield

11. Vacuum test stand platform

12. Ionizer test flange window
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13. Feedthrough shield cover

14. Test source flange

15. Test source support

16. Test source

17. Thin aperture

18. Leak valve connector

19. Vacuum test stand and plate

20. Vacuum test stand caster blocks

M series Miscellaneous

lo Titanium pump 12" base assembly

2. Titanium pump curvac connector 6"

3. Titanium pump 18" conc. comb. baseplate

4. 12" Vacuum chamber module

5. High Q head mounting bracket

6. Feedthrough flanges

7. Corner connector for 12" module

8. Block diagram of super machine

9. Primary beam electron bombardment monitor differential ionizer frame

10. Primary beam electron bombardment monitor differential ionizer cover

plate

11. Differential ionizer control panel

12. High voltage lens focusing potentials

13. High voltage lens switching circuit

14. Ionizer and spherical lens energy analyzer control panel

15, Quadrupole insulator
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APPENDIX B

Suppliers of Commercial Items

1. Quadrupole Mass Filter

2. Pulse Counting Electronics

3. Amphenol Connectors

4. Screws, Nuts, Washers

5. Ion Pumps

Titanium Sublimation Pumps
Curvac Flanges
Copper Gaskets
Nude Ion Gauges
Zeolite Foreline Trap
Vac-Seal Epoxy Resin

6. Kepco Power Supplies

7. Operational Amplifiers

8. General Electrical Supplies
and Accessories

ExtraNuclear Laboratories
P.O. Box 11512, Pittsburgh
Pennsylvania 15238

(412) 828-8508

Canberra Industries
50 Silvera Street
Middletown, Conn. 06457

(203) 347-6995

Richard Purinton, Inc.
11 Muzzey Street
Lexington, Mass.

862-8300

Industrial Stainless Steels, Inc.
Cambridge, Mass.

864-7700

Ultek, Div. of Perkin-Elmer
599 North Avenue, Door 8
Wakefield, Mass. 01880

Ray Perron and Co., Inc.
159 Moore Street
Norwood, Mass. 02062

762-8114

Philbrick/Nexus Research
Allied Drive at Route 128
Dedham, Mass, 02026

329-1600

Cramer Electronics
320 Needham Street
Newton, Mass. 02164

969-7700
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DeMambro Electronics
1095 Commonwealth Avenue
Boston, Mass. 02215

787-1200

9. O-Ring Compression Seals

10. Parker O-Rings

Industrial Equipment and Sales
Corporation

84 State Street
Boston, Mass.

227-0838

I. B Moore Corporation
30 Rindge Avenue, Ext.
Cambridge, Mass.

491-0100

11. Rigid Air Lines, General Radio,
BNC, UHF, Adaptors and Connectors

12. Power Designs Power Supplies

13. Electronics Racks

14. Si(Li) Semiconductor

15. Main Chamber H2 Brazing

16. Insulating Foam

17. 1000 lb. Electric Hoist

General Radio
22 Baker Avenue
West Concord, Mass.

646-0550

Power Designs, Inc.
1700 Shames Drive
Westbury, New York

Technical Instruments, Inc.
122 West Street
Wilmington, Mass.

Kevex Corporation
898 Mahler Road
Burlingame, Calif. 94010

(415) 697-6901

Wall Colmonoy Corporation
19345 John R Street
Detroit, Mich. 48203

(313) 893-3800

Plastic Packaging Materials, Inc.
2235 N Bodine Street
Philadelphia, Pa. 19133

Langley Handling Equipment
966 Cambridge Street
Cambridge, Mass.

395-8010



18. Tuning Fork Chopper

19. Teletype

American Time Products
61-20 Woodside Avenue
Woodside, New York 11377

Teletype Corporation
5555 Touhy Avenue
Skokie, Illinois

20. Linde Liquid N2 Cold Trap Reservoirs

21. Johns Technology, Inc. Liquid
N2 Level Control

22. Custom-Made Tec Rings

23. Four Point Contact Radial Ball
Bearing

24. Metal Hose

25. Sorenson Line Voltage Regulator
and Power Supplies, Dana
Digital Voltmeter

26. Drafting Table and Accessories

27. Picoammeter

28. John Fluke Power Supplies

29. Phase Shifter/Meter

Cryogenics - East
Wheeler Road
Burlington, Mass. 01803

American Dynamics Corporation
17 Dunster Street
Cambridge, Mass,

Tec-Seal Corporation
P.O. Box 4646
Wilmington, Califo 90744

Kaydon Eng. Corp. Sales Repo
W. A. Smith, Jr.
1004 Main Street
Hingham, Masso

Anaconda Metal Hose Division
824 Boylston Street
Chestnut Hill, Mass. 02167

734-8205

Instrument Associates
30 Park Avenue
Arlington, Mass. 02174

B, L. Makepeace, Inc.
1266 Boylston Street

Boston, Mass.

