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ABSTRACT

Experimental study on phase transitions in several chiral liquid crystal
materials using high-resolution calorimetry is presented.

We analyze high-resolution calorimetry in scanning adiabatic mode, ac
mode, and relaxation mode (scanning non-adiabatic mode). Detailed
descriptions of a complex calorimeter capable of operating in both ac mode
and relaxation mode are given. High-resolution thermal analysis is achieved
using qualitative information from ac calorimetry (particularly the phase
shift data) and quantitative information of scanning non-adiabatic
calorimetry (the effective heat capacity).

Heat capacity measurements with an ac calorimeter are carried out to study
the nature of smectic-A to ferroelectric smectic-C* transitions in mixtures
of liquid crystals C7 and 1004; the nucleation and growth phenomena in
antiferroelectric liquid crystal MHPOCBC; and the phase transitions in
twisted-grain-boundary (TGB) materials nFBTFOM. The cholesteric N* to
TGBA transition and TGBA to SmA transition in liquid crystal 9FBTFOM
are studied by a scanning non-adiabatic calorimeter.
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Chapter 1

Introduction
1.1 Structure of Matter

Physicists have found most of the building blocks of

matter. These are quarks, leptons and gauge bosons.' The

structure of matter is determined by the four fundamental

interactions: strong, weak, electromagnetic, and gravitational.

Among the four fundamental interactions, strong and weak

forces are short-range forces. This means that the interactions

are only effective at very small length scales (less than 10-'5 m).

In contrast, electromagnetic and gravitational forces are long-

range interactions (their effects reach to very large scales).

Quarks interact with each other through strong forces. The

interactions are so strong that no free quark has been found.

Quarks bind together to form particles such as protons and

neutrons. Protons and neutrons can exist as individual free

particles, Or the strong interaction may condense them into a

small cluster with a typical size of about 10- ' 5 m. We call such

clusters nuclei. Because the proton has a positive electrical

charge, the nucleus attracts negatively charged electrons by

electromagnetic interactions. The most common bound states of

nuclei and electrons are atoms and molecules, which are
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electrically neutral (the total electric charge is zero) structures

with typical sizes in the range 3x10 - '° m -30x10 -' m.

However, atomic and molecular structure can not be explained

by classical electromagnetism. Only quantum mechanics gives a

satisfactory explanation for the existence of atoms and

molecules.

1.2 States of matter

The well-known states of matter are gases, liquids, and

solids. In the gas phase, atoms or molecules exist as individual

"free" particles and move around independently between

collisions. The macroscopic properties of a gas phase are

isotropic (they are the same in every direction of three-

dimensional space). There is no translational or orientational

order among the particles in a gas, and the average interaction

between particles is very weak. When the temperature is

lowered or the pressure is increased, the particles in a gas can

condense into an isotropic liquid state. In this state there is still

no ordering of the particles, but they are no longer "free". Since

the system is much denser, every particle is strongly influenced

by surrounding particles at a distance of about 5x 10- m.

There is almost no free space left in a liquid. As a result, a

liquid is almost incompressible whereas a gas has a high

compressibility.

An isotropic liquid can develop certain kinds of order

when external conditions (temperature, pressure, composition,
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electromagnetic fields) change. For some simple molecules, the

isotropic liquid changes directly into a crystalline solid on

cooling. In the solid state, the average translational position of

the molecules is a periodic function in three-dimensional space.

However, for some complex molecules, the isotropic liquid does

not transform directly into a solid. Instead, partially ordered

liquid crystal phases occur between the high-temperature

isotropic liquid and the low-temperature fully ordered solid

state. The molecular distribution function of a liquid crystal can

involve only orientational order or orientational order plus a

translational structure that is a periodic function in one or two

dimensions.

1.3 Some Simple Liquid Crystal Phases

The states of matter depend not only on external

conditions like temperature, pressure, composition, and

electromagnetic fields but also on the chemical structure of the

constituent particles. A large variety of organic molecules with

anisotropic structure exhibit liquid crystal phases.2 Such phases

occur for either elongated (rod-like) or planar (disk-like)

molecules. This thesis is concerned with liquid crystals

consisting of elongated molecules. The simplest model for this

type of molecule is a rigid rod. One can identify the long axis

and the center of mass of the molecule. In the isotropic (I)

liquid, there is no long-range order in the translational position
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of the center of mass or in the orientational direction of the long

axis. As the temperature is decreased, the molecular

orientations tend to align in a common direction. Thus the

macroscopic properties become uniaxial, with the common

orientational direction ii called the director (the states fi and -n

are equivalent). The resulting nematic (N) phase exhibits

orientational order but no translational order in the center of

mass positions. On further cooling, more ordered smectic

phases (layered structures) appear. In these phases, the position

of the center of mass has one-dimensional order along the layer

normal but no order within the layer. The director is either

along the layer normal (parallel to the mass density wave),

which is called smectic-A (SmA), or tilted relative to the layer

normal which is called smectic-C (SmC).

Nematic phases can exist only in non-chiral materials (no

optical activity since there is no distinction between right- and

left-handness). The constituent molecule must be either

identical to its mirror image or, if it is not, the system must be a

'racemic' (1:1) mixture of the right- and left-handed species. If

the molecule is chiral (i.e., different from its mirror image),

there will be a helical structure for the director orientations in

the liquid crystal state. As the temperature is decreased, an

isotropic liquid can turn into a helical phase called cholesteric

(N*). Locally, a cholesteric is very similar to a nematic, but the

distribution of the directors is not uniform and is given by
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fi = (cos(qz + O),sin(qOz+ ),O). The structure is periodic along the

helical axis (z) and (since the states ii and -fi are equivalent)

the spatial period L is equal to one-half of the pitch: L=r/q 0O

Here we see that chirality acts as a "field" with respect to the

natural twisting tendency. That is, the larger the chirality of a

molecule, the larger is the value of q and the shorter the pitch

period L. If the molecule is non-chiral, q =0 and L = oo. It is

found that a smectic phase very similar to smectic-C occurs in

some chiral materials. The structural difference between this

phase, called smectic-C* (SmC*), and smectic-C is that the tilt

of the directors precesses around the layer normal and a helical

configuration is obtained; see Fig. 1-1. The SmC phase has

monoclinic symmetry:

* there is a plane of symmetry

· there is a twofold symmetry axis C2 perpendicular to the

symmetry plane

· there is an inversion point i.

As for SmC*, it is obvious that for chiral molecules the

symmetry plane and inversion center will be missing. The only

symmetry left is the C2 axis. If the chiral molecule has a dipole

moment which has a non-zero component along the C2 axis, a

polarization will appear. Thus, as first noted by R.B. Meyer,

SmC* phases are ferroelectric. The polarization P is

perpendicular to the plane of the layer normal and to the

director, and P precesses to form a helical structure. Applying a
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small electric field will unwind the helix and create a

macroscopic polarization. These liquid crystals are called

ferroelectric liquid crystals (although helielectric would be

more accurate).

We will describe more complicated phases that can occur

in chiral materials later in this thesis (Chapters 4 and 5). These

include antiferroelectric and ferrielectric smectic- C* (SmC} and

SmC), blue phases (BPI-BPIII), and twisted-grain boundary

(TGBA, TGBc ) phases.
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Fig. 1-1. Nematic phase of (a) rod-like

molecules and (b) disk-like molecules. (c)

Smectic-A layered structure; the director is

normal to the layers and there is no

translational order within a layer. (d)

Smectic-C (director tilt angle 0 and

inversion point i).
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Fi. 1-1. (e) cholesteric (N*) phase (the

planes are guides for the eye and do not

have any physical meaning). (f) SmC*,

where the molecular chirality induces a

twist in the tilt angle (and in the

polarization). The pitch p is much larger

than a (typically p/a--103 ). Note that p

need not to be an exact multiple of a.
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1.4 Phase Transitions

Under certain external conditions, the macroscopic

properties of a material can change dramatically. The

thermodynamic properties may become singular (e.g.,

divergent), and the material will transform from one state to

another. This is called a phase transition. There are two classes

of phase transitions: first order and second order. A second-

order transition dominated by fluctuation effects is often

referred to as exhibiting critical phenomena.

The first derivatives of the Gibbs free energy are (aG/ap)T =V

and (aG/aT)p=-S. At a first-order transition, these derivatives

(the system volume V and entropy S) change discontinuously:

AV=V2-V 0, AS=S2 -S, 0. Note that the Gibbs free energy of

the two phases are equal at the transition : AG=AH-TAS=O, thus

the latent heat is non-zero: L=AH=TAS•0.

At a second-order phase transition, the system volume and

entropy are continuous: AV=O, AS=O. Thus there is no latent

heat: L=TAS=O. However, the second derivatives of the Gibbs

free energy are singular. Thermodynamic properties such as

heat capacity C = T(aS/aT)p = -T(a2G/aT2)p

isothermal compressibility KcT =P- 2(G/V/pp2)T 

1 a2 G
and thermal expansion a= (aV/aT)p v T diverge at the

critical temperature Tc.
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The essential distinctions between first and second order

phase transitions are:

· A first-order transition has latent heat. Two distinct phases

coexist at a first-order transition where their Gibbs free

energies are equal. The new phase nucleates and grows

within the old phase. A first-order transition often exhibits

hysteresis. Metastable phases exist, for example, in

supercooling and superheating phenomena.

* A second-order phase transition has no latent heat. There is

only one free energy surface. Thus there is no two-phase

coexistence, metastability, or hysteresis. Close to a second-

order transition, one can observe fluctuations at large length

scales (critical phenomenon) and thermodynamic response

functions diverge.

1.5 Landau Theory of Phase Transitions

The simplest approach to phase transitions is Landau

theory. 3 Landau observed that most phase transitions involve a

change in the symmetry of the system. If certain symmetry

exists in a phase, it can be broken in another more ordered

phase. Thus, one can often define a quantity called the order

parameter P, which is zero in the more symmetrical (usually

high temperature) phase and non-zero in the more ordered

(usually low temperature) phase. In this theory, the system free

energy is
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G = G + minimum of L(P) (1.1)

where L(P)is an analytic function of P called the Landau free

energy and G is independent of P. G is usually a smooth

function of temperature, pressure, composition, and

electromagnetic fields and describes the non-configurational

("lattice") contribution. One can make a Taylor expansion of

L(P) in powers of the order parameter. This expansion is

restricted by the symmetry of the system. In the case of a single

scalar order parameter P, the expansion is

L L(P) 2= 1 a 3L ) p3 1 L ...4 (1.2)
2!aP' P=O 3!\ P=O 4! P=O

It is assumed that the coefficients are smooth functions of

temperature, pressure, composition, and electromagnetic fields.

The first-order term in P is missing since L/aP=O; the stable

state corresponds to the value of P that minimizes G. If we

truncate the Taylor series, the last term must be an even power

of P with a positive coefficient, otherwise a global minimum in

L(P) would occur when IPI--oo, whereas we wish to describe

how the order parameter rises from zero to a finite value in the

ordered phase.
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A. Model 1

System That Is Not Symmetric Under Inversion of P

In the case where L(-P) L(P) the odd order terms cannot

be excluded. We choose

L(P) = Ap2 +Bp3 + Cp 4

2 3 4
(1.3)

where C>0, B0. It is obvious that L(P)---> +oo as P--> +oo.

Solving L/aP=0, we find three roots at the following P values:

P0 = 0,P+ =
-B + B2 -4AC 

2C ,P =2C
-B- B2 -4AC

2C

It is convenient to consider three cases (see Fig. 1-2):

B 2

1. B2 -4AC<0O (which means A>- >0). In this case there is
4C

only one minimum at P= O with L(O)=0, p = A >0, and
a P=O

the

system is in the symmetric phase with P=0.

2. B2 -4AC = 0. Now

BP+ = -
2C

(1.5)

B4 a2L
which leads to L(P+)= 9 > 0, p2

- 192C3 >0 P P=P,

B(B2 - 4AC)
C = 0.

8C2

Thus there is a point of inflection at P,. The only minimum is

still at P=0.

3. B2 -4AC>0. Now P+ are real numbers. Let us take B<O0 (B>O0

will give the same result since one can redefine the order

parameter P-4-P and get the same L(P) as with B<O0). We have

18
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in this case P+>P >0 and aP2 L- aP2~~,~p

There is now one more minimum (P+) and a maximum (P). It is

possible that the extra minimum will be lower than the one at

P=O, thus becoming the global minimum. In this case, the system

will move into this state through a phase transition and stay in the

more ordered phase where the symmetry is broken. The transition

occurs when L(P+)=L(O)= 0, and aL/aP = O. From these two

equations we get

p = 2B A=2B 2 a2P,=P A=- 22>0 and 2
3C' 9C [P 2

>0 (1.6)

at the transition. So the order parameter changes discontinuously

from P=0 to P = P = -2B/3C O0, and the transition point

(temperature) is determined by the condition A= 2B2/9C.

Now we calculate the latent heat L=T1 (S2 -Sl) where T is

the transition temperature, S and S2 are entropies for the two

phases at T,. The Gibbs free energies are G, =Go +L(P) and G2 =Go

for the phase with P=0O. Entropy can be obtained from

SI = -(aG, /aT)p = -(aG / a T )p - (aL(P)/aT)p

where (aL(P)) aL aP 1 aA 2 +1aB3 + ac 4.where ip aPaT 2aT 3aT 4aT aT aP aT 23T 3 aT 4 aT

The first derivative of L(P) at P is zero: aL
aP P=i;

= 0, and (aGO/aT)

is continuous at the transition. At least on of the coefficients A, B

19
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and C must depend on T, otherwise the transition cannot happen

by changing the temperature T.

Thus we have AS= S2 -SI = 1 a p2 +- Cp4 0o
2 T 3 T 4 aT

In this model, the order parameter undergoes a discontinuity at the

transition, which results in a discontinuity in the entropy S. Thus

the transition has a latent heat L=TAS•0.

Model 1 can be used to describe many first-order phase

transitions. The coefficients A, B and C depend on temperature,

pressure, composition, and electromagnetic fields. The transition

could be induced by any of these external conditions. In order to

describe a temperature induced phase transition, it is a common

practice to choose A=AO(T-TO)/TO with A>O and assume B and

C do not depend on temperature T. In this case, the transition

condition A = 2B2/9C yields the transition temperature

T, = To(1 + 2B2/9AC) > T,. (1.7)

Note that in Model 1 there is a third-order term in the

Landau free energy. Whenever there is such a third-order term,

the Landau model predicts a first-order transition. In the case of

liquid crystals, this situation is realized for the N-I transition.

Although there are pretransitional (non-mean field) effects not

included in the Landau theory, this transition is indeed first order.

However, this Landau prediction turns out to be incorrect for the

three-states Potts model in two dimensions. Such failures should

not come as a surprise. After all, the Landau theory is a very

20



simple, phenomenological model for phase transitions. Model 1

does not consider the spatial dependence of the order parameter.

(Note that one can develop generalized Landau models which

consider spatial dependence of the order parameter.) It also

ignores thermal fluctuations at large length scales. The modern

theory of phase transitions is the Renormalization Group Theory,

to be discussed in Sec. 1.6.

It is easy to see that if the third-order term were accidentally

missing (B=O), Model 1 predicts that a second-order transition

would occur when the coefficient of the second-order term

becomes zero (A=O). Next we will introduce a model in which

second-order transitions can occur as a result of symmetry and

there can also exist a tricritical point, where a second-order

transition turns into a first-order one.
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0

0

0 0

P

Fig. 1-2. Typical Landau Free Energy

curves in Model 1. Drawn for B<O; the

behavior is the same for B>O but the second

minimum lies at negative P values.

(1) B2 -4AC < O: L(P) is minimum at P=O

(2) B2-4AC=O (solid curve): metastability

limit, P+=-B/2C for ordered phase where

L(P+)>O and a2L/aP2p p= =0; B2 -4AC>O

(dotted curve): one more minimum at

O < P < P = - 2B/3C with L(P+) > O

(3) B2-4AC>O: first-order transition occurs

when L(P)= 0Oat P=-2B/3C (4) B2 -4AC>O:

with L(P+)<O and P>P.

22
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B. Model 2

System That Is Symmetric Under Inversion of P

In this case, L(-P) = L(P) and the odd order terms are

excluded by symmetry. We keep terms up

L(P)= atP2 + bP4 + cP6

to sixth order:

(1.8)

where c > 0,

AL/P = 0, 

a>O, t=(T-To)/T o ,

ye get five roots at

and T is a constant. Solving

P=0, P=±+P and P=±+P where

p2 = (-b+/b 2 _ 3act)R- 3c (1.9)

1. We consider first the case when b>O; see Fig. 1-3.

Here P is not a real number since p 2 =l (-b- /b2-3act)<0

* when T>To (t>O)

-p 1 (b+/b2-3ct)<0. So thereP+ is not a real number since +2 3(b+ b2-3act)<0. So there

is only one real root P=O0 with L(O)=O and ap21 >0. The

system is in the symmetric phase.

· when T=T O (t=O)

P+=O. It is easy to get
a 2 L aL I

aP 2 P=O aP3 p=O
=0, and ap4

5 P=O

>O0. So the

only minimum of L(P) is at P=0.

· when T<T o (t<O)

P+ is a real number. The second-order derivatives are:

23



ap2 <0 and ap2 >0, so we conclude that L(P) has a

maximum at P=0 and two minima at P = +P. The system moves

from the symmetrical phase with P=0 to the more ordered

phase with P=P+ or P=-P+. The symmetry of the system is

spontaneously broken. The onset of transition is at T=To, and

the order parameter changes continuously since P+(T = T)= 0.

This continuity leads to a continuous entropy because at the

transition temperature T, we have

AS =S(P=0)-S(P=P+(TO))=[ (T )P 2 +T aTP +] T=T 0,

showing that this free energy functional leads to a continuous

transition in Landau theory when b>O. The derivatives of the

entropy are singular, and will be discussed later.

2. Now we consider the case when b=0

pere P 2 atHere P is not a physical solution since p 2 =- - cannot yield a
at- 3c

real value for P . For P we have p 2 = .at

when T>To (t>O)

P, is not a real number. There is only one root P=0 with

L(O)=0, a2L >0 which gives a minimum of L(P). The system
is in the symmetric P=

is in the symmetric phase.
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0

0

0

0

P

Fig. 1-3. Typical Landau Free Energy

curves in Model 2 with b>O. (1) T>To, L(P)

has minimum at P=O (2) T=To, onset of

transition, 2aL/aP 2 =o= 0 (3) T<T o, L(P) has

minima at P = +P, with L(P+)=L(-P+)< 0.
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* when T=To (t=O)

P, =0. It is easy to getL p2- 3 P3 =0, and p4° >0. So the

only minimum of L(P) is at P=0.

* whenT<T O (t<O)

P+ is a real number. From the second-order derivatives

a 2pL <0 and ap2L >0 we conclude that L(P) has a maximum

at P=O0 and two minima at P=+P+. The system moves from the

symmetrical phase with P=0 to the more ordered phase with

P=P+ or P=-P+. The symmetry of the system is spontaneously

broken. The onset of the transition is at T=T,. The order

parameter changes continuously since P+(T=To)=O. This

continuity leads to a continuous entropy as explained when

previously in the case of b>O. This transition point at b=0 and

T=TO has a special name: the tricritical point. Setting b=O in

Eq. (1.9) we get for the order parameter in the ordered phase

P oItlj, where t,, = 1/4 is the tricritical order parameter

exponent. This ,c can be compared to the usual mean -field

exponent pM = 1/2. The usual mean field model is Model 2 with

vanishing sixth-order term (c=O): L(P)=atP2 +bP4, where b > 0,

a>0. The order parameter in the ordered phase is Poltl "MF,

where pMF = 1/2, as follows from L/aP=2atP+4bP 3 =0.

3. Finally we consider the case when b<O0; see Fig. 1-4.
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Now recall from Eq. (1.9) that we have p+2 (b± b2-3act).

* when b2 -3act<0 or T>Tk=TO(1+ 3ac

P, are not real numbers. The only minimum of L(P) is at P=0

with ap2 >0. The system is in the symmetric phase.
a 2P=0

* when T=Tk, which occurs when b2 =3act we find P2=_ b and
3c

ap2L[p =0. P are points of inflection with L(P+)>0O. The system

is still in the symmetric phase, and Tk is the metastability limit

of the ordered phase on heating.

* when T<Tk or b2 -3act>0

P, are real numbers. The second derivatives are aPL > 0 and

<0, indicating that two minima occur at P=+P+ and two
aP 2 p=+

maxima at P =+P . It is possible that the extra minima at

P=+P+will be lower than the one at P=O0 and become the global

minima. The onset of transition happens when L(±P+)=L(O)=0,

and we also know aP =0. From these two equations we get
P=±P+

P+2 =P2 =-b/2c and the transition temperature is T, =To 1+ 4ac

This means that +P±O at the transition. The system moves from

the symmetrical phase with P=O to the more ordered phase
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with P=P or P=-P. The order parameter changes

discontinuously and so does the entropy AS and enthalpy AH. If

we assume that the coefficients b and c do not depend on

temperature T, then

aaa0_2 a_ ac b
AS = S(P = 0)- S(P = P+ (T.)) = [a p2 P4 + p6 = 2c> 0

[T T T T=T cT

ab ab b2
and AH=TAS=- T, = a'1+ b>0.

2cT T 2c 4ac)

These discontinuities correspond to a first-order transition in

Landau theory with latent heat L=AH.

We conclude that Model 2 describes first-order transitions

when b<0 and second-order transitions when b>0. The transition

at b=0 is a special tricritical point, where a first-order transition

turns into a second-order one. In the case of liquid crystals, the

SmA-SmC transition is an example of Model 2 Landau behavior

[see Chapter 3].
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0

P

1-4. Typical Landau Free Energy

curves in Model 2 with b<O. (1) T>Tk, L(P)

has one minimum at P=O (2) T <T<Tk, L(P)

has global minimum at P=O; solid curve

T=Tk and dotted curve for T, <T<Tk.

(3) T= T,, first-order transition, where

p+2 = p 2 = -b/2c (4) T<TI, L(P) has minima at

P = +P+ with P,2 > P2 and L(P+) = L(-P+) < 0.

29

I
0

1~~~~~~~~~~~~~~~

(3)

Fig.



C. Some Predictions Of Landau Theory

Landau theory provides simple mechanisms for phase

transitions. However, its predictions are quantitatively reliable

only for special cases like the SmA-SmC transition in liquid

crystals and ferroelectric transitions in KH2PO4 type crystals.

We will analyze the Landau heat capacity C for Model 2,

where

Cp =T as, =-- a T 2 )2 G (1.10)

Consider the case of a second-order or tricritical transition (i.e.,

b>O). The order parameter is

for T>To (1.1a)

p2=1 b2_3a(T - T o)3c Tb o3ac
Rc(~ TO

for T<To

We ignore the possible temperature dependencies of b and c;

thus

C=Cp

Ta 2 1
C = C I

2T b2_ 3ac T- T o

To

(T>T o)

(T<T o)

(1.12a)

(1. 12b)

where Co =-T(a 2Go/aT2) is a smooth function of T. In this case,

Landau theory predicts a finite discontinuity in the heat capacity

at the transition: AC = Cp - C =a 2/2bT0 .x p pC When b=O0 (the

tricritical transition), there is a divergent form for the excess

heat capacity ACp =Cp - C: ACp(T) o(T 0 -T) -5 below To. In
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reality, experiments show that the heat capacity usually

diverges like a power law ACpCIT-Tc- +Bc both below and

above the second-order transition temperature Tc. The exponent

xo can vary in different materials from a negative value (in

which case ACP ,-Bc at T) to positive values as large as 1.

There are many other thermodynamic properties that show

power law singularities at second-order transitions that cannot

be explained quantitatively by the Landau model.

1.6 Renormalization Group Theory

For Phase Transitions

The successful theory for phase transitions involving

critical fluctuations is the renormalization group (RG) theory.

Instead of dealing with a Landau free energy, one starts with the

Ginzburg-Landau-Wilson Hamiltonian , constructed from a

coarse-grained order parameter and the symmetry properties of

the system. An example of a Ginzburg-Landau-Wilson

Hamiltonian is

H=JdDx{ (m)2 +tm2+ um4 +vm6 (1.13)
PH 2 2

where 1 = /kBT and the coupling constants K, t, u and v are

functions of the microscopic parameters and the temperature T.

The quantity m is the coarse-grained order parameter, which

means atomic-scale fluctuations have been averaged out over

certain length scales. This order parameter depends on spatial
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position x in dimension D, that is: m=m(x). Following the

standard procedures of statistical mechanics, one can analyze

the partition function Z given by

Z = dm(x)exp(-PH). (1.14)

This is a functional integral. The relation between free energy F

and partition function Z is

PF =-InZ. (1.15)

It turns out that a "saddle point approximation" to this

Ginzburg-Landau-Wilson model corresponds to the

phenomenological Landau theory. In this approximation, one

takes the maximum integrand of the functional integral as a

crude estimate for the integral, so

F = Min(3H)=Min {2m2 +um4 + vm6} (1.16)

where fQ is the system volume, and Min stands for minimum.

The problem reduces to the minimization of a function of an

order parameter m that is uniform in space (Vm=O), i.e., no

spatial fluctuations are allowed. This is exactly the Landau

(mean-field) theory.

In most cases, the partition function is very hard to

calculate. Instead of a direct calculation of Z, one could analyze

the Ginzburg-Landau-Wilson Hamiltonian and get useful scaling

laws for thermodynamic properties and the corresponding

critical exponents. In 1966, L.P. Kadanoff observed that in the

vicinity of a critical point, there are fluctuations at all length
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scales and the system is self-similar (scale invariant) at the

transition.4 He proposed that at a particular length scale a, the

system can be characterized by a Hamiltonian (H)a, with

coupling constants that depend on the length scale a:

(3H)a =fdDx{ (Vm)2 + ta2 + am4 + Va} (1.17)

Later, K.G. Wilson5 invented systematic procedures to

calculate these coupling constants by RG transformations in

three steps:

(i) coarse grain the order parameter over a certain length ba

(ii) rescale the space by the same factor b: x'=X
b

(iii) renormalize the order parameter m'= 

Mathematically, RG transformation is a nonlinear

transformation Rb for the coupling constants K = (K,t,u,v). It is

possible to calculate (at least approximately) the recursion

relation K'=RbK. We will see that these transformations Rb form

a semi-group. Consider two successive transformations, with

b=b1 and b=b2 . These two successive transformations are

equivalent to a combined scale change b1b2. That is,

K' = Rb,b2K = Rb, (Rb2 CK)= Rb Rb'K '

Thus Rblb, =Rb Rb2. (1.18)

The correlation length describes the spatial extent of

fluctuations in a physical quantity about the average of that
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quantity. For example, the correlation function for the order

parameter m behaves like

1((m(r)-(m)Xm(O)-(m)))ocr 1exp(-r/4) at large scales of r, where

the symbol () denotes thermal average, d is the dimension of

space, Tn is a small positive number, and is called the

correlation length. It is found that the correlation length 

diverges at a second-order transition. Under RG transformation

R,, the correlation length transforms as (K')= (K). If the RG
b

transformation Rb has a fixed point K*, so that RbK* =K , then at

this fixed point (K*)= b) This implies that (Kc*) can only be
b

zero or infinity. This important observation leads to the

identification of the critical transition points: they are the fixed

points of the RG transformation Rb with =o.

Close to the fixed point of Rb, we can linearize the

transformation. Let the system be close to Kc*:

K= K* +6K (1.19)

After RG transformation the system is described by

lc'= Rbc = RbK* + Rb6K = K + Rb6K (1.20)

K' should also close to K', so we have

K'= CK + 6KC = K +M(b)6K . (1.21)

\Where the matrix M(b' = a I is the linearized Rb at the fixed

point Kc. If matrix M(b) has an eigenvector ewith eigenvalue
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'I', then by the

(1.22)M(b, )M(b2) = M(b,b2)

I(C~a)x= ,(a)
b, b2 bib2

The solution is

X(b ) = by ,,

with exponent y independent of b.

(1.23)

(1.24)

Now we can see how the system coupling constants

change under RG close to the fixed point. Expanding

eigenvectors

6K = I coe(''

Then 6K' = Mb)6 = CE C (' )e ' ) = E c bY°e('
Cy CY CY

(1.25)

(1.26)

There are three kinds of eigenvector e under RG:

(1) relevant: y >0, the component grows as

renormalization occurs.

(2) irrelevant: y <0, the component decreases as

renormalization occurs.

(3) marginal: y, =0, the component does not change as

renormalization occurs.

Let us consider the case of two relevant coupling constants, say

temperature T and magnetic field h, with the transition point at

T=Tc and h=O. Let Under RG transformation, the

free energy density is

f(th)= f(t ',h')
bd

6K with

(1.27)
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The linearized RG usually takes the form:

(h ( b0 hD

so the eigenvector is ( Then the free energy density

f(t',h') f(bYtt, bYhh)
f(t, h)= (bd b d tI2- f(htl - )

where

d2-a = 
Yt

(1.29)

(1.30)A=Yh
Yt

So we get for the heat capacity

a 2f
C CC, - t It (1.31)

As for the correlation length 4 when h=0, we have

5(t) = b~(t') = b5(bY't) oc Itl -v

K.G. Wilson' s RG procedure provides practical methods to

calculate the exponents yt and Yh, at least approximately. The

resulting theoretical values of critical exponents agree very well

with experimental values. There are many other implementations

of RG theory that have been very successful. Among these are

the real space RG and Monte Carlo RG theories. 6 -8
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1v=-
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Chapter 2

High-Resolution Calorimetry

2.1 A Simple Model For Thermal Analysis

The simplest model for thermal analysis is the so-called

zero-dimensional model shown schematically in Fig. 2-1. It

assumes that the internal relaxation time of the system of interest

(sample + cell) is very small compared to the time scale of

experimental data acquisition and that the heat leak to the thermal

bath can be represented by a single parameter, the thermal

resistance R between the system and the bath. An external

nonmechanical power P is put into the system which is at

temperature T, and this system can exchange heat with a bath at

temperature Tb.

The basis for thermal analysis is the first law of

thermodynamics: AU=Q+W, which means

change in system energy U=heat flow into system Q+

work done on system W.

In differential form this becomes dU=dQ+dW. The system

enthalpy H is given by H-U+pV, with p and V being the system

pressure and volume. Thus one has
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dH = dU + pdV + Vdp = dQ + Vdp + dWe,

where dWe is the differential nonmechanical (electrical in the case

of the calorimeters to be described here) work done on the

system.

R

P
T

/

Fig. 2-1. Schematic diagram for

zero-dimensional model of thermal analysis.

The heat flow between the system and the bath is given by

Newton's law:

dQ T-Tb
dt R

(2.2)

where R depends on geometric factors and the thermal

conductivity of the link between the system and the bath.

For a process at constant pressure, one has

dWe = dH-dQ (2.3)

When the system does not lie within the two-phase coexistence

region at a first-order transition, we have dH=(aH/aT)pdT=C~sYdT,
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where C = C +Cp(cell) is the system(sample + cell) heat capacity.

However, if the system is inside a two-phase coexistence region,

then dH=(aH/AT)pdT+dL=C~sdT+dL, where L is the latent heat

associated with the first-order phase transition. Considering the

time dependence, we have for the input power

p= dW = dH dQ (2.4)
dt dt dt

and the enthalpy is

H(t)= (P- Tb dt =H()+ (P- T- Tb )dt (2.5)
R 0 R

where H(O) is an arbitrary constant representing the enthalpy at a

temperature T corresponding to t=O.

Eq. (2.4) can be written in the following way:

= dT T-Tb +dLP = C" -- +~ at-- (2.6)
P dt R dt

The purpose of thermal analysis is to measure the enthalpy

H, the latent heat L, and the heat capacity C . Equation (2.5) can

be used to get the enthalpy H(t) as a function of time t by

numerical integration. This requires one to measure as functions

of time t the power P, thermal resistance R, sample temperature T,

and bath temperature Tb. This H(t) can be converted to a function

of temperature H(T) since one can monitor the sample temperature

T(t). From Eqs. (2.5) and (2.6) we get the derivative of the

enthalpy dH/dT in the following forms:
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(outside a two-phase coexistence region)

dH = CS+dL
dT P dT

(inside a two-phase coexistence region)

A. Process Without Latent Heat

Outside a two-phase coexistence region, the heat capacity

C" can be obtained directly from Eq. (2.6) with L=O:

= (PT-T )/(dT/dt) (2.7)

For a second-order transition there is no latent heat, so Eq. (2.7)

can be used to get the C. This approach requires one to perform

numerical differentiation dT/dt. We will explain in this chapter

that the best implementations of this method are adiabatic

scanning calorimetry [see Sec. 2.2] and non-adiabatic scanning

calorimetry (linear-power mode in relaxation calorimetry) [see

Sec. 2.4], where the system temperature T(t) varies almost linearly

with time t.

Another efficient method is ac calorimetry which does not

make use of Eq. (2.7), and avoids measuring the thermal

resistance R [see Sec. 2.3]. Note that an ac calorimeter cannot

measure latent heats, but can provide useful qualitative

information about two-phase coexistence.

41

dH =
dT 



B. Process With Latent Heat

Inside a two-phase coexistence region Cys values cannot be

obtained by using Eq. (2.7), but one can choose to get the

enthalpy from Eq. (2.5). Note that inside a two-phase coexistence

region we have Cys=Cp(cell)+Cp(coex), where Cp(coex) is the heat

capacity of the two coexisting phases that would be observed in

the absence of phase conversion, i.e., C(coex)= XCp(=)+X=Cp(P)

(Xi is the mass fraction of phase i). In general, C(coex) cannot be

measured experimentally except in the rare case when the phase

conversion rate is very slow (sluggish). [see Sec. 2.3B]. The

principal interest in the thermodynamics of a first-order transition

is not Cp(coex) but the latent heat L, which can be obtained from

integrating Eq.(2.6):

L= (p TTb t - CsdT, (2.8)
, R Ti

where the two-phase coexistence is between temperatures (times)

T. (t ) and T2 (t 2). In order to calculate the latent heat L, one

needs to choose Cp(coex) values (see discussions below) and

determine the coexistence region, i.e., values of T (tl) and T2

'(t2 ). In thermal analysis it is well known that the enthalpy H is a

smoother function of temperature than its derivative dH/dT. That

is, it is easier to spot an anomaly in dH/dT, which exhibits a peak

for most phase transitions, than in H(T), which usually only has a

change in curvature or a kink. Here we introduce the idea of an
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effective heat capacity Cff which is the derivative of the enthalpy

to help identifying two-phase coexistence:

dH (P T-Tb (
Cef (2.9)

Ceff-dT dT/dt

Comparing this to Eq. (2.7), we see that this Ceff is the same as

the system heat capacity C when the system is outside any two-

phase coexistence region. When the system is inside a two-phase

coexistence region, Ceff =Csy +dL/dT. Note that dL= Ldm where L

is the latent heat per unit mass of low-enthalpy phase converted

into high-enthalpy phase. dL is non-zero for the conversion of one

phase into another at a first-order transition and zero otherwise.

The quantity Cff =CsS+ dL/dT>CpYs in a two-phase region usually

stands out as being larger than a smooth extension of the pre-

transitional C wings (see Fig. 2-2). More importantly, Cff

exhibits hysteresis for a first-order transition, which makes it

useful in identifying very weak first-order transitions. One can use

Eq. (2.9) to calculate Cff by measuring P, T, R, Tb, and perform

numerical differentiation dT/dt. With this effective heat capacity

Ceff Eq. (2.8) for the latent heat can be rewritten as

T2

L= [C,ff - (C (cell) + C (coex))]dT (2.10)

where Cp(coex) is the heat capacity of the two phases a+1 that

coexist over the temperature range from T to T2. Recall that

Cp(coex)= XCp(a)+ XCp(3P). Since the two-phase coexistence region
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Cp(coex)=X,Cp (a)+XBCp(P). Since the two-phase coexistence region

is usually small (-100 mK), a common practice is to take C(a)

and C(3) to be independent of T over the range T to T2:

Cp(a)=Cp(T,) for the one-phase a system and Cp(p)=Cp(T2) for the

system in the phase. There are two simple approximations for

the temperature dependence of X, and X: (1) Xa =1 from T to

T=(T,+T 2)/2 and X=0 from T to T2. (2) X decreases linearly

with T from 1 at T to 0 at T2. In either case, the latent heat L

corresponds to the shaded area in Fig 2-2 (b3 or b4).

One has two alternative equations for calculating latent heat

L: Eq. (2.8) involves only numerical integration, but one needs to

identify precisely the two-phase coexistence region, which is best

served by examining Ceff; Eq. (2.10) involves not only numerical

integration but also numerical differentiation dT/dt [see Eq. (2.9)]

in order to get Ce,,ff.
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Fig. 2-2. Time dependence of the sample

temperature T and the dependence of

enthalpy H and heat capacity Cp on

temperature. Drawn schematically for a

sample near a weakly first-order transition.

This type of transition has a small latent

heat L and pretransitional C wings both

above and below the transition temperature

T,r. (a) Ideal behavior: phase ca and phase 3

coexist only at T,,r and the heating curve T(t)

exhibits a true hold;
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(typically 100 mK wide). In this case, for a

constant power input there is usually a

linear ramp in T between t and t2 and a

corresponding linear ramp in H between T.

and T2. The latent heat L is given by

T

L=H(T2)-H(T )- CdT and corresponds to
T.

the shaded area in (b3) and (b4). The sketch

in (b3) corresponds to the limiting case

dm/dT=constant and quasi-static

measurements; the sketch in (b4) is for

more realistic conditions observed in slow

nonadiabatic (relaxation) scanning runs.
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2.2 Theory of Adiabatic Calorimetry

at Constant Pressure

If one can keep the heat leak very small: b 0, then the
R

calorimeter is called an adiabatic calorimeter (there is no heat loss

to the bath).

First consider the situation without latent heat effects (which

means the system is outside any first-order coexistence region).

The heat capacity is then given by Eq. (2.7) with T-Tb >0
R

C~S= P =dW (2.11 la)
P dT/dt dT

In the traditional step heating method, one puts in a finite

electrical "heat" pulse W and observes a temperature rise AT.

The value of CsSis then taken to be C=We/AT. However, much

greater resolution can be achieved in the adiabatic scanning mode

where P is held constant (P=Po=constant) and one monitors the

sample temperature T as a function of time. Then numerical

differentiation of T with respect to t gives the value of C as

CpS =P 0 / (2. 1 b)

where TdT/dt. In this mode, the system temperature is scanning

almost linearly: T(t)=T(O)+(P0/CsYs)t would hold if C were a

constant. Thus one measurement can cover a wide temperature
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range in a long run carried out at a low enough rate T to assure

thermodynamic equilibrium. Typical scan rates are T=100-200 mK/h

away from transitions and TJ=10-20 mK/h near transitions. The key

to good performance is careful maintenance of adiabatic

conditions and frequent high-quality temperature measurements.

This method was developed and used extensively for studying

liquid crystals by Thoen.1

Now consider the situation with latent heat effects (the

system temperature lies inside a two-phase coexistence region). In

an ideal first-order transition, two phases will coexist at a

constant transition temperature while one phase is converting into

the other. In real experiments, one can use very slow scanning

rates to avoid superheating or supercooling, and the sample

temperature stays almost constant during the phase conversion. So

with an adiabatic scanning calorimeter, one identifies a first-order

transition by observing a "plateau" in the sample temperature

T=T(t) between time t1 and t2 where the corresponding

temperatures T and T2 are very close to each other; see

Fig. 2-2(b-1). From Eqs. (2.8) we have
t2 T2 T

L = P0 dt - CdT = H(T2 )- H(T )- XCpsdT (2.12)
tl T, T.

where C =C(cell)+Cp(coex). Refer to Sec. 2.1B for discussions

about how to choose the Cp(coex) values.

Strictly speaking, an adiabatic calorimeter is designed not to

lose any heat, so it usually operates in heating mode. Sometimes
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people use the machine in cooling mode by monitoring the heat

leak quantitatively. In this thesis, we will call it nonadiabatic

calorimetry since the heat leak is finite. One can make both

heating and cooling runs in nonadiabatic calorimetry and compare

the data in order to find thermal hysteresis. This procedure will

provide important information about first-order phase transitions.

Next we will discuss two types of nonadiabatic calorimetry: ac

calorimetry and relaxation calorimetry.

2.3 Theory of AC Calorimetry

at Constant Pressure

A. Process Without Latent Heat

When the thermal resistance R is not negligible but L=O,

Eq. (2.6) gives

dT T-Tb
CSYs d + -b = P (2.13)

C dt R

If we take C and R as constants over a small time (temperature)

interval, then Eq. (2.13) is integrable. For ac calorimetry, one

uses a sinusoidal input power P=P0 cos(ot)+P0. If one keeps the

bath temperature Tb constant during a measurement and the

sample is initially in equilibrium with the bath (T=Tb), then after

switching on the sinusoidal power at t=O, the system temperature

is
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T(t) = Tb +P 1 + cos((t)+ Oxt sin(t) [1 1 g -tOt)(2 14)

where ,xt, =RCys is the "external" time constant for heat flow from

the system to the bath. Thus, in the steady state (after a time long

enough so the exponential term is negligible) the system

temperature has an ac component and a

T(t)= Td, + Tac (t), where

TdC = Tb + PoR

and

T (t) = PR (eos(ot)+ orex,, sin(cot))= ATac sin(ot + p)

where

ATa = Po
CPY I2 1

P co2 +__

'Text

1 1tan p = -=RC
Noext oRCp y s

Eliminating et,, from the above equations, one has

CSYS = Po cosT
P o)AT,,

Note that one can write

dc component:

(2.15)

(2.16a)

(2.16b)

(2.16c)

(2.17)

Tac (t) = ATa, sin(cot + (p) = ATac cos(ot + p -)
2

and

compare it to the input power P=POcos(ot)+ P. There is a phase

shift between the temperature and the power of A/==(p--. In our
2

group here at MIT, we call p the phase shift. Note that qp-o
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when o,,ext is large, which corresponds to our normal operating

conditions.

Therefore, in this technique one measures the sample

temperature T(t) to get the amplitude ATac and the phase shift .

Then C can be calculated by using Eq. (2.17). Note that one

does not need to measure the thermal resistance R explicitly since

Eq. (2.17) depends on R only via the phase shift p , which is a

measurable quantity. It is obvious that p=O when R-- oo. If the

system satisfies the condition o,,,ext >>1, then tan(p=l/o'ext <<1 and

cosip=l. In this case Eq.(2.17) reduces to

CPY _ Po (2.17a)
AT,,c

and one does not even need to measure the phase shift p. If the

value of is small but not negligible (i.e., cospl1) and is

unknown due to complications with instrumental effects as

discussed in Sec. 2.5D, one can approximate Eq. (2.17) by

(C s) (P /AT )2 (2.17b)
co2 R'

where R can be estimated from the dc temperature offset

Td - Tb = PR.

For a particular calorimeter design and experimental system,

the time constant t, =RCY"s is almost a constant (varies only due

to the temperature dependencies of C and R). In order to be able

to use Eq. (2.17a), one would like to choose the operating

frequency co to satisfy o >> 1/ex,. However, there is an upper limit
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for co: it must be low enough so that o <<l/ t, where int is the

internal time constant characterizing the thermal diffusion time

scale inside the sample2 -3. Therefore, in order to use Eq. (2.17a),

the operating frequency of an ac calorimeter is limited to the

range 1/, << ) << 1/ti,,n where ,,ex,t and ,int depend on the

calorimeter and cell design. The condition o<<l/i,, is the more

important since it is necessary in order to guarantee that there are

no temperature gradients inside the sample when it is close to a

transition. This basic ac method was invented in the 1960s by

Kraftmaker2 and by Sullivan and Seidel,3 and it has been widely

used for studying liquid crystals by Johnson,4 Huang,s and

Garland.6 This even includes C, measurements at high pressures.6

However, it is possible to go beyond these classical ac

calorimeter designs. With a good experimental setup, one can

determine the phase shift q( accurately and use Eq. (2.17) to

determine the heat capacity values even when o>>l/rext, is not

satisfied. Later in Sec. 2.3B and Chapter 5 we will see that the

phase shift can be even more sensitive to phase transitions

(especially first-order ones) than the heat capacity. So the

operating frequency of an ac calorimeter can be extended to quite

low frequencies, which is desirable for studying phase transitions.

The heat capacity is a static property, so it should be obtained in

the zero frequency limit of ac calorimetry. However, practical

experimental conditions will pose a lower limit to the operating
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frequency of an ac calorimeter. In order to explain this point, let

us rewrite Eq. (2.6) as

Sys dT T dL Tb (2.18)Cy -- + - = P---+ (2.18)
P dt R dt R

It is interesting to note that the three terms on the right-hand side

of Eq. (2.18) have equal footings. By this we mean the three terms

are equivalent in determining a solution for T. For example, if the

bath temperature Tb has an ac component Tb=To +Tocos(Qt) due to

the bath regulator, this gives on the right hand side of Eq. (2.18) a

T. T.term T-cos(Qt)+T°. Such a term will result in a temperature
R R

oscillation in the sample temperature at frequency . This is

directly analogous to the response of the system to an electrical

power input P=P0cos(Qft)+Po. Thus when an ac calorimeter is

operated at very low frequencies so that o=fQ, one will encounter

the problem that the bath temperature oscillations contribute noise

to the data. This has been verified in our experiments.

One could carry out the ac mode operation at a particular

sample temperature T=Tb+POR by holding the bath temperature Tb

constant, as discussed above. But more efficient operations can be

achieved by slowly scanning the bath temperature:

rb=Tb(O)+Tt, where t=O represents the time when the heater on

the sample is switched on. In this scanning ac mode, the sample

temperature is given by

T(t) = Tdc(t)+ Ta,(t)+ Texp(t), where

ric, (t)= Tb (O)+ Tb(t- ex )+ PR ,
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Tsc (t) = ATac sin(ct + p), (2.16a)

as before, and

T"exp(t) = ext _PR[1 + (OY ext)2 exp(- t/ext).

In the steady state (after a time long enough so the exponential

term is negligible) the system temperature has an ac component

and a dc component: T(t)=Td,(t)+Tc(t), where we now have

Td, (t) = Tb(O)+ Tb(t- ex)+ POR (2.19)

B. Process With Latent Heat

In this case there are two coexisting phases which can

interconvert via a first-order transition. If the latent heat is large

enough, one should observe anomalous variations in the sample

temperature. When latent heat is released, as in crystallization,

the sample temperature is anomalously high. When latent heat is

absorbed, as in melting, the sample temperature is anomalously

low. These anomalous behaviors for the sample temperature can

be used to identify first-order transitions. Here we distinguish two

limiting cases for behavior in the two-phase coexistence region.

The interconversion a<-p between the low-enthalpy phase a and

the high-enthalpy phase 13 can be rapid or slow when the

temperature is within the coexistence region.
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Case One

Some first-order transitions are very "sluggish", which

means the conversion from one phase to another takes a long time.

In our ac mode experiment, one data point usually requires six

periods of temperature oscillation with a period of 32 seconds

(i.e., 192 s= 3.2 min). If during this measurement time for an ac

calorimeter data point, the release of latent heat is so slow that

dL/dt is a smooth function of time, say a linear function

dL/dt=C+Dt, then the latent heat effect is equivalent to a varying

bath temperature [see Eq. (2.18)]. In this case, only T changes as

a result of two-phase coexistence. On a heating run, the T value

observed in the coexistence region will be smaller than that given

by Eq.(2.19) and on a cooling run larger. In this limiting case,

ax<-3 interconversion is not following the T,, oscillations and

there is no anomalous behavior for the phase shift (p. The analysis

to obtain C is the same as if there were no latent heat:

Csvs P0CPS = T cos ( .
tOTac

Note that this heat capacity represents an average value for

two coexisting phases oa and : C' = XaCp(a)+XCp(p()+Cp(cell)

where X is the mass fraction of the sample in the a phase and

X, =1-Xa. This is the rare case when one can measure the

Cp(coex)=XaCp(a)+XPCp(3) [see Sec.2.1B], and the phase shift (p

does not have anomalous values [see case three]. In Chapter 4 we
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will encounter such a case involving nucleation and growth

phenomenon for supercooled antiferroelectric liquid crystals.

Case Two

If the phase conversion (a->3p) rate is very fast, the phase

conversion would follow the sample temperature T(t) oscillation

in phase. In the ac mode, the sample temperature oscillation (sine

wave) would not be distorted. In this case, one could obtain the

effective heat capacity Ceff =CYs +L(dm/dT) in the ac mode by an
vp

equation very similar to Eq. (2.17): C= ,- cosy. To prove this,

let us write dL/dt=(dL/dTXdT/dt), then Eq. (2.6) can be written in

the form

C dT T-Tb (2.20)
dt R

where Cff =Cp y+dL/dT is the effective heat capacity as defined in

Eq. (2.9). Note that Eq. (2.20) would be identical to Eq. (2.13) if

one makes the mapping C C. So if the phase conversion rate

were ideally fast and the sample temperature oscillation (sine

wave) is not distorted, one gets Cef= AP cos from Eq. (2.20)
oATc

[see the analysis of Eq. (2.17) in Sec. 2.3A].

This is the very rare case when one could measure C eff in the

ac mode. If this case were to occur, the phase shift data would not

have anomalous behavior like that discussed below in case three,

and the values of Ce, = Cs + L(dm/dT) would be anomalously higher
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than the C wings outside the two-phase coexistence region. In

the past, some researchers (including our group) had found a few

situations close to this ideal case two. We must stress however

that one should measure the effective heat capacity Ce,, in the

linear power mode to be discussed in Sec. 2.4. The effective heat

capacity C,, is very useful in detecting first-order transitions and

calculating the latent heats [see Sec.2.1B].

Case Two

Very often, the phase conversion rate is not low enough to

satisfy case one, or high enough for case two. In this event dL/dt

has a Fourier component at frequency o that will act like a power

at this frequency and its higher harmonics will also contribute. So

the system temperature T(t) will no longer exhibit a simple

sinusoidal modulation but will be distorted by the latent heat. If

the distortion is not too large, one could process the data as if

there were no latent heat effects. Then one would get anomalous

variations in "p" and artificially large values for the "heat

capacity", as verified in our experiments. These "heat capacity"

values have no physical meaning; they are larger than the Cs

values obtained in case one and smaller than the C values

obtained in case two. However, when there is no other means to

detect first-order transitions in an ac calorimeter (for example,

when the latent heat is too small to have an observable effect on

TdC), these anomalous variations in "" and artificially large

values for the "heat capacity" are useful qualitative indications of
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two-phase coexistence.

The anomalous behavior of (p at a transition where there is a

two-phase coexistence region of finite width is an especially

valuable qualitative indication of first-order character. Let us first

sketch the behavior of tang for a second-order transition where

there is no two-phase coexistence but C = C (cell)+ Cp(sample),

where Cp(cell) is a smooth function of T and Cp(sample) has a

singular contribution (a peak). The thermal resistance R is also a

smooth function of T; thus according to Eq. (2.16c) tang will

exhibit a dip at a second-order transition, as shown in

Fig. 2-3(a). When domains of two distinct phases coexist in a

sample at a first-order transition, the internal heat transfer

becomes complicated (see Chapter 5). The empirical result is a

dramatic peak in tanp, as shown in Fig. 2-3(b) and 2-3(c). This

well-established qualitative feature occurs not only at strongly

first-order transitions (see also Fig. 3-5 in Chapter 3) but also at

weakly first-order ones like N-I transitions where there is

appreciable pretransitional C behavior as well as a non-zero

latent heat. 7' 9
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Fig. 2-3. (a) Typical tan(p behavior near a

second-order transition or a rounded

" supercritical" maximum in the heat

capacity. tan shows a dip when CY''

exhibits a peak since tanp=1/coRCpys Note

also that tanqp is larger at all T for the

lower frequency data, as expected. Data

shown are from 9FBTFOM [see Chapter 5],

where CYs exhibits a finite maximum. For ap

second-order transition, C is divergent

and tanqp exhibits a sharp cusp-like dip.
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T (K)

Fig. 2-3. (b) tan(p behavior near a strongly

first-order transition. The anomalous peaks

indicate regions of two-phase coexistence.

Data is for the SmC-SmC2 transition in

mixtures of DB8ONO + DBoONO (Ref.8);

Fig. 3-5 provides another example similar to

that shown here. In both cases the operating

frequency was oo =0.196.
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Fig. 2-3. (c) tanqp behavior near a weakly

first-order transition. Data at the top are for

the SmC-SmF transition in TB6A. 9 The data

at the bottom are for the SmC*-SmI*

transition in a mixture of 8SI and 80SI. The

operating frequency was o = 0.196 or 0o/3.
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In principle, latent heat can be measured by an ac

calorimeter, but we will show that this is not efficient. The latent

heat L is given by Eq. (2.8):

L= T-Tb t- CdT

Both the sample and bath temperatures can be (indeed are)

carefully monitored as functions of time. If one can measure the

thermal resistance R (to be described in the next section), then the

latent heat is given by Eq.(2.8).

Obviously, it is not practical to work in the ac mode if one

wants to measure quantitative latent heat values. From Eq. (2.8)

we see that in order to measure latent heat, one needs to identify

the two-phase coexistence region (i.e., locate T 1 and T2). Even if

this is done very well using the tanp behavior, there is the

problem that the ac mode operation does not usually scan

continuously from below T (at time t) to above T2 (at time t).

Even if it did, both P and T are oscillating and it would be

difficult to determine an accurate value for the difference

[P-(T-Tb)/R] as a function of time and to perform the numerical

integration of these oscillating data using Eq. (2.8). If one wishes

to use Eq. (2.10), then values are needed for the effective heat

capacity Cef,. However, the apparent heat capacity data obtained

in the coexistence region for case three cannot be used to do any

quantitative analysis. One could attempt to use Eq. (2.9)

Ceff dH/dT=(P- TR -T)/(dT/dt), but both P and T are oscillating in
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the ac mode. Thus it is difficult to carry out accurate numerical

calculations to obtain Ceff.

In the next section we discuss a relaxation calorimeter,

where the input power can be either a step function or a linear

function of time. In the linear power mode, the system temperature

changes almost linearly, similar to the case of adiabatic scanning

calorimetry. Thus it is convenient to use a relaxation calorimeter

in the linear power mode to measure latent heats.
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2.4 Theory of Relaxation Calorimeter

at Constant pressure

In Sec. 2.3 we have discussed ac calorimetry, which has

been used successfully to study the heat capacities of many

materials. The essence of ac calorimetry is to detect the sample

temperature response at a particular frequency o. Thus it is

robust against noise at frequencies other than co. One can hold the

bath temperature at a constant value, use a small heater power so

AT, is small, and take as many sample temperature oscillation

data as one wants. Therefore high-resolution C, values can be

obtained. Very slow linear scan or constant scanning rates for the

bath temperature can also be used in ac calorimetry, which is very

useful in studying phase transitions. However, it is not practical to

use an ac calorimeter to measure latent heat values. We will see in

this section that relaxation calorimetry can be used for this task.

Instead of putting a sinusoidal power into the system, one

can switch on a constant power P0. In this case the system

temperature will relax exponentially to a value that is higher than

the bath temperature. If one then switches the power off, the

system temperature will relax exponentially back to the bath

temperature. In the standard operation of a relaxation calorimeter,

one keeps the bath temperature Tb at a constant value. In reality,

the bath temperature must be regulated with a feedback controller,
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but the fluctuations in Tb are very small, typically less than 0.1

mK during our measurements.

A. Process Without Latent Heat

In this case, we start from Eq. (2.6) in the form of Eq. (2.13)

dT (T-Tb) P
dt RCsys C-ys

Assume that the bath temperature Tb is constant.

1. If the power is a step function, say in a heating run

P=O

P=Po

for t<0 (2.21a)

for t0 (2.21b)

Assuming R and C to be approximately constants, then

T(t)= Tb +PoR{1-exp(-t/ext)} for t>0 (2.22)

where e,,,t = RCp"s. So the system temperature relaxes exponentially

to a constant value

T(o) = Tb + P0R (2.23)

In a cooling run, a constant power P0 has been applied to the

heater and the system has equilibrated to a constant temperature

T(oo)= Tb+POR. Then the power is turned off:

P=Po

P=O

for t<0 (2.24a)

for t>O (2.24b)

The system temperature will relax exponentially to the bath

temperature:

T(t) = Tb + PoR exp(- t/text ) (2.25)
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One has two choices for determining the heat capacity. One

method is to fit the sample temperature with Eq. (2.22) or (2.25),

get R and tex t, and then use

CsYs = ext (2.26)

This method was developed in the 1970s and used for liquid

crystals as early as 1974.10 Note that Eq. (2.26) is only applicable

if C does not change significantly over the temperature range of

the relaxation. Recently, Ema et al.1 l have improved the

implementation of the step-power relaxation method. In order to

deal with the cases where C s may vary significantly over the

temperature range of the relaxation (and cases where a first-order

transition occurs during the relaxation, see Sec. 2.4C), they

introduced a time-dependent heat capacity C(t) concept. This

approach is based on the direct use of Eq. (2.7):

pT-TbP _- Tb

CSV (t) = R (2.7)
dT/dt

This second method has not been widely used but is very

attractive for the linear-power mode of relaxation calorimetry

developed by Dr. Haruhiko Yao and the author (described in

paragraph 2 below). In this case one needs to measure the thermal

resistance R, and we will discuss this shortly. Equation (2.7)

works for all choices of power P. But in the case of a step

function for the power, we see that the derivatives

dT =+ PR exp(- t/,ext ) (2.27)
dt te,,xt
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decay exponentially to zero, which makes numerical calculations

with Eq. (2.7) unstable at long times. The linear power mode was

introduced to solve this problem.

2. If the power P is a linear function of time, say in the heating

mode P =dP/dt=const and

for t<0 (2.28a)

for O<t<t, ( P positive)

for t > t , , where P0 _ Pt.

(2.28b)

(2.28c)

Assuming R and C to be constants, the solution of Eq.(2.6) with

L=O for T is

T = Tb + PR(t- 'x, ) + r, RPexp(- t/'erxt ) for O<t<t1

In the cooling mode the power is

P=Po for t<0

P=P o-iPt

P=O

for 0<t<t, = P/lP ( P negative)

for t>tj

Again, assuming R and C to be constants, the solution of

Eq.(2.16) with L=O for T is

T= Tb +PoR-PIR(t-Text)-textRlPlexp(-t/trex, ) for O<t<tl.

So the system temperature relaxes exponentially to a "long-time"

(but t<t,) linear function of time: T=Tb+PR(t-,,ex,t) in the heating

mode and T=Tb+PoR-llR(t-rex,) in the cooling mode. In this linear

power mode, one can scan the system temperature, which varies

almost linearly except for a brief period just after t=O, through a

wide range of temperature with a convenient scanning rate. The
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value of C is calculated from Eq.(2.7) where P is the power at a

certain time t' corresponding to sample temperature T and dT/dt is

determined by numerical differentiation of T(t) data over a time

interval centered at t'.

B. Measurement of R When There Is No Latent Heat

In order to use the linear power mode, one needs to measure

the thermal resistance R. One observes from Eq. (2.6) that if

dT/dt=O and L=O, then R=(T-Tb)/P. So in order to measure R,

one can control the system at a constant temperature well away

from any two-phase coexistence region. In practice, we keep the

bath at constant temperature Tb, and input a small constant dc

power P. After a transient period, the system temperature will

reach a constant value T1. When we change the power to a slightly

different value P2 (usually set to be zero by switching off the

power), the system will reach another constant temperature T2

after some time. From the relations PR(T1 )=T -Tb, P2R(T2 )=T2 -Tb

and R(T,)=R(T,), we have

T. -T.R= T2 ' (2.32)
P - P,

Note that if there are latent heat effects, Eq. (2.32) cannot be used

to obtain the value of the thermal resistance R. One should

measure R outside any two-phase coexistence region and

interpolate the R values inside such regions.
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C. Process With Latent Heat

Parallel to the discussion in Sec 2.1, we introduce the

effective heat capacity as in Eq. (2.9). One has even in a two-

phase region

= = R (2.9)
Cff -dT dT/dt (2.9)

This effective heat capacity is identical to the system heat

capacity cs" outside a two-phase coexistence region. One

identifies a first-order transition by observing anomalous behavior

in Ceff. The two-phase coexistence region usually has hysteresis.

The latent heat is given by Eqs. (2.10) and (2.8):

L= [C - CY s]dT = (P b dt - [Cp (cell) + C (coex)] dT
Tw to T 1

where two-phase coexistence is between temperatures (times) T.

(t1l) and T2 (t 2), and Cp(coex) is the heat capacity of the two

coexisting phases that would be observed in the absence of phase

conversion, i.e., Cp(coex)=X, Cp(a)+XoCp(P) as discussed in Sec.

2.1. The latent heat L corresponds to the shaded area in

Fig. 2-2 (b4). It is best to carry out the measurement of Ceff in the

linear power mode, which is very similar to scanning adiabatic

calorimetry except heat leak is finite here rather than zero; see

Eq. (2.12). Indeed, our linear-power relaxation method could best

be called nonadiabatic scanning calorimetry.
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2.5 Design And Operation of An

AC Calorimeter

The zero-dimensional model of thermal analysis described in

the proceeding sections is surprisingly simple. It has been applied

to high-resolution ac calorimetric studies of liquid crystals in the

pioneering works of Johnson, 4 Huang,5 and Garland, 6 and later

extended by, Ema'1 to relaxation calorimeters. These ingenious

designs are superior in many ways to commercial calorimeters like

DSC (differential scanning calorimeter) and DTA (differential

thermal analysis). Such machines have high sensitivity for

detecting small enthalpy changes, but their absolute accuracy is

poor, the scanning rates (usually several degrees per minute) are

too fast to permit thermodynamic equilibrium near a phase

transition, and temperature resolution is very low. Compared to

classical ac calorimetry, 3 the MIT ac calorimeter is more

versatile. It can operate over a range of low frequencies, which

makes it useful in studying a wide variety of bulk samples,

including solids, liquids, liquid crystals, and even aerogels.

DI)esign and operation of this calorimeter ( called calorimeter A)

was described in great detail by Dr. K. Stine in his Ph.D. thesis.' 2

NWe will briefly describe it in this section with emphasis on recent

improvements made by Dr. Haruhiko Yao and the author.

Figure 2-4 gives a block diagram of Calorimeter A, the

standard ac calorimeter used for several years in our laboratory.
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2-4. Block diagram

( modified version of the design described

by K. Stine 1 2).
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In this design, a sample+cell of heat capacity Cs" is loosely~ vp

coupled to a heat bath at temperature Tb. For an oscillatory power

input P = P0 cos(wt)+ P0, the sample temperature is given by

T(t)=Tdc +Tacsin(tot+(p). For a bulk sample (typically 20-100 mg) at

1 atm, the sample thickness and operating frequency can be

chosen so that the simple expression C" =P /coATc is an excellent

approximation.

A. Sample Cell

The design, construction, and filling of the sample cell used

at MIT is described in detail by Keith Stine' 2 and is summarized

below. This cell is made of silver and is shown schematically in

Fig.2-5. The only modification of Stine's procedure is the dilution

of the GE varnish.

silver lid),

microbead

thermistor

- mmL \ sample and gold coil

heater O
I)

silver cup

Fig. 2-5 Schematic view of sample cell.

A strain gauge, which serves as the heater, is attached to the

bottom of the shallow silver cup using diluted GE 7031 varnish.

The diluting solvent is a 50:50 (by volume) mixture of toluene and

ethanol. The strain gauge is either model 120LG13 from
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Omega Engineering or model FAE-25-12 S13 EL from BLH

Electronics, with a resistance of 120 ohms. When the sample is a

liquid or liquid crystal, a helical coil of fine gold wire is placed in

the silver cup to increase the effective thermal conductivity of the

sample. After loading the cell with the sample, a silver foil lid is

cold-welded to the silver cup using indium or tin. The temperature

sensor is a microbead thermistor from Victory Engineering, which

is attached to the center of the silver lid with the diluted GE

varnish.

A slight modification of the Stine cell design is used at the

Tokyo Institute of Technology, where gold is used in place of

silver. As a result, it is possible to directly cold-weld the lid to

the cup without the use of indium or tin. The main advantage of a

gold cell is that it is chemically stable. This is a desirable

improvement since it also improves the thermal conductivity of the

cell body. However, the cost is appreciably greater.

B. Temperature Control

Before recent improvements, temperature control was

achieved by regulating the temperature of an oil bath (Lauda

KS20D), and the sample holder was inside a massive copper block

immersed in the oil. The purpose of the copper block was to damp

out the short-term temperature fluctuations. This style of

temperature control was beset by problems with intermediate-term

temperature fluctuations (time scale 1-10 min) of about +1 mK,
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which is not desirable for very-high resolution calorimetry. For

details of this old method see Stine's thesis. 12

Dr. H. Yao and the author have made major modifications to

the temperature control. Instead of using an oil bath to control the

bath temperature and a copper block to damp the temperature

fluctuations, we now control the temperature of the massive

copper block directly. See Fig. 2-6.

The sample holder is mounted with six bolts in the massive

copper block. A gas-tight seal is achieved with an O-ring set in a

circular groove around the top surface of the copper block. A

Kapton insulated flexible heater from Omega Engineering is glued

on the outer surface of the copper block. Heating power is

supplied to this heater by a home-made power supply. The

composite assembly of sample holder and copper block is

suspended from a wooden plate on top of the oil bath (Lauda KS-

20D temperature controller) but is not immersed in the oil. The

copper block is surrounded by a large open-top copper can, which

is immersed in the oil bath to prevent oil from coming into direct

contact with the copper block. The Lauda oil bath temperature is

controlled by its feedback system and a stability of +0.1 K can be

achieved. To control the "thermal bath" temperature, a thermistor

is attached to the copper block. This thermistor serves as the

sensor for a LakeShore DRC81-C temperature controller, which

outputs a control voltage to the home-made power supply, which

in turn outputs control power to the Kapton insulated flexible
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heater on the copper block. This feedback procedure can achieve

a stability of +1 mK for the temperature of the copper block over

a period of 30 minutes. The scanning of the bath temperature is

accomplished using a home-made programmable voltage offset

generator as described by Stine. 12 This allows one to choose

scanning rates over the range 1 mK/h to 3 K/h.

C. Electronic Circuitry

The design and basic electronic circuitry of calorimeter A

are the same as those described by Stine, 12 but a number of

improvements have been made. A brief summary is given below

with indications of the elements that have been changed.

The electrical power dissipated in the strain-gauge heater is

provided by a Krohnhite 1920 arbitrary function generator. The

output of the Krohnhite is applied to a circuit made of the strain-

gauge heater and a General Radio 1MQ decade resistor in series

with the heater. One changes the heater power by selecting an

appropriate value of the decade resistor. A standard resistor with

resistance Rtd is also in series with the strain gauge and is used

for determining the heater current I. The automated measurements

of resistances and voltages are made possible by a home-made

multiplexer interfaced to the digital I/O board inside an IBM/XT

computer. The multiplexer is instructed by the computer to select

one of the inputs to a HP 34401A multimeter interfaced to the

computer through a Tecmar IEEE-488 board. The readings of the

nnultimeter are triggered by a TTL (transistor-transistor logic)
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pulse originating from the Krohnhite. In arbitrary function mode,

the Krohnhite outputs a TTL pulse for every point in the

waveform. This TTL signal passes through a counting circuit

designed in 1988 by Dr. K. Ema; this circuit changes the period of

the original TTL into a specified value, say 0.5 second. This

controlled TTL triggers the reading of the thermistor resistance

that measures the system temperature T(t). At each zero crossing

of the voltage signal, the Krohnhite outputs a separate TTL pulse

through the ARB-Z output on the back panel. This TTL signal is

used to synchronize the measurements (to trigger the meter so it

starts reading). After measurement of one C data point (several

periods of temperature oscillation), the counting circuit is reset by

the computer through the DIO board, and the data taking is re-

synchronized by the ARB-Z output.

The resistance of the thermistor attached to the sample cell

is read directly by the HP multimeter with the triggering method

described above. The thermal bath temperature Tb is measured by

reading the resistance of a Platinum Resistance Thermometer

(PRT) attached to the sample holder. The PRT is model

146MA1000F from Rosemount ( its resistance is about 1000 ohms

at OOC), which is calibrated against the IPTS-1968 standard. A

Keithley 192 multimeter is dedicated to measuring the PRT

resistance. Note that we program the Keithley so it reads the PRT

resistance continuously during the measurement of a data point. In

the resistance mode of the Keithley multimeter, a current is sent

78



through the PRT and this measurement current will heat up the

PRT. By dedicating the Keithley to continuous PRT readings we

avoid transient self-heating effects. (This procedure also avoids

transient self-heating effects of the thermistor used to monitor the

sample temperature, since the HP can be dedicated to the

thermistor.) The self-heating effects of the Keithley measurement

current makes a constant correction to the PRT temperature:

TRT =Tb +AT, where Tb is the bath temperature and AT< 10 mK is a

constant during the experiment. We will ignore this constant

correction and let TRT =Tb when we calibrate the sample

thermistor. This new method of monitoring the bath temperature is

an improvement over the one described by Stine.' 2

D. Data Acquisition

Data acquisition is achieved with software written in C

under VENIX on the IBM/XT computer. At the beginning of a

data point measurement, the computer resets the counting circuit

to the state where it will not produce TTL pulses until it detects a

TTL pulse from the ARB-Z output of the Krohnhite. The reset

pulse is provided by the DIO (digital I/O) board inside the

computer. The computer reads the output from the counting circuit

to the DIO board. When the first TTL pulse is received, it

commands the HP meter to begin readings of thermistor

resistance. Each reading is triggered by detecting the high to low

transitions of the TTL train coming into the DIO board.

79



The user needs to choose the magnitude and frequency of the

ac heater power. A sinusoidal voltage signal is produced by the

Krohnhite generator in its arbitrary function mode, and the voltage

amplitude is set to its maximum value (15V). Since the voltage

from the Krohnhite is V=Vocos(ot/2), the power P=PO+POcos(ot) has

an ac component with frequency co and a dc component. In reality,

the Krohnhite generator gives a voltage wave that has a very small

dc component: V=VOcos(cot/2)+6V, so the power is actually

P P +P0 cos(cot + p)+ P cos(cot/2 + p1) (2.33)

and there will be a "beat" with frequency co/2 in the observed

temperature oscillation. The phase shift p is due to instrumental

resolution (for example, finite integration time of the digital

multimeter).

Before a heat capacity measurement begins, the thermal bath

is equilibrated to a desired starting temperature measured by

reading the resistance of the PRT. Then the heater power is

measured. The multiplexer selects the proper channels for the HP

multimeter. This multimeter reads the voltage drop across the

strain gauge and then that across the standard resistor. These data

are stored in the computer. The product P=IVH=VHVstd/R,td is

calculated and fitted with (2.31) to obtain Po and p,. If one

chooses to operate the ac mode at frequency co (for temperature

oscillation), then the voltage frequency of the Krohnhite should be

set to co/2 so as to get a power at frequency co. The power

measurement should be made at this frequency (co) in order to get
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the phase shift p at this particular frequency. This p will be

used later to calculate the phase shift (p.

After measuring the bath temperature, the sample

temperature T(t) is monitored by recording the resistance of the

microbead thermistor attached to the sample cell. The thermistor

resistance Rth can be converted into temperature using the

empirical formula

= a +al In(Rt )+a 2 [n( (2.34)
T RO RO

where T is in kelvin, a, a, a2 and Ro are positive constants (R is

set to 10 k in our experiments). The form used in Eq. (2.34) is a

good representation over a range of about 20 K. At the end of

several periods of sample thermistor readings, the PRT (bath)

temperature is determined again. During a series of measurements,

the bath temperature is programmed to change linearly with time.

Thus the bath temperature corresponding to a data point can be

interpolated from the two PRT readings, and the thermistor is

calibrated according to Eq (2.34) after the entire experimental run

is finished.

Since the amplitude of the temperature oscillation AT., is

small, the raw data Rh(t) are fitted to

Rth (t) = (A + Bt)- ARac, sin(ot + (PR ) - AR'sin()t/2 + p') (2.35)

and the values A, B, ARa, and (pR (also AR' and (p') are stored for

later data processing. For a given data point, the measurement of

this resistance starts at time t and continues for several periods
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of sample temperature oscillations ending at time t,. In order to

calibrate the thermistor, we take the average value of the

thermistor resistance R th =A+Btmid over this time interval, where

tmid =(ti+tf)/2. We need the temperature value corresponding to

this R,h. The sample temperature in steady state is T(t)=Tdc +Ta,,

where Tac(t)=ATacsin(tt+PR) and TdC =Tb+PoR [Eq. (2.15)] or

Tdc=Tb(0)+Tb(t-,,ext)+POR [Eq. (2.19)]. Thus the average sample

temperature during the measurement is T = (T(t)) = (Tb)+PoR- Tbe t,.

The bath temperature Tb is monitored by the PRT, so

(Tb)=TpRT(t=tmid) can be interpolated from the two PRT readings.

The thermal resistance R can be estimated by Eq. (2.32), and Text

is given by ,,et =RC sys. Thus the corrections to (Tb) can be

evaluated. Typical values are PoR 50 mK for P 0.3 mW and

Tb'text 1 mK when Tb -100 mK/h. Finally, the calibration is made

with Eq. (2.34) and Rth, T values from every data point in the

experimental run(often 1000 points) over typically 10 K.

The ac component of the sample temperature is

Tac(t)=ATacsin(rot+(pR), where we can use the approximation

aTa dI AR and the phase shift p appearing in Eq. (2.17) is

given by =PR -p. The sensitivity dT/dR can be obtained from

(2.34) after the coefficients are determined by the calibration, and

it is negative. The heat capacity is calculated from C = os.
oaTac osp.
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Since the heat capacity depends in effect on Rac, IdT/dRI, and (p,

the calibration with Eq. (2.34) is most important in allowing one

to determine an accurate thermistor sensitivity dT/dRI. Any errors

in the evaluation of PR only influence the absolute temperature of

the average sample temperature T and have almost no effect on

IdT/dRI and thus no effects on C.

Using faster computers with larger memory, one could

record all the thermistor readings in the memory for later data

processing. This would be valuable because one could then search

for distortions of the sinusoidal oscillation by latent heat effects.

If such a distortion is found, one cannot interpret the results of the

usual fitting procedure as the true heat capacity C and the true

phase shift p. However, these artificial values may serve as

indications of two-phase coexistence as discussed in Sec.2.3.

It should be noted that we have extended the operating

frequency to lower values than the standard frequency o0 used in

this lab for many years. This is because improvements in

temperature control and data acquisition allow us to obtain

quantitative information about the phase shift. So it is not

necessary to operate only at the standard frequency

2n
o= 32 =0.19635, which gives a phase shift (p=0.1-0.2 (thus

32sec

cos(p=0.98-0.995=1) for our design. We have achieved operation at

frequencies as low as c0/9 (period=288 sec=4.8 min). As

discussed in Sec. 2.3A, the lower limit of the operating frequency
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is set by the quality of the bath temperature control. It takes

about 30 min to finish one data point measurement at w0/9

operation (if six periods of T(t) data are taken), during which

time the bath temperature will fluctuate by about ±1 mK for

calorimeter A.

2.6 Design and Operation of

Relaxation Calorimeter

During the past few years, the research group of Prof. K.

Ema at the Tokyo Institute of Technology has developed a

complex calorimeter design'1 that allows operation in an ac

mode or in a relaxation mode. The latter mode makes it possible

to measure latent heats at first-order transitions, which is an

attractive augmentation of the heat capacity capabilities of ac

calorimetry.

Based on refinements of the designs used previously at

MIT and TIT, Dr. Haruhiko Yao and the author have

constructed a new complex calorimeter which operates in both

ac mode and relaxation mode. The design of this instrument,

called Calorimeter B, is described in subsections A-D and its

operation is described in subsections E and F.

A. Sample Cell

The cell used with Calorimeter B can be designed to be

identical to that used with calorimeter A and already described

in Sec. 2.5A and Stine's thesis.' 2 This makes it possible to
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move a sample from one calorimeter to the other with complete

freedom.

However, Dr. H. Yao has modified the method of cell

mounting. Instead of using enamel-insulated AWG 28 copper

wire to support the cell,' 2 (note that heater leads also serve to

support the cell, but are not strong enough), one can use nickel

chrome wire with a diameter of about 2 m to suspend the cell.

This procedure can reduce the heat capacity contribution to C'y'

from the wire and increase the thermal resistance due to the

wire. The thermal resistance due to these wires can be estimated

from Rire ,-L/KA, where K is the thermal conductivity of the

wire, L is the length (-1 cm), and A is the cross-section (-10 -8

cm 2). The result is Rre 106 K/W, which is much larger than the

typical values of the effective thermal resistance R-150-200

K/W measured in our experiments without vacuum. (With

vacuum the thermal resistance increases by about 20%.) Thus

the effective thermal resistance is determined by the heater

leads, the radiation loss and the conduction via the air.

B. Temperature Control

Unlike the situation with the old calorimeter used from

1988 to 1993 and described by Stine,'2 where a stirred oil bath

was used for controlling the sample temperature, or the revised

design for calorimeter A described in Sec. 2.5 B, no oil bath is

used for calorimeter B. The temperature control is achieved

with a copper block surrounded by a heated copper can and
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outer stainless-steel can. A schematic diagram of the inner parts

of this assembly is given in Fig. 2-7.

The massive hollow cylindrical copper block is 50 mm in

diameter and 50 mm in height. It has an inner space of 34 mm in

diameter and 30 mm in height, in which the sample cell is

mounted by suspending the cell from thin copper wires and the

electrical leads of the strain gauge. This block is surrounded by

a heated copper can that is secured with six bolts. A gas-tight

seal is achieved with an O-ring set in a circular groove around

the bottom surface of the copper can. This seal allows one to

control the pressure of the gas inside the copper can and the

inner copper block by pumping with a Welsh Duo-Seal vacuum

pump. The lowest pressure that can be achieved is -0.05 torr.

This procedure will increase the thermal resistance between the

sample cell and the thermal bath and can also improve the

sample temperature stability. A Kapton insulated flexible heater

from Omega Engineering is glued on the outer surface of the

copper can. Heating power is supplied to this heater by a Kepco

power supply. The assembly of thermal bath (copper block) and

the heated copper can is enclosed by a large stainless-steel can,

which is mounted by six bolts to the brass base plate and is

sealed by an O-ring.

To control the thermal bath temperature, a thermistor is

attached to the copper block. The thermistor and a home-made

programmable six-decade precision resistor comprise two arms
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of an ac (10 Hz) Wheatstone bridge, which is in balance when

the thermistor and the programmable resistor have the same

electrical resistance. This bridge, which is denoted as bridge 1,

is shown schematically in Fig. 2-8.

progi

resi onner block

Fig. 2-8. Bridge

sense/control the

1' diagram. Used to

temperature of the

copper block.

The bridge imbalance signal is fed into a PAR 5209 lock-in

amplifier. The amplified imbalance signal is input to a PID

feedback controller, which outputs a control voltage to the

Kepco power supply. which in turn outputs control power to the

Kapton insulated flexible heater on the copper can. This
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feedback procedure can achieve a stability of +0.1 mK for the

temperature of the copper block over a period of 24 hours. The

outer stainless-steel can is in contact with the room

environment, but its temperature is controlled by a LakeShore

DRC81-C temperature controller. A thermistor attached to the

surface of the stainless steel can serves as the temperature

sensor for the LakeShore controller, and heating is achieved

with a heating tape wrapped around the surface of the can.

C. Electronic Circuitry

The source of power for the strain-gauge heater ( a

Krohnhite 1920 arbitrary function generator) and the method of

measuring this input heater power are almost the same as those

described for calorimeter A in Sec. 2.5C except that the

standard resistor is omitted and the decade resistor is used to

calibrate the heater power. The generation of TTL trigger pulses

is also accomplished in the same fashion as described

previously. However, several items of equipment have been

upgraded for calorimeter B and the measurement of the

thermistor and PRT resistance are carried out in a different

manner.

The automated measurements of resistances and voltages

are made possible by a home-made 6-channel multiplexer

interfaced to a National Instrument DIO-96 digital I/O board

inside a Dell 486SX/25 computer. The multiplexer is instructed

by the computer to select one of the inputs to a HP 34401A
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multimeter interfaced to the computer through a National

Instrument GPIB-PCII board.

The thermistor attached on the sample cell and a home-

made programmable six-decade precision resistor comprise two

arms of an ac Wheatstone bridge, which balances when the two

resistances are equal. This bridge, which is denoted as bridge 0,

is shown schematically in Fig. 2-9.

p

mple cell

Fig. 2-9 Bridge 0 diagram. Used to detect

Rth(t) of thermistor (nominal Rth=0.2 - 5

MD at room temperature).
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The bridge is driven by a Stanford Research DS 335 function

generator at 24 Hz. The imbalance signal is sent to an Ithaco

model 393 lock-in amplifier and read by the HP multimeter with

the triggering method described in Sec. 2.5C, and the variations

in thermistor resistance can be calculated.

Note that we do not measure the thermistor resistance directly.

This is because we wish to determine as accurately as possible

small variations of the thermistor resistance R(t). The HP

meter has only 62 digits resolution, and the resistance is in the

range of 50 kto 1 M. Thus round-off errors will represent

significant "noise" relative to AR(t) if we read the resistance

directly. The ac bridge method used here gives greater

resolution in R(t) than the direct reading of the resistance

because one can choose the decade resistor to cancel out the

average thermistor resistance R,h and essentially get more digits

for the resistance change AR(t) that causes the bridge imbalance

signal.

The thermal bath temperature Tb is measured by reading

the voltage drop across a Platinum Resistance Thermometer

(PRT) attached to the copper block. The PRT is model

146MA1000F from Rosemount, which is calibrated against the

IPTS-1968 standard. The PRT resistance is not measured

directly with the resistance mode of the multimeter since the
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meter would send a current through the PRT during the

measurement. This current would heat up the PRT. Instead, a

small constant current ( from a home-made source) is sent

through the PRT and a standard resistor in series with it, and

the voltage drops across both are measured. This avoids

transient self-heating effects in the PRT and allows an accurate

determination of bath temperature. To avoid thermal emf

effects, two measurements are made with reversed currents, and

the value of the PRT resistance is taken to be the average of

these two readings.

D. Computer Control

Data acquisition is achieved with software written in

Turbo C++ under DOS on the 486SX/25 Dell computer. A

schematic block diagram of calorimeter B is shown in Fig. 2-10.

The essential features of its operation are summarized below.

1. To get the bath temperature, one can measure the PRT

resistance as described in the previous section.

2. To control the bath temperature scan rate, one can program

the computer to vary the decade resistance in bridge 1.

3. To get the sample cell temperature, one can measure the

imbalance signal of bridge 0 by reading the Ithaco lock-in

through the HP meter. The resistance of the thermistor is

calculated by measuring the driving voltage on the bridge and

the imbalance signal.
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Fi2. -10. Block diagram of Calorimeter B
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4. At the beginning of a data point measurement, the computer

resets the counting circuit to the state where it will not produce

TTL pulses until it detects a TTL pulse from the ARB-Z output

of the Krohnhite. The reset pulse is provided by the DIO board

inside the computer. The computer reads the output from the

counting circuit to the DIO board. When a TTL pulse is

received, it commands the HP meter to read bridge 0. Each

reading ( say every 0.5 s) is triggered by detecting the high to

low transitions of the TTL train coming into the DIO board.

E. AC mode of operation

For the ac mode, calorimeter B operates in exactly the

same way as calorimeter A. The user needs to set the amplitude

and frequency of the ac heater power, measures this heater

power, determines the bath temperature Tb, and monitors the

variation T(t) in the sample temperature. See Sec. 2.5D for

details. The final result is the determination of ATa, and the

phase shift (p, which allow C"v to be calculated with

Eq. (2.17): Cs-=(Po,/o)AT,a)cos .

F. Relaxation Mode of Operation

;1. Heating Runs

First, the bath and sample are equilibrated at the desired

starting temperature with the heater power set at zero. The bath

temperature is measured with the PRT, and then the thermistor

temperature T(t) is monitored while the heater power is turned
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on either as a step function or a linear function of time. In the

case of the linear power mode, the heating power variation is

P=O for t=O

P=P't for O<t<t

P= Pt, = Po for t > t

where P, is a constant and t is about 500 seconds. Then one

waits for about 500 seconds more so that the sample reaches a

contant final temperature T(oo)=Tb+PoR>Tb as measured by the

thermistor. After that, the power is ramped linearly down to

zero at the rate -P,. The thermistor resistance values collected

during the heating and cooling cycle are stored in the computer.

Heat capacity values are obtained with Eq. (2.7)

T-TbP-
CpY(T)= d , where the thermal resistance R has been

dT/dt

obtained from Eq.(2.32) using Tb and T(oo) as T and T2. The

entire process is repeated with the bath temperature raised to a

higher value. Note that we record all the thermistor readings in

the computer memory and process the data after the entire

experiment.

2. Cooling Runs

A constant power Po is applied to the sample heater, and

one waits for bath and sample equilibration. Then the initial

sample temperature Tb + PR and the bath temperature Tb are
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measured. The sample temperature T(t) is monitored while the

heater power is decreased linearly to zero at the rate -P.:

P=Po for tO

P= Po -PlIlt for O<t<t,

P=O for tt = Po/lPl

After a further period of about 500 seconds, the sample should

reach bath temperature. Then the power is increased linearly to

Po at the rate P. After recording the data for this cooling and

heating cycle, the heat capacity values are again obtained with

Eq. (2.7). The entire process is repeated with the bath

temperature changed to a lower value.
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Chapter 3

Phase Transitions In

Ferroelectric Liquid Crystals

3.1 Ordering In Smectic-C

and Smectic-C* Phases

The simplest model for SmA and SmC phases are

orientationally ordered fluids with one-dimensional mass density

waves. The direction of the density wave, i.e., the normal to the

smectic layers, is along (in SmA) or tilted (in SmC) with respect

to the unique orientation axis ii called the director. It was

de GennesX who first suggested in 1973 that SmA SmC

transitions should be in the universality class of superfluid helium

(3D-XY model). The SmC order parameter 

components:

v = Oexp(iq), (3.1)

has two

where 0 is the tilt angle of the director relative to

density wave direction and 4 is the azimuthal angle. In the SmC

phase, 0 is non-zero and constant in space if one can ignore
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thermal fluctuations, which is justified by the experimentally

observed mean-field behavior. The azimuthal angle differs in

different domains that usually have random spatial orientation.

Non-chiral liquid crystals (where the molecule and its mirror

image are the same) can exhibit a SmC phase, whereas chiral

liquid crystals (the molecule has an optically active center and is

different from its mirror image) form a new phase called smectic-

C* (SmC*). This phase is very similar to SmC, but the azimuthal

angle has a regular helicoidal variation along the mass density

wave direction (see Sec. 1.3).

3.2 Landau Model for SmA- SmC

and SmA SmC* Transitions

A. SmA-SmC Transition

All SmA-SmC transitions in non-polar systems are found

empirically to be second order. It has been well established 2 that

these SmA to SmC transitions are described by the so-called

extended Landau model, which is discussed in Chapter 1 of this

thesis as Model 2. This Landau behavior is explained by the

Ginzburg criterion, which predicts that the critical fluctuation

region is too small to observe experimentally 3 for SmA-SmC

transitions.

For Model 2, we have from Sec. 1.5B
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L(P)= atP2 + bP4 + cP6

G = G + minimum of L(P), (3.3)

where Go is a temperature-dependent but slowly varying

"background" free energy that describes the behavior in the

absence of SmC tilting, P=lVIl=, and

t = (T - T)/T o (3.4)

is the reduced temperature. The parameters a>O, b, c>O and To are

constants independent of temperature T. This simple model is

appropriate since there is symmetry with respect to 0

[G(0)=G(-0)] and the free energy is independent of the azimuthal

angle (at least for achiral, nonpolar compounds).4

The essential features of this model are summarized below.

When b>O, a second-order transition occurs at To. The heat

capacity at constant pressure p is given by

for T>To_p = p (3.5a)

C =Co+A Tk-To
T0 Tk-T

for T<To

where C is the heat capacity of the SmA phase given by

= -T(a 2GO/aT2), and this quantity is usually a smooth (linear)

function of T and p.

A = 2b is the heat capacity jump at To .
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* Tk is the metastability limit given by

Tk =TO+ b2To
3ac

(3.6)

When b<0, a first-order transition occurs at T >To . The heat

capacity has the same form as before:

CP = C0
Cp =Cp

Cp=Co+AI TkTo _C+2AT |Tk-T
TA, V Tk -T To Tk-TCp =b Co ' Tb~ = C p2 A--

for T>T 1

for T<T 1

(3.7a)

(3.7b)

b=T° b=T°where T,=T o+ 4a T k 12ac (3.8)

In this case, the jump in C, at T, is 2A.

When b=0, the transition is tricritical and occurs at Tk= =T = T,:

for T>Tk (3.9a)

. Toa3 T) 1T
for T<Tk

Thus Landau theory predicts that C diverges with the tricritical

exponent a=0.5 on approaching Tk from below. Note that the

quantity T/T in Eqs. (3.5b), (3.7b), and (3.9b) can in practice be

set to equal to unity since it varies only from 0.97 to 1.0 when T

varies from T-10K to To.

From Eq. (1.9) it follows that the tilt angle 0 is given by

( b 2 at
Y3c) 3c

(3.10)

below the transition. In the region where ,<< i.e., b is
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close to zero (system is close to the tricritical point), the tilt angle

scales like a power law: 0oc(-t)tc with the tricritical exponent

Ptc =1/4. In the other limit where i.e., b is large

(system is far away from the tricritical point), the tilt angle scales

with another power law: 0oc(-t)OMF with mean field exponent

MIMF =1/2. When b<0, there is a discontinuous jump in 0 from zero

to -b/2c at the first-order transition temperature

Experimentally, one has a finite temperature resolution, so it is

very hard to distinguish 0(T) behavior for small b>0, b=0, and

small b<0.

A useful dimensionless quantity to characterize the

sharpness of the ACp peak and thus indicate how close the system

is to the tricritical point is

to - b2/ac (3.11)

It is clear that to =0 at the tricritical point where b=0, and to has

been found to be a small number for many samples. From Eqs.

(3.6) and (3.8), the following relations hold:

Tk = T(1+ to/3) T1 =To(1+ to/4)

For a second-order transition, to is given by

=3(T k - To )

To

From Eq. (3.5b), heat capacity can be written as
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ACp =C -C° =A(l+t) I =A 1J

to

It follows that

AC(t = 0) = A,

for T<To

AC(t = -to) = (1 - to )A 
2 2

So for a second-order transition, to is the full width at half

maximum for ACp in reduced temperature units.

For a first-order transition, to is given by

12(T k - T) 12(T k - TI)t o - -
To T,

(3.13)

From Eq. (3.7b), the heat capacity jump at the transition is

ACP(t, )= A(l+t )i 1 (i t+)2A 2A,

to

where t = T-To = to . It is still true that
To 4

ACp(t = 0) = A,
A A

ACp(t =-t)=(1-to)2 - 2 

thus the heat capacity drops to a quarter of its maximum value

when t=-t o. This point occurs when T-T, =-St0TO/4=-5toT,/4.

Almost all previous experimental data on SmA-SmC

transitions have been analyzed using the Landau model described

above. It is interesting to note that although all nonpolar SmA-

SmC transitions have been found to be second order, Model 2

predicts crossover from second-order to first-order behavior as the

coefficient of the fourth order term b changes from positive to

negative via a tricritical point at b=O. Since the parameter
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to =b2/ac has been found to be very small in several experiments

on achiral compounds, it is possible that such nonpolar SmA-SmC

transitions are naturally close to some tricritical points (like the

NAC pointS).

B. SmA-SmC* Transition

Since the structure of smectic-C* is very similar to that of

smectic-C except for the helical modulation of the tilt direction

(and the energy associated with unwinding the helix is very

small 4'6 ), one would expect the same Landau theