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Abstract

This thesis describes the first realization of one-atom laser, a laser oscillator with only
one atom in an optical resonator. In our experiment a beam of 1*®Ba atoms traverses
a high-Q optical cavity with a finesse of 8 x 10°. The atoms are excited from the 'S,
ground state to the *P; (m=0) excited state by a 7-pulse before they enter the cavity.
Laser oscillation at 791 nm (®P; —!Sy) has been observed with the mean number
of atoms inside the cavity mode varied between 0.1 and 1.0, resulting in the mean
number of photons inside the cavity changing from 0.14 to 11. To understand the
data quantitatively, two different theoretical approaches were taken. First a pendulum
equation based on the Maxwell-Schrodinger equation provides physical insights on the
evolution of the one-atom laser with limited success in predicting correct signal size.
Second approach is based on a fully-quantized one-atom theory. In this approach,
a new photon recursion relation for the field density matrix was derived. Combined
with a simple modification needed for the standing wave nature of the cavity mode,
the quantum theory is in good agreement with the experiment.
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Chapter 1

Introduction

One of the simplest but most interesting problems in quantum optics is the interaction
of a single atom with a single quantized mode of the electromagnetic field. This
problem, treated by Jaynes and Cummings many years ago [2], has an exact solution if
irreversible processes which give rise to damping, such as atomic spontaneous emission
and decay of the field mode, are negligible. The atom and the field then exchange an
energy quantum in a manner characteristic of coupled oscillators. The rate of energy
exchange, determined by the atom-field coupling strength, can be appreciable even
for a vacuum field. This coupling has been observed in the lineshape splitting for a
weakly excited absorbing atom [3].

The atom-cavity interaction process, often referred to as cavity quantum electro-
dynamics, has been studied extensively in both theory and experiment. One of the
best systems to study cavity QED has been the micromaser, one-atom maser [4].
Naturally, there has been great anticipation to realize a microlaser, one-atom laser.
This new experimental tool would greatly broaden the scope of the study of cavity
QED. One-atom laser would allow detection of photons, as well as atoms, whereas
only atoms can be probed in the microwave regime. Photon counting detectors with
efficiencies of up to 80 % [5] are now available, making study of the photon statis-
tics in the one-atom laser quite promising. Furthermore, a linewidth measurement
would be straightforward, while it is yet to be done in the one-atom maser, where a

complicated Ramsy-fringe type configuration is required[6].

15



One major obstacle in the development of an one-atom laser has been the technical
difficulty in fabricating a very high-Q cavity in the optical regime. Recently, super-
cavity technology has reached the point where a cavity with finesse of 106 or even
higher [7] can be assembled. The present work builds upon this recent breakthrough.

This thesis describes the first realization of a working one-atom laser. This system
undergoes laser oscillation with an average of less than one atom, yielding an average

photon number in the cavity much greater than unity.

1.1 Background

Lasers work on the principle of spontaneous as well as stimulated emission. A laser
in its simplest form is composed of a resonator and a gain medium. Excited atoms
or molecules constituting the gain medium tend to emit photons in the same mode
as the photons already in the resonator. This process is called stimulated emission.
The rate of the stimulated emission process is roughly proportional to the number of
photons already existing in the cavity so that under certain condition, often referred to
above-threshold condition, successive photon emission processes are accelerated as the
number of photons in the mode increases. Due to the stimulated emission process, the
output of a laser is monochromatic and coherent. However such stimulated emission
process will not be initiated without spontaneous emission. It is the spontaneous
emission process that creates a small number of intracavity photons, which in turn
trigger the stimulated emission. The spontaneous emission process also determines
an ultimate or intrinsic emission linewidth of a laser [8, 9, 10].

This conventional notion is about to change. Though too simplified, there are basi-
cally two kinds of lasers: conventional lasers and the one-atom laser. All conventional
lasers work on the principle of the spontaneous and stimulated emission as explained
before whereas the one-atom laser, which is the subject of this thesis, works on a
quite different principle, so called Rabi oscillation in cavity quantum electrodynamics

(QED) [11].
What is the cavity QED? The cavity QED can be defined as the study of an atom

16



or atoms in a vacuum modified by the presence of a cavity. When an excited atom is
in free space, the vacuum fluctuations induces the atom to couple to the continuum
of free space modes. As a result, the atom undergoes spontaneous emission. The
coupling constant between the atom and one of the free-space modes is given by the

following formula [25].

_pE'UaC
g="— - (1.1)

where F,q. is the rms size of an electric field associated with the vacuum fluctuations,

and it is given by
2rhw
Evac = . 1.2
e (12)

Since F,q. is inversely proportional to the square root of the mode volume V,,, which
is infinite for free space, the coupling constant to one of the free space mode is
practically zero.

Now suppose we place the atom in a cavity. Then the vacuum fluctuations asso-
ciated with the cavity mode is greatly enhanced because the volume determining the
size of E,,. is nothing but the cavity mode volume, which can be made very small.
Since the emission rate into the cavity mode is proportional to the square of the cou-
pling constant, we can make the emission rate even much larger than the unmodified
free-space spontaneous decay rate. This has been the basic idea behind many cavity
QED experiments, including the suppression/enhancement of spontaneous emission
(12, 13, 14, 15, 16, 17], radiative level shift [18, 19, 20], and some experiments directly
related to the coupling constant g such as collective atom-cavity oscillation [21}, nor-
mal mode splitting in the transmission/absorption spectra of atom-cavity combined
systems [22, 23, 24]. For a complete list of cavity-QED experiments, readers are
referred to the excellent articles in Refs. [25, 26] and references therein.

So far the study of the cavity QED has been mostly devoted to the spontaneous
emission process. Now it seems quite logical to ask about stimulated emission in the
cavity QED. An obvious choice for the study of stimulated emission is a laser in the
cavity QED setting, one-atom laser.

The ideas of one-atom lasers, have been discussed in the literature for some time

17



[27, 28, 29, 30, 31, 32]. At the same time, many experimental schemes of one-atom
lasers have been proposed including a single atom trapped in a cavity [27, 32], single-
atom dressed-state gain [33], a new breed of cavity utilizing whispering gallery modes
of a sphere [32], and a microlaser, an optical analogy of the micromaser [4]. The
present work is based on the microlaser idea.

So why do we bother to construct a laser with only one atom? There are many
reasons but the most important one is that a single atom laser is a fundamental
quantum oscillator, consisting of a single atom and a single radiation mode. Because
of the quantum mechanical nature of the coherent interaction between a single atom
and a single radiation mode, it can in principle generate nonclassical radiation at
visible wavelengths. Because it is still a laser, such radiation can be quite intense. For
example, the one-atom laser of the present work, can generate up to 107 photons per
second. Another reason is that a single atom laser can also serve as a testing ground
of various quantum mechanical theories. For example, we can test many quantum
mechanical theories predicting the linewidth of the micromaser [34, 35, 36, 37, 38] by

actually measuring the linewidth of the one-atom laser.

1.2 Basic concept

Let’s examine the basic concept of the one-atom laser. The components of our ex-
periment are two-level atoms, a high-Q single-mode cavity resonant with the atom,
a light source to excite the atom into the upper energy level, and photon-counting
detectors (Figure 1-1). The two-level atoms from an atomic beam are excited to the
upper energy level by a pump laser just before they enter the cavity. The intensity
and waist of the pump laser are adjusted in such a way that the atoms are completely
excited to the excited state when they leave the pump region. In a pendulum anal-
ogy, the atoms are said to be inverted by the pump. The spontaneous emission has
to be very small so that it can be neglected while the atoms are traveling from the
pump region to the cavity as well as they are in the cavity. Since both the atomic

damping and cavity damping are very small, laser dynamics is determined solely by
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Figure 1-1: Schematic of the one-atom laser experiment.

the Rabi oscillation between the atom and the cavity field. This Rabi oscillation is
fully characterized by the atom-cavity coupling constant g and the transit time or
interaction time Tiransic.

In Figure 1-2, the excited-state probability of the atom, which is just the absolute
square of the excited state wave function, is plotted as a function of time. As we
will see later, the one-atom laser behaves like a pendulum. Initially the pendulum is
inverted and it rotates as the system evolves. Suppose an excited atom is injected
with no photon in the cavity. The atom enters the cavity at ¢ = 0 and exits at ¢t =
Tiransic- Once inside the cavity, the atom has a probability of undergoing a downward
transition due to vacuum Rabi oscillation at frequency ¢,, emitting a photon into the
cavity mode. For the value of 2¢Tiansit of unity, which is roughly the value in our
one-atom laser, the first atom has about 30 % chance of emitting a photon. In other
words, after three atoms, one photon will be emitted.

Once a photon is emitted, it will stay in the cavity for a long time, so the next
atom will see a photon already in the cavity, and therefore the Rabi frequency for
the atom is enhanced by v/n + 1 with n the number of photons already in the cavity.
So the atom has more chance of emitting a photon. Therefore, after many passages,

a situation can occur in which the atom leaves the cavity completely in the ground
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Figure 1-2: Rabi oscillation as an analogy to a rotating pendulum.
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state, thereby having 100 % probability of emitting a photon. In pendulum analogy,
it corresponds to a half rotation of the pendulum from top to bottom position.

Photon buildup does not stop there, so after a while the atom can undergo a
complete rotation, leaving the cavity in the same state as its initial state, which is
often called a trap state [39, 40], or it may undergo a half more turn, leaving the cavity
again in the ground state. This process continues until an equilibrium situation is
reached. In the equilibrium, the small energy loss due to cavity decay and atomic
spontaneous decay is exactly balanced by the mean energy transfer from the excited
atom to the field mode. This is the basic idea how the one-atom laser works.

A similar idea was introduced in the micromaser 9 years ago [4]. The micromaser
itself has been a very interesting microwave device. This system has made possible the
study of quantum collapse and revival [41] and non-classical atom statistics [42]. It
has also invoked many theoretical studies on linewidth [34], number state generation
[43], quantum non-demolition measurements [19, 20]; squeezing [44], and trap states

[39], but most of these have yet to be realized experimentally.

1.3 Effects of strong coupling on the one-atom
laser

In the cavity QED, there exists an interesting regime in which g is made much larger
than the free-space total spontaneous decay rate, I';. For the one-atom laser, for
example, the spontaneous emission process during the interaction time is negligibly
small whereas the coupling constant g is appreciably large. Interestingly, both ¢ and
', are proportional to the dipole moment, either linearly(g) or quadratically(T,).

In laser physics, 3 parameter is often used to characterize the efficiency of the
emission process into a laser cavity mode. The parameter is defined as the ratio of the
emission rate into the cavity mode, defined as Aen, below, to the total emission rate

including the free-space spontaneous emission rate. In a steady state, the emission
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rate into the cavity mode Aenn is given by [24],
Aenh =4g2/1‘c ) (13)

where TI'. is the cavity decay rate. In our case Aenn/I's & 52 so that

Aenh 52

ﬂzAthrra T 541

=0.98. (1.4)

This B or Aenn/T, is, in fact, a physically meaningful parameter only for continuous
wave (CW) lasers. In our case, where atoms are inverted temporarily, rather g and
Ttransit are truly meaningful parameters. However under certain conditions, e.g., many
atom operation and rate equation regime as discussed in Chap.2, the microlaser can
well be characterized by Aenn/T. factor. Under such conditions, the factor is nothing
but an unsaturated multi-pass gain, the ratio of an unsaturated single-pass gain to a
single-pass loss.

It is interesting to note that the resonator used in the one-atom laser is just like an
ordinary laser cavity in characteristics, except that the length of the cavity is relatively
small (~ 1mm) and the finesse is very high. However, the volume of the TEMgq mode
of the cavity is small enough that the coupling constant between the atom and the
cavity field is much larger than irreversible damping rates, I'; and I'.. Note that
the absolute magnitude of ¢ is not so large. In fact, in many recent cavity-QED
experiments g has been often a few MHz [22, 3] whereas our g is only 0.4 MHz. But
its relative size compared to I', and I';, or equivalently 8 parameter, is unprecedented
in recent cavity-QED experiments in the visible wavelength region. The enhancement
factor Aenn/T, in Ref. [3] was only (6.4)%/(5.0 x 1.9) = 4.3, compared to our value of
whopping 52 !

In order to get some idea how make the ratio 2¢/I", much larger than unity, lets

consider an atom in a small cube with no cavity damping. The the square of the ratio
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can be rewritten as

4 u? (21rfiw)
A2\ Vin

- B0
1 w A3
- & (r_) (V—m) . (1.5)

Therefore, there are practically two parameters that can be controlled: the mode

volume and the free-space spontaneous decay rate. In order to make the ratio as
large as possible, we need to make both parameters as small as possible. It is rather
ironical that the smaller spontaneous decay rate is the better, considering that the
larger the coupling constant is, the larger the spontaneous decay rate must be.
Appreciating this idea, we can realize that there is no limit to which the coupling
constant can be enhanced. We can imagine an atom placed in a cube with its di-
mension comparable to the wavelength. If the dimension of the cube is smaller than
the wavelength, obviously the atom can never decay because the mode frequencies
supported by the cube is higher than the transition frequency so that the coupling
constant for the transition frequency is zero. The smallest volume leading to largest

coupling constant is, therefore, (A/2)3. Then the largest 2¢g/T, is

@) _-2()

However, once the ratio is much larger than unity, nothing is gained by by enhancing
the ratio further. In our one-atom laser, 2¢g is about 700 kHz compared to I', about

50 kHz, yielding the ratio, 14 > 1.

1.4 Feasibility

Before we start to construct one-atom laser, obviously we want to make sure that such
a laser is feasible. As mentioned before briefly, in an equilibrium state, the energy

input rate is exactly matched by the energy loss rate. So we can write down a rate

23



equation for the mean number of photons in the cavity,

d{(n) N
dt B Ttra.nsit h FC(”) =0 ’ (17)

where we assume that N excited atoms are injected during T} ansit, and the photons are
lost by the cavity decay I'.. Then in an equilibrium state, the mean photon number

is given by
N

(n> - FcTt/.ramsit (18)

The feasibility of the one-atom laser critically hinges on efficient photon storage as well
as a strong atom-cavity coupling. In the experiment, a supercavity optical resonator
with optical Q of 2x10° was used to realize very long cavity decay time. An inequality
to be satisfied is

r.,T. <2g,T;. (1.9)

ransit ?

so that the strong coupling condition in the cavity QED has to be satisfied.

Now let’s check the feasibility with some numbers. In our experiment, we used
133Ba atom as a two-level system. The atoms are inverted from the 'Sy ground state
to 3P, excited state by a pump laser. The wavelength is 791 nm and the spontaneous
decay time is about 3 usec. We also used a supercavity resonator, the finesse of which
was 8 x 10%, length of 1 mm, radius curvature of the mirrors were 10 cm, so that the
cavity mode waist was 45 ym. Using these figures, we obtain the cavity decay time

about 1 psec, and the inverse of the coupling constant 0.4 psec. If we assume a

2X45um
300m/s

velocity of 300 m/s, the transit time is = 0.3 psec. Using these numbers, the
mean photon number for one-atom case is expected to be about 3 photons, much

greater than unity. So it should be possible to build an one-atom laser.

1.5 Contribution of present work

In the present work we have realized one-atom laser. The laser oscillation was ob-
tained with the mean number of atoms in the cavity mode varied between 0.1 and

1.0, resulting in the mean photon number in the cavity changing from 0.14 to 11.
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The largest mean photon number corresponds to 107 photons emitted per second. In
addition, we obtained the following results.

a. No distinct threshold behavior was observed.

b. The measured mean photon number agrees with a fully quantized one-atom
theory (to be described in Chap.2) as long as the mean number of atoms is much less
than unity.

c. When the mean number of atoms is comparable to unity, the measured mean
photon number is much larger than the prediction of the one-atom theory. This
discrepancy can be explained by incorporating the standing-wave nature of the cavity

mode into the theory.

1.6 Organization of thesis

In Chapter 2, a semiclassical theory of the one-atom laser is first described, followed
by a fully-quantized theory. It will be shown that the semiclassical theory leads to a
pendulum equation, which provides intuitive description of the evolution of the one-
atom laser. The quantum theory, based on the theory of the one-atom maser, provides
a new photon recursion relation for the field density matrix for correct description of
the one-atom laser. A heuristic argument is given for accounting the standing wave
nature of the cavity mode. At the end of the chapter, a semiclassical theory of the
many-atom laser is presented for comparison purpose. It is shown that this theory
can generate simple laser rate equations under certain conditions.

In Chapter 3, the experimental study of the one-atom laser is presented. First the
core components of the experiment are closely examined and necessary requirements
on each component are discussed. Then the experimental procedures in taking various
data are described and the data are analyzed using the quantum theory as well as
the semiclassical theory.

In Chapter 4, possible future experiments are proposed and briefly explained.
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Chapter 2

Theory of the One-Atom Laser

The micromaser, i.e., the one-atom maser[4] has been the subject of numerous theo-
retical studies because the system itself is simple enough to permit rigorous theoretical
considerations. There exist full-quantized theories, addressing various aspects of the
micromaser (45, 44, 46, 47, 39, 48, 49, 34, 35], when the mean number of atoms in-
volved is far less than one so that at most only one atom interacts with the cavity
field. As seen below, this theory can be readily applicable to the one-atom laser with
appropriate modifications.

When the mean number of the atoms becomes comparable to or larger than one,
any quantum theory should account for the cases where more than one atom can
simultaneously interact with a common cavity field. As one can easily imagine, a
quantum modeling would become prohibitively complicated due to the large number
of degrees of freedom in the problem. As shown in the next chapter, the mean number
of photons grows quickly as the mean number of atoms increases. Hence the field Fock
states to be considered can be a few hundreds even for a few atoms, resulting in 10*
~ 10° field density matrix elements to be evaluated. At best we can only rely on a
numerical simulation on computers. However if the number of the involved atoms
i1s macroscopically large, a semiclassical approach employing the coupled Maxwell-
Schrodinger equations should correctly describe the system. Therefore, it will be
interesting to see how the characteristics of the one-atom maser/laser change as the

number of atoms is varied from far below one to many.
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In this chapter, a review of a fully quantized one-atom maser theory is presented
first (Sec.2.1.1). We then examine necessary modifications in the model to correctly
describe the one-atom laser. It will be shown in Chapter 3 that the micromaser
theory, with the photon recursion relation as it is, simply cannot fit our experimental
data (see Fig. 3-42). Therefore, we need to derive a new recursion relation for the
field density matrix (Sec.2.1.3). Then the standing wave nature of the cavity mode is
examined and properly incorporated into the quantum theory (Sec.2.1.4). Following
this, a semiclassical theory of the one-atom laser is formulated (Sec.2.2). The purpose
of the semiclassical theory is to elucidate an analogy between the one-atom laser
and a rotating pendulum, and to clarify the role of a pump laser field, particularly
when it is placed inside the cavity. Our quantum theory at present status simply
cannot address a situation in which the pump field overlaps with the cavity field.
Finally a semiclassical theory for a many-atom laser is presented (Sec.2.3). Under
the assumption that atomic dipoles are rapidly dephasing, this theory reduces to
a pair of rate equations resembling those of conventional lasers (Sec.2.3.3). These
equations should describe the system when the number of atoms in the cavity is
macroscopically large. The theories developed in this chapter will be used to analyze

the experimental data presented in the next chapter.

2.1 Quantum Mechanical Theory of the One-Atom

Laser

2.1.1 Review of Micromaser Theory

The theory presented here is a recapitulation of the quantum theory of the microlaser
developed by Filipowicz et al.[47]. In Sec. 2.1.3 we extend this theory to describe our
one-atom laser. In this theory, a series of ezcited two-level atoms at velocity v are
injected into a low-order single-mode microwave cavity, which is tuned to the atomic
transition. The way the atoms are excited is not important but the pumping process

used to excited the atoms should not interfere with the atom-cavity interaction. The
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Figure 2-1: Schematic of the one-atom maser. Two-level atoms are injected into a
microwave cavity at a mean time interval of At¢. The transit time ¢;,; is assumed to
be much shorter than At so that at most one atom is present inside the cavity at any
instance.

atoms should be also completely excited to the excited state so that only an incoherent
population gain is present. We assume the atoms are apart in time by At and the
traverse time through the cavity is ¢;,; (following original notation in Ref.[47]), which
is identical to Tiransit introduced in Chapter 1. We also assume that #;,; << At so
that at most only one atom is present in the cavity (Figure 2-1).

When an atom is present in the cavity, the system can be described by the Jaynes-

Cummings hamiltonian [2] given by
H = L 1 S S f
= 2hwaSZ+hwa a+ hg ( +a+5_a ) (2.1)

where ¢ is the atom-field coupling constant defined in Eqs. 1.1 and 1.2, w, is the
atomic transition frequency, al and a are the creation and the annihilation operator
for the photons in the field mode, respectively, and Sy, S- and S, are the Pauli
matrices. When no atom is present in the cavity, the last term, accounting for the

coupling between the atom and the cavity field, vanishes.
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We assume the i-th atom in the sequence enters the cavity at ¢t = ¢; and the
next atom at ¢ = ¢;;,, and so on. The system is described by a density operator p,
with p; and p, being the projection of the p into the field space and the atom space,
respectively.

For t; < t < ti41, i.e., when an atom is inside the cavity, the evolution of the

system is described by an unitary operator
U(t) = exp (—iHt/h) (2.2)
so that

pf(ti + tz’nt) = Tratom [U(tmt)p(tz)U"‘ (tint)
F(tin)ps(ti) (2.3)

where Tr,m is a projected trace operator into the atom space. Eq. 2.3 also defines
F(tint). On the other hand, for ¢; + ¢;n; < t < t;41, 1.€., when no atom is present in
the cavity, the field component of the density operator undergoes decay due to the

cavity damping process.

: L. T,
Py = 5 (np + 1) (Qpr(IT — aTapf - pfaTa) + D (QGTPfa - WTP! - Pfaaf)
Loy (2.4)

where n; is the number of photons due to black-body radiation in the cavity. Then

from Eqs.2.3 and 2.4,

ps(tiv1) = exp(Lt,)ps(ti + tine)
= exp(Lip) F(tine) ps(t:) (2.5)

where tp = t1‘+1 — (t, + tint)-
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The probability of having n photons in the cavity mode is given by

Po = (nloyIn) (2.6
From Eq.2.3, a recursion relationship for P, can be obtained.

Pn(ti + tint) = Pn(ti) + ﬂn—an—l (tz) - /BnP’n(ti) ’ (27)

emission: n—1—n  emission: n—n+1

where

__ (nt+1)g
(n+1)g% +(A/2

where 2v/n + 1¢ is the Rabi frequency associated with n photons and A = w —

B

7 in” (\/(n +1)g? + (A)2)° t,.nt) (2.8)

w,, a cavity-atom frequency detuning. This recursion relation reflects the coherent
interaction between the atom and the cavity field while the atom traverses the cavity.

When no atom in the cavity, the evolution of P, is determined by
P =To(ny + 1) [(n +1)Paps — nPo]+ Teny [nPucy — (R + 1)P]  (2.9)

which is derived from Eq.2.4.
In reality, the arrival times of the atoms at the cavity are not regularly spaced.

Rather the time interval between two successive atoms follows Poissonian distribution.

. 1 tp"f'tint
Fty) = x5 exp [— A7 } (2.10)
Averaging Eq.2.5 over the distribution,
pr(tivr) = (ps(tivr)),,
= (eXP(LtP»tP (F(tint)Pf(ti»tp
= (exp(Lty), (ps(ti + i), (2.11)

where we assume that the arrival time of the (i+1)-th atom is statistically independent
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from that of the i-th atom. Note that

1 0 tg‘f‘tint
(exp(]:,tp))tp = -—A—t-/o dt, e” " &t eltr
Ying

e At
1 — LAt
1
1 — LAt

&

(2.12)

because t;,; < At for true one-atom operation. So

(1 —LAL) py(tivr) = (ps(ti + tint)), - (2.13)

In an equilibrium state, the averaged field component of the density matrix, ps(t) ,

at the end of the every atom transit, should remain constant.
pr(tiv1)lss = ps(ti)lss = pss (2.14)
which is called “a steady state of a return map” in Ref.[47]. Therefore
(1 =LA ps(t:) |ss = ps(ti + tine)lgs
which is rewritten as
Pr(ti) |ss — Atpy(t:)| o = Ps(ti + tind) Iss (2.15)

using Eq.2.4.
With the define of an averaged photon distribution function

P, = (n|psssln) , (2.16)

Eq.2.15 reduces to

Py — AtP, = (1 — B.)P, + a1 Paey (2.17)
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which simplifies to

Sn = FCAt [(le + l)nPn - nbnpn_l] - ,Bn._lp -1
= T.At [(nb +1)(n+ 1)Poyy — ni(n + 1)]3n] — B.P,
= Su, n>1. (2.18)

For a physical photon distribution, nP, — 0 for n — oo, resulting in S, — 0. Since

Spt1 = Sy for all n(> 1), S, =0 for all n(>1). Hence

P — [FcAtnbn + Bn-1

- > .
FcAt(nb-I-l)n ]Pn—l’ n_l (2 19)

This recursion relation reduces to

= 5 11 |[TcAtngk + e
n=Fo 1;[ [1“ At nb-}-l)k] (2.20)

In optical regime, n, is practically zero, so

The series is well convergent. By normalizing the series we can find Py and then all
the P,’s. Once all P,’s are known, the averaged photon number can be calculated
using

) = fj kP (2.22)

The averaged number of atoms in the cavity mode is simply
(Natom) = tintAt (223)

Interpretation of the Result

Let’s consider a special case in which P, distribution is peaked at k = m. We assume

that m is much larger than one so that the fractional change of the distribution when
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k changes by unity near m is quite small,

Pp — Pr1| < Pn (2.24)
or
P
1 ~ =2
Pm.—l
L. Atngm + By
F.At(ny+1)m
so that
(n) ~ ma——p (2.25)
nR MR AP :

We can cast this equation in the form of a rate equation

1
o Bm-1 = Te ) 0 = (2.26)

Note that is the injection rate of the excited atoms. The fn-; can be thought

ai
as the probability of having the atom have undergone the transition from the excited
state to the ground state at the end of the passage in the presence of ({n) —1) photons
already in the cavity. Such transition will increase the photon number from ({rn) —1)
to (n). Hence the the first term in Eq.2.26 can be thought as the number of energy
quanta transferred to the field mode per unit time, and the second term as the number
of energy quanta lost by the cavity leakage per unit time.

Note that Eq.2.26 resembles the heuristic rate equation derived in Sec.1.4, Eq.1.7.
In deriving Eq.1.7, in fact, we assume that any injected excited atom dumps a photon
to the cavity with 100 % probability. The quantum theory tells that this is not the
case: the atom have certain probability of emitting a photon and the probability has
to be determined by the Rabi dynamics between the atom and the field. The rate
equation interpretations, however, are valid only when (n) is much larger than unity

(i.e., classical limit).
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Figure 2-2: The pump beam located at 2 = z, is a gaussian beam with a waist of w,.
The center of the cavity is located at z = 0.

2.1.2 rm-pulse pumping

In the microlaser, i.e., the one-atom laser, two-level atoms are inverted by a pump
laser before they enter the cavity. This pump laser is a CW laser with a certain waist,
intersecting the atomic beam perpendicularly.

The frequency of the pump laser is tuned to the atomic transition. If the atoms
have the same velocity v, by adjusting the intensity and the beam waist of the pump,
the atoms can be excited to the excited state completely (i.e., inverted) when they
exit the pump beam. To see how this pumping process works, assume that a gaussian
laser beam is located at = z,(< 0) and the center of the cavity is located at z = 0
as shown in Figure 2-2. We also assume that the two-level atoms are traveling from
x = —00 to +00. We also assume that the waist of the pump beam is so small that
both the spontaneous emission and the cavity damping are neglected while an atom

is traversing the pump beam.

v
ol € — 2.27
r < Su, (2.27)

The Schrodinger equations for the probability amplitudes in the slowly varying enve-
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lope approximation are

Cy = =Qa(t)C, (2.28)
¢, = —%QR(t)Cb (2.29)
where C, and Cj are the probability amplitudes of level a (excited state) and level

b (ground state), respectively, and Qg(t) is the Rabi frequency associated with the

pump laser given by

Qr(t) = Q% exp — (“’ — ””’)2 (2.30)

Wp

r=vut

In writing the equations we neglected the atomic and the cavity damping. The
solution of the coupled equations is

Cu(t) = isin (-;- [ QR(t’)dt') (2.31)

—00

Cy(t) = cos (% /_t ) n(t)d') (2.32)

fl

assuming the atom of interest is in the ground state (level a) at £ = —oo (or t = —00).

Then the probability of finding the atom in the excited state is

IC.O]F = sin? (% /_t wQR(t’)dt’>

2
[ t t —
= sin® (95/ exp — (v $p> dt')
2 Jowo Wy

0 vt 2
sin? (—Bﬂ " exp — (q — %) dq) (2.33)

21) —o0 P

Il

For t >> =2, i.e., far from the pump region, the probability is simplified to

0 2
2 . a2 | RYp /oo I P )
|Ce()]” =~ sin ( ol (q wp) dq)

sin? (9%"!1\/7?) (2.34)
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Then a complete excitation occurs if

VQw, _ T (2.35)
v
or
Q=05 = Vv (2.36)
Wp

In the one-atom laser experiments, an effusive atomic beam is used. Then we have

to perform an averaging over the velocity distribution of the atomic beam.

IC.t))* = dva(v)sinz(

= dvfs(v)sin® [g- (%) ( Q%ih)] (2.37)

where fp(v) is the Maxwell-Boltzmann velocity distribution for the atomic beam,

Vg,
2v

given by

fB(v)dv = \7% <§>2 e(2)g (%) (2.38)

and ()} ,, is defined for u, a mean thermal velocity,

Rin = (2.39)

(2.40)

where kp is the Boltzmann constant, T is the absolute temperature of the atomic

beam source and M is the mass of the atom.