267-2700

Keithley Instruments, Inc.
235 Bear Hill Road
Waltham, Mass.

Technical Instruments, Inco
122 West Street
Wilmington, Mass,

Aritech Corporation
130 Lincoln Street
Boston, Mass. 02133

254-2990

119
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30. Moseley X-Y Recorder

31. Vibrating Reed Electrometer

32. Machining of Rotatable Lid

33. Glass-encapsulated Resistors

34. Variable Leak Valves

35. Main Chamber Machining

36. Alumina Insulators

37. Unislide Assembly

38. Diffusion Pumps
Slide Valves
Ion Gauge Controls

39. Digitec Digital Voltmeter

40. Glass Capillary Fused Array

41. Sapphire Spheres, Insulators

Hewlett-Packard, Yewell Sales
Division

Middlesex Turnpike
Burlington, Mass.

Cary Instruments
232 Washington Street
Belmont, Mass. 02178

Industrial Tool and Machine Coo
Higgins Street
Georgiaville, R.I.

231-6700

B & W Associates
110 Great Road
Bedford, Mass.

Granville-Phillips Co.
5675 East Arapahoe Avenue
Boulder, Colo. 80302

Walter W Field & Son
660 Arsenal Street
Watertown, R.I.P.

McDanel Refractory Porcelain Co.
510 Ninth Avenue
Beaver Falls, Pa. 15010

Tropel, Inc.
52 West Avenue
Fairport, New York 14450

Norton Vacuum Equipment Div.
865 Providence Highway
Dedham, Mass.

Carl Lueders & Co.
P.O. Box 161
Needham Heights, Mass.

New England Technical Sales Corp.
7 Cypress Drive
Burlington, Mass.

272-0434

Adolf Mellor Co.
P.O. Box 6001
Providence, R.I. 02904



42. High Voltage Terminal Bushing

43. Electroformed Mesh

44. Indium Wire, Foil and Sheets

45. Liquid He Cryopumps, Helium
Transfer Tube

46. Computer PDP 8/L Softwares
(Modules, Cables, Wires,
Programmed Tapes, etc.)

47. Tantalum Foil

48. Dimethylzinc, Dimethylcadmium,
Diethylzinc, etc.

49. Spiraltron Electron Multiplier,
CEM-4028 Capped Collector

50. Hysteresis Synchronous Motor

51. Butterfly Valve

52. Epoxy

Alite Division, U.S. Stoneware
Box 119
Orville, Ohio 44667

(216) 669-2271

Buckbee Mears Co.
245 E. 6th Street
St. Paul, Minn. 55101

The Indium Corp. of America
P.O. Box 269
Utica, New York 13503

(315) 797-1630

Janis Research Co., Inc.
22 Spencer Street
Stoneham, Mass. 02180

Digital Equipment Corp.
Program Library
146 Main Street
Maynard, Mass. 01754

A. D. MacKay, Inc.
198 Broadway
New York, New York

(212) BA7-8730

10038

Alfa Inorganics
P.O. Box 159
Beverly, Mass. 01915

Bendix Electro-Optics Div.
Sturbridge, Mass.

Globe Industries
Division of TRW
2275 Stanley Avenue
Dayton, Ohio 45404

Edwards High Vacuum, Inc.
554 Main Street
South Weymouth, Mass. 02190

Emerson & Cummings, Inc.
Canton, Mass.

828-3300

121



53° Nupro Metering Valves
Cajon Fittings
Swagelok Fittings

54. Bellows Seal Valves

55. Vacuum Valves

56. Blackstone Ultrasonic Cleaner

Cambridge Valve & Fitting Co.
334 Boston Post Road
Wayland, Mass.

237-0942

Joseph Bertram & Co.
60 Dedham Avenue
Needham, Mass. 02192

Goddard Valve Corporation
Worcester, Mass.

(617) 755-8635

Technical Instruments, Inc.
122 West Street
Wilmington, Mass, 01887
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