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THE ELECTRON-PHONON INTERACTION IN NORMAL METALS

J.F. Kenney

ABSTRACT

Tile prohibitively cumbersome exact Hamiltonian for the combined system
of electrons and nuclei in a crystalline solid is simplified into a Frbhlich-type
Hamilto:nian

= (hw( ,s) + 1/2) a
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The Adiabatic Principle is explained and used to approximate the eigenfunctions
of the solid by products r(x,R) = Ye(x,R) n(R) of electronic (Ye(x,R)) and nuclear
(~n(R)) eigenfunctions. The electronic system is further approximated by an in-
dependent-particle model for which the electronic eigenstates are Slater determi-
nants of one-electron orbitals. Within the framework of this model, the set of
terms which describe the coupling of the electronic and nuclear systems,

iI 7D( k,q,s) c c (a

·k s k'+ k qs
-aq s

-q ,s

is shown to arise from the effect of the nuclear momentum operator acting upon
the electronic orbitals

kit dmd
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In order to solve for the derivative

x;(t ;R 
dR .

m,

the energy band problem for both the single-particle orbital (xk; R) and for the
eigenvalue to which it belongs are set up and solved for the deformed lattice by
the method of Augmented Plane-Waves (A.P.W.) Because the eigenvalues and
eigenfinctions for the perfect lattice result from the A.P.W. variational calcula-
tion, such that the band energies are stationary

8e(~) 0

6(t )

it must be shown that the eigenvalues for the deformed lattice are invariant up to
orders quadratic in the nuclear variations tRm,i. The full secular determinant
of order 1026 x 102S for the deformed lattice is set up and formerly expanded by
minors retaining only terms of order quadratic or less in 8Rm,i. The zeroes of
this A.P.W. secular determinant are ascertained by transforming the summations
over k-vectors into an integration in the complex energy plane. The secular de-
terminant for the deformed lattice is then inverted to ascertain to eigenfunction,
and it is established that the derivative

ik. R

dR m (k)InA(k) 

mi 2 j 

neglecting corrections of the order of N-1 the size of the above, and where
CP (x) represents the A.P.W. trial function * (x) minus its plane-wave
k+Kj i(Z+k) +Kj

component e
The single-coordinate electronic potential ve(x;R) and its requirements of

self-consistency are discussed at length. It is shown that the self-consistent po-
tential generated by the electrons in the eigenstates of the deformed lattice is sub-
stantially different from the rigidly translated perfect lattice potential. This re-
sult considerably qualifies the results of the commonly used Rigid-Ion approxi-
mation. However, it is also shown that the correct self-consistent potential for
the deformed lattice contributes additional corrections to the derivative above
which are of the order of N - 1 times the original expression.
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CHAPTER I

THE ELECTRON-PHONON INTERACTIONS

The dynamics of matter in the crystalline solid state is conventionally

described in terms of the normal-mode vibrations of the nuclei or ions forming

the crystal lattice, - the phonons, - and in terms of the energetics and char-

acteristics of the mobile electrons, which themselves are usually described by

an independent-particle formalism ].

The interactions between these lattice waves and the mobile electrons, -

the electron-phonon interactions, - have traditionally been thought to occupy a

position of secondary importance, at least for many problems and always for

those problems which concern themselves solely with properties of one or the

other of the two aspects of the dynamical system alone.

It has long been recognized that the electron-phonon interactions dominate

transport theory: the study of electrical and thermal resistivity[1 ' ' ' '6 ] .

These interactions are responsible for all thermo-electric effects [1,6,11] and

for the attenuation of ultrasonic radiation in metals [12 ]. Furthermore these

interactions produce such phenomena as the Jahn-Teller Effect in solids [13' 14,15]

and the existence of the polaron in, say, ionic crystals or covalent semiconduc-

[16,17,18]tors in their intrinsic regions . The electron-phonon interactions are
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also responsible for the phenomenon superconductivity[19,20] .

The traditionally subordinate position which the electron-lattice interac-

tions have held has been allowed for essentially three reasons.

'The first reason, as has been already stated, is because such effects have

been considered to be of no consequence when studying some property of one as-

pect of the dynamics of the solids, e.g., the cyclotron-resonance frequency of

the conduction electrons. In short, the two aspects of the dynamics have been

usually thought of as two decoupled, independent dynamical systems: one, the

system of phonons; the other, that of the conduction electrons. This conceptual

picture is flatly wrong, as we shall demonstrate; and most of the empirical con-

stants traditionally believed to be properties of the electronic system independent

of the lattice vibrations (e.g., the electron plasma-oscillation frequency, u A,

the Pauli susceptibility, X, the linear term, y, in the specific heat, (yT + $T )

will be shown to depend considerably upon the energies of the lattice waves through

the electron-phonon interaction.

The second reason for the traditional disregard of the electron-phonon in-

teractions is that the strength of these interactions has been thought to be small,

at least with respect to the energies of the electrons involved, as measured by,

say, some coupling constant in a perturbation theory formalism. Such is a funda-

mental misunderstanding. An important parameter which can be associated with

the strength of the electron-phonon interaction (if one takes a certain perspec-
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tive) is

EF 2 ) (I. 1)
23'

where F is the Fermi energy, M the nuclear mass, and c the velocity of

sound of the solid. This parameter is on the order of eF. As a demonstration,

for sodium,[21 ]

c = 3 X 105 cm/sec

M = 23 nuclear masses

eF = 2.3 ev.

such that

¢F 1

Mc /2 3

The third reason for the usual neglect of these interactions has been the

(previous) uncertainty concerning not only the form of the interaction but also

the values of the constants appearing in it.

About a decade ago, Frohlich [22 ] hypothesized that the complete Hamil-

tonian for the solid could be expressed as

]H(Frohlich) = e(k) c c+ E s(q) a a

k qks ,s q,s

+ i jD (k+qk) c c a +a
,s

q's ~~~ ~~(1.2)
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This Hmniltonian operator is written in the Second-Quantization formalism per-

taining to quantum field theory. Its expectation values are taken between states

in occupation-number space and have exactly the same values ashasthe equiva-

lent operator in the Schrodinger representation taken between spatial wave func-

tions. In (I.2) e(k) is the single-particle energy of the electron belonging to

the wave-vector k; c and ck are, respectively, the creation and annihilation

operators for an electron of wave-vector k; w (q) is the normal mode fre-

quency of the phonon of wave-vector q and band index s, and a and a are,
q q

respectively, the creation and annihilation operators for that phonon; D (q+ q,)

is the matrix element associated with the electron-phonon interaction involving

an electron transition from wave-vector to wave-vector + q accompanied by

either the absorbtion (aq) or emission ( a ) of a phonon of wave-vector q and

band index s. Frohlich developed his Hamiltonian (I.2) in an ad hoc fashion

using "plausibility," arguments starting from the assumption that the electrons

and the phonons were almost independent systems and that their coupling was

weak. He further argued that the dependence of the matrix element D(k+q,i)

should be of the form,

D(k+q,k) =c q l , (I.3)
2NM w( q)

where i is Planck's quantum of action; N is the number of nuclei in the crystal;

and M, us(q), q are as defined above. The constant c has the dimensions of
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energy and, Frohlich argued, should be of the same order of magnitude as the

energy of the -th electron, (k). The constant c is often called Wilson's

Constant, after A.H. Wilson [4] who calculated it to be,

c 2Ye 1 ukl d 2 IV l' d (I.4)- k d+ Vcrysukd

where luk(r) is a factor in the Bloch eigenfunction,

) = e Uk(r) (I.5)

In his analysis of the coupling between the electrons and the lattice waves, Wilson

assumed that the interaction is attributable entirely to the variation of the crys-

talline potential due to the motion of the nuclei in the presence of a lattice vibra-

tion wave. This assumption is both inadequate and conceptually dissatisfying.

It is inadequate because there are additional sources for the coupling which must

be taken into account. It is conceptually unreasonable because it ascribes the

majority of the interaction to that region of the crystal cell where the variation

of the crystalline potential is greatest, to wit, near the nucleus. Common sense

as well as the detailed studies of crystalline electronic wave functions tells us

that near the nucleus the electronic wave function in the crystal is very nearly

identical to the wave function in the free atom. In that region, shielded by the

outer core electrons, the conduction electron will be impervious to the relative

motions of the other atoms in the lattice, and its eigenstate and energy will no
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more there depend upon the motion of its own nucleus than does the state and

energy of the electron in the free atom depend upon its center-of-mass motion.

Frohlich's Hamiltonian has more inadequacies besides the usual misesti-

mate of Wilson's Constant. To begin with, his initial assumption that the con-

duction electrons and the lattice vibrations are essentially independent aspects

of the crystal dynamics is quite incorrect, as we argue further in Chapter II.

Furthermore, the total energy of the electronic system cannot be represented

simply as the sum of the single-particle energy eigenvalues of each electron but

must be corrected by subtracting from that sum one half of the sum of the eher- 

gies of the Coulomb interactions between all the electrons. This last arises

because the potential function which enters into the single-particle Hamiltonian,

He(x), where

He(x) k(x) = e(k) k(x) (I.6)

involves some average of the sum of the two-particle interaction potential be-

tween the 9-th (here) electron and all the others. Therefore, when summing the

eigenvalues, e(k), one is counting the expectation values of the two-particle in-

teraction energies twice. Hence the necessary correction, which Frohlich

neglects.

The Frohlich Hamiltonian has been used for many investigations of phe-



12

nomena involving the electron-phonon interactions and has rendered modestly

good predictions. Considering the conceptual and mathematical errors involved

in its derivation, this is somewhat surprising, even when allowing for a great

elasticity admitted to its conclusions by an empirically fitted Wilson's Constant.

For these reasons, our investigations shall include a logical derivation of

Frohlich's Hamiltonian. We shall show explicitly the approximations and sim-

plifications involved in its development; and we shall calculate explicitly the

correct Wilson's Constant.
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CHAPTER 

THE ADIABATIC PRINCIPLE

The dynamics of matter in the solid state is determined by the Hamiltonian

operator,

2 2 Ze2

Htotal=
t2 n 2M | -xin i

1 e 1 Z e 2
+- (II. 1)

2. 2

This operator describes the total energy of the system in its nonrelativistic limit

and in the absence of any external fields. The specification of the energy spec-

trum of the solid obtains from the eigenvalues of this Hamiltonian operator, and

the description of the properties of the solid depends upon the eigenstates be-

longing to those eigenvalues. The eigenvalue equation for the solid is

Htotal T xi n} = Etotal T xi n (11.2)

Because the operator Htotal involves a number of independent coordinates

on the order of 1022 1023
on the order of 10 -10 , no exact solution to equation (1.2) oan be obtained
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at present, and we must seek useful and accurate approximations to its solutions.

The first approximation introduced is suggested by the division of the

Hamiltonian operator into two parts:

total nuclear(R) + Helectronic(R ) , (11.3)

where

Hnuclear(R) =
2V +-
n 2m

and

electronic . --+ .. (1I. 5) )
2M A 2 X.. -XR I 2 I x.-xe1 n' 1 j

It is observed that the operator Hnuclear(R) involves only the nuclear coordinates,

{ Rn. The electronic coordinates, , enter only the operator Helectronic(x,R ) ,

and, furthermore, the nuclear coordinates enter Helectronic (x,R) only in the po-

tential energy sum,

-Ze 2

R |Xi n
n

The simplifying hypothesis which permits the separation of the dynamical

problem of the nuclei from that of the electrons is as follows:

(I1. 4)

-
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Because the mass of the electrons is so very much smaller than that of

the nuclei, -

m 10-4 -510 -10 ,(I.6)

M

the mobile electrons always follow the motion of the nuclei instantaneously and

smoothly, and the state of the electronic system is, at any instant, the equi-

libriumr electronic state for that particular nuclear arrangement.

This is the Adiabatic Principle. [23,2425]

An immediate consequence of the Adiabatic Principle is that, within the

limits of the principle's validity, the total eigenstate of the solid can be repre-

sented as the product of eigenstates of the nuclear and the electronic systems,

respectively, i.e.,

X] X. RC R (II.7a)
rT ({x ~ ' = Yelectronic (xi ' {Rn 1nuclear Rn

or, simply

T (x,R) = Ye(x,R) n(R) . (1.7b)

Because the electronic coordinates enter only the electronic Hamiltonian,

H electonic (x,R), as noted above, the eigenfunction of the electronic system satis-

fies the equation,

H (x,R) 'Ye (x;R) = ;dj(R) Ye'j(x;R)e e,j e,j e, (I. 8)
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We observe that equation (II.8) is not only an eigenvalue equation pertinent to

the eigenvalue (R), but also that it is a parametric equation in the 3Nz

nuclear coordinates, { Rn I (where z equals the number of atoms per unit

Wigner-Seitz cell). The eigenvalue de (R) is a parametric function of the

nuclear coordinates, as are H (x,R) and e j(x;R).

There area few remarks that should be made at once concerning the con-

sequences, interpretation and usefulness of the Adiabatic Principle and of such

approximate eigenstates as (11.7).

First, a consequence which does not derive from the Principle:

This point of view,- and the use of eigenstates such as (II.7), - does not

decouple the systems of electrons and nuclei. We expect that this fact needs

stating explicitly, for a picture of solids (metals, especially) commonly held is

that of a system of electrons decoupled from a system of nuclei (or ions), which

systems interact with one another but weakly. This simple picture appears to be

supported by a substantial amount of experimental evidence. For one example,

the specific heat of a metal can be expressed as the sum of the independent con-

tributicns of the electronic and vibrational specific heats, i.e.,

C (T) = C (electronic) T + C (lattice) T , (11. 9)

suggesting that the total energy of the solid is the sum of the energies of the

electrons and nuclei - a characteristic of independent systems. In fact, such is
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a misinterpretation of equation (I. 9); and one important conclusion of this in-

vestigation is that the interaction between the dynamical behaviour of the nuclear

and electronic systems strongly influences the quantities C (electronic) and

C (lattice) entering (II.9). For another misleading example, when deriving

the electrical conductivity of metals, the effect of the motion of the nuclei upon

the conduction electrons can be fairly accurately calculated using perturbation

theory.

What the Adiabatic Principle does, in fact, say is that if the nuclei have

just changed one configuration, say n(R), to another, say n(R'), the system

of electrons will inevitably be found in the equilibrium configuration pertinent to

that nuclear arrangement, i.e., Y e(x;R'), however, abrupt the nuclear transi-

tion may have been. Which is to say that the electronic system, far from being

independent of the nuclear motion, follows it perfectly, and that after such a

transition,

n(R) n(R')

there is no part of the electronic system "left" in the state (x;R). The limits
e

of the validity of the Adiabatic Principle depend upon the ratio of the electron

velocity, vk, to the velocity of sound, c , and upon a relaxation time, (e - ph),

characteristic of the actual (not instantaneous) response of the electrons to

nuclear motion. The extent of these limits and their influence upon the results
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of calculations made using the Adiabatic hypothesis are discussed in Chapter VII.

Second, on the usefulness of the formation of the Adiabatic Principle:

The usefulness of the type of eigenstates for the electronic system pertinent

to the Adiabatic model, i.e.,

Te(X 'X2' ... , xN; R1lR2.. .,Rm) ' (1.10)

is usually limited to physical systems where either the variation of the electronic

eigenstates with the parameters R is small or where the motions of the nuclei

are severely restricted. The reason for this limitation is simple. Except for

the circumstance wherein the temperature of the system is at absolute zero, the

nuclei will be always in motion. Therefore an eigenfunction like (II. 10) will be

constantly changing, and one can not calculate any stationary or universally sig-

nificant quantity of the electronic system, such as, e.g., total energies, charge

or current densities, magnetic moment, etc. In such cases, one is restricted

to calculating some time-averaged quantity associated with the property under

investigation - a procedure which is both conceptually unsatisfactory and which

introduces new complications into the analysis.

An example of a problem for which the Adiabatic Model is useful by virtue

of the first condition, - a very small variation of the electronic eigenfunction

with respect to variations of the nuclear coordinates, - is that of the conduction

electrons in a periodic lattice. That is the problem which we address here.
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Because the nuclei in a crystal lattice are always in motion (at tempera-

tures not equal to absolute zero), the electronic eigenfunction is varying at

every instant of time. Furthermore, because the interaction between a nucleus

and an electron is very large in the vicinity of the nucleus, a change in the

nuclear position will expectedly work a considerable change upon the electronic

probability amplitudes (wave-functions), at least in its neighborhood. Thus we

must address the problem of solving for the electronic eigenfunction at all

nuclear spatial arrangements.

This general and extensive problem is rendered tractable by two properties

of the crystal lattice. First, all possible motions of the nuclei are known and

counted for temperatures below the melting point. These are the Normal-mode

lattice vibrations (phonons), characterized each by their respective normal-mode

frequencies, w (q), their wave-vectors within the first Brillouin Zone, q, and

their band indices, s. Second, the functional dependence of the electronic eigen-

functions upon all the nuclear coordinates is known explicitly through the depend-

ence of the tight-binding components of the one-electron orbitals, which have the

form,

ik · R

(k; R) - e CPk ( r- ). (II. 11)

R
n

These two properties will permit us to write the electronic eigenfunction for all
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nuclear arrangements in terms of the derivatives of the electronic eigenfunctions

and the normal mode amplitudes. This particular approach has been described

succinctly as, "substituting for the solution of one general and very difficult

problem the equivalent solutions to 1023 easy ones."

The specific technique which we use is simply to express the electronic

eigenfunction at a general set of nuclear coordinates as a Taylor series expan-

sion about the equilibrium (or zero-temperature) set of nuclear coordinates.

Furthermore, because the electronic system is conventionally (and most easily)

described in terms of the electronic eigenfunctions belonging to the equilibrium-

position nuclear coordinates,

{ Y (ej R) (11.12)

we express each term in the Taylor series as a linear combination of these.

Finally, an example of a problem for which the Adiabatic Principle is of

little use, although of no less validity, is that of a fully ionized plasma at suf-

ficiently low density and high temperature so as to be in the non-degenerate

regime. For this system, the rapid and complicated motions of the positively-

charged nuclei render the solutions of the electronic Hamiltonian of the form,

Ye(x,R), practically unobtainable.
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CHAPTER III

THE TOTAL HAMILTONIAN AND THE

INDEPENDENT-PARTICLE MODEL

II. The Simplification of the Potential Energy Terms.

As has been stated in equations (II. 1) and (11.3), (II.4), the operator re-

presenting the total energy of the solid is,

H
Htotal2 1 n

Rn 2R R
n m n

z 2 2
Ze

Iftn-
q-

+ Z( v -e
i In R

n

2
Ze lj~

Z e 2 1
1 n j A

The potential energy terms in equation (II. 1.1) which describe, respectively, the

nuclear-nuclear Coulomb repulsion,

+--
2

R #R
m n

2 2
Ze

1n m

(i. 1.2a)

(.1. )
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the electron-electron repulsion,

21 e
+-- 

2 i jA Ixi XjI

and the electron-nuclear Coulomb attraction,

2Ze2
i 1 

m

(III.1. 2b)

can be combined so as to eliminate the long-range I R-1 interaction. This sim-

plification is affected by using the translational symmetry of the crystal and in-

troducing the coordinate transformation,

x. = x.-R
j J m

(III.1. 3a)

where the cellular coordinates, xf, are restricted to the range set by the limits
J

of the Wigner-Seitz cell,

0 x' < a o . (m.1 .3b)

When the operators for the electron-nuclear attraction and the electron-electron

repulsion are written, respectively, in a polar and bipolar expansion, the lowest

order terms, - which go as,

(III. 1. 2c)
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Z 1

R R IRn m I
n m

cancel the nuclear-nuclear repulsion exactly, because the periodicity of the crys-

tal requires that each Wigner-Seitz unit cell be electrically neutral. ] Thus,

the total Hamiltonian can be written simply as,

2 2H = h 2 e 2 IZ e 1 e

t 2M i n n 2Iti 111 2
n

, (m.l.4)+ a(,fn) + r(

RO 2 ji
n

where both -a(xj,t ) and r(x, x ,R ) go as R - P for p > 2. Accordingly, the

total HIamiltonian may be separated as,

H ota(x,R) = - z V + He(cellular)
total 2M n

R
n

(m.l.5)

where

_ 2
H (cellular) = 2 V.

1

Z e 2 ' 1 e 2

Ixe .1 = =exiT-I Z 2 j4 jZ! -z'1 j 1 j

- 1 >6+ 7 a(xiR n) + it r(xi'xjR . (m. 1.6)
Rn ji-

n

I
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111.2 The Independent Particle Model.

As has been made clear in Section II, the calculation of the dynamical prop-

erties of a system of electrons and nuclei begins, - when using the adiabatic

hypothesis, - with the calculation of the eigenfunctions *e(X x2, . .,N;

R1 R 2 , ... IN) of the electronic Hamiltonian, H *x2' . , xN ; R1, R 2, RN

for some specific nuclear arrangement. For crystalline solids, the arrangement

of the nuclei chosen is usually (and herein) that pertinent to the temperature ab-

solute zero. The first problem then is to ascertain the eigenstates of the Hamil-

tonian,

2 2 . "-2
h 2 Ze 1 e 

2m | 2 | j

+ a( xi,A ) +-E r(
ii n ji

R fO ji'
Ye(x';i ° )

IL

-He (,R°) e( = Be(R °) Ye(x;R°) . 2.1)

Now, because the number of electrons in a given crystal is on the order of 10

22 -3
10 cm , this problem also presents insuperable difficulties to finding the

exact eigensolutions, quite independently of any difficulties associated with the

motion of the nuclei. In order to calculate reasonable approximate solutions to
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equation (.201) we introduce the following simplification: every electron is as-

sumed to move independently of the motion of all the other electrons in the aver-

age potential field produced by them. This simplification amounts to performing

some average summation of the terms in the electron Hamiltonian which repre-

sent the electron-electron Coulomb interaction, i.e.,

2

jii i j R#
n

(

':N...1IY~x · :·e· ,···)·~·)~;iil )··,·N dx;, I·. ·
(J'X · ·;R1, ·RN) Ye(Xl,.,;R1,... ,I N e I -

N-1

, N-I

Vop( x-!,E"l RN)

Observe that the caret over the differential d' specifies the coordinate not in-

tegrated out. The operator, V P(x!,R, .. , RN) represents the potential energy

of interaction between the i-th electrons (with space and spin coordinates, x!) and

all the other electrons. The contribution to the total energy of the electronic sys-

)i

i
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tem (the expectation value of H ) of the energy of interaction between all the
e

electrons is the integral over coordinates x. of this operator V 0 (P,) times
1 e 1

the density, pe( i), of electrons at x., where

Pe(Xi ) = Ye( X1 N, I .N , ) x, , X, , ... , d (m.2.3)
N-1

or, explicitly,

Oe i Pe(Xi) Ve (X.) d. (m.11.2.4)
e 2 Je1 1 1

multiplied by a factor of one-half because the total energy is the sum of the

1 27,28,29]energies of electrons interacting in pairs,

The development of VoP(x) corresponds to a demonstration of Hartree'se 1

original postulate: each electron moves in the averaged charge distribution of

the other electrons. Because the eigenfunctions, Ye(X,), of the electronic sys-

tem from which VOP(x ;R) is generated according to (m.2.21) are necessarily

anti-symmetric under interchange of any pair of electronic space-and-spin co-

ordinates, this single-coordinate potential operator manifests the effects of ex-

change. And to whatever extent the polarization of the electron cloud or any con-

figuration interaction is included, VeP( Xi) manifests the effects of dynamic cor-

Equation (.2.4) is exact (there have been no approximations made in its de-
rivation) and has the form of the classical electrostatic expression for the
energy of a distribution of charge interacting with itself. However, although
the equations (. 2.2) and (.2.3) for Ve(xi) and Pe( i), respectively, are
exact, they are not related by Poisson's approximation: 72 Ve( i ) ) Pe( i)'
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relation as well. The full analysis which demonstrates that when Hartree's

original postulate is properly interpreted one obtains a unique potential for the

self-consistent field was done by J.C. Slater. [30,31]

Using the potential operator, VP (xi) which represents the potential ex-

perienc ed by an electron of coordinates, xi , due to all the other electrons, we

define the single-particle energy operator, h(xi,R), by

he( 1 ,R 2... ,RN ) he( x i ,R ) -

2 2 2
--h 2 Ze o( ii . (m..5)
-v. - V ( ,R) + ( R x, ). 5)1 e 1 R n

x l
n

Substituting this one-particle energy operator, he( xi,R), into the expression for

the Hamriltonian for the electronic system gives,

Ie eH ~~ x =E 2 (ii. (III1.2.6)

Note again the subtraction of V P( xi,R) from the single-particle energy oper-
2 1

ator, he(xi,R). This is required because the total Hamiltonian, He (X,i), in-

1 op eop 
volves -V e P(x,R), while h e(xi,R) contains VeP(x,R) 

The exact eigenfunctions of H e(x,t) are sums (or series) of Slater deter-

minants with coefficients determined variationally to minimize the eigenvalue

(i.e., the total energy). We take for elements of the determinants the linearly



28

independent one-electron orbitals which are eigenfunctions of the single-particle

energy operator, he(xi,R), that is orbitals which satisfy

he(Xi,R) k(Xi;R)= ek(R) k(Xi;) (M.2.7)

Because the orbitals, k(xi;), are all eigenfunctions of the same operator,

he(Xi , ), they are automatically orthogonal. In the present work, this will be

a distinct advantage over the Hartree-Fock formalism of which the excited state

orbitals are not orthogonal to the ground state ones.

The variational procedure necessary to ascertain the configuration inter-

action is impractically difficult, however, and for the present work we shall ap-

proximate the eigenfunctions of He(x,R) by single determinants, or

?e(,l .. ,xN; R,... ,RN) = Ye( ,R) =det I k( k; ) .(II.2.8)

Using these single determinants we generate a self-consistent potential function,

Ve(x i, t), to approximate the exact potential operator for the self-consistent

field,

V ( Xi R ) Ve ( Xi ,R ) (m. 2 9)

where

V( i',) =zXf*(xj;i ) tj( xj;.) d; +

Z (32 J*(i ) 4 .( i.X. R (III.2.10)
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In the potential function, Ve (x i ,R), the effects of exchange are included by the

1/3 -32]
p (x i ) approximation developed by Slater[32 The ground state eigenfunc-

tion for the electronic system will be chosen as the determinant containing the

N distinct orbitals of lowest one-electron energies, ek(R). Thus we shall use

an independent-particle model.

There is more to justify the use of an independent-particle model for the

electronic system besides the fact that such approximation reduces a partial dif-

ferential equation of 3N independent and inseparable coordinates (where N 1022)

to an equal number of ordinary differential equations.

The conceptual picture of the electrons in a crystalline solid is that of a

set of single-particle states occupied by order of increasing energy up to some

maximum value determined by the number of electrons present. Such is the con-

cept of the Fermi Surface. The conceptual picture of the interactions between

the electrons and the lattice vibrations is that of an electron in a specific single-

particle eigenstate (labelled by a wave vector, , in the First Brillouin Zone),

I (xi), either absorbing or emitting a phonon of wave vector, q, and changing

to the eigenstate of wave vector, k± q, i (xi). These types of processes are
-'

k+q
represented by the interaction diagrams in Fig. 1, respectively.

This way of conceptualizing the phenomena is inherently one of an inde-

pendent-particle model. And therefore, we employ one such.
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11. 3 The A.P.W. Method.

Within the framework of the independent-particle formalism, the one-

electron orbitals, xk( ;R), which form the N-electron determinantal eigen-

functions,

,e(x,...,xN;R1,...,RN) =det ] k(k;Rl...RN) , (.3.1)

are eigenfunctions of the crystalline Schrodinger equation (11I.2.7),

he(Xk,R) k(xk R) = ek(R) k(xk; R) . (III. 3.2)

The potential energy operator in equation (III.3.2),

2

U(xkR ) -= ~ + V e (Xk;R) - a(xk,R m)

xk R O
m

= g Ucell ( x k - Rn) ,

n

has the symmetry and periodicity of the crystal, and the eigensolutions, *k( x k R ) ,

must satisfy the crystalline periodic boundary conditions,

-- _* "* ik I 

k( Xk R+ Rm;R) =e k( ;R) , (. 3.4a)Y~~ + Y k _

and
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ik R

n xk -, ( (m.3.4b)n s 

In equation (.3.4b) the subscript n specifies the normal gradient, and the in-

dex s on k s that the coordinate is on the surface of the Wigner-Seitz cell. To

find solutions to the Schrodinger equation which satisfy both boundary conditions

(E .3.4a) and (11. 3.4b) at all points within the Wigner-Seitz cell and on its en-

tire surface has been one of the central problems of theoretical solid state phys-

ics during the past quarter century. This problem of the Schrodinger equation

for a periodic potential has been solved most accurately by the method of Aug-

mented Plane Waves (A.P.W.) developed by Slater and others. [33 '3435]

The A.P.W. method employs a dual, or composite, representation for the

eigenfanctions of the crystalline one-electron Hamiltonian. Within the volume of

a sphere drawn inside the Wigner-Seitz cell, the A.P.W. procedure solves the

central-field Schrodinger equation exactly for a set of trial one-electron eigen-

energies, :

he(xkR ) k(Xk;) = V+Ucell(xk; Xk; ) = e(R) kkR

where (M. 3. 5)

lxkISr

In the region between the inscribed sphere and the cell boundary, the A.P.W.
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eigenfunctions are expanded in plane waves:

k(Xk; R) = v(+ Ki) e , (11.3.6)

K.
1

where

These two representations of the eigenfunction are made to match continuously

at the surface of the inscribed sphere, r . The functions described in equations

(I. 3. 5) and (. 3.6) are the trial functions which enter the variational proce-

dure to ascertain the minimal eigenvalue, k(R), and the eigenfunction belong-

ing to it. Although the exact solutions to the crystalline problem have eigen-

functions which match not only continuously at the A.P.W. sphere radius but

match there also with a continuous first derivative, both such conditions cannot

be imposed a priori upon the trial functions without corrupting the variational

procedure.

The A.P.W. energy eigenvalues, ek( R ) , and the A.P W. eigenfunctions

which belong to them, (Xk; ), are determined variationally from the trial

solutions, (111.3.5), and (111.3.6), by the zeros of the secular determinant,

detl(h-e)ijI =0 (.3.7)

where
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(h-¢)i* j . R) (x',R)- (R )j(x'; R) dx (H.3.8)

Wigner-
Seitz
Cell

Observe that in all the equations relating to the one-electron problem we carry

along the implicit dependence of the 3N nuclear coordinates by the symbolic

parametric variable, R.

The A.P.W. method for solving the variational problem of an electron in

a crystalline potential is carried out as follows.

The crystalline potential, ucrys (x,R), has the symmetry of the crystal's

space group, e.g., Oh for a cubic crystal; and from this potential,

u X(iR) u Z(IXR|)Y,(r)m , (1m.3.9)
crys -,m

£,m

the spherically symmetric component is taken,

uL o( xR) = u(r,R) , (m. 3. 1 0)

and enters the one-dimensional radial Schrodinger equation,

(2 + u(r (r) = e (r) (I11 3.11)
rd r dr r2 /

The solutions to this radial equation form the trial functions for the A.P .W. vari-



34

ational problem. The trial functions have the form,

(xi3ra = @(22+1) ( - ImI) mco e-im k)
trial (.+Im)!

Im

x U(e)(r) P lml (cos ) eim), (m.3.12)

inside the A.P.W. sphere, r r , and

( Ii(2+ 1)
trial'M2£,m

I=M pl l~cos-im 0
(- Im)!P (cos k) e
(,I+ImI)!

between the sphere and the boundaries of the Wigner-Seitz cell, rs r rrB .

One observes that the factors,

I Zl(-ImI)'pm -im CPk j(k rs)
i(2+1) Pl ) (cos k) e 

(Y,+ m)! A u(rs)
(m.3.14)

which multiply the trial functions inside the sphere assure that it joins continuously

onto the plane wave, e , at the sphere radius, r . The eigenvalue, , is su-

perscribed on these trial functions, u (r), to emphasize that they are implicit

(m.3.13)x kr) P I l (cos e 9Y,
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functions of e.

These trial functions are the natural ones to use for the crystalline varia-

tional problem. The only singularity in the crystalline potential is contained in

its spherically symmetric component, u(r), and the behaviour of the solutions

to the singular radial equation will dominate that of the solutions to the complete

crystalline potential problem.

The variational problem in the case of a single plane wave for the eigen-

function outside the sphere consists of finding the function < (x) which renders

a stationary value to the integral,

f tgk ( h) he) k() dX , (I. 3.15)

cell,

subject to the constraint of normalization,

t( X)* ,k(x) =1 . (E1.3.16)

Such is determined by the eigenfunction for which,

Jtk( )(h (X I) kX') dx = o, (111.3.17)

where the Lagrange multiplier, sk, is identified as the pertinent eigenvalue to

which k( x ) belongs.

Now because the trial functions which enter equation (m1. 3.17) are them-
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selves implicit functions of the eigenvalue, , there exists no known technique

for solving for the eigenvalue analytically, - as with, say, the Euler-Lagrange

equations. Accordingly, the A.P.W. method determines the eigenvalue by

"brute force." The integral function of the energy,

)((X) k(X) d (111.3.18)

is solved explicitly over an extended range of values of , and its zeroes are

there from ascertained directly. It is to be understood that the integrals (111.3.17)

and (. 3.18) can involve the complete crystalline potential, - not necessarily

only the spherical component inside the sphere.

The eigenfunction thus found is not, however, the variational solution to

the crystalline problem. Although the trial functions (III.3.12) comprise a com-

plete set of functions inside the A.P.W. sphere, by matching them onto a single

i 'r
plane wave, e , at the sphere radius the solution was pre-determined between

the sphere and the cell boundary. A thorough variational freedom is admitted to

the method by matching at the sphere radius the trial solutions inside the sphere

to the set of plane waves,

i (k+K) r
e J , (HI.3.19)

K.

where the vectors, Kj, are vectors of the reciprocal lattice. Then the eigen-
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values are determined by the zeroes of the determinantal function,

D(e) =det (x) (x)-e x); (11.3. 20)
k+K. +K.

1 J

which are also ascertained by calculating the values of D(e) over a range of

energies.

Because the eigenfunctions which belong to the A.P.W. eigenvalues e(k)

obtain from a variational procedure, they are expected by the most exact solu-

tions to the problem of electrons in a crystal lattice.

There is nothing in the formalism of the A.P.W. method which restricts

its validity to any particular crystalline symmetry or to any particular set of

nuclear coordinates. In fact, should the nuclear coordinates pertinent to some

specific crystal problem be altered to a new arrangement, the A.P.W. method

would calculate the set of one-electron energies, e(k), and the distribution of

electrons with e(k) (energy and wave vector) pertinent to the new nuclear ar-

rangement with an accuracy and ease equal to that of the original problem. In

short, the A.P.W. method is well adapted to provide the adiabatic-model eigen-

functions, (x;R), where

He(x, ) Yee (= ) Ye( ) (

and
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Y( x,R) = det k( XR ) . (I. 3.22)

This statement holds especially true when the distribution of electrons with

energy, e(k), - i.e., the Fermi Surface, - is of primary concern.

For the analysis of the electron-phonon interactions, the essential point

under investigation is the redistribution of electrons at the Fermi Surface ac-

companied by the absorbtion or emission of phonons. Or put another way, the

deformation of the Fermi Surface when the nuclear arrangement is altered ac-

cording to one or another of the vibrational normal modes of the lattice. For

this problem, the A.P.W. method is well qualified.

The A.P.W. eigenfunctions have a distinct form: each can be represented

as a sum of plane waves plus a tight-binding function. Within the A.P.W. sphere

inscribed in the Wigner-Seitz cell, the eigenfunction is an exact solution to the

Schrodinger equation, or

-V+U(k;R ) (xk;R) = e (R) )(x ;R) (. 3. 23)

In equation (111.3.23), the eigenfunction is written as,

(ck )( ) (III. 3.24)

in order to indicate plainly that 4 (x) is an implicit parametric function of the
k
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energy eigenvalue, e (and, precisely, that one which belongs to the argument,

e (R)). The wave-vector, k, is restricted to points within the first Brillouin
k,s

Zone, and the subscript, s, designates the branch to which the band energy,

e (R) belongs. Together and s specify the irreducible representation of the
ks

crystal's space group of which i, (x) transforms as a base vector. In terms

of the trial functions, UC (r), the A.P.W. eigenfunction is represented within

the sphere as,

()( R) =J co E a(e; ks)U(e)(IZ |;R) Yi-(kp ) (E .3.25)

.=o m=-2

where

ik S

In the region between the A.P.W. sphere and the cell boundary, the A.P.W.

eigenfunction is represented as,

s(Xk; R) =Ea( ; s)(Ki) e 
K.

1

where

2

In equation (m.3.26) the variationally determined coefficients are written as,
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a( ; )(k+ i; R) , (I.3.27)

to show that they also are implicit functions of the band energy, e (R) and pa-
k,s

rametric functions of the nuclear coordinates R e 2 R1fl2'..., RN. The A.P.W.

eigenfunction represented by (. .3.23) or (III.3.25) matches onto the sum of plane

waves, (1.3.26), at the sphere radius both with a continuous amplitude and a

continuous first derivative. Therefore, one can write,

i,)( ;R) = a(e;ks)(i+ )( i k + i11.3.2(xk; R) a K Ii + ; R , (m.3.28)
.

where

c k,s kl ·r .k sX) if ir . ( 3.29)

Observe that equation (m. 3.28) is simply equation (. .3.26) for | ikl 2 r s, and

that for |I i r s , k(k) is simply the difference between equations (.3.25)

and (.3.26). The tight-binding components of the A.P.W. eigenfunctions,

Cp' (xk; R ) , (E. 3.30)
k,s

which are localized about each nucleus are qualitatively quite like free-atom or-

bitals. If the energy band or symmetry point to which k(X) belongs is, say,

p-like (e.g., P 4 , N' in a body-centered cubic crystal) then cpk(x) will have odd
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parity and will vanish :Linearly at the origin. If the energy band is predominantly

s-like, then (pk(X) will be an s-like function. In each case, the number of nodes

in tPk(x) corresponds to the analogous free-atom state:

n - - 1 number of nodes (m.3.31)

where n is the principal quantum number of the corresponding free-atom energy

level.

The Bloch function form of the A.P.W. eigenfunctions obtain as,

(k)- (ek; S) i(kk;R K)
) a (k; (~+Ki,R)(i

k,s eK. I

K - e CP _. f (Xk-Rn (I3.32)

n

written henceforth as,

i(k+i.) x

$k(x ;R) = a(k+Ki )I
K.

i.

i (k + ii) R
+ e

N R
n

with the band indices and the parametric dependence suppressed.

cP (x - 3
!m+ .

(m.3.33)
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CHAPTER IV

THE MATRIX ELEMENTS OF THE ELECTRON-PHONON

INTERACTION IN THE ADIABATIC MODEL

IV. 1 The Expectation Values of the Total Hamiltonian for the System of

Electrons and Nuclei.

Within the frarmLework of the Adiabatic Model of a system of electrons and

nuclei, the Hamiltonian operator acting upon one of the product states gives,

H(x, R) T(x;R) =

2M- g (Xe(X;R) (R) = (IV.l.la)

{.zke( iR) (R )x;R) -- ve(Xi;R ) Y xR )-+inn-'1' (x;R) n(R) + (n) (Xei 1 ;R (xR)
e ~ ~n2 VeX; n e 1 2 e i 

R i

+ nn(R) M) VR e(x R) +( - )(R e ;R ( R n(R

n n (IV. 1.lb)

The expectation value of the Hamiltonian in this state is,
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n= f (R) M) R + (R) n(R) +

n

n 2 e ( R) d3Nx .
+ 3f (x; R)N); R) d (IV.1.2)

\M 7d

n

In evaluating (IV.1.2) we implicitly assume that each factor of the product

eigenstates belongs to an orthonormal set:

JYel(x ;R) Ye 2(;R) d x 61,2; (IV.1.3a)

* 3N
1(R) (R) d R = 8 .; (IV.1.3b)

In equation (IV. 1.2), the dependence of the total energy of the electronic system

upon the nuclear coordinates is written explicitly as

1 -. 3Ns(R) = (R1, R2, ... , R n ) =
(x :; R) (he(xi R) -- e( X R) Yi(x; R) d x (V. 1. 4)

The dependence of e(R) upon the nuclear coordinates determines the energy

spectrum of the nuclear system. This dependence is determined itself by the

equilibrium-position nuclear coordinates which are themselves functions of the
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ground-state electronic configuration.

When the eigenstates of the system of electrons are approximated by single

determinants in an independent-particle formalism, the electronic ground-state

and the equilibrium-position nuclear coordinates are determined in the following

way:

The ground-state electronic configuration is determined by Fermi energy,

eF . This Fermi energy, F' is the minimal single-particle eigenvalue for

which there exists a function,

F(kx ky ) - eF(k ky k ) 0(IV.1.5)FXk k. - x y z

defining a surface in k-space whose volume includes exactly N points. The

surface determined by eF is the Fermi Surface.

The Fermi energy, the Fermi surface, and the total energy of the elec-

tronic system are all parametric functions of the nuclear coordinates. The

equilibrium nuclear positions are defined as those for which the total energy of

the electronic ground-state is stationary under variations of the nuclear coordi-

nates:

d d

R (eL) d { < e,q(R) He(R) Ye,q(R)> O (IV16)dR dR
n, i n, i

for all R ..
n,i
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The expansion of the total energy of the electronic system in a Taylor

series about the equilibrium-position nuclear coordinates gives

8R 8R + ...
B (R) = e i(R ) + cdg(R m i ;nnj (IV.1.7)e(R) e,g R oC ,g o) m ,i njn,j 

m,i ; n,

through terms quadratic in the variations of the nuclear coordinates. Thus it is

observed that the non-vanishing terms in equation (IV.2) are dg(R ) and terms

quadratic in the nuclear coordinates and momenta, and the traditional harmonic-

oscillator nuclear eigenfunctions obtain. Equation (IV. 1.2) may be rewritten as

K e n IHI 'e n> =

(R ) + I + 6R 2n (R) , (IV.1.8)

{(Rhe V +

where

2
n

h 2,(X R) 2 3N
) 2M ST e,g(X; VRn fe,g(X; R) d x (IV.1.9)

the frequencies, ) , in equations (IV. 1.8) and (IV. 1.9) are the normal mode

vibrational frequencies, w(q,s) - the phonon frequencies. We shall assume

henceforth that the problem of diagonalizing the matrix for the nuclear Hamil-

tonian has been solved and that the phonon frequencies have been determined.

(Strictly speaking, the frequencies which obtain from the diagonalization of the

matrix in equation (IV. 1.8) should be designated the "un-renormalized normal

mode frequencies," - u 0(q,s); for the terms linear in 8R which connect
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excited electronic configurations to the ground-state, through the electron-

phonon interactions, will influence the phonon spectrum.)

It is to be observed that no non-vanishing matrix elements obtain from the

last term in equation (IV.l.lb),

-2-(V YI·;~-e(X;R n(R (IV.1.10)

R
n

for the expectation value of H(x,R) in the ground-state. The nuclear eigenfunc-

tions are approximated by the harmonic oscillator functions determined by the

nuclear Hamiltonian in equation (IV.1.8),

M 
-h 2 n2

V 2~ 8R )§ (R)= W (R) . (IV.1.11)
2M Rn 2,) =n n, (R ) .

These eigenfunctions are each of a distinct parity, and therefore the factor which

involves the nuclear coordinates, in the ground-state expectation value of the

operator in (IV.1.10), vanishes:

"2 M R)VR (R d R= . (IV.1.12)2M n,N n, 

The only non-vanishing matrix elements which obtain from expression

(IV.1.10) are those which connect different electronic configurations and differ-

ent eigenstates.

The expectation value of the operator (IV. 1.10) between states which differ



47

in both the nuclear and the electronic configurations is

2 dY 
( n, | dR dRn,

2M Z ' Ie,1 QI
R n n

n

2M R Ye,2(x;R) d3N 
2M R

n

n,;(nR) R (R)d3NR} (IV.1.13)

It is these matrix elements, (IV.1.13), which are traditionally associated with

the electron-phonon interactions. These non-adiabatic terms are designated the

"double-derivative" terms because they involve the derivative with respect to the

nuclear coordinates acting separately upon the nuclear eigenfunction and upon the

electronic eigenfunction. The problem of calculating the matrix elements of the

electron-phonon interactions involves evaluating the integrals in the double-

derivative terms.
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IV. 2 Evaluation of the Non-Adiabatic Terms Involving the Double Deri-

vatives.

The factor in the non-adiabatic double-derivative terms which involves the

nuclear eigenfunctions,

(IV.2.1)

can be evaluated directly. The variations of the nuclear coordinates from their

equilibrium values are assumed to be small, - this is the justification for

truncating the expansion of B (R), equation (IV. 1.7) at the terms quadratic ine

8R. Accordingly, these variations are henceforth described in terms of the

normal mode coordinates, Q :
q,s

R =8RO +- d
m m Im

iq' Ro
R = 7Q e ie

m -, -+
q,s q,s

-4

q, s

and the momenta are also expressed as,

-p =P
=P = qsni

-4

q, s

(IV.2.2c)
m-,

e e
q,s

(IV.2.2a)

(IV .2. 2b)

- ihV
R

m

ih I ,* (R) _ I(R) d R ,
2M n't V n
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The matrix element (IV. 2.1) taken between harmonic oscillator nuclear eigen-

functions, associated with the phonon of wave vector q is, then,

/hw( q,s) M -I

n,~(q'~s){P R I n, qs 1 =i i
Rm n 2N (8-1-nln

(IV.2.3)

In equation (V.2.3) the number 1 , which specifies the energy level of the
q

q-th harmonic oscillator is assumed to specify the number of phonons present

of wave vector q and band index s. Thus from equation (IV. 2.3) it is observed

that, because of the delta functions 8(1 -1,11), (1]+1, T), the double-derivative

matrix elements connect nuclear eigenstates which differ in the number of

phonons present by one; and thus the factor of the double-derivative term which

involves the transition of the electronic state e(x;R) to the state yI (x;R),
e,1L e,2

s2M e,2( X ; R ) R (x;R) d 3Nx (IV.2.4)
2M e2 n

is associated with the absorption or emission of a single phonon. Such is in

keeping with the conceptual model of the electron-phonon interactions.

The difficulties which have heretofore obstructed the development of a

formal analysis of the electron-phonon interactions have obtained from the dif-

ficulties (or impossibilities) of calculating the derivatives of the electronic

eigenfunctions with respect to the nuclear coordinates:
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d e(x; R . (IV.2.5)
dR

Within the framework of an independent-particle model when the electronic eigen-

functions are approximated by States Determinants,

Te (x;R) = -det ( ;R)I , (V.2.6)

the problem of calculating the derivatives in (IV. 2.5) reduces to that of deter-

mining the derivatives of the single-particle electron orbitals with respect to

the nuclear coordinates:

d (V x;R (IV.2.7)
dR

n

To demonstrate the difficulties which have, in the past, prevented the cal-

culation of the electron-phonon interactions, three examples of crystalline elec-

tronic eigenfunctions will be considered briefly: those for the "free-electron"

model of solids; those for the "tight-binding" approximation; and, those for the

"almost free electron" model.

For the "free-electron" model of solids, the eigenfunctions for the elec-

trons are plane waves:



51

· 1* iko x
(k;R) e , (IV. 2.8)

Z Iv

where the wave vectors, k, are restricted to points in the Brillouin Zone. In

this model, the derivatives of ;k( x k;R) are all zero,

__ ( ( = d(e ; ) =0 .d I({,k R_ id(e lk ' x)

dRE V dRn n

(IV.2.9)

This result would imply that there are no electron-phonon interactions. Such

conclusion is, in fact, the correct one for the "free-electron" model. The plane

wave states, (IV.2.8), are the eigenfunctions for electrons moving in a lattice

which has no crystalline potential,

ve(x;R) = 0 (IV.2.10a)
or - 2

h (x;R)= V2 (IV.2.10Ob)
2M

and which are therefore impervious to any variation of nuclear coordinates.

A second approximation to the electronic eigenstates in crystalline solids

which is often quite useful is the "tight-binding" approximation. In this model,

the electronic eigenfunctions are taken to be Bloch series of the free atom

orbitals:

* (x ;R)1= e Pxat om(k ) . (V.2.11)

p
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In equation (IV.2.11) the wave vector is again in the first Brillouin Zone, the

function p is an eigenfunction for the free atom whose nuclei make up the lattice,

and the vectors Rp determine the perfect lattice nuclear positions. In this model

the derivatives of the electronic eigenfunctions with respect to the nuclear coor-

dinates obtain straightforwardly:

-
(X = e · e(SRn) p(Xk - Rn) - e ( R n

) Vx P(Xk-R n
dR N

(IV.2.12)

However, the tight-binding functions of equation (IV.2.11) are quite poor approxi-

mations to the crystalline eigenfunctions of the conduction electrons in metals.

The usefulness of the tight-binding approximation is restricted to the inner-shell,

or valence-band, electrons in metals, or to insulating solids. Therefore, the

derivatives of the eigenfunctions in equation (IV. 2.12) are not valid to describe

the electron-phonon interactions in normal metals, despite their ease of deriva-

tion.

A third approximation often used to describe the electrons in crystalline

solids is the "almost-free electron" model. For such, the eigenfunctions are

represented by lattice Fourier series:

a(k+K.) e
xk*~ 1; R) =T, ~~(IV.2.13)

i WrV,
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The coefficients a (k+ Ki) in equation (IV. 2.13) are determined variationally from

the solutions of the secular determinant,

det (h- ) = 0 . (IV.2.14)

1 J

There are, two immediate problems which arise when using this model to analyse

the electron-phonon interactions. First, in order to represent the eigenfunctions

accurately in the region near the nucleus (where the potential undergoes the

greatest change when the nuclear coordinates change), a very large number of

terms must be included in the Fourier series (IV.2.13). Second, the dependence

of these eigenfunctions upon the nuclear coordinates is all contained implicitly in

the variational coefficients a(!~+ i). In order to calculate the derivatives of

these functions with respect to the nuclear coordinates it would be necessary to

solve the variational problem completely for the changed set of nuclear coordi-

nates, say,

° ° R° R° + R ° IV2 15
RI' 2' 3' ' m ' R N RN '(IV.2. 5)

and then to take the limit

r il;R+ Rm ) - (;R°)
lim - =m ;- R (Xk; . (IV.2.16)

8R - 0 8R dR
m m 

The plane wave representation, equation (IV. 2.13), is either an inaccurate or a
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very clumsy representation of the perfect lattice eigenfunctions. Even if only a

few terms are included in the lattice Fourier series,

_- , _> + __+ i(k+Ki -xk).
5 a(k+K.) e

.1. .r -o 1 (IV.2.17)

i=O

such that the matrix which generates the secular determinant for the perfect lat-

tice is a 5 x 5 matrix, for the case of the deformed lattice the matrix becomes of

the order of (5 X 1023 ) x (5 x 1023 ) because the translational symmetry of the

lattice is destroyed, and there are then non-vanishing matrix elements between

all plane waves

(x,R+6 R) - ) . (IV.2.18)
k+-., k+i.

J 1I

The solution of such a variational problem presents a formidable problem and,

of course, still carries with it the sickness inherent to the "almost-free elec-

tron" model.

As has been explained in Chapter III, the most accurate eigenfunctions for

the electrons in crystalline solids are the A.P.W. variational eigensolutions:

x (Xk;[) = a(Ki) K.t (Xk;R),
k. k+K.

(IV.2.19)

11t ·' :(-K 
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where

: 14 -

1' K 1K * m* -. e 1 P-4-
i+(xk; R) + e P (x-R) 

1 (IV.2.20)

In equations (IV.2.19) and (IV.2.20) the variational coefficients, a(k+Ki.), and
1

the functional form of -the tight-binding components,

(IV.2.21)

i (!+ .
(¢) - e1 ~X

CP (xk.()- -, ek k+K. k+K.
I 1

are determined by the eigenvalue, (k). The constant, A(k), in equation

(IV.2.19) is simply the normalization factor; the eigenfunctions are normalized,

such that

(IV.2.22a)

(IV. 2. 22b)i a(i+i) 2 = 1 
i

The derivative of the A.P.W. eigenfunction with respect to the nuclear coordi-

nates is

d ( # ZXk; R - lim

m m

*( Xk ;R+8R ) - (Xk; R°)

R

(continued)

W+ k. , ·

SI tk ))12 dI 1 



= lim 1
MZ -.0 (k) i 

a(i'+Ki;R+ R )
1 m

R
m

A(k) 1

i
a(k+4.i) e

1

im- R
mn

(i + it) · 8( m ) 'P ,(Xk- ) +
k+K.

1

A- ,
- e(R ) V

m x Ip (Xk- m +

1

+1 a(k+ )
A I1A 1
ZL%19 i

e
R

P

ik-iipde
de V I.

1
(k )

de(R )

dR
m

(IV.2.23)

There are several observations to be made concerning equation (IV.2.23).

function appearing on the first line of that equation,

t(k; ;R+ Rm )

The

(IV.2.24)

is understood to be the function which reduces to the perfect lattice eigenfunction

k ( xk ; R) in the limit as 'M vanishes:xk In~

lim (;R
dR 0

m

+8R ) =( k; RO)
mk

The index k appears only on the electronic variable x k

56

-a(k+i; RO

- k.+ 

1
(i Xk; R°)

(IV.2.25)

J 

.

in the function on the left
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hand side of equation (IV. 2.25). That function has no index k', for, as the eigen-

function of the deformed lattice, it does not transform irreducibly as the k-th

(or any other) representation of the translation group of the perfect lattice.

It will be shown in the next chapter that neither the A.P.W. eigenvalues,

e (k), nor the variational coefficients which obtain from them, a ( + Ki), have a

non-vanishing derivative with respect to the nuclear coordinates:

d ((;R =0 (IV.2.26)
dR

and m

d ·(a(+Ki ;R)) = 0 (IV.2.27)
dR

m

In order to prove the first of these assertions, equation (IV.2.26), it is neces-

sary to set up the matrix for the deformed lattice,

(h (;R+ 8R n) - 2 5, (IV.2.28)

and to solve for the zeroes of the (102) x (10 25) secular determinant which it

generates. This will be done in Chapter V. In order to prove the assertion

that the variational coefficients are also adiabatic to first order in Rm , equa-

tion (IV.2.27), it is necessary to invert that secular equation and to solve for its

eigenfunctions. This will also be done in Chapter V.

For the presen.t, using equations (IV.2.26) and (IV.2.27), the derivative

sought is,
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m(4 -\vIm a(k+i) e

A . - -- lI'(!k+ k. - e (r ) (x -R )m
+m +K.

1

- e(rm )m - ·. vcp (x-R
q . m
1

(IV.2.29)

d

dR
m

xL

___



IV.3 The Electron-Phonon Vertex Function by the A.P.W. Formalism.

In the independent-particle formalism, the non-adiabatic terms in

Frohlich's Hamiltonian,

-) + a-

Z/ i2 \ q

~-w S D(',, ,

k q

involve the vertex function D( ', k).

Model, andusing Slater determinants

this vertex function has the following

D(k', k, ) =

(IV.3.1)

Within the framework of the Adiabatic

as eigenfunctions for the electronic system,

form:

, (x;R) (R d
k' dQ k

q (IV.3.2)

where equations (IV.2.3) and (IV.2. 4) have been combined. In equation (IV.3.2)

the derivative of the electronic eigenfunction is with respect to the normal mode

Q . Because the variations of the nuclear coordinates are written such that
q

iq. RO
i m= i + es( q) e

-+ q,s
q,s

these derivatives are related simply by the chain rule:

Ald_ ,miq
d - d (q)e

d IdQ sdR ( ~ s
-q 1 -q m R
q,s m q,s m
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(IV . .S)

R
d

dR
m

(IV.3.4)
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Therefore, the vertex function D( I', , q) will involve the factor,

* (x;R)-d
* (x;R)

dR
m

(IV. 3.5)((X;R dZ

which equals, by substituting in equation (IV. 2.29),

j~~~.

ik o R 

m 
a(k+K .) i /

p+ e

NR
p

* (-4

+p K(x-R
k+K

j

(;-R ). e( m)
'+ j~.1+K

Equation (IV. 3.6) involves four integrals which are evaluated one by one:

iS * Am /l% -i (Z" +R.j) 
e ie

vN JF Z + ki+

cp i(x") e
k+K.

1

In equation (IV. 3.7) the variable of integration has been transformed as

I

F rL - i
AJ

(k +K5).x

vp, )
dx l (IV.3.6)

(x R) dx i (+ - e (R )'m

i (~k-i') Rn l-i (' +K) ,J
dX' i (Z+ k.i)

1

(IV.3.7)

/

I
X (Z- 'K

i

A8~,

I 



x'= x-R
m

which leaves the integral over the volume of the entire crystal unchanged:

-i (k+Kj) x

e

S'v 
V (x-R i) e( )

x + K. 

ik R
m

-e A --

e(8)

e-i (k K+ ) x

. (x-R )
+. In m

1

A
e(x)

surface

i(- ) - /-1 1 m

NV k + Ki

('+itj) -*x
(P. (xR ) d

(x ' ) e
-i ' + Kj) x'J

dx) i ('+ .) e (R ) .

(IV. 3 9)

In evaluating the integral equation (IV. 3.9) the surface term which obtained from

the integration by part.s was discarded because the tight-binding components are

all zero on the surface of every cell. The transformation (IV. 3.8) was also used,

iff. R
e In _. _R _~*- - - -- _q ~ __) .

e ( (x-R) P .(x-R ) e
~~m

p1 P q+ --, P J + KVIN R O + -itj Kt
P

(continued)
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-. -4P

(IV.3.8)

.4 , . -4t 

+i(,'+) e-i



cp_ () d
k+K.

1

i (+i i) - e ( ) . (IV.3.10)

The non-overlapping property of the tight-binding components,

* .. .

Zp (x-R ) cp (x-R ) = 0
k

if R p m

has been used to simp].ify the integrals in equation (IV. 3.10),

i- n
-eXe

N 
R

P

-ik' ' RP (f*
dx

j

P
k'+K.

J
N

x) (V * e(R ).
k+K.

1

Combining equations (IV. 3.7), (IV.3.9), (IV.3.10), and (IV.3.12) gives

i (e ') R
e

1 Jf
+ i(k+Ki)

1

a (k'+K) a(+Ki

z (A(Z) A(Z2)

e ( 8R ) 
N

e _ 1 e ()
' (6R ) ' ( 

N 4 + K.
]

-i (k' + j) x''
P _. (x') dx'+
k+K.

1

P. ( )dx' +
k+K.

1
(continued)
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i(k -k')
e

N , (x' )+ K.
i

(IV.3.11)

A 
e( )

di) (IV. 3.12)

(X -tI(x -R ) (
k'+K.

Ii

_- -
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- e(6Im) CP (x')(Vc dki/ (IV.3.13)
k+K.

I

Transforming this expression into a derivative with respect to the normal mode

Q involves the summation over R as in equation (IV.304), which gives
- mq

R :

s () e
S

m= N (k-k'+q+ ) () (IV.3.14)

Thus there obtains, as expected, the selection rule for the conservation of lattice

pseudo-momentum.

Therefore, the vertex function is

_/a*( ' + K.)

i 1

D(k,k,q) = 8(i- '+q+K2)
A( k)' 

i
(k+Ki-k'-Kj)

· - * -.1

+i(k+Ki) e Cs(ql)

e q *

J

e (q) ) e- - j

k'+K.
J

k + -K
1

k +K.
1

1/2

(IV.3.15)

There are several observations to be made of this vertex function.

it does display a term which has the form,

e

R
m

First,

J
I
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/ D(i, xf, c
D(9, q) q I C q| e cp( d d

i)

(IV. 3.16)

as in the Frohlich Hamiltonian. Furthermore, because this term enters with

the coefficients,

a* (+q') a() , (IV.3.17)

which are usually the largest Fourier amplitudes in the eigenfunctions, this term

will expectedly contribute strongly to the electron-phonon interactions. Second,

the transverse phonons enter the normal processes,

k- 4' + q = , (IV.3.18a)

as well as the Umklapp processes,

(IV.3.18b)

The interactions involving the transverse modes enter

tion (IV. 3.15). Even an eigenfunction involving only a

the interactions with the transverse modes through the

all three terms in equa-

single plane wave admits

matrix elements,

(IV.3.19)

s-n~= K

ik e( q) CP jx) () ft 
.. OZ+q k
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CHAPTER V

THE ENERGY BAND PROBLEM FOR A

DEFORMED LATTICE

V.1 The Matrix Elements for the Band Energies when a Single Nucleus

is Displaced.

Although the lattice deformations which correspond to the presence of

phonons are the normal mode configurations of the nuclei, we shall consider the

energy band problem for the case of a single nucleus displaced slightly from its

equilibrium position. The lattice deformations of the normal modes (or of any

other deformation) can be expressed as lattice Fourier series of such single dis-

placements.

We shall follow the procedure discussed in Chapter III for the A.P.W.

method. We shall use a muffin-tin potential,

V(x) =V(r) r r (V.l.la)

V(x') =V(r s) r r s (V.l.lb)

and shall use, initially, the same potential within the A.P.W. sphere about the
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displaced nucleus as that for the perfect lattice. It will be shown below that this

is the correct muffin-tin potential to use. In Chapter VI the variations of the

self-consistent potential are discussed extensively.

A few remarks concerning the drawing of the radius of the inscribed A.P.W.

sphere are in order.

Because the A. P.W. sphere remains centered about the nucleus when it is

displaced, it is important that the sphere be drawn so as not to intersect the

Wigner-Seitz cell boundaries or to overlap into the next cell. This is effected

by drawing the radius of the A.P.W. sphere somewhat smaller than the minimum

distance from the center of the cell to the cell boundary: i.e., smaller than the

radius of "touching spheres."

It is not especially important exactly how much smaller than the maximum

allowable value the radius be set, for the validity and accuracy of the A.P.W.

method is independent of the size of the A.P.W. sphere, so long as it remains

inscribed within the Wigner-Seitz cell. To investigate the electron-phonon in-

teractions by analyzing the differences of the solutions to the energy band prob-

lem for the deformed lattice and for the perfect lattice it is required only that

the A. P.W. spheres be sufficiently small that they do not intercept the cell

boundaries when displaced by the normal mode lattice deformations. In order

to estimate the extent of maximum variation of the inter-atomic distance, the

mean variation of the nuclear excursions in the Debye limit, where the amplitudes
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of adjacent nuclei are 180 degrees out of phase with one another, can be calcu-

lated from the Virial theorem:

2 2
V M 2 1 , (V.1.2)

ave < 2)
2 2

which, for the Debye limit gives

2
(< Ax2>- 2 , =(V. 1. 3)

M wD MkTD

where the identity,

h WD =kTD (V. 1.4)

has been used. For the metals Lithium and Sodium the values of M and T are,

-24 -24
respectively, 11.6 x 10 , 38.2 x 10 gms, 430, 150 deg. K.

For these metals the mean excursion, /<(Ax) > is 2.6 X 10 cm for

Li, and 2.4 x 10 cm for Na. Their nearest-neighbor distances in the perfect

lattice are, respectively, 5.713 x 10 cm and 6.914 x 10 cm. Thus it is ob-

served that the interatomic distance between adjacent atoms changes by only a

few percent when the lattice undergoes a normal mode distortion.

Therefore, it suffices to draw the A.P.W. sphere radius slightly smaller,

say 5% - 10%, than half the nearest neighbor distance.

To analyse the solution to the energy band problem when one nucleus is
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displaced from its equilibrium position we parallel the discussion of the A.P.W.

method as in Section I[I.

First we examine the variational calculation for the case where the trial

functions inside the A.]? . W. sphere are matched onto a single plane wave at the

sphere radius.

Let the equilibrium position of the displaced nucleus be given by R . The

position of this nucleus after displacement is R + R , which now specifies
m m

also the center of the A.P.W. sphere in the R -th cell. Inside the R -th cellm m

the trial functions for the A. P.W. problem are written using the coordinate sys-

tem having its origin at R + 8R . Because the coordinate systems for the

equilibrium position- iand displaced-atom problems are related by the equation,

r'=r-R . (V.1.5)

The plane wave component of the solutions can be written

· ik r S 8Rm ik. r' (V.1.6a)
e =e e

ik 8 Imh -im Pk
=e im2 +) - (- m)!p 

I£(2 L ('~ l ml(cos k) e
e m=- 2 (+ lml)!

ml(cos ') eim I (kr') (V.1.6b)

The primes in equations (V.1.6a), (V.1.6b) designate coordinates measured
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from the origin centered at the displaced nucleus. The trial A.P.W. functions

inside the A.P.W. sphere involve the solutions to the radial equation,

r') dr' dr' (r') -

The trial functions inside the A.P.W. sphere are matched on to the plane waves,

i .
e at the displaced sphere surface such that

+ g Um leJ Iml -im Pk

, -m= -_,
m ( o s 8'ei m 0£(2 kr 1 ) EiE: r

PlIml (os ) e'm ) u (r') for r' r . (V.1.8)
u; (rs)

It is to be observed that, aside from the relabelling of the spatial coordinates

with primes, this expression is identical with that for the trial function in the

perfect lattice except for the factor,

iS- R
me . (V.1.9)

(Note that the angles which designate the point in k-space, k, and CPk, are the

same for the displaced nucleus as in the perfect lattice.) Thus it is obvious that

the eigenvalues which determine the solutions to the integral equation,
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J x) (hx; R+R) - e( ¢i() = 0 , (V 1.10)

are the same for the displaced nucleus as for the perfect lattice. The explicit

expression for the integral above in the displaced nucleus case is,

e(X ;R+ 8R) -

-iI-ik 
= e

/ 4T r 4rr r 2 u (r \ik
e (k + s (2Y+1) (k r s )- e

2 G
T r4rr 4TTr u (r) 

= ___ _----(k;)+ Z(2+1) ((k ) ( 

which is identical to (. e ( ;R) -( , as given in expression (mI. 3.17)
kk

Although the eigenvalue, e(k), remains invariant in this special case where the

ik- x
eigenfunction is the plane wave, e , outside the A.P.W. sphere, the eigen-

function which belongs to it is, of course, changed. The atomic-like part of the

eigenfunction is now centered about R + R , and the eigenfunction is no longer

periodic in the lattice. However, inside the A. P .W. sphere, the functional form

(or shape) of the eigenirnction is still the same, for the functional form of the

eigenfunction there is determined by the eigenvalue, e. Since the eigenvalue, a,

remains constant, the radial functions,

u (r), (V. 1.12)
2i
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and their relative admixtures inside the sphere remain fixed also.

The analysis above can be made more general by varying the trial functions

outside the displaced A.P.W. sphere so as to admit other plane waves of the

form

i(k+K.) r'
e , (V.1.13)

where K. is a vector of the reciprocal lattice, just as is done for the perfect

lattice.

Following the technique used in equations (V.1.6) through (V.1.10), the

matrix element between the trial functions which join continuously onto the plane

ik- ·x'r i (k~+ ~i~J ,
waves e and e , respectively, is

((x;R + ) - k- -=
k , k+K.

=T r (- ( (Kj r)i(k-K.)- +

+ (2 4-t1) P(cos +K.) j(kr ) j( + Kj r s

Y=0

iK. R
e J

(V.1.14)
Equation (V. 1.13) is observed to be identical to the matrix element of

(he(;R°) - (V.1.15)

J



72

except for the factor

iK. . 8R
e m (V.1. 16)

The A.P.W. eigenvalue for the deformed lattice is again ascertained by the

zeroes of the secular determinant:

det I (h - )ij I = 0, (V.1.17)

just as for the perfect lattice. The rows and columns of the secular determinant

are specified by the wave vectors of the plane waves entering the trial functions,

such that

(h ) ( (x;R +m)- , ( ) d. (V. 1.18)

i J

Therefore, the difference between the secular determinants for the displaced

nucleus and for the perfect lattice is only that every matrix element for the

former case in the K.- th column is multiplied by the factor

- -4
iK.* 8R

e i m (V.1.19)

and every element of the K- th row by the factor

-iK. R
1 m

e
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Now the theory of determinants establishes that, if, every element of a given

row, or column, is multiplied by a constant, c, then the value of the determi-

nant is changed by the same constant. Thus the values of the A.P.W. deter-

minental function are altered by only a factor, and the values of the band energy,

e(k), for which the determinant vanishes are unchanged.

This is not altogether an expected result: the eigenvalue of the function

which satisfies the Schrodinger equation explicitly inside the A.P.W. sphere and

which is represented by the lattice Fourier series

i(+i.) · x'
1a g~k e (V.1.20)

K.

between the sphere and the cell boundary is invariant under small translations

of the muffin-tin potential. Moreover, the eigenfunction which belongs to this

eigenvalue is changed only to the extent that it is centered about the displaced

sphere.

Although this result is not a property of the compl'ete variational solution to

the eigenvalue problem for an electron in a deformed lattice, it will be useful

when expanding by minors the secular determinant for the full variational prob-

lem. In the next section, it will be shown that the eigenvalues for this problem

are invariant up to terms quadratic in the variations of the nuclear coordinates.
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V.2 The Solution to the Variational Eigenvalue Problem for an Electron

in a Deformed Lattice: Expansion of the Secular Determinant.

The argument above does not completely dispose of the problem of the vari-

ation of the one-electron eigenvalues under lattice deformations. When the lat-

tice is deformed by a translation of the R -th nucleus, the one-electron Hamil-

tonian no longer has the translational symmetry of the perfect lattice. The plane

waves in expression (V.1.20) transform irreducibly in the perfect lattice and

therefore comprise a complete set of trial functions for that case. However,

they do not form a complete set of trial functions for the general aperiodic lattice;

and for the case under investigation, the set,

i( + -it) '

k' K.

(V.2.1)

must be used as trial functions in the region between the A.P.W. sphere and the

cell boundary.

The A.P.W. matrix elements between such trial functions will be similar

to that given by equation (V.1.14). However, because the matrix element is

taken between two functions of different periodicity in the lattice, the integral

over the entire volume of the crystal will have its lowest order term linear in

8R . For the matrix element between the (k' + K.)-th and the (k+K.)-th trial
m J 1
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functions, this is,

Vol
k/+

(x) (he( x'; + SRm )
K.

J
k+K.

1

d3 x

V

(x) (x,R ° )

Vol k'+K.
Vol j

-t *K
k' + K

-th J

r *
t + K

- th I

R
m

cell

R
m

3

*+. (x) '+
k+i. V

1

(x) (hX(x;RO)

(h (x;ff+ 8 )-(x) ;e ( X; I In

J

- d 3 x
(x) -+

V

3
dx

-4 () dx
k+K. V

1

cell

The first integral in equation (V. 2.2) can be written as the sum,

i (k - k') R
e

Tn I *PI ;
() he( x,R°)

a=e
I/ i

X, - ,J

Q ;.R
p

3
(x) d3x

k + K.

(V.2.2)

, (V.2.3)

where in (V. 2.3) has been used the translational property of the Bloch functions,

j(x+R ) = e P 4 (x) , (V.2.4)

1 1i

and where the integration is over the volume, , of the Wigner-Seitz cell. The

first orthogonality relation for the representatives of the irreducible representa-

tions of finite groups is,
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, (T)* D( T) = g 886j (V.2.5)

T

where g is the order of the group, and n the dimensionality of the -th irre-
a,

ducible representation. For the representatives of the lattice translation group,

this relation is,
i(k-k') .A

e P=N 6(k-k') . (V.2.6)

R
p

Therefore, the expression (V.2.3) is zero when k' as is presently the case

- the exceptional case having been analysed in the last section. The remaining

two integrals in equation (V. 2.2) can be combined by using the results of the

analysis of the last section as expressed in equation (V.1.14). Using (V.1.14),

equation (V.2.2) becomes,

4r2 
c·, 4rr~{<~.I~k. .(i~'+ke) rk+ Ke(R+6Rm ) _ - +

co k +K. + N

+ ~ (21+1) P s k I je( k' + Ki rs) je( Z'+ k rs) X

X Y (rS) (k(+Ki-k Ki~ 8R I

u (r) 

(hR) - - >. (V.2.7)
N eO '+' + K. i
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By expanding the exponent in equation (V.2.7) such that

i (k+k i.- Kj) - 1 + i(+Ki -- .) + . .. , (V. 2.8)
1 j m eIn 1 3 In

e

the matrix element in equation (V. 2.2) and equation (V.2.7) can be expressed as

8R
i (k+K.4-'-R.) m (h e)

J N ke- +j., k+i
Jj 1

(V.2.9)

Because there are now matrix elements connecting all trial functions, the

A.P.W. secular determinant will be of the order of 10 x 10 23. This deter-

minant must now be solved as a function of the trial band energy, , and its

zeroes will render the eigenvalues to the full variational problem of the electron

in a deformed lattice.

For purposes of mathematical convenience, the 1023 x 10 secular deter-

minant will be written in terms of sub-determinants labelled by their respective

k-vectors in the first Brillouin Zone of the perfect lattice; i.e., the element

(V.2.10)(h- e)k,k '

will be understood to stand for the full determinant of

h- )k,k

(h- )k +K, k
1

(h - )k,k + K.

(h - )k+Ki,k+K

(h - e)k,k+K.

(h - e)k+Kk+K
1 J

.. (V.2.11)
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and similarly for the element,

(h - )k,k . (V. 2.12)

Also for purposes of convenience, the k-vector of the state whose eigenvalue in

the perfect lattice is e(k) will be relabelled k . The rows and columns of the

1023 x 10 secular determinant will be labelled by the k-vectors of the trial

functions, beginning with k . The A.P.W. secular determinant now has the

form,
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This determinant must now be solved to ascertain its zeroes. The determinant .

is evaluated directly by expanding in the minors of the first row,

N
D(e) Doj

j=0

cof (D,j) (V.2.14)

(V.2.15)
U,J

and cof (D j ) is the cofactor of the

where

D_ (h-e )

ko·kj

(kO;kj -th element. Explicitly,
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Collecting similar terms and keeping only the terms of lowest order in 6R 
m

this determinantal function of energy is,

(t(he) kN (h-e)k.,k

0 0 

I( -k)k.

(h- )k ,k.
J

(V.2.17)

The second set of terms involving (h - e)k k obtain because the diagonal term,

N O' O

T j= 1 (h- )k.,k. is not the full cofactor of (h - e)kk , and there must be in-
J 2

eluded additional terms at least of order (6Rm ) . It can easily be shown that,

if the columns are interchanged, these additional terms involving (h - e)k k
have the same for as the first set in equation (V.2.17),

have the same form as the first set in equation (V.2.17),

(h-ek k -

.' e

N(h-e)k k (i- SR/N

j =Y, +1 (h - )k.,k.
J J

This formal similarity is to be expected, for the secular determinant now in-

cludes all states. The set of zeroes for the secular determinant will be the set

23
of all variational eigenvalues, (k ), and there will be some 10 such zeroes

(not all distinct) as required by the number of states in the Brillouin Zone.

This can be observed by explicitly expanding the principal minor,

D(e) =

N( I7(h-e) k

j=0
jfk

. (V.2.18)

-I
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- ) l (kj- l ) ·/N21'~ j
(h- E)k k (h - )kk

j =2 (h - e)k,k j=2
J I

+ (h- e)k k 1 - j
1j=

J J

+(h )k 2 ,k 2

N( - e)k k

j• =4(h
J J

N

7(h - )kk +
j=3 J

N

F (h -)k.,k. +

j-=4 J

Nk kh- e)k (j4 ) 2
5k3'k3 j =5

+ (h- ),_ _ (h- e l
KN-1KN-1 J

N

(V.2.19) THE EXPANSION OF THE PRINCIPAL MINOR IN THE

A.P.W. SECULAR DETERMINANT.

-

1

i*1, (1i _ - ) . rr, 2
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Note that, in the explicit expansion of the principal minor given in (V.2.19), each

left-handed curly bracket is enclosed within other such brackets, and these curly

brackets are not closed from the right until after the N-th term.

By combining terms symbolically, this principal minor can be written as,

(h- e)k oko (h - e)k.,k. +

X=J~+3 J
(h - )kjk] . (V.2.20)

j=1
j#2

Taking cognizance of this formal similarity the expansion of the secular de-

terminant by minors which retains only the lowest-order non-vanishing terms in

R is,m

D(e)
N N

(h )kk(h - e)

J-b1L e' t N~~~- jNA-I(h - e - I Z
't I4k~ N.I =~

h ,kj
(V.2.21)

Note that equation (V.;2.21) involves a sum of N terms which are only formally

equivalent. The terms in the curly brackets are quite different in value states
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for which the wave vectors, k, are quite different. Note also that matrix ele-

ments involving every state appear either at "diagonal" elements,

(h -)k k (V. 2.22)
r r

or, as "off-diagonal" elements involving the incremental change of the nuclear

coordinates,

(h- )k. k (j ) Rm (V . 2.23)

There are N(N-1)/2 elements of the form of (V.2.23), and it is to be observed

that each one appears in equation (V. 2.21) exactly once.

Although equation (V.2.21) has a form which superficially appears rather

asymmetric, it is in fact entirely symmetric and the same for any particular

state k . This can be seen easily if, for the case where the variation of the band
r

energy, e(k ) is under investigation the r-th and zeroth rows and columns in the

A.P.W. determinant are interchanged. These two operations leave the value of

the secular determinant invariant, and if the wave vectors, k and ki designating
r

those two states have their indices exchanged, the expansion of the determinant

by minors has again the form of equation (V.2.21).

However, if the state, k r , is under investigation, the matrix elements in

the sum in equation (V. 2.21) which pertain to the variation of the band energy,

e (kr) are only those for which (h - e)k ,k appears inside the square brackets
r r
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and those terms involving (h - )k k (kj-kr) . The other terms pertain
jk j r m

properly to the solutions for the variations of the other eigenvalues, e(kj).

Therefore, such other terms will be neglected initially. It will be demonstrated

below that in the neighborhood of the zeroes of interest, - those for e(kr),

these additional terms in the sum are of the order 68R 1

Thus we seek the zeroes of the function,

F (e(k ) =i (h [ ) k. I(h - e)

N I h k J k 0 R)
1 E I(h0 . (V.2.24)
N j (h )k, k.

J j

It is to be observed that this function has many zeroes. Because the electronic

energy spectrum admits many degeneracies, every value of e which equals a

degenerate eigenvalue for the perfect lattice,

=s O =0 , (V.2.25)

renders a zero for F (e(k0o on account of the factor,

N

(h -e)k.k. * (V.2.26)
j=1 J J

Plainly such zeroes correspond simply to the variational eigenvalues for the

perfect lattice, and accordingly are disregarded. The value of e of interest is
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that one which determines the zero of the second factor,

F 1 N I( )k,ko - S) '
F ((ko L - e) k0 j 0 (V.2.27)

L j=1 (h-k., k.
J J

There are two points to be noted about equation (V.2.27).

First, this equation, whose zeroes determine the change in the eigenvalue,

e(k0), is not a perturbation theoretical result. Although equation (V.2.27) has

the form of the equation for the second order change in the eigenvalue according

to the perturbation formalism, there is no expansion parameter, X, which ap-

pears in an expression for the Hamiltonian,

h =h0+ X , (V.2.28)

and in terms of which the eigenvalue is expanded. Equation (V.2.27) obtains

from the expansion of the exponent,

e m 1 + i(Zk'k ) 6R + (V 2.29)

and is simply a Taylor series expansion in

I 8Rf
(V.2.30)

IR I

Second, equation (V. 2.27) states that the variation in the one-electron

energy, e(k0 ) is quadratic in 8R .
m
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V. 3 Evaluation of the Expanded Secular Determinant.

We shall first investigate the zeroes of the energy function,

F (c(k) = (h -e)kk )kk 
AP A X

= J J \ v v A= j=1
J J

(V.3.1)
Observe again that the values of e for which,

e = eO(kj) , (V. 3. 2)

cause the function to vanish for any degenerate state, kj, correspond simply to

the eigenvalues of the imperturbed problem and are therefore disregarded.

The problem now is to calculate the factor,

(h - e)k _ , N (V.3.3)
0 N (h - )

0 j=1 )k.,k.
J J

and to ascertain its zeroes. To do this, first the sum over k-vector is trans-

formed into an integral over the energy variable ',

VZ >k 2rd de'g(e') , (V.3.4)

k. (217) J J
J

by using the Jacobian of the transformation which defines the density of states:

) 
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g(¢') = 3 ~f dS . (V.3.5)
(2rr) e(k') Igradk, e(k')j

Note that the energy which enters equations (V.3.4) and (V.3.5) as a running vari-

able in the integration over all states is the eigenvalue of the perfect lattice:

e') h( x (x) d x. (V. 3.6)

Using this identity, the. sum in expression (V.3.3) is written,

(h - (k k R

1_ I k j ,kO

Njl ( k ,k

. (h - k.,ko 3=1 kJ J

= V rQ0 / .(V.3.7)
(e6- 6)

The problem now resolves into that of determining the behaviour of the integral

in equation (V. 3.7) as a function of (not of e' - which is integrated out). For

convenience we introduce the symbol,

D(e,he ) (.h - e) I 6 (V.3.8)

The integral in (V.3.7),
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sd 'o

has poles at each value of for

g(e') I D(e', ) 2

(ew - e)

which for some state, ,

e = e() 

However, the entire integral is itself multiplied by the product,

N
j=1

Ie)k ,k.
J J

(V.3.9)

(V.3.10)

(V.3.11)

j=1

which serves to eliminate all

k= . Therefore, we solve

In order to evaluate the

into the complex plane,

such poles as specified by (V.3.10) except that for

the integral considering the pole at e(k 0 ) only.

integral (V.3.9), the variable ' is transformed

' = ¢' + i ,
r 1

(V.3.12)

In order to evaluate the integral in the complex plane, the contour of integration

must be chosen and the convergence of the integrand at infinity assured. The

contour of integration must be chosen so as to avoid any singularities or branch

cuts pertinent to the integrand. Because the function ID(e')12 has only isolated

singularities, the contour will be determined by the singularities of g(e').

The density-of-states function g(e') is an extremely complicated function,



91

and to find its general form is impossible using known mathematical methods.

However, because the integral (V.3.9) has the form of a dispersion relation,

the value of the integral will be

neighborhood of the singularity,

sion curve about the singularity

Jo F(z) dz (V.3.13)
z-a

determined by the values of the integrand in the

e(k 0 ). Therefore, we expand energy disper-

as,

¢ell) = ( o ) + [-koI2+ .* S(V.3.14)
2m

This parabolic fitting of the energy bands admits the density-of-state function,

g(¢,) = (2m* )3/2 ,1/2
2 2= 3
2Trr h

(V.3.15)

Now because g(e') involves a non-integral power of e', its phase in the complex

plane is arbitrary, and it possesses a branch cut running from the origin to in-

finity. We choose the branch cut to be the positive real axis and add in infinite-

simal imaginary part to e(1 O) so as to move the pole of the integrand off the

real axis,

e(i 0 ) e( 0 ) + i 8 (V.3.16)

The contour is taken as in Figure 3. Now because the integrand goes to infinity



at least as fast as e' 1 / 2, we use the limiting procedure,

g(e') D(e')

(e'- + i6)

= lim g(e) iD(e')j e
P-0 (e'- eo+i8)

The value of the integral is then,

f(e')= 3TT
sin-

2

Residue of
\\ -O

g(e') ID(e') 12 - I e'
(e'- eo + i) 

which equals,

f(e') =-rrg( eo) D( eo) 2

Therefore, we have acquired the evaluation of the energy function in equa-

tion (V.3.1) as,

F (e (ko)
N

j=1

(h - )k.kj
J J

(h)kok

VTg( eo)

dQ
N (h

- 0 +

- o) ee
kj ' k

e - ° Sm)21 · (V.3.20)

The superscripts, e , over the k-vectors, k, in the angular integral in (V.3.20)

serve to specify that the integration involves only states of wave vector, kj, for

92

(V.3.17)

(V.3.18)

(V.3.19)
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which

=cj = 60e=e (k) * (V.3.21)

In general, the angular integral in equation (V.3.20) is very complicated.

The equation (V.3.20) still does not specify for which value of e the

zeroes will obtain. There still remains a complicated transcendental equation

in e . We solve for the zero iteratively.

Using the eigenfmnctions which belong to the perfect lattice eigenvalue,

6e (k) =Je ( x) h( x) e ( x dx , (V.3.22)

and recalling that,

x x- e(k) e (x) d3x=0 , (V.3.23)

.0 k 0

it is observed that a shift is the eigenvalue such that

o (k) = () +TTV g ((k))JdQD(e)1 (V.3.24)

will determine a zero.

Furthermore, when this value for e is used in the next interaction, the

variation of the eigenfimctions is,
dfe (x)

() = (x) + 8e (V.3.25a)
k Zo de0 0
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o d k(x) 2
= Je (x) + O(6R ) . (V. 3.25b)

k de

Therefore, the further correction of the eigenvalue e which obtains from the

next iteration is of order,

( )4

and is for that reason neglected.

Returning now to equation (V.2.17) in order to reconsider the additional

terms in (h - e) which obtained from the expansion of the cofactor of

(h - e)
kok 0

(h- e)k ,k terms in (R m )2 (V.3.26)

Plainly, at the value of e determined by equation (V.3.24), these terms in

(V.3.26) differ from zero only in orders of,

4
m611

and we are justified in consistently neglecting them.
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V. 4 The Eigenfunctions for the Deformed Lattice.

In order to evaluate the factor in the electron-phonon "double-derivative"

matrix elements involving the electronic eigenfunctions, it is necessary to de-

termine the eigenfunctions for the deformed lattice. If the single-particle eigen-

functions for the deformed lattice are written as

B (x;R+8R ) , (V. 4.1)

then the derivatives of the electronic eigenfunctions with respect to the nuclear

coordinates are

x (x;+R r) - (x; R °)

lim (V.4.2)
8R -, 51R

:m m

In both (V.4.1) and (V. 4.2) the eigenfunctions for the deformed lattice are in-

dexed with the eigenvalue, , to which they belong and also with the wave vector,

k, which servesto specify the eigenstate to which the function reduces in the

equilibrium-position nuclear coordinates. It should be clearly understood that

the eigenfunctions for the deformed lattice are not periodic in the lattice. The

eigenfunction in (V.4.1) does not transform irreducibly as the k-th (or any other)

representation of the lattice translation group.

In Sections V. 2 and V. 3 it was established that the eigenvalues for the band

energies in the deformed lattice are adiabatic through terms linear in the nuclear
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displacements,

(; R + 8R) = e(k;RO) +O (6R2 ) , (V.4.3)

provided the wave vector, ik, does not designate a point on the Brillouin zone

boundary.

Therefore, to invert the A.P.W. secular determinant in order to ascertain

the eigenvectors which belong to its respective zeroes the same trial functions

are used as in the previous sections. In all but the R - th cell the A. P. W.
m

eigenfunctions are used,

*f (x;R) = 
k A

O i(+Ki) x
a ¢ (k+Ki)e 1 +

1 · 1@Rpe0 - _
P (x. (V.4.4)

NR

m

kIn equation (V.4.4), A is a normalizing factor, and CP (x. ) is the equi-
librium-position tight-binding component belonging to the equilibrium-position

eigenvalue, e° (i). The functions in equation (V.4.4) are recognizably of the

form of the equilibrium-position A.P.W. eigenfunctions. In the i -th cell,
m

the trial functions are



=0 ~~~~~i (k +K i) e·x
e -4 e9 -4 .A 1

t(d )(; R +Rm ) a°(k+K ) e

outside the displaced A.P.W. sphere: r' and

e ( )(x;R+8R )
In

= a¢o( e -( ;R ) e
a + i)s+K. In

i 1

(V.4.5a)

i(+~ K'i) 8'

i(k+Ki). (x- )

i(i + i ) m-/:~1 m1(x'R,' 6R·V .
e e (x- m

V +' R -m
1

+

i(i+Ki) R'

(V.4.5b)

inside the displaced A. P.W. sphere:

I XI S r .

Thus the trial functions employed are the A.P.W. functions for the perfect lat-

tice generated by the eigenvalue, e°( 0), in all but the R -th cell. In the
In

R -th cell, the trial functions are the same combinations of plane waves as for

the eigenfunction belonging to e(Zo) in the perfect lattice,

(V.4.6)
CP _ _. i ( ~+ Ki) x,

z a°(+ (kK) e
~i~~~~

i

97

m +
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and the tight-binding components are displaced rigidly - as specified by the

energy parameter -

eo + i )
Cp4 ( -
k+i. m

1

) , (V.4.7)

which vanish smoothly at the displaced A. P.W. sphere radius because of the

factors,

i(Z+ K) -R
e (V.4.8)

Labelling these trial functions by their respective wave vectors, k', the eigen-

functions for the deformed lattice will be

( (i. ;R + R) = ZXk
ik'

(x;R +R )In

The Hamiltonian for the deformed lattice operating upon this eigenfunction renders

the equation

h(x;R+ R ) (x ;R+Rm) = e

m 

xk * ( x;R + 6R ) . (V.4.10)
m

Multiplying both sides of equation (V. 4.10) by k,(x; R + 8R ) from the left

and integrating over the entire volume of the crystal renders the matrix elements

(a(R+ 8RmI
k", k'

Xk, = e Xk'k, k, k'

a

i

(V.4.9)

(V.4.11)

i 1~ti -. I Mm
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Now, because the eigenvalue, e, has already been ascertained by the

procedure developed in the previous two sections,the determinant of the matrix

of equation (V.4.11) vanishes:

det h(R+R) - ,k =0 (V.4.12)

Therefore, the set of equations (V.4.11) which determine the coefficients, xk

are redundant. For each eigenvalue e (R + 8R) one equation is eliminated in the

following way.

Suppose that the energy eigenvalue whose eigenfunction is sought is that

which equals eO(ko) in the limit of the perfect lattice:

lim ((R+ 8R)) = (k) (V. 4.13)
8R O

Assuming that

8x = 1 , (V.4.14)

and labelling the elements of the determinant such that the (h - e)k k' row is

the first row, and the (h - e)k, ko column is the first column, the matrix of the

coefficients is exactly that appearing in the determinant in equation (V.2.13),

except that both the explicit value of the parameter, , and the functional form

of the trial functions inside the A.P.W. sphere are set by the predetermined



100

value of the eigenvalue e °(k).

Using the assumption (V.4.14), and discarding as redundant the equation

which generates the first row of the determinant, there remains the (N-l) x N

matrix given by equation (V.4.15).



o -

I u
0 -r-

60

0o 
-z t.x

t (

,=

t7

-

- x

-c

IElrO

iY
u

N

-1
x

0- %m

II

(N C'
X X

0

IU

TV

I

o

-Y

E

I C

101

o
x

z

r-

t E

t 
I

I I

a)
U

0

E
0

aI

N
Y.

IT"
-

C
0

t
C

.2
C
Q)

LJ
a)

0

anQ)

a)

.C

0
02
w
di

-c-0

L%
4t-

Cqt-
It

tr

In

It-t e r

-Z

0

I

-

I

tt !
._

-

-



102

The coefficient Xk is determined by Kramer's Rule:
2

D'(k) I
Xk 

2 A
(V.4.16)

where D'(k) represents the determinant of the associated matrix on the left

hand side of equation (V.4.15) when the k -th column has been replaced by the

column matrix on the right hand side, and where A represents the discriminant,

or the determinant of the matrix on the left hand side. Both these determinants

are evaluated by expanding by minors and retaining only the terms of lowest

orders in R
m

The discriminant, A, is identical in form to D(e°) except that it involves

one fewer factor and term in its series,

A =ll0) .J)(h-

N £=1 j= j
" j=,

(h- eO)(h- 

h -k N j=£+1

The associated determinant for, say, k1 is

°k, k.(kj i)

(h - e¢)k k.
J

I .(V.4.17)



-- N N
-'(, 1

D'(k I) = I21(h=2
N =2 lj=2

ji Y,

E°)k.,
i

3(k k )

k k1 )

h- ¢°)k 'N

N j= +1

°0)kl k0

jR 2]
m---

(V. 4.18)

(h - )k., k.
J J

Discarding now all but the terms of lowest order in R, the expression for the

discriminant becomes simply,

N

A = (h - o)k k
j=1 J Jj=l

(V.4.19)

and the associated determinant for the kl-th coefficient becomes

N

(h - e °)k k T
j=2

(h - e°)k., k.
J 

In general, it can be seen easily that the associated determinant for the ki- th

coefficient is, through terms linear in R,

R
· .m(h)k k
N 0

N
( h- o)k k

j=1
£f Y

103

m1
In

N

kkj-
3

X (h-'°)k

6R
m

N
(V.4.20)

(V.4.21)

D(k' I =( k )l~

I D'q) I= i(!~ " '
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provided I i 0. Therefore, using Kramer's Rule, equation (V.4.16), the co-

efficient x is

6- (h - eo) k
m kk

x= i(k _-k) - 2' 0 (V.4.22)
N (he)k 

There are two observations to be made concerning this result for x).

First, the coefficient x displays a singularity when the state k is de-

generated in energy with the state ko; or

e°(,k) = * (x) h(x) (x) d = e = eO(ko) . (V.4.23)
k kk

However, the eigenfunction for the deformed lattice is determined by the sum

over all states k,

0 0

e (x;R R + R) = x (x;R+R) . (V.4.24)
k. k.

. J J

If the summation over k. is transformed into an integration over e'(9.) in the
J J

complex energy plane, as in Section V. 3, the singularities of equation (V .4.22)

serve to specify that the states which mix into the deformed lattice eigenfunction

significantly are those belonging to the same energy eigenvalue.

Second, and more important, equation (V.4. 22), and therefore, also equa-

tion (V.4.23), involves the factor N in the denominator. Now it was originally
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assumed that Xk0 was unity. Therefore, the ratio of magnitudes of all other

coefficients to the first one is

Rxk O_ /<<l . (V.4.25)

It is thus justifiable to neglect all but the first and overwhelmingly largest com-

ponent of the eigenfunction.

Therefore, the eigenfunction for the deformed lattice which belongs to the

eigenvalue

x; 8Re(k;R+Rm)
mn

i- I

+ -~~~- 0· J ~~~·ik - RP e +_
+ e CP ( x-R )+

Ri P
n

m R

i (E+Ii)* IoRMp -m -R
+ e < (x-R - i .(V.4.26)

The derivatives of the one-electron crystalline eigenfunctions follow di-

rectly from equation (V.4.26).

Using again the approximation for the exponent
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i (Z+K ) R
e 1 1 + i (+Ki) RI

1 TI

there obtains

e (e)(x;RO+ R )-
rm)

0o

= a (+Ki) e
i

+ i(~+ii)- 8I

O

tI (x;R°) =i•
m 0

: (x-R m
1

cp (x-R -
+ K. m

1

m

6R8] 

6o --
cp (x-R.

i+ K. m)
1

(V.4.28)

Using the fundamental definition of the differential calculus,

R )m
eo (-lim CP ° ( x- -

- R 0 L K.m 1

-= -

x k+
(x -m)

K.
1

· e( ) (V.4.29)

The second term in equation (V.4.28) admits the simple limit

m (x-R m
m + K.

1

:= i(k+K i) 
A -4

e(m ) c (-Rm)
m ktK. m

1

(V.4.27)

lim
8R - 0

m

(V.4.30)

i (9 +kd 8AM 8A



In both equations (V. 4. 29) and (V.4. 30) the symbol,

e ( R )

represents the unit vector in the direction of 6Rm

Therefore, the derivative sought is given by,

d

dR
m

* (;R)-

; (k;RO°+ Rm)(;R + 8R )
m ~ m

_ (k;R°)(; ;Ro3

R
m

e 

i

0A e
'e(8 ) M· e 6I Z+K,8

" k~~~~~~+li.~~~~

e(MR ·
In

({ - im ) +
i

(V.4.32)
x4 (m
x + ~.

1

This is exactly the result which was used in Chapter IV, and which was to

be proven.

107

(V.4.31)

lira [
8R -0

In

M
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CHAPTER VI

THE CRYSTALLINE POTENTIAL IN

A DEFORMED LATTICE

VI. 1 The Problem of the Self-Consistency of the Crystalline Potential in

a Deformed Lattice.

The energy band problem for a deformed lattice is not completely solved

with the development of the energy eigenvalues for the deformed lattice and of

the eigenfunctions which belong to them. The accurate solution to every many-

electron problem using the single-particle formalism requires that the potential

used to describe the field of the electrons be self-consistent. If the single-par-

ticle Hamiltonian, h(x), which involves the electronic potential, ve(x'), admits

the eigenfunctions, (x), then these eigenfunctions must regenerate v (x); or,

if,

h(x) (X)= V2 2Z +) ) (VI.. )

then, the set,

(VI. 1. 2)[(X)] - Ve(X) 
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This aspect of the many-electron problem was discussed extensively in Chapter

Ill. The problem of self-consistency is now addressed for the case of a de-

formed lattice.

First, the self-consistency of a muffin-tin lattice is considered.

It has been shown in Chapter V, that the band energy eigenvalues for a

muffin-tin lattice are adiabatic through terms linear in the nuclear displace-

ments:

; R + R ) = e°( ; R°O) + O(8R) . (VI.1.2)
m M

Since the terms of order higher than linear are systematically neglected in this

analysis, the band energies for the deformed lattice are ordered exactly as for

the perfect lattice. Because the spin of the electron allows each state to be

doubly occupied, the N/2 states of lowest energies for the deformed lattice will

have the same band energies as for the perfect lattice and will be identically oc-

cupied.

Therefore, the Fermi Surface is invariant under first-order variations of

the nuclear coordinates. This phenomenon is illustrated schematically in Fig-

ure 4.

The electronic potential is developed from the one-electron eigenfunctions

by the equation (VI. 1. 3):
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Ve(X;RL, R 2 ,N ) =Ve(;R)

2 1;R) - "d

3(1 (R) (VI 3)

as discussed in Chapter III. For the perfect lattice, the eigenfunctions which

enter equation (VI. 1.3) are, of course, the set,

*(x; R °) , (VI. 1. 4)
k

and for the deformed lattice, the functions used are the set,

{y ¶I (X ;R+8Rm) (VI.1.5)

In Chapter V it was shown that the solutions for the deformed lattice are iden-

tical to those for the perfect lattice in all except the -th cell, and that in the
m

R -th cell the eigenfunctions are,

i(k+K.) x
0(Z)({;]R+6R a ):/~ , ( i) e . (VI.e.6)

y (x;R+6R a (VI.I.6)
i-C"(I~~i

outside the displaced A.P.W. sphere:
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I '|1 rt ,

and

-. -. k~·t-~ m0 1i(k+K.)
mK;R+ 8R K K.x;R+S~) = Ta(z+K ) +E('-8' ;R°e

i K1

i(+Ki) x

=J C a(k + Ki)

(k+ i.)R 6R

+ e 1 m m o M (VI. 1.7)

Vf~ k

inside the displaced A.P.W. sphere:

For the movement, the effect of the charge densities in neighboring cells will be

neglected; only the charge within the P -th cell will be considered when gen-

erating the potential in that cell. In order to develope the potential for the dis-

placed A.P.W. sphere, the eigenfunctions are written as,

jo(g') 0 *O(k)
,¢((;R+SR )= *° (x;R)+ (

md m~klm /R °
m

8R
m

. (VI. 1.8)

Using the results of the last Chapter, equation (V.4.32), the eigenfunction in equa-

i

I
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tion (VI.1.8) is written,

m' - te (x-;RO), = 
k

In
m

e
x

-x 
X +K.

I

+ -L >ae?(k
A.

k+K.
1

(m; R0) 6Rm

+K.)
1

(x Rm ;RO)
In

(VI.1o9)

When the eigenfunctions in equation (VI. 1.9) are used in the equation for the crys-

talline potential, (VI. 1.3), there obtain the following expressions for the Coulomb

term,

kF

Coulomb =

kF

k=0

( i

1
d')

1

J-xI
(VI. 1.10)

Substituting in equation (VI. 1.9), this becomes,

(20I eek( ;R) i~ e (k)~ '; RO) I di(' + e x; ;R ° )

(continued)

(x; R + R

F

Coulomb I=
V=O

I

I

o

'

i

i

I

r

i

I

e(k) 2~

e9(k)2(j;R+ RM 

e(X; RO +

I



a0 ma°(j- e
k .( '- m; R° )

1

7i/i ° 1
A ."·a

-i. I

e i (!+ i)
,/-N' \ 1 +i.

1

( xX*k ( ; R) 1 dx'
-+ IXI

The first term in equation (VI. 1.11) is recognized as simply the potential for the

perfect lattice, Ve X; R) Coulomb The other terms will be examined one by

one. The equilibrium position eigenfunction is,

A .
i

i(K+K i) · ii'
* k e P

p

CP !+-(xi i o

(VI. 1.12)

Therefore, as in Chapter IV, there obtain eight distinct integral expressions to

evaluate:

(i.a) 1 1
A.

1
Z

j

(a(k +ij) ' i(9+Ki) am)

-~f -i (Z+ kj) -Xt
X N kc+P (x-- ) 

1

x

113

6R
In

( x'-Rm; R °)

I

m

(VI.1.11)

Ix-x3I

- V 

X -

ir-
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(ii a) k K) a(k+Ki) e
1

-ik 
x 1 e

N
pP

m i(k K)
i(k+Ki) 8my

*

(x'-Rp)
c iP ? , m Ix-xIl

1 

(iii.a) -1
A

1

(*( k+j) a(k+ i)

J

x eVN 

(iv.a) -
A 

i
Z +K)

j

ik. R
a(+ K.) e m

1

-ik R , 
-P I j'
J.. Z

X -e
NR

p

(i b) 1
A 

i
z

j

'1 ~,X -Xt+K.
3
( p P) Ik+ K 

a (k+K.) a(k+Ki) e
J 

/VNFl
x~ VNjik+ K 

J

i(k+K-.) '
(x'-t ) e Im

ik -R
e

m/

4v
1 -,

dx'

x x

Rm

mi(k+K) Rm

1 dZ'

-4 --+ ( Z' - A 

-i ° A



(ii.b) -1
A.

1

( K a(+Kj)a(+ i) e

J

-ik- 
m i(+ K) -

J I

1 C·X e
N R

P

(iii.b) -
A i

I1
Xx VN^/VN

-ik R J
(x-R ) p

+K.
'i

m

k+K.
J

i ( + K1i)

e

(iv.b) -
A.

I

j (ak+ .)

j

-ik· *R
a( k + Ki) e

1

1 x Inp D ( ( xN
N R !~+k J

P

P (,-a) 1 d'
q+. P x-,

(VI1.l13)

In the expressions (i.a) -(iv.b) above, the superscript eo(zk) has been omitted.

The sum of these eight integrals can be simplified in the following way.

Integrating the expression (iii. a) by parts, as was done in Chapter IV,

renders the equation,
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'm)

1 - dX
x - R )1 d'

x-x
1

dx'
x-x

m)

E (!l~·K'j a!·+Ri e

j

vxI



I - i (Rf+ j)In

-i (+-i) * x'

-i(k+k) im

·X/

+K.
I

mcp (x-R ) I+ +
k+Ki m x- Z/ |

I . s. 

9 i ( ) X' ' (x' - R ) -I 1 d +
I+Kiz m m -{

1

A- 8· - i(k+K j ) '

m x cp ( x -i ) d'
k+K. mi x-x

The surface term in equation (VI. 1.14) vanishes because the tight-binding func-

tions, cp (x-R ), are zero outside the A.P.W. sphere. Because of the
k K.

m1
minus sign in (iii.a), the expressions (i.) and (iii.a) can be combined to give,

a (k ij) e mi ( Ki- Kj) * 'R)

(p) -1 -,

p (x'-R ) 1 dx +
k+ Ki. mx-x '1

(a(k+ti ) a (k+ ) e I

j (continued)
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1 -O

dx'
xixI

(VI.1. 14)

A .
1

>1
j

(a( +K i)

x -i (+ j) x'

VN 

A1
i

ik ·R
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X 6m I -i(k+Ki) x'

x VN
* - - Ak+Ki ---
k+ K.

1

i ) 1 dxN1x -x 5'X

(VI. 1.15)

Similarity, (i.b) and (iii.b) can be combined to give,

( +K j)
-ik R

a(k+ Ki) e

r i(k+K) ' 

<A VN k

1 
A 

i

i ( i- j)

.+K
J

-ik -

a,(k+ a(i K.) e

j

1ei(k+Ki)-x *
Ue CPk

+ K.
J

(x~'-_) 1 dx'
m I-_,I /

(VI.olo6)

By using the non-overlapping property of the tight-binding components,

(Pk(X-Rm) Pk(x - Rp) = 0 if R R
m p

the expressions (iioa) and (ii.b) can be combined to give,

(a (+Kj.) a(k+ Ki) i(it.-K.) R R
1 m

(continued)

X8-

I
j

1 

i

8Rm)

d'(x _ 1

I X -X 

x VN

(VI.1.17)

1 _

i



-'+i.
N k +Ki. J

(-Rm ) Cpm
k+K.

I

( x ' ) 1 d'
X-X

Similarly, integrating (iv.b) by parts and adding the result to (iv.a) renders,

A-E 7 (ai(+K.j) a(ik Ki

A

(x'-R ) cp (x'-R ) 1 dIx .
k+K. I-x

(VIo 1.ol9)

Combining (VI.1.15), (VI.1.16), (VI.1.18), and (VI.1.19) gives,

e(x; R + R)Coulomb

1 

A(k) i
1

(K i-Kj)
I 

i (k+kj)
- e

-4.x 

ve (x; R) Coulomb+

j

(a (k+ Kj) a( k+ Ki

6Rm J-i (k+K) 

Pki (x ')1P Oc)
1 nd- +

-3 3 1
-8R - V 

in VN

lr(-i (k+Kj)3 ~~~ p (x')
k +K.

1
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o (VI.o1.18)

x mR (
NJ

*

k + K.
J

k+ K.1
1

-4

( X-X

k=O



i(k+Kj) . x'
J

C ( )
k+K. 1

1

- i(K i- Kj) R -
m N

* (,)~
(x') 

k+K.
- J

(x') 1 d' +
k+K. x-x'R 

1 m

- R * V -r 
m x N k+k.

J

1
(x) dX'

k+ it. 3-8irt I

(VI. 1.20)

In equation (VI.1.20) there has been used the property that the A.P. W. varia-

tional coefficients, a(k+Ki) are conventionally taken as pure real,1

a (k+Ki) = a(+Ki)
1 

and the dummy variables of integration have been transformed as,

x'= x - R
m

The exchange potential is derived similarly,

e ( x; R + R) exchange

3 2 r

2rr k
k

k

=_ -3 3 1Ixk(x, R+
22 k=O

kF

> I (
.=0

x;R ° ) +

J1/3mRI 

__( ) 2 1/3

dR
m

1 119

m dZ' +
-Rm I

(VI.1. 21)

(VI. 1.22)

(VI.1. 23)

, _4 - -

x xX-
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A given term in the sum is examined. As before, there is a single term,

j ( ;R°)12
k

(VI. 1.24)

representing the perfect lattice eigenstates and eight terms linear in R m
at-

tributable to the variation of the eigenfunctions.

1 
IA.
1

These are as follows:

J(a k -Z) a( k

-i(k+K.) (x-R
e

,FV--
cp (x-Rm) +

1 *
+ i(kKi.) -R -cp

1 mN 
(X-R m) P)cp

+K
(X'- ) +

I

-i( j mx

k + K.
1

k+K.
I

(x-R 2 +

(x-R
1 *
- - _P (x-R m ) +
N k+K.

J

+i (m+. * (x-r )
- -- e

- i(k+K) -
J m p. (x-R)+

k+K.

I

t

i

iIi

Iel .
1 m

f

j

-8 M Cp

MR n -CP



(x-R I) +

i('+ ). (x-R )

k+K.
J

N k+K.
1

Plainly the fourth and eight terms in equation (VI. 1.25) can be combined as,

-m . - k (x-R)
N k+K.

i
p ( x -R 
k + K.

1

Uisng the identity,

i (k+ m
e cpk~~x Rk(X

- i(k+K)

4 

e cpk(x - R,

(VI.1.27)

the third term becomes,

= ei(k+K)

/-i (+K j)
Tj , ,{e'

ik (-m)
-i(k+] '8'Rm cp (x m )

and a similar expression obtains for the seventh term,
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cp.- . (-R ) 
k+JK. K.

3 - 1

-i(k+Kj) o 6R
N

k+K.
J

,I_~ : l e
-A Y-m 

(VI. 1.25)

(VI. 1. 26)

- (x -R )

po (x- In +

i~··~

(VI. 1.28)

]

---I.I V

i

_ rlrx \/ I

11JL 16 V;



(+K i) ( m )
- R V (x-
m -8Rm~~~~,/~

CP J (X- 

J

+ i (+K .) 8R
1 m

--9 --9 -9 -

i(k+Ki ) · (x-R1
e

v/VN

m)

- cp (x-R )k+Ki m
1+ K.
1

The second and sixth and the first and fifth terms may be also combined to give

a simple result.

A(k) 

A(k) '

Combining all eight terms gives,

J
j

(k+Kj) (x -Rm )

i(z+ki) - (X-m )
e

JVN
* A *
*CP (- )+- cp (x- 

+ j m N + 
j J

N k+K.
I

(x-R )cpm

-i(k+ ) )
e

-VN

~ ,- b_ e,, I - - ' k -,

I -4 -
k+K.I+~

i (+ )(x- R )
i - m

,/ VW k'+ KN.|JC+K.

(VI.1.30)
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(VI.1.29)

x{ i ( K- ).
'm 

+

P__ m

) (x -R)

k+I

k+K.
(x-R )+

m
I

+

r.,j (e- i

[I} | X - 11 | t

-4 ''4
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Using the form of the eigenfunction, 4 (x; R ° ) itself, and of the trial functions,
k

4' (x;R°), equation (VI.1.30) can be put in the form,

I

D a (Zk+ Kj)
/, __,

X _ * (x-R )
J+K

1 -'n

1

m 
X + (x.Rm)

I

a(!k +ki) i( i-Kj) - R

k+K.

1 i (Ki-Kj) (x-R
(x-R )--e Jm V

a(Z+.Kit
IJJ

- -- 1 i(Ki-Kj) (x-R , (x-R ) -- e
k+K. V

(VI.1.31)

Similarly, equation (VI. 1.20) can be put in the form,

a(+i) i (Ki- Kj)
1 1 j Am

J

' (, ) d' +

1 m

k -4j
1K +K.t:

1 ie(Ki-Kj

V (continued)

I 1 7

A 
1

A {

.

I d-/ 

R -xi 



1 57 7 a(V+Kj) a(+k)
i

x *. x

+i(

-i

(x') 
I I+K.

( x' ) 1 d' +
I -- R -* - j 

1 - dx}

In

When the expressions (VI. 1.31) and (VI.1.32) are combined and summed

over all the states within the Fermi surface,

kF

C ' s(VI.1.33)

k=O

it is observed that the crystalline potential for the deformed lattice is not simply

the same potential for the perfect lattice but displaced "rigidly" by 8R . To

demonstrate this difference clearly, the following Fourier amplitudes of the

charge densities and of the Coulomb and exchange potentials are defined:

1 * * -4(p (- =-a (+.) a(k (x;R) * (x;R),
k+K.;;k+. A k +it. k+K.

k + .k + K. (VI.1.34)

j 1 m
(continued)
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(VI 1. 32)

I 

i

i

I



(e( X'; R)

e(~ -R m ; R )exchange)
k+K.;k+K.

J 1

= a (k+K) a(k+i)
* -4

(x-R )

j

-Rm;R)
= ({x-Am;R) k + j ,k + i

From these it can be seen that the expression for the electronic crystalline po-

tential is,

kF

ve(x;R) = '

k-=O

k F

3 32 
2 k=O

k=O

(x p( x;R)

,j

where the variable has been changed as,

x = x R1 m

There is also now defined the plane-wave charge density: that part of the charge

density attributable to the plane wave components of the eigenfunctions; or,
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k+K.; k+. | x-R
J 1 m

(VI. 1.35)

1/3

k + Ki

(VI. 1.36)

)+ i K dx +

k+Ki k+K j I X-X'|

T1/3

k+KS; k+ K'.
, (VI.1.37)

(VI.1.38)
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e(X;p;R :P.-W. --

e(P"X k+K.;Z+K. A
J 1

- % . - ._ I A...L .i

Substituting equations (VI. 1 37) and (VI. 1.39) into the expressions for the poten-

tial for the deformed lattice (VI.1.31) and (VI.1.32) gives, for the Coulomb term,

e ( x; R + R )Coulomb

kF

k=O i,j

r

- di +
+.;k+. i x-x'

J 1

,/1
1

- pe(x; Ro;.- W.)

k+K.;k+.J 1

1 dx +

k ]+K.;

- M " P(3; 
k+K.k+K i] -

- pe(X';RO; P.-W.)
+ -4* k + *

k+K.;k+ 
j 

- _I d'}Ix-XI I

(VI.1.40)

and for the exchange term,

e(- mecag 3
Ve(x; . + 6Rm )exchange - -22T2

32kF

k=O

R° ,

j I

+i(KiK j)' *K (.x ;R° (k kK

1 1

(continued)
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4^II~ ril\

i(1 -K - x

Vr'
(VI. 1. 39)

+

I

* tL | s T | 211 K T |

01·
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Together equations (VI.1.40) an

the deformed lattice:

J
- x (Pe(x;R ++K.,k+K.

-R - V (x; RO

J X

k +K,k + K.do tl 1 / 3

ld (VI.1.41) comprise the electronic poi

. (VI.1.41)

tential for

v (x;R+6R ) =v (X;R+R ) +v (X;R+6R ) (VI.1.42)e m (x;m Coulomb e ;R+ m exchange' (VI.1.42)

Having derived this potential for the R -th cell of the deformed lattice,

it is next required to examine the energy eigenvalues which it admits. It will be

shown that this deformed potential admits eigenvalues identical to those calcu-

lated in Chapter V through terms linear in 8R . In short, the deformation of

the potential only produces changes in the energy eigenvalues of order (R )2

and higher.

It is necessary, then, to set up the entire AoP.W. variational problem for

the deformed lattice using the new electronic potential generated by the deformed

lattice eigenfunctions. In order to establish that this new potential does not alter

the variational eigenvalues by terms less than quadratic in 8Rm, - i.e., ism

l

l

i

i

I
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self-consistent, -- it must be shown only that there are no non-vanishing diagonal

matrix elements between the perfect lattice trial functions.

As stated at the beginning of this chapter it is initially assumed that the de-

formation of the crystalline potential is confined to the R -th cell. The potential

in all other cells is assumed to be identical with that of the perfect lattice. In the

R -th cell, the A..P.W. trial functions are of the form,
m

1k'

i(k+Ki)· x i(k- )
1 m

e e
(x ;R ) + (x -R

m i k + Ki 

+i(km8Rm) cp i, ( x-R 
m k + K.

i(k. R )

J- 8R .V p (x-R ) m x m
k+K.

) +

(VI. 1.43)

Because the investigation is of the terms linear in change in the potential (VI. 1.40),

(VI 1.41), (or VI. 1.42) from that used in Chapter V, the matrix elements involv-

ing the last two sets of terms in equation (VI. 1.43) will be neglected.

Recognizeably, the terms in equations (VI. 1.41) and (VI. 1.42) which are

k
F

k=0 I - V p (x; RO)
m x

i,j Ji;k+jI~~~~~~~~

+.; , (VI. 1.44)

J

represent simply the rigidly translated potential; i.e., the rigid-ion model po-

I,

I

Ii
i
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tential for the deformed lattice. These terms generate the potential used in

Chapter V. There must now be added to the diagonal elements of the A.P. W.

matrix terms involving,

1 -,

R V mO P0(ik+ -K1 -W dx' +

I x -(x;R;P- (VI.1.45)

Ia t sv
and terms involving,

Zi(K ). iM
i,j

1
X dx'' +

(x _( x ROi -X P (VI. 1. 46)

In both equations (VI. 1.45) and (VI. 1.46) the functional change in the exchange

potential which is linear in 8R has been expressed in the expansion,

1/3 1
(1+E) ~ 1+ +- + ... . (VI.1.47)

3

Now, to show that there are no non-vanishing diagonal matrix elements in-

volving either (VI. 1.45) or (VI. 1.46), there will be used the following properties

RO VAL .P' - (i RO; P Z+'K.X+X
11 I 
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of the Bloch functions which are used as the A.P.W. trialfunctions. Under the

operation of inversion of the spatial coordinates,

x= x (VIo1.48)

the trial functions become,

-i (k+K) x
, (- x) = e u ( -) . (VI. 1.49)
k+K. k+

Because this function transforms as the (-k) -th representation of the lattice

translation group, the phase of the periodic orbital can be chosen such that,

u (-x) = u (x) , (VI.1.50)

provided that the lattice has a center of inversion. Thus, there obtains the

property,

-t $

(-X) = (x) (VI.1.51)
+ K. k+K.

1 1

(A moment's scruting of the A.P.W. trial functions as given by equation (III. 12)
i (k + Ki) x

or ( III.13 ) and comparison of them with the plane wave, e , will

suffice to show that; the A.P.W. trial functions already satisfy this relationship.)

Also will be used the property that the A.P.W. variational coefficients can be

made real:

a (+K.) =a(k+j.) (VI.1.52)
J J



Taking the Coulomb term in equation (VI. 1.45) between the state,

W I

k'+K
£,gives,

Z a(Z+K) a(k+Ki)

i,j

8i rndxI
Ear

k'+k
(-+) 12 (x) V 

x
I -1

-4 *

k
J

(x') 
k+K.

I

_, 1
(x')

(VI.1.53a)
Now substituting both variables of integration as

x =-x

and

-1 -- x =x

gives

i,j

a(k+Ki)

(it"n) 2('4
IK II~~xtl(v, +K.

J

-4~w *

(x"') lrt-4 -4)
k+K.

1

( x ) - I)

(VI. 1.53b)

Interchanging the dummy indices, i and j, in (VI. 1.53b) renders an expression

identical to (VI. 1. 53a) but of opposite sign because of the minus sign which en-

tered on account of the odd parity of the gradient operator:

V =-V
-x x

(VI.1.54)

I 131

+K
£

.. j 

fdx"'
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A similar analysis can be made of the exchange terms in equation (VI. 1.45).

Therefore, there are no non-vanishing diagonal matrix elements involving the

linear changes in the electronic potential which are associated with a gradient of

the electron density:

di (X | Em .V *x)j2+ (f) +I x - 1
iZ~~I 44 

P V J I

__t (_) _ (x = 0 . (VI.1.55)
3 k+ i+i. /

The functional changes in the potential represented by expression (VI. 1.46) ad-

mit similar treatment. Considering the diagonal element between the state,

(x) again, there are terms of the form,

k' +,

(a + ) a( ) i (i, jKi ) Rm
i,j

dR I * __. ( X) I d ' - IJ k+K k+K.
2 J

( ) . (VI.1.56a)
k+K.

By changing both the variables of integration as was done in expression (VI. 1.53a),

and using the property of the Bloch functions expressed in equation (VI. 1.51) there

obtains,

i, j (continued)

I
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xJrealIt (N) i2dx ,, (x ' ) , (x # )
k'+K£ k+K. k+K. , x"- x+K.

(VI.1.56b)

If the indices, i and j are interchanged in (VI. 1. 56b), there obtains the negative

of (VI. 1. 56a), nd therefore, the sum of half of both vanishes. Again, a similar

treatment of the exchange terms in equation (VI. 1.46) demonstrates that the

diagonal matrix elements of those terms also vanish.

Thus it has been shown that the functional changes in the electronic poten-

tial in the R -th cell which developes from the eigenfunctions for the deformedm

lattice have no non-vanishing diagonal matrix elements linear in R . There-
m

fore, this deformed lattice potential which can be quite different from the per-

fect-lattice electronic potential, admits the same eigenvalues as did the potential

used in the previous iteration up to terms quadratic in R :
m

(x; R + 8k'(i) + 0(8R )2
!e'mJ·st 1t-iteration

and

2nd- iteratin o(i) + O(SR ) + O(8Rm) (VI.1.57)
2 -iteration

Therefore, within the criterion for self-consistency that there be no change

in the eigenvalues linear in R between the i-th and the (i + 1)-th iterations, the

eigenfunctions for the deformed lattice determined in Chapter V,
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t ¢ ( Xk;R m,)=

X

i (i~+K') -x'-9

e

VFV,

/ ( )

A(k) i1
i

1

N

+ i- e 1

/N

R pR
p 

( +K i)

i(k+K i) Rp
e

0()e ) -, -,
(P_ (x-R )+

k+K.
1

k+i
-Rm) '

(vI. 1.s 58)
are self-consistent, and therefore, the proper ones to use to determine the de-

rivative terms,

dR xk; R
m

for the electron-phonon interaction matrix elements.

I
k _#~E~

m

\
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VI. 2 Further Remarks Upon Self-Consistency. The Phenomenon of

Shielding.

In the previous section, it was demonstrated that the eigenvalues for the

band energies in the deformed lattice, which were calculated in Chapter V, Sec-

tion 3,

e(;R+BRm) = e () + O(R ) , (VI.2.1)

are self-consistent through orders linear in 6R . The eigenfunctions for the de-

formed muffin-tin lattice which belong to these eigenvalues are

*k)' (k)~),m A(k) * 

X k ;R+ +e p (x-R) +
p mikiR

ffi ik * k+Ki) R BR,- SRe
N k~( ) m m+K R (VI.2.2)p m

The crystalline potential which is generated by the eigenfunctions in equation

(VI. 2.2) is

ve(x;R+ Rm) = Ve( x; R° ) ·- m

v X; RO R ° ;P.-W.) 6m) (VI. 2. 3)e
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In equation (VI. 2. 3) the symbol, ve(x; R°; P.-W.), represents the plane-wave

potential given by

kF a(k+Ki) a(+K.(K -K x
=< Jx {(e 1di' = 1

kO A(k) V x-x'

kkF_ 3 2 a(k+Ki) a( + ) i(K i - Kj) x

k=O i,

k kF

2TT k O k +Kj -it

(VI. 2.4)

This phenomenon of the deformed lattice that the plane-wave component of the

charge density is impervious to the motion of the nucleus while the tight-binding

components is translated rigidly with it, is represented schematically in Figure

5.

The eigenfun.ctions represented by equation (VI. 2.2) obtained for the muffin-

tin lattice when it was assumed that the electronic potential for the deformed lat-

tice was

Ve(;R+ sR ) ;) - Ve(X;RO)-V v(;R) RVe m e em

ve(x; R; P.-W.)

i

i
i

(VI.2.5)
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i.e. neglecting the imperviousness of the plane-wave component of the charge

density, and when it was assumed that the deformation of the crystalline poten-

tial was restricted to the R -th cell. So long as the variation of the crystal-

line potential is assumed to be restricted to the R -th cell, and the variations
m

in other cells is neglected such that

ve(x;R+ R) =ve(;R°), (VI.2.6)
e m

if x lies in any but the R -th cell, then the corrections to the eigenfunctions,

(VI. 2.2) attributable to the differences between the potentials (VI. 2.4) and (VI. 2.5)

will be of order (1/N), as determined in a manner identical with the analysis of

Section V.4. Therefore, the eigenfunctions in equation (VI.2.2) are the correct

ones for the deformed muffin-tin lattice provided that the criterion for self-con-

sistency is not less than (1/N):

(xk;R+ 6Rm nd (Xk; SRm s t |6, (VI.2.7)
2 - iteration

and

6 >-, (VI.2.8)
N

for all values of xk .

The reason for this relative smallness of the corrections to the eigenfunc-

tions can be understood quite simply.

The crystalline eigenfunctions are of unit modulus when integrated over a
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single Wigner-Seitz cell:

J xl tk(x;R)I dx=l . (VI.2.9)

In order to adjust the modulus of the eigenfunction to maintain normalization through-

out a lattice of N unit cells, the orbital is divided by V/N . It is for this reason that

the plane-wave components are multiplied by

(VI.2.10)
V = N2

and the Bloch sum of non-overlapping tight-binding components by N -l/ 2,

e P (x-Rp . (VI.2.11)
k+K.R 

P

The eigenfunctions for the perfect lattice are eigenstates of the perfect-lattice

Hamiltonian, h (x;R°), and are orthogonal over the volume of the perfect lattice.

So long as the variations of the potential are restricted to a single cell, the non-

vanishing matrix elements of the Hamiltonian between such states will be of order

N -1 :

k(X) h e(x;R+ kR ) h(X) d = ek k',k' n h ) ) d

. m

k (N k (I..1

+ *(X) h ~(x; + R (R) d =0+0 e k 8R). (VI.2.12)

In
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In the derivation of the eigenvalues of the band energies for the deformed

lattice in Chapter V, the muffin-tin model of the lattice was used because it was

necessary to analyse explicitly the matrix elements,

(he- ¢) (VI.2.13)
131 + Ik,, + Ki

in the deformed lattice. Also, in the discussion of the previous section the muffin-

tin lattice was used and the deformation was restricted to a single unit cell.

However, the analysis of both sections of this chapter has been almost com-

pletely general. Nowhere was necessary to the discussion of the self-consistency

of either the eigenvalues or the eigenstates the fact that the assumed eigenfunc-

tions for the deformed lattice, equation (VI. 2.2), had obtained from a muffin-tin

model, or the fact that the deformation had been restricted to a single unit cell.

For the argument for the self-consistency of both the band energies and the eigen-

functions was necessary only the vanishing of the diagonal matrix elements of the

functional variations of the electronic potential. To demonstrate that such matrix

elements vanish it was required to use the property of the charge density of the

perfect lattice that.

a(K. (kR.)Q (x) $.~ (x)
~(Pe )+Kik+ K. A(k) + . k+K.

] 1

= (Pe( )k K+I., kit. ' (VI.2.14)

J 1
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which property depends not at all upon the restrictions of the muffin-tin model.

The potential due to the electrons in the lattice is given generally by equation

(VI. 1.3)

v (x;R) = (R) 
f (x R)E _ X

Go =

i 7 (Ve(r ;R),m pml(cos e) e (VI.2.15)

-=0 m=--2

The criteriae of self-consistency require that, in the fully general analysis, each

term in the series in equation (VI. 2.14) develope from the eigenfunctions of the

nuclear configuration under consideration:

I(ve(r;R) i th -((r;R) 2 •h 8-(s.c.) , (VI.2.16)

iteration iteration

for all r, and for all ,m, where 6(s.c.) is some small number taken as the

criterion of self-consistency for the potential. Plainly the problem of the self-

consistency of the muffin-tin potential is included in the general problem the self-

consistent field. For the muffin-tin model, the potential is required to satisfy



141

the inequality

v(r;R') =0 - v(r;R)=0-
|i r-th ( =° (i+l)-th

iteration iteration

for all r inside the A.P.W. sphere, the potential b

stant in the rest of the cell.

A procedure for solving the problem for the c

formed lattice is as follows:

Taking the general solutions for the perfect la

complete potential of the perfect lattice,

( k ; R° ) Aae(k) (k+i) x
k IAV(k)

56(s.c.) , (VI.2.17)

eing arbitrarily taken as con-

omplete potential in a de-

ttice which obtain from the

_i(kK_ )_ ik p )
xe + e p (x-R

R 1
p (VI.2.18)

a potential for the deformed lattice which would be used for the first iteration

would be taken as identical as for the perfect lattice in all but the R -th cell and
m

in the R -th cell would be constructed using equation (VI.2.3). As argued in the

previous chapter and section, the solutions for this deformed lattice would differ

from equation (VI. 2.17) only in the R -th cell when they would be
m
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-1 1 - m
(xk;R+SR ) (Xk;R) + e 1 X

k k A(k) . v

it.) -Rm qcp (x-Rm )- V (I +
k+-K. kk+K.

1 i

+ terms O(-) (VI.2.19)

through terms linear in 8R . Now on the next iteration, the potential which is

regenerated by the solutions (VI. 2.19) will manifest certain multipole moments

which will alter the potential in cells other than the R -th. The solutions to the

variational problem for the eigenfunctions in these other cells will differ from the

functions in equation (VI. 2.18) by terms of the order

aH-R pP22 ( (VI.2.20)

e m

The correction terms in (VI. 2.20) will be included in the next and each subsequent

iteration until the criterion of self-consistency is satisfied. Obviously the magni-

tude of these correction terms will be largest in the cells adjacent or near to the

R -th cell. The correction to the total charge density which arises from these

terms will produce additional multipole moments which will diminish the magni-

tude of such moments due to the changed charge density in the R -th cell in cells

distant from both. This is simply the phenomenon of shielding and obtains naturally

and directly from -the property of self-consistency.
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VI. 3 The Virtues of the A. P. W. Method and the Vices of the Rigid-Ion

Model.

The conclusions of the last two sections hold much significance for evalua-

ting a common approximation for the electron-phonon interactions. As was dis-

cussed at some length in Chapter IV, the direct evaluation of the matrix elements

for the electron-plhonon interactions from the "double-derivative" terms in the

Adiabatic Model has been heretofore inaccessible because of the difficulties in

calculating accurately the derivatives of the electronic eigenfunctions,

-d( (*(;R) . (VI.3.1)

m,i

An alternate development of the theory which has been widely used [ 36 ] is as

follows.

The crystalline potential which enters the electronic Hamiltonian

h (x;R)= -V2 - 2 + v(;R)
hex iR)- re(X; R)

t I Pi
P

=-v 2 + u( x ; R) , (VI.3.2)

is recognizably a function of the nuclear coordinates, R = {R1 ,R 2, ... , RN]. It is

assumed that this potential can be expanded in a Taylor series about its equilibrium-

k position value, such that
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u(X;R) =u(x;R) ) 8R + ,i , (VI.3.3)

R i m,i RO
m

and that the terms linear in R do not vanish. The electron-phonon interac-
m,i

tions are then assumed to obtain from the linear terms in (VI. 3.3) considered as

perturbations:

D(k,k) = 6Rm iJ' x; R) ( u(x'; R) ( x';R) d ' . (VI.3.4)

The expansion in terms of nuclear coordinates in equation (VI. 3.3) and equation

(3.4) is usually transformed into one in terms of normal mode coordinates, Q
q'

as in Chapter IV.

Although the original work in which the matrix elements of equation (VI .3.4)

were derived involved lengthy arguments to justify their equivalence with the

"double-derivative terms, the validity of equation (VI. 3.4) is easily established

for the case where the function (; R) is an eigenfunction of the one-electron

Hamiltonian (by no means a traditionally common circumstance):

h (x;R) (x;R)= e (R) J (x;R) . (VI.3.5)e

Now equation (VI. 3.5) is not only an eigenvalue equation for the Hamiltonian

operator of the electronic coordinates acting upon the electronic eigenstate

(x; R), it is also a parametric equation in the 3N parametric functions R
m,i

k
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As such it may be differentiated with respect to any one of these parametric vari-

ables to give

(x; R) he(x; R) Rmi(; R=
M i

d (R)

= (x;R)+ ek(R) x; R .(VI. 3 6)

dR,i k R,i

Multiplying equation (VI. 3.6) from the left by r (x; R) and integrating out the

electronic coordinates gives

F_(x; R ( dr h e(x;R) (;R) d;=
k R k

mi

= (e(R)- (Ri) ar (R) ( x;R\ di. (VI3.7)
k k

The integral on the left band side of equation (VI. 3.7) is recognized as the term

multiplying R . in the matrix element (VI. 3.4). The terms on the right hand

side of (VI. 3.7) are simply the "double-derivative" terms multiplied by (e - e ).

The conservation of energy requires that this energy difference be equal to that

of the phonon absorbed or emitted,

- e = htw . (VI.3.8)
i' X, q

.1w
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Multiplying both sides of equation (VI. 3.7) by the normal mode coordinate Qq

and substituting ecquation (VI. 3.8) for the energy difference gives

Q y(x;R) h (x; R(X; R) dx=
k' k

mi

(x; R) ( h (x;R) (x; R) d =

= - BA (x; R) ( , (x; R) d . (VI. 3.9)
2NM d ,i

This is exactly the identity between the two forms of the electron-phonon matrix

elements which was to be demonstrated.

In order to use the matrix elements of equation (VI. 3.4) for the electron-

phonon interactions, it is necessary to evaluate the derivatives

d eh(x;R = d (x;R (VI.3.10)

m,i m,i

It is often assumed that the crystalline potential is simply a superposition of free-

atom or free-ion potentials

R
P
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and furthermore, it is often assumed as well that the derivatives of the crystal-

line potential with respect to the nuclear coordinates is given by

d
dR u(x;R) i-V atom(x-R) m (VI.3.12)
m,i

This is the Rigid-]:on Model [ 37, 38 ]. This model has been widely used

albeit with no justification beyond the ad hoc assumption given by equation

(VI.3.12).

The discussion of this Chapter has established that the Rigid-Ion assump-

tion, (VI. 3.12), is incorrect, and that even if the crystalline potential were ac-

curately represented by (VI. 3.11), the derivative with respect to the nuclear co-

ordinate R would be
m,i

u(x;R i- )u(X Rm
dR m

m,i

= - V. u(x-Rm) + V V e(x-R; P.-W.) , (VI.3.13)
1 m 1 e m

as derived in Section VI. 1.

There are additional advantages to using the "double-derivative" terms as

developed from the A.P .W. eigenfunctions. In Chapters IV and V it was shown

that the derivative of the electronic eigenfunctions were given by
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d ( VI3(k)14 x

dR k A (k)

mmi mim e -
X +K. )i ( x-R )V.cp (x-R)

- Im 1- +K.
J J

(VI.3.14)

neglecting additional corrections which are of the order of (1/N)-times smaller

than these above. However, if the matrix elements using the correct derivative

of the crystalline potential is calculated,

d (·" ))= ~ - 6Rmi '~ )/6Rm, (VI 3.15)

dRm,i Rm,i

when developing the correct potential for the deformed lattice,

u(x;R+8R ) , (VI.3.16)

all of these small corrections must be included. This is because the potential in-

volves the sum over all N electronic eigenstates of terms representing the po-

LeImlaL UUe Lo Lo eacn an electron mi a eIorULtlu-IaLLU: elg-ensiaLe,

ve(X;R+8 Rmi) = I(x;R+8R d-' i+

k F 13

2,3 t3r2 T (x; R + i) (VI.3.17)
k=0
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In short, the matrix elements which obtain directly from the "double-derivative'"

terms involve single terms while those which obtain from the variations of the

crystalline potential involves series of N such terms for which the cumulative

effects of small corrections are not necessarily negligeable. Therefore to cal-

culate the electron-phonon interaction matrix elements using equation (VI. 3.1)

is formidable more difficult than to use the derivatives of the one-electron eigen-

states directly.
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APPENDIX

EXPERIMENTAL OBSERVATION OF THE

ELE CTRON-PHONON INTERACTIONS

Although the electron-phonon interaction dominate all of the transport theory

of metals, and are of crucial importance for many other phenomena, there exists

no direct way to observe or to measure experimentally the electron-phonon inter-

action matrix elements,

D( ,e)

the derivation of which has been the entirety of this analysis. Every experimental

observation of phenomena related to the electron-phonon interactions involves a

complicated average of these transition matrix elements over either part of or the

whole of the Fermi surface.

One property of metals which is related directly to the electron-phonon in-

teractions is the electrical resistivity. The temperature-dependent part of the

electrical resistivity of pure metals is caused by the scattering of electrons by

thermally excited phonons. The derivation of the formulae for the electrical re-

sistivity for the various ranges of temperatures is extremely complicated. It in-

volves assumptions concerning the validity of a Boltzmann type distribution func-

tion, and some (usually clumsy) approximate solution to a Boltzmann transport

equation.
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The derivation of the formula for the high-temperature resistivity of pure

metals will not be repeated here because such is not the subject of this analysis.

The derivation performed by H. Jones in Volume XIX of the Encyclopedia of

Physics gives [ 11 ].

pL = - 4.7 7 6 10- (A. 1)
;cL \M Ed 1{/A e

for the high-temperature resistivity, where MA is the atomic weight, D the

Debye temperature and Q the atomic volume in cubic Angstroms. The resistivity

is then given in practical units, ohms-cm. The constant C is the average of

A fl * du(x;R)
e (x) ) I k() cl (A. 2)

' ~ ' dR

taken over the entirety of the Fermi surface.

For Lithium, the conductivity at 3000 K is -l = 4.44 x 10-8 ohm-cm.,

[ 39 ] , MA=6.94, Q 13 = 2.775A, D=4300 K [ 40 ] 

Substituted into equation (A.1), these require that the ratio C/e F be

C- = 0.105 . (A.3)

eF

To perform the integral in (A. 2) a number of additional approximations to

the potential and the wave functions of Lithium have been admitted. First, the

eigenfunctions for the states on the Fermi surface are approximated by the tight-

binding component plus the single plane-wave in the first Brillouin Zone which
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designates that state. This approximation was motivated by an examination of

the variational coefficients for the eigenfunctions in three special directions near

the Fermi surface: (0, 5/4, 0), (3/4, 3/4, 0), A(3/4, 3/4, 3/4). At each of these

points, an inversion of the A.P.W. secular determinant at the value of the energy

for which the determinant vanished demonstrated that the variational coefficient

which multiplied the component

F 
t (x)
k

was of the magnitude 0.95 to 0.99:

F 
a (kF) 0. 5 .0.99 ; (A.4)

while the next and other variational coefficients, were no larger than a few per-

cent and diminished rapidly with the magnitude of K,

OF 
a (kF+K i ) 0.05 . (A.5)

Second, the Fermi surface was assumed to be spherical. In fact the Fermi

surface for Lithium is slightly aspherical; however, the greatest difference which

is between the lengths of the wave vectors or the Fermi surface in the A, (0,1,0)

and E, (1,1,0) directions is only on the order of 4%. The magnitude of the k-vec-

tor for the Fermi surface was taken to be the weighted average of the magnitudes

of kF in the three special directions, , E, and A.
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Third, the number of - wave components to the eigenfunctions were re-

stricted to two: = 0; 2 = 1. When performing the A. P.W. variational calcula-

tion for the band energies, thirteen values of were used: =0 to 2=12. How-

ever, when the A.P.W. eigenfunctions belonging to the Fermi energy were in-

tegrated out and normalized, the relative magnitudes of the -th components

for the eigenfunctions approximated by the tight-binding component plus a single

plane-wave were given by the following coefficients.

2=0 0.65537

==1 0.31018

= 2 0.03234 (A. 6)

2=3
to >< 0.001

£=12

The relative size of these components is shown graphically in Figure 7

Fourth, the approximation of the eigenfunction by a function involving a

single plane-wave in the regions between the A. P.W. spheres and the cell

boundaries greatly simplifies the calculation of the variation of the crystalline

potential,

du (
-(x ;R) . (A.7)

dR

In Chapter VI it was shown that the differences between this derivative and the
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simple gradient of the potential,

- V u(x;R) , (A.8)
X

arose from the rigidity of the plane-wave charge density,

pe( x ; R ; P . - W . ) . (A.9)

It was shown that the potential for the deformed lattice is generated by an altered

charge density where the variation of the charge density are given by

V. x ;(x;R;P.-W. (A.10)

1

However, from the definition of the plane-wave charge density (VI. 2.14) it is

clear that the plane-wave charge density for a crystal whose eigenfunctions re-

quire only a single plane-wave is a constant, and in such case the second cor-

recting term on the right hand side of equation (A. 10) vanishes. Therefore, in

this case we are justified in approximating

(u(x;Rd -VR.(x;R . (A. 11)

1
dR 

The calculations for the transition matrix elements of Lithium used the re-

sults of the energy band and Fermi surface calculations on Lithium which have

been reported previously the Quarterly Progress Report No. 53 of The Solid

State and Molecular Theory Group [ 41 ] . The potential used to calculate the
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gradient which enters the transition matrix elements is tabulated in that article.

For the calculation of the eigenfunctions on the Fermi surface, a modification of

the program developed by the Rudge and reported in No. 59 the Quarterly Progress

Reports [ 42] was used. A further program was written which integrated out and

normalized the A.P.W. eigenfunctions, which calculated and stored the gradient

of the muffin-tin potential, and which numerically integrated out the matrix ele-

ments (A. 2) .

The calculated value of the constant C is

C = 0.03669 ryd. (A. 12)

in A.P.W. units, Rydbergs. The value of the Fermi energy was calculated

previously as

eF = 0.2989 ryd. (A.13)

Together these give a ratio of

= 0.1223 . (A.14)

eF

Comparing these results, (A. 3) and (A. 14) renders

C

¥F

measured

0.105

calculated

0.122 (A.15)
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The calculated value of the ratio is observed to be on the order of 18%.

This error is considerably greater than that introduced by any (or all) of the

various approximations:

i.) the single-plane wave eigenfunction;

ii.) the restriction of the eigenfunction to the =0 and =1 components;

iii.) the use of the simple gradient for the variation of the potential.

The probable source of the largest portion of this error is the inaccuracies in

the potential used. As was emphasized in earlier chapters, the proper potential

which must be used is that one generated by its own eigenfunctions (together with

the nuclear potential), i.e., the self-consistent potential. For the calculations

on Lithium the potential used was simply the spherical portion of the superposed

atomic potentials

u(X;R) = Vatomic(- p (A. 16)

This potential probably manifests a larger gradient over much of the cell than

would the correct self-consistent potential, and such may well be the major

source of error in (A. 15).

T'
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