2.1.3 New Photon Recursion Relation

An atom can be perfectly excited to the excited state, and consequently the induced
dipole moment vanishes only when the condition for the w-pulse excitation is satisfied.
The condition, however, cannot be satisfied for all the atoms in the effusive beam

because the velocities of the atoms are not the same.
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Since the atoms are not completely excited, unexcited atoms will absorb the pho-
tons from the cavity field, and, therefore, the photon distribution is influenced. There
are also effects due to the coherence in the atomic state [48] if the atoms are not com-
pletely inverted. In fact, the micromaser theory, which considers only the diagonal
elements of the field density operator, simply cannot fit our experimental data in
Chapter 3. Therefore, a new photon recursion relation including the off-diagonal el-
ements of the density operator for the cavity field needs to be derived. Only when
the atoms are prepared in a pure population state, this relation reduces to Eq.2.7.
When the atoms are prepared in a superposition state, the off-diagonal elements are
as important as the diagonal elements. This is illustrated in Figure 2-3. In Chapter
3, it will be shown that the prediction based on Eq.2.21 cannot fit our data whereas

the new recursion relation successfully fits the data (Fig. 3-42).

derivation of the recursion relation

Let’s consider a system of a two-level atom and a single field mode with a total of
(n + 1) energy quanta in the system. The wavefunction is a superposition of two

possible amplitudes,
[0(t)) = {can(t)la,n) + csnpa(t)lbn +1) } emint1/20 (2.41)

where |a,n) represents a state in which the atom is in the excited state (state a) and
the field is in n-photon state, and |b,n + 1) represents a state in which the atom is
in the ground state (state b) and the field is in (n +1)-photon state. The Schrodinger

equation is
W) = H|U) =h [%waSz +wala+g¢ (aS+ + a*S_)] |¥) (2.42)
Substituting Eq.2.41 into Eq.2.42,

ih { [ca',n - W (n + %) cam] la,n) + [cb,1.z+1 —w (n + %) Cb,n.*.l] [o,n +1) }
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Figure 2-3: Magnitudes of the field density matrix elements, @y, which is defined
in Eq. 2.75 for various initial atom states prepared by a pump beam with pulse area
of (a)m, (b)iw, (c)2x, and (d)i7. The pump pulse area is the argument of the sine
function in Eq.2.34. The left upper corner corresponds to (oo and the right lower
corner (g 9. Only (a) corresponds to a pure population state. The others correspond
to coherent superposition states. Parameter values used in these plots are listed in

page 56.
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= B [%wa +wn] Camla,n) + A [—%wa + w(n + 1)] Com1lbyn + 1)
+hg [\/n +1lconlbn+1) +vn+1 cb,n+1la,n)}

(2.43)
Applying (a,n| or (b,n + 1| to both side, we obtain
Can — %Aca,n = —igVn+1cynp (2.44)
Chnt1 + %Acb,n-}-l = —igVn+1lecon (2.45)
These coupled equations have an exact solution.
con(t) = €nCnlt) =i (Rncfpys — 6acl,) Sult) (2.46)
ent1(t) = €ninCnlt) =1 (Kncl, + 62004 ) Salt) (2.47)
where
Con = €an(0) = cavn (2.48)
Conp1 = Cnt1(0) = cpYnr (2.49)
Kn = gvn+l (2.50)
Vi n+1) + (A/2)2
5, = a/2 (2.51)
Vo (n+1) + (A/2)2
Calt) = cos [\/g2(n 1)+ (A)2) t] (2.52)
Si(t) = sin [\/gz(n +1) + (A/2) t] (2.53)
In general, [¥') is a linear combination all possible such states,
= [Camla,n) + conpr]byn +1)] emiwn+1/2t 4 ¢, 1p, 0) ewt/2 (2.54)
n=0
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which reduces to coupled equations same as Eqgs.2.44 and 2.45 for n = 0,1,2.. ., and
o =0 or cpo = const (2.55) '

Hence the solution is the same as Eqs.2.46 and 2.47 for every n > 0.
The density operator for the field, ps, which is the projection of the density oper-

ator p into the field space, is
ps = Tratom [p] = (a|¥) (¥ |a) + (b]V) (¥ [b) (2.56)

The slow-varying envelopes of the matrix elements of ps are

(nlps(t)|m) en=m)
= [(a,n[T(®)(¥(t) la,m) + (b,n [U(2)) (L(t) [b,m)] et
= Can(t)Chm(t) + con(t)cs (1) (2.57)

ph (1)

Using Eqs.2.46 and 2.47,

Prm ()
= [cammCalt) = i(Kncihntr — 6Can)Sa(t)] [i7RCom(t) + i(KmE Vg1 — Sm€i7i)Sem(2)]
+ [ Crn1(t) = (kn-1€aVn-1 + Sn-1657n) Sn-1(t)]
X [ Crnm(8) + i(Fmo1€im o + Emmr€97) S ()]
(2.58)

Noting that

pim(o) = Ca,n(o)c:,m+cb,n(0)cz,m(0)

= Ical27n7;1 + ch|27n7; = 7n7;1, (259)
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and defining

pﬁy = C, T,Yy=a,b (2.60)
§ = = a/2 sin 2 2
SSu(t) = 6Su(t) T T [\/g (k+1) + (A/2) t] (2.61)
Vk+1 .
SKk = KkSk = g sin 2 2 :
0 0= T VG D a7 e
we obtain

F

pn,m

(t)

P (0) {02, [Cu(O)Cm(t) + S w05 (t) = i (Calt)SPm(t) = Cm()S%(2))]

+ 0 [Crt () Conaa (8) + S5 ama ()51 () 44 (Coca ()5 ms(t) = Cma ()51 (1)]}
281,41 (0) 8 S™a()S" m(8) + pE_y 1o 1(0)p2, S %y (£)S™ o (1)

10741 (0)ph (Calt) +i8°w()) S (8) = ipEy1 1 (0)pAS"a(8) (Cm(8) = i5(1))
+16%m1(0)pfh (Cama (1) = iS%0-1 (1)) 5" (1)

=301 1,m (0P85 "1 (8) (Crnma (1) +i8° o (1)) (2.63)

The above solution can be applied to our one-atom laser. When the atom is

traversing the cavity mode, we can neglect the atomic and the cavity damping since

we assume

1
o) Te < = (2.64)

Hence Eq.2.63 describe the evolution of the system for 0 < ¢t < ¢;,;. When no atom is

present in the mode, on the other hand, the field simply decays according to Eq.2.65.

In terms of the matrix elements, this equation is

pfim =T. [\/(n +1)(m + 1),054,1'"1+1 — %(n + m)pfzm] (2.65)

In writing this, we set n, = 0.

Eqs.2.63 and 2.65 describe the one-atom laser for all cases. We can derive the

results for the micromaser in Sec. 2.1.1 as a special case. Suppose we turn on the
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Figure 2-4: Evolution of nonzero components of p,}: . When the atoms are prepared
in the excited state perfectly. Only the diagonal matrix elements are excited.

system at ¢t = 0, and the incoming atoms are perfectly excited.

pgo(O) = 1 (vacuum), pf:m(O) =0 otherwise (2.66)

Pae = 1, py=pl=0 att=0 (2.67)
Then Eq.2.63 reduces to

PE (tine) = PE L (0) [Ca(t)Cn(t) + S8(£)SPm(t) — i (Ca(t)SPm(t) — Cm(t)S%a (1)) ]
+PE 3 1 (0) 8% (1) o (1) (2.68)

Note that the (n,m)-th element is only connected to the (n-1,m-1)-th element and
itself. Hence, when the first atom is exiting the cavity mode (¢ = At), pf; and pgj 0
are the only nonzero elements. Before the next atom comes in, these matrix elements
decay according to Eq.2.65. The interaction with the following atoms will generate
more nonzero matrix elements, but however they are all diagonal elements as depicted
in Figure 2-4. The growth of the number of nonzero diagonal elements will eventually

taper off due the field decay, resulting in a steady state solution.
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Eqs.2.68 and 2.65 together reduce to the recursion relation of the photon distri-

bution function in Sec.2.1.1. For diagonal elements,

Fronltin) = pEal0) [(Co(0)® + (S50(0) ] + pEL1is (0) (5 () (269

Noting that

P = (nlosin) = P, (270
K2 (. _ (n+1)g2 sin2 2 n 2 4.
S = T AT (V@727 + (n+ 1)g ti]
= Bn (2.71)
(%) + (%) = s2, (2.72)
we find

Palti) = Pa(0)[C2+ (5%)] + Paca(0) (5%cr)?
= Pa(0) [1 = (5")] + Paca(0) (8%nn)?
= Pn(O) [1 - ﬂn(tint)] + Pn—l(o)ﬂn—l(tint) (273)

which is exactly Eq.2.7.

Now we derive a recursion relation in general case. From Eqs.2.15,

Pf(ti) Iss - At/"f(ti) |ss = Pf(ti + tint) lss (2-74)
Define
Qnm = (nlpsssim) = oI |ss (2.75)

Then using Eq.2.65, Eq.2.74 can be rewritten as

Qnm(0) — [ At [\/(n +1)(m + DQnt1,m+1 (0) — %(n + m)Qn,m(O)] = Qan(tint)
(2.76)
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which reduces to a recursion relation

Qnm = Lot [y + ) + D) @ussimsr = 3 + ) Q]
= Qum {2 [CaCn + 558% — i (CuS’m = CS%,))]
+ oy [CociCnot + S%0 18Py +0 (Caca oy = Cma §%0a )|}
FQnt1,m 410525 m + Qno1,m-10 5 n-15%m_1
+iQnmi10%4 (Cn +8%) S = iQui1mpf S (Con — iS%)
+iQnm-19f (Crt = 85%1) "1 = iQn-1,mp S st (Cones +i8mo1)
(2.77)

where C,, S*, and S%, are evaluated at t = ¢,
Cr = Cp(tint), etc (2.78)

Noting that

. VT N e
C, = 1s81n ('—E)"‘—p' =1 Pfa (279)

V%W
¢, = COs (__21)1_2 =\/PbAb (2.80)
b = o =—i/okoly = (sd)) (2:81)

we can rewrite the recursion relation as

[1+ iTeAt(n+m)] Qum
= Qum {p2 [CuCim + 8%2S%m — i (CnS®m — CS%4)]
(1= p2) [Cac1Crt + 5801 S8y +1 (Crca St = Cnc1 %0y )| }
FQuitman (1= pA)S 48" + TeAtyf(n + 1) (m + 1)
+Qn-1,m-10535"n-18"m-1
/P2 (1 = p2) [@nmet (Crct = 15%0-1) S%mcs + Querm S ncs (Conos +8%mos)
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Figure 2-5: Connection between @, and its neighbors.

~ Qnns1 (Cn +15%) 5% = QuprmSn (Cm — 5%
(2.82)

Note that @, . is related with its nearest neighbors except Q-1,m+1 and Qny1,m-1,
as shown in Figure 2-5. When the atoms are prepared in a superposition state, even
if we start from a vacuum state(Qoo = 1), eventually all the matrix elements are
excited. Suppose we turn on the system at ¢ = 0. Just after the first atom-field
iteration, not only 1,1 and Qo p, but also Q1,0 and Qo1 components become nonzero
according to Eq.2.82. The interaction with the second atom will excite any Qnm
with n,m = 0,1, 2. In general all the ), ,, components with n,m =0,1,...,k will be
excited after the interaction with the k-th atom, as shown in Figure 2-6. This growth

eventually taper off due to the cavity decay.
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Figure 2-6: Time evolution of @, . After the interaction with the k-th atom, any
@n,m elements with (n,m =0,1,...,k) are excited.

2.1.4 Standing-Wave Cavity Mode

So far we assume that the coupling constant is uniform inside the cavity. This is a
reasonable assumption for the micromaser, where a low-order standing-wave mode
of the cavity is excited. A low order means that a few integer multiples of a half
wavelength (of a few cm) of the field fits in the cavity. Hence it is relatively easy to
align the atomic beam along the antinode of the cavity mode, ensuring that all the
atoms have the same coupling constant.

In the one-atom laser, on the other hand, a cavity with high-order standing-wave
modes is used. Typically 10°-10* wavelengths fit in the cavity. Since the diameter
of the atomic beam is typically much larger than the wavelength, the atom-field
coupling constant varies sinusoidally over the beam dimension. In addition, since the
cavity mode has a gaussian field distribution in the transverse directions, the coupling
constant also varies accordingly. Therefore, the coupling constant g appearing in

Eq.2.63 via the definitions of C,, S*, and S, has to be replaced with a coupling
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constant g(7) as a function of the position of an atom of interest.

. z? +y°
g(F) = go exp [—— ol ] coskz , (2.83)
where g, is given by
_ b [27hw
go - h Vm ] (2-84)

Wy, 1s the waist of the cavity mode, and coskz accounts for the standing-wave nature
of the cavity mode. One thing that should be noted here is that although the coupling
constant as defined above can be negative, the sinusoidal functions in the definitions
of C,, S*, and S°, have g%(7) in their arguments so that the negativeness of the
coupling constant makes no difference as far as the Rabi oscillation is concerned.

One may think the position dependence of the coupling constant can be taken
into account by simply averaging the final results, the recursion relation, over the
distributions of y and z. This averaging scheme would be correct only if the interac-
tion between an atom and the field is completely independent from the interactions
between the preceding atoms and the field. However, one event of the atom-field
interaction is not independent from the preceding events. The cavity field, which is
the result of all the preceding events, does not decay appreciably when the next atom
comes in so that the new atom-field interaction is influenced.

In order to show that the post-averaging scheme is wrong, let’s consider two
infinitely narrow atomic beams going through the field mode at y = 0 for both. One
beam is going through the field mode at a node (cos® kz = 0) and the other is at an
anti-node (cos?kz = 1) of the mode. The atoms at the node have zero coupling to
the cavity field. Therefore, they traverse the cavity as if there were no cavity at all.
Contrarily, the atoms at the anti-node interact with the field with a full magnitude
of the coupling constant, g,.

Now recall that the mean time interval between two atoms is defined for the entire
atomic beam, i.e., the two atomic beams as a whole. Therefore, the mean time interval
only for the atomic beam along the anti-node should be exactly twice of the mean

time interval for the whole set of beams. These two beam configuration, therefore,
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should give rise to the same result as the single atomic beam traversing the cavity
along an anti-node with a mean time interval twice as large as the original interval.

The averaging scheme, however, gives a quite different result, which is just an
average of two possible configurations: all the atoms traveling either along the anti-
node or the node, with the original mean time interval. Since the atomic beam
traveling along the node gives nothing, the solution by the averaging scheme is the
half of the result that would be obtained with one atomic beam with the original time
interval. Because the performance of the one-atom laser does not linearly depend on
the time interval, the result by the averaging scheme is incorrect.

The lowest order correction needed in the theory in order to account for the
standing-wave mode is to assume that the half of the atoms are located along the
nodes of the cavity and the remaining half of them are located along the anti-nodes.
Then only the atoms located along the anti-node will interact with the cavity field
while the others are just passing by. This assumption is equivalent to count only the
half of the atoms in the cavity. In fact, there is another factor of two reduction in the
number of atoms due to the gaussian transverse profile of the cavity mode (see next
two pages.). Therefore, only a fourth of the number of atoms in the apparent volume
of the cavity are counted.

While the number of atoms in the cavity mode is something that can be measured
in the experiment, the parameter used in the theory is not the number of atoms but the
time interval A¢, which is proportional to the number of atoms. For the micromaser
(with a low-order cavity), Eq.2.23 gives At in terms of the averaged number of atoms,
Natom. However this equation is not correct for the one-atom laser. Because of the

raussian mode profile, rather the equation should be corrected as

(Natom) = (\/ti/; t) , (2.85)

where (Nytom) is an effective mean number of atoms in the cavity, accounting for the

standing wave nature and the gaussian profile of the cavity mode.

In order to show how the factor of a fourth comes out, let’s consider an atomic
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Figure 2-7: An atomic beam crossing the field mode of a high-order single-mode
cavity

beam with a diameter 2R intersecting the cavity mode as illustrated in Fig.2-7. If
2R is smaller than the cavity length, then (N,m) is calculated from the following

integral.

+00 R _of P2+y? A/ R2~y2
<Natom> = no/ d-’l)/ dye 2( Win ) ' dZCOS2 kz
—0o0 -R

~+/R2—y2

R _2%2 \/R2—y2
nowm\/Z/ dy e vm / ! dzl
2 J-R —+/R%2—-y2 2

B [ [T )

1%

T 2
2

= n,R‘wnp/—=

2

T

noR*w,, (§> ’ n(R/wm) , (2.86)

where n, is the density of the atomic beam, which can be measured independently in

the experiment, and 5(z) is defined as

9 1
n(z) = - /_1 dg\/1 — g2 e720°%" (2.87)
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Figure 2-8: Plot of 5(z)

In Figure 2-8, the function n(z) is plotted.

The function 5(z) can be expressed in simple forms in two limiting cases. When

0 (Rwn) ~ ;2; / 11 dp - =1 (2.88)

R < wp,

and when R > w,,,

2 1
n(R/wn) ~ = / dg e=(R/um)’e’
T J-1

2 /  dq e 2Rlum)?
T J—

Q

2 Wy
= /—-——. 2.89
T R (2.89)
Therefore,
AT R*(2wn ) /Z if R m
(Natom) = 4 04" (2w )‘/; Hhew (2.90)
no 3wk (2R) if B> wp,,

We can appreciate the physical meaning of this result in the following way. When
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R > wy,,, we have the averaging over cos?kz dependence as well as the averaging over
the gaussian mode profile along both z and y directions. Therefore, in order to get

(Natom), an overall reduction factor

1
27 Ve V2 4
has to be multiplied to the mean number of atoms in the apparent volume, which is

simply 7w2 2R. On the other hand, if R <« wy,, we do not need the averaging over y

dimension so that the reduction factor is

1 1 1
RV N A
which is multiplied to an apparent volume of = R%\/Tw,,. Note that we have /Twn,
instead of 2w,, because of the absence of the averaging over y dimension.
In a similar way, we can derive the relation between (N,som) and At. For this let’s
consider an infinitely narrow atomic beam (R <« wm,A) traveling along one of the
anti-nodes of the cavity. We assume that the mean time interval between atoms is

At. The density is then simply

1
rR2uAt

nNye =

Since all the atoms are moving along the anti-node, the effective mean number of

atoms in the cavity, (Naom), is

1

T R*/Tw,y, ,
Vol

(Natom> =N,

without the factor of % Using the expression for the density, we obtain

11
vAt /2
TW [V

V2AL

(Natom> = \/;wm

(2.91)
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With a known value of (N,som), the mean time interval given by this equation is
used in the recursion relation, Eq.2.82. With this simple substitution, the y and z
spatial dependencies of the coupling constant is taken into account as the lowest-order
approximation.

Both ¢(7) above and Qg(t) in the m-pulse excitation considered in the preceding
section are given by gaussian mode functions. In the w-pulse excitation, the arguments
of the sine and the cosine functions was

Q% VTWn, . . ..
7R-\/lu—— = Rabi frequency X interaction time
v
Since both 2¢, and Q% are Rabi frequencies, the atom-field interaction time that we

should use is

VTt (2.92)

v

tint =

By this definition, the x dependence of the coupling constant is also incorporated into

the theory. Using ¢;,;, we can rewrite Eq.2.91 in a simple form,

tint

At - \/Q—(Natom> .

(2.93)

With all these modifications described so far installed into the theory, the mean

photon number (n) is calculated from

(n) = [~ dofa(e) f: FQua(v) (2.94)

where Q k(v) is evaluated using the algorithm described before. Note that the de-

pendence on velocity is embedded in p2, and pfi as well as S*,, S, and C,.

i =sint [5.(2) ()] =1t (295)

v
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2.1.5 Numerical Simulation
algorithm for solving recursion relation

In general, @, ’s are complex quantities. Defining

Qrm = Pom + 1@nms  Prym,qnm are real (2.96)

the Eq.2.82 reduces to

[1+ ITeAt(n + m)] pam
= P (o (CaCim + S%5%n) + (1= pf) (Ca-1Crmot + %1581 )|

+nm [Pt (CnS’m = CnS%) + (1 = ph) (Ca-1S°met = Cne1 %1 )|

Fpurtmi (1= 9SS + ToAW/(0 4 1)+ 1)) + Pact 1 S0 1 S

+/Pia(l = Pia)

{[pnm=-1Cn-15%m_1 + Pn-1,mS"n-1Cm-1 = Pam+1CnS"m — Prs1,m S nCrm]

+ [gnmo15%n 15" m ot = Gae1m S n 1St + Gnm 41595 m = Q1 S"nSom] |
(2.97)

for real parts, and

[1+ 10eAt(n + m)] gum
= Gum |2 (CaCin + §%05%m) + (1 = ) (Caca Crmes + S%no1 5]
+4nm [P (CaSm = CmS%0) + (1 = ) (Cac1%moy = Ot St )|
Fanrtmst (1= p)S% S + Tl (0 + 1) + D] + tnot 1S a1 5%

+ Pl = i)
{[Qn,m—l Cn—lsnm—l + Qn—l,msnn—l Cm—l = qn,m+1 Cnsnm - Qn+1,m5ﬂnCm]
- [pn,m—l Ssn—l Snm—l - pn—l,m Sﬂn—l Sam—l + pn,m-l-l Ssnsﬂm - pn+1,mSKnS6m]}

(2.98)
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for imaginary parts. Unfortunately, these recursion relations do not permit further
simplification; no simple closed form is known. We have to rely on numerical eval-
uation, the algorithm of which is described here. First we start with th 0-th order
approximation, corresponding to a vacuum.

1 fn=m=0

QO = (2.99)

n,m i
0 otherwise

Then the first order approximation is obtained using Eq.2.82, i.e., Qfll,)n is evaluated
from Qfgﬂl,mil. Then the result is renormalized.

1)
Qggn — —Lmm (2.100)

o0 (1)
n=0 n,m

Repeat this procedure recursively until desired convergence is achieved. Practically,
we set an upperbound for n and m not only because computational difficulty escalates
with a larger number of matrix elements considered, but also because the mean photon
number for the one-atom laser is a small number, typically of the order of one. When
the upperbound is (N — 1), there are N? matrix elements to calculate. Since the

diagonal elements satisfy a normalization condition

N
Y Qun=1 (2.101)

n=0

and since the matrix is a hermitian,

Qrm = @ (2.102)
the number of independent matrix elements is
(N>~ N)/2+(N—-1)=(N+2)(N-1)/2 (2.103)

In our analysis of the experimental data, the upperbound was varied between 20 and

40.
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computer program

The algorithm has been coded into a computer program. The program is written in
C language and is listed in Appendix B. The main body of the program is m13_5.c.
The routines calculating @, ,’s are contained in micro_Q_core5.c. For numerical
integration the program borrows routines from the library of Numerical Recipes in C
[50]. The program can be compiled on many Unix operating systems such as Sun OS
4.1, A/UX 3.1 and DEC OSF 1.3.

When running the program, users can specify experimental parameters such as
a finesse of F, a radius of curvature of r,, a cavity length of L, the atomic natural
linewidth of T, the wavelength of the atomic transition of A, the thermal velocity of
v and the mean number of atoms in the cavity of (Nyiom) through the standard input,

stdin. From these parameters the following parameters are derived in the program.

z0= z,= %—[i, confocal parameter
w0 = w, = ’\—:Q, cavity field mode waist
fsr= Avy= 3, free spectral range
Gcover2pi= I./2r = A—}."L, cavity decay rate
f= f=3 (m:\»m)Q , solid angle factor

g-over2pi= g¢,/27 = %AfoEQ coupling constant
LAt =ty = YoUm

interaction time

R= -Al—t = \/Ei—]\]—“%i:—:—t)ﬂi, atom flow rate
Nex = N, = F—Cl—A—t, number of atoms injected per cavity decay time
theta= 6 =+/Ng g5 tint, pulse area

The program then calculates @), ’s and an average number of photons in the
cavity for various velocity groups, and then it performs an averaging over all the
velocities according to the Maxwell-Boltzmann velocity distribution and the result is
written to the standard output, stdout.

Users can specify program control parameters such as the upperbound in the

indices of @, (N.CUTOFF), an error tolerance (TOLERANCE) and a maximum number

95



of iteration (MAX_ITERATION) in calculating @, ’s, an error tolerance in the numerical
integration for the velocity averaging (EPS). These parameters should be contained in
a parameter file (m13.PARA), which is read by the program upon execution. Typical
parameter values were 30 for N_CUTOFF, 1.0 x 10~* for TOLERANCE and 1.0 x 1073 for
EPS. With this setting, the calculation of a single data point takes about 20 seconds
on a workstation rated at 150 SPEC{p92 (alpha processor running at 200 MHz, DEC
3000-500).

Results

As briefly mentioned earlier in this section, when the atoms are prepared in a super-
position state of the two energy levels, the off-diagonal elements of the field density
matrix are as important as the diagonal ones. Fig.2-3, illustrating this, was calculated

by the computer program. The parameters used in the calculations are given below:

@m = 2gotint = 1.18

< 2
o, = YUy _ ,r,%w,_g,r,%,r
v
0.0987 0.0987
At = =
(Natom) 1.0
A =0

(2.104)

The significance of the off-diagonal elements can also be seen in Figure 2-9, where
(r) is plotted as a function of a pump power pulse area, ©,. Interestingly a maximum
(n) is achieved not when the atoms are fully inverted but when they are in a super-
position state. This is understandable because not only an inverted atom but also a
polarized atom as a dipole can radiate coherently into a resonant field mode. When
an atom is slightly under-pumped or over-pumped, pZ, is reduced slightly from unity
while |pgs| increases significantly. Therefore overall capability of emitting a photon
into the field mode can be maximized.

Extensive simulations with the modified quantum mechanical model should be

performed to obtain a complete understanding of the one-atom laser. For example,
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Figure 2-9: Effect of superposition state. (a)(r) , (b)pZ2,, and (c)|pA

once the field density matrix is found, the photon statistics is easily calculated. How-
ever, such extensive study is not covered in this thesis. Only a small region in the
parameter space, which corresponds to our experimental conditions, has been studied.
The results will be presented in Chap.3 in comparison with experimental data. More

extensive studies will be covered in future publications.

2.2 Semiclassical Theory of the One-Atom Laser

2.2.1 Model

In this section, we formulate the one-atom laser based on a semiclassical formalism,
in which the atom is treated quantum mechanically by the Schrodinger equation
while the field is treated classically, described by the Maxwell equation. We cast the
equations in terms of three variables: an induced atomic dipole moment, a population
inversion and a cavity field amplitude. These physical observables are represented by
properly normalized slow-varying-envelope variables. They are a for the cavity field,

o for the atomic dipole moment, and N for the population inversion. Note that we
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treat the atom as a two-level system. Then the Maxwell-Schrodinger equations are

[

a+ 2¢ = —g0 (2.105)
L,
6+50 = —gNa (2.106)
N+ F.(N+1) = 4goa, (2.107)

where

S7h £
a = £/ ”V“’=2E (2.108)

P
2 (2.109)

Q
il

where £ and P are the slowly varying envelopes corresponding to the cavity field E(t)
and the dipole moment P(t), respectively.

E(t) = Re[€(t) emiwt]
P(t) = Re[P(t) e iwt] .

Note that |a|? is nothing but the number of photons in the field.

_ PV

la|® = i (n) . (2.110)

The expression for the w-pulse pump beam is, as defined in Eq.2.30,

1—12)2

Qr(z) = Q5 - ,

where Q1% is the Rabi frequency corresponding to the pump field, wp and z, are the
waist and the center position of the pump field, respectively.

The coupling constant ¢ depends on the position of the atom as in Eq.2.83. As
discussed before, y and z dependencies can be taken into account by an effective mean

number of atoms in the mode. So for simplicity of calculation, we assume that all the
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atoms are located at the anti-nodes of the cavity field mode with y = 0.
z \2
g(z) = g, e™(F),

assuming that the cavity center is positioned at z = 0. Figure 2-2 illustrates the
spatial distribution of the pump beam and the cavity mode.

Now suppose atoms are traveling from z = —oo to z = 400 at a velocity of v.
The mean time interval between successive atoms is At as introduced in Sec.2.1.1,
satisfying

Wy Wm

At >> —, . (2.111)

v v

Incorporating the pump beam and the cavity mode distribution and neglecting

atomic damping (I'; — 0), we can rewrite the coupled equations as

da(t) r

o = —9()e(t) - Fa(?) (2.112)
d(;it) = —(g(t)a(t) + Qr()/2) N(t) (2.113)
O~ (eo0a(®) + 2a(0)/2) o), (2.114)
where
9(t) = 9(@) |t = go e (F) (2.115)
Qr(t) = Qr()|oout, zp—vte = Np e"(ﬂ%l) (2.116)
with ¢, < 0.

For well separated one-atom events, we can impose boundary conditions on N, o,
and a. Since the value of a(t) at the end of one-atom event is exactly the initial value
of a(t) for the next one-atom event, and since all one-atom events are equivalent, we

again obtain a condition of “steady state of return map” (compared to Eq.2.14 in
Sec.2.1.1).
a(—At/2) = a(+At/2), (2.117)
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For every atom, the initial dipole moment and inversion should be those of an unex-

cited atom.

N(-c0) = -1 (2.118)
o(-00) = 0. (2.119)

There is a constant of motion obtainable from Eq.2.113 and Eq.2.114. Multiplying
N to Eq.2.114 and o to Eq.2.113 and adding the results together, we find

NN +406=0 (2.120)

or

N? +40® = constant = 1, (2.121)

where the constant is determined from the boundary condition, Eqgs.2.118 and 2.119.
Note if |V| < 1, which is the case when atom is in the superposition state of the
ground state and the excited state, |o| must be nonzero. A different way of stating
it is that the dipole moment of the atom is identically zero only when the atom is
either in the ground state or in the excited state.

The form of Eq.2.121 suggests that we can express N(¢) and o(t) in terms of sine

and cosine function

N(t) = —cosf(t) (2.122)
o(t) = —sinf(¢). (2.123)

With this substitution,

N = sin(6)6 =206

= 2(2ga+Qg)o,
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so that for —%L <t< %1,

0 = [20(t)a(t) + Qr(1)] (2.124)
a = ——I—Q‘ﬁa-ggzsine(t). (2.125)

These two coupled differential equations should describe the system completely with

appropriate boundary conditions, which are

a(—At/2) = a(+At/2) (2.126)
f(~0) = 0 (2.127)

In general, Eqs.2.124 and 2.125 can be solved only numerically. We first pick up a
value for a,, the initial value of a(t), and then solve the equations to find a(4%). If this
value is not equal to a,, we change the guess and repeat the calculation until a(%)
becomes very close to a, within a desired accuracy. This procedure is equivalent to

find the roots to the following equation.
a, = a(At/2;a,) (2.128)

where the right hand side is the solution of the differential equations evaluated at
t = At/2, with the initial condition, a(—4t) = a,. A steady-state mean number of
photons is then obtained by taking a time average of a® over the interaction time, At.

1 Atf2 0
(n) = = /_ (0 (2.129)

2.2.2 Stepwise Coupling: Pendulum Equation

The coupled equations, Eqs.2.124 and 2.125 can be reduced to a differential equation
describing a rotating pendulum. In order to show this, let’s suppose that the cavity
mode is sharply edged and the coupling constant is a constant g, if |z| < w,, and zero

otherwise. Let’s also assume that the pump laser is placed far away from the cavity
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Figure 2-10: A stepwise g(t) centered at ¢t = 0 and Qg(t) at ¢ = ¢,.

as shown in Figure 2-10.

vAt
—xo<<——2—<<—wm<0.

Then for |z| < 1‘2”1 with T = Zﬂvm,

0 = 2g.a(t) (2.130)
0 = —%ﬁa—gz—"sina(t), (2.131)
and for fine < |z| < &L,
f = 0 (2.132)
i@ = -—%a. (2.133)

By substituting the expression for a from Eq.2.130 into Eq.2.131, we obtain a pendu-

lum equation for || < Ziat,

. T, '
6+ —2——9+g§ sinf =0, (2.134)
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Figure 2-11: The one-atom laser as a pendulum. The atom-field interaction is anal-
ogous to a mechanical pendulum in a periodic potential as shown in this figure. By
a m-pulse, the pendulum is inverted before it is placed in the potential. At ¢ = —Ii;i
the pendulum starts to swing with an initial angular velocity 2a.,g,. The bound-
ary condition, 0(T;n:/2) = 6(Tint/2), requires that (T}, /2) must be (2k + 1)x with
k=1,2,.... In this plot a case of k¥ = 3 1s shown.

which is nothing but a differential equation for a mechanical pendulum with damping.

For the pendulum, g, is a normal mode frequency given by

o E
? [
with g being the gravitational acceleration and ! being the length of the pendulum.

A. No Cavity Damping

For a perfect cavity with no damping, the solution of the pendulum equation is readily

obtained. There exists a constant of motion,
1o o
50 — g5 cos § = constant , (2.135)

which is nothing but a total energy of a classical pendulum except a constant factor,
with the first term a kinetic energy and the second term a potential energy. The
atom-field interaction is hence analogous to a mechanical pendulum in a periodic

potential as shown in Figure 2-11. The boundary conditions, Eqgs.2.126 and 2.127,
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reduce to

0(—Tin:/2) = = (initially inverted) (2.136)
0(=Tint/2) = 29oao = 0(Tin:/2) . (2.137)

The total energy F is simply
1.
E =2¢*a’>+ g% = 502 —g%cosf. (2.138)

By a w-pulse, the pendulum is inverted before it is placed in the potential. At
t = —L,fi the pendulum starts to swing with an initial angular velocity 2a,g,. It

is then obvious that, if a, > 0, in order to satisfy é(—ﬂnt/2) = é(]}nt/2),
0(Tint/2) = 0(AL/2) = 3,57, ... (2.139)

Large Photon Number Limit

In the limit of a large photon number, a(t) during the atom-cavity interaction can be
thought as constant a, since an one-atom event can only change a? by only one at

most. Then Eq.2.139 simply means,

0 (Tint/2) = 2goaoTine + 7 = 3m,5m,... ifa, >0
= —7,-3m,...1fa, <0, (2.140)

or

2000, ins = 27, +dm, +67. .. . (2.141)

In this limit, once an equilibrium is reached, the atoms undergo complete multiple
Rabi revolutions, exiting the cavity unchanged, that is, in the excited state. The
states of the system satisfying Eq.2.141 are called trap states [39]. The mean photon

number is then

k 2
(n) =a?= (g]’f > L k=1,2,... . (2.142)
ol int
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Interestingly a infinite number of k’s give rise to the solutions for (n) . Note that
the semiclassical theory does not tell us which are physically observable solutions. In
fact, as shown below, all the trap state solutions are unstable for any small pertur-

bations/fluctuations.

Evolution of Field

Some part of the material discussed in this section can also be found in Ref. [39]. The
boundary condition of steady state of return map requires that the field amplitude at
the end of n-th one-atom event is exactly the same as the initial field amplitude for
the next one-atom event. If we denote the field amplitude of the n-th event by a,(t),

the boundary condition reads
an(At)2) = app1(-At/2) =an, n=1,2,.... (2.143)
Eq.2.138 can be rewritten then as

E = 2glal,(-At/2)+g]
= 2¢%al,,(At/2) — g2 cosO(At/2)

or

E = 2ga,+g,
= 2¢2a’,, — g’ cosO(AL/2),

which, in the large photon number limit, simplifies to

1 + cos (7:' + 29, ngltZ an(t’)dt’)
2
ai + 1+ cos (7 42— 29,0, Tint)
, 1 —cos(2g,cnTint)
n 2
= o2 +sin® (goanTint) = fla?). (2.144)

2 . 2
C¥n+1 - an+

&

= «
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This is the recursion relation for the field amplitude. For an arbitrary initial ampli-
tude, a,, a steady-state field amplitude is obtained by evaluating «, for n = 1,2,...
until a convergence is achieved. Since a, = a,+1 as n — oo, a steady-state solution,
oo, satisfies

sin? (go Qoo Tint) = 0,

or

kr
0o = £ =+8® k=1,2,..., 2.145
goTint ’B ( )

which is exactly Eq.2.141. However we are not interested in the solution itself here.
Rather note that the recursion relation simulates the evolution of the field as a func-
tion of the number of atoms traversing the cavity. Let’s assume that the field ampli-
tude is initially «, before a first atom traverses the cavity. After the first atom, the
field is given by a1, which is the initial field amplitude for the next atom. Using this
o and the recursion relation, we then get a», and so on, as illustrated in Figure 2-12.
We can readily show that the field converges to one of the 3(*)’s given by Eq.2.145,
depending on the initial value, a,. In fact, if , is restricted between f(™=1) and
B, is always equal to or larger than 8™, In other words, the mean number of
photons in an equilibrium state is always greater than an initial number of photons.
This is of course due to the initial population inversions in the atoms. If the atoms
are initially in the ground state instead, we will get an opposite result.

Let’s consider the initial field being a vacuum. Classically the field never grows
since a vanishing a, gives a; = 0, az = 0, and so forth. However a vacuum is
not stable and it fluctuates in quantum mechanics. Therefore, we should introduce
random fluctuations of o, around zero (actually above zero since we assumed a,, > 0.).
Then the field amplitude converges to one of the 3)’s depending on the fluctuations.

Even when the field has converged to 3(™) with m > 0, the resulting field is also
subject to the fluctuations. The sources of the fluctuations are the vacuum fluctuation
as well as the spontaneous emission process of the atom. The change of the field by
the spontaneous emission itself is negligibly small since the solid angle extended by

the cavity mode is much smaller than 47, into which the spontaneous emission occurs.
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Figure 2-12: Evolution of a(¢). Depending on an initial value, a(t) converges to one
of the B¥)’s given by Eq.2.145.
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n+1

o

Figure 2-13: B'®) solutions are stable when approached from lower amplitude side
whereas it is unstable when approached from the other side. Therefore fluctuations
eventually push the field amplitude to a higher trap state.

However, the atomic wave function changes abruptly once the spontaneous emission
occurs.

Once the field amplitude becomes slightly larger than 4™ due to the fluctuations,
the amplitude quickly departs from S(™) and converges to one of 3™ with n larger
than m. If the amplitude is slightly less than (™), on the other hand, it can converge
back to (™) as illustrated in Figure 2-13

Since this consideration can also be applied to the new 8™ evolved from ™), it
is not difficult to imagine that the field will eventually evolve to higher and higher n
states without any upper limit. In other words, in the absence of the cavity damping,
the field will grow indefinitely, and hence there exists no steady state. In the presence
of the cavity damping, the growth of the field is limited, resulting in a real steady-state

solution, as will be shown later.
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Arbitrary Number of Photons

The convergent solution, @, for an arbitrary magnitude of the mean photon number

can be obtained by integrating Eq.2.138.

9’2
T g(l4cosh) = 26kl

2
dé 1\? 0
—— = —_— 2 _
7 :i:ZaOOgO\ﬁ-i— (aoo) Ccos 3

= F2009,dt

- :{:2aoogoTint .

Using the periodicity of the cosine function,

i2aoogo Tint =

(2k+1)m/2 dod
2

/2 \/1+ (i)zcossz

w/2
4k/ dd :
0 \/1 + (-&{:) cos?2
do

/2
41,:/0 ~ -
JH(;) (1 - sin? @)

_ 4 K( ! ) (2.146)

where K(z) is the complete elliptic integral defined as

/2 dd 9

= y TT<
o +/1—2z2sin’®

and its values are tabulated in many mathematical handbooks [51] and its functional

K(z) = 1 (2.147)

form is shown in Figure 2-14. If o2, > 1, Eq.2.146 is simplified to

+ 200090 Tine = 4kK(0) = 2kn (2.148)
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Figure 2-14: Plot of K(z), complete elliptic integral.

which is identical to Eqgs.2.141 and 2.145. The general solutions of Eq.2.146 can be
found by plotting the right-hand side except the factor of 4k and the left-hand side
divided by 4k as a function of e, and finding all the intersecting points as shown in
Figure 2-15. These solutions in fact do not differ much from the trap state solutions
even when a. is as small as 0.5 as can be seen in Figure 2-16. Of course if o, gets

too small, the discrepancy will be more pronounced.

B. Non-negligible Cavity Damping

If the cavity damping is included, the total energy of the pendulum is not a constant
of motion; it decays in time. In this case, how frequently the excited atoms are
injected into the cavity is critical. If the injection rate is too slow (i.e., very large
At), the field would not build up much in an equilibrium state, and hence only a small
number of # values satisfy the boundary condition, a(—At/2) = a(At/2), in contrast
with the no-damping case, where infinite number of 8 solutions exist (k = 1,2,...).
In the presence of the damping, the kinetic energy of the pendulum can be equal to
its initial value not at the peaks of the potential energy but at upward and downward

hillside as illustrated in Figure 2-17. Instead of Eq.2.135, for |¢| < L;'l,
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Figure 2-15: The solutions of Eq.2.146 are obtained from the intersecting points in
the plot. For this example, we assume ¢, T;n: = 5.
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Figure 2-16: The solution under the assumption of large photon number and the
solution without such assumption. Here the cavity damping is neglected and ¢,7int =

5.
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Figure 2-17: The one-atom laser as a pendulum in the presence of cavity damping.
For simplicity we assume At = T;,; (exactly one-atom operation).

d (1. .
—C-lc—lt-E(t) == (592 — g2 cos 0) = -—%I‘c()2 . (2.149)

Large Photon Number Limit

If a%(t) > 1, approximately a(t) ~ constant = a, for |t| < Tint/2. We can rewrite

Eq.2.149 as

%E(t) RS —%Fc (200,)* = —T.E(t) . (2.150)

Hence

E(t) ~ E(‘—Tz‘nt/2) e—I‘c(t+Ts’nt/2) , (2151)
or

E(Cllmt/Q) — %92(1—7"11/2) - 93 cos G(Tmt/z)

_ Bé?(“T‘"‘/z) _ g cosa(—:nnt/z)] e TTm | (2.152)
which reduces to

292a% 11 (Tint/2) — g €08 0(Tins/2) = [29§ai+1(“Tint/2) + 93] e~Fefine  (2.153)

Since

i1 (£Tint) = a1 (£AL[2) e EFBETind)/2 (2.154)
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Eq.2.153 becomes

293ai+1 (At/2) ele(8t=Tin)/2 _ 93 c0s 0(Tint/2)
- [2g§ai+1(—At/2) e_l—‘C(At"Tl'nt)/2 + gz] e—FcTint
2930721“ ele(8t=Tnd)/2 — g2 cos 0(Tine/2)

= [2g202 e Tedi=Tin)/2 4 g2] e~TeTine | (2.155)

which is further simplified to

1 1
ol — 5 cos 0(Tini/2) =~ o2 e TeAt 4 7 (2.156)
or
0(Tine/2
O‘i+1 — ai e—FcAt + C052 { ( 2t/ )]

s
= ol eTeA 4 cos? [5 + goanTim]

~ a2(1 —T.At) +sin® (goanTint) = f(a?), (2.157)

n

which is a new recursion relation for the field amplitude. We assumed I''At <« 1
in the last step of Eq.2.157. The relation describes the evolution of the field as a
function of the number of atoms traversing the cavity as shown in Figure 2-18.

Convergent solutions can be found by letting a, = a,4+1 = @ in Eq.2.157.

2 Sin2(goaooTint)

e T.At

(2.158)

The mean time interval between atoms, At, is related to the mean number of atoms
in the mode, (N,om), by
ﬂnt

(Natom) = X3

A (2.159)

for the step-wise cavity mode as shown in Figure 2-10. Note that we do not have the
factor due to the sin® kz dependence of the coupling constant because we assumed

that all the atoms are located at the anti-nodes of the cavity field mode. Using this
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Figure 2-18: Evolution of a(t) in the presence of cavity damping. We assume that
goTlint=5 and ' At = 0.25.
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Figure 2-19: Convergent solutions including the cavity decay. Only a few a., solutions
exist in contrast with the no-damping case, where infinite number of a., solutions
exist. Here we assume ¢,T;,; = 5 and I' At = 0.25.

notation,

Fcﬂnt 2 . 92
——a., = sin” (g, Lint) - 2.160
Naon) (g t) (2.160)

The solutions can be found by plotting both sides of the equation and finding a

crossing point as shown in Figure 2-19.

Stability Condition

In the absence of the cavity damping, 3¥) solutions in Eq.2.145 are stable when
approached from lower amplitude side whereas it is unstable when approached from
the other side. When the damping is included, almost all the a, solutions of Eq. 2.158
or 2.160 are unstable no matter how they are approached as illustrated in Figure 2-20.
Among the a, solutions, only the ones satisfying the following condition are stable

against small fluctuations.
daf
dz

<1, (2.161)

—q2
r=a?

where

f(z) = o (1= TAt) + sin’ (/2 Tin) -
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Figure 2-20: Among a, solutions, only the ones satisfying Eq.2.161 are stable solu-
tions. The other solutions are unstable when subject to field fluctuations

If we consider a, > 0 solutions and denote the solutions of Eq.2.160 by g, (),
B®), and so on in the order of increasing amplitude, it is obvious from Fig.2-20 that all
the odd-numbered solutions are unstable whereas the even-numbered solutions can be
stable as the number increases. The largest solution, which is even-numbered, has the
best chance to be stable. If the largest one is not stable, no solutions are stable. In this
case, the system will become highly unstable, continuously fluctuating. If the largest
one is stable, it may be possible that a few more smaller even-numbered solutions are
also stable. Let’s consider a case, ' At < 1, which we are mostly interested in. The
largest a, solution, denoted by ay, gets fairly large, and it approximately satisfies
T

5

9oaNTin: = (2N + 1)2 N>1. (2.162)

The next largest one, ay_1, is also approximately
e
goaN—lfrint ~ (21\[ - 1)5 3
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and hence
dak _ ak —ak_ 2N

2
= = ~=<K1. 2.163
&~ & (el W (2189

Though many stable a, solutions can be allowed, they are very closely spaced, and

therefore practically indistinguishable from each other when the field fluctuations are

present.

Semiclassical Photon Statistics

Interestingly this multiplicity of the field amplitude provides a classical description

of the photon statistics.

An  da% 1 1 1 (2.164)
(n) af N goTine v (n) . '
For a Poissonian photon statistics
A 1
22 o (2.165)

Therefore in the semiclassical model the photon statistics becomes super-Poissonian
with ¢,T;n: < 1, sub-Poissonian with ¢,7;,; > 1, and Poissonian with ¢,T;,; ~ 1. Of
course this description should be considered being qualitative. Only the quantum-
mechanical model described in Sec.1 can give correct results. In Figure 2-21 predic-
tions based on the quantum-mechanical model are shown for various © = 2¢,T;,;.

The parameter o in the plot is defined as

An__ yie) ~ {m) ” (2.166)

T

Interestingly the semiclassical model provides qualitative description on the photon

statistics as demonstrated in the plot.
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Figure 2-21: Photon number variances based on the quantum-mechanical theory
described in Sec.1 for various © = 2g,T;n;.

Physical Solution

When more than one solutions satisfy the stability condition, Eq.2.161, it is not
obvious whether all the stable solutions are observable or not. If Az, is a displacement
of £ parameter from its stable point z, due to fluctuation at a certain moment, the

subsequent displacement will be

Az, = (ﬁ

Therefore the smaller the slope is the faster = converges back to z,. If the slope
is slightly less than one, the convergence of z can be very slow. In this case z is
likely to have additional fluctuation during the process of convergence. It can be
displaced farther away from z, and eventually jumps to a larger stable point. If
z, is the largest stable solution, ¢ does not have a larger stable point to jump to.
Furthermore largest stable point has the smallest slope and hence it is most robust
against fluctuations. Therefore what we observe in an experiment would be statistical

average of the all stable solutions. This average would depend on the very details of
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the fluctuations and the evolution of the field. We can numerically solve the recursion
relation, Eq.2.157, under random fluctuations and can calculate a time average. This
time average is equivalent to the above statistical average. This average, however,
would approximately equal to the largest stable solution because the field amplitude
stays close to it most of time under the fluctuations. Although we do not attempt to
prove this claim in this work, we will compare the experimental data with the stable

solutions given by the theory in the next chapter.

2.2.3 Gaussian Mode Coupling in Large Photon Number
Limit

In this section we again consider a general case, where the coupling constant is not a

stepwise function but is a gaussian given by Eq.2.115. A pump laser field is treated

generally, given by Eq.2.116. We start with a formal solution of the coupled Maxwell-
Schrodinger equations, which can be obtained from Eq.2.124 and 2.125.

a(t) + =a(t) = —%g(t) sinf [ ; 2(t)a(t)) + Qr(¥)] dt'} . (2.167)

Multiply a(t) to the both sides and integrate the result over At.

At/2 At/f2
/ 2(¢')dt’
—At/2 2 At/2

1 rAt/2 t

= =5 [, g0a(t) sin{ [ Ra(®)a(t) + (2 dt,} 169

—at

where (n) is defined by Eq.2.129. Using the boundary condition in Eq.2.143 and a,
notation therein, Eq.2.168 reduces to

At/2
n+l a + /

At/2

- /_ oy & 9(t)a(t)sin { / ; 29()a(t) + Qr(t)] dt’} . (2169)
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Now we assume

At

t) — n
)=l o) for t< 5 (2.170)

a(t)

a(t) — a(—At/2)l
a(t)

Then

2 2 2
an+] - a, + FcAtan

At)2 ) t , "y
R —ap /—At/z dt g(t)sin {/_oo [29(t") o + Qr(t)] dt }

1\? v(t'—to
= —ap /At/z dt g, e_(%)2 sin {/t [ng ap e (-“_’v'L".) + Q% e_(—%”—l)r‘] dt'}

-At/2 —0
Atf2 vt \2
-At/2
t t—t,
X sin {290 antm Err (L) + \Q%tpEI'I' (__’U( - ))} )
m wy

where t,, and ¢, are the transit time and the pumping time respectively defined as,

= YTmy (2.171)

tmyp =
P v

and
1 .
Err(z) = ﬁ/—oo e "dz . (2.172)

Noting t;n; = tn, and substituting ¢ = ﬁ,

vAt
2wm

wm -
a§+1 = ai(l —T.At) —goan—v—/_y_tdqe ¢

2wm

X sin {ng antintBrr(q) + Q%t,Err ( l 7 %o )} . (2.173)

p/ Wm

Defining z, = a2, ¢, = z,/wy,, and

vAt
Ag = 2w,
em = 2gotint (2174)
0, = Qrt,, (2.175)
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We obtain a recursion relation,

Tpt1 = zo(l —T.AD)
O,\/Z, [24 —q?
+ N dqe?
X sin {@o\/EErr(q) + Sign(a,) [@,,Err ( 1~ % ) - 77] }
Wy /Wi

f(zn) (2.176)

where

Sign(x) = 41, if 2>0
= -1, if £<0. (2.177)

For a spatial distribution of an atomic beam as considered in the preceding section,

the time interval At is related to an effective number of atoms in the field mode as

s=(Gavey)

Note that we do not have the 7 factor due to the sin? kz dependence of the coupling
constant because we assumed that all the atoms are located at the anti-nodes of
the cavity field mode. Any convergent solutions of Eq.2.176 are obtained by letting

Tp41 = T, = a® and solving a resulting equation.

A _
a, = %—% (Natom) _Aqq dq e~ sin {@oaoErr(q) + [GpErr (ip/wq;) - W]}
(2.178)

Among the solutions, only the ones satisfying the following condition are stable

against small fluctuations.
df

<1.
dz,,

Tn=a2

Only these solutions are physically meaningful solutions, which are observable in

experiments.
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Reduction to Stepwise Coupling Case

If the coupling constant is stepwise as shown in Fig. 2-10, the solution above is greatly

simplified. First notice that Eq.2.167 reduces to

. T I . t 1. t
a+ 5= ~59sin (2g0 '/—Tint/2 a(tdt' + 7r> = 5908in (Qgg/ a(t')dt') ,

"‘Tint/2
(2.179)
from which
2 2 Tine/2
oy R oar(l—TAL) + goary /_T. ,5n (2900 (t 4 Tine/2)] dt
1 Tint/2
= (1 —T.At) — 5 cos [2g,0n (¢ + Tins/2)]
- int/2

= (1 -T.At)+ %[1 — ¢08 (290 Tint)]
= a?(1 —T.At) + sin® (goonTint) (2.180)

which is nothing but Eq.2.157.

Results: Pump Position Dependence

Using Eq.2.167, we can study the effects of the pump laser when is placed near and
even in the cavity. Figure 2-22 shows the predicted mean number of photons as a
function of the position of the pump laser. Interestingly there are two solutions for
some values of the pump position. If the pump field overlaps with the cavity field
mode even slightly, the resulting pump pulse area in Eq.2.176 is less than 7, and
hence there are two different recursion relations, one corresponding to positive a,
and the other to negative a,. According to the discussion in Sec.2.2.2, a largest
stable solution of each recursion relation approximately corresponds to a physically
observable solution. Since a fluctuation cannot change the sign of the field amplitude
unless it is very small, the two photon number solutions are legitimate solutions and
should be physically observable. The larger photon number solution corresponds to a
cavity field antiparallel to the pump laser field and the smaller one to the field parallel
to the pump field. When the pump field does not overlap with the cavity mode, these
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Figure 2-22: Dependence of the position of the pump laser. Notice that the photon
buildup is maximized when the pump laser is placed just outside the cavity mode. we
assumed (Nyiom) =1, ¢o/Tc =24, 0,, =1.1, ©, = 7, w, = 0um, and w,, = 42um.

two solutions are degenerate. In Chapter 3 we will compare this prediction with the
data.

Interestingly the largest (n) can be generated when the pump laser is placed just
outside the cavity mode, i.e., z, ® —w,,. This is due to the fact that the photon
build-up is maximized when the atoms are prepared in a superposition state of the two
energy levels as discussed in page 56 in Sec.2.1.5. As shown in Fig.2-9, the maximum
occurs when the atomic state is 30 % — 70 % mixture of the lower level and the upper
level. When the pump is just outside of the mode, the atoms in the cavity mode
have not undergone a complete 7-excitation, and hence they are in a superposition
state while interacting with the cavity field mode. Notice that (n) is relatively small
when the pump laser is right inside the cavity. Recall that the atomic population
is maximally created at the end of the pumping process. However at the end of the
m-excitation the atoms are exiting the cavity, and hence do not have any chance to
interact with the field. If the pump is place past the cavity mode, (n) cannot build

up since the atoms entering the cavity are not excited at all.
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2.3 Semiclassical Theory of Many-Atom Laser

2.3.1 Model

The quantum theory in Sec.2.1.1 and the semiclassical model in Sec.2.2 assume at
most only one atom is present in the cavity. Experimentally, however, we can continu-
ously increase the atomic beam flux until more than one atom are present in average.
Although it would be extremely difficult to derive a quantum theory for a few atoms
interacting with the same cavity field, it is relatively easy to formulate the operation
with a large number of atoms. We can define macroscopic quantities averaged over
unit volume, replacing variables associated with individual atoms.

Suppose a beam of excited atoms entering the cavity at a same velocity v. The
dimension of the atomic beam in the direction perpendicular to the cavity axis, de-
noted by A, is assume to be much smaller than the waist of the cavity mode, w,,, and
the dimension along the cavity axis, denoted by [, is supposed to be much shorter
than the cavity length as depicted in Figure 2-23. As discussed before, the coupling
constant between an atom and the field mode depends on the position of the atom.
The sin’® kz dependence can be taken into account by an effective mean number of
atoms in the mode. So for simplicity of calculation, we assume that all the atoms
are located at the anti-nodes of the cavity field mode. The Maxwell-Schrodinger

equations for such system are

., T
ok + 50k = —(gra + Q5 /2) N, (2.181)
. &
a+ ?a = - ngak (2.182)
k
Ne +To(Ne+1) = 4(gra+05/2)0, (2.183)

where g; is the coupling constant at the position of the k-th atom and Q% is the Rabi

frequency of the pump laser at the same position.
Let’s consider a small volume AV, which encloses a small number of atoms and

moves along with the atoms in it at a velocity v. We introduce polarization density
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cavity mode

Figure 2-23: Many-atom laser

o(t; x,) and inversion density n(t; z,) defined as

1 AV
o(t;z,) = N > o) (2.184)
at r=vt+z,
1 AV
n(t;z,) = NG ST Nk(2). (2.185)

at z=vt+z,

Then the Maxwell-Schrédinger equations reduce to

da(; Zo) | %o—(t;xo) = - (g(x)a(t) + QRQ(x)) xﬂmon(t; 2,]2.186)
dn(ctl;fxO) + T, [Tl(t; 1130) + no] = 4 <g(:v)a(t) + QR2('T)) s o'(t; xo)(2.187)
%‘tf + %a = 7 i 9(@)omvtga, O(E T)AV

AV
— —Ih /°° 9(2)mrige, ot o)z, ,  (2.188)
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where n, is defined as
1 AV

=V >oo1. (2.189)

at r=vt+zo

o

2.3.2 Negligible Atomic Damping

First we consider a case in which the atomic spontaneous emission decay is negligible

compared to the time evolution of the system. There exists a constant of motion,

do dn
102 40 =0, 2.190
MPTRRT (2:190)
or
40*(t; x,) + n*(t; z,) = constant = n? . (2.191)

The value of the constant is determined by an initial condition,
40*(—00; 2,) + n*(—o00;z,) = n*(—o0;z,) = n?.
Eq.2.191 suggests the following substitution.

n(t;z,) = —n,cosb(t;z,) (2.192)
o(t;z,) = %gsin 0(t; z,) - (2.193)
Substituting Eq.2.193 into Eq.2.186, we find
di(t;z,)

20 = g(a)a(t) + QR mte, (2.194)

Stepwise Cavity Mode

If the cavity mode is described by a stepwise function,

9(z) = g, |z|<wn

0 , otherwise,
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and if the pump laser is placed well before the cavity, Eq.2.194 is simply

di(t; z,
(ti2o) _ 2g,a(t) , (2.195)
dt
and hence
14
0(t; 2,) = 29, / _a(t)dt 4+ (2.196)

v

for —#m=%fe <t < ¥m=%o [q.2.188 is then reduced to

v

da(t) T wn—vt
—a(t = - 1 R .
dt + 5 (1( ) lhgo~/—-wm—ut 0'( ;T )dg;
llh W —vt t J .
= 3 oo i 2 o/ AP Y .. -
g el /_wm_,,tsm[g _vms, a(t') t] z,. (2.197)

Multiply a(t) to the both sides and integrate from —Tin:/2 to Tine/2.

e (2o (2]

1 leﬂi Wy —vt . t , ,
= é—lhgono/_%ua(t) {/_wm_vt sin [ng/_w " a(t )dt] d:vo} dt, (2.198)

where

(n) = TL / 5.

int

We assume that (n) > 1 so that

Tine 3T ns Tt
tyx~al|l— =a; , — t .
a(t) = a ( ) a 5 <t<—

Therefore, with a notation, ay = a (L;i), we obtain

(a2 — a?) + [ Tinea?

Ting

L Wm—vt
= lhgonoai/ ; dt/ sin [ngai (t + Wm ¥ a:o)] dz,
‘”‘2“' v

—wWm—vt

— lhgnoa, /_Z;i i {_cos [290(1{ (t + Emﬂig)] }

wWm —vt

2g.a;/v

2

— Wy —vt
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TI‘QH t 2

Tint _ T
- lhnov/ 2 dt [1 €os (ngatTmt)
- lhnov];'nt SiIl2 (goaiﬂnt)
= 2lhw,n,sin’ (90a:Tint) (2.199)

Recall that all the atoms are assumed to be located at the anti-nodes of the cavity
mode and n, is the density of such atoms. Since 2/hw,, is the volume of the atomic

beam in the cavity mode, the total number of atoms in the cavity, (Nutom), 18 20hwp,n,.

Then Eq.2.199 becomes
a? = a? (1 = T.Tint) + {Natom) sin® (9,0:Tine) (2.200)

which is a recursion relation, describing a time evolution of the field as a function of
the number of groups of (N,sm) atoms. Any convergent solutions, whether they are

stable or not, are obtained by letting a; = af = .

Na om .
al, = (I‘cilt}m) sin® (goooTint) - (2.201)
A stability condition is
df
- 2.202
dole=az,| <1 (2.202)
where
f(z) = 2 (1 = TeTint) + (Nutor) sin® (gov/zTint) - (2.203)

Gaussian Cavity Mode

In experiments, the cavity and the pump laser are described by gaussian mode func-

tions.

o(z) = g (@)

I—.‘ZE 2

Qr(z) = ORG_( P )
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In this case Eq.2.194 becomes

d0 t' ° vt+z, )2 [ vttzo=-z 2
___(d;_”i_l = 2g, e (8n) a(t) + Q% e (=522) (2.204)
t [ vt'tzo 2 _ vt'+zo-—:;2 2
0(t;z,) = / [nge ( wm ) a(t') + Qg e ( P ) dt' . (2.205)
da(t) T,
7 + —af(t)

2
= —lh /oo g(z = vt + z,)o(t; z,)dz,
1

e vttzp, \2
= —Elhgono/ e_(_w%Q)

120 )2 vt'4zo—2p 2
X sin {/t [25]0 e—<$) a(t’) + Q% e_( o ) ] dt'} dz, . (2.206)

—00

Multiply a(t) to the both sides and integrate from —¢;n:/2 to tin:/2.

P 0 vttzo \2
= —-——lhgono/;t%m a(t)/_oo e (552)
) t _(vt’ixg)2 , _(vt'+¢o—xg)2 ,
X sin / 2ge \ "™/ a(t)+ QR e vr dt' 5 dz,dt .(2.207)

The first gaussian function is negligibly small when |z, + vt| > w,,, and hence the z,

integration is appreciable only in a range,

—W,, — vt < T, < Wy — V.

Similarly ¢’ integration is important only in a range,

—Wy, — T, < VY < Wy, — T, -
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Since t is varied from —t;,:/2 to tin:/2, the significant range of z, is at largest
—2w, < z, < 2w, ,

and hence the important range of ¢’ is at largest

tint

3t""t<zt’<t<
2 2

Now we assume that a(t) in this time interval can be approximated as the value at
the midpoint of the interval,
tint

a(t) ~ a (t = - ) =aq;. (2.208)

With a notation, a (t = %ﬂl) = a5, Eq.2.207 then becomes

(afe — a?) + ailtins
t.
unt o 2
vtttz
= —lh na~/2,/ e~ (n2)
GoTol; _ilzﬂi o
t (v_t’my _("_"L’g:f.a)z
X sin {/ [ng e \ "™ J ag;+Q%e wp ] dt'} dz,dt
—00
" b e
= -—wgnoa;/, / e ?
mYo _t_L?ﬂi oo
q wq_7im 1
X sin [ngai_ll)_'i/ e—q""dq/ + QOR&/ L4 e 9 ndqll] dth ,
v —00 vV J-o0

where

¢+ z,

g = LT gy Yy (2.209)
W W
" _

g o= W E T g g (2.210)

Wp Wp

o+ ot 1

g = BX% G- da,. (2.211)
W, Wy
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Using the definition of Err(z) in Eq.2.172,

(afe — a?) + alT ting

= —lhwmgonoaitint/

—-—00

o0

e~ sin [2goa tindErr(q) + Qzt,Err ( — % )] dq

p/wm

= —llhwmnoai@m /oo e~ 7 sin [@ a;Err(q) + ©,Err ( )] dq , (2.212)
2 -0 p/

where ©,, and ©, are defined by Eqgs.2.174 and 2.175 respectively. Recall that the
atoms are assumed to be at the anti-nodes of the field mode. So the density n, is the
density of such specially distributed atoms. Then an effective mean number of atoms

in the mode is

h/2 1/2 . =
a om — lbg =N, mAl = . 2213
t =" / /h/z 12 =" ( v \/;> ( )

As in reality, if the atoms are randomly distributed in the beam,

h/2 /2 z \2
(Natom) = noall/ dw/ dy dz 6_2(7'7) cos? kz
h)2 1/2

/2 21
~ noau/ dac/ dye (%) 5

hlw,,
no,all( 9 \/—2:) 3 (2214)

with n, . being the density associated with any atoms, which can be measured in

experiments. Hence

(Natom> Ona; [ e_q2
V2r —oo

X sin {@maiErr(q) + [@,,Err ( 1= 9 ) - 71'}} dg,  (2.215)

Wp /W,

G;i = a? (1 - Fctint) -+

which is a recursion relation, describing a time evolution of the field in a time scale
of t;n:. From a field amplitude at time ¢, a field amplitude at time ¢ + ¢;,,; is given by
the relation.

Any convergent solutions, whether they are stable or not, are obtained by letting
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9o [2 e 2
o = T A/ Na om / -
“ Fc 7('( ¢ ) —00 ©
. [ q9— 49
X sin { OmaErr(q) + -QPErr wijwn ) | ¢ dg . (2.216)
A stability condition is

4 <1 2.217
dzr z=a2, ’ ( ) )

where
(Natom> Gm\/-; *®© e_qz
V2T —o0
X sin {@mﬁErr(q) + Sign(as) [GpErr ( 1= % ) - W] } dq (2.218)

Wy /W,

fe) = x(1—Tetimt) +

where

Sign(z) = 41, if >0
= -1, if 2<0. (2.219)

If the pump is positioned well before the cavity (¢, — —o0),

Err (i;;—i—:) — Err(oco) =1.

So if ©, = 7, the second term in the sine function vanishes.

e = L2 (Netm) [ &7 sin[OpnorcBir(g)] dg (2.220)

2.3.3 Non-negligible Atomic Damping
A. Mean Field Representation

When the atomic damping is not negligibly small, n? + 402, which was a constant of

motion in the case of negligible atomic damping, is not constant any more. Conse-
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quently the pulse area 6(¢; z,) is not a useful parameter to work with. In this limit,
time-averaged Maxwell-Schrédinger equations instead provide useful insights on the
system.

We consider a steady-state solution of the Maxwell-Schrédinger equations. In a
steady state the explicit time dependence in n(z,t), o(z,t) and a(t) all disappear,

where n(z,t) and o(z,t) are related to n(t; z,) and o(¢;z,) in the following way.

n(z,t) = n(z =vt+ z,,t) =n(t;z,)

o(z,t) = oz =vi+z,,t)=0(t;z,). (2.221)

Absence of any explicit time dependence means

n(z,t) — n(z=vt+z,)
o(z,t) — o(z=vt+z,)

at) — a,. (2.222)

Then the Maxwell-Schrodinger equations are

vd‘(’i(;) + %‘la(m) = —(g(z)a, + Qr(z)/2)n(z) (2.223)
vdT;E:) T [n(z) + o) = 4(g9(2)ao + Nr(z)/2)0(z) (2.224)

¢ = —QI{h / dzg(z)o(z) . (2.225)

For simplicity, lets consider a pump laser positioned far away from the cavity and
a cavity mode described by a stepwise function, which is g(z) = ¢, if |z] < wp, and

g(z) = 0 otherwise. Integrating Eq.2.223 from z = —wp, to z = wy,,

Wm

vo(z)|2n  + %/wm o(z)dz = —goao/ n(z)dz . (2.226)

—-Wm
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and defining spatially averaged variables

-——L/wm o(z)dz

me —Wm
_ 1 /Wm (2)d
n = S _wmna: T,
we then obtain
I,
T () = o(—w)] + 2

where I';, i1s a transit time broadening rate, defined as

I'y=—=

1 v

T,int - 2u)m ’

Similarly we can rewrite Eqs.2.187 and 2.188 as

Cir [n(wm) = n(—wn)] + Ta [2 + 7] =

a, =

0 = —a,goN )

4a,9,0

—4lhw,,

Yo _

a

i_‘_G'.

(2.227)

(2.228)

(2.229)

(2.230)

(2.231)
(2.232)

Recall that all the atoms are assumed to be located at the anti-nodes of the cavity

mode and n, is the density of such atoms. Since 2/hw,, is the volume of the atomic

beam in the cavity mode, the total number of atoms in the cavity, N,, is 2lhw,,n,.

Similarly we can define a total inversion and a total induced dipole in the cavity as

5(z)
N(z)
S
N

= (2lhwn)o(z)
= (2lhwm)n(z)
= (2hwn)s
= (2lhwn)7 .

2.233
2.234
2.235

)
)
)
2.236)

(
(
(
(

Assuming that the pump laser is adjusted for 7-pulse excitation so that N(—w,,) = N,

and S(—w,,) = 0, we can rewrite the Maxwell-Schrédinger equations as

I

F“-Sf + "2—5’ =
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T (Ny = No)+Ta [N+ N,| = 4ag,§ (2.238)

Ta = —2¢,3, (2.239)
where Sy = S(wy,) and Ny = N(wp,).

Reduction to Negligible Damping Limit

We can recover Eq.2.201 by letting I’y — 0 in the above equations. This means
that Eqs.2.237,2.238 and 2.239 are still equivalent the original Maxwell-Schrédinger
equations, Eqs.2.186, 2.187 and 2.188. In order to show this, first note that in a
steady state Eq.2.194 reads

6
vg; = 29,4, for |z| < wp, , (2.240)

and hence
T+ Wy,

6(z) = 2g,a, ( ) + 7 ,for |z| < W . (2.241)

Then

— 1 Wm NO .
S = ———/_wmysme(:v)dw

2w,

= ———N" /wm sin {ngaa (I +vwm> + 7r] dz

4wm —Wm

= — No /wm sin [ngao (m + wm)] dr
4wy, J—wm v

e f ol ()

- 4wm 290‘10/'0 om
3 N, 1 —cos(29,a0Tint)
- QQOGont 2
N, . 2
= — o oﬂn .
2goao]1int o (g ¢ t)

From Eq.2.239 we then obtain
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Figure 2-24: Rate equation approximation can be applied to two limiting cases, which
are (a) over-damping and (b) saturation limits.

N, .
— chfint sin? (9000Tint) (2.242)

which is nothing but Eq.2.201.

B. Rate Equation Approximation

If the atomic damping is not negligible, the dephasing of atomic dipole moments
will diminish the collective behavior of the dipoles appearing in Eqs.2.216 and 2.201.
Consequently Rabi oscillation characteristics in the total dipole moment would be
washed away at the end of the interaction, resulting in a constant Sy, which is in-
sensitive to the details of the atom-field interactions. This assumption is equivalent
to “rate equation approximation, which is often used in the analyses of conventional
lasers. In this rate equation limit, we can think of two limiting cases of interest as
illustrated in Figure 2-24. One case is over-damping limit, where the atomic damping
leads to complete decay of the total atomic dipole and population at the end of the

interaction, so Sy = 0 and Ny = —N,. Another interesting limit is saturation limit,
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in which the atoms are fully saturated during the interaction, and therefore leaving
the cavity either in the excited state or in the ground state with equal probabilities.
In this case Ny as well as Sy are vanishing.

In both cases Eqs.2.237, 2.238 and 2.239 reduce to familiar rate equations. Sub-
stituting Eq.2.239 into Eq.2.237, we obtain

I'yla = 4ag3N

or

495, \ & d(n)

7 () N = Tefn) =0~ = (2.243)

which can be thought as a rate equation for the mean number of photons, (n). From

Eq.2.238, on the other hand,

— N, Ty + T, [N + N,| = 4ag, 5 (2.244)
or
"Ftr_&)_&-_égﬁ V=0
No( =) - E N - N =0 (2.245)

where n = 2 for over-damping limit, and n = 1 for saturation limit. Eq.2.245 can be
thought as a rate equation for the total population inversion, N. We can identify a

pumping term,

ey Ty
N"( 2t "_2_>_’R”

and a laser coupling coefficient, K,

4g?

T, - K

which appear in the rate equations for the conventional lasers in Ref.[52]. It is easily

seen from Eq.2.243 that NK (L ) is nothing but a saturated single-pass gain in a laser.

c

KN =
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Since an absorption cross section is given by

and

we find

The numerator,%aoL is nothing but a single pass gain while (1 — R) is a loss due
to cavity decay. The equality means that the single pass gain saturates to the value
that exactly compensates the loss in the system. This is a well-known steady-state
behavior of conventional lasers above threshold [53].

The rate equations, Egs.2.243 and 2.245 have an exact solution.

T]Ftr Pa
’z — No .

where Ny, is a threshold value for the number of atoms for laser oscillation,

o ) G

L= ()

For an example, under our experimental conditions, Ny, is about 8 x 10™* and the

(2.247)

constant multiplied to N, is about 3.1 if we assume the over-damping limit, so
(n) ~ 3.1 (N, -8 x 107)
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This result will be compared with the experimental data and the predictions of other

models in Chapter 3.
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Chapter 3

Experimental Study of the

One-Atom Laser

In this chapter, the experimental study of the one-atom laser is presented. In a
nut shell, the one-atom laser is composed of a beam of two-level atoms, a high-Q
supercavity resonator, a pump laser to excite the atoms into the upper energy level,
and photon-counting detectors, as illustrated in Figure 1-1. In addition we need
a vacuum chamber that houses both the resonator and an atomic beam oven, and
a setup for stabilizing the pump laser frequency and locking the frequency of it to
the two-level transition frequency. First, in-depth coverage on each component is
presented, followed by the description of the one-atom laser experiment. The results
of the experiment are presented, and then comparison with the predictions by the

theories studied in the preceding chapter are given.

3.1 Components of Experiment

3.1.1 Two-Level Atom
Candidates

The theories developed in Chapter 2 require that only two levels of an atom be

coupled to a cavity field and the decay rates of both levels be much smaller than the
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rate of atom-field Rabi oscillation. An appreciable buildup of the cavity field requires
negligible cavity damping as well as a coupling constant g, much greater than the
decay rates of the cavity and the atom. If atoms are generated from an oven, readily
obtainable source of atoms will be a thermal atomic beam. These atoms would have
a mean velocities in the range of 300 m/s to 500 m/s depending on the temperature
of the oven as well as the masses of the atoms. Typical mode waist of a supercavity
resonator is about 50 pgm, so the atom-field interaction time, ¢;,;, would be order of
0.2 psec. A significant buildup of the cavity field occurs if g,t;n: 21, and hence the
coupling constant should be greater than 5 x 10° rad/sec or about 1 MHz. The cavity
and the atomic decay during ¢;,; also should be negligibly small.

If the velocities of atoms are modified, these requirements scale accordingly. With
slower atoms the atomic and the cavity decay rates need to be smaller whereas g,
needs to be larger. However, since g2 is proportional to the atomic radiative decay rate
[, (both ¢ and T', are proportional to u?), the conditions on the coupling constant
and the decay rate cannot be satisfied at the same time if the velocity is set too
small. With faster atoms, on the other hand, the decay rates can be larger, and g,
can be smaller. But since a larger g, is more desirable, we can have both a larger
decay rates and a larger coupling constant satisfying the requirements. Only problem
is that the practical number for the increase in velocity is about twice or so with a
simple velocity selector or with a supersonic atomic beam.

Since we want to build a laser, the transition frequency between the two levels
must be in the optical regime. A quick glance of the periodic table reveals that only
low-lying energy levels of atoms can be used. If the lower level is not a ground state
of an atom, the requirement on the decay rates of the lower and the upper levels are
not easily satisfied. Usually the upper level decays strongly to the other lower levels.
If the lower level is a ground state, only the upper level decay need be slow enough.
Table 3.1 summarizes a survey of possible candidates [54].

Among alkali atoms only cesium is listed since the other alkali atoms require an
ultra-fast atomic beam. Even cesium atom requires velocities three to four times

larger than a mean thermal velocity. On the other hand either barium or ytterbium
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atom lr barium I ytterbium ] cesium ]

transition 615y « 63P, | 615, « 63P 625% — 62P%
wavelength (nm) 791 556 852
T,/2x (MHz) 0.050 0.19 5.1
typical velocity (m/s) 320 270 250
Fotint (W, =50 pm) 0.086 0.37 1.1

Table 3.1: Candidates for two-level atom

atom can be used with a thermal atomic beam. As far as the loss due to the atomic
decay is concerned, barium is better than ytterbium. However ytterbium permits a
larger coupling constant for a given geometry of the cavity since its decay rate is larger.
In this sense, both atoms are equally good if same cavity decay rates are assumed.
However in practice a higher finesse can be achieved at a longer wavelength with the
present supercavity technology. The bottleneck in achieving a high finesse mirror is
the scattering off the mirror surface. Such scattering is mostly Rayleigh scattering,
the strength of which is proportional to 35 with A being the wavelength which the
mirror is coated for. Therefore an atom with a longer transition wavelength is favored
as far as a finesse is concerned. From all these considerations, we have chosen barium

as the atom for our experiment.

Barium Energy Levels

Figure 3-1 illustrates the low-lying energy levels of atomic barium. A two-level atom
is realized by exciting 1Sy <> 3P, transition, the wavelength of which is 791.1 nm
(12636 cm™! wavenumber). The Einstein A coeflicient of the transition is about 50
kHz [55, 54, 56]. The 3P, state can decay to 1S;, a ground state, >D; and 3D
state with a branching ratio of 1.0:0.97:0.37 [57], resulting in 1.4 psec lifetime. The
D states are metastable states since 3D « 1S transition is forbidden in the dipole
approximation.

The most frequently studied transition in atomic barium is 1Sy <> 'P;. It has a

102



1P 1

A= 2 3
=1.5 pm
A=48 kHz 1 P
0
A=553.5 nm A=2.9 ym
1 D 2 A=19 MHz s A=50 kHz

A=791.1 nm
A=50 kHz

J
/

A=2.9 ym

A=19 kHz

1S 0
Figure 3-1: Low-lying energy levels of atomic barium. The 'Sy «> 3P, transition was
used to form a two-level atom.
wavelength of 553 nm and a linewidth of 19 MHz. Figure 3-2 show fluorescence signals
from various barium isotopes in naturally abundant barium sample [1]. Because of
its visibility and transition strength, it will be used in the procedure of calibrating

the density of barium atoms in the cavity.

3.1.2 Resonator
Finesse Requirement

In selecting a type of resonator which will be used in the experiment, there are two
major issues to consider. First how high finesse should be and secondly how strong a
coupling constant should be.

The finesse requirement is determined by the cavity decay rate allowed in the
experiment. For barium atoms in an effusive atomic beam a mean thermal velocity is
about 300 m/sec. We can think of two kinds of resonators. One is a degenerate-mode
resonator such as a confocal or a concentric resonator, and the other is a single-mode
resonator such as a supercavity resonator. The mode waist and the cavity decay rate

of each type is summarized in Table 3.2, where r, is the radius of curvature of the
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Relative
Compt. Isotope Fypper Frequency
(MHz)

138g, 1 0
13788 52 65
13582 52 105
136, 1 125
134, 140
1378 32 260
1358, R 305
135ga 12 535
1378 12 555
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Figure 3-2: Isotopic and hyperfine structure of the 'Sy < 1P, transition of atomic
barium. Excerpted from Ref.[1], p 124.

mirrors and L is the distance between the mirrors, and F is a finesse given by

F= . (3.1)

with R = «/R; R, a geometric mean of the reflection coefficients of the mirrors.

For a single-mode resonator notice that the waist is a very slow function of r,
and L. Therefore for rough estimation we can pick up some representative values for
r, and L. If we use 10 cm for r, and 0.1 cm for L, the waist is about 40 ym. The
atom-field interaction time, #;,;, is then about 0.2 usec. Since the cavity decay should
be negligibly small during t;n; (ctint < 1), the finesse has to be much greater than
159%ﬂ ~ 2% 105, For a confocal resonator, a typical value for r, might be 5 cm, which
gives a waist of 80 ym and ¢;,; of 0.1 usec. Then a finesse has to be much greater
than 4 x 104

A concentric resonator has a diffraction-limited waist, w/ , within which atoms

, [Ar,
wm - Sf M (3.2)

104

can couple to the mode [1].




[ type [ mode waist [ T. |

1
. 2\1
single-mode ( %—I;;;L) 17

AL e
confocal b SLF
concentric Ary T,

8F LF

Table 3.2: Mode waist and cavity decay rate of various types of resonators. r, is a
radius of curvature of the mirrors and L is a distance between the mirrors, and F is
a finesse.

Then the finesse has to satisfy

3 2m e/ AT,

Fz>> ool (3.3)

which translates F > 4 x 108 for a r, of 5 cm.

Based on these estimations, a confocal resonator appears the most favorable
choice. A finesse of 10° would be adequate. However, such a high finesse over the
waist of the degenerate mode on the mirror surface is extremely difficult to realize.
Roughly speaking, a highest finesse value attainable is inversely proportional to the
mode waist on the mirror. For a single-mode resonator, the mode waist on the mirror
is about the same as w,, for L < z, = \/? . The mode waist for a confocal resonator,

on the other hand, is given by
227
V=== A4
o= (22) B4

which turns out to be 200 um for our example. If a finesse of 106 is a highest achievable
finesse value for a single-mode resonator, a highest finesse for a confocal resonator

over 200 pm spot would be 108 x (%)2 = 4 x 10%, which does not well satisfy the
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requirement (We need 10° or even higher). In other words, a confocal resonator is not
any better or perhaps worse than a single-mode resonator. A concentric resonator
is the worst one since the mode waist on the mirror is the largest and the required
finesse alone is the highest among the three types . All these considerations lead us

to choose a single-mode resonator as the resonator in the experiment.

Coupling Constant

The atom-field coupling constant, g,, was defined by Eq.2.84 as

_p [2rhw
=NV

For a single-mode resonator a mode volume V is given by

Using the expression for w,, from Table 3.2, we can rewrite g, as

2 " (2\/3%2) % m_:) (3.5)

Once a type of two-level atom is chosen, only adjustable parameters are r, and L.

Since a larger g, induces a stronger cavity field build up, r, and L should be made as
small as possible.

The mirrors used in the experiment have been fabricated at PMS electro-optic
[58]. They use super-polishing technique to produce mirror substrates with extremely
high surface figures. Then they use multi-layer ion beam coating technology to yield
very low transmission coefficients. In order to achieve very high finesse, not only the
transmission but also the scattering loss, either from coating material or from coating-
substrate interface, should be minimized. According to PMS, the scattering loss is
closely related to the radius of curvature of the mirror mostly because the smaller the
curvature is, the more difficult is to realize a high surface figure. If the curvature is

too deep, it is also difficult to maintain coating material uniformly deposited during
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coating processes. Prior to our mirror production, typical r, they had used was 100
cm. The highest finesse attained so far with that radius of curvature was 2 x 108
with a transmission (7') of 0.5 x 107 and an absorption/scatter (A) of 1 x 10~¢
at 850 nm [7]. If we assume that A is mostly scattering and it is mainly due to
Rayleigh scattering, we can predict that A with the same radius of curvature at 791
nm would be 1 x 107° x (850/791)* = 1.3 x 107° and therefore the finesse would be
o543 X 108 = 1.7 x 10°. Since a workable smallest distance in general might be 1
mm, g,/27 then would be 200 kHz and T'./27 would be 90 kHz, satisfying a strong-
coupling condition, 2g, > I'.,I',. However the projected finesse value by PMS was
only around 5 x 10° based on their previous experience. Then I'./27 would be 300
kHz instead, which is not much smaller than 2g,/27. Therefore we chose a shorter
radius of curvature, 10 cm instead of 100 cm, obtaining g,/27 of 360 kHz.

Actual finesse values have been measured using a ringdown technique, which will
be described later. The measurement has been performed on 20 mirrors from a
same batch, yielding a result of about 1 x 10°. During the actual experiment, the
finesse value gradually changed because the barium atoms that were scattered off an
aperture in front of the resonator continuously deposited on the surface. Eventually
the finesse settled down to 8 x 10°. At this finesse value, I'./27 becomes 190 kHz,
therefore satisfying

29, : I, : T, =144 : 38 : 1, (3.6)

thereby safely satisfying the strong-coupling condition.

We can vary r, and L while still satisfying the condition. However the ranges over
which we can vary those are quite limited. If we change L by a factor of ¢, the above
ratio becomes

144 3.8
= p— 1. 3.7
g% 5 ( )

If we want to keep 2g, at least three times larger than I'.,, an allowed range of £ is

29, : I, 1 T,

only between 0.94 and 8.0. However we cannot make the length too long since cavity
linewidth then becomes too narrow to perform any cavity locking/stabilization. As

shown later, cavity locking/stabilization requires that a locking laser should have
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atom 135Ba
transition 6 1Sy « 6 3P,
wavelength, A 791 nm (16316.000 cm™1)
r,/2n 50 kHz

cavity length, L 1 mm

finesse, F 8 x 10°

I./2x 190 kHz

9o/ 720 kHz

Table 3.3: Summary of specifications on atom and cavity.

narrow linewidth than cavity linewidth. In our setup a laser stabilization technique
enabled us to achieve about 50 kHz laser linewidth (The details of the stabilization will
be discussed later). Then a smallest cavity linewidth might be 150 kHz for successful
cavity frequency locking unless we further improve the stability of the probe laser.
However there are types of experiment which do not require frequency locking of the
cavity. A resonator can be designed to have free-running stability better than 50 kHz
without any active stabilization (see the next section). In that case we are allowed to
increase the cavity length up to 3-4 mm for the same finesse value. However for the
present experiment we have chose the length to be 1 mm.

Table 3.3 summarizes the specifications on our one-atom laser based on the dis-

cussions so far.

Stability
design of resonator

When we design a resonator for the one-atom laser, the most important issue is
the mechanical stability of the resonator. A frequency shift due to resonator length

change is given by
6L ¢ 6L

bv=vr

For a length of 1 mm, the free spectral range is 150 GHz, so even 1 A change in the

length induces 38 MHz frequency shift. This length change is due to global displace-
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| material | # (g/cm®) [ Y (10™ dyne/cm?) [ w,/27 (kHz) |

fused silica 2.2 1.5 130
stainless steel 7.9 4.0 110
rubber 1.0 0.066 40
PZT (type 5A) 7.7 0.60 40

Table 3.4: Physical properties of material used in our resonator. w, is a typical
mechanical resonance frequency obtained from Eq.3.9 with C=D/cm=1.

ment of the mirror surface, and it should not be confused with thermal vibrations
of individual molecules. Such vibrations can be easily as large as a few A but they
are random and not globally correlated, and therefore there is no net effect on the
field inside the resonator. However mechanical vibration of the mirror substrate will
certainly induce global displacement of the surface, and hence causing frequency shift
of the field inside. We can estimate such global displacement due to thermal energy

at room temperature. We can easily show that a mechanical resonance frequency of

w, = c\/p—};3 , (3.9)

where Y and p are the Young’s modulus and the density of the object, respectively, D

a solid object is given by

is a typical dimension the object, and of C' is a constant of order of unity depending
on a shape of the object. The physical properties of various material used in our
resonator are listed in Table 3.4. For example, a normal mode frequency of a mirror
made of fused silica with a dimension of 1 cm would be 130 kHz. In a thermal

equilibrium, according to the classical partition theorem, we have

1

%kBT = §Mw3 <x2> .

where z is the displacement of the mirror surface. Then at a room temperature

ksT
(2?) =,/ "j ~~2x 107 em=2x107% A,
pV W}
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Therefore a frequency shift is immeasurably small. In other words, if the resonator
is mechanically isolated, the frequency shift due to thermal energy is immeasurably
small. Therefore Any design of a resonator and its mount should concentrate on how
to isolate the resonator from the outside world.

Sources of mechanical vibrations in the resonator are entirely external. A labo-
ratory is full of sounds from various sources such as air-conditioner and cooling fans
in power supplies. It is not immediately clear how much effects these noises would
have on the frequency stability of a resonator. We found out an answer in a hard
way. Our first resonator, designed with emphasis on functionality, could not meet
the stability requirement. In that design a pair of supercavity mirrors were held
by aluminum holders. One of the holders was glued to a piezoelectric transducer
(PZT) to allow change of cavity length. The PZT was mounted on a flange, tilt of
which was adjustable by three micrometers. Figure 3-3 illustrates the dimensions of
the mirrors and the schematic of the resonator assembly. The material used for the
mount was super Invar. We measured the transmission of the resonator while slowly
scanning the frequency of a probe laser. Many sharp resonances occurred over 100
MHz range. Since the linewidth of the cavity is known to be 190 kHz by the ringdown
measurement, which will be discussed later, and since the stability of the probe laser
is at worst less than 2-3 MHz, the broad resonance or frequency excursion in the
transmission is entirely due to the vibrations of the resonator itself. According to our
previous estimation, the amplitude of the vibrations is only 5 A. We could reduce the
frequency excursion down to 30 MHz with extra care in eliminating the sources of
noise sound and in mounting the resonator assembly on a rigid support with teflon
spacers in between. However such level of the frequency excursion was far from being
acceptable. Simply put, our first attempt was a total failure.

With this experience, a new resonator was designed with the stability in mind.
We eliminated all the parts needed for mirror alignment except a PZT as shown in
Figure 3-4. The mirrors were glued directly on stainless steel holders. The holders
were machined with precision of 0.0005 inches. When a mirror is inserted into a

holder, the mirror touches the holder on three symmetrically protruded parts snuggly.
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Figure 3-3: Schematic of our first resonator assembly. The design failed to meet
the requirements on frequency stability. However this mirror mount was used in
assembling our new resonator, which is described next.
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Figure 3-4: Schematic of our new resonator.

Small amount of Torr Seal epoxy was applied between the mirror and the recessed
part of the holder. By mounting the mirrors on the holders symmetrically in radial
direction, possibility of stress-induced birefringence was reduced. We modified the
old resonator and used it as a tool for assembling the new resonator. The new mirror
holder has a protruded part on the opposite side to the mirror. That part has an
exactly same dimensions as the mirror so that it can fit the old holder perfectly. In
this way the new holders with the mirrors installed were mounted on the old mount
and the distance between the mirrors and the tilt of one mirror relative to the other
were adjusted.

We used a He-Ne laser beam to align the mirrors to be parallel. Since the high
reflection coating at 791 nm is of narrow band (50 nm wide) two surfaces of a mirror
have about 4 % reflectance at visible wavelengths. While the coated surface has a
curvature of 10 cm, the other surface is flat and is wedged at 4 °. When two curved
surfaces are perfectly aligned, a ring pattern is reflected back onto the incoming He-

Ne laser beam. Once the mirrors were aligned, the flange holding one of the holder
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was removed from the mount.

A PZT tube (type PZT-5A from Vernitron) with a length of 3/4” was used to
allow the length change of the resonator. The tube has four holes in the middle for the
clear passage of an atomic beam and a pump laser beam. Torr-Seal epoxy was applied
onto the inner surface of the PZT tube at both ends. Only 1/3 of the length of the
PZT was free of the glue, so free to expand or contract. The tube was inserted into
the mount so that, when the flange was placed back, the mirror holders were glued
into the PZT tube as shown in Fig.3-5. The old mount was made precisely and rigidly
so that when the flange was put back, we did not loose the mirror alignment. After
overnight hardening of the epoxy, the resonator assembly was removed from the old
mount. We then verified the alignment and measured the frequency excursion. When
it was gently clamped between teflon V-blocks, the frequency excursion was about 4
MHz without much care in reducing external perturbation. This improvement, better
than ten-fold, is due to the simplicity and rigidity of the new resonator.

The resonator assembly was housed in a brass enclosure with a large inertia.
There were two Viton o-rings between the PZT and the enclosure, and two smaller
o-rings between the mirror holders and the end plates of the enclosure so that the
assembly was in touch only with four o-rings, suspended inside the enclosure. Then
the enclosure was gently clamped by two 1” thick aluminum plates with 1/4” thick
teflon spacers in between. The plates were mounted on the inner wall of a vacuum
chamber with three teflon screws (Figure 3-5). These three-fold protection by the o-
rings and the teflon spacers and screws could effectively isolate the resonator assembly
from external perturbation. The excursion measurement resulted in only 2-3 MHz at
largest when the measurement was repeated many times. Most of time the excursion
was less than 1 MHz. Later we identified that this excursion was actually due to
the instability of the probe laser. When the probe laser was stabilized in frequency,
the typical excursion was about 300 kHz. However even this value was due to the
mechanical resonance of the probe laser itself. The resonance was measured to be
660 Hz. Hence for a time interval shorter than a millisecond the frequency excursion

of the resonator was much smaller, being about 50 kHz. This small excursion, much
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Figure 3-5: Mount for a new resonator. With this mount the resonator demonstrated
a free-running frequency jitter of only 50 kHz.
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less than the cavity linewidth, is certainly acceptable for the experiment.

PZT resonances

In the experiment, at least for initial alignment, it is necessary to maintain the fre-
quency of the resonator in resonance with the atomic transition. For this we employed
a side-band locking scheme, in which the resonance frequency of the cavity is locked
to a probe laser frequency, which is in turn locked to the atomic transition. The
details of the locking scheme will be discussed later. Only thing to mention in this
section is that an error signal proportional to the frequency difference between the
laser and the cavity is continuously fed back to the resonator PZT to compensate the
error. If the bandwidth of a feedback loop is infinite, any error is instantly corrected.
However if the loop has a component with a low resonance frequency, the bandwidth
of the loop should be made much lower than the resonance frequency since across
the resonance the sign of the feedback changes, resulting in amplification of the error
rather than suppression. For this reason the mechanical resonances of the PZT was
studied.

We measured the response of the PZT as a function of the frequency of a sinusoidal
driving voltage applied to the PZT with the resonator installed in place. The result is
shown in Figure 3-6 indicating a strong resonance at 20 kHz. Therefore any feedback
loop should be designed to have a band cutoff frequency well below 20 kHz to avoid
any amplification of the error signal. Then our resonator with the present PZT cannot
correct any frequency errors above the cutoff frequency. However we have found that
the rigid structure of the resonator with the three-fold vibration isolation scheme
practically does not show frequency components higher than 10 kHz. Therefore it is
possible to design a feedback loop that stabilize and lock the cavity frequency to a

reference frequency.
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Figure 3-6: Frequency sensitivity of PZT (Vernitron PZT-5A)

3.1.3 Characterization of Resonator

Transmission Modes

f‘l'\

he measurement of cavity transmission provides information on various aspects of a
resonator such as degree of alignment, cavity length, finesse and throughput. In order
to excite a single cavity mode, which is just a TEMge mode of the resonator in our
experiment, not only a probe laser should be aligned along the cavity axis, but also
it should be focussed down to the waist of the cavity mode to maximize the coupling
of the probe laser into the mode. We used a CW Ti:Sapphire laser (Coherent CR
899-29) as a probe laser. The direction of the cavity axis was identified with a He-Ne
laser beam as described earlier. When the He-Ne laser was well aligned along the
cavity axis, a concentric ring pattern was reflected back onto the incident laser beam.
Then the probe beam was superimposed on top of the He-Ne laser beam.

The transmitted beam was measured by a photo diode while the resonator was
scanned by applying a voltage ramp to the PZT. This voltage was derived from a

scan drive output of a Tektronix 555 oscilloscope. The signal from the photo diode
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Figure 3-7: Typical cavity scan signal. The largest peak corresponds to TEMgo mode.
The following modes are TEM; o, TEM; o, TEM34, and so on.

was then measured synchronously on the oscilloscope. The amplitude of the ramp
was 130 V. This voltage corresponds to 60 GHz scan range of the resonance frequency
of the cavity. Since the free spectral range of the cavity is 150 GHz, at most only
one longitudinal mode can be displayed on the scope. If necessary, a DC offset
voltage was added to the ramp voltage to bring a longitudinal mode on display. If
the mirrors are not perfectly aligned or alternatively the probe laser is not properly
coupled into the cavity mode, the transverse modes with the same principle mode
number as the longitudinal mode appear at slightly higher frequencies. A typical
cavity scan is shown in Figure 3-7. The largest peak corresponds to the TEMgq
mode. The following peaks are transverse modes, TEM; o, TEM30, TEM34, and
so on. If the cavity has perfect axial symmetry, any TEM,, , with n + m = k is
degenerate with TEMo. We found the frequency differences among the TEM,, ,,
modes with n + m = k, if any, were smaller than a MHz, indicating the cavity

was fairly axial-symmetric. Furthermore, the reflection as well as the transmission
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of the He-Ne beam also showed symmetric concentric ring patterns. This suggests
that the mirrors were quite parallel. The presence of all the transverse modes then
should be due to improper coupling of the probe laser beam. Actually we could
demonstrate that the relative heights of the transverse modes changed as the probe
laser beam direction was slightly tilted. The slight tilt of the probe laser led to
favorable excitation of TEMaky1,0 modes (kK = 0,1,...). If the focus of the probe
was changed slightly, we observed TEMyxo modes (k = 1,2,...) were selectively
excited. These are understandable since TEMt41,0 mode represents TEM,, ,, with
n+m = 2k+1, which are asymmetric whereas TEMy o mode corresponds to TEM,, ,,,
with n +m = 2k, which are axially symmetric. In fact we could reduce the heights of
all the transverse modes down to less than 5 % of the height of TEM o by carefully
adjusting the direction and the focus of the probe laser.

The mode structure in the transmission signal provides not only the information
on alignment but also a way of measuring the cavity length. The transverse modes

in a cavity such as our supercavity resonator are separated in frequency by [59]

Ay = 7. if ro> L, (3.10)
where z, is a confocal parameter given by
roL
o = . 3.11
o=\l (3.11)

As shown in Fig.3-7, the transverse mode spacing for our cavity was 6.6 GHz. We
calibrated the frequency scale by shifting the frequency of the probe laser by a known
amount and observing the position change of the modes on the scope while the cavity
was repeatedly scanned in real time. From the spacing we found the cavity length

was 1.05 & 0.05 mm and z,=0.72 cm.
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Finesse Measurement

A resonator finesse can be measured in two ways. One is to measure a transmission
lineshape and the other is to measure a cavity decay time. The measurement of a
resonator lineshape is desirable if the resonator linewidth is much broader than the
linewidth of a probe laser. If not, the cavity decay is more useful tool. In our case,
when the probe laser was not stabilized, the resonator linewidth (~ 200 kHz) was
narrower than the probe linewidth (500 kHz ~ 2 MHz), so the decay measurement
was more favorable one. However, when the probe was stabilized, its linewidth was
only 50 kHz, and therefore a resonator linewidth could also be measure. The results of
both measurements yielded 190 kHz FWHM consistently. This linewidth corresponds
to a finesse of (7.9 £0.1) x 10°.

The measurement of the cavity decay utilizes a ringdown of the field inside. An
empty cavity is filled up by a pulse of electromagnetic field, and then the decay of
the field is monitored in time. In a usual setup, a probe laser which is resonant with
a cavity is introduced into the cavity at a certain time only for a brief moment. The
duration of excitation is much shorter than a cavity decay time so that the excitation
can be considered being a delta function. To simulated a delta function, an acousto-
optic modulator (AOM) is used as a shutter. Initially the shutter is opened and the
cavity is allowed to drift slowly toward the resonance frequency. When the cavity
becomes resonant with the laser, a field builds quickly in the cavity. The buildup is
monitored through cavity transmission. When a transmission signal reaches a certain
threshold, the AOM is immediately switched off, and the subsequent field decay is
measured as a function of time. This technique has been used by other group [7] to
measure a finesse as high as 2 x 10° at 850 nm.

We have developed a much simpler technique, which does not require a AOM
and a trigger circuit to switch the AOM off at a right moment. Instead we utilize
a fact that the cavity is resonant with the probe laser only for a short time if the
cavity is quickly scanned. This short resonance time in effect achieves a delta function
excitation. By controlling the scan speed, we can adjust how much field can build up

in the cavity before the cavity becomes out of resonance with the laser. The cavity
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is scanned repeatedly while the field decay is measured on an oscilloscope in real
time. There is one caveat though, that is the cavity decay curve shows an amplitude

modulation, which depends on the scan speed as

C v

Tn = (V2-1) (2L°) (5) , (3.12)

where Ths is a time interval between the first and the second local minima due to the
modulation. The origin of the modulation is the interference between the probe laser
and the intra-cavity field. Since one of the mirrors is moving, the intra-cavity field,
which had built up when the cavity was resonant with the probe laser, continuously
acquires frequency shift caused by the Doppler effect while its amplitude decays.
Although the probe laser is no longer resonant with the cavity in a steady-state
sense, it can still get into the cavity because of the transmittance of the mirror it is
incident upon. Because the probe and the intra-cavity field have different frequencies,
they exhibit a beating in the transmission. The algebraic expression for the decay
curve as well as the above formula are derived in Appendix A.

For our cavity, typical decay time was order of 1 usec. We used a 300 MHz digital
oscilloscope (Lecroy 9310M) to capture a decay curve by a single scan. A voltage
ramp to drive the PZT was obtained from the Tektronix 555 oscilloscope. A 185 2
terminator was used at the input of the digital oscilloscope to override 1 M2 input
impedance and therefore to shorten its RC response time. With the terminator the
RC time is only 30 ns so that its effect on the decay time can be neglected. A
typical decay curve is shown in Figure 3-8. A straight line is an exponential fit by a
least-square fit algorithm [50], resulting in a decay time of 1.14 usec or a finesse of
1.03 x 10%. For that data the cavity was scanned at a speed of 14.5 GHz/ms. From

this value, we can estimate the velocity at which the mirror on the PZT was scanned.

A2
vE c/2L

x 14.5GHz/ms = 3.8 x 10™%cm/s .

The cavity-field resonance time in this case is 190k Hz X -14_1—5’?;371—; ~ 13ns, which is
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Figure 3-8: Typical cavity decay curve by the ringdown technique explained in the
text.
much shorter than usual decay times. According to Eq.3.12, the modulation period
Tar is about 150 ns, which is consistent with the data. If the cavity is scanned more
slowly, the modulation becomes more pronounced. The decay curve in Figure 3-9
was obtained with a scan speed of 1.45 GHz/ms, corresponding to a velocity of 3.8
pm/sec and a Tps of 490 ns, which is again consistent with the data.

Among a total of 20 supercavity mirrors specially made for the experiment, only
a half of them were tested. First a pair of mirrors were randomly selected from the
batch. The pair were mounted on our old resonator mount. Even thought the mount
does not have acceptable long-term stability, during the time of finesse measurement,
which is only a few usec, the mount can be considered being stable. By using the old
mount we could easily disassemble and reassemble a resonator. Once the finesse of
the two mirrors were known, one of the mirrors was replaced with a new mirror while
the other one was kept in position, and the finesse of this newly formed resonator
was measured. We repeated this process for the half of the batch relative to the
fixed mirror. A new resonator was then formed out of the two mirrors that gave the

highest finesse values. This resonator should have the highest finesse value. In fact
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Figure 3-9: A cavity decay curve with a slow scan speed shows an amplitude modula-
tion. The period Tys, defined in Eq. 3.12, is 0.51 usec, resulting in a mirror velocity
of 3.4pm/sec.

the variation in the finesse values was only 10 % of their mean value, 1 x 10%. The
finesse with the best pair was (1.05 £ 0.05) x 10°. We also measured the finesse at
various probe laser wavelengths and the result is shown in Figure.3-10.

During the experiment, the finesse of the resonator changed gradually, possibly
due to accidental deposition of barium atoms on the surfaces of the mirrors. Interest-
ingly the finesse initially increased (sometimes up to 1.2 x 10°) and then decreased.
The initial increase might be because barium atoms act as getter material, lowering
vacuum pressure and possibly removing small dust particles. Barium atoms inevitably
would deposit on the resonator as the experiment was repeated over a long period of
time, resulting in the gradual decrease of the finesse. Sometimes the finesse dropped
unacceptably low so that we needed to clean the mirror surfaces. The cleaning was
performed without taking out the resonator. A tightly folded lens tissue with a clean
drop of acetone was inserted between the mirrors and gently swapped against the
mirror surfaces. This process was repeated with a new tissue every time until an

acceptable finesse value was obtained.
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Figure 3-10: Finesse as a function of probe laser wavelength.

Throughput

A cavity throughput is a ratio of the power transmitted through a cavity to the power
incident on it. It can be expressed in terms of a transmittance, T', and an absorption

and scatter, A, as ( T Since a finesse measurement determines the value of

i) -
1 — R =T+ A, an additional throughput measurement can completely determines
both T and A. A throughput measurement also connects a mean number of photons

inside the resonator to the rate of photon emission out the ends of the resonator:

(n) = (n) I, (T{‘Z) : (3.13)

For the throughput measurement, an avalanche photo diode (EG&G C30902S,
S/N 8490) was used with a bias voltage of 216 VDC (see Table 3.5). According to the
test data sheet supplied by EG&G, the photodiode has a response of 128 A/W at 830
nm at this bias voltage. This value scales to a response of 119 A/W at 791 nm. A
laser beam from a Ti:Sapphire laser was attenuated to a few pyW and the transmitted

power through the resonator was measured. With a 10 k2 terminator the photo diode
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registered a few tenth of a volt, resulting in a throughput of (7.9 & 0.4) x 1072 and
hence T—f—E = 0.28£0.01. This measurement and the finesse measured by the ringdown
technique (F = (7.9£0.1) x 10°) completely determines T and A: T=(1.140.1)x 107
and A=(2.9+0.1) x 107°.

Birefringence

Supercavity resonators with high finesse values like ours are often subject to bire-
fringence. Even though mirrors can be fabricated free of birefringence, improper
mounting can cause unbalanced stress on the multi-layer dielectric coating and can
induce birefringence [7]. When we designed the new resonator, we took an extra care
to prevent such birefringence. The mirror holder was designed with three clutching
parts that fit a mirror with an accuracy of 0.0005” (Fig.3-5). Glue was applied to
the regions between the clutching parts so that when the glue dried, any resulting
stress must be symmetric, hence eliminating any preferred direction. We studied the
cavity transmission with different probe polarization directions, but could not find
any substructure in the TEMgo mode. However the transverse modes showed more
than one resonances. The separations were often a few MHz. Such birefringence,
however, does not affect our experiment because only TEMgo mode is excited. |
We also studied a very short cavity, which was just two mirrors glued together face
to face at four points on the mirror edges. The purpose of the study was to examine
the possibility of building a cavity, relying on the parallelism of the rounded edge of
the mirror to the curved spot in the center. The distance of the cavity was about
200 pm. Interestingly, this cavity showed a large birefringence possibly due to the
unequal stress exerted by unequal amount of the glue at the four contact points. The
cavity lineshape measured as a function of probe polarization is presented in Figure

3-11 for the sake of a record.
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Figure 3-11: Birefringence shown in a cavity with two mirrors directly glued face
to face. The cavity transmission lineshape was measured as a function of the probe
polarization direction. The cause of the birefringence is possibly the stress exerted
by unequal amount of glue at four contact points.

3.1.4 Pump Laser Stabilization and Locking
Requirement

For a w-pulse excitation the intensity and the waist of the pump laser should be
adjusted so that Qgt, = 7 (see Eq.2.35). In addition, the loss of atoms by spontaneous
emission during the pumping process should be minimized. If A;,; denotes the total
spontaneous emission rate of the >P; state, it is therefore required that A:xt, < 1.
Since Ast ~ 100 kHz, we obtain w, < 290 pm. In fact we used a w, of 50 pm in
the experiment, and consequently Qp or the intensity of the pump was adjusted to
satisfy the m-excitation condition.

The small spot size of the pump laser inevitably introduces transit time broadening
in the interaction with atoms. As long as the frequency of the pump stays well
within the broadening, the pumping process is not much affected by the frequency

uncertainty of the pump laser. If ['w,/v < 1, which is the case in our experiment,



the transit time broadening is given by

2v/21n2
Avy(FWHM) = X202 Y >~ g5 Y (3.14)

T 2w, 2w,

Assuming v=320 m/s and w,=50 pm, we can estimate Av;, =2.4 MHz. We require
the frequency fluctuations of the pump laser should be much less than Av;,.. However
the original Ti:Sapphire laser used in the experiment did not conform to this require-
ment. When its frequency was locked to its built-in reference cavity, frequency jitter
was about 2-3 MHz, mostly due to instability of the reference cavity. We needed
to reduce the jitter to use the laser as a pump laser. Therefore we had to perform
frequency stabilization as well as frequency locking of the Ti:Sapphire laser.

A stabilization method most widely used has been a two-step locking scheme, in
which the frequency of a laser is locked to a stable reference cavity first, then the
frequency of the cavity is locked to an atomic/molecular transition [60]. If the cavity
just drifts slowly without much frequency jitter, the cavity length can be corrected
by an error signal derived from the atomic transition. We did not use this technique
since we found a much simpler method, that is, an one-step scheme. We applied the
frequency modulation (FM) spectroscopy to a Lamb dip setup to obtain a dispersion-
type error signal, which was applied to the Ti:Sapphire laser control box in negative

feedback to correct the frequency error.

FM Spectroscopy

Modulation spectroscopy such as the lock-in detection has a capability of isolating a
small signal from a large background. In the lock-in technique, for example, a system
to be studied is excited by an amplitude-modulated probe laser and its fluorescence
or absorption (equivalently transmission) is measured. Then a lock-in amplifier can
extract only the signal component that is modulated in the same way as the probe
laser. Large background, which is not modulated at all, is completely rejected. We
can get the same effect by modulating a component of the system that the signal

directly depends upon instead of modulating the probe laser. The bandwidth of
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lock-in detection is limited by the modulation frequency. In practice the amplitude
modulation is done by a mechanical shutter or a AOM shutter with a modulation
frequency lower than 10 kHz for a mechanical shutter and perhaps up to 100 kHz for
a AOM shutter.

A much higher bandwidth is available with the frequency modulation (FM) spec-
troscopy. Instead of modulating the amplitude of a probe laser, its frequency is mod-
ulated. Typically modulation frequency lies between 10 MHz and 1 GHz, achieving
2-4 orders of magnitude improvement in bandwidth. The optical FM spectroscopy
has been widely used since its invention [61]. When combined with saturation spec-
troscopy, it turns into the Doppler-free high resolution spectroscopy. The principle
of the FM spectroscopy is best understood by noting that frequency modulation of a
probe laser results in generating two side bands in the probe spectrum with opposite

phases.

E(t) = E,cos (% + M sinwnt)
= %Eo S Ju(M) el@Fnem)t 4 cc. (3.15)

n=-—0o

where J,(z) is the Bessel function. If M < 1,
M
JO(M) =1 and Jil(M) & :‘:-5'

So
M M
E(t) = E,cos(t + —é—Eo cos (2 + wm)t — ?Eo cos (2 —wm)t. (3.16)

If we send this probe through a medium, the resulting field amplitude in complex

notation is
E/(t) =E, [To eiftt + Ty ( 5 ) ez(9+wm)t _ T_1 < 5 ) ez(Q—wm)t]

where T,, = e~ %~ with 6, and ¢, accounting for the absorption/gain and the

phase change experienced by the probe at Q + nwn,, respectively. The intensity of the

127



probe is then

I'(t) o ™20 {1 + [e5°‘51 cos (¢o — é1) — €%~8-1 cos (¢ — ¢_1)] M cos wp,t

+ [ e sin (o — 61) — €% sin (go — $_1)] Msinwnt}
which simplifies to
I'(t) = e [14 (61 — 61) M coswint + (¢1 + ¢—1 — 260) M sinwpt] (3.17)
if

|¢o — ¢1, |¢o — d-1] € 1
|60 — b1], |60 — 61| < 1.

If wy, 1s much larger than a typical range of a spectral structure, the FM spectroscopy
can map out two aspects of the spectral structure: absorption and dispersion. In this
case, if one of the sidebands is placed near the structure as illustrated in Figure 3-12,

the intensity is simply
I'(t) = I, e [1 T ASM cos wmt + ApM sin wpt] (3.18)

where § and ¢ are off-resonance values of §, and ¢,, respectively. These values can be
considered as baselines relative which an absorption coefficient Aé and a dispersion
coefficient A¢ are measured. The minus/plus sign above corresponds to the Q + w,,
sideband, respectively. Then it becomes obvious that we can selectively measure
the absorption or the dispersion coefficient by applying a phase-sensitive detection
scheme, in which a raw signal is multiplied by cos w,,t or sinwy,t and averaged over a
period of ;1;

In experiments, the phase-sensitive detection is electronically performed by a bal-
anced mixer, which is a specially balanced pair of diodes with nonlinear response [62].

A frequency modulation is done by an electro-optic modulator (EOM) driven by a
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Figure 3-12: FM spectroscopy can reveal absorption as well as dispersion lineshape
of a resonance line.

local oscillator, which is often a function generator. A transmission signal through a
sample is measured by a fast detector, the bandwidth of which is much larger than
the modulation frequency. The signal from the detector is sent to the RF (radio
frequency) input of a balanced mixer, where the signal is mixed with a signal at LO
(local oscillator) input. The resulting signal has two frequency components: 2w,
and DC. The 2w,, component is rejected by the mixer and only the DC component
is available at its IF (intermediate frequency) output. We can select sine or cosine
quadrature by controlling the relative phase between the input signal to RF and the

local oscillator signal to LO input.

Lamb Dip

In a Lamb dip measurement, a pump and a probe beam with a same frequency
traverse an atomic (or molecular) vapor cell. The atoms in the cell have different
velocities according to the Maxwell-Boltzmann velocity distribution. The pump laser
saturates a velocity group, which satisfies w, + kvy =  with Q the frequency of the

laser and w, the frequency of the transition of interest. Then the probe propagating in
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Figure 3-13: Lamb dip experiment. (a) configuration, (b) a velocity group with a
velocity of vy is excited by a pump whereas a probe laser interacts with a velocity
group with a velocity of v_, where vy = :i:Q:k“’—Q, (c)the velocity group with v, =
v_ = 0 is excited by both the probe and the pump laser if Q@ = w,, (d) resulting probe
absorption signal as a function of laser-atom detuning,  — w,.

the opposite direction will be resonant with a velocity group satisfying w, — kv_ = Q.
Sincevy = —v_ = Qik‘—"&, two velocity groups do not share common atoms so the probe

laser will measure unsaturated absorption profile of the vapor sample. However if
is tune to w, within the homogeneous linewidth of a velocity group, the probe will
interact with the same velocity group atoms with zero velocity as the pump laser does.
Since the intense pump laser depletes the ground state population of the zero-velocity
group by exciting the atoms to an excited state, the probe laser interacts with less
number of ground state atoms, and therefore its intensity will be attenuated less.
This saturation effect results in a dip in an ordinary absorption profile as illustrated
in Figure 3-13. The linewidth of the dip is the homogeneous linewidth of the atoms,
including natural linewidth, collisional broadening and power broadening.

A barium vapor cell used in the experiment was made of 3/4” stainless steal

tubing. The length of the cell was about 30 cm and the both ends had windows.
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Figure 3-14: Typical Lamb-dip signal of the 1Sy «> 3P, transition of atomic barium.
The asymmetry in the baseline arose because the power of the probe laser changed
as it was scanned.
The central 5 cm long part of the cell was heated by a non-contact cylindrical heater
surrounding the cell. The heater had nichrome wires wound in a zig-zag pattern so
that stray magnetic field inside was minimized. The vapor pressure was a few mTorr,
at which the collisional broadening was in the order of 10 kHz. We used the .S, «
3P, transition, which has a 50 kHz linewidth. However the linewidth of the Lamb dip
was about 2 MHz. We found that a slight misalignment (< 0.5 mrad) between the
pump and probe laser beams contributed a inhomogeneous broadening of 0.5 MHz to
the measured linewidth. The most broadening came from the power broadening of
the transition by the pump laser. In fact we could set the homogeneous linewidth to
a value we wanted by adjusting the pump laser intensity. A typical pump intensity
was 10 mW, giving rise to a Lamb-dip linewidth of 2.5 MHz (Figure 3-14).

With the FM spectroscopy, we can map out not only the absorption lineshape but
also the dispersion lineshape of a spectral line. The Lamb dip itself can be though
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as a spectral line. Therefore if we replace the probe in the Lamb dip experiment
with a frequency-modulated laser beam while keeping the pump laser unmodulated,
we can obtain a dispersion lineshape of the Lamb dip. For this, we assume that
the modulation frequency is much smaller than the linewidth of the Doppler profile
but much larger than the homogeneous linewidth of the dip. Since the FM signal is
proportional to the difference between the absorption coefficient at one sideband and
the coefficient at the other sideband (Eq.3.17), the signal is very small if none of the
sideband is resonant with the Lamb dip transition. Therefore the FM signal does not
contain the broad Doppler profile. Only the dispersion or absorption lineshape of the
Lamb dip is revealed.

For the experiment, we used an EOM (INRAD 651-254) driven by a quartz-tuned
function generator (Standford Research DS-3100) at 25.000000 MHz. The FM signal
was measured by a silicon photodiode (EG&G FND100), which was biased at -90 V
to have a rise time of 2 ns with 50 € impedance. The current from the photodiode
was directed to the RF port of a balanced mixer (VARI-L CM-4). As discussed
before, depending on the phase of the local oscillator signal in the balanced mixer
relative to the phase of the FM signal, either a dispersion lineshape or an absorption
lineshape is selected from the FM signal. In order to adjust the phase difference, we
varied the length of the BNC cable connecting the function generator and the LO
port of the mixer. Since the speed of light in a BNC cable is 2 x 10® m/s, a 2«
phase change is obtained by a length change of 2—’;;—;;{"‘25 = 8 m. The output at the
IF port of the mixer was amplified by a homemade DC amplifier (Figure 3-15) and
then displayed and digitized on a digital scope (Lecroy 9310M). Figure 3-16 shows a
typical FM Lamb-dip signals as a function of the laser-atom detuning (2 —w,). The
curve consists of three dispersive resonances at = w,,w, * wn, /2. Note that a same

velocity group can be excited by the pump laser and probed by the probe laser if

kvy =w, - Q=kv. = Q+w, —w,,for sidebands

= 0 —w,, for carrier (3.19)
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Figure 3-15: A homemade DC amplifier circuit used in the FM Lamb-dip measure-
ment.

133



©
c
D r 1
n
‘ o o—Wn/2 W, 1
O 9 P IJ/ b WMMWW
L0
- \w°+wm/2
«
—J i |
=
L
0 25 50 75 100

probe scan (MHz)

Figure 3-16: A typical FM Lamb-dip signal. It consists of three dispersive resonances
at 0 = w,,w, + wy,.

and therefore,

N =w,,w, F —. (3.20)

FM Laser Stabilization/Locking

The dispersion lineshape of the Lamb dip shown in Fig 3-16 was measured as a
function of the laser-atom detuning. We are interested in the central straight segment
of the curve, where the FM signal is directly proportional to the difference between
the laser and the atom frequencies. In other words, the FM signal itself can be a
direct indicator of a frequency error when we want to make the laser frequency the
same as the atom frequency. Therefore the laser can be stabilized as well as locked
relative to the atom by nullifying the error signal. This nullification can be done in
real time by forming a negative feedback loop composed of the laser, the Lamb-dip
setup and an amplifier for the FM signal with a properly chosen polarity.

The laser system we used in the experiment had a reference cavity, to which the
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frequency of the laser was locked. An error signal generated by the reference cavity
was processed in a so-called ‘control box’ to provide necessary voltage signals for the
frequency-correcting elements in the laser head. There are two such elements with
different bandwidths, a tweeter mirror driven by a PZT (R 1 kHz) and a tipping
plate driven by a galvo drive (X 1 kHz). The control circuitry includes a cross-over
network to generate drive signals with proper bandwidth for the elements.

We could lock the laser to the atom simply by substituting the error signal from
the reference cavity with the FM Lamb-dip signal. We still utilized the control box
for the signal processing. The homemade amplifier circuit shown in Fig.3-15 was
used as a pre-amplifier for the FM signal, also providing a correct polarity for the
negative feedback. The FM signal was amplified by the circuit to a voltage level
comparable to the error signal from the reference cavity. In this way the FM signal
fed to a differential amplifier in the control box could be in a proper input range
(~ 50 mV RMS). The frequency range of the straight segment in the FM Lamb-dip
signal was identical to the homogeneous linewidth of the Lamb dip, about being 2.5
MHz. The peak-to-peak height of the segment was 250 mV. Hence the slope of the
straight segment was 10 kHz/mV.

With a switch box, we could choose the source of the error signal to be either the
reference cavity or the FM Lamb-dip signal. When the reference cavity was used for
locking, even if we initially placed the laser at the atomic resonance, the laser slowly
drifted away from the resonance. Furthermore due to random fluctuations in the
laser frequency the the FM signal swung up to the full height of the straight segment,
indicating the frequency error up to 2-3 MHz. This large fluctuation was mostly
at low frequencies (£ 10 Hz), and its source appeared to be the reference cavity.
The FM signal also had underlying fast frequency components (2 100 Hz), but their
amplitudes were about 30 mV RMS, corresponding to excursions of 300 kHz RMS.
These fluctuations were greatly reduced when the FM Lamb-dip signal was used in
the feedback loop instead of the reference cavity signal. When the laser was locked to
the resonance, the size of the FM error signal was about 15 mV RMS, corresponding

to frequency fluctuations with an excursion of 150 kHz RMS. These fluctuations,
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Figure 3-17: Laser spectrum when it is stabilized by the FM scheme described in the
text. It was measured by a scanning Fabry-Perot with a linewidth of 110 kHz (F =
1.3 x 10°). The Fabry-Perot was scanned fast enough so that the laser fluctuations at

660 Hz did not affect the measurement. The measured linewidth of 220 kHz therefore
corresponds to a laser linewidth of 110 kHz, or 55 kHz RMS.

however, were regular, mostly at 660 Hz. Later we found that this frequency was
associated with the mechanical resonance of the galvo-driven tipping plate in the
laser head. Except this frequency component, the size of the FM error signal was 5
mV RMS, resulting in an excursion of 50 kHz RMS. Figure 3-17 shows the spectrum
of this frequency-stabilized laser probed by a scanning Fabry-Perot, which was in
fact the supercavity resonator used in the experiment. The Fabry-Perot was scanned
fast enough so that the laser fluctuations at 660 Hz did not affect the measurement.
The two peaks on the side were due to the sidebands by the frequency modulation
at 25 MHz. These sidebands actually serve as frequency marks for calibrating of the
frequency scale. The linewidth of the central peak is 220 kHz. Since the resonator had
a linewidth of 110 kHz FWHM (F = 1.3 x 10°) for this measurement, the contribution
from the laser was 110 kHz or 55 kHz RMS, which is consistent with the estimation

based on the FM error measurement.
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We did not attempt to eliminate the noise at 660 Hz since its excursion, 300 kHz,
was acceptably small for the one-atom laser experiment. In the experiment this laser
is used as a pump laser, which is focussed down to 50 um spot. The transit time
broadening in this case is 2.5 MHz, and therefore the 300 kHz frequency uncertainty of
the pump has practically no effects on the pumping process. However this uncertainty
certainly affects the performance of cavity locking, which is the subject of the next

section.

3.1.5 Cavity Locking

Locking the frequency of the resonator to that of the pump laser is not compulsory
in the experiment in the sense that the resonator at its free-running state has only
50 kHz frequency jitter. Of course the resonator frequency is slowly changing but
is in a predictable way. Its frequency drifts slowly and linearly at a rate of about 1
MHz/sec. The direction of the drift and the exact drift rate depend on the history
of the resonator, such as stress on the PZT, temperature and vacuum pressure which
the resonator has been exposed to. An important fact is that the resonator undergoes
any change of state very slowly and linearly if it is not under sudden perturbation.
Therefore when we perform the experiment, the resonator is simply let to drift toward
the atomic resonance, and the output of the one-atom laser is measured as a function
of atom-cavity detuning. However it is convenient to have the resonator locked to the
atom (and the pump laser) whenever the one-atom laser is aligned from a scratch or
re-aligned for some reason. With the resonator locked, we can monitor the output
of the one-atom laser in real time while we adjust the rest of parameters such as the
angle between the atomic beam and the resonator axis and the position of the pump
laser relative to the cavity mode. With eliminating the uncertainty on the resonator
frequency, the phase space that alignment process to cover is greatly reduced.

For the locking, we used a scheme similar to the cavity-side-lock method [63]. In
our scheme, an error signal, which to be fed back to the PZT of the supercavity res-
onator, was obtained by subtracting a reference voltage from a signal measuring the

transmitted power of a locking laser through the resonator (Figure 3-18). The locking
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Figure 3-18: Cavity Locking Scheme used in the experiment

beam was obtained from the frequency-stabilized Ti:Sapphire laser, so was the pump
beam. An silicon avalanche photodiode (EG&G C30902S) at -230 V bias was used
to measure the transmitted power. The reference voltage was in fact obtained from
a silicon photodiode (EG&G FND-100) measuring a reference laser beam intensity.
100 k2 load resistances were used to convert photocurrent to voltage for both pho-
todiodes. A differential amplifier measured the difference between the transmission
signal and the reference voltage. The intensity of the reference beam was adjusted
with a polarizer so that the output of the differential amplifier became zero when the
resonator was detuned to a side of the transmission lineshape. The amount of detun-
ing was equal to the half width of the lineshape so that the resulting transmission was
50 % of its maximum. At the half-height point the output of the differential amplifier
was proportional to the frequency difference between the resonator and the locking
laser. Therefore the output could be used as an error signal for the cavity locking.
Figure 3-19 show a circuit which generates a feedback signal from the photocurrents
of the two photodiodes.

A drawback of this scheme is that the cavity is locked to the atomic resonance with
an offset frequency, which is equal to the half width of the transmission lineshape.
However the offset was only 150 kHz, which is much smaller than a gain bandwidth
of the one-atom laser, 3 MHz. This bandwidth is due to the transit time broadening
associated with the small waist of the cavity field mode. So the 150 kHz offset did not
affect the output of the one-atom laser. This locking scheme is insensitive to the power
fluctuations in the laser beams because both the reference and the locking beam are

derived from a same source, a Ti:Sapphire laser. Therefore any power fluctuations in
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Figure 3-19: A homemade circuit used to lock the cavity

the source equally affect the reference and the locking beam, so the frequency offset
remained unchanged.

The performance of the cavity locking was mostly limited by the frequency stabil-
ity of the locking laser. As discussed before, the stabilized Ti:Sapphire laser had 660
Hz noise coming from its tipping plate of the laser. The noise excursion was 150 kHz
RMS. Since the locking laser was derived from the Ti:Sapphire laser, the error signal
contained the 660 Hz noise, inducing the feedback circuit to react to this error. As
a result, the 660 Hz noise were transferred to the resonator. The feedback loop per-
formed admirably in reducing the apparent frequency error below 100 kHz. However
it is only relative error between the cavity and the locking laser. Absolute frequency
error between the cavity and the atom could be larger than that. Therefore we in-
tentionally kept the feedback gain at its minimum requirement in order not to reduce
the cavity-locking laser error too much. In this way we could minimize the transfer
of noise from the locking beam to the cavity, thereby keeping the cavity frequency as
near to the atomic resonance as possible.

Whenever the resonator is locked to the locking laser, the laser beam has to go
through the resonator. This beam, however, will interact with the atoms in the
resonator and disturb the one-atom laser operation. This problem can be avoided by
alternating the cavity locking and the one-atom laser operation rapidly enough that

the cavity locking is still maintained. We used an acousto-optic modulator (AOM,
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Figure 3-20: A double-pass configuration of a AOM without a frequency shift. It was
used in the experiment to modulate the amplitude of the locking laser beam.

Isomet 1206C) in a double-pass configuration shown in Figure 3-20 to control the
locking beam. In this configuration the first passage of the locking beam through the
AOM undergoes an m = —1 order diffraction accompanying a downward frequency
shift by an amount of the AOM modulation frequency (80 MHz). The second passage,
on the other hand, undergoes an m = +1 diffraction, inducing a upward shift by the
same amount as the first shift, therefore exactly canceling the frequency shift. The
diffractions take place only when a TTL high-logic signal is applied to the modulation
input of the RF driver circuit (Isomet DB320). By applying a TTL clock signal to
the input, therefore, we can modulate the amplitude of the probe beam as needed.
The various values of the period of the clock signal have been tested. A good
performance of the locking was obtained with a clock which turns on the probe for
383 psec and turns it off for 127 usec, resulting in a duty cycle of 25 %. We used this

setting later through out the one-atom laser experiment.

3.1.6 Detector
Avalanche Photodiode

Photo multiplier tubes (PMTs) have been the choice of detector for the photon count-
ing for many years. PMTs with multi-alkali photocathode have good quantum effi-
ciencies in the visible region, particularly at 350~550 nm. Quantum efficiencies of
10 ~ 20 % are common. As the wavelength approaches 800 nm, however, the quantum

efficiency of multi-alkali photocathode quickly drops below 1 %. In this wavelength
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Figure 3-21: Relative spectral response and corresponding quantum efficiency of sil-
icon photodiode, excerpted from EG&G Short Form Catalog (1992). The quantum
efficiency is proportional to the spectral response divided by wavelength

region, GaAs is the best material for photocathode. At 791 nm the efficiency of
(GaAs photocathode is up to 10 % [64]. In order to use GaAs photocathod in photon
counting mode, elaborate cooling down to —20 ~ —30 °C is essential.

As far as quantum efficiency is concerned, silicon photodiode is much better than
PMTs, particularly for longer wavelengths. It can have up to 100 % efficiency around
at 900 nm. However silicon photodiode has only a gain of unity and its background
counts are unacceptably high (~ 10°~° cps). For this reason silicon photodiode is
more suitable in measuring large photon flux (>> 10® cps) not in photon counting
mode but in current mode.

Recent developments in avalanche photodiode (APD) have offered researchers a
new option for photon counting detectors. A silicon avalanche photodiode has a high
quantum efficiency just like an ordinary silicon photodiode (Figure 3-21). It also
features high amplification gain owing to electron avalanche process just like PMTs.
Therefore even a single-photon event can generate a macroscopic current pulse. Ac-
cording to our measurement, which is described below, the quantum efficiency at 791

nm is more than 36 %, far superior than PMTs.
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| category Det 1 i Det 2 | Det3 |

model (C30902S C309025-TC C30902S-TC
serial No. 8490 163 166
operating temperature 22 °C -20 °C -20 °C
breakdown bias voltage 2217V 2025V 157.0 V
operating bias 216.0 V (7) 2129V 167.2 V
dark counts - 3000 cps 300 cps
usage cavity transmission | density calibration | signal count

Table 3.5: The characteristics of the APDs used in the experiment.

The APDs used in the experiment were EG&G C30902S and C30902S-TC, where
the latter model has a detector core mounted on a miniature thermo-electric cooler.
The cooler drew a current of about 1 A, at which the temperature could be lowered to
-20 °C. When the APDs were cooled, dark counts, which is the counts with no light
incident on them, were reduced to 300 ~ 3000 counts/sec depending on the models.
They require bias voltage of about 200 VDC. Exact required bias voltage varies from
detector to detector. Usually it is set at a voltage larger than a breakdown voltage
by 10 V. The breakdown voltage is a bias voltage at which the avalanche processes
start to occur. Table 3.5 summarizes the characteristics of the APDs used in the
experiment.

One of the general characteristics of APDs is temporal saturation of the detectors
just after an avalanche process. an APD can be modeled by an equivalent circuit
shown in Figure 3-22. When an electron avalanche occurs, the APD becomes con-
ductive. In the equivalent circuit, the switch S is closed, the internal capacitor of the
APD, C;, is quickly discharged, and the switch reopens. The whole sequence takes
about a few nsec. Then no further avalanche occurs until C; is fully recharged so
that a full bias voltage is applied to the APD. The recharging time is about a few
usec. During that time, the detector is not capable of photon counting. This property
limits the number of photons that the detector can handle. The maximum number
of counts per second the detector can handle is about 10* cps (~ 10° photons/sec).
Therefore it is necessary to quench the internal capacitor as soon as a signal pulse has

been generated. We used a passive-quenching scheme, in which the internal capacitor

142



before... during avalanche after...

R % .
-V ___'_Vbiu Viie
i l(t) . ‘Vbias

T 777 ©

A w»n
(=] I
0
""""

YYYY
AMA
vy
—
~
=

Y 7

Figure 3-22: An equivalent circuit for an avalanche photodiode.
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Figure 3-23: A passive-quenching circuit for the APDs used in the photon counting
mode.
is passively discharged all the time by a resistor with a small value in series to the

APD. Figure 3-23 show a passive-quenching circuit used in the experiment.

Efficiency Measurement

In an experiment, a useful parameter representing a detector efficiency is not the
quantum efficiency but a counting efficiency, that is how many clicks are registered
on an electronic photon counter for a given number of photons incident on a detector.
The counting efficiency depends not only the quantum efficiency of a detector but

also other electrical parameters, most importantly a discriminator level setting on
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a photon counter. If the discriminator setting is too low, we may get a maximum
counting efficiency, but also a lot of noise pulses owing to dark current can be maxi-
mally counted. An optimal discriminator setting can be obtained by the pulse-height
analysis, in which the discriminator level is continuously varied under nominal light
condition while the rate of counter clicks on the photon counter is measured. Figure
3-24 shows the result of the pulse-height analysis on one of the APDs when used with
a photon counter (Stanford Research System SR-400). The discriminator level was
set where counting distribution is flat (at -50 mV). The dark counts listed in Table
3.5 are based on this discriminator setting.

With this discriminator setting we have measured counting efliciencies of the two
APDs with a cooler. A probe laser beam with a wavelength of 553 nm was attenuated
by an overall factor of 3 x 107!, The attenuation was done by neutral density
filters with high optical densities and a prism polarizer at a right angle to the probe
polarization. The filters were intentionally tilted relative to each other in order to
prevent interference among filters. Since the attenuated beam is too weak to be
measured by a power meter (Coherent model 212), the sensitivity of which is 0.01
uW at best, the filters were grouped in two and the attenuation by each group was
measured separately. A typical incident power on an APD detector was in the order of
1 x 1072 W. We varied the bias voltage on the detector and measured the number of
counts per second. From the incident power we can estimate the number of photons
incident on the detector per second. The ratio of these two rates is the counting
efficiency of the combined system of the detector and the photon counter. Figure
3-25 shows the counting efficiency of one of the APDs for various bias voltages. The
bias voltage was later fixed at a value larger than the breakdown voltage by 10 V
for the one-atom laser experiment. The counting efficiency at 791 nm were then
calculated based on the spectral response of silicon APDs shown in Fig. 3-21 and the
efficiency at 553 nm. The counting efficiency, which is proportional to the quantum

efficiency, is related to the spectral response in the following way.
Nnoe _ nqe

spectral response x —

Nhw  hw’
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Figure 3-24: A typical result of the pulse-height analysis on an APD detector (S/N
166) at -20 °C. (a) Number of counts vs. discriminator level and (b) a pulse-height
distribution, which is just the derivative of curve-(a).
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Figure 3-25: Counting efficiency of an APD detector (S/N 166) at 553 nm as a
function of bias voltage. Counting efficiencies corrected for detector saturation are
shown in Figure 3-27.

where N is the number of photons incident on the detector per second.

The counting efficiency also depend on the number of photons incident on the
detectors. Even with the quenching circuit the detectors start to saturate at about
4 x 10° counts/sec (the number of photons~ 10° /sec). In fact the counting rate at
which the counting efficiency had been measured was in the order of 10° counts/sec,
so we had to suspect that an actual efficiency might be higher that the value quoted
before. In order to study the detector saturation, we used the detector to measure the
fluorescence from barium atoms in an atomic beam. Throughout the measurement,
the detector was set up to image a fixed volume. The number of atoms in the volume
were varied by changing the current through an atomic beam oven. The atoms were
excited by a probe laser, which was resonant to the 1Sy« ! P, transition (553 nm). The
probe laser intensity were kept well below the saturation intensity of the transition, 16
mW /cm?. For a fixed oven current, we recorded the number of signal counts per sec
for various probe intensity. The number of counts then should be proportional to the

probe intensity as long as the intensity is kept well below the saturation intensity. Any
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Figure 3-26: Saturation effect of an APD detector (S/N 166).

deviation from the linearity should be attributed to the saturation of the detector.
We repeated the measurements for various oven currents to cover an extensive range
of the number of counts. The result is shown in Figure 3-26. As seen in the figure,

the saturation effect of the detector can be summarized by an empirical formula

T

y = - , (3.21)
(1 + (3.6;{:0.5)x105)

where y is a saturated counting rate and x is a unsaturated counting rate. Both are
in counts per second. Using this formula, we can correct the previously measured
counting efficiencies. The result is summarized in Figure 3-27. We repeated the
efficiency measurement of the other APD detector (S/N 163) and obtained about
the same result within experimental error. Therefore we conclude that the counting
efficiencies of the APD detectors used in the one-atom experiment are 32 +4 % at
553 nm and 36 + 4 % at 791 nm. The corresponding quantum efficiencies should be

greater than the counting efficiencies.
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3.1.7 Vacuum System

A Vacuum chamber system houses the supercavity resonator and an atomic beam
oven. It consists of two chambers, one containing the oven and the other surrounding
the resonator. These chambers are connected by two tubular lines, one for an atomic
beam and the other for efficient pumping of the resonator chamber through the oven
chamber (Figure 3-28). The chamber system was designed with possible use with
the laser slowing and trapping in mind. It features four extended view ports at 90
degrees, allowing to set up six orthogonal laser beams when combined with two large
view ports at the top and the bottom. The tubular line for pumping is made of
a stainless steel flexible tubing so that its length and degree of bending are easily
adjustable. The other line for the atomic beam is a rigid tubing with four view ports
for diagnosis of the atomic beam. Both lines are connected to the sub-chambers by
Conflat flanges so that rearranging of the chamber parts, when necessary, is easily
done. The atomic beam line can be replaced with an auxiliary chamber, which may

houses a velocity selector for future experiment, for example.
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Figure 3-28: A vacuum chamber system for the supercavity resonator and an atomic
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Figure 3-29: An interlock circuit controlling the vacuum system.

The oven chamber is connected to an inlet of a diffusion pump (Varian VHS-
4) through a pneumatically driven gate valve (MDC GV-50000) and a water-cooled
optical-dense baffle (Varian BFxxx), which prevents pump oil backstream. The gate
valve as well as the diffusion pump are controlled by a homemade interlock circuit
shown in Figure 3-29, which closes the valve and shuts off the pump if the vacuum
pressure rises beyond a certain set point. The interlock circuit also monitors the
cooling water flow to the atomic beam oven and the diffusion pump as well as the
backing pressure at the diffusion pump exhaust maintained by a mechanical rough
pump. The circuit also allows a user to turn on the oven only when all the check
points are satisfied. If anything goes wrong, the circuit immediately shuts down the
vacuum system. The rough pump is running all the time and its backing pressure is
lower than 50 mTorr.

The pumping speed (S) of the diffusion pump is 1000 I/s. The total volume
(V) and the surface area (A) of the chamber system are about 30 liters and 1 m?

respectively. Typical vacuum pressure when the experiment was performed was 5 x
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1078 Torr. A outgassing rate ¢ of all the components in the chamber system including

the chamber wall can be estimated from these values.

_ kT
T @A
g _ AV _dN ke
4t dt P
P
therefore ¢ = %f—-——'leO‘SW/m2

The vacuum system was designed with Claris CAD on a Macintosh computer.

The major parts of the chamber system were fabricated by MDC [65].

3.1.8 Atomic Beam Oven

The technique we used to generate barium atomic beam is to heat up a piece of
barium metal in an oven above 500 °C in vacuum. The barium oven was simply a
tantalum tubing with a small aperture in the center. The tubing was 61” long with
1/32” wall thickness and the diameter of the oven aperture was 340 pm. The both
ends of the tubing were sealed by clamping them tightly and 250-400 amps of AC
current ran through the tubing, heating it up to 500 — 700 °C. Such high current was
converted from an 240 VAC/30 A line by a step-down transformer with a turn ratio
of 71 : 1.

The thermal radiation from the oven needed to be blocked by a water-cooled
copper shield surrounding the oven. An oven assembly consisted of the oven, the
shield and electrodes supplying the current. The assembly was mounted on 8” Conflat
flange, which also serves as a top cover of the oven chamber. A flexible bellow
with three adjusting screws was placed between the flange and the body of the oven
chamber so that the position of the oven could be adjusted whenever necessary (see
Figure 3-28).

The atomic beam was collimated by four additional apertures. Their locations
and diameters are summarized in Table 3.6. The last aperture was place just in front

of the resonator. The distance between them was 2 cm. A maximum divergence angle
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LID ” distance from oven Tdiameter ]

oven aperture 0 340 pm
aperture 1 5.5 cm 8.1 mm
aperture 2 10 cm 7.1 mm
aperture 3 34.5 cm 1.5 mm
aperture 4 40.5 cm 340 pm

‘able 3.6: Atomic beam apertures used in the experiment

(half angle) of the atomic beam at the resonator was 0.8 mrad, solely determined by
the sizes of the oven aperture (340 ym) and the last aperture (340 pm) as well as the
distance between the oven and the resonator (43 cm). This divergence gives rise to
a maximum Doppler broadening of 640 kHz (full width) in the coupling between the
atom and the cavity field. However an effective broadening is only a half of that, a
full width of 320 kHz, because of the averaging over all possible angles as explained
below. This Doppler broadening did not affect the performance of the one-atom laser
since the gain bandwidth of the excited atoms by the w-pulse excitation field was
larger than the broadening by an order of magnitude.

We performed Monte Carlo simulation to find the distribution of the Doppler
broadening, and the results are shown in Figure 3-30. The FWHM of the distribution
depends very weakly on the smaller aperture of the two apertures, the oven and the
last aperture. The relative sizes of the two apertures, however, determine the shape
of the distribution. When they are about equal, the distribution resembles a gaussian
distribution whereas its shape is close to a half circle when they are different much.
The half-circle distribution can be understood in the following way. Let’s consider a
cone, which has a height much larger than a base radius (Figure 3-31). We can think
the end point as a very small aperture and the base as a large aperture. We want to
know the angular distribution of the lines drawn from any points on the base to the
end point. An important angle is the angle between such a line and a plane bisecting
the cone because we can assume that the resonator axis is perpendicular to the plane
and so is the propagation direction of the cavity field. Any points on a line which is

parallel to the plane and lies on the disk correspond to the same angle. Then it is
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Figure 3-31: Origin of the half-circle distribution
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obvious that the distribution of such angle is proportional to the length of the line,
resulting in a shape of a half circle with the diameter of the circle is exactly the acute

angle of the cone.

Density Calibration

It is important to know the density of the atoms since the output signal of the one-
atom laser critically depends on the average number of atoms in the resonator. We
used atomic fluorescence to calibrate the density. The atoms in the resonator were
excited by a probe laser beam tuned to the 'Sy«1P, transition of atomic barium.
The probe beam was obtained from a CW single-mode dye laser (Coherent CR599-
21). The probe beam propagated along the resonator axis and focussed down to a
small spot with a waist of about 50 um inside the resonator by a lens with a 30 cm
focal length. Since we could not measure the waist directly there, we made a dummy
setup outside the vacuum chamber simulating the lens and the one of the resonator
mirror. The distance between the dye laser and the dummy lens was made the same
as the distance between the laser and the real lens so that both setup were subject
to identical laser beam divergence. The focussed waist just after the dummy mirror
was 99 um. The volume defined by the laser beam and the atomic beam in the
resonator was then 1.0 x 10™° cm?®. Since the saturation intensity of the transition is
16 mW /cm? the corresponding saturation power was 4.9 uW.

The probe was polarized vertically relative to the resonator axis and the atomic
beam. Hence the fluorescence was maximally radiated on a plane defined by the probe
and the atomic beam. A cooled avalanche photodiode (S/N 163) with a counting
efficiency of 34 % was placed at 10 degree off the atomic beam (see Figure 3-32).
It could not be placed in the atomic beam direction because the strong radiation
from the atomic beam oven propagated along the atom beam, not blocked by all the
collimating apertures at all. An interference filter peaked at 550 nm and a 50 pm
aperture were placed in front of the detector to reduce the radiation from the oven
and the scattering off the resonator mirror surfaces. The background counts with

those installed was about 3000 counts/sec. Without them the background counts
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Figure 3-32: Experimental setup. For density calibration a probe laser beam was
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ization. Det B was a cooled avalanche photodiode (S/N 163), placed 10 degree off
the atomic beam axis.
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were as large as the signal counts, 105 counts/sec. The efficiency of the filter and the
aperture for the fluorescence signal were found by measuring the signal with only one
of them or both of them installed. The efficiencies of the filter and the aperture were

0.67 + 0.06 and 0.51 % 0.4, respectively.

The magnitude of the fluorescence signal can be expressed as

F = N,VnT, (;’—An) - (3.22)
™

where V is the volume defined by the laser and atomic beam, n is the density, A} is
a solid angle, into which the fluorescence is collected by imaging lenses and detected
by the detector, 7, is the efficiency of collection optics, 7. is the efficiency of photon
counting system (= 0.32 + 0.04), and NV, is an upper-state population, N, = 1P/P;,
with P, being the saturation power if P/P; < 1. The volume V could be regarded
as a point source since the dimension of the volume was much smaller than the size
of the imaging lenses and the distance between the volume and the lenses. The solid
angle AQ then could be obtained from the distance and the usable aperture size of
the lenses, and the result was 1.0 x 102 rad. The efficiency 5, was associated with
the transmission through the imaging lenses, the interference filter and the aperture,
and its value was (0.96)% x (0.67 £ 0.06) x (0.51 £0.04) = 0.25 £+ 0.08. With all these

known parameters the fluorescence signal is given by

F= [n/cm‘s] [SP;)/:},?Z)] counts/sec ,

from which the density can be found. The overall systematic error in the estimation
of all those parameters was as much as 50 %. Figure 3-33 shows the density measured

as a function of the oven current.

156



——6/6/94 |
e 6/7/94 e
— -6/4/94 '

Y
w
—

0.5}

density (x108cm3)

0 ‘ . S
280 290 300 310 320 330
oven current (amp)

Figure 3-33: Atomic density as a function of oven current.

3.2 One-Atom Laser Experiment

3.2.1 Setup

Basic concept of the one-atom laser experiment is quite simple as illustrated in Fig.
1-1, but the stringent requirements on the resonator and the pump laser added extra
complexity in the setup and the result is shown in Figure 3-34. A more detailed view
of the configuration around the resonator is also illustrated in Fig.3-32.

The Lamb-dip setup in Fig.3-34 generated a frequency correction signal for the
control box of Laser 1, a CW Ti:Sapphire laser, and the laser frequency was locked
to the atom frequency, as described in Sec.3.1.4 in detail. Hence any part of the laser
output in the setup had its frequency stabilized. When we needed to calibrate the
atomic density, a probe beam from a dye laser was introduced along the resonator
axis to induce fluorescence at 553 nm (*Sg— ' P,) of the atoms in the resonator. The
polarization of the laser beam was perpendicular to a plane defined by the atomic
beam direction and the resonator axis. The fluorescence then was emitted maximally

on the plane and detected by a APD detector, denoted by detector B, which was
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Figure 3-34: Schematic of the actual one-atom laser experiment.
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slightly off the plane by about 10 degrees. When we needed to measure the resonator
finesse, we used a 791 nm probe beam and performed the ringdown measurement while
the resonator was scanned quickly and repeatedly. The probe beam was vertically
polarized and therefore most of the transmitted power was reflected by a polarizing
prism to a current-mode APD, denoted by detector C. The same probe laser with a
much smaller intensity and the same detector were used to perform the cavity locking.
The probe laser beam was turned on and off rapidly by an AOM in a double-pass
configuration (DP-AOM), the details of which are illustrated in Fig.3-20. The probe
laser, often referenced as a locking laser, was also frequency-modulated even though
the modulation was not necessary in the cavity locking process. In fact, the sidebands
generated by the modulation were utilized in calibrating the cavity detuning relative
to the atom in the experiment. The cavity locking was only used in the alignment

phase of the experiment because of its limited performance (300 kHz jitter).

3.2.2 Angular Alignment

There are basically two important angles to pay attention to: the angle between
the atomic beam and the cavity axis, denoted by angle A, and the angle between
the pump beam and the atomic beam, denoted by angle B hereafter. The accuracy
required for the success of the experiment is different for each angle. It is relatively
easy to understand how accurate angle B should be. Since the spot waist of the pump
on the atomic beam was about 50 pum, a corresponding transit time broadening was
2.4 MHz. If the pump beam intersects the atomic beam at an angle different from
90 degrees, the excitation process will suffer from a Doppler broadening proportional
to the angular misalignment. As long as the Doppler broadening is much smaller
than the transit time broadening, this misalignment effect can be neglected. This
consideration suggests that the angular misalignment should be much less than 6
mrad.

The requirement on the other angle, angle A, is more subtle. If the angle is
misaligned by a small angle, the frequencies of the radiation from a moving atom into

the resonator mode will be up- or down-shifted in the laboratory frame relative to the
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Figure 3-35: Effect of misalignment in the angle between the atomic beam and the
cavity axis.

atom frequency depending on the direction of the emission as illustrated in Figure
3-35. The photons at these frequencies will still be reflected by the mirrors as many
as 725 times in the same way as the photons at the exact atom frequency are since
the bandwidth of the mirror reflectivity is quite broad (~30 nm). These photons will
also interact with the atom without any degradation as long as the shift is far less
than the transit time broadening, which is present in the atom-field interaction even
for perfect angular alignment. The magnitude of the transit-time broadening was 2.8
MHz, determined by the cavity mode waist of 43 um and a mean thermal velocity
of 320 m/s. According to the quantum mechanical micromaser theory overviewed
in Chapter 2, the one-atom laser will have a laser linewidth much smaller than the
transit-time broadening. We expect two peaks in the spectrum of the one-atom laser
if the angle A is misaligned by more than the one-atom laser linewidth but much
less than the transit-time broadening. If we just measure the total output power of
the one-atom laser, as we did in the experiment, such misalignment has negligible
effects on the results since the detector measures all the spectral contents. Hence
the requirement, as far as the total power is concerned, is that the angle should be
accurate within 5 mrad. However if we are interested in measuring the laser linewidth,
the misalignment should be made much less than an expected laser linewidth. In this

case not only the angular alignment is important but also the divergence of the atomic
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beam itself becomes critical; the Doppler broadening associated with the divergence
itself was 320 kHz for the present experiment.

In addition, there is one more condition that should be satisfied by angle A.
Because of the standing-wave mode structure of the cavity, the atomic beam should
not move from one node to another while it traverses the cavity. More specifically,
any transverse displacement should be much less than A/2. Therefore angle A has to
be much less than %l% ~ 5 mrad.

In order to align the pump laser beam and the cavity axis relative to the atomic
beam, we utilized the 553 nm fluorescence of atomic barium. The linewidth of the
transition is 19 MHz, so 2-3 MHz broadening due to the angular misalignment could
be easily noticeable. A 553 nm probe beam from the dye laser was used to mea-
sure the fluorescence lineshape of the transition. For angle A alignment, the beam
intersected the atomic beam along the resonator axis. We varied the direction of the
atomic beam relative to the resonator axis until the linewidth was minimized. The
smallest linewidth was 23 MHz. The extra broadening might be due to a transit-
time broadening since the probe was focussed as it was in the density calibration
measurement. When we used a unfocused probe beam, the linewidth was further
reduced to 21 MHz, confirming projection. The extra 2 MHz in this case seemed to
come from the frequency jitter of the probe. For angle B, a probe beam at 553 nm
was introduced without any focusing, replacing the pump laser, and the linewidth
was minimized by adjusting its angle relative to the atomic beam. In this case the
smallest linewidth approached was 20 MHz.

Once the best alignments for the two probe beams were found, the pump laser
was superimposed on the probe beam that had replaced the pump beam before, and
the probe beam was blocked. Next we engaged the cavity locking and monitored the
transmitted power of the locking laser on detector A. Since the locking laser filled
up the TEMgo mode of the resonator, the output of the one-atom laser, which also
originates from the same mode, should be in the same direction as the locking laser.
The locking laser was vertically polarized so that most of the power was reflected to

detector C and only small fraction of it (~ 107°) was transmitted through the prism
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Figure 3-36: Timing diagram of photon counter and AOM

polarizer (PBS). We adjusted the position of the detector and the focus of lens L4
in Fig.3-34 until the signal registered on the detector was maximized. Later once we
got the output signal these parameters were readjusted for the maximum signal. We
found that the final settings were not much different from the presetting based on the
locking laser beam.

Once the system was pre-aligned as described so far, the atomic beam oven was
turned up to produce about 10 to 100 times more than the density actually needed
for single atom operation. Then the spot size and the intensity of the pump beam
were preset as a w-pulse. The beam was first placed well before the cavity mode and
then translated toward the mode in a 10 pm step until a laser signal was registered
on detector A. Signal counting was done only when the locking laser was turned off.
Once the signal was obtained, all the adjustable parameters were fine tuned again

one by one to maximized the signal.

3.2.3 Data Aquisition

The photon counting signal from detector A was processed by a digital photon counter
(SRS, SR400). The counter was triggered by a TTL clock signal, which controls the
AOM in DP-AOM setup. A gate feature of the counter was enabled so that the
signal was counted only when the cavity-locking laser was turned off (see Figure 3-

36). The counter was active for 125 usec per each period of the clock. The signal
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was accumulated for 100 or 200 periods depending on the signal size and the result
was converted to a voltage by a digital-to-analog converter in the counter. A typical
conversion factor was 10°> ~ 10* counts/volt. This voltage signal was then recorded
on a digital oscilloscope (Lecroy 3100M). A typical data consisted of 1000 data points
and it was recorded as a function of the cavity-atom detuning. The cavity locking
laser was still present because it could be used as a frequency mark in the cavity-
atom detuning. When any of the three frequency components of the locking laser was
resonant with the cavity, detector A recorded a large counts relative to off-resonance
background counts although the locking laser was turned off during the counting time.
This large counts was due to the fact that the cavity could store the locking laser
beam for a while after it was turned off. Therefore, during the scan, the locking laser
was completely blocked by a beam stop over 10 MHz range around the resonance.
Otherwise, the central frequency component of the locking laser would have caused

the detector to become blind temporarily.

3.3 Results

3.3.1 Dependence on Atom-Cavity Detuning for Various
Number of Atoms

For the data that will be presented next, the cavity locking was disengaged and
the resonator was allowed to drift slowly across the atom-cavity resonance. Then the
output of the one-atom laser was measured as a function of the cavity-atom detuning.
The drift of the resonator was uniform in time and its rate was about 1 MHz/sec.
The linearity error of this free-run scan was later confirmed to be less than 400 kHz
over a 50 MHz scan range.

Some early data is shown in Figure 3-37. The mean number of atoms was about
one. The signal was barely seen buried in a large background. There are two problems
with this data: the peak power occurred when the cavity was detuned by about -6

MHz, and the signal size was two orders of magnitude smaller than an estimation
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Figure 3-37: Some early data influenced by a local magnetic field.

based on the quantum theory in Chapter 1. After a series of diagnostic experiments,
we found that a few gauss local magnetic field, apparently pointing in the direction of
the cavity axis, induced the atoms to be excited mostly to the m = *£1 sublevels of the
3P, state and very little to the m = 0 sublevel. Recall that the polarization direction
of the pump laser was supposed to defined the z-axis, or the quantization axis in the
one-atom laser so that only the Am = 0 transition (*Sp, m=0 « 3P;,m=0) would be
excited. The local field was strong enough to redefine the quantization axis, thereby
disrupting the excitation of the atoms in a proper state. Presumably, the origin of
the local field was the earth magnetic field as well as a stray magnetic field from
the atomic oven driven by a high current (~300 A). Although we tried to eliminate
the stray field by twisting the cable pair delivering the current to the oven, the field
appeared to be a few gauss.

This problem was solved by a keeper field in the same direction as the pump
laser polarization. The keeper field is a modest-strength DC magnetic field defining a
quantization axis. The keeper field was generated by a pair of Helmholtz coils placed

outside the vacuum chamber. The strength of the field was about 10 gauss. The

164



June 6, 1994
1600 —— — _

<N> =1 atom
19% ND filter used |

1200

- ——

800

400 |

Output (count/12.5 ms)

-20 10 o 10 20
Cavity-Atom Detuning (MHz)

Figure 3-38: After a keeper field is added to the system. It was taken under the same
condition as the data in Fig.3-37 except for the keeper field.

keeper field not only eliminated the frequency shift but also it boosted the output
signal as shown in Figure 3-38, where the data was taken under the same condition
as the data in Fig.3-37 except for the keeper field.

The output signal was reasonably strong even when the average number of atoms
in the resonator was as small as 0.1, yielding a count rate of 7 x 10*> count/sec. Some
representative data are shown in Figure 3-39, where the average number of atoms
were varied from 0.10 to 1.0. Rapid growth of the output power as a function of
the average number of atoms is easily noticeable in Figure 3-40. Neutral density
filters were used to attenuate the signal on the detector whenever counting rate, the
counts per bin divided by the counting time, was more than 10° count/sec because
of the detector saturation effect (see Sec.3.1.6). We can also plot the peak values of
these curves as a function of the average number of atoms in the resonator mode, or
equivalently the average number of photons in the mode as a function of the average

number of atoms. The average number of photons is related to the count rate of the
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Figure 3-39: Output of the one-atom laser as a function of the cavity-atom detuning.
Average number of atoms in the cavity mode was (a) 0.10, (b) 0.17, (¢) 0.23, (d) 0.38,
(e) 0.71 and (f) 1.0. Counting time per bin was 25 ms for (a)~(c) and 12.5 ms for
(d)~(f). Solid lines are based on Eq. 2.82, the modified quantum recursion relation,
and Eqgs. 2.90 and 2.85 for the definition of the average number of atoms.
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Figure 3-40: Output count rates for various average number of atoms in the mode
are compared.

output signal, S, by
s 1(>r( ! ) (3.23)
= -\n e\ T 3 cllo .
) T+A4)""

where 7. is the counting efficiency of the detector, 0.36 £ 0.04, 7, is the efficiency of
collection optics, mostly due to a total of 7 uncoated surfaces of optical components,
and T/(T + A) is the throughput factor, which was measured to be 0.32 £ 0.02 earlier

in Sec.3.1.3. Hence
S

~ 6.3 x 10%count/sec

(n)

Figure 3-41 shows the results. This data is compared with the theories developed in
Chapter 1, and the result is shown in Figure 3-42. A curve denoted by QM(<n>,v-av)
is based on Eq.2.82, the modified quantum recursion relation, and Eqs.2.90 and eq:N-
Dt-corrected for the definition of the average number of atoms. It also accounts for
the velocity distribution in the atomic beam (i.e., the results were averaged over the
velocity distribution). The solid lines in Fig.3-39 are based on the same model.

The curve denoted by micromaser theory is the prediction by the micromaser

theory. For this the number of thermal photons was set zero (ny = 0) and the re-
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Figure 3-42: The same data as in Fig.3-41 is compared with the various theories
developed in Chapter 1. See the text for detail.

sults were averaged over the velocity distribution. Recall that the micromaser theory
assumes that the off-diagonal elements of the field density operator are vanishing.
This assumption, as discussed before, does not hold in our experiment, and therefore
the predicted signal is smaller than the actual signal roughly by factor of two. The
discrepancy gets larger as the mean number of atoms approaches one.

In addition, the predictions by the rate equation formulae, Eqs.2.246 and 2.247, as
well as by the semiclassical model in Sec.2.2.3, particularly Eq.2.178, are also plotted.
It is interesting that the one-atom semiclassical model behaves worse than the rate
equation model. As far as the signal size is concerned, the semiclassical model is the
worst one. However, this model has some success in other areas. It will be shown
later that the model can explained the dependence of the output power on the pump
position at least qualitatively.

The rate equation formalism is supposedly good for a large number of atoms if
it could ever fit the data. In fact, it performs respectably for relatively large mean

number of atoms. It deviates from the data further and further as the mean number
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decreases.

It is surprising that even the prediction denoted by the fully quantized theory is
totally off the mark when the average number of atoms is comparable to one. The
agreement between the data and the theory is good only when the number of atoms
and the mean photon number are much less than one. This disagreement between
the theory and the data might be attributed to the fact that the quantum mechanical
recursion relation and the corresponding fully quantum mechanical theory in Sec. 2.1
is basically one-atom theory. In other words the theory assumes that at most only
one atom interacts with the cavity field at any instance. This assumption obviously
breaks down if the mean number of atoms is comparable to one. In this case actual
number of atoms can be more than one with appreciably high probabilities due to
statistical fluctuations.

The quantum mechanical treatment of the micromaser with a few atoms has
been sparse [66]. A complete theory has yet to be developed. However, it is not
obvious whether a yet-to-be-developed few-atom quantum mechanical theory could
explain the anomalously large output power of the one-atom laser. The experimental
data clearly shows that there is rapid change in the slope as the number of atoms
approaches one. Can this slope change be explainable by a few-atom theory?

The most reasonable explanation, however, perhaps comes from the peculiar way
that the standing wave nature of the cavity mode was handled in the theory. In
reality atoms can travel anywhere in the standing wave structure of the cavity mode,
some near the anti-nodes enjoying maximum coupling strength whereas some near
the nodes experiencing no coupling at all. In our theory we simplified situation in
such a way that the half of the atoms are at the nodes and the rest of the atoms are
at the anti-nodes. This approximation may be reasonably a good approximation as
long as the number of photons in the cavity mode is relatively small, as confirmed by
the experimental data. However the approximation might break down if the photon
number gets quite large. In that case even the atoms moving near the nodes will
benefit from the large photon number mostly generated by the atoms traveling near

the anti-node. For those atoms near the nodes, even though coupling is reduced by
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Figure 3-43: Experimental data is plotted again in comparison with the curve indi-
cating the upper bound of the output power based on the argument in the text.

the coskz function, Rabi frequency that governs the tendency of photon emission
from the atoms is boosted by /n + 1 factor with n much larger than one. So except
the atoms traveling exactly along the nodes, effectively all the atoms participate in
photon emission. The upper bound of the laser output caused by this saturation
effect should be the what we would find if there were no sinusoidal dependence on
the position along the cavity axis, and if all the atoms assumed the full strength of
the coupling constant. In this case the number of atoms participating in the laser
oscillation is simply doubled. In Figure 3-43 the experimental data 1s compared with
the curve indicating the upper bound of the output power based on this argument.
This rather heuristic argument, even though it is far from rigorous, qualitatively
explains the signal size. More reliable explanation, however, would be possible only
when one solves the quantum mechanical master equation including the standing wave
nature and allowing more than one atom in the cavity. It appears that such solution
will not be available in a near future due to its extreme complexity. For the time

being one can rely on numerical simulations, particularly Monte Carlo simulation.
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But this simulation has to be done in such a way the time dependent solution is
followed for long sequence of atom-field interactions with random atomic position per
interaction. The solution will gradually approach the real solution after large number

of interactions.

3.3.2 Dependence on Pump Position

The data presented before were taken for a pump laser position just outside of the
cavity mode so that the pump field did not overlap with the resonator mode signif-
icantly. At that position the output signals were maximized as expected. However,
we repeated the output measurement for various pump positions in order to demon-
strate that the system works as it should. For a fixed pump position the resonator
was allowed to drift slowly across the resonance and the output was measured as a
function of cavity-atom detuning as usual. The measurement was repeated for differ-
ent pump positions as shown in Figure 3-44. If we plot the peak power of each scan
as a function of pump laser position, we then obtain Figure 3-45. The solid lines are
the prediction based on the one-atom semiclassical model presented in Sec. 2.2. The
pump beam waist used in the calculation was 50 pum and the intensity of the beam
corresponded to a w-pulse excitation. The waist of the resonator was assumed to
be 43 pm as it should be. The curve denoted by Semiclassical (N=0.2,F=0.79) in
Fig.3-45 is the prediction when the actual finesse and an estimated average number
of atoms were used. The result agrees with the data only when the pump beam is
inside the cavity mode (z = —2w,, ~ w,, with z defined in the plot.). In order to get
the observed position dependence, we had to adjust both the finesse value and the av-
erage number of atoms to be 1.0 x 10° and 1.0 respectively whereas the actual finesse
and average number of atoms were 0.79 x 10% and 0.2, respectively. Although the
semiclassical theory could reproduced the observed position dependence with these
new parameters, the magnitude given by the theory was 3.3 times larger than the
actual value. We believe this discrepancy is due to the inherent problem of the semi-
classical theory. Since the average number of photons was very small (less than one

for the data shown here), it is not totally unexpected that the semiclassical theory
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cannot describe the experiment in every detail. The semiclassical theory treats the
cavity field classically. This treatment is reasonable only when the number of photons
in the resonator is enormously large. The semiclassical theory used to calculate the
position dependence assumes that the photon number is indeed much larger than one
(see Sec.2.2.3). Therefore it is understandable that the theory cannot produce a right
amplitude for the cavity field.

Another point which should be noted in the plot is the exponential-like decrease of
the output as the pump beam moves away from the resonator. If an atom is excited
far prior to the cavity mode, the excited state population will be lost much by the
spontaneous emission process while it is traveling toward the cavity mode. As noted
in Sec 3.1.1, 3P, state of atomic barium decays to 'Sy ground state as well as 3D
state with about equal probabilities. The total decay rate is hence about twice of the
radiative linewidth of 'So«+3P, transition, resulting in a lifetime of 1.5 usec. This
lifetime corresponds to 500 um of flight distance with a mean thermal velocity of 320
m/s, and therefore the output signal drops to 1/e of the maximum at that distance

as shown in the plot.

3.3.3 Dependence on Pump Power

All the data presented so far have been taken with the pump laser field supposedly
adjusted for the 7-pulse excitation of the most probable velocity group of the atoms.
In actual experiment, however, the output power of the one-atom laser was maximized
as the intensity of the pump laser was varied with the position of the pump well
outside the cavity mode. The pump intensity corresponding to the maximum output
was then tagged as a w-pulse excitation intensity. To demonstrate this convention
was indeed the correct one, we measured the output power as a function of the cavity-
atom detuning for various pump laser power. For this measurement the pump beam
was positioned at z = 100 pm with z defined in Fig. 3-45. Since the cavity mode
waist and the pump beam waist were 43 pum (determined by resonator geometry)
and about 50 um (from data fitting such as Fig.3-45, respectively, the pump laser at

that position was was reasonable outside the cavity mode. The peak power of such
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scans are plotted as a function of the square root of the pump laser powers in Figure
3-46, and the result is compared with a fitting by the modified quantum recursion
relation, Eq.2.82, in the same spirit as QM(<N>,v-av) in Sec.3.3.1, accounting for the
standing wave nature of the cavity mode. As seen in the plot, the theory predicts
that the output power is in fact maximized when the pump intensity about 90 % of
the intensity corresponding to the 7-pulse excitation of the most probable velocity
group (pulse area = 0.87). The reduction in the output power when the intensity is
set for the w-pulse excitation is about 5 %, comparable to the experimental error in
the plot. Therefore for practical purposes we can consider that the output power is
maximized when the pump intensity is set for the m-pulse excitation. In that sense the
experimental data well agrees with the theory, exhibiting saturation behavior when

the pump intensity far greater than the intensity for the 7-pulse excitation.
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Chapter 4

Discussion and Conclusion

Standing-Wave Cavity Mode

In the previous chapter, the standing wave mode structure of the cavity used in the
experiment introduced an ambiguity in evaluating the effective number of atoms in the
cavity. We used a rather heuristic argument to explain the origin of the anomalously
large signal size with some success. As pointed out there, however, a more reliable
explanation would be obtained only when one solves the quantum mechanical master
equation including the standing wave nature and allowing more than one atom in
the cavity. There exists a numerical method which might be suitable for this kind
of calculation. It is called quantum trajectory approach [67, 68, 69, 70], and it has
been used to obtain the fluorescence spectrum of an atom in an optical trap [71]. In
this approach a time dependent solution is followed for long sequence of atom-field
interactions with random atomic position per interaction. The solution will gradually
approach an equilibrium solution after large number of interactions.

Alternatively one can think of using a ring cavity instead. There will be no nodes
and anti-nodes in this case, and hence the coupling constant is uniform over the
entire cavity, eliminating the complexity in the theory associated with the position
dependence in the coupling constant. Since we use only one of the two waves traveling
in the opposite directions, the magnitude of the coupling constant is reduced to the

half of the maximum coupling constant for a standing-wave cavity. However, such a
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cavity will not be trivial to construct, and furthermore, it is questionable if we can

achieve a finesse as high as we do with a standing-wave cavity.

Superposition State Excitation

If atoms are prepared in a superposition state of the two levels instead of being
completely excited to the excited state, the coherence in the atoms can be transferred
to the cavity field. In this case the field density matrix has non-vanishing off-diagonal
elements, as illustrated in Fig. 2-3, and even the diagonal elements are redistributed
accordingly. As pointed out in Sec. 2.1.5, a maximum, (n) , is achieved not when the
atoms are fully inverted but when they are prepared in a superposition state initially.
Note that (n) is just the first moment of the field density matrix. Obviously the
second moment, (n?), will also change if the field density matrix changes. Note that
a simple measure of the photon statistics is the variance of the photon number, An =

(n?) — (n)2 Therefore, the photon statistics for a superposition-state excitation
can be quite different from the photon statistics with the 7-pulse excitation.

In order to create atoms in a superposition state, one should control the interaction
time between the atoms and the pump field more precisely. For this a mono-energetic
atomic beam is required. One way to select a single-velocity group of atoms out of a
thermal atomic beam is to use the laser-beam deflection technique [72]. We can use

the strong 553 nm transition (1Sp«>'P;) for this technique.

Detection of Atomic State

In our experiment, we detected only the photons emitted from the system. Equiva-
lently, atoms can be counted in a state-selective manner. An idea similar to the atomic
shelving technique [73, 74, 75], for example, can be applied to the V-transition con-
sisting of 1Sy, 1P, and 3P, states. The idea is as follows. In our experiment an atom
is first excited by a w-pulse laser beam at 791 nm (1Sp+>3P;). The atom undergoes
an interaction with the cavity field and exists the cavity either in the ground state
or in the excited state. This exiting atom is then probed by a laser beam at 553 nm

(1Sp¢>'P;). The duration of the probing is set much longer than the lifetime of the
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Figure 4-1: A preliminary data demonstrating an atomic shelving technique, which
can be used in our experiment to count atoms in a state-selective wave. See the text
for explanation.

1 P, state but much shorter than the lifetime of the 3P, state. If the atom is in the 3P,
state, it will stay there for the duration of the probing, and hence it does not interact
with the probe laser. On the other hand, if the atom is in the ground state, it can
be excited by the probe and emits a photon spontaneously. Since the duration of the
probing is much longer than the lifetime of the ! Py, this excitation-emission cycling
occurs many times, generating many fluorescence photons at 553 nm. By monitoring
the fluorescence, therefore, we can tell if the atom exits the cavity in the ground state
or in the excited state. Some preliminary data was taken to test this idea, and it is
shown in Fig. 4-1. For this data we did not have the cavity. Instead, the pump laser
intensity was varied around the intensity for the 7-pulse excitation and the resulting
atomic states were probed. The data is composed of 12 fluorescence scans by the
probe, displayed in a sequence. The numbers on the individual curves represent the
power of the 791 nm pump laser. Note that the fluorescence signal is proportional to
the population in the ground state. Clearly, when the pump pulse area approaches T,

the fluorescence signal decreases. It is interesting to note that only the fluorescence
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peak corresponding to '**Ba changes. The peaks due to the other isotopes remain
the same since the pump laser was not resonant with the !S,«3P; transition of the

isotopes.

4.0.4 Future Study

One of the most important subject to study will be the statistics of the photons as
well as atoms in the one-atom laser. According to many theories on the micromaser,
the photon and atom statistics can be highly nonclassical, often exhibiting sub/super-
Poissonian number distributions [47, 42]. These results for the micromaser are readily
applicable to our microlaser with a few modifications. Squeezing [44, 46, 49] has been
also predicted for the micromaser.

Laser linewidth measurement will be also quite interesting. With a stronger cou-
pling constant or a longer interaction time to satisfy 2¢t;,; > 1, the linewidth de-
viates from the Schawlow-Townes limited linewidth. A long interaction time can be
achieved by selecting a slow-velocity group of atoms out of the thermal beam. Con-
nection between the linewidth and the photon statistics will be a interesting subject.
Experimentally, the angular alignment between the atomic beam and the cavity axis
as well as the divergence of the atomic beam itself have to be improved by an order of
magnitude to successfully measure the linewidth. Otherwise, the emission linewidth
will be broadened by the Doppler shift.

Rabi dynamics can also be studied in a more direct way. The velocity selection
permits control of the interaction time ¢;,; precisely. Due to the Rabi-oscillation na-
ture of the atom-cavity field interaction, the output of the one-atom laser is expected

to oscillate as a function of the atom-field interaction time ¢;,; as shown in Fig. 4-2.

4.0.5 Summary

In this work we have realized an one-atom laser for the first time. The laser oscillation
was obtained with the mean number of atom in the cavity mode varied between 0.1

and 1.0, resulting in the mean photon number in the cavity changing from 0.14 to
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Figure 4-2: The mean number of photons as a function of the atomic velocity. All
the experimental parameters were assumed to be the same as those of the present
experiment except the finesse (increased to 1.2 x 10°), the cavity length (decreased
to 300 um) and the velocity (varied from zero to 200 m/s).

11. In the present setup, the one-atom laser can emit up to 107 photons per second.
We observed no distinct threshold behavior as the number of atoms were varied. We
found that the measured mean photon number agreed with a fully quantized one-atom
theory (to be described in Chap.2) as long as the mean number of atoms was much
less than unity. However, the measured mean photon number was much larger than
the prediction of the one-atom theory when the number of atoms was comparable to
unity. This discrepancy was explained by incorporating the standing-wave nature of

the cavity mode into the theory.
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Appendix A

Derivation of Ringdown Formulae

Suppose a monochromatic plane-wave laser field is incident on a Fabry-Perot res-

onator. We assume that the distance between mirrors is changing in time:
L(t) =L, + vt. (A.1)

The velocity v is assumed to be so small that for a time interval we consider % << 1
or L(t) ~ L,. Both mirrors have a reflectivity of r and transmitivity of . Then the

electric field inside the resonator at any instance is given by

Ein(t) — tEo eikz—wt

12| eiklzr2L(t=22 )] —iwt

14| eik[z+2L(t=222 ) +2L (- £2 )] —iwt
o

tr2nE, oikl+ o, 2L (- Cmhite ) —iwt

+ + + o+ +

The summation in the exponent is simplified as

, 2L<t_(_2£n_‘c_1)_’32) 2213 (1) — 20 (2m 1)L,

m=
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= 2nL(t) - 2L, (%) 3 (2m—1)

m=1

— 2nL(t) - 2L, (3) n?

c
= 2n [(1 - ng) L,+ vt] . (A.3)
c
So the field inside is
Ein(t) = B, eilbs=) 3 p2n oi2nk[(1-n¥)Lotvt] (A.4)
n=0

We assume the resonator becomes resonant with the incident field at ¢ = 0 so

kL,=Nr, with N = rmanteger . (A.5)

We also assume that the round trip time, %‘-, is much smaller than the cavity decay

time so that an arbitrary time t can be expressed as ¢ = 2%21 with [ being an integer.

Then the phase factor in Eq.A.3 becomes

2nk [(1 - nP—) L, + vt} = 2nk [(1 - ng) L,+ szol]
c c

C
= 2nk [Lo + (20 —n) ELO]
C

250) n(2l — n)

= 2nN7r+kv(

so that
Ein(t) — Eo ei(kz—wt) Z T2n eikv(g‘c-ﬁ)n(Zl—n) . (A6)
n=0

The intensity then is
2

co
Im(t) o Zr2n eikv(z—‘g—ﬂ)n(Zl—n)

n=0

(A7)

The phase factor in the exponent can be written as a quadratic function of n, which
is stationary when n ~ [. Only the terms with n = [ contribute to the summation

constructively. As a lowest order approximation, we can treat r*" factor as a constant
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and take it out of the summation. Then the intensity decays exponentially for large I.

Iin(t)

2

1 > 2L
ikv( 2Le -
o |7'|4 Z ezku( = )n(Zl n)
n=0
x R¥ = elnR"" = e2In[1-(1-R)] oy o—2(1-R)!

e—21-R)5t — Tet

(A.8)

However in general the intensity exhibits a modulation on its exponential decay. We

can rewrite Eq.A.6 as

L, (1)

n

ZTZn kv 24: [l2 n—l)2]

n'=-|

2

=0

i 200 +) eikv(%a)[ﬂ-n'?]

2 ikv( 222

— R21 Z r2n' e—zlc11(—£‘1)n’2
n/=-1|
RQI i —2n' -—zkv 2Lo )2 Z 2n’ zkv(-&ﬂ) :
= r c
n''=1 ,

where the second term

whereas the first term

(A.9)

is just a constant corresponding to a field amplitude at ¢ = 0

corresponds to a modulation on the amplitude as a function

of [ or t. The modulation occurs because of the sinusoidal nature of the exponential

function in the first term. The summation oscillates as a function of [.

When |

correponds to 27 of the phase factor of the exponential function, a first minimum of

the decay curve occurs.

2L,

c

2r

b (=2)

e
2L,v
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Therefore

t= (25) (%) . (A.10)

A k-th mininum occurs when

kv (2L°> P = %%,

Cc

SO

te = Jk (25) (—2-) . (A.11)

Therefore, the time interval between the first minimum and the second one is

c v

T=t,—t=(V2-1) (2L°) (5) . (A.12)
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Appendix B

Computer Programs

B.1 Main Program

/****************************************************************/

/* */
/* ml3_5.c */
/% */

/o ok kok ok ok ok sk ks ok ok ok kR skok ok ok ok ok ok sk sk ok ok sk ok ok ok ok sk ok ok ok /

/****************************************************************/

/* About program: */
/* Qunatum recursion relation with off-diagonal field matrix */
/* elements. The standing wave nature of the cavity mode is */

/* accounted for by an effective Delta_t. Calculation is done */
/* for a given atomic velocity in the velocity distribution and */

/* the result is averaged over the distribution. */
/* */
/* Last modified on 8-13-94 x/

/****************************************************************/

##include <stdio.h>
#include <math.h>
#include <time.h>

/A ke s e ok s sk kel o ok ke ok ok ok o ek s ofe s s s ok ok o ke ok ok s o e ok o s ks ok ok ok ok sk ok kodsk ok ke ko ok ok /
/* A header file contains constant and macro definitionms. */
/* It also include numerical recipe library files. */
/6 3 e 3 3 e ek e ok K ook sk 3 ok e 3 ok ke 36 o e o o o e 3k o e e 3k S ok o 3 36 3k e e 3k o ok o ok o 3 o ok ok o ok ok sk ok ok ok ok /
#include "micro_header3.c"

/3K e e e e ook o o e o ok ok ok ok o sk ook A 3 e ek ok o ek o o o ok o 3k ok ok ok o kool ok o sk ok ok sk sk ko ok ok ok /
/* Global variables are defined here */
/s o e e o ke 3 ok 3 ek 3 o o o 3 ok o e ke oo A o o o o ok ok ok ok ok e o sk s e ok o ook ok ok o ok ok o ok ok ok ok /
double _Ga_over_2g, _Nex, _theta, _alpha;

double _wO0, _u_th, _N_atom, _Omega_R=1.0, _Gc_over_2pi, _g_over_2pi;
int _choice=1, _UseLastQ=0;

double _last_p[N_MAX+1] [N_MAX+1], _last_q[N_MAX+1][N_MAX+1];

double _Delta_over_2g, _EXP=1.;

/****************************************************************/

/* _MAX_ITERATION is the maximum number of iteration in */
/* calculating the density matrix elements. */
/* _N_CUTOFF is the largest n index of the density matix */
/* elements. */
/* _TOLERANCE is the relative error in the numerical */
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/* integration. */
/* EPS and K controls precision of numerical integration */

/* NOTE: EPS and K are defined in the header file. */

/e ok e sk ke ok o o o s s o o ko o o ok o Aok o R K R ok kR ok ok ok ko ok /
int _MAX_ITERATION, _N_CUTOFF;

3 =

double _TOLERANCE;

main{argc, argv)
int argc;
char *argv[];

double n_mean[MAX_DATA_PNT], n_u_th[MAX_DATA_PNT];
double Ga_over_2pi, lambda, rO, finesse;
double z0, L, f, fsr;

int i, dothis=0;

int make_input_only=0, c;

FILE *inputfile, *parafile, *logfile;
double T1, T2;

double pnt[MAX_DATA_PNT];

int n_data_pnt;

double R, t_int_over_Delta_t;

long *tp;

FILE *errfile;

void set_to_vacuum();
double integrand with_choice();

double f_MB();

while ((c¢ = getopt (argc, argv, "ih")) != EOF)

switech (¢) {

case ’i’:

make_input_only=1;

break;

case ’h’:

fprintf(stderr, " Usage: ml3.5 [-ih]\n");

fprintf(stderr, " This version allows you to choose...\n");
fprintf(stderr, "\t2_ changing Natom w/ velocity averaging\n");
fprintf(stderr, "\t3_ changing W_R w/ velocity averaging\n");
fprintf(stderr, "\t4_ changing detuning w/ velocity averaging\n");
exit(2);

break;

case ’7’:

fprintf(stderr, "Usage: ml3.5 [-ih]\n");

fprintf(stderr, "where -i makes input file only\n");
fprintf(stderr, " -h displays user choices\n");

exit(2);

break;

¥

/* open log file */
if (DEBUG) {
if ((errfile=fopen(ERR_FILE, "w"))==NULL) {
perror (ERR_FILE);
exit();

fclose(errfile);

if (LOGGING) {

if ((logfile=fopen(LOG_FILE, "a"))==NULL) {
perror (LOG_FILE);
$xit();

time(&tp);

fprintf(logfile, " -
fprintf(logfile, "%s\n", ctime(&tp));
fclose(logfile);

}

if ((inputfile=fopen(INPUTFILE, "w"))==NULL) {
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perror (INPUTFILE);
;xit();

/* PARA_FILE is read */

if ((parafile=fopen(PARA_FILE, "r"))==NULL) {
perror (PARA_FILE);

exit();

}

fscanf(parafile, "%d", &_UseLastQ);
fscanf(parafile, "%d", &_N_CUTOFF);
fscanf(parafile, "%d", &_MAX_ITERATION);
fscanf(parafile, "%1f", &_TOLERANCE);
fscanf(parafile, "%1f", &EPS);

fscanf (parafile, "%d", &K);
fclose(parafile);

JRRER Rk kR Rk Rk ok kTS oY  TNPUL kkskkokskdkokskskkok ko kdkok Kk ko /

fprintf(stderr, "Welcome to %s...\n", program_name);
fprintf(stderr, "This version allows averagin over velocity distribution\n");
fprintf(stderr, "as well as the cavity-atom detuning.\n\n");
fprintf(stderr, "Enter Ga/2pi in kHz:\n");

scanf ("%1f", &Ga_over_2pi);

fprintf(stderr, "Enter wavelength in nanometer:\n");

scanf ("%1f", &lambda);

fprintf(stderr, "Enter radius of curvature in cm:\n");

scanf ("%1f", &r0);

fprintf(stderr, "Enter finesse in million:\n");

scanf ("%1f", &finesse);

fprintf(stderr, "Enter thermal veleocity of atoms in m/s:\n");
scanf ("%1f", &_u_th);

fprintf(stderr, "Enter cavity length in cm:\n");

scanf ("%1f", &L);

fprintf(stderr, "Choose...with W_R=pump Rabi frequency...\n");
fprintf(stderr, "2_ changing Natom with velocity and spatial averaging\n");
fprintf(stderr, "3_ changing W_R with velocity averaging\n");
fprintf(stderr, "4_ changing detuning with velocity averaging\n");

scanf ("%d", &dothis);

fprintf(inputfile, "%.31f\n", Ga_over_2pi);
fprintf(inputfile, "%.31f\n", lambda);
fprintf(inputfile, "%.31f\n", r0);
fprintf(inputfile, "%.31f\n", finesse);
fprintf (inputfile, "%.31f\n", _u_th);
fprintf(inputfile, "%.31f\n", L);

fprintf (inputfile, "%d\n", dothis);

if (dothis==2) {
fprintf(stderr, "Enter number of Natom values to be entered:\n");
scanf("%d", &n_data_pnt);
fprintf(inputfile, "“%d\n", n_data_pnt);
fprintf(stderr, "Enter Natom values in sequence:\n");
for (i=0; i<n_data_pnt; ++i) {
scanf ("%1f", &pnt[i]);
fprintf (inputfile, "%1f\n", pnt[i]);
}

}
else if (dothis==3) {
fprintf(stderr, "Enter number of (W_R/W_pi) values to be entered:\n");
scanf ("%d", &n_data_pnt);
fprintf (inputfile, "%d\n", n_data_pnt);
fprintf (inputfile, "%d\n", n_data_pnt);
fprintf(stderr, "Enter (W_R/W_pi) values in sequence:\n");
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for (i=0; i<n_data_pnt; ++i) {
scanf ("%1f", &pntli]l);
fprintf(inputfile, "%1f\n", pnt[il);
}

3
else if (dothis==4) {
fprintf(stderr, "Enter number of detuning values to be entered:");
scanf("%d", &n_data_pnt);
fprintf(inputfile, "%d\n", n_data_pnt);
fprintf(stderr, "Enter detuning values in sequence:");
for (i=0; i<n_data_pnt; ++i) {
scanf ("%1f", &pnt[i]);
fprintf (inputfile, "%1f\n", pnt[il);

else {
fprintf(stderr, "#*#* Wrong choice !! Terminated...\n");
exit();

if (!(dothis==2)) {
fprintf(stderr, "Enter number of atoms inside cavity:\n");
scanf ("%1f", &_N_atom);
fprintf(inputfile, "%.31f\n", _N_atom);
1
if (!'(dothis==3)) {
fprintf(stderr, "Enter W_R/W_pi:\n");
scanf ("%1f", & _Omega_R);
fprintf(inputfile, "%.31f\n", _Omega_R);
}

fclose(inputfile);
if (make_input_only) exit();

[ RRkdrkkkdkk Rk kkkkkkkkEnd of Inputhkkkkkkkkkkikkkkikkikkkkkk/
Ti=clock();

/* calculated once. does not depend on Natom nor velocity */
z0=sqrt (r0+L/2.); /* in cm */

fsr=3.e4/2./L; /* in MHz */

_wO=sqrt(lambda*10.*z0/pi); /* in micron */
£=3./4.*sqr(lambda/pi/_w0)*1.e-6;
_Gc_over_2pi=fsr/finesse/1.e6; /* in MHz */
_g_over_2pi=sqrt(2./pi*fsr*f*Ga_over_2pi/1000.); /* in MHz */
_Ga_over_2g=Ga_over_2pi/1000./2./_g_over_2pi;

/* generate common header information */

printf("# This file was generated by %s.\n", program_name);
printf("# Ga/2pi=%.21f kHz lambda=}%.21f nm r0=).21f cm\n",
Ga_over_2pi, lambda, r0);

printf("# u=%.21f m/s length=%.21f cm finesse=%.21f million\n",
_u_th, L, finesse);

printf("# 20=Y%.2le cm w0=%.2le micron £=%.2le\n", 20, _w0, f);
printf("# Gc/2pi=J,.21e MHz g/2pi=',.21e MHz\n", _Gc_over_2pi, _g_over_2pi);
printf ("# max_iteration=Y%d tolerance=Y.21e _N_CUTOFF=Y%d\n",
_MAX_ITERATION, _TOLERANCE, _N_CUTOFF);

printf("# EPS=Y%.2le JMAX=Yd K=%d\n", EPS, JMAX, K);

if (dothis==2) {
printf("# N_atom is varied...W_R/W_pi=Y%.2le w/ velocity ", _Omega_R);
printf("and spatial averaging...\n");
printf("# N_atom t_int/Delta_t n(averaged) n(v=u_th)\n");

}
else if (dothis==3) {

printf("# W_R/W_pi is varied...N_atom=%.2le w/ velocity ",
_N_atom);

printf("and spatial averaging...\n");
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printf("# W_R/W_pi n{averaged) n(v=u_th)\n");

}
else if (dothis==4) {

printf("# detuning is varied...N_atom=%.2le W_R/W_pi=%.2le ",
_N_atom, _Omega_R);

printf("/w velocity and spatial averaging\n");

printf("# detuning n(averaged) n(v=u_th)\n");

}

set_to_vacuum(_last_p, _last_q);

if (dothis!=2) {
t_int_over_Delta_t = _N_atom*sqrt(2.);
/* _EXP=exp(t_int_over_Delta_t); */

}
if (dothis!=4) _Delta_over_2g = 0.;

if (dothis==2) {

for (i=0; i<n_data_pnt; ++i) {
_N_atom=pnt[i];
t_int_over_Delta_t = _N_atom*sqrt(2.);
/* _EXP=exp(t_int_over_Delta_t); */

/*_Omega_R = 1.;%/
_choice=1;

n_mean[i]=qromo(integrand_with_choice, _TOLERANCE, 1.0, midpnt)
+ qromo(integrand_with_choice, 1.0, INFINITY, midinf);

n_u_th[i]l=integrand_with_choice(1.0)/f_MB(1.0);

printf("%.4le %.4le Y%.4le Y.4le\n",
_N_atom, t_int_over_Delta_t, n_mean[i], n_u_th[il);

if (LOGGING) {
logfile=fopen(LOG_FILE, "a");
fprintf(logfile, "TOLERANCE=),.2le EPS=Y%.2le N_CUTOFF=Y%d\n",
_TOLERANCE, EPS, _N_CUTOFF);
fprintf(logfile,
"N_atom=Y%.31e t_int/Delta_t=%.31le <n>=%.4le n_u_th=%.4le\n",
pnt[il, t_int_over_Delta_t, n_mean[i], n_u_th[i]l);
Fprintf(logfile, ... i i i i \n");
fclose(logfile);

fprintf(stderr, "+");
fprintf(stderr, "\n");

}
else if (dothis==3) {

for (i=0; i<n_data_pnt; ++i) {
_Omega_R = pnt[i];

_choice=1;

n_mean[i]l=qromo(integrand_with_choice, _TOLERANCE, 1.0, midpnt)
+ gromo(integrand_with_choice, 1.0, INFINITY, midinf);

n_u_th[il=integrand_with_choice(1.0)/f_MB(1.0);

printf("%.4le %.4le Y%.4le\n", _Omega_R, n_mean[i], n_u_th[i]);
if (LOGGING) {

logfile=fopen(LOG_FILE, "a");

fprintf(logfile, "TOLERANCE=Y.2le EPS=).2le N_CUTOFF=Yd\n",
_TOLERANCE, EPS, _N_CUTOFF);

fprintf(logfile, "Omega_R=Y%.3le <n>=).4le n_u_th=%.4le\n",
pnt[i]l, n_mean[il, n_u_th[i]);

Fprintf(Logfile, M.ttt i i i e i it \n");

fclose(logfile);
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}
fprintf(stderr, "+");
fprintf(stderr, "\n");

else if (dothis==4) {
for (i=0; i<n_data_pnt; ++i) {
_Delta_over_2g = pnt[i]/(2.*_g_over_2pi);

/*_Omega_R = 1.;%/
_choice=1;

n_mean[il=qromo(integrand_with_choice, _TOLERANCE, 1.0, midpnt)
+ qromo(integrand_with_choice, 1.0, INFINITY, midinf);

n_u_th[il=integrand_with_choice(1.0)/f_MB(1.0);

if (LOGGING) {
logfile=fopen(LOG_FILE, "a");
fprintf(logfile, "TOLERANCE=).2le EPS=%.2le N_CUTOFF=Yd\n",
_TOLERANCE, EPS, _N_CUTOFF);
fprintf(logfile, "detuning=Y%.3le <n>=%.4le n_u_th=%.4le\n",
pnt[il, n_mean[il, n_u_th[il);
fprintf(logfile, M. ... i i it \n");
fclose(logfile);

}
fprintf(stderr, "+");
fprintf(stderr, "\n");
for (i=n_data_pnt-1; i>0; --i)
printf("-%.4le %.4le Y%.4le\n", pnt[i], n_mean[i], n_u_th[il);

for (i=0; i<n_data_pnt; ++i)
printf("%.4le %.4le Y%.4le\n", pntl[i]l, n_mean[i], n_u_th([il);
}

T2=clock();

printf ("It has taken %1f sec\n", (T2-T1)*1.e-6);
fprintf(stderr, "It has taken %1lf sec\n", (T2-T1)*1.e-6);
} /* end of main */

#include "micro_integrand3.c"
#include "micro_Q_core5.c"

B.2 Included File 1

/**********************************#*****************************/

/* */
/* micro_header3.c */
/* */

/****************************************************************/

/oo ok ok ok ko ok sk sk ok ok sk skok ook ok koo ok ok ok ok Aok ko ok ook ek ok ook /
/* 2°{IJMAX-1} is the max number of divisions allowd in the */
/* numerical integration */
/ A3k ook ko sk ok sk ok o ok ok sk sk sk ok ok ok ok R ok sk ok sk ks ok ok ok ok ko ok ok ok /
#define JMAX 10

ARk ok R kK Rk kKR Rk kR ok kK K Kk /
/* PARA_FILE contains the value of EPS, and K, which */
/* control the numerical integration */
/****************************************************************/
#define PARA_FILE "ml3.PARA"
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ik b Y
/* N_MAX+1 is the row and column size of p and q arrays. */
/* So N_MAX is the largest N_CUTOFF allowed. */
/* MAX_DATA_PNT is the max number of data point to calculate */
e PP YR e TP L PR BT ey
#define N_MAX 102

#define MAX_DATA_PNT 100

/3 Ak ARk K KRRk Rk Kk R Rk ko kAo sk ok ok sk ok ok Ak
/* If DEBUG is defined, ERROR file is generated. The ERROR file */
/* contains p[i][i] values and number of iterationm. */
[ F ks o kR AR Rk kR R ok ok ok sk kR ok sk dkok ok ko k

#define ERR_FILE "ml3.ERROR"
#define LOG_FILE "ml3.LOG"
#define INPUTFILE "ml3.INPUT"
#define DEBUG 1

#define LOGGING 1

#define DOTS_FROM_QROMO 1

double EPS=0;

int K=0;

#include "../numrec/nrutil.c"
#include "../numrec/polint.c"
#include "../numrec/midpnt.c"
#include "../numrec/midinf.c"
#include "../numrec/Qromo.c"

#define sqr(x) ((x)*(x))

#define program_name "ml3_5.c"

#define INFINITY 1.e30

#define pi 3.141592

B.3 Included File

/3¢ e 3 s ke e e e s o o e ok s ok e 3k o e ok sk sk o e s o ok o o sl o ke s o sk ok ok Sk o ok ok s e ok sk ok sk ek sk ok e sk ok ok ok skeok /

/* */
/* micro_integrand3.c */
/* */

/***********************************************************************/

double integrand_with_choice(x)
double x;
/ Ak ko ok ok e ok ok e o ko ok ks ol ok ko ok Aok e ok /

/* The following parameters should be set before calling this routine. */

/* _w0, _Natom, _Omega R, _Gc_over_2pi, _g_over_2pi, */
/* _Ga_over_2g, _power */
/* This routine will set the following parameters before it calls */
/* calculate...routines. */
/* _alpha, _Nex, _theta */
/* If _choice=1 or 2, <n> or <n2> is returned. */
/* If _choice=3, <FW> is returned. */
/* If _choice=4, integral of f_MB(v) is returned. test purpose */
/* In form, this routine is a one-variable function. */
/e s o s s sk ok ok sk o s ook o sk o sk o o ek o o ook o o ok ok ok sk ok ok ko sk ok sk ok /
{

double t_int, R,
double p[N HAX+1][N MAX+1], q[N_MAX+1] [N_MAX+1];

int calculate_Q();

double calculate_n_to_p_average();
double f_MB();

void print_to_stdout();
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t_int=sqrt(pi)*_w0/x/_u_th; /* in microsecond */

/K e ok e e e e e o ok ok ko ok ok ok ko o ok ok ok ok ok ook o ok ok sk o o ke sk ok ok ok sk ok kR ok ok /
/* for effective atom number argument */
R=_N_atom/t_int*sqrt(2.); /* million per second */
/e e e o ke e e o sk e o o o ki o s sk s ok o ks oo o o o ok o oo oo o e e o s sk ek ok o ke sk sk ko ok ok ok /

_alpha=sqr(sin(pi/2./x*_Omega_R));
_Nex=R/(2.#*pi*_Gc_over_2pi);
_theta=sqrt{(_Nex)*_g_over_2pi*t_int*2.*pi;

calculate_Q(p, q, _TOLERANCE);

if (_choice==1) { /* <n> */
n = calculate_n_to_p_average(i., p);
return n*f_MB(x);

else if (_choice==4) return f_MB(x); /* test purpose */
else if (_choice==5) {

print_to_stdout(p, q);

n = calculate_n_to_p_average(1l., p);

return n*f_MB(x);

}
double f_MB(x)

double x;

/***********************************************************************/
/* This function calculates Maxwell-Boltzman velocity distribution */
/* Before calling _u_th should be set. */

/R kR R ok bk ko ko kR kR Rk sk ok ok ko /
{

return 4.*sqr(x)*exp(-sqr(x))/sqrt(pi);

}

void print_to_stdout(p, q)
double (*p)[N_MAX+1], (*q)[N_MAX+1];
{

int i, j;

double norm[N_MAX+1][N_MAX+1];

for (i=0; i<=_N_CUTOFF; ++i) {

for (j=0; j<=_N_CUTOFF; ++j) {

if (i>j) printf("%.2le ', norm[jl[il);
else if (i==j) printf("%.21le ", p[il[il);
else if (i<j) {

norm[i] [j1=sqrt(sqr(plil [j1)+sqr(q[iI[j1));

printf("%.2le ", norm[i]1[j1);
3

}

printf("\n");

b

b

B.4 Included File 3

/***************************************************************************/

/* */
/* micro_Q_coreS.c */
/* */

/3K e e ok ok ok s e e ok sk o sk o o o e e s sk o o o ok e e o sk o o o s ok ook s o ok e ok o ok ok Kk ok sk ok ok ook o o ok ko ook ok /

L L T L P LI T P Ty
/* This file is included by ml3_5.c. */
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/* It contains low-level routines used in the program. */
/* It is based on a recursion relation for field density matrix elements. */

/* It replaces micro_core.c and micro_new_core.c . */
/* Last modification on 7/3/94 */
/o sk ok ok ks ok sk ok ook ok ek o Kook Ao o ok K AR R o ok ok ok ok ok ko ok ko ok ok ok ko /
void terminate(s)

char *s;

FILE *errfile;

if (DEBUG) {
errfile=fopen(ERR_FILE, "a");
fprintf(errfile, "#** too many iteratiomns in calculating %s(>%d)\n",
s, _MAX_ITERATION);
fclose(errfile);

fprintf(stderr, "*** too many iteratioms in calculating %s(>%d)\n",

s, _MAX_ITERATION);
exit();
}
double C(n)
int n;
if (n<0) return 1.; /* if n == -1 */

else return cos(_theta/sqrt(_Nex)*sqrt(n+1.+sqr(_Delta_over_2g)));
}

double Sd(n)
int n;

double S, X;

if (n<0) return 0O;

if (_Delta_over_2g==0.) return O.;
X=sqrt(n+1.+sqr(_Delta_over_2g});
S=sin(_theta/sqrt(_Nex)*X);

S*=( _Delta_over_2g/X);

return S;

double Sk(n)
int n;

double S, X;

if (n<0) return 0O;
X=sqrt(n+1.+sqr(_Delta_over_2g));
S=sin(_theta/sqrt(_Nex)*X);

if (_Delta_over_2g==0.) return S;
S*=(sqrt(n+1.)/X);

return S;

void iterate_Q(p, q)

double (*p) [N_MAX+1], (*q)[N_MAX+1];

/R Rk Rk Rk Rk ok ok ok kb kR ok ok ok ok k sk skok ok kokok sk koo kR skkokokok skokok sk kb ok ook /
/* This routine calculates next higher order approximation of Q array from */

/* inital approximation given by p and gq. */
/* */
/* p+iq =inital/next order approximation of Q array */

/***************************************************************************/

{

double rho_aa, rho_bb, rho_ab, pO[N_MAX+1][N_MAX+1], qO[N_MAX+1] [N_MAX+1];
double A, B, ¢, D, E, F, G, x, y, Z;

int n, m;

double C_n, C_m, C_n_1, C_m_1, Sd_n, Sd_m, Sd_n_1, Sd_m_1, Sk_n, Sk_m,
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Sk_n_1, Sk_m_1;

rho_aa = _alpha;
rho_bb = 1.- rho_aa;
rho_ab =

for (n=0; n<=_N_CUTOFF; ++n)
for (m=0; m<=_N_CUTOFF; ++m) {

pO[n] [m]=p[n] [n];
§O[n][m]=q[n][m];

for (n=0; n<=_N_CUTOFF; ++n) {

Cc_n=C(n);
C_n_1=C(n-1);
Sd_n=Sd(n);
Sd_n_1=Sd{(n-1);
Sk_n=Sk(n);
Sk_n_1=Sk(n-1);

for (m=n; m<=_N_CUTOFF; ++m) {

c_m=C(m);
C_m_1=C(m~-1);
Sd_m=Sd(m) ;
Sd_m_1=Sd(m-1);
Sk_m=Sk(m);
Sk_m_1=Sk(m-1);

A = rho_aa*(C_n*C_m + Sd_n#*Sd_m)
+ rho_bb*(C_n_1*C_m_1+Sd_n_1%Sd_m_1);

3

x = AxpO[n] [m];
y = A*q0[n][m];
if (m>n) {

A= rho_aa*(C_n*Sd_m-C_m*Sd_n)

sqrt(rho_aa*rho_bb);

+ rho_bb*(C_n_1#Sd_m_1-C_m_1%Sd_n_1);

+
+

A*q0[n] [m];
-A*pO[n] [m];

e X

if ({(m<_N_CUTOFF)&&(n<_N_CUTOFF)) {

B = rho_bb*Sk_n*Sk_m

+ sqrt((double) ((n+1.)*(m+1.)))/_Nex*_EXP;

x += B*p0[n+1] [m+1];
y += B*q0[n+1] [m+1];
+

if ((m>0)&&(n>0)) {

¢ = rho_aa*Sk_n_1*Sk_m_1;

x += c*p0O[n-1] [m-1];
y += c*q0[n-1] [m-1];
}

if (n<_N_CUTOFF) {

D = rho_ab*Sk_n*C_m;
x += -D*pO0[n+1] [m];
y += ~D*q0[n+1] [m];

D = rho_ab*Sk_n*Sd_m;
x += -D*qO0[n+1] [m];

y += D*pO[n+1] [m];

}

if (m<_N_CUTOFF) {

E rho_ab*C_n*Sk_m;
x -E*pO[n] [m+1];

y -E*q0[n] [m+1];

E rho_ab*Sd_n*Sk_m;
x E*qO[n] [m+1];

¥ ~E*p0[n] [m+1];

>

+ + 0+ + 0
I
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if (m>0) {

F = rho_ab*C_n_1*Sk_m_1;
x += F*p0[n] [m-1];
y += F*qO[n] [m-1];
F = rho_ab*Sd_n_1*Sk_m_1;
x += F*q0[n] [m-1];
y += -F*p0[n] [m-1];
}
if (n>0) {
G = rho_ab*Sk_n_1*C_m_1;
x += G*p0[n-1]Tm];
y += G*qO[n-1][m];
G = rho_ab*Sk_n_1*Sd_m_1;
x += ~G*q0[n-1][md;
y += G*p0[n-1][m];
}
(1.+ 0.5/_Nex*(double) (n+m))*_EXP;
p[n][m] = x/2;
qnl[m] = y/Z;
if (ni=m) {
pml[n] = p[nl[m]; /* hermitian */
g[m][n] = -q[n][m];
}
}
}

double normalize_Q(p,
double (*p)[N_MAX+1], (*q)[N MAX+1];
/*************************************************************************/

/* This routine normalizes input Q array */
/x */
/* p+iq =input/output Q array */
/AR sk ok ok ook ook ok ook ok sk ok ok ok ok ok ok ok koo sk ook ko ook ok Rk ok ok ok Rk ko ok /
{

double sum=0.;

int i, j;

for (i=0; i<=_N_CUTOFF; ++i) sum+=p[i][i];
for (i=0; i<=_N_CUTOFF; ++i)

for (j=0; j<=_N_CUTOFF; ++j) {
pli1[j1=p[i] [j1/sum;

g[i][j]=q[i][j]/sum;

;return sum,

void initialize_Q(p, q, p2, q2)

double (*p)[N_HAX+1], (*p2)[N_HAX+1], (*q)[H_HAX+1], (*q2) [N_MAX+1];

ek ok s o o koo ok s s e ok ok ok sk ko ok ook o sk sk ok ok ok o kol ok kR sk ok ok ok ks ok sk ok ok ok ok /
/* Q is initialized using Q2 */
/e ook ok ok o oo ok ok kiR ko ko ok sk ok ok ok ok ok ook ok ok ok ook ok ok
{

int i, j;

for (i=0; i<=_N_CUTOFF; ++i)

for (j=0; j<=_N_CUTOFF; ++j) {

plil[j1=p2[i]l[j];

qlil [j1=q2[i1L(5];

+

}

void set_to_vacuum(p, q)

double (*p) [N_MAX+1], (*q) [N_MAX+1];
L e P e e R Ty
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/* Q is initialized to vacuum */
L D e e e T T T T T T T Y]

int i, j;
for (i=0; i<=_N_CUTOFF; ++i)
for (j=0; j<=_N_CUTOFF; ++j) {

plil[jl=0.;
qlil [j]=0.;

}
plol(ol=1.;
}

int calculate_Q(p, q, error)

double (*p)[N_MAX+1], (*q)[N_MAX+1], error;

/3 e s ke ok o s e o o o sk ko ok ok ke ook oo ol ok o ook e ek i ko ok oo oo e Ak o ok o ok ok ok o e e skl ook sk ok ok sk ok ok kokok /
/* This routine calculates Q array for given initial condition by QO until */

/* desired convergence specified by error is obtained. */
/* */
/* p+iq =inital/final Q array */
/* error=allowed error */
/* number of iteration is returned */

/***************************************************************************/

{

double norm, dp_00, old_p_OO, dp_NX;
int i, n=0, negatlve Q=0

FILE *errflle,

if (_UseLastQ) initialize_Q(p, q, _last_p, _last_q);
else set_to_vacuum(p, q);

old_p_00=p[0][0];

do {

iterate_Q(p, q);

norm=normalize Q( q);

dp_00= fabs(p[O][O]/old_p_OO 1.);

if (n>_MAX_ITERATION/4) dp_NN=fabS(p[_N_CUTOFF][_N_CUTOFF]/p[O][O]);
else dp_NN=p[o0][0];

old_p_oo=plo][0];

for (i=0; i<=_N_CUTOFF; ++i) {
if (p[i][i]1<0) negative_Q=1;
}

++4n;

if (n> MAX_ITERATION) terminate("calculate_Q");

} while ((dp_00 > error)&&(dp_NN > error/2)&&('negat1ve_0))
if (DEBUG) {

errfile=fopen(ERR_FILE, "a");

if (n>_MAX_ITERATION/4) {

fprintf(errfile, "%34", n);

for (i=0; i<=_N_CUTOFF; ++i)

fprintf(errfile, "1%.31le", pl[il[i]);

fprintf(errfile, "\n");

fclose(errfile);

if (_UseLastQ) initialize_Q(_last_p, _last_q, p, qQ);
if (negative_Q) n=-1;

return n;

double calculate_n_to_p_average(x, p)

double x, (*p)[N_MAX+1];
/A ok e ko e ek ok o ok ok ok s o ok ok ok ok sk o s sk o sk ok o ok ok s ko o ook sk sk sk sk ks ok sk ook /
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/* This routine calculates <n“p> for given velocity v */

/* */
/* p+iq =final Q array */
/* <n~x> is returned */

/% sk ok ko ok ok Kok ok ok ok A ok ok ok o sk ok ok ok o ek sk sk ok sk kb kR kR koo ok sk ok R okok kR ko kK kK

double sum=0.;
int i;

for (i=0; i<=_N_CUTOFF; ++i) sum += pow((double)i, x)*p[il[il;
return sum;
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