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THE ELECTRON-PHONON INTERACTION IN NORMAL METALS
J.F. Kenney

ABSTRACT

The prohibitively cumbersome exact Hamiltonian for the combined system
of electrons and nuclei in a crystalline solid is simplified into a Frohlich-type
Hamiltonian

H =Z(hw(c_1',s)+ 1/2) ai a +Z(e(l?) -lve(ﬁ)) ci c_+
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The Adiabatic Principle is explained and used to approximate the eigenfunctions
of the solid by products T(x,R) = ¥o(x,R) ¢,(R) of electronic (Ye(x,R)) and nuclear
(én(R)) eigenfunctions. The electronic system is further approximated by an in-
dependent-particle model for which the electronic eigenstates are Slater determi-
nants of one-electron orbitals. Within the framework of this model, the set of
terms which describe the coupling of the electronic and nuclear systems,

iZ ZD(I?,E,S) c+_*c_‘(a_’ -a+ ),
T a.8 k+q k‘q,s -q,s

is shown to arise from the effect of the nuclear momentum operator acting upon
the electronic orbitals
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In order to solve for the derivative

4 (\l'_'( xR )) ,
dR. . ‘k

m,i
the energy band problem for both the single-particle orbital z}-(_' ;R) and for the
eigenvalue to which it belongs are set up and solved for the deformed lattice by
the method of Augmented Plane-Waves (A.P.W.) Because the eigenvalues and
eigenfunctions for the perfect lattice result from the A.P.W. variational calcula-
tion, such that the band energies are stationary

se(k) _,

8(+ )
k
it must be shown that the eigenvalues for the deformed lattice are invariant up to
orders quadratic in the nuclear variations GRm’i. The full secular determinant
of order 1035 x 1035 for the deformed lattice is set up and formerly expanded by
minors retaining only terms of order quadratic or less in 8Rm,i- The zeroes of
this A.P.W. secular determinant are ascertained by tra.nsformmg the summations
overk-vectorsinto an integration in the complex energy plane. The secular de-
terminant for the deformed lattice is then inverted to ascertain to eigenfunction,
and it is established that the derivative
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neglectmg corrections of the order of N™! the size of the above, and where

¢ (x) represents the A.P.W. trial function W (:_c') minus its plane-wave
1?+K] 1(k+K ). X k+K]-

component e ]

The smgle-coordmate electronic potential ve(x R) and its requirements of
self-consistency are discussed at length. It is shown that the self-consistent po-
tential generated by the electrons in the eigenstates of the deformed lattice is sub-
stantially different from the rigidly translated perfect lattice potential. This re-
sult considerably qualifies the results of the commonly used Rigid-Ion approxi-
mation. However, it is also shown that the correct self-consistent potential for
the deformed lattice contributes additional corrections to the derivative above
which are of the order of N~* times the original expression.
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CHAPTER 1

THE ELECTRON-PHONON INTERACTIONS

The dynamics of matter in the crystalline solid state is conventionally
described in terms of the normal-mode vibrations of the nuclei or ions forming
the crystal lattice, — the phonons, — and in terms of the energetics and char-
acteristics of the mobile electrons, which themselves are usually described by

. . . [1-9]
an independent-particle formalism .

The interactions between these lattice waves and the mobile electrons, —
the electron-phonon interactions, — have traditionally been thought to occupy a
position of secondary importance, at least for many problems and always for
those problems which concern themselves solely with properties of one or the
other of the two aspects of the dynamical system alone.

It has long been recognized that the electron-phonon interactions dominate

. e [1,2,4,5,6]
transport theory: the study of electrical and thermal resistivity .
. . . . [1,6,11]
These interactions are responsible for all thermo-electric effects and
for the attenuation of ultrasonic radiation in metals [12] . Furthermore these
. . . .1.[13,14,15]
interactions produce such phenomena as the Jahn-Teller Effect in solids

and the existence of the polaron in, say, ionic crystals or covalent semiconduc-

16,17,18 . .
tors in their intrinsic regions[ 6,171 ]. The electron-phonon interactions are



also responsible for the phenomenon superconductivity[lg’m] .

The traditionally subordinate position which the electron-lattice interac-
tions have held has been allowed for essentially three reasons.

The first reason, as has been already stated, is because such effects have
been considered to be of no consequence when studying some property of one as-
pect of the dynamics of the solids, e.g., the cyclotron-resonance frequency of
the conduction electrons. In short, the two aspects of the dynamics have been
usually thought of as two decoupled, independent dynamical systems: one, the
system of phonons; the other, that of the conduction electrons. This conceptual
picture is flatly wrong, as we shall demonstrate; and most of the empirical con-
stants traditionally believed to be properties of the electronic system independent
of the lattice vibrations (e.g., the electron plasma-oscillation frequency, wpz,
the Pauli susceptibility, Xp , the linear term, ¥, in the specific heat, (yT + eTs)
will be shown to depend considerably upon the energies of the lattice waves through
the electron-phonon interaction.

The second reason for the traditional disregard of the electron-phonon in-
teractions is that the strength of these interactions has been thought to be small,
at least with respect to the energies of the electrons involved, as measured by,
say, some coupling constaﬁt in a perturbation theory formalism. Such is a funda-
mental misunderstanding. An important parameter which can be associated with

the strength of the electron-phonon interaction (if one takes a certain perspec-



tive) is

°F
¢ , (1.1)
F(Mcg/ 2>

where ep is the Fermi energy, M the nuclear mass, and cy the velocity of

sound of the solid. This parameter is on the order of eF. As a demonstration,
2

for sodium,[ 1]

c, = 3 X 105 cm/sec

M = 23 nuclear masses

eF =2.3 ev. ,
such that
eF N l
M02/2 3
s

The third reason for the usual neglect of these interactions has been the
(previous) uncertainty concerning not only the form of the interaction but also
the values of the constants appearing in it.

. o [22] . .

About a decade ago, Frohlich hypothesized that the complete Hamil-
tonian for the solid could be expressed as

H(Frohlich) =Z e(B)cte + Z ho (d)a a
7 k k 3.8 a4, d,s

+iN D (R+q.K) ¢ cé +a )
S > = =

S k+q k

q,8

K



This Hamiltonian operator is written in the Second-Quantization formalism per-
taining to quantum field theory. Its expectation values are taken between states

in occupation-number space and have exactly the same values ashasthe equiva-

lent operator in the Schrodinger representation taken between spatial wave func-
tions. In (I.2) e(E) is the single-particle energy of the electron belonging to

-+
the wave~vector k; ¢, and c

K K are, respectively, the creation and annihilation

operators for an electron of wave-vector K; ws( a) is the normal mode fre-
quency of the phonon of wave-vector Ef and band index s, and a(-; and aq are,
respectively, the creation and annihilation operators for that phonon; Ds(§+ a,l_{')
is the matrix element associated with the electron-phonon interaction involving
an electron transition from wave-vector XK to wave-vector E+ﬁ' accompanied by
either the absorbtion (aq) or emisgsion (a'i__q) of a phonon of wave-vector c—f and
band index s. Frohlich developed his Hamiltonian (I.2) in an ad hoc fashion
using "plausibility," arguments starting from the assumption that the electrons
and the phonons were almost independent systems and that their coupling was

weak. He further argued that the dependence of the matrix element D(k +q,kK)

should be of the form,

D(k+q.k) = h__al,

(1.3)
2NM (.os( q)
where # is Planck's quantum of action; N is the number of nuclei in the crystal;

and M, ws(q), q are as defined above. The constant ¢ has the dimensions of
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energy and, Frohlich argued, should be of the same order of magnitude as the
energy of the k-th electron, e(k). The constant c is often called Wilson's

Constant, after A.H. Wilson[4:| who calculated it to be,

2
2\ h - 2 2
c=(-—>—f |vuk| d+IVcrys|uk| d, (I.4)
3/ 2m
where uk(r) is a factor in the Bloch eigenfunction,
- iE- ? -
\llk(r) =e uk(r) . (1.5)

In his analysis of the coupling between the electrons and the lattice waves, Wilson
assumed that the interaction is attributable entirely to the variation of the crys-
talline potential due to the motion of the nuclei in the presence of a lattice vibra-
tion wave. This assumption is both inadequate and conceptually dissatisfying.

It is inadequate because there are additional sources for the coupling which must
be taken into account. It is conceptuaily unreasonable because it ascribes the
majority of the interaction to that region of the crystal cell where the variation
of the crystalline potential is greatest, to wit, near the nucleus. Common sense
as well as the detailed studies of crystalline electronic wave functions tells us
that near the nucleus the electronic wave function in the crystal is very nearly
identical to the wave function in the free atom. In that region, shielded by the
outer core electrons, the conduction electron will be impervious to the relative

motions of the other atoms in the lattice, and its eigenstate and energy will no
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more there depend upon the motion of its own nucleus than does the state and

energy of the electron in the free atom depend upon its center-of-mass motion.

Frohlich's Hamiltonian has more inadequacies besides the usual misesti-
mate of Wilson's Consta.ﬁt. To begin with, his initial assumption that the con-
duction electrons and the lattice vibrations are essentially independent aspécts
of the crystal dynamics is quite incorrect, as we argue further in Chabter 1I.
Furthermore, the total energy of the electronic system cannot be represented
simpiy as the sum of thg single-particle energy eigenvalues of each electr6n but
must be correcfed by subtra.cﬁng from that sum one half of the sum of the ener- ~
gies of the Coulomb interactions between all the electrons. This last arises
Because the potential function which enters into the siﬁgle—particle Hamiltonian,

He(x), where
H (X) ¥ (%) = e(®) ¥ (%) , (1.6)

involves some average of the sum of the two-particle interaction potential be-
tween the K-th (here) electron and all the others. Therefore, wheﬁ summing the
eigenvalues, é(k), one is counting the expectation values of the two-particle in-
teraction energies twice. Hence the necessary correction, which Frohlich
neglects.

The Frohlich Hamiltonian has been used for many investigations of phe~
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nomena involving the electron-phonon interactions and has rendered modestly
good predictions. Considering the conceptual and mathematical errors involved
in its derivation, this is somewhat surprising, even when allowing for a great
elasticity admitted to its conclusions by an empirically fitted Wilson's Constant.
For these reasons, our investigations shall include a logical derivation of
Frohlich's Hamiltonian. We shall show explicitly the approximations and sim-
plifications involved in its development; and we shall calculate explicitly the

correct Wilson's Constant.
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CHAPTER II

THE ADIABATIC PRINCIPLE

The dynamics of matter in the solid state is determined by the Hamiltonian

operator,

hz 2 hz 2 Ze2
Htotal=z:§:- WY T S
s 2M 2M IR -x |
R X, n i
n 1
2 2
+l © +}- Z e (I1.1)

This operator describes the total energy of the system in its nonrelativistic limit
and in the absence of any external fields. The specification of the energy spec-
trum of the solid obtains from the eigenvalues of this Hamiltonian operator, and
the description of the properties of the solid depends upon the eigenstates be-

longing to those eigenvalues. The eigenvalue equation for the solid is

B z:({%}{ﬁn}):% al:r:({;{i} {R’n}> . @.2

Because the operator H involves a number of independent coordinates

on the order of 1022 - 1023, no exact solution to equation (II.2) oan be obtained

total
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at present, and we must seek useful and accurate approximations to its solutions.
The first approximation introduced is suggested by the division of the

Hamiltonian operator into two parts:

H  .=H (R) + H (x,R) , (II. 3)

total nuclear electronic

where
Z e :
= _— - .4:
nuclear( ) Z : V * § :I 2 l (. 4)
R m;én B Bm
and
2 2 2
H . (x,R)=Z - .2—5 :—Ee———+l L G 3
electronic i - o - -
—I| 2M |x-R | 247 |x.-x]
i R i "n AT T
n
It is observed that the operator Hnuclear(R) involves only the nuclear coordinates,

(x,R),

{I—’; }. The electronic coordinates, {1? .}, enter only the operator H
n i electronlc

and, furthermore, the nuclear coordinates enter H (x,R) only in the po~-

electronic

tential energy sum,
I i™mn

Sz
|28 |
n

The simplifying hypothesis which permits the separation of the dynamical

problem of the nuclei from that of the electrons is as follows:
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Because the mass of the electrons is so very much smaller than that of

the nuclei, —

m 10t -107 (IL.6)

M

the mobhile electrons always follow the motion of the nuclei instantaneously and

smoothly, and the state of the electronic system is, at any instant, the equi-

librium electronic state for that particular nuclear arrangement.

[23,24,25]

This is the Adiabatic Principle.

An immediate consequence of the Adiabatic Principle is that, within the
limits of the principle's validity, the total eigenstate of the solid can be repre-
sented as the product of eigenstates of the nuclear and the electronic systems,

respectively, i.e.,

I <{ 2}’ {ﬁb - Yelectronic ({ )?i b {ﬁn}) Qnuclear <{ Rn-b (IL.7a)

or, simply

T (xB) = Y,(xR) 8 (R) . (T.7b)

Because the electronic coordinates enter only the electronic Hamiltonian,
(x,R), as noted above, the eigenfunction of the electronic system satis-

Helectronic

fies the equation,

He(X,R) Ye’j(x;R) = 6e,j(R) ‘J:’e,j(x;R) . (I.8)
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We observe that equation (II.8) is not only an eigenvalue equation pertinent to
the eigenvalue cSe,j(R), but also that it is a parametric equation in the 3Nz
nuclear coordinates, {ﬁn} (where z equals the number of atoms per unit
Wigner-Seitz cell). The eigenvalue 6e,j(R) is a parametric function of the
nuclear coordinates, as are He(x,R) and Ye’j(x;R).

There area few remarks that should be made at once concerning the con-
sequences, interpretation and usefulness of the Adiabatic Principle and of such
| approximate eigenstates as (IL.7).

First, a consequence which does not derive from the Principle:

This point of view,— and the use of eigenstates such as (II.7), — does not
decouple the systems of electrons and nuclei. We expect that this fact needs
stating explicitly, for a picture of solids (metals, especially) commonly held is
that of a system of electrons decoupled from a system of nuclei (or ions), which
systems interact with one another but weakly. This simple picture appears to be
supported by a substantial amount of experimental evidence. For one example,

the specific heat of a metal can be expressed as the sum of the independent con-

tributions of the electronic and vibrational specific heats, i.e.,
CV(T) = CV(electronic) T + CV( lattice) T3 ) (IL.9)

suggesting that the total energy of the solid is the sum of the energies of the

electrons and nuclei — a characteristic of independent systems. In fact, such is
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a misinterpretation of equation (I.9); and one important conclusion of this in-
vestigation is that the interaction between the dynamical behaviour of the nuclear
and electronic systems strongly influences the quantities Cv(electronic) and
CV( lattice) entering (II.9). For another misleading example, when deriving
the electrical conductivity of metals, the effect of the motion of the nuclei upon
the conduction electrons can be fairly accurately calculated using perturbation
theory.

What the Adiabatic Principle does, in fact, say is that if the nuclei have
just changed one configuration, say @n(R), to another, say Qn(R' ), the system
of electrons will inevitably be found in the equilibrium configuration pertinent to
that nuclear arrangement, i.e., Ye(x;R’), however, abrupt the nuclear transi-
tion may have been. Which is to say that the electronic system, far from being
independent of the nuclear motion, follows it perfectly, and that after such a

transition,
N I'4
3 (R) -8 R) ,

there is no part of the electronic system "left" in the state ‘l’e(x ;R). The limits
of the validity of the Adiabatic Principle deﬁend upon the ratio of the electron
velocity, v, , to the velocity of sound, cs » and upon a relaxation time, 'r(e~ - ph),
characteristic of the actual (not instantaneous) response of the electrons to

nuclear motion. The extent of these limits and their influence upon the results
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of calculations made using the Adiabatic hypothesis are discussed in Chapter VII.
Second, on the usefulness of the formation of the Adiabatic Principle:
The usefulness of the type of eigenstates for the electronic system pertinent

to the Adiabatic model, i.e.,
Ye(xl’xz’"")ﬁ\I;Rl’Rz""’Rm) R (II.10)

is usually limitéd to physical systems where either the variation of the electronic
eigenstates with the parameters R is small or where the motions of the nuclei
are severely restricted. The reason for this limitation is simple. Except for
the circumstance wherein the temperature of the system is at absolute zero, the
nuclei will be always in motion. Therefore an eigenfunction like (II.10) will be
constantly changing, and one can not calculate any stationary or universally sig-
nificant quantity of the electronic system, such as, e.g., total energies, charge
or current densities, magnetic moment, etc. In such cases, one is restricted
to calculating some time-averaged quantity associated with the property under
investigation — a procedure which is both conceptually unsatisfactory and which
introduces new complications into the analysis.

An example of a problem for which the Adiabatic Model is useful by virtue
of the first condition, — a very small variation of the electronic eigenfunction
with respect to variations of the nuclear coordinates, — is that of the conduction

electrons in a periodic lattice. That is the problem which we address here.
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Because the nuclei in a crystal lattice are always in motion (at tempera-
tures not equal to absolute zero), the electronic eigenfunction is varying at
every instant of time. Furthermore, because the interaction between a nucleus
and an electron is very large in the vicinity of the nucleus, a change in the
nuclear position will expectedly work a considerable change upon the electronic
probability amplitudes (wave-functions), at least in its neighborhood. Thus we
must address the problem of solving for the electronic eigenfunction at all
nuclear spatial arrangements.

This general and extensive problem is rendered tractable by two properties
of the crystal lattice. First, all possible motions of the nuclei are known and
counted for temperatures below the melting point. These are the Normal-mode
lattice vibrations (phonons), characterized each by their respective normal-mode
frequencies, ws(q), their wave-vectors within the first Brillouin Zone, Ef , and
their band indices, s. Second, the functional dependence of the electronic eigen-
functions upon all the nuclear coordinates is known explicitly through the depend-
ence of the tight-binding components of the one-electron orbitals, which have the
form,

ik-®

- - n - =
1le,(xk,1;1)~Ze o (TR ) . (II.11)
R
n

These two properties will permit us to write the electronic eigenfunction for all
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nuclear arrangements in terms of the derivatives of the electronic eigenfunctions
and the normal mode amplitudes. This particular approach has been described
succinctly as, "substituting for the éolution of one general and very difficult
problem the equivalent solutions to 1023 easy ones."

The specific technique which we use is simply to express the electronic
eigenfunction at a general set of nuclear coordinates as a Taylor series expan-
sion about the equilibrium (or zero-temperature) set of nuclear coordinates.
Furthermore, because the electronic system is conventionally (and most easily)
described in terms of the electronic eigenfunctions belonging to the equilibrium-

position nuclear coordinates,

{Ye,j(:? ;R°)} , (I.12)

we express each term in the Taylor series as a linear combination of these.
Finally, an example of a problem for which the Adiabatic Principle is of
little use, although of no less validity, is that of a fully ionized plasma at suf-
ficiently low density and high temperature so as to be in the non-degenerate
regime. For this system, the rapid and complicated motions of the positively-
charged nuclei render the solutions of the electronic Hamiltonian of the form,

‘i’e( X,R), practically unobtainable.
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CHAPTER III

THE TOTAL HAMILTONIAN AND THE

INDEPENDENT-PARTICLE MODEL

.1 ‘The Simplification of the Potential Energy Terms.

As has been stated in equations (II.1) and (II.3), (II.4), the operator re-

presenting the total energy of the solid is,

2 2
N G A e
= 2M 2o TR ]Rn-RmI
n m
- 2 Ze 1 e2
S-S ) ma
T \2m R_ [Xi-Rnl zjaéi 'xl—le

The potential energy terms in equation (III.1.1) which describe, respectively, the

nuclear-nuclear Coulomb repulsion,

, (I0.1.2a)
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the electron~-electron repulsion,

IX-XI

—Z‘ Z (ITI.1.2b)
i

and the electron-nuclear Coulomb attraction,

2
—Z Z——g——e:——- (III.1.2c)
x-R

T f %Ry,
m
o -1 . ..
can be combined so as to eliminate the long-range | R[ interaction. This sim~

plification is affected by using the translational symmetry of the crystal and in-

troducing the coordinate transformation,

<A

=x-R_, (IT.1.3a)
] m

where the cellular coordinates, i’; , are restricted to the range set by the limits

of the Wigner-Seitz cell,
0 < x]’ <a, . (II1.1.3b)

When the operators for the electron-nuclear attraction and the electron-electron
repulsion are written, respectively, in a polar and bipolar expansion, the lowest

order terms, — which go as,
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) ra—
R_#R I Rn- le

n m
cancel the nuclear-nuclear repulsion exactly, because the periodicity of the crys-

tal requires that each Wigner-Seitz unit cell be electrically neutral.[%] Thus,

the total Hamiltonian can be written simply as,

-h2 -h Ze
MZ Z S TR

'X' 2 i# [x'-x']

Ga(x'ﬁ )+-—Zr(x’x'R> (II.1.4)

R#O

where both -a( J?Jf,ﬁn) and r( }?i’,i;f,ﬁn) go as RP for p = 2. Accordingly, the

total Hamiltonian may be separated as,

2

h™ 2

H . (x%R)=-% —V +H (cellular) , (I.1.5)
2M

R
n
where
2 2 2
He(cellular) =Z i viz _Ze +lz —° 4
</ T
T | 2m |xi| 2_#.1 lxi X/

_ - ) l - Ty =
+ Z(a(xi,Rn) + A r(xi,xj,RI) . (III.1.6)
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.2 The Independent Particle Model.

As has been made clear in Section II, the calculation of the dynamical prop- -
erties of a system of electrons and nuclei begins, — when using the adiabatic
hypothesis, — with the calculation of the eigenfunctions Ye( ;1’ :?2, cees }—{N;

- - i - . N . - - =, - - - :
fil,Rz, e ,RN) of the electronic Hamiltonian, He(xl,xz, .o .,1&\1 ’Rl’Rz’ .o .,RN),
for some specific nuclear arrangement. For crystalline solids, the arrangement

of the nuclei chosen is usually (and herein) that pertinent to the temperature ab-

solute zero. The first problem then is to ascertain the eigenstates of the Hamil-

tonian,
2
2‘1 -h 2 Ze +£ e +
I..J 1 2/ 2 _2
7| 2m lel 2]941 ]xi x]]
= BO 1 ! 2! RO 2.80
+ E : -a(X,Re) +=\ r(x,x,E%)| ¥ (X;R°)
; _ i"n’ i n e
Rn#O A
= = RO 2:BY =" 0 = RO
He(x,R ) ‘L’e(x,R) de(R ) Ye(x,R ) . (II1.2.1)

Now, because the number of electrons in a given crystal is on the order of 1021 -
1022 cm-3, this problem also presents insuperable difficulties to finding the

exact eigensolutions, quite independently of any difficulties associated with the

motion of the nuclei. In order to calculate reasonable approximate solutions to
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equation (III.2.1) we intrqduce the following simplification: every electron is as-
sumed to move independently of the motion of all the other electrons in the aver-
age potential field produced by them. This simplification amounts to performing
some average summation of the terms in the electron Hamiltonian which repre-

sent the electron-electron Coulomb interaction, i.e.,

.2
ST ST k@A) -
|x’ x'l 11l n

j#L R#O

-

o2 - _,‘ N, ;
(ZJ'\ JY (Xl’. _,J%I ﬁl,ou, "__Y (xls-.- ’XN,Rl’ -ogRN) dx ao.-pdxi’, o-c,d}&’q ;

j#i N-1 l -X’l

/}’I el
J Jw (xl,..., ,Rl,...,R)\r(xl,...,xNRl,...,ﬁN)dxl,...,dxi,.,..,de

N-1

(Z yj f (F e B) R )Y(x,...,ﬁ)dx',...,d’%.',...,' 2

j#i Rn;éo N-1

AN -
(j JY(x, .,R)Y(x,... R) dx/,o.rp XY, oo ')>

N-1

=voP( 2R 1 .
—-Ve (xi,Rl, ...,RN) . (OI.2.2)
Observe that the caret over the differential dr—fl’ specifies the coordinate not in-

tegrated out. The operator, V (x’ R RN) represents the potential energy

1,..0,

of interaction between the i-th electrons (with space and spin coordinates, 1—;'1' ) and

“all the other electrons. The contribution to the total energy of the electronic sys-
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tem (the expectation value of He) of the energy of interaction between all the
electrons is the integral over coordinates ;1 of this operator Vzp( :_:’i,ﬁ) times

the density, ()?. ), of electrons at ;f., where
Pet i i

A
-

dx), eoep dX, oo, AR (T 2.3)

.

- * o - - = - =
(Xi) —J.. . .te( xl,...,xN,Rl,...,RN) Ye( X,R)
_ N-1

or, explicitly,

_l' - op, —» -
Q, —sze(xi) Vo) &, (IIL. 2. 4)

muitiplied by a factor of one-half because the total energy is the sum of the
energies of electrons interacting in pairs,1 [27,28,29]

The development of Vgp(;c.i’ ) corresponds to a demonstration of Hartree's
original postulate: each electron moves in the averaged charge distribution of
the other electrons. Because the eigenfunctions, Ye( :?,ﬁ), of the electronic sys-
tem from which Vzp( i’i;ﬁ) is generated according to (III.2.21) are necessarily
anti-symmetric under interchange of any pair'of electronic space-and-spin co-
ordinates, this single-coordinate potential operator manifests the effects of ex-

change. And to whatever extent the polarization of the electron cloud or any con-

figuration interaction is included, Vzp( X i) manifests the effects of dynamic cor-

Equation (III.2.4) is exact (there have been no approximations made in its de-
rivation) and has the form of the classical electrostatic expression for the
energy of a distribution of charge mteractmg with 1tself However, although
the equations (III.2.2) and (III.2.3) for V, (xl) and pg( xl), respectlvely, are
exact, they are not related by Poisson's approximation: v2 Vel xl) # Pel Xl)



27

relation as well. The full analysis which demonstrates that when Hartree's

original postulate is properly interpreted one obtains a unique potential for the

self-consistent field was done by J.C. Slater.[30’31]
Using the potential operator, Vgp( }_{’i) which represents the potential ex-

perienced by an electron of coordinates, z—c)l , due to all the other electrons, we

define the single-particle energy operator, h( )?i,ﬁ), by

b (X E B, B =h (X R) =
2 2
ShPlEe L yOPR B+ aX,B ) . (O.2.5)
om 1 l-}-{* l e 1 1 n
i Rnaé 0

Substituting this one-particle energy operator, he( %,ﬁ), into the expression for

the Harniltonian for the electronic system gives,

H (£]) -ZG (%,8) ——v°p("1 "> : (III.2.6)

Note again the subtraction of 1 Vep( S'fi,R) from the single-particle energy oper-
2
ator, he( §i,f{'), This is required because the total Hamiltonian, He( %xR), in-

volves lVOlO( )?,ﬁ), while h (:?.,ﬁ) contains VOp( }?,ﬁ).
9 © e''i e
The exact eigenfunctions of He( :_c’,ﬁ) are sums (or series) of Slater deter-

minants with coefficients determined variationally to minimize the eigenvalue

(i.e., the total energy). We take for elements of the determinants the linearly
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independent one-electron orbitals which are eigenfunctions of the single-particle

energy operator, he( ;i’ﬁ)’ that is orbitals which satisfy

he(:?i,ﬁ) e :?i;ﬁ) = ¢ (R) q;k(:'il;ﬁ) . (II.2.7)

¢k(x R), are all eigenfunctions ofthe same operator,

he(:?i ) ﬁ), they are automatically orthogonal. In the present work, this will be

Because the orbitals,

a distinct advantage over the Hartree-Fock formalism of which the excited state -
orbitals are not orthogonal to the ground state ones.

The variational procedure necessary to ascertain the configuration inter-
action is impractically difficult, however, and for the present work we shall ap-

proximate the eigenfunctions of He( J?,ﬁ) by' single determinants, or

Ye(;?l,...,iN;ﬁl,...,ﬁN)=ve(3£,ﬁ)=det/§|¢k(i’k;ﬁ)| . (II1.2.8)

Using these single determinants we generate a self-consistent potential function,

Ve(;c'i,ﬁi), to approximate the exact potential operator for the self-consistent

field,
v:p(:?i,ﬁ)eve(:?i,ﬁ) , (1. 2.9)
where
v (X.E) = j"’ (x B) ——— w.(:'i'.;fi) dx. +
Z Ii'l ;I ] J
] 1/3
Z (311 T3 q;(i’,iib . (IL.2.10)
o A j
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In the potential function, Ve(;{i’ﬁ)’ the effects of exchange are included by the
1/3,- L [32] X

P (Xi) approximation developed by Slater. The ground state eigenfunc-

tion for the electronic system will be chosen as the determinant containing the

N distinct orbitals of lowest one-electron energies, ek(R) . Thus we shall use

an independent-particle model.

There is more to justify the use of an independent-particle model for the
electronic system besides the fact that such approximation reduces a partial dif-
ferential equation of 3N independent and inseparable coordinates (where N~1022)
to an equal number of ordinary differential equations.

The conceptual picture of the electrons in a crystalline solid is that of a
set of single-particle states occupied by order of increasing energy up to some
maximum value determined by the number of electrons present. Such is the con~
cept of the Fermi Surface. The conceptual picture of the interactions between
the electrons and the lattice vibrations is that of an electron in a specific single-
particle eigenstate (labelled by a wave vector, E, in the First Brillouin Zone),
q;l_g( }?i), either absorbing or emitting a phonon of wave vector, a, and cha;nging
to the eigenstate of wave vector, K+ 51', \ll_’ _’( }?i). These types of processes are

k+q
represented by the interaction diagrams in Fig. 1, respectively.

This way of conceptualizing the phenomena is inherently one of an inde-

pendent-particle model. And therefore, we employ one such.
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.3 "~ The A.P.W. Method.

Within the framework of the independent-particle formalism, the one-
electron orbitals, q’k(;{k;ﬁ)’ which form the N-electron determinantal eigen-

functions,
- - = - _ 1 = .= -
V(Koo X Ry e R) = det/g | (X Ry R |, (I.3.1)
are eigenfunctions of the crystalline Schrodinger equation (III.2.7),
he(xk,R) q;k(xk;R) = ek(R) q:k(xk;R) . (II1.3.2)

The potential energy operator in equation (III.3.2),

2
U(ER) =24 v (XR) - Z a(X 8 )
%] R_#0
> Uoen(F Ry - @)
ﬁlfl

has the symmetry and periodicity of the crystal, and the eigensolutions, qpk(;fk;ﬁ),
must satisfy the crystalline periodic boundary conditions,

h(x *R ;R)=e h(xSR) (II.3.4a)

and
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- =

ik*R

A *k(’-"k,sJ' B ;f)=-e m v wk’s(i'k,s;fi) . (II.3.4b)
In equation (III.3.4b) the subscript n specifies the normal gradient, and the in-
dex s on }?k,s that the coordinate is on the surface of. the Wigner-Seitz cell. To
find solutions to the Schrodinger equation which satisfy both boundary conditions
(III.3.44a) and (III.3.4b) at all points within the Wigner-Seitz cell and on its en~
tife surface has been one of the central problems of theoretical solid state phys-
ics during the past quarter century. This problem of the Schrodinger equation
for a periodic potential has been solved most accurately by the method of Aug-

mented Plane Waves (A.P.W.) developed by Slater and others.[33’34’35]

The A.P.W. method employs a dual, or composite, representation for the
eigenfunctions of the crystalline one-electron Hamiltonian. Within the volume of
a sphere drawn inside the Wigner-Seitz cell, the A.P.W. procedure solves the
central-field Schrodinger equation exactly for ‘a set of trial one-electron eigen-

energies, e€:

h (£B) y (X R - (—v12<+Ucell( X, ﬁ) VW (XsB) = e®) 1 (X B,
where (III.3.5)

'-’
x|=r, .

In the region between the inscribed sphere and the cell boundary, the A.P.W.
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eigenfunctions are expanded in plane waves:

i(K+R)-x
v , (IIL.3.6)

b (KB =Zv(1’<’+f<’i) e

K,
i

where
-
| xkl 2T

These two representations of the eigenfunction are made to match continuously
at the surface of the inscribed sphere, ;s' The functions described in equations
(III.3.5) and (III.3.6) are the trial functions which enter the variational proce-
dure to ascertain the minimal eigenvalue, ek(fi), and the eigenfunction beiong—
ing to it. Although the exact solutions to the crystalline problem have eigen-
functions which match not only continuously at the A.P.W. sphere radius but
match there also with a continuous first derivative, both such conditions cannot
be imposed a priori upon the trial functions without corrupting the variational
procedure.

The A.P.W. energy eigenvalues, ek(ﬁ), and the A.P.W. eigenfunctions
which belong to them, qylz( :?k; ﬁ), are determined variationally from the trial

solutions, (III.3.5), and (III.3.6), by the zeros of the secular determinant,

det|(h—e)ijl =0 , (II.3.7)

where
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* -, = - =) - - - -
(h-e)ij= f ¥, (XR) G(X',R)-S(R)> q;j(x';R)dx' . (II1.3.8)

Wigner-
Seitz
Cell

Observe that in all the equations relating to the one-electron problem we carry
along the implicit dependence of the 3N nuclear coordinates by the symbolic
parametric variable, R.

The A.P.W. method for solving the variational problem of an electron in
a crystalline potential is carried out as follows.

The crystalline potential, ucrys( ;f,ﬁ), has the symmetry of the crystal's

space group, €.g., Oh for a cubic crystal; and from this potential,

ucrys(:?,R) =Zuz,m(|z_fl,R) Y;n(e,cp) , (II1.3.9)

£4,m

the spherically symmetric component is taken,
uﬂ_o(z_f,R) =u(r,R) , (I1.3.10)

and enters the one-dimensional radial Schrodinger equation,

1 -9-<r2 __d__>+ L 4 u) uym) = eu,) . @L3.11)

r dr dr, r2

The solutions to this radial equation form the trial functions for the A.P.W. vari-
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ational problem. The trial functions have the form,

-im ¢
G (52)) =Z( (24+1) ___l._l_ lml(cos ek) e k>
K /trial m

(£+|m|)'

ik Ty) e

X (r) plm l(cos 8) &P (II.3.12)

LR T

inside the A.P.W. sphere, r < rs, and

» - -im ¢
()5 e ) )
k tri

(£+[ml)!

X G (kr) leml (cos §) & ‘P> . (I.3.13)

between the sphere and the boundaries of the Wigner-Seitz cell, r ST <Th.

One observes that the factors,

-ime, j(kr )
Y2gen) Yolml)t |m|(cos Q)e k2 _s.  (m.s3.14
(4+|m])! ue(r )

which multiply the trial functions inside the sphere assure that it joins continuously
-

onto the plane wave, e r, at the sphere radius, T The eigenvalue, €, is su~-

perscribed on these trial functions, u ; (r), to emphasize that they are implicit
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functions of €.

These trial functions are the natural ones to use for the crystalline varia-
tional problem. The only singularity in the crystalline potential is contained in
its spherically symmetric component, u(r), and the behaviour of the solutions
to the singular radial equation will dominate that of the solutions to the complete
crystalline potential problem.

The variational problem in the case of a single plane wave for the eigen-
function outside the sphere consists of finding the function \pli(:?) which renders

a stationary value to the integral,

* o - - -
J b (KD B (F) (%) X (L. 3.15)
cell,
Q

subject to the constraint of normalization,
* -—3 -—d -3 . .
j wk(x) q;k(x) dx=1 . (II1.3.16)
Q
Such is determined by the eigenfunction for which,
3 (b (R X) dx =0 Im.3.17
Q wk(X) e(X) - ek> 'b'k(x) - ’ ( eV )

where the Lagrange multiplier, D is identified as the pertinent eigenvalue to
which q;k( X) belongs.

Now because the trial functions which enter equation (III.3.17) are them-
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selves implicit functions of the eigenvalue, ¢, there exists no known technique
for solving for the eigenvalue analytically, — as with, say, the Euler-Lagrange
equations. Accordingly, the A.P.W. method determines the eigenvalue by

"brute force." The integral function of the energy,

I(e) =j q,:;(i’) (he(z_f) - €k> q;k(E) ax , (III.3.18)
Q

is solved explicitly over an extended range of values of ¢, and its zeroes are
there from ascertained directly. It is to be understood that the integrals (III.3.17)
and (III.3.18) can involve the complete crystalline potential, — not necessarily
only the spherical component inside the sphere.

The eigenfunction thus found is not, however, the variational solution to
the crystalline problem. Although the trial functions (III.3.12) comprise a com-
plete set of functions inside the A.P.W. sphere, by matching them onto a single
plane wave, eﬂ?. F, at the sphere radius the solution was pre-determined between
the sphere and the cell boundary. A thorough variational freedom is admitted to

the method by matching at the sphere radius the trial solutions inside the sphere

to the set of plane waves,

Ze‘ 7 , (II1.3.19)

where the vectors, ﬁj , are vectors of the reciprocal lattice. Then the eigen-
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values are determined by the zeroes of the determinantal function,

D(e) = det ‘*’t_)(’?)ée(;)'ek)‘#_. _’(:_c')dz_c)l, (I1I.3.20)

Q k+K k+K,
1 J

which are also ascertained by calculating the values of D(e) over a range of
energies.

Because the eigenfunctions which belong to the A.P.W. eigenvalues ¢ (k)
obtain from a variational procedure, they are expected by the most exact solu~
tions to the problem of electrons in a crystal lattice.

There is nothing in the formalism of the A.P.W. method which restricts
its validity to any particular crystalline symmetry or to any particular set of
nuclear coordinates. In fact, should the nuclear coordinates pertinent to some
specific crystal problem be altered to a new arrangement, the A.P.W. method
would calculate the set of one-electron energies, e(k), and the distribution of
electrons with € (k) (energy and wave vector) pertinent to the new nuclear ar-
rangement with an accuracy and ease equal to that of the original problem. In
short, the A.P.W. method is well adapted to provide the adiabatic-model eigen-

functions, Ye(i’ ;fi), where

H (XR) v (X:R) =E(R) ¥ (X:R) , (II.3.21)

and
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Ye(r?,ﬁ)=det/§,¢k(§k;ﬁ)| . (II.3.22)

This statement holds especially true when the distribution of electrons with
energy, e(k), —i.e., the Fermi Surface, — is of primary concern.

For the analysis of the electron-phonon interactions, the essential point
under investigation is the redistribution of electrons at the Fermi Surface ac-
conipanied by the absorbtion or emission of phonons. Or put another way, the
deformation of the Fermi Surface when the nuclear arrangement is altered ac-
cording to one or another of the vibrational normal modes of the lattice. For

this problem, the A.P.W. method is well qualified.

The A.P.W. eigenfunctions have a distinct form: each can be represented
as a sum of plane waves plus a tight-binding function. Within the A.P.W. sphere
inscribed in the Wigner-Seitz cell, the eigenfunction is an exact solution to the
Schrodinger equation, or

(—v2+U(i’k;R)> f)(i’k;R) =¢ (®) ¢(j)(52_’;R) . (UI.3.23)
k,s k,s k,s k

In equation (III.3.23), the eigenfunction is written as,

(e)

e s R) (III.3.24)

in order to indicate plainly that 4:_.( x) is an implicit parametric function of the
k
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energy eigenvalue, e (and, precisely, the,t one which belongs to the argument,
€ (R)). The wave-vector, k, is restricted to peints within the first Brillouin
ZIZ:e, and the subscript, s, designates the branch to. which the band energy,

€ (R) belongs. Together K and s specify the irreducible representation of the
cl:‘ysstal's space group of which v, (x) transforms as a base vector. In terms
of the trial functions, U ( )(r), ﬂliesA P.W. eigenfunction is represented within

the sphere as,

‘e’(xk R) =S Z oDyl 2 iRy YE0,) , @.3.25)

£4=0 m=-~¢
where
%] <,
In the region between the A.P.W. sphere and the cell boundary, the A.P.W.
eigenfunction is represented as,
= i (1—5+K) - X
( G) . — (3 ; k,S) “nd 1 xk
b 5 (K R) —Za (E+R) e ,  (II.3.26)

i

where

ﬁo
r < [;(’k] s—-}- .
2

In equation (III.3.26) the variationally determined coefficients are written as,
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a(é;k’s)(E+Ki;R) , | (II.3.27)

to show that they also are implicit functions of the band energy, €, (R) and pa-
k,s

rametric functions of the nuclear coordinates R = {ﬁl,ﬁz, cees ﬁN}. The A.P.W.

eigenfunction represented by (III.3.23) or (III.3.25) matches onto the sum of plane

waves, (III.3.26), at the sphere radius both with a continuous amplitude and a

continuous first derivative. Therefore, one can write,
o i(k+R) % |
\lf(e)(xk;R) =Z a(e’k’s)(k+Ki)(a Tk, cp‘e)(i'k;R) , (II.3.28)

where
<Pk2(xk)=0 it |x |=2r . (II. 3.29)

Observe that equation (]]I.3.‘28) is simply equation (III.3.26) for | i’kl 2T and
that for ] ;k, ST cpE(i'k) is simply the difference between equations (III. 3. 25)
and (III.3.26). The tight-binding components of the A.P.W. eigenfunctions,
o NE;sR) , (IL..3..30)
k,s
which are localized about each nucieus are qualitatively quite like free-atom or-
bitals. If the energy band or symmetry point to which ¢k(x) belongs is, say,

p-like (e.g., P & N’ in a body-centered cubic crystal) then cpk(x) will have odd
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parity and will vanish linearly at the origin. If the energy band is predominantly
s-like, then cpk(x) will be an s-like function. In each case, the number of nodes

in cpk(x) corresponds to the analogous free-atom state:
n - £ -1 = number of nodes , (III.3.31)

where n is the principal quantum number of the corresponding free-atom energy
level.

The Bloch function form of the A.P.W. eigenfunctions obtain as,

-

i(K+K) ‘X

JV

(g (gq38)
¥  (x;R)= a (k+K.,R)fe
i

Ze i P (i’k-ﬁn) (III.3.32)

written henceforth as,

i(E+Ki) X

g e 1 - =
(x;R) = a(k+K)). + [— e 9 (x-R))
e ; ! ( JV N Z 25
i n

(III.3.33)
with the band indices and the parametric dependence suppressed.
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CHAPTER IV

THE MATRIX ELEMENTS OF THE ELECTRON-PHONON

INTERACTION IN THE ADIABATIC MODEL

IV.1 The Expectation Values of the Total Hamiltonian for the System of

Electrons and Nuclei.

Within the framework of the Adiabatic Model of a system of electrons and

nuclei, the Hamiltonian operator acting upon one of the product states gives,

H(x,R)X(x:R) =

2
:ﬂ_zv; +Zée(i’i;3)—lve(i’;1%> ¥ (x;B) & (R) = (IV.1.1a)
M o o 4 2

. .

2
R (. 2 > ooy 1= )
¥ (x;R) ZI\Z Rz: an 5 (R) +28_(R) iZGle( X;R) . v ( xi,R> ¥ (x;R) +

n
+ 3 (R) :_f..z.z. sz ¥ (x;R) + ﬁ Z(g ‘l’ x: )(6 ) (RD
n ZMRRne, 2MR Rne Rnn
n n

(IV.1.1b)

The expectation value of the Hamiltonian in this state is,
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<‘1’ ¢ |H|Y @>=
e n e n

2
* -h 2 3N.
XIS :(—) Rt O @ R

——\2m
n
* 12\ 2 3N
+[¥ (x;R) Z— ¥ (x;R)d> x . (IV.1.2)
e oM Rn e
R
n

In evaluating (IV.1.2) we implicitly assume that each factor of the product

eigenstates belongs to an orthonormal set:

, ¥
[, (&R ¥, pxiR) Ny = by g (IvV.1.3a)
¥ 3N
R d = : 1.3
J 2, ® ¢, R) AR b 1 (IV.1.3b)

In equation (IV.1.2), the dependence of the total energy of the electronic system

upon the nuclear coordinates is written explicitly as

-

8 (R) = 6 (R,,R,, .., R ) =

_—_IYZ(x;;R) Z@e(z?i,m -ive(:?i,@ ¥ (x;R) Ny (1v.1.4)
i

The dependence of cSe(R) upon the nuclear coordinates determines the energy
spectrum of the nuclear system. This dependence is determined itself by the

equilibrium-position nuclear coordinates which are themselves functions of the
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ground—state electronic configuration.

When the eigenstates of the system of electrons are approximated by single
determinants in an independent-particle formalism, the electronic ground-state
and the equilibrium-position nuclear coordinates are determined in the following
way:

The ground-state electronic configuration is determined by Fermi energy,

. This Fermi energy, e_, is the minimal single-particle eigenvalue for
°F F e |

which there exists a function,
F(kx,ky, kz) - eF(kx,ky, kz) =0 , (Iv.1.5)

~defining a surface in k-space whose volume includes exactly N points. The

surface determined by €p is the Fermi Surface.

The Fermi energy, the Fermi surface, and the total energy of the elec-
tronic system are all parametric functions of thé nuclear coordinates. The
equilibrium nuclear positions are defined as those for which the total energy of

the electronic ground-state is stationary under variations of the nuclear coordi-

nates:

de (é’e,q(R)) -_4g {(Ye,q(R)'He(R)l Ye’q(R)>}= 0 (IV.1.6)
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The expansion of the total energy of the electronic system in a Taylor
series about the equilibrium -position nuclear coordinates gives

§R §R .+...

) o0
8,®) =8, (R")+ Z(&g(R Dm,i;n’j (Iv.1.7)

m,i;n,j

through terms quadratic in the variations of the nuclear coordinates. Thus it is
observed that the non-vanishing terms in equation (IV.2) are c$g(Ro) and terms
quadratic in the nuclear coordinates and momenta, and the traditional harmonic-

oscillator nuclear eigenfunctions obtain. Equation (IV.1.2) may be rewritten as

<Ye én,Hl Ye ¢]ﬂ> B

' 2 sz
% -
6, @)+ [e @y T) +—RerZbe ®) AR , (V.1.8)
g L 2M n 2
n
where
& 5 (R) 2
*
wI21= g2 -2 f‘i’e (x;R) v; ¥, XR) M av.1.9)
an r° 2M 8 n 8

the frequencies, wn’ inequations (IV.1.8) and (IV.1.9) are the normal mode
vibrational frequencies, w(a, s) — the phonon frequencies. We shall assume
henceforth that the problem of diagonalizing the matrix for the nuclear Hamil-
tonian has been solved and that the phonon frequencies have been determined.
(Strictly speaking, the frequencies which obtain from the diagonalization of the
matrix in equation (IV.1.8) should be designated the "un-renormalized normal

mode frequencies," — w°(q,s); for the terms linear in §R which connect
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excited electronic configurations to the ground-state, through the electron-

phonon interactions, will influence the phonon spectrum.)

It is to be observed that no non-vanishing matrix elements obtain from the

last term in equation (IV.1.1b),

2
ch (6’ Y(X'RD-G’ @(R> @v.1.10)
2M ; R, e R, »

. n

for the expectation value of H(x,R) in the ground-state. The nuclear eigenfunc-
tions are approximated by the harmonic oscillator functions determined by the

nuclear Hamiltonian in equation (IV.1.8),

. 2
2 Mw
-h" 2 n 2
R aRn @n,Tl(R) _nhwnén,

,n(R) . (IV.1.11)

These eigenfunctions are each of a distinct parity, and therefore the factor which
involves the nuclear coordinates, in the ground-state expectation value of the
operator in (IV.1.10), vanishes:
--hz * 3N
— [e (R)(%’R 8 (R))d R=0 . (Iv.1.12)
2M Ly n MY
The only non-vanishing matrix elements which obtain from expression
(IV.1.10) are those which connect different electronic configurations and differ-

ent eigenstates.

The expectation value of the operator (IV.1.10) between states which differ
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in both the nuclear and the electronic configurations is

_ez2 n 1

dR drR
n

2

2
_zh Y xR r) @V
= -J‘Ye’l(x,R) Va Ye’z(x,R)d Xy @
2M n
R
n
e ®T, @ ®) R (IV.1.13)
n,g R 'n,7 )

n

It is these matrix elements, (IV.1.13), which are traditionally associated with
the electron-phonon interactions. These non-adiabatic terms are designated the
"double-derivative" terms because they involve the derivative with respect to the
nuclear coordinates acting separately upon the nuclear eigenfunction and uponthe
electronic eigenfunction. The problem of calculating the matrix elements of the
electron-phonon interactions involves evaluating the integrals in the double-

derivative terms.
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Iv.2 Evaluation of the Non-Adiabatic Terms Involving the Double Deri-

vatives.

The factor in the non-adia_.batic double-derivative terms which involves the

nuclear eigenfunctions,

. % .
in fo ®F 2 ®) MR Iv.2.1)
2M 33 n ol

can be evaluated directly. The variations of the nuclear coordinates from their
equilibrium values are assumed to be small, — this is the justification for
truncating the expansion of de(R), equation (IV.1.7) at the terms quadratic in

8R. Accordingly, these variations are henceforth described in terms of the

normal mode coordinates, Q

a8
R =R° +& , (IV.2.2a)
m m m
1(_1.-ﬁ;’n
a"ﬁm= Q e e, (IV.2.2b)
)8 q,8

and the momenta are also expressed as,

iq - R;’n
-inv =P = P e € . (Iv.2.2c)
== R q,s =
R m q,s
m -
q, s
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The matrix element (IV.2.1) taken between harmonic oscillator nuclear eigen-

3 - . - .
functions, associated with the phonon of wave vector q is, then,

70 q,s) M7=

@(n-l,m - a(mh@ :

(Iv.2.3)

(5,39l LN io) =1 —
In equation (IV.2.3) the number 'nq, which specifies the energy level»of the
Ef—th harmonic oscillator is assumed to specify the number of phonons present
of wave vector c_f and band index s. Thus from equation (IV.2.3) it is observed
that, -becanse of the delta functions §(1-1,7), §(1N+L,7), the double-derivative
matrix elements connect nuclear eigenstates which differ in the number of
phonons present by one; and thus the factor of the double-derivative term which
involves the transition of the electronic state Ye, 1(1? ;R) to the state Ye, 2(x ;R),

N

it ey’ @R T v (xR) @ x Iv.2.4
J ¥ o Rne,l’) ’ -2.4)

2M

is associated with thé absorption dr emission of a single phonon. Such is in
keeping with the conceptual model of the electron-phonon interactions.

The difficulties which have heretofore obstructed the development of a
formal analysis of the electron-phonon interactions have obtained from the dif-
ficulties (or impossibilities) of calculating the derivatives of the electronic

eigenfunctions with respect to the nuclear coordinates:
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i(e(x;R)> ) (IV.2.5)
dR_ -

. Within the framework of an independent-particle model when the electronic eigen-

functions are approximated by States Determinants,

v (x;R) = [ det|y (Zm)| (IV.2.6)

N k k
the problem of calculating the derivatives in (IV.2.5) reduces to that of deter-
mining the derivatives of the single-particle electron orbitals with respect to

the nuclear coordinates:

d -
-——(@_'(xk;RD . (N.2.7)
dR_ \k
n
To demonstrate the difficulties which have, in the past, prevented the cal-
culation of the electron-phonon interactions, three examples of crystalline elec-
tronic eigenfunctions will be considered briefly: those for the "free-electron"

model of solids; those for the "tight-binding" approximation; and, those for the

"almost free electron™ model.

For the "free-electron" model of solids, the eigenfunctions for the elec~-

trons are plane waves:
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L(gk:R)=/_'ei , (IV.2.8)
K

where the wave vectors, k, are restricted to points in the Brillouin Zone. In

< |+

this model, the derivatives of q:k(:?k ;R) are all zero,

iK:X
__(.]‘_.(_.(;?k;R) =/fi(9-——-)-=o ) (IV.2.9)
R \E /v @&

This result wou_ld imply that there are no electron-phonon interactions. Such
conclusion is, in fact, the correct one for the "free-electron” model. The plane
wave states, (IV.2.8), are the eigenfunctions for electrons moving in a lattice
which has no crystalline potential, |

ve(;?;R) =0 (IV.2.10a)

or h2 9
he(i’;R) =-=v_, (IV.2.10b)

2M
and which are therefore impervious to any variaiion of nuclear coordinates.
A second approximation to the electronic eigenstates in crystalline solids
which is often quitQ useful is the "tight-binding" approximation. In this model,
the electronic eigenfunctioné are taken to be Bloch series of the free atom

orbitals:

2 .oy /L P o =
¢E,(X__,,R)— Ze Patom( T Hp) - (V.2.1D)
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In equation (IV.2.11) the wave vector K is again in the first Brillouin Zone, the
function ¢ is an eigenfunction for the free atom whose nuclei make up the lattice,
and the vectors ﬁp determine the perfect lattice nuclear positions. In this model
the derivatives of the electronic eigenfunctions with respect to the nuclear coor-

dinates obtain straightforwardly:

e

d 1 ik - Rn o Ao A o

—_ ~||f__)(x_’;R) = [— e (ikoe(aRn) cp(xk-Rn)—e(GRn) . Vx cp(xk—Rn> .
an k k N

(Iv.2.12)
However, the tight-binding functions of equation (IV.2.11) are quite poor approxi-
mations to the crystalline eigenfunctions of the conduction electrons in metals.
The usefulness of the tight-binding approximation is restricted to the inner-shell,
or valence-band, electrons in metals, or to insulating solids. Therefore, the
derivatives of the eigenfunctions in equation (IV.2.12) are not valid to describe
the electron-phonon interactions in normal metals, despite their ease of deriva-
tion.
A third approximation often used to describe the electrons in crystalline

solids is the "almost-free electron™ model. For such, the eigenfunctions are

represented by lattice Fourier series:

i(KK) - :?k

1

o a(l_f+1_{'i) e
§ (X ;

(X ;R) = . (IV.2.13)
K Z JV

i
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The coefficients a(1_<)+ Ki) in equation (IV.2.13) are determined variationally from

the solutions of the secular determinant,
det [ (h-¢) =0 . (IV.2.14)

There are, two immediate problems which arise when using this model to analyse
the electron-phonon interactions. First, in order to represent the eigenfunctions
accurately in the region near the nucleus (where the potential undergoes the
greatest change when the nuclear coordinates change), a very large number of
terms must be included in the Fourier series (IV.2.13). Second, the dependence
of these eigenfunctions upon the nuclear coordinates is all contained implicitly in
the variational coefficients a(E+ Ki) . In order to calculate the derivatives of
these functions with respect to the nuclear coordinates it would be necessary to
solve the variational problem completely for the changed set of nuclear coordi-

nates, say,

30 Bo 30 —>0 — =0 =0
RS, RS, RS, ... RO + & ,....RY_.R (IV.2.15)
and then to take the limit
P(XGRO+ &R ) - ¥ (X R)
lim K -4 Qk(%{;ab. (IV.2.16)
SR 0 dR
m éRm m

The plane wave representation, equation (IV.2.13), is either an inaccurate or a
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very clumsy representation of the perfect lattice eigenfunctions. Even if only a

few terms are included in the lattice Fourier series,

i(l?+1_{).)-_'
5 a(E+Ki)e P

¥ (X ;RO) =~ , (IV.2.17)
SRR =

i=0 ﬁ

such that the matrix which generates the secular determinant for the perfect lat-

tice is a 5 X 5 matrix, for the case of the deformed lattice the matrix becomes of
23. 23 .

the order of (5 x 10”7 ) X (5 x 10" ) because the translational symmetry of the

lattice is destroyed, and there are then non-vanishing matrix elements between

all plane waves

@(:?,R+ R)-¢)_ . (IV.2.18)
K+K,k+K

J 1.
The solution of such a variational problem presents a formidable problem and,

of course, still carries with it the sickness inherent to the "almost-free elec-

tron" model.

As has been explained in Chapter III, the most accurate eigenfunctions for

the electrons in crystalline solids are the A.P.W. variational eigensolutions:

L 1 = = e d
p(x;R)= [— a(k+K)) ¢ (x;R) , (IV.2.19)
Er 0 Ja 2 MR v L G

i i
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where

1(k+K) xk - o

ik R
p -
(X 3R) =2 ¢ (x-K))
-,+ % fz g+R P

E ! (IV.2.20)

In equations (IV.2.19) and (IV.2.20) the variational coefficients, a(l—{’+f§i), and

the functional form of the tight-binding components,

: 1(E+ﬁi) PX
<P(€) (fk) = ‘lrf,e) (i;{) -2 , (Iv.2.21)
E’+~i§i k+1-{i - JV

are determined by the eigenvalue, s(l?). The constant, A(k), in equation
(IV.2.19) is simply the normalization factor; the eigenfunctions are normalized,

such that
flg@nar=1, (IV.2.223)

Z |a(E+R) %=1 . (IV.2.22b)

The derivative of the A.P.W. eigenfunction with respect to the nuclear coordi-

nates is

4/ o ¥(x;R+E&R ) - wﬁ(i’k;m)
——(\p_’(xk;R)> = lim
dR k SR_ =0 R

m m m

(continued)
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1 1 -
= 1m (—%"%" v, (X5R)
-0 40 |5 =, 2
ik. B
. a(B+R)e ™ " -
+ — i(R+K)) - €( ) (x,-R_)+
Ak) N ( m B4R & m
1 1
- Ie\(ﬁ—ﬁ ) - ¥ P (X -R 9+
m X 1—{-4_1-{1 xk m
1 \ - 1 iE.ﬁp d - - de(Rp)
+—% a(B+K) /=) e —lo, (xR
A) 4 ! /:; de E’+Rixk P @R _
P
(IV.2.23)

There are several observations to be made concerning equation (IV.2.23). The

function appearing on the first line of that equation,
V(X R+E&R ), (IV.2.24)

is understood to be the function which reduces to the perfect lattice eigenfunction
- . o . - . - -
q;k(xk,R ) in the limit as -ﬁm vanishes:
X =, - %2 ‘RO
lim q:(xk,Rm+ 6Rm) = q;_.(xk,R ) . (Iv.2.25)
GRm -0 k

The index k appears only on the electronic variable }?k in the function on the left
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hand side of equation (IV.2.25). That function has no index K, for, as the eigen~
function of the deformed lattice, it does not transform irreducibly as the k-th
(or any other) representation of the translation group of the perfect lattice.

It will be shown in the next chapter that neither the A.P.W. eigenvalues,
e(k), nor the variational coefficients which obtain from them, a(k+ Ki), have a

non-vanishing derivative with respect to the nuclear coordinates:

(e(E’;R)) =0 (IV.2.26)
dR
and m
(a(E’+Ki;R)) =0 . (IV.2.27)
dRm

In order to prove the first of these assertions, equation (IV.2.26), it is neces-

sary to set up the matrix for the deformed lattice,

(he(:?;R+ R_) - % s (IV.2.28)

E"+f§'j,1’£’+ K,
25 25 . C o

and to solve for the zeroes of the (10° ) X (10” ') secular determinant which it
generates. This will be done in Chapter V. In order to prove the assertion
that the variational c:qefficients are also adiabatic to first order in 6Rm , equa-
tion (IV.2.27), it is necessary to invert that secular equation and to solve for its
eigenfunctions. This will also be done in Chapter V.

For the present, using equations (IV.2.26) and (IV.2.27), the derivative

sought is,



1

R

— a(E+K.) e
Oy
/ﬂx - JN

X (i(E’+Ki) -Q(Em) P

K+K.
1

(IV.2.29)
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Iv.3 The Electron-Phonon Vertex Function by the A.P.W. Formalism.

In the independent-particle formalism, the non-adiabatic terms in

Frohlich's Hamiltonian,

Z_' D(K,E, @) ¢ c (a —a" ) , (IV.3.1)
— o P\Z 2
k q kK" kiq q

involve the vertex function D( K, l—f) . Within the framework of the Adiabatic
Model, and using Slater determinants as eigenfunctions for the electronic system,

this vertex function has the following form:

D(k",K,q) = q; (x R)—-—(w_’(x;@ dx
k

(Iv.3.2)
where equations (IV.2.3) and (IV.2.4) have been combined. In equation (IV.3.2)
the derivative of the electronic eigenfunction is with respect to the normal mode

Q . Because the variations of the nuclear coordinates are written such that
—)
q

iE[=ﬁI°n
+ZQ 'e’s(a’) e , (IV.3.3)
a’s d,s

these derivatives are related simply by the chain rule:

dR iq-R
d =N =z —d—-=§ :E’S(c’f)e m_d  qv.3.4
|
aQ e @ @& _ % dR_

(.i)’s q,s m
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Therefore, the vertex function D( " , E, ﬁ’) will involve the factor,

¢ (E3R) —— @k&;aa & (IV.3.5)
k" dRm

which equals, by substituting in equation (IV.2.29),

ik-R
1 = * - - - = e m
_— } E : a (F+K) a(R+K) S——
A(K) A(K) l—J j VN

Si(K/+K) - X

\ J -ik’ - B *
y e +/fze p o (;-Rp)
| VA N Rp k+K,.

A - - = A = -
X é(k»{-Ki) —Vx>cp_* _(Z-R_ )-SR )|daF (IV.3.6)
k+Ki

Equation (IV.3.6) involves four integrals which are evaluated one by one:

iK-R “i(k+R) - ¥
€ m e ] - - - N K A e
0 (X—Rm) dx|i(k+ i) -e(BRm)

JN' JV K+K.

1

i R /g L -i®+K)-x ) A

=e — | lo, _(X)e Yoooawr| i(R+R) -8R )

k+Ki ! m
(IV.3.7)

In equation (IV.3.7) the variable of integration has been transformed as
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Ml

=x-R (IV.3.8)

which leaves the integral over the volume of the entire crystal unchanged:

ik-R (K+K) - %
m j
- e

JN JV * R+R

<l

ik- R -i(K+R) - X
m
-€ A, = e - = A o
= e(&Rm) . (x-Rm) e(x)
N a l—{)‘}'Ki surface
-i(k"+R) - X
+1(k'+K) e ] o) ()_{)-ﬁ ) dX
kK+R. m
1
i(K-k) ﬁm I -i(kK'+R) - X’ .
=e — | _,(:?') e dx’) i(K'+K) - e(8R ).
NV K+K ]

In evaluating the integral equation (IV.3.9) the surface term which obtained from
the integration by parts was discarded because the tight-binding components are
all zero on the surface of every cell. The transformation (IV.3.8) was also used,

iK-R

e m 1 ik’ R
— —Ze Pl o (3-8 ) ¢ (-8B ) ax|i(K+R)- & (R )
k+R p E+Ki m ! m

2]

(continued)



i(E-K") Rm/ .
= JtP LX) e (D& i(1?+Ki)-3(8'ﬁm) . (IV.3.10)
\ ’+Kj k+Ki

il

The non-overlapping property of the tight-binding components,

R - - - o
x-R x-R )=0 if R #R , Iv.3.11
CPE,( p) cPE,( m) o B ( )

has been used to simplify the integrals in equation (IV.3.10),

IE'ﬁ -
m -ik’
-e P * - - N - - > A —
E € P (x-R )(ch (x-Rdex e(R_)
N k'+K, P kK+K m
R j i
p
i(k-K)-R
-e ( ) m %k - [ - A s
= P, (X)(V 9, —»(X» dx’| - (SR ). (IV.3.12)
N K'+K, k+K,

Combining equations (IV.3.7), (IV.3.9), (IV.3.10), and (IV.3.12) gives

- = = * - - -
i(k-k")-R a (K7+K) a(K+K)
m < j i

>
Lo £ JAER) AR)

i j

. LA I -i(K"+K) - X
i((R+R -k -R)-e(R_) /= |e ) o () dx’+
] N | K+&.

1

= = A — * - —t -
+ i(k+Ki) ‘e (&R )-1- o, L &Xe  E)dx'+
k’+K k+Ki
(continued)
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® (X') <6’<p (;{'b ax’y . (IV.3.13)
+1'<’j

~l

kK+K
i

Transforming this expression into a derivative with respect to the normal mode

Q involves the summation over Rm as in equation (IV.3.4), which gives
q
i(k_E,).ﬁma la.Rm - - -
§ :e c(d) e =N 6(k-k'+q+ﬁz) e (d) - (IV.3.14

R
m

Thus there obtains, as expected, the selection rule for the conservation of lattice

pseudo-momentum.

Therefore, the vertex function is

= -

D(l?’,k,q

. a*(E"H”{’j) a(E’+Ki)>
) =8(k-K'+q+RK )

! Z EJ: JAR) AR
. -i(K'+K) - % .
i(K+R.-k'-K)-2(q) /= | e oo (X) dx

k’+I7;J, E'+I_i1
1/2
- * e = - - h w(q) Ilq
-efld) 1o (X)<ch_, _)(x> dx o — =] . (IV.3.15)
K+R Er+R 8NM

There are several observations to be made of this vertex function. First,

it does display a term which has the form,
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~i(K+q) X
= -, - - - -
D(k,q)~|q|]C=|qff |e ¢ (X)dX| ,  (IV.3.16)
as in the Frohlich Hamiltonian. Furthermore, because this term enters with

the coefficients,

a'(B+3) a(k) , (IV.3.17)

which are usually the largest Fourier amplitudes in the eigenfunctions, this term
will expectedly contribute strongly to the electron-phonon interactions. Second,

the transverse phonons enter the normal processes,

K-K+q=0, (IV.3.18a)
as well as the Umklapp processes,
kK-K'+q = K, - ‘ (IV.3.18b)

The interactions involving the transverse modes enter all three terms in equa-
tion (IV.3.15). Even an eigenfunction involving only a single plane wave admits

the interactions with the transverse modes through the matrix elements,

x) o_(X) dx . (IV.3.19)
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CHAPTER V

THE ENERGY BAND PROBLEM FOR A

DEFORMED LATTICE

V.1l The Matrix Elements for the Band Energies when a Single Nucleus

is Displaced.

Although the lai.’-c_;pe deformations which correspond to the presence of
phonons are the normal mode configurations of the nuclei, we shall consider the
energy band problem for the case of a single nucleus displaced slightly from its
equilibﬁum position. The lattice deformations of the ndrmal modes (or of ‘any
other deformation) can be expressed as lattice Fourier series of such single dis-
placements.

We shall follow the procedure discussed in Chapter III for the A.P.W.

method. We shall use a muffin-tin potential,

V(X) =V(r) r<r (V.1.1a)

V(X) =V(r) r>r_ , (V.1.1b)

and shall use, initially, the same potential within the A.P.W. sphere about the
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displaced nucleus as that for the perfect lattice. It will be shown below that this
is the correct muffin-tin potential to use. In Chapter VI the variations of the
self-consistent potential are discussed extensively.

A few remarks concerning the drawing of the radius of the inscribed A.P.W.
sphere are in order.

Because the A.P.W. sphere remains centered about the nucleus when it is
disblaced, it is important that the sphere be drawn so as not to intersect the
Wigner-Seitz cell boundaries or to overlap into the next cell. This is effected
by drawing the radius of the A.P.W. sphere somewhat smaller than the minimum
distance from the center of the cell to the cell boundary: i.e., smaller than the
radius of "touching spheres."

It is not especially important exactly how much smaller than the maximum
allowable value the radius be set, for the validity and accuracy of the A.P.W.
method is independent of the size of the A.P.W. sphere, so long as it remains
inscribed within the Wigner-Seitz cell. To invétigate the electron-phonon in-
teractions by analyzing the differences of the solutions to the energy band prob-
lem for the deformed lattice and for the perfect lattice it is required only thé.t
the A.P.W. spheres be sufficiently small that they do not intercept the cell
boundaries when displaced by the normal mode lattice deformations. In order
to estimate the extent of maximum variation of the inter-atomic distance, the

mean variation of the nuclear excursions in the Debye limit, where the amplitudes
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of adjacent nuclei are 180 degrees out of phase with one another, can be calcu-

lated from the Virial theorem:

2 2
M o 2 1
Vave_ <Ax > =—E , (V.1.2)
2 2
which, for the Debye limit gives
2
<Ax2> = 2f2 =1 , (V.1.3)
M wD MkTD
where the identity,
th EkTD , (V.1.4)

has been used. For the metals Lithium and Sodium the values of M and T are,

24

24 58,2 x10” gms, 430, 150 deg. K.

respectively, 11.6 X 10

For these metals the mean excursion, A/<(Ax)2> is 2.6 X 1077 cm for
Li, and 2.4 X 10-9 cm for Na. Their nearest-neighbor distances in the perfect
lattice are, respectively, 5.713 X 10_8 cm and 6.914 X 10--8 cm. Thus it is ob-
served that the interatomic distance between adjacent atoms changes by only a
few percent when the lattice undergoes a normal mode distortion.

Therefore, it suffices to draw the A.P.W. sphere radius slightly smaller,
say 5% -10%, than half the nearest neighbor distance.

To analyse the solution to the energy band problem when one nucleus is
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displaced from its equilibrium position we parallel the discussion of the A.P.W.
method as in Section III.

First we examine the variational calculation for the case where the trial
functions insidethe A.P.W. sphere are matched onto a single plane wave at the
sphere radius.

Let the equilibrium position of the displaced nucleus be given by ﬁm' The
position of this nucleus after displacement is ﬁm+ gﬁm’ which now specifies
also the center of the A..P.'W. sphere in the ﬁm—th cell. Inside the ﬁm-th cell
the trial functions for the A.P.W. problem are written using the coordinate sys-
tem having its origin at ﬁm+ G_I’{m. Because the coordinate systems for the

equilibrium position- and displaced-atom problems are related by the equation,

-»,_—v_-—;
r'=r cRm . (V.1.5)

The plane wave component of the solutions can be written

eﬂ'{.?zelk' B JE- T (V.1.6a)

Y

-im Py

=e Z‘ i%24+1) Z (-Imp! Jml(cosel{)e

/&+| |)1

: ’
xPJml(cos 67) ™ jkr’) (V.1.6b)

The primes in equations (V.1.6a), (V.1.6b) designate coordinates measured
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from the origin centered at the displaced nucleus. The trial A.P.W. functions

inside the A.P.W. sphere involve the solutions to the radial equation,

'12 d (r'2 d ). ““21) +¥(r') - eJu(r) = 0.  (V.1.7)
(r’) dr’/ ~dr’ (r’)

The trial functions inside the A.P.W. sphere are matched on to the plane waves,

elk T at the displaced sphere surface such that

ik - &R -im ¢
(F) =e mzl (22+1) Z Uolml pmlog yo K
k (£+|ml)!
i(kr )
xp' l(cose’) 1me -—L—-s-—u;(r') for r/s<r . (V.1.8)
u;(rs) s

It is to be observed that, aside from the relabelling of the spatial coordinates
with primes, this expression is identical with that for the trial function in the
perfect lattice except for the factor,

ik - 6'ﬁm
e . (V.1.9)

(Note that the angles which designate the point in k-space, ek, and cpk , are the
same for the displaced nucleus as in the perfect lattice.) Thus it is obvious that

the eigenvalues which determine the solutions to the integral equation,
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ﬁ;@?) (he(si’;m §R) - e(ED quj(i’) <=0 , (V.1.10)

are the same for the displaced nucleus as for the perfect lattice. The explicit

expression for the integral above in the displaced nucleus case is,

Ge(i’;m- 6R) - 9 =
kk

> e ’ —
-ik - 6Rm 9 4 rz am ri 2 u; (r)\ ik- &R
=e é{ —e(@ 1- >+ E :(zz+1) (jz(krs)) e
(4
9 Q ) (rs)

2 41'rr§‘ 41-rr 2 u (r )
6{ -e(kb 1- )+ (212.+1)< (kr> s (V.1.11)
Q / (r )

i

which is identical to (h.e(z? ;RO) - e(k> , as given in expression (III. 3.17)
kk
Although the eigenvalue, e¢(k), remains invariant in this special case where the

eigenfunction is the plane wave, eiE' }?, outside the A.P.W. sphere, the eigen-
function which belongs to it is, of course, changed. The atomic-like part of the
eigenfunction is now centered about ﬁm+ a—ﬁm, and the eigenfunction is no longer
periodic in the lattice. However, inside the A.P.W. sphere, the functional form
(or shape) of the eigenfunction is still the same, for the functional form of the
eigenfunction there is determined by the eigenvalue, €. Since the eigenvalue, e,

remains constant, the radial functions,

u;(r) , (V.1.12)



71

and their relative admixtures inside the sphere remain fixed also.
The analysis above can be made more general by varying the trial functions
outside the displaced A.P.W. sphere so as to admit other plane waves of the

form
e ) (V.1.13)

where ﬁj is a vector of the reciprocal lattice, just as is done for the perfect
lattice.
Following the technique used in equations (V.1.6) through (V.1.10), the

matrix element between the trial functions which join continuously onto the plane
. i(k+K,)-x"
ik-x . .

waves e and e , respectively, is

4111'2 o L Jl(K. rs)
= -Gp(km.)-% 18 4
Q : K. |

e' - —
u (r )\ iK.* SR
S\ J m

= k _ TS
+Z(2z+1) Pz(cos ek+Kj>Jz(krS) i |1<+1<;j EX

€
4=0 u, (rg)

(V.1.14)
Equation (V.1.13) is cbserved to be identical to the matrix element of

é (X;R°) - e) (V.1.15)
© E’,E’+Kj
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except for the factor
e . (V.1.16)

The A.P.W. eigenvalue for the deformed lattice is again ascertained by the

zeroes of the secular determinant:
det| (h - e)ijl =0, (V.1.17)

just as for the perfect lattice. The rows and columns of the secular determinant
are specified by the wave vectors of the plane waves entering the trial functions,

such that
M .- (x)@ (;’;’;R’m+3ﬁm)—9w (X) dx . (V.1.18)

Therefore, the difference between the secular determinants for the displaced
nucleus and for the perfect lattice is only that every matrix element for the
former case in the ﬁj -th column is multiplied by the factor

iK, - &R

e (V.1.19)

and every element of the I—{’i—th row by the factor
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Now the theory of determinants establishes that, if, every element of a given
row, or column, is multiplied by a constant, ¢, then the value of the determi-
nant is changed by the same constant. Thus the values of the A.P.W. dete.r—
minental function are altered by only a factor, and the values of the band energy,
e(k), for which the determinant vanishes are unchanged.

This is not altogether an expected result: the eigenvalue of the function
which satisfies the Schrodinger equation explicitly inside the A.P.W. sphere and
which is represented by the lattice Fourier series

i(k+R.)-x
Za(ﬁ’+ﬁi) e ! (V.1.20)
Ki
between the sphere and the cell boundary is invariant under small translations
of the muffin-tin potential. Moreover, the eigenfunction which belongs to this
eigenvalue is changed only to the extent that it is centered about the displaced
sphere.

Although this result is not a property of the cozﬂpléte variational solution to
the eigenvalue problem for an electron in a deformed lattice, it will be useful
when expanding by minors the secular determinant for the full variational prob-
lem. In the next section, it will be shown that the eigenvalues for this problem

are invariant up to terms quadratic in the variations of the nuclear coordinates.
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V.2 The Solution to the Variational Eigenvalue Problem for an Electron

in a Deformed Lattice: Expansion of the Secular Determinant.

The argument above does not completely dispose of the problem of the vari-
ation of the one-electron eigenvalues under lattice deformations. When the lat-
tice is deformed by a translation of the I_im—th nucleus, the one-electron Hamil-
tonian no longer has the translational symmetry of the perfect lattice. The plane
waves in expression (V.1.20) transform irreducibly in the perfect lattice and
therefore comprise a complete set of trial functions for that case. However,
they do not form a complete set of trial functions for the general aperiodic lattice;

and for the case under investigation, the set,

i(k'+ KJ,)~§<’

Z Ze (V.2.1)

k/ K,
J

must be used as trial functions in the region between the A.P.W. sphere and the
cell boundary.

The A.P.W. matrix elements between such trial functions will be similar
to that given by equation (V.1.14). However, because the matrix element is
taken between two functions of different periodicity in the lattice, the integral
over the entire volume of the crystal will have its lowest order term linear in

é-ﬁm. For the matrix element between the (1?’ + I—ij)—th and the (E»+Ki)—m trial
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functions, this is,

(X) ( h (X;R+6R ) - e) o (%) L=

k’+K k+Ki A%

Vl

3

j (x) h(xR°>-§w (%) L.
Yol k+R. \'4
1

cell (V.2.2)

The first integral in equation (V.2.2) can be written as the sum,

q; (x) h(xR)—e ¥ (X)d'x , (V.2.3)
NQ k'+K K+K.
R Q i

where in (V.2.3) has been used the translational property of the Bloch functions,

iR & 3

(x+R y=e Py (%), (V.2.4)
+K ' K+ Ki

Voo
K

and where the integration is over the volume, Q, of the Wigner-Seitz cell. The
first orthogonality relation for the representatives of the irreducible representa-

tions of finite groups is,
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5 .2.
ZD ‘(1) (T) 5 LWL (V.2.5)
Ol

where g is the order of the group, and na the dimensionality of the o-th irre-
ducible representation. For the representatives of the lattice translation group,
this relation is,

i(kK-&)-
Ze PoN s(E-E") . (V.2.6)

| Therefore, the expression (V.2.3) is zero when kK'#K asis presently the case
— the exceptional case having been analysed in the last section. The remaining
two integrals in equation (V.2.2) can be combined by using the results of the
analysis of the last section as expressed in equation (V.1.14). Using (V.1.14),

equation (V.2.2) becomes,

. - (|E’+K -R- fqr)
i IS,

j
@e(R+6Rm)—9_’ L= = —GE'+R’.)-(E’+Ki)-% 1
k’+Kj,k+Ki NQ L |E+K1 k-K |

© E'+I'{’

+) (24+1) P, [cos & J(|k+K|r)J(|k'+K]r ) X

) , f) y)
=0 % +K

(4
e . - o d _—b,——) . —
u, (rs) e1(k+Ki k Kj) 6Rm_l )

X
w(r)

i(K+R -K-R) - R
1 i j m
= —GG(RO) —9_) - e - 1 ° (V02-7)
N kl+ﬁj’E+Ki
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By expanding the exponent in equation (V.2.7) such that

i(K+R.-k"-K)- 8B =1+i(K+K-K-K)- 8B +... , (V.2.8)
o i j m 1 j m-

the matrix element in equation (V.2.2) and equation (V.2.7) can be expressed as

&
i(R+K -K'-R)) - ———n—‘(he— €)_ . . (V.2.9)
TN k'+Kj,k+K1

Because there are now matrix elements connecting all trial functions, the
. . 23 23 .
A.P.W. secular determinant will be of the order of 10 x 10" . This deter-
minant must now be solved as a function of the trial band energy, ¢, and its
zeroes will render the eigenvalues to the full variational problem of the electron
in a deformed lattice.
. . 23 23
For purposes of mathematical convenience, the 10" x 10" secular deter-

minant will be written in terms of sub-determinants labelled by their respective

k-vectors in the first Brillouin Zone of the perfect lattice; i.e., the element

(B-e) s (V.2.10)

will be understood to stand for the full determinant of

(b - (h-

e)k,k+Ki

(h- “’)k+Ki,k (b~ e)k+Ki,k+Kj

€)k,k + Kj

(h- , (V.2.11)

e:)k+Ki,k+Kj
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and similarly for the element,
(h_e)k',k . (V.2.12)

Also for purposes of convenience, the k-vector of the state whose eigenvalue in
the perfect lattice is e(E) will be relabelled ko' The rows and columns of the
1023 X 1023 secular determinant will be labelled by the k-vectors of the trial

functions, beginning with Eo' The A.P.W. secular determinant now has the

form,
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This determinant must now be solved to ascertain its zeroes. The determinant .

is evaluated directly by expanding in the minors of the first row,

N
D(e) =ZD0’j cof(DO’J.) ; (V.2.14)
j=0
where
D .= (h-¢) , (V.2.15)
0,] - =
k k.
0" j

and cof (D 0 j) is the cofactor of the (EO’EJ' )-th element. Explicitly,
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Collecting similar terms and keeping only the terms of lowest order in 6Rm ,

this determinantal function of energy is,

9
2 - - —
N |(h-€)kj’k0| - (kj—ko) . ﬁRm/l\>

X \
D(¢) =<ﬂ(h-e)k Ce-ey Z
j=1 I 0 (h“e)kj,kj

s

. 2
+ (h- €)k0,k0 [terms in IGRm, ] . (V.2.17)

e obtain because the diagonal term,

N 00

l I (h-¢€) is not the full cofactor of (h-¢) , and there must be in-
j=1 kj’kj kO’k 0

cluded additional terms at least of order (6Rm) . It can easily be shown that,

The second set of terms involving (h - c-:)k

if the columns are interchanged, these additional terms involving (h - ¢€)

ko,k0
have the same form as the first set in equation (V.2.17),
- : o
N N Gh—e)kj’kﬂ, (kj—kz) . 6Rm/1\9
ﬂ(h-e)k.,k. (h-e)kz’kﬂ- Z (h- | . (V.2.18)
j=0 1 =4+ e k.
i#4 _ 1 B

This formal similarity is to be expected, for the secular determinant now in-
cludes all states. The set of zeroes for the secular determinant will be the set
of all variational eigenvalues, c-:(kz), and there will be some 1023 such zeroes
(not all distinct) as required by the number of states in the Brillouin Zone.

This can be observed by explicitly expanding the principal minor,
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{ - - 9
N Qh— e)kl’kj (E-R)) - 6Rm/1‘> .
Boeh ey T—l—(h—e)k,k +
070 j=2 (h- e)k.,k 12 755
\ J ]
( @1-6) (B-E.)- & /192
N kZ’kj j 2 m N
OO kT ﬂ(h‘e)k,k +
1 1( j=3 (h-eh o i3 5
1]
r h-e¢ B-K ). ‘gﬁ /N 2
N\ )k3’kj( B R .
" |2 TTe-o  +
2’ - (h-¢) . K
1= k. k =4
\ 3]
s ((h- €) (R-K,)- & /1\52
N k4,kj j 4 -~ N
+(h“€)k k - - ﬂ(h_e)k_,k_+
1= ( €)k-:k j=b 3]
\ ] ]
+ el
.
+(h-e¢

L 1— ((h " gy ky (Ryyiy) - gﬁm/l\bz
+(h—e:)kN 1kN l1(h c-:)k ’kN}}}} }

(V.2.19) THE EXPANSION OF THE PRINCIPAL MINOR IN THE
A.P.W. SECULAR DETERMINANT.
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Note that, in the explicit expansion of the principal minor given in (V.2.19), each
left-handed curly bracket is enclosed within other such brackets, and these curly
brackets are not closed from the right until after the N-th term.

By combining terms symbolically, this principal minor can be written as,

p
N

B-e) ‘H(h"")k.,k.+
- 00| i

_ ) — 2
N[ N @‘ e)kz,kj (k;-k) ﬁm/bb N

-Z Z E(h-e)kj’kj . (V.2.20)

=1 Lj=grl (h-eh .
I i#4

Taking cognizance of this formal similarity the expansion of the secular de-
terminant by minors which retains only the lowest-order non-vanishing terms in

SR is,
m

1 N N
D = — h -
(€) NZ (ﬂ( e)kj’k,-

£=0 | \j=0
(k- €) (12'.—12’)-5‘1?2)2
1 N ( kj’kz j L m

j#4
b-e) ., -~ . (V.2.21)

P R Bk

Note that equation (V.2.21) involves a sum of N terms which are only formally

equivalent. The terms in the curly brackets are quite different in value states
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for which the wave vectors, iy

x are quite different. Note also that matrix ele-

ments involving every state appear either at "diagonal" elements,

(h-e) K (V.2.22)
r r

or, as "off-diagonal" elements involving the incremental change of the nuclear

coordinates,

-

(h-e) | (B-E)- & . (V.2.23)

There are N(N-1)/2 elements of the form of (V.2.23), and it is to be observed‘
that each one appears in equation (V.2.21) exactly once.

Although equation (V.2.21) has a form which superficially appears rather
asymmetric, it is ih fact entirely symmetric and the same for any particular
state kr' This can be seen easily if, for the case where the variation of the band
energy, G(Er) is under investigation the r-th and zeroth rows and columns in the
A.P.W. determinant are interchanged. These two operations leave the value of
the secular determinant invariant, and if the wave vectors, Er and EO designating
those two states have their indices exchanged, the expansion of the determinant
by minors has again the form of equation (V.2.21).

However, if the state, kr , is under investigation, the matrix elements in
the sum in equation (V.2.21) which pertain to the variation of the band energy,

e(Er) are only those for which (h - appears inside the square brackets

%k x
r’r
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and those terms involving (h - e)k.,kr( Ej-l?r) . ﬁm' The other terms pertain
properly to the solutions for the v;riations of the other eigenvalues, e(l_c}) .
Therefore, such other terms will be neglected initially. It will be demonstrated
below that in the neighborhood of the zeroes of interest, — those for e(Er), -

these additional terms in the sum are of the order | &R I4.

Thus we seek the zeroes of the function,

F () =TET(h-e)k.,k. B,
I

=L 0
2
|- ¢) |2 GE’.-E’ )~Ef{n>
1 N kj,k0 Y
- . (V.2.24)
N =1 (h-e)kj,kj

It is to be observed that this function has many zeroes. Because the electronic
energy spectrum admits many degeneracies, every value of ¢ which equals a
degenerate eigenvalue for the perfect lattice,
e=¢° =¢° , (V.2.25)
%%,

renders a zero for F G(ko» on account of the factor,

N
.I_I_(h-e)k K (V.2.26)
’ i=] j’ j

Plainly such zeroes correspond simply to the variational eigenvalues for the

perfect lattice, and accordingly are disregarded. The value of e of interest is
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that one which determines the zero of the second factor,

2
= |(h-e)kj,k0|<(kj—k0)oaRm>
F (e(k,)) =|(th-¢) - — . (V.2.27)
P77

There are two points to be noted about equation (V.2.27).

First, this equation, whose zeroes determine the change in the eigenvalue,
e(ko), is ggg a perturbation theoretical result. Although equation (V.2.27) has
the form of the equation for the second order change in the eigenvalue according
to the perturbation formalism, there is no expansion parameter, A, which ap-

pears in an expression for the Hamiltonian,
h=h +Xo , (V.2.28)

and in terms of which the eigenvalue is expanded. Equation (V.2.27) obtains
from the expansion of the exponent,
i(K-K") - a"ﬁm
e =‘1+1(E’-E")-6Tim+... , (V.2.29)
and is simply a Taylor series expansion in

| 6Rm|

(V.2.30)
IR |

Second, equation (V.2.27) states that the variation in the one~-electron

energy, e(ko) is quadratic in 6Rm.
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V.3 Evaluation of the Expanded Secular Determinant.

We shall first investigate the zeroes of the energy function,

= \2

L (‘h"e)k.,k | (k) - 6B

F (k) = ﬂ(h U L2 :

0 0 N 1 (h-e)k.,k_
I ]
. (V.3.1)
Observe again that the values of ¢ for which,
€= e°(kj) , (V.3.2)

cause the function to vanish for any degenerate state, E; , correspond simply to
the eigenvalues of the imperturbed problem and are therefore disregarded.
The problem now is to calculate the factor,

- e — 2
|(h-¢) [(k.-k,) - 6Rn)
1 N < kj’kO j 0

h-e) -~ , (V.3.3)

070 NJ -1 (h-e)kj!kj

. 3 = -
and to ascertain its zeroes. To do this, first the sum over k-vector is trans-

formed into an integral over the energy variable ¢/,

Z—>' V3 kzdde=VJ\dQ de’ g(e’) , (V.3.4)
k. (21m) e

J

by using the Jacobian of the transformation which defines the density of states:
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2 3§ L as . (V.3.5)

gle) =
- @emY ek lgrad.k, e(k’) |

Note that the energy which enters equations (V.3.4) and (V.3.5) as a running vari-

able in the integration over all states is the eigenvalue of the perfect lattice:

e = ¢* (X) W(X) ¥_(X) x . (V.3.6)
E’/ K’

Using this identity, the sum in expression (V.3.3) is written,

N I — 2
. ((h-e)l? - | (._kj-ko). GRED
i’

1
N

j= h- e)kj,k.

j

i ) . 2

de’ g(e') ((h ¢) _’l(kj k) E'DD
i"o

w k..k
= vjdn f
, - (/- ¢)

The problem now resolves into that of determining the behaviour of the integral

.(V.3.7)

in equation (V.3.7) as a function of ¢ (not of ¢’ — which is integrated out). For

convenience we introduce the symbol,

’ 2_ - = 2
|D(e,e’)|” = @h—e)kj'ko' (kj—ko) . 6Rrr> . (V.3.8)

The integral in (V.3.7), -
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2
- COR TR

(V.3.9)
(e'-¢€)
has poles at each value of ¢ for which for some state, Kk,
e= ¢ = e%(kK) . (V.3.10)

However, the entire integral is itself multiplied by the product,

N N
[T@e-ey =H ("'“‘ﬁ“) , (V.3.11)
j=1 Plo= |

. which serves to eliminate all such poles as specified by (V.3.10) except that for

K= 1_{'0. Therefore, we solve the integral'considering the pole at e°(k0) only.
In order to evaluate the integral (V.3.9), the variable €’ is transformed

into the complex plane,

e=¢ +1i¢ . (V.3.12)
r 1

In order to evaluate the integral in the complex plane., the contour of integration
must be chosen and the convergence of the infegrand at infinity assured. The
contour of integration must be chosen so as to avoid any singularities or ﬁranch
cuts pertinent to the integrand. Because the function ID( e’) |2 has only isolated
singularities, the contour will be determined by the singularities of g(e’).

The density-of-states function g(e’) is an extremely complicated function,
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and to find its general form is impossible using known mathematical methods.
However, because the integral (V.3.9) has the form of a dispersion relation,
j “F)dz (V.3.13)
0 z-a
the value of the integral will be determined by the values of the integrand in the
neighborhood of the singularity, e(ko). Therefore, we expand energy disper-

sion curve about the singularity as,

Faer . (V.3.14)

e(E") = o(E)) + L5

2m

This parabolic fitting of the energy bands admits the density-of-state function,

(2m* )3/ 2 o1/2

21'r2 h3

g(e') = (V.3.15)
Now because g(e’) involves a non-integral power of ¢/, its phase in the complex
plane is arbitrary, and it possesses a branch cut running from the origin to in~
finity. We choose the branch cut to be the positive real axis and add in infinite-
simal imaginary part to e(EO) so as to move the pole of the integrand off the

real axis,
e(E’O).. e(E’O)+ia . (V.3.16)

The contour is taken as in Figure 3. Now because the integrand goes to infinity
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/
at least as fast as e’l’ 2, we use the limiting procedure,

g(<") | D(e) | - lim ge) [D(en) |* oMl (V.3.17)

(e'-e,+1i8) p-0 (&'~ e, +18)

The value of the integral is then,

2
? I - /

f(e') = ——— Residue of SENDEN " ~ulel) (V.3.18)

. oM .

sin — u—0 (&= e, +18)

2
which equals,

, 2

f(e’') =-mg(e) |D(e)|” - (V.3.19)

Therefore, we have acquired the evaluation of the energy function in equa-

tion (V.3.1) as,

N
F e(kob =r|-(h-e)k"k. I:(h)k K%t
j=1 177 00

Vrg(e,) : 9 S 2
-———-——de Qh— €o) c (kj -kO) . 6Rm> . (V.3.20)
N kj°,k0

The superscripts, € > over the k-vectors, Ej , in the angular integral in (V.3.20)

serve to specify that the integration involves only states of wave vector, Ej’ for
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which

e(E’j) =¢ = e(E’O) . (V.3.21)

In general, the angular integral in equation (V.3.20) is very complicated.

The equation (V.3.20) still does not specify for which value of € the
zeroes will obtain. There still remains a complicated transcendental equation
in éo’ We solve for the zero iteratively.

Using the eigenfunctions which belong to the perfect lattice eigenvalue,

0' 0* - - 0
e (k) =f¢e (%) h(x) ¥€ (¥) &% , ' (V.3.22)
k K
0 0
and recalling that,
* o - 0 e - .3
j* (x) @(X) -€ (ko)) y_(x)dx=0, (V.3.23)
E.’O ' K,

it is observed that a shift is the eigenvalue such that
¢ = e(iéo) = e°(r<’0) + TV g(eo(ko))JdQ[D(eo)lz ,  (V.3.249)

will determine a zero..

Furthermore, when this value for eo is used in the next interaction, the

variation of the eigenfunctions is,
dyé (%)
k

1 =yE
N = q;_’ (x) + §e (V.3.25a)

kO k0 de
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) dy(x)

=5 (x) + 2
?

O( 5Rm) . (V.3.25b)

de

Therefore, the further correction of the eigenvalue €, which obtains from the

next iteration is of order,
(R_) ,

and is for that reason neglected.
Returning now to equation (V.2.17) in order to reconsider the additional

terms in (h-¢) . which obtained from the expansion of the cofactor of
Kk |
0”0
(h-e)

-

kO’kO

@- e)ko’ko [terms in (6Rm)2:| . (V.3.26)

Plainly, at the value of ¢ determined by equation (V.3.24), these terms in

(V.3.26) differ from zero only in orders of,

and we are justified in consistently neglecting them.
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V. 4 The Eigenfunctions for the Deformed Lattice.

In order to evaluate the factor in the electron-phonon "double~derivative"
matrix elements involving the electronic eigenfunctions, it is necessary to de-
termine the eigenfunctions for the deformed lattice. If the single-particle eigen-

functions for the deformed lattice are written as

COGRASR ), (V.4.1)
%

then the derivatives of the electronic eigenfunctions with respect to the nuclear

coordinates are

WKE+E ) - 13(XR)
lim : (V.4.2)

R -0 &R
m m

In both (V.4.1) and (V.4.2) the eigenfuncti_ons for the deformed lattice are in-
dexed with the eigenvalue, ¢, to which they belong and also with the wave vector,
1?, which sérves to specify the eigenstate to whiéh the function reduces in the
equilibrium-position nuclear coordiqates. It should be clearly understood that
the eigenfunctions for the deformed lattice are not periodic in the lattice. The
eigenfunction in (V.4.1) does not transform irreducibly as the k-th (or any other)
representation of the lattice translation group.

In Sections V.2 and V.3 it was established that the eigenvalues for the band

energies in the deformed lattice are adiabatic through terms linear in the nuclear



displacements,
e(B;B+ &) = (k;R%) + O( 8R?) , (V.4.3)

provided the wave vector, k, does not designate a point on the Brillouin zone

boundary.
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Therefore, to invert the A.P.W. secular determinant in order to ascertain

the eigenvectors which belong to its respective zeroes the same trial functions
are used as in the previous sections. In all but the ﬁm—th cell the A.P.W.

eigenfunctions are used,

1 1 'ﬁ [o) - -
+/j§ :e Poe(x-B) . (V.4.4)
N K P
R

0

In equation (V.4.4), A is a normalizing factor, and cpe (i'- f{p) is the equi~
K

librium-position tight-binding component belonging to the equilibrium-position

eigenvalue, e°(1-€o) . The functions in equation (V.4.4) are recognizably of the

form of the equilibrium-position A.P.W. eigenfunctions. In the fi'.m—th cell,

the trial functions are
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GO(E’)—; /1—\ eo—)—b e
¥ (x;R+6R_)= [/— a” (k+K,) (V.4.5a)
SRR

outside the displaced A.P.W. sphere: |:? | = r; , and

i(K+R.)- R
‘Feo(E)(;;R"'GRm) :Zaeo(l?*ﬁi) Vf.o _(X-8& _;R%e i’ m
- k+K,
i 1

|

(K+R) - (X-& )

m
ad
~l
+
A

(0]

3

+

inside the displaced A.P.W. sphere:
E{ER
s

Thus the trial functions employed are the A.P.W. functions for the perfect lat-
tice generated by the eigenvalue, e°(i?°), in all but the ﬁm—th cell. In the
ﬁm—th cell, the trial functions are the same combinations of plane waves as for
the eigenfunction belonging to e°(Eo) in the perfect lattice,
o i(K+R.) - X
Z a® (E+K)) e ! , (V.4.6)

i
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and the tight-binding components are displaced rigidly — as specified by the
energy parameter —
o 1(12’+Ki)-1'2’m+5ﬁm o
e, 2 3 - = —
+ - -
E a” (k Ki)e ¢ (x Rm GRm) » (V.4.7)
i i
which vanish smoothly at the displaced A.P.W. sphere radius because of the
factors,
i(k+ Ki) . gﬁm
e . (V.4.8)
Labelling these trial functions by their respective wave vectors, Kk’ , the eigen~

functions for the deformed lattice will be

¥%X;R+6R) =Zxk’ qxg’(i’;ﬁ%ﬁim) . (V.4.9)
E’l

The Hamiltonian for the deformed lattice operating upon this eigenfunction renders

the equation

—). e —)' _ -).—) g
B(Z;R+6R_) Y5(X;R+6R_) = erk, VLR ) . (vV.4.10)
v E/ k
Multiplying both sides of equation (V.4.10) by ‘1’;;,,(;:) ;R+ 6Rm) from the left

and integrating over the entire volume of the crystal renders the matrix elements

kl
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Now, because the eigenvalue, e, has already been ascertained by the
procedure developed in the previous two sections,the determinant of the matrix

of equation (V.4.11) vanishes:

det | él(R+ SR) - %k,,k,| =0 . (V.4.12)

Therefore, the set of equations (V.4.11) which determine the coefficients, xk ,s
are redundant. For each eigenvalue e(R+6R) one equation is eliminated in the

following way.

Suppose that the energy eigenvalue whose eigenfunction is sought is that
which equals €°( Eo) in the limit of the perfect lattice:
lim (e(R+ 6R)> = 9(ky) . (V.4.13)
R -0

Assuming that
=1, (V.4.14)
o

and labelling the elements of the determinant such that the (h-¢) row is

Ko, K/

the first row, and the (h - column is the first column, the matrix of the

€)

k”, k,
coefficients is exactly that appearing in the determinant in equation (V.2.13),
except that both the explicit value of the parameter, ¢, and the functional form

of the trial functions inside the A.P.W. sphere are set by the predetermined
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value of the eigenvalue ¢°(k.).
Using the assumption (V.4.14), and discarding as redundant the equation
which generates the first row of the determinant, there remainsthe (N-1) X N

matrix given by equation (V.4.15).
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The coefficient Xk is determined by Kramer's Rule:
£

IDK%H
= (V.4.16)
ﬁ% A

where D’(l_c;l) represents the determinant of the associated matrix on the left
hand side of equation (V.4.15) when the l—gﬂ—th column has been replaced by the
column matrix on the right hand side, and where A represents the discriminant,
or the determinant of the matrix on the left hand side. Both these determinants
are evaluated by expanding by minors and retaining only the terms of lowest
orders in &R
m
The discriminant, A, is identical in form to D(€°) except that it involves

one fewer factor and term in its series,

N
lv—w
A(e) =— (h - €°)
(e”) N£>—J -‘—T k.,k
=1 j=
i#4

- - proand 2
e} - .
) @1e)%$;%1%)sgg
x| (h- &) -= N A(V.4.17)

- o0
=g+l (h e&r%

The associated determinant for, say, 1—51 is
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)
N |[ N &R
1 - - m
7 e -0 3 - o — -0
(k) NZ* ﬂ(h ek | |1 KR N th-e )kl,ko
=2 |\i=2 L
\'i# 4
2 \
- fo) -—D—-—’ .——).
. <(h e )k!&’k.(kj K) 6Rm>
X|M-€%) | == Z ] 0 - (V.4.18)
’ -0
AN @ = k.
i )

Discarding now all but the terms of lowest order in 8R, the expression for the

discriminant becomes simply,

N
—_ -0
A _I |(h N i (V.4.19)
i1 i

and the associated determinant for the E’l-th coefficient becomes

R N
’-) s —p_—v ._E _ .0 _ .0
|DUE) | = i(K k) . (h-e )kl’koﬂ(h e )k.’kj . (V.4.20)
j:

In general, it can be seen easily that the associated determinant for the l?l-th

coefficient is, through terms linear in &R,

—

& N
|D(K)| =i(K ~k ) -—— (h-¢°)
) 20T )

(h-e (V.4.21)

(o]
X, k.
755
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provided £ # 0. Therefore, using Kramer's Rule, equation (V.4.16), the co-

efficient x is

L
- _ a0
- - 6Rm Boe )k.e’kO
x =i(kK-Kk,)- (V.4.22)
£ 4 0 o
N (h-e )k K
A/

There are two observations to be made concerning this result for XI,'

First, the coefficient x‘e displays a singularity when the state Eje, is de-

generated in energy with the state EO; or

e°(1'<'£) =J"¢’:(E£) h(X) ¥_(X)dx = e® = e°(K;) . (V.4.23)
k, k

However, the eigenfunction for the deformed lattice is determined by the sum

over all states l_fz,

weo()?'R+6R)—§ :x ¢z
; =  {_(X;R+8R) . (V.4.24)
= k. k.

k., ]

- J
If the summation over E’J is. transformed into an integration over e’( Ej) in the
complex energy plane, as in Section V.3, the singularities of equation (V.4.22)
serve to specify that the states which mix into the deformed lattice eigenfunction
significantly are those belonging to the same energy eigenvalue.
Second, and more important, equation (V.4.22), and therefore, also equa-

tion (V.4.23), involves the factor N in the denominator. Now it was originally
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assumed that X, was unity. Therefore, the ratio of magnitudes of all other
0

coefficients to the first one is

k

1
—f’-~0— <<l . (V.4.25)

Ky N
It is thus justifiable to neglect all but the first and overwhelmingly largest com-
ponent of the eigenfunction.
Therefore, the eigenfunction for the deformed lattice which belongs to the
eigenvalue
°(K;R+6R )

is
¢°(K), = _
¢ (X;R+8R ) =

i(k+K,) - x

o . i 1Eﬁ o .
=/—?Za“ (K+R)| 3 +/—fZe Pof (X-E )+
A< JV N i P

i 4 R
P
e1(k+Ki)-(Rm+6Rm) .
+ — (pi _(x-B_-& ). (V.4.26)
JN K+K

The derivatives of the one-electron crystalline eigenfunctions follow di~
rectly from equation (V.4.26).

Using again the approximation for the exponent
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i(E+Ki) . ﬁim .
e =1+i(K+K) &, (V.4.27)

there obtains

oY = o
(k)(x;R°+ 6R_) - q;e (x;R°) =
m E)

we

o . ik-R
=Zaie (K+R) e

i

- — o
+ i(k+Ki) -8R_ ¢

m

(;’:’-ﬁm- sim)} . (V.4.28)

€
K+R
1

Using the fundamental definition of the differential calculus,

m m E+K
1 1

° i == o - e
lim |}p§ (x-B_-8B_)-¢° (x-ﬁm):l/aRm=

(X-8_)- 8(8‘fim) . (V.4.29)

lim [i(l?+ﬁ.)-ﬁ cpeo_’(;c.-l—%' -8R )| /B =
6R_-0 ! T ORR wom m
m i
- (B4R - &) 9f _(R-R
= i(k+ i) e(éRm) 9 L (x- m) . (V.4.30)
k+K
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In both equations (V.4.29) and (V.4.30) the symbol,

& _) , (V.4.31)

represents the unit vector in the direction of G—R'm.

Therefo_re, the derivative sought is given by,

—— ¢ (X;R) =
dR_ k
m
0 - 0 -
[qre (k;RO+ 6R_ )(X;RO+6&R_)-¢° (k;R°)(x;R°)}
m m l-{-’
‘=z lim = =
SR -0 §R
m
ik-R®
e & 2 2y LA &L -
= — a (k+ﬁ.)€(k+K)~e(6R ) @ (x-B_)+
ﬁ;\ - 1 m E+Ki m
-7 Gpeo (x-R )-S(E ) (V.4.32)
x Vk+R m m

This is exactly the result which was used in Chapter IV, and which was to

be proven.
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CHAPTER VI

THE CRYSTALLINE POTENTIAL IN

A DEFORMED LATTICE

VI.1 The Problem of the Self-Consistency of the Crystalline Potential in

a Deformed Lattice.

The energy band problem for a deformed lattice is not completely solved
with the development of the energy eigenvalues for the deformed lattice and of
the eigenfunctions which belong to them. The accurate solution to every many-
electron problem using the single-particle formalism requires that the potential
used to describe the field of the electrons be self~consistent. If the single-par-
ticle Hamiltoriian, h( X ), which involves the electronic potential, ve( X ), admits

the eigenfunctions, ¢(§ ), then these eigenfunctions must regenerate ve( :_f); or,

if,
h(x) ¢(z‘£>=(—v2-—l"’~_,z-l-+ve(:?) Wx)=ey(x) ,  (VI.1.1)
X
then, the set,

(D} - v (X) . (V1.1.2)
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This aspect of the many-electron problem was discussed extensively in Chapter
III. The problem of self-consistency is now addressed for the case of a de-

formed lattice.

First, the self-consistency of a muffin-tin lattice is considered.
It has been shown in Chapter V, that the band energy eigenvalues for a
muffin-tin lattice are adiabatic through terms linear in the nuclear displace-

ments:
- ——— e d 2
. = 20(T2-RO
e(k;R+8R_) =e%k;R) +O(R_ ) . (VI.1.2)

Since the terms of order higher than linear are systematically neglected in this
analysis, the band energies for the deformed lattice are ordered exactly as for
the perfect lattice. Because the spin of the electron allows each state to be
doubly occupied, the N/2 states of lowest energies for the deformed lattice will
have the same band energies as for the perfect lattice and will be identically oc-
cupied.

Therefore, the Fermi Surface is invariant under first-order variations of

the nuclear coordinates. This phenomenon is illustrated schematically in Fig-

ure 4.
The electronic potential is developed from the one-electron eigenfunctions

by the equation (VI1.1.3):



3 kF 2 2 /3
- 2311 Hf_.(x;R)]
2m k -

as discussed in Chapter IIl. For the perfect lattice, the eigenfunctions which

enter equation (VI.1.3) are, of course, the set,

{ w_,(;:';R°)} :
k

and for the deformed lattice, the functions used are the set,

eo(l-z) >,
{\F (x,R+6Rm)}
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In Chapter V it was shown that the solutions for the deformed lattice are iden-

tical to those for the perfect lattice in all except the ﬁm-th cell, and that in the

ﬁm—th cell the eigenfunctions are,

-y

i(E’+i€i) . X

veo(E)(E;JM R_) =/}?Za€°(k’+ﬁi)3————— ,
A< J7

outside the displaced A.P.W. sphere:
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x| = ¢/ ,
s
and
— e L i(K+K) - &
11:3 (k)(x;R+&R ) = E ‘a(k+K,) g (x-8R_;R% e ! m
m ' = = m
: k+K,
i i
i(k+K)-X

inside the displaced A.P.W. sphere:
| % | <
s

For the movement, the effect of the charge densities in neighboring cells will be
neglected; only the charge within the ﬁm-th cell will be considered when gen-
erating the potential in that cell. In order to develope the potential for the dis-

placed A.P.W. sphere, the eigenfunctions are written as,

dlb‘ €0 (k)

c"o(k)(;;';:m SR )= q:eo(:?;RO) +
mR

] 6R_ . (VI.L.§)

m ‘RO
m

Using the results of the last Chapter, equation (V.4.32), the eigenfunction in equa-
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tion (VI.1.8) is written,

q’eo(k)(;{';R.,. aRm) = ¢§O(§;R°) +/§Z aeo(ﬁ'+ﬁi)
i

ik-R

e - =

R — (k+K) cp (x R ;R
N

( (x -B ,R°>> | (VI.1.9)

When the eigenfunctions in equation (VI.1.9) are used in the equation for the crys-

talline potential, (VI. 1.3), there obtain the following expressions for the Coulomb

2
(k) I)I ___-:_l_;__d;gl
| x-x'|

2
(ﬁ" W 2reem_)l —l——lT-d;' . (VI.1.10)

term,

6, .-

Coulomb

‘M*f @‘MJ ‘

o
1l
(=}

x-x']

Substituting in equation (VI.1.9), this becomes,

- k) 30* -
v (X;R°+ SR D ﬁwe‘ (x ’R°)| ax’ + |¥€ (X’;R°)
(e ' ™/ Goulomb Z Ix -x| i

(continued)
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ik ﬁm
O 5 - - - 0 - paars -
X }-Zae (k+Ki)e—-—<i(k+Ki)—Vx> o° (X-R_;R)-&_ L2
A5 VN k+R |x -%]
-ik - ﬁ
Za (L — (-i(mﬁ.)-a,)cp* (W- o).
/\/—_‘ 1 X E"‘Ki m m
O (k)
X% " (Z5R9) _.1_' dx’ . (VI.1.11)
| x-x’|

The first term in equation (VI.1.11) is recognized as simply the potential for the

perfect lattice, Ve(:? ;R°) The other terms will be examined one by

Coulomb”’

one. The equilibrium position eigenfunction is,

b k+K) - ®-R
Za (B+R) (—c— fz pcpe (x-B )
o D
/_' k+1'{i
(V1.1.12)

Therefore, as in Chapter IV, there obtain eight distinct integral expressions to

evaluate:

m. =
1(k+Ri)- Bﬁm>

. 1 1/ % = - 1
i.a ZZ ZJG (k+K].) a(K+R) e
i ]

-i(E+R) -’
x /L le ) P (§’-ﬁm) LI -2
VN K+K | x-%
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iK-R

(ii. a) iz Z(a*(ﬁ’+ﬁj) a(K+R) e m 1(1'{+f<’i) . ﬁ*{m>

-

1 _ik‘,ﬁ * - - g
X — E e P QP_. _)(X'-Rp) Cp_’ (X"Rm)—T—;—dXI
+K,
N R ;
p

k

ik - R
(iii.a) —iz Z@‘(Eﬁﬁj) a(E+R) e o a‘ﬁm> .
i

-i(K+K) - ¥’ .
X —1— e ) '{7’ ,<CP (;’—Rmb ——l:—dX'
VN TN R+R, ]}?—x'l

. . iE’-ﬁm _
(iv.a) _Z E E <a (k+Kj) a(k+Ki) e 6Rm> R
i

1 —iE.ﬁ * - g - - - 1 -
X —Ze ’ ?, (x,—Rp) VX’GP—» = (X,—Rm> .
N K+K, k+K, | x -]
Rp j i
iK- R

. * o - = B L, = —
(i.b) --1-2 : E : a (k+KJ,) a(K+K) e ml(k+Kj)' R
A= :
i
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-ik - R
* - d - = -
X -1— e p (x-R ) (x-R ) ! dx’
N k+K k+K | x-%']
Rp i i
1 * o, o —E.R’m
(iii.b) ——E : E :<a (k+K) a(K+R) e R -
A j i m
i
L/ * - i(k+K) - %
X L x’(q) "(X,_Rmb e ! _’1 dx’
VN 12’+KJ. | x-x'|
-ik R

1 - * - = - o 1 -
X = V,(CP (X'—R 9 CP_) (X"‘R )——'—ﬂ——dX'
NZ (X P+, D0 R P |R-F
(VI.1.13)
In the expressions (i.a) - (iv.b) above, the superscript e°(1_3) has been omitted.
The sum of these eight integrals can be simplified in the following way.
Integrating the expression (iii.a) by parts, as was done in Chapter IV,

renders the equation,
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- - 1
- ‘le v ,(cp (¥R 9 dx’
- FVRR TR
—1(k+K)-X’ 1
=-e ) P, (X'-Rm) +
k+RK. | x-%'|
i s
-i(K+R,) - x’
] , = 1 -
-i(K+K) - 8R_ |e o, (x'-R_)— dx’ +
R+R, FEd
—1(1_<’+I—§) x’ 1
-8R -V |e ] ¢ (x-B )———dx’ . (VI.1.14)
m X = = m = =
k+K | x-x’

The surface term in equation (VI.1.14) vanishes because the tight-binding func-

-

tions, 9 (x-R ), are zero outside the A.P.W. sphere. Because of the
k+K,

minus sign iﬁ (iii.a), the expressions (i.a) and (iii.a) can be combined to give,

-

—E j E : <a(k+K.) a (K+K) e i(K.-K)- R >
A i J 1 ] m
i j

- -i(K+R) - X .
X [/— Je ] @ (x’—Rm)-——-—dx'+
VN E+R | X -X'|

L .. ik-R
__-Z Z (a(E+Ki) ? (k+ﬁj) © m>
AT &
i

(continued)
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-i(k+K) - X
— — 1 ] l =,
X éRm'VX — | e o (x-B_) dx
VN K+, xR
(VI.1.15)
Similarity, (i.b) and (iii.b) can be combined to give,
. . -k R
—Z Z@ (K+R) a(K+R) e i(R.-R)- &R >
A j i i m
i ]
i(K+K) %
- 1 -
VN k+K; |x-x’|
. . . ik - R
_iz Z(a (E+K) a(E+K) e m
i
R T .—>,
- - 1 1(k+Ki) X % -, _; 1 =,
X 6Rm°vx — | e v (x- —dx’} .
VN k+Kj |X X d
(VI.1.16)

By using the non-overlapping property of the tight-binding components,

cpk,(x )cpk(x R y=0  if ﬁm;éfip , (VI.1.17)

the expressions (ii.a) and (ii.b) can be combined to give,

A :
1 J

(continued)
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* -, = -, = -
x L P (xR _)eo_ _(x-R_)- L . (VI.1.18)
N E’+Kj k+K,

Similarly, integrating (iv.b) by parts and adding the result to (iv.a) renders,

- _];Z Z(a*(l?.l-ﬁj) a(E+I_§iD

— — * -, = - - 1 -
X 5Rm . VX —1— P (X'-Rm) ?_ (X""Rm) - dx’
NJ k+K k+K, | x-x'|

(VI.1.19)

Combining (VI.1.15), (VI.1.16), (VI.1.18), and (VI.1.19) gives,

- _ 2. n0
Ve(X’R+ GR)Coulomb Ve(x’R )Coulomb+
kF 1 ¥ 5 o - =
+ Z —Z Z a (K+R) a(R+K)
o | AR T
- -i(K+R) - ¥ .
X|I(R-R) -8B [— [l T, (D
] VN K+R,
i(K+K) X"
-e ] 9_ (x")) - _‘1 — ax’ +
kK+K, |(X-x"-R_)]|
1 m

-

: si(K+K) - %
-é_ﬁm'vx —_— e ] P b}(X')
VN k+Ki
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K+R, x-x'-R
i m
- 1(Ki_K) ) m o (x) ¢, _ (x') dx’ +
! NJ E+K K+K, |X-x-R_|
= i m
—- o 1] * -, ’ 1
- éRm-VX— P (x) e (x) dx’
N) K+R K+R. lx—x’—ﬁ |
i m
(VI.1.20)

In equation (VI.1.20) there has been used the property that the A.P.W. varia~

tional coefficients, a( E+Ki) are conventionally taken as pure real,
* 5 o =
a (k+Ki) = a(k+Ki) ) (VI.1.21)
and the dummy variables of integration have been transformed as,
X'=x"-%_ . (VI.1.22)
m

The exchange potential is derived similarly,

3 3 ke . o|1/3
Ve(X;R.x-GR)exchange - T3 Z?’” | i (x;R+ER) |
k=0
k -
3 2 & - dip(x) 2|13
= -5 {3m ZH’ (X;RO) + oR_| . (VI.1.23)
21 K dR
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A given term in the sum is examined. As before, there is a single term,
> ooy 12
v (x:RO) |, (VI.1.24)
k

representing the perfect lattice eigenstates and eight terms linear in 6Rm at-

tributable to the variation of the eigenfunctions. These are as follows:

_l_z 1 § i(a*(E+Kj) a(l?+ﬁ.19
A= - ‘
i

—i(E’+ﬁj)-(x-Rm

L, —— e - =
X 1(k+Ki)oaRm ® (x-R )+

- —— 1 = - =
Fi(R+R) BB —9 (X-B)e  (X-E )+
! ™ N l?+ﬁj m E’+Ri m
-i(1?+Kj)-(§—ﬁm)
— - - = e
- SRm <VCP (x-R_) +

k+K. m v VN

— — - 1 * -
- R °<ch (x-R >~tp (x-R_) +
TN ReR N BRSO

+i(1‘<’+Ki)-(§_§ )

e m *

m JVN k+R, m

- i(l?+ﬁj) - R
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(X -R ) (§—ﬁ ) +
m E»{_I-{i m

1(k+K) (x-B )

R
K+R, m J VN

e —y — 1 *
-i(K+R) R =
] N K+K,

-ﬁim-@’cpi (-8 )L (x-B 2 (VI.1.25)
k+R, N k+K

Plainly the fourth and eight terms in equation (VI.1.25) can be combined as,

— - 1 * - - - =
-8R -V—(r.p (x-B )e (R-R 9 X (VI.1.26)
n N E+Kj m E+Ki m

Uisng the identity,
(E+K) X o =2 ) _ofi(k+R) X = =
e (chk(x Rmb = VG qak(x Rm)

-i(k+K) e
(VI.1.27)

the third term becomes,
R+ - (£-R )

m VN E+R, m

ei(E+Kj)u(§—R’m) o
o (X-B ), (VI.1.28)
JVN K+R m

-i(k+R) - &R
j m

and a similar expression obtains for the seventh term,
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+i(1?+ﬁ:i)-5'ﬁm ® (x-R_). (VI.1.29)

The second and sixth and the first and fifth terms may be also combined to give

a simple result. Combining all eight terms gives,

A(k)z Z( (K +K) a(E’+K’))

;d(E+ﬁ9-(x—ﬁm)

X i(f{’i--ﬁj)-aR ® (x-E )+

m J VN E+ﬁi m

e 1 m * -

+ o (x-R )+—- (X—ﬁm)cp_’ (x-E_)
JVN' R+R, N E+ K+R

B -F(-e (Z-B_) (Z-R_)

TR (e, (GRe, (R«
m AN K+K, m B+R, m

e-l(k+K) (x—Rm) . e1(1<;+Ki) (X—Rm) . )

+ o) (x-R_ )+ ¢ (x-E_)

JVN R+R. w JVN' 12’+f<’j m

(VI.1.30)
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Using the form of the eigenfunction, { (SZ ; RO) itself, and of the trial functions,
k
11;_’ (X;R°), equation (VI.1.30) can be put in the form,

k+R,
1

1 /* -, = - =2 -3 -3 —
—_S_ : E :(a (k+K) a(k+K.) i(K.-K,) - 6R

J 1 1 ] m
A% j \

1(Ki—Kj) . (x—Rm)

i(R-R)-(X-R)
x B_-Fly, (X-R v, (X-R )-=e b
k+K k+K, s
1 1
(VI1.1.31)
Similarly, equation (VI.1.20) can be put in the form,
1 /* — - - =2 ., = - ——
—Z Z(a (k+K) a(K+R) i(R.-R) - &R
j i i 7 m
* - - 1 -
X\ v, (x) ¥ (X)) ———— &' +
k+K, E+R |x-R_-%’
] m
i(K-R)-x
-1 e = ! 1 dx’/ |} +
\' |x-R_-% (continued)
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BEAN S a*(l?+Kj) aE+R)

AA_._I
]
X 5-B'II]. vX *—) —)(x,) q’—b (X,) - - - dx’ +
' kK+K, k+K |x-R_-x'|
j i m
i(K-K)-x
L e -—_'—_’1—:.—(‘1;' . (VI.1.32)
\' |x-R_-x'|
m

When the expressions (VI.1.31) and (VI.1.32) are combined and summed
over all the states within the Fermi surface,

kg

Z : (V1.1.33)

k=0
it is observed that the crystalline potential for the deformed lattice is not simply

the same potential for the perfect lattice but displaced "rigidly" by aﬁm. To
demonstrate this difference clearly, the following Fourier amplitudes of the

charge densities and of the Coulomb and exchange potentials are defined:

- * - - = * -5 -
@e(xD_, L =ma @Ry aER) v (HR) Y, _(ER),
E+RE+R A ] K+R, K+K
] . (VI.1.34)
Ge(X_Rm;R)Coulomb). a oo -
k+KJk+K.
] 1
* - = * - - -
=L (B+R) a(B+R) [V (@) ¥ (F) ————
A ! k+Kj R+ |x-%'-R_|

(continued)
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Ge( %" Rm; B )exchange>_)

k+ﬁ.;l—<’+f<’_
] 1

=(.1_ "ReR) aB+R) v (R-B )4 (R-R )1/3=
A J ! E+Kj m E+Ki m

L 1/3
= G(X_Rm;R>E+Kj,E+K) . (VI.1.36)

From these it can be seen that the expression for the electronic crystalline po-

tential is,
kg
= - 1 =,
Ve(X,R) =\ E G(x’;Rb dx’} +
__! = =2 = —D-—)'
o0 \1] k+K1,k+KJ | x-x’|
1/3
3 2 kF - /
-5 31 E E p(x;R) o a ) (VI.1.37)
+K ;k+K,
2m k=0 \i,j k Kj k K1
where the variable has been changed as,
X =X~ Rm . (VI.1.38)

There is also now defined the plane-wave charge density: that part of the charge

density attributable to the plane wave components of the eigenfunctions; or,
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(VI.1.39)

Substituting equations (VI.1.37) and (VI.1.39) into the expressions for the poten-

tial for the deformed lattice (VI.1.31) and (VI.1.32) gives, for the Coulomb term,

1 -
vV (XR+ER ) E : E : ( (%3 R°) —dx’ +
Coulomb k+K k+K |X-%|

k=0 i,j
+i(R.-KR)- &R G)(i";ms -
S A\ k+K;kK+R.
j i
o 1 =7
—p(X'R;P.-W)_._’_’ dx’ +
k+K; ;k+R/ |[x-x/|
) 1
-8R .y 0 (;{'I;RO» -
m Xf(‘e k+K,E+I_§
- p (X5RO;P W 'y,
k+K , +R
(VI.1.40)
and for the exchange term,
k
v (X;R+8R_) =3[ 3 . p (X;R°) +
e’ m’exchange 2 ZZe ’ o o e
211 =0 1] k+Kj,k+Ki

+i(k’i—f<'.)-3ﬁm Ge(;{;ROD LT
) 1E’+Kj,k+ﬁi

(continued)
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- Q) (X,RO:P.—W>_4 . +
k+ﬁ.,k+ﬁ
j i
_Sﬁ’mav (p(x;Robﬁ o -
k+K, k+K
j i
1/3
-G (x;RO:P —W.,»_) oo . (VI.1.41)
k+Kj,k+ ;

Together equations (VI.1.40) and (VI.1.41) comprise the electronic potential for

the deformed lattice:

v (X;R+6R_) =v (X;R+6R_) +v (X;R+6R . (VI.1.42)
e m e m e

Coulomb m )exchange

Having derived this potential for the ﬁm—th cell of the deformed lattice,
it is next required to examine the energy eigenvalues which it admits. It will be
shown that this deformed potential admits eigenvalues identical to those calcu-
lated in Chapter V through terms linear in GRm., In short, the deformation of
the potential only produces changes in the energy eigenvalues of order (éRm)2
and higher.

It is necessary, then, to set up the entire A.P.W. variational problem for
the deformed lattice using the new electronic potential generated by the deformed
lattice eigenfunctions. In order to establish that this new potential does not alter

the variational eigenvalues by terms less than quadratic in éRm, —1i.e., is
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self-consistent, — it must be shown only that there are no non-vanishing diagonal

matrix elements between the perfect laitice trial functions.

As stated at the beginning of this chapter it is initially assumed that the de-
formation of the crystalline potential is confined to the ﬁm-th cell. The potential
in all other cells is assumed to be identical with that of the perfect lattice. In the

ﬁm—th cell, the A.P.W. trial functions are of the form,

i(k+K) - 1(k-R )

Because the investigation is of the terms linear in change in the potential (VI.1.40),
(VI.1.41), (or VI.1.42) from that used in Chapter V, the matrix elements involv-
ing the last two sets of terms in equation (VI.1.43) will be neglected.

Recognizeably, the terms in equations (VI.1.41) and (VI.1.42) which are

kg

- > G:(L?:R"))_, L oL "R -V p(GRY) , (VI.1.44)
— |5 K+K ;k+K, K+R ;k+K
k=0 | i,j i j J 1

represent simply the rigidly translated potential; i.e., the rigid-ion model po-
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tential for the deformed lattice. These terms generate the potential used in

Chapter V. There must now be added to the diagonal elements of the A.P.W.

matrix terms involving,

B -V G(x’,BP;P-W))_’ . _’1_. dx’ +

— k+K;k+K |x-x'|

i,j i j
-~V G(:?;R ,P-—W))_. . > , (VI.1.45)
3 , k+E ;k+R

— N K+K K+R
i,j i j i j
X ! dx’ +
|23
1 - -
-= (p(x;R°)>ﬁ L. _’-G'(X;R°;P-W9_' L]+ (VI.1.46)
3 k+Kj,k+Ki k+Ki,k+Kj

In both equations (VI.1.45) and (VI.1.46) the functional change in the exchange

-

potential which is linear in 6Rm has been expressed in the expansion,

(1+e)1/3=-1+—1-e+... . (VI.1.47)

3
Now, to show that there are no non-vanishing diagonal matrix elements in-

volving either (VI.1.45) or (VI.1.46), there will be used the following properties
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of the Bloch functions which are used as the A.P.W. trial functions. Under the

operation of inversion of the spatial coordinates,

X'=-X, (VI.1.48)
the trial functions become,
-i (E+R1) X
v,  (x)= u_  (-X) . (VI.1.49)
k+K, k+K

1

Because this function transforms as the (—E) -th representation of the lattice

translation group, the phase of the periodic orbital can be chosen such that,

*

U (-X)=u (%) , (VI.1.50)
K+K E+Ki

provided that the lattice has a center of inversion. Thus, there obtains the

property,

*

0=, _(X) . (VI.1.51)
E+R, K+R

(A moment's scruting of the A.P.W. trial functions as given ll;y equation (III. 12)
ik +Ki) * X

or ( III.13 ) and comparison of them with the plane wave, e , will

suffice to show that the A.P.W. trial functions already satisfy this relationship.)

Also will be used the property that the A.P.W. variational coefficients can be

made real:

* - = -
a (k+Kj) = a(k+Kj) . (VI.1.52)
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Taking the Coulomb term in equation (VI.1.45) between the state,

(X
k’+K
. £
gives,
Z a(12+1‘<ij) a(f{+1‘€i)
ij |
- - - 2 -, * -, g
aRDfl. dxlwl—» (X)l dx\[!_’ -—>(X)¢—> —»(X) - °
k’+ k+K, k+K | x-x|
2 J i
(VI.1.53a)
Now substituting both variables of integration as
r
and
zm = -/
’ gives
Za(l?ﬂ'ij) a(E’+I'<'i)
ij |
- * - 1
SR - dxl/”, XII)I » dX'” q, (an) q,ﬁ (XIII) _) .
m ,+ +I—{’ k+K’i IXII_X”Il
(VI.1.53Db)

Interchanging the dummy indices, i and j, in (VI.1.53b) renders an expression

identical to (VI.1.53a) but of opposite sign because of the minus sign which en-

tered on account of the odd parity of the gradient operator:

-
v

—_

-X

=-v . (VI.1.54)
X
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A similar analysis can be made of the exchange terms in equation (VI.1.45).
Therefore, there are no non-vanishing diagonal matrix elements involving the
linear changes in the electronic potential which are associated with a gradient of

the electron density:

- - — - * - - -
g, @ FE T, @, (@) i
K +] i E+K.  k+R  [X-¥|
) j i
1*x o -
=y, (D, (D=0, (VI.1.55)
P 3 k+Kj K+K,

The functional changes in the potential represented by expression (VI.1.46) ad-
mit similar treatment. Considering the diagonal element between the state,

¥ (E) again, there are terms of the form,

-l,+
i Kz

Z(a(l—c'+ﬁj) a(B+K) i(f{'i—k’j) . Bﬁm>

i,j
d - 12 - * - - 1
dx ,‘lf (X)l dx’ ‘l’_. (x) ‘l’_’ N (X')-—::— . (VI.1.56a)
E’+KL k+I_{'j k+K, |x-x’|

By changing both the variables of integration as was done in expression (VI.1.53a),
and using the property of the Bloch functions expressed in equation (VI.1.51) there
obtains,

Z(a(faﬁj) a(1?+Ki) i(Ki-T{j) . ﬁim>

i,] (continued)
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*

() —1
+K I:?”-x’”]
1

(VI.1.56b)

1

x [dx"| ¥ (:‘:’”)lzf"'” Vo (EmM
k’+ﬁ£ k+K,

W‘

If the indices, i and j are interchanged in (VI.1.56b), there obtains the negative
of (VI.1.56a), and therefore, the sum of half of both vanishes. Again, a similar
treatment of the exchange terms in equation (VI.1.46) demonstrates that the
diagonal matrix elements of those terms also vanish.

Thus -it has been shown that the functional changes in the electronic poten-
tial in the ﬁm-th cell which developes from the eigenfunctions for the deformed
lattice have no non-vanishing diagonal matrix elements linear in 6Rm. There-
fore, this deformed lattice potential which can be quite different from the per-

fect-lattice electronic potential, admits the same eigenvalues as did the potential

used in the previous iteration up to terms quadratic in BRm:

- - 2

. (o]

(Ve(x,R+6R » - ‘ — (k) + O(SR )1
1" -iteration

and

- - 2 2
(ve(x,R+ BRm) nd . —>» &°(k) + O(GRm)l +0(6Rm)2 « (VI.1.57)
2 -iteration

Therefore, within the criterion for self-consistency that there be no change
in the eigenvalues linear in 6Rm between the i-th and the (i +1)-th iterations, the

eigenfunctions for the deformed lattice determined in Chapter V,
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we(E)("';RwR ) = 1 (aeo(lz)(ﬁﬂ"{ﬂb
RRT R, /A(k)iZ 1

ok - -

e e A ST e T PR )

vV N R 7R k+K,

P m

- i(K+K)-R o
L L mé(@r{i)-'aﬁ -Temcvgcp*’ B8 )\,

N m k+Ki

(VI.1.58)

are self-consistent, and therefore, the proper ones to use to determine the de-

rivative terms,

d -
—\{¥ (x;R)] ,
dr (Exk )

m

for the electron-phonon interaction matrix elements.
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V1.2 Further Remarks Upon Self-Consistency. The Phenomenon of

Shielding.

In the previous section, it was demonstrated that the eigenvalues for the
band energies in the deformed lattice, which were calculated in Chapter V, Sec-

tion 3,
2. - O 2
e(k;R+ 6Rm) =¢ (k) + ()(GRm) , (VIi.2.1)

are self-consistent through orders linear in BRm. The eigenfunctions for the de-

formed muffin-tin lattice which belong to these eigenvalues are

1 il?'ﬁ -
X A — 1 Z e pcpi(li)(;f-ﬁp)+
VA'AR N R #ZR k+Ki
P m
ik R
e m - - — — - e(iz) - -
+ -—————G(k+Ki) . GRm— GRm- V)cp_’ . (x—Rm) . (VI.2.2)
N k+K,

1

The crystalline potential which is generated by the eigenfunctions in equation

(VI.2.2) is

-

z. — 2ROy — RO - B
ve(X,R+6Rm)-ve(x,R) Gve(x,R) 6Rm

- Vv (X;RO;P.-W.) ' 6R > . (VI.2.3)
e m
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In equation (VI.2.3) the symbol, ve(;f ;R%;P.-W.), represents the plane-wave

potential given by

B Kp a(1’<’+f<'i) a(k+RK.) i(f{i—fi,)-i" .
Ve(x;RO;P.-W.) = E : E 1 x e ) — &’
= |5 AR V | X-X|
- -— Fad o d -—) — 113
kp a(R+R) a(B+R) i(R.-R) -3
3 2 1 ] 1] )
- =03 e
2
: K
2 k=0 \d,j Alk) V

k 1/a

(VI.2.4)
This phenomenon of the deformed lattice that the plane-wave component of the
charge density is impervious to the motion of the nucleus while the tight-binding
components is translated rigidly with it, is represented schematically in Figure
5.
The eigenfunctions represented by equation (VI.2.2) obtained for the muffin-
tin lattice when it was assumed that the electronic potential fof the deformed lat-

tice was

Z- . Z:ROY - © % -ROY -
Ve(x,R+aRm)_ve(x,R) Vve(X,R) 6Rm R (VI.2.5)



e e e = min s

137

i.e. neglecting the imperviousness of the plane-wave component of the charge
density, and when it was assumed that the deformation of the crystalline poten-
tiail was restricted to the fim—th cell. So long as the variation of the crystal-
line potential is agssumed to be restricted to the ﬁm—th cell, and the variations

in other cells is neglected such that
X;R+8R_)=v (X3RO , .2.
ve(x ) m) ve(x ) (VI.2.6)

if X lies in any but the ﬁm—th cell, then the corrections to the eigenfunctions,
(VI.2.2) attributable to the differences between the potentials (VI.2.4) and (VI.2.5)
will be of order (1/N), as determined in a manner identical with the analysis of
Section V.4. Therefore, the eigenfunctions in equation (VI.2.2) are the correct
ones for the deformed muffin-tin lattice provided that the criterion for self-con-

sistency is not less than (1/N):

|<H%{;R+6Rm> nd - @(:?k;RMRmD st <8, (VI.2.7)
2 “-iteration 1" -iteration

and

8>~ (VI.2.8)
N

for all values of )—fk
The reason for this relative smallness of the corrections to the eigenfunc-

tions can be understood quite simply.

The crystalline eigenfunctions are of unit modulus when integrated over a
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single Wigner-Seitz cell:

. fl¢k(§;R)|2d§=l : (VI.2.9)
Q

In order to adjust the modulus of the eigenfunction to maintain normalization through-

out a lattice of N unit cells, the orbital is divided by J—b? . It is for this reasonthat

the plane-wave components are multiplied by

/?= /X, (VI.2.10)
v NQ

and the Bloch sum of non-overlapping tight-binding components by N~%/2,

T ik-R
/:Ze Po_ _)()?—Rp) . (V1.2.11)
N £ K+R,
D

The eigenfunctions for the perfect lattice are eigenstates of the perfect-lattice
Hamiltonian, he(}_(' ;R%), and are orthogonal over the volume of the perfect lattice.
So long as the variations of the potential are restricted to a single cell, the non-

vanishing matrix elements of the Hamiltonian between such states will be of order

N71:

*Rh(F N * - > o -

¢E,,(X) o(XsR+ER ) wE(x) dx = ¢ &/ 1/ ¢El(x)he(x,R ) q:E(x) dx +
A\ QR

m
+ b (Db (R + ) ¢ (=0 0(1 5R> (V1.2.12)
X X3 + X = + — . 2.
kl e m m k N ek m

QR
m
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¢

In the derivation of the eigenvalues of the band energies for the deformed
lattice in Chapter V, the muffin-tin model of the lattice was used because it was
necessary to analyse explicitly the matrix elements,

bh-¢€_, (VI.2.13)
kK +K. k+K,
j i
in the deformed lattice. Also, in the discussion of the previous section the muffin-
tin lattice was used and the deformation was restricted to a single unit cell.

However, the analysis of both sections of this chapter has been almost com-
pletely general. Nowhere was necessary to the discussion of the self-consistency
of either the eigenvalues or the eigenétates the fact that the assumed eigenfunc-
tions for the deformed lattice, equation (VI.2.2), had obtained from a muffin~tin
model, or the fact that the deformation had been restricted to a single unit cell.
For the argument for the self-consistency of both the band energies and the eigen-
functions was necessary only the vanishing of the diagonal matrix elements of the
functional variations of the electronic potential. To demonstrate that such matrix
elements vanish it was required to use the property of the charge density of the
perfect lattice that

— - = - - * - -
@e(xb_. L =La(k+Ki) a(k+K,) ¥, _ (x) ¥, (x) =
R+R K+K. A " K+R k+K;

-\ *
=Ge(-X>" L (VI.2.14)
k+K_ k+K,
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which property depends not at all upon the restrictions of the muffin-tin model.

The potential due to the electrons in the lattice is given generally by equation

(VI.1.3)

l&‘ =,
ACSIENN JIW(X'R)IQ — &
k=0 |-

3

Sy @l
31 ¥ (xX;R) =
2.1

Z Z (v (r; R)) l '(cos e)e me . (VI.2.15)

£=0 m=-4

The criteriae of self-consistency require that, in the fully general analysis, each
term in the series in equation (VI.2.14) develope from the eigenfunctions of the

nuclear configuration under consideration:

- (ve(r;R9 m
i-th (i+1)-th

iteration iteration

< 8(s.c.) , (VI.2.16)

for all r, and for all 4,m, where §(s.c.) is some small number taken as the
criterion of self-consistency for the potential. Plainly the problem of the self-
consistency of the muffin-tin potential is included in the general problem the self-

consistent field. For the muffin-tin model, the potential is required to satisfy
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the inequality

V(I‘;R))e=0 o - V(r;R)£=0 (141) -t < 8(s.c.) , (VI.2.17)
iteration iteration
for all r inside the A.P.W. sphere, the potential being arbitrarily taken as con-
stant in the rest of the cell.
A procedure for solving the problem for the complete potential in a de-
formed lattice is as follows:

Taking the general solutions for the perfect lattice which obtain from the

complete potential of the perfect lattice,

- 1 c(k), -
¥ (xR = /——\ "a®(K+K,) x
Exk AK) Z !
i(K+K.)-%

i N ik-R
X 9——————+/j2 :e P o (x-8)),
JV N T K+R,

(VI.2.18)

=

a potential for the deformed lattice which would be used for the first iteration
would be taken as identical as for the perfect lattice in all but the ﬁm—th cell and
in the ﬁm-th cell would be constructed using equation (VI.2.3). As argued in the
previous chapter and section, the solutions for this deformed lattice would differ

from equation (VI.2.17) only in the Rm—th cell when they would be
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} i} —__a%(B+R) iE-R
Y(Z;R+8R_)=¢ (X;RO) + / o y
- Tk m Exk A(K) Z VN

X G(E+Ri) - &R

o, (R-R )-8 Ty (i-H >+
TRAROT " RR m
1 1
1
+ terms o(—) (VI.2.19)
N

through terms linear in 6Rm. Now on the next iteration, the potential which is
regenerated by the solutions (VI.2.19) will manifest certain multipole moments
which will alter the potential in cells other than the ﬁm-th. The solutions to the
variational problem for the eigenfunctions in these other cells will differ fromthe
functions in equation (VI.2.18) by terms of the order

1 1
~ of—] . VI.2.20

|§ -8 _|P>? (N> ( !
e m

The correction terms in (VI.2.20) will be included in the next and each subsequent
iteration until the criterion of self-consistency is satisfied. Obviously the magni-
tude of these correction terms will be largest in the cells adjacent or near to the
ﬁm—th cell. The correction to the total charge density which arises from these
terms will produce additional multipole moments which will diminish the magni-
tude of such moments due to the changed charge density in the ﬁm—th cell in cells
distant from both. This is simply the phenomenon of shielding and obtains naturally

and directly from the property of self-consistency.
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VI.3 The Virtues of the A.P.W. Method and the Vices of the Rigid-Ion

Model.

The conclusions of the last two sections hold much significance for evalua-
ting a common approximation for the electron-phonon interactions. As was dis-
cussed at some length in Chapter IV, the direct evaluation of the matrix elements
for the electron-phonon interactions from the "double-derivative" terms in the
Adiabatic Model has been heretofore inaccessible because of the difficulties in
calculating accurately the derivatives of the electronic eigenfunctions,

d -
—(wﬁ(xk;R9 - (VI.3.1)

dR_ .
m,i

An alternate development of the theory which has been widely used [ 36 ] is as

follows.

The crystalline potential which enters the electronic Hamiltonian

- 2Z -
. = - 3_2 :——+v :
he(x,R) v e(x,R)

x-R
R
o p
=-v2+u(X;R) , (VI.3.2)

is recognizably a function of the nuclear coordinates, R={R,,R,, ... ,RN} . Itis

assumed that this potential can be expanded in a Taylor series about its equilibrium-

position value, such that
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- - du(X;
u(x;R)=u(x;R°)+Z EM R .+..., (VI.3.3)
) " : dR
m

m,i
m,i “R°

and that the terms linear in 6Rm . do not vanish. The electron~phonon interac-

tions are then assumed to obtain from the linear terms in (VI.3.3) considered as

perturbations:

u(x’;R) ¢ (X;R) &X' | (VI.3.4)

dR k

— * -—

7 — I
D(k’,k) = 8R. ’Jq:E(x ;R)
m,i RO

The expansion in terms of nuclear coordinates in equation (VI.3.3) and equation
(3.4) is usually transformed into one in terms of normal mode coordinates, Qq,
as in Chapter IV.

Although the original work in which the matrix elements of equation (VI.3.4)
were derived involved lengthy arguments to justify their equivalence with the
"double-derivative" terms, the validity of equation (VI.3.4) is easily established
for the case where the function q;_’()? ;R) is an eigenfunction of the one-electron

k
Hamiltonian (by no means a traditionally common circumstance):

he(:?;R) v (X;R)=¢ (R) ¥ (X;R) . (VI.3.5)
k k k
Now equation (VI.3.5) is not only an eigenvalue equation for the Hamiltonian
operator of the electronic coordinates acting upon the electronic eigenstate

¥ (§;R), it is also a parametric equation in the 3N parametric functions Rm i
k b
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As such it may be differentiated with respect to any one of these parametric vari-

ables to give

dhe(i';R)
————)w (X;R) +h (X;R) ¢ (£3R))=
drR_ . / K ¢ dR_ . K
m,1 m,1
de_’(R)
= ¥ (XiR) + ¢ (R) ¥ (X3R)) .(VI.3.6)
dR_ ./ K dR_ . k
m,1 m,l1

Multiplying equation (VI.3.6) from the left by q; (§ ;R) and integrating out the
SR
electronic coordinates gives

/

f\l‘_,(:?;R) d he(:'{;R) 1,_.(5;’;3)(1;{:
k dR k

m,i

| - d - -
= (e (R) - ,(R)fw (X;R) ¥ (X3R)} d% . (VI.3.7)
Gk & K dR K

.k
m,i

The integral on the left band side of equation (VI.3.7) is recognized as the term

multiplying 6Rm i in the matrix element (VI.3.4). The terms on the right hand

side of (VI.3.7) are simply the "double-derivative" terms multiplied by (¢ - ¢ ).
Kk

The conservation of energy requires that this energy difference be equal to that

of the phonon absorbed or emitted,

= hw . (V1.3.8)

e - ¢ .
E k q
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Multiplying both sides of equation (VI.3.7) by the normal mode coordinate Qq

and substituting ecuation (VI.3.8) for the energy difference gives

* -3 - -3 -
Q| ¥ (X:R) h (X;R)) ¥ (X5R) dx =

k’ drR_ . k
m,l1
* - - -
Y - ¥ (X;R) d h (X3R)) ¥ (x:R) dx =
2NMaw(q) ¥ K’ dR__ K
m,i
x - -
AAIC) §_(X:R) d y (X:R)) &% . (VI.3.9)
oNM v K/ dr_ . K

This is exactly the identity between the two forms of the electron-phonon matrix
elements which was to be demonstrated.
In order to use the matrix elements of equation (VI.3.4) for the electron-

phonon interactions, it is necessary to evaluate the derivatives

d (he(;'{;R)>= d (u(;?;R)>. (VI.3.10)

dR . dR .
m,i m,i

It is often assumed that the crystalline potential is simply a superposition of free-

atom or free-ion potentials

u(X;R) =Zvat0m(§£-fip) , (VI.3.11)
R
p
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and furthermore, it is often assumed as well that the derivatives of the crystal-

line potential with respect to the nuclear coordinates is given by

d - - b =
(u(x;R)) =-V. V (x-R_) . (VI.3.12)
i atom m
dR_ .
m,i
This is the Rigid-Ion Model [ 37, 38 ]. This model has been widely used

albeit with no justification beyond the ad hoc assumption given by equation
(VI.3.12).

The discussion of this Chapter has established that the Rigid-Ion assump-
tion, (VI.3.12), is incorrect, and that even if the crystalline potential were ac-
curately represented by (VI.3.11), the derivative with respect to the nuclear co-

ordinate Rm . would be

d

“l

= (u(?;R)) # - ﬁiu( —ﬁm)
m,i

— - -3

=-v u(x—Rm)+Vive(x—Rm;P.—W.) , (VI.3.13)

as derived in Section VI.1.
There are additional advantages to using the "double-derivative" terms as
developed from the A.P.W. eigenfunctions. In Chapters IV and V it was shown

that the derivative of the electronic eigenfunctions were given by
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- 1 e(k) - =
v (x ;R> = [— a  (k+K)) x
l(k k J Ak JZI' !

ik -

e m - = -, = - - -
x———————-—((k+K,), 9, (x-R_) -V, ) (x-R 9 ,
N U k+ﬁj m ! E+Kj m

(VI.3.14)

neglecting additional corrections which are of the order of (1/N)-times smaller

than these above. However, if the matrix elements using the correct derivative

of the crystalline potential is calculated,

d (u(;f;R)) = lim (u(;?;R0+ aRm’i) —u(§;R°)) /aRm,i s (VI1.3.15)

dRm,i aRm,i_' 0

when developing the correct potential for the deformed lattice,

u(;R4ER ) (VI.3.16)

all of these small corrections must be included. This is because the potential in-
volves the sum over all N electronic eigenstates of terms representing the po-

tential due to to each an electron in a deformed-lattice eigenstate,

k

F
-—D. = 2 -
i Ve(x,R+6Rm’i) E j“, (X";R+ 6R ,i)| —X' Ly

k=0

—1 &
| Zw(xmm . } (VI.3.17)

k=0
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In short, the matrix elements which obtain directly from the "double-derivative"
terms involve single terms while those which obtain from the variations of the
crystalline; potential involves series of N such terms for which the cumulative
effects of small corrections are not necessarily negligeable. Therefore to cal-
culate the electron-phonon interaction matrix elements using equation (VI.3.1)

is formidable more difficult than to use the derivatives of the one-electron eigen-

states directly.
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APPENDIX

EXPERIMENTAL OBSERVATION OF THE

ELECTRON-PHONON INTERACTIONS

Although the electron-phonon interaction dominate all of the transport theory
of metals, and are of crucial importance for many other phenomena, there exists
no direct way to observe or to measure experimentally the electron-phonon inter-
action matrix elements,

D(K,q,e) ,
the derivation of which has been the entirety of this analysis. Every experimental
observation of phenomena related to the electron-phonon interactions involves a
complicated average of these transition matrix elements over either part of or the
whole of the Fermi surface.

One property of metals which is related directly to the electron-phonon in-
teractions is the electrical resistivity. The temperature~dependent part of the
electrical resistivity of pure metals is caused by the scattering of electrons by
thermally excited phonons. The derivation of the formulae for the electrical re-
sistivity for the various ranges of temperatures is extremely complicated. It in-
volves assumptions concerning the validity of a Boltzmann type distribution func-
tion, and some (usually clumsy) approximate solution to a Boltzmann transport

equation.
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The derivation of the formula for the high-temperature resistivity of pure
metals will not be repeated here because such is not the subject of this analysis.
The derivation performed by H. Jones in Volume XIX of the Encyclopedia of

Physics gives [ 11 ].

|

2
p,=—=4.T76 X 10-2 ——T———-—)(i) (A.1)

2 A~1/8
o MA @DQ

for the high-temperature resistivity, where M, is the atomic weight, ®D the

A
Debye temperature and (Q the atomic volume in cubic Angstroms. The resistivity

is then given in practical units, ohms-cm. The constant C is the average of

A

- x - —»;
S(ei) - |y, (%) SHIE)
kl

§ (%) o (A.2)
dR
taken over the entirety of the Fermi surface.

For Lithium, the conductivity at 300°K is ¢ =4.44 X 10™® ohm-cm.,

[ 39 ] , M

= 13 2 - )
A 6.94, Q 2.7754, @D 430°K [ 40 ] -

Substituted into equation (A.1), these require that the ratio C/ p be

L _o0.105 . (A.3)

F

To perform the integral in (A.2) a number of additional approximations to
the potential and the wave functions of Lithium have been admitted. First, the
eigenfunctions for the states on the Fermi surface are approximated by the tight-

binding component plus the single plane-wave in the first Brillouin Zone which
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designates that state. This approximation was motivated by an examination of
the variational coefficients for the eigenfunctions in three special directions near
the Fermi surface: A(0,5/4,0), £(3/4,3/4,0), A(3/4,3/4,3/4). At each of these
points, an inversion of the A.P.W. secular determinant at the value of the energy
for which the determinant vanished demonstrated that the variational coefficient

which multiplied the component

F -
(%),
k
was of the magnitude 0.95 to 0.99:
e
a (kF)20.95—0.99 ; (A.4)

while the next and other variational coefficients, were no larger than a few per-
cent and diminished rapidly with the magnitude of R,
aeF("’kF+I_{’.) < 0.05 . (A..5)
i

Secdnd, the Fermi surface was assumed to be spherical. In fact the Fermi
surface for Lithium is slightly aspherical; however, the greatest difference which
is between the lengths of the wave vectors or the Fermi surface in the 4, (0,1,0)
and %,(1,1,0) directions is only on the order of 4%. The magnitude of the k-vec-
tor for the Fermi surface was taken to be the weighted average of the magnitudes

of kF in the three special directions, A, T, and A.
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Third, the number of 4-wave components to the eigenfunctions were re-
stricted to two: £=0; £=1. When performing the A.P.W. variational calcula-
tion for the band energies, thirteen values of £ were used: £=0to £=12. How-
ever, when the A.P.W. eigenfunctions belonging to the Fermi energy were in-
tegrated out and normalized, the relative magnitudes of the £ -th components
for the eigenfunctions approximated by the tight-binding component plus a single

plane-wave were given by the following coefficients.

£=0 0.65537
£=1 0.31018
4=2 0.03234 (A.6)
£=3
to ) < 0.001
£=12

The relative size of these components is shown graphically in Figure (073
Fourth, the approximation of the eigenfunction by a function involving a

single plane-wave in the regions between the A.P.W. spheres and the cell

boundaries greatly simplifies the calculation of the variation of the crystalline

potential,

‘_i-‘i(;{;R) . (A.7)

drR

In Chapter VI it was shown that the differences between this derivative and the
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simple gradient of the potential,
-6’Xu(§£;R) , (A.8)
arose from the rigidity of the plane-wave charge density,
pe(z?;R;P.—w.) . (A.9)

It was shown that the potential for the deformed lattice is generated by an altered
charge density where the variation of the charge density are given by
d -3 —_ - — -
—1p (X;R) =—V.(p (x;R)] +V. (p (xX;:R;P.-W.)}| . (A.10)
e i\e i\e
dR, '
i

However, from the definition of the plane-wave charge density (VI. 2.14) it is
clear that the plane-wave charge density for a crystal whose eigenfunctions re-
quire only a single plane-wave is a constant, and in such case the second cor-

recting term on the right hand side of equation (A.10) vanishes. Therefore, in

this case we are justified in approximating

gi—( ()?;R))a-?i(u(}?;R)) . (A.11)

i
The calculations for the transition matrix elements of Lithium used the re-
sults of the energy band and Fermi surface calculations on Lithium which have

been reported previously the Quarterly Progress Report No. 53 of The Solid

State and Molecular Theory Group [ 41 ] . The potential used to calculate the
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gradient which enters the transition matrix elements is tabulated in that article.
For the calculation of the eigenfunctions on the Fermi surface, a modification of
the program developed by the Rudge and reported in No. 59 the Quarterly Progress
Reports [ 42] was used. A further program was written which integrated out and
normalized the A.P.W. eigenfunctions, which calculated and stored the gradient
of the muffin-tin potential, and which numerically integrated out the matrix ele-
ments (A.2).

The calculated value of the constant C is

C =0.03669 ryd. (A.12)

in A.P.W. units, Rydbergs. The value of the Fermi energy was calculated

previously as

ep = 0.2989 ryd. (A.13)

Together these give a ratio of

L _o0.1223 . (A.14)
F

Comparing these results, (A.3) and (A.14) renders

measured calculated

0.105 0.122 (A.15)

<
°F
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The calculated value of the ratio is obserrved to be on the order of 18%.
This error is considerably greater than that introduced by any (or all) of the
various approximations:

i.) the single-plane wave eigenfunction;

ii.) the restriction of the eigenfunction to the £=0 and £=1 components;

iii.) the use of the simple gradient for the variation of the potential.
The probable source of the largest portion of this error is the inaccuracies in
the potential used. As was emphasized in earlier chapters, the proper potential
which must be used is that one generated by its own eigenfunctions (together with
the nuclear potential), i.e., the self-consistent potential. For the calculations
on Lithium the potential used was simply the spherical portion of the superposed
atomic potentials

u(X;R) =Zvatomic(§—ﬁp) . (A.16)

=

R
p

This potential probably manifests a larger gradient over much of the cell than
would the correct self-consistent potential, and such may well be the major

source of error in (A.15).
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Figure | The Fundamental Processes lnvo'lving Electrons
& Phonons : Emission (a) & Absorption (b)
Determined by the Vertex Function D(k,a)
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Schematic Representation of the Deformed
Miuffin-tin Laitice Where the Rp—th Nucleus
is Translated to RL+3R .
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Charge Density: p(r)
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®ire:

The Four Largest

{-th Components of the
A.P.W. Eigenfunction for Li.

w;f (X)=Za(2) uy ()Y, (8,8):

uo {r)su, (r)suy (r)ug(r)

(The abscissa is in atomic
units, the ordinate is arbitrary)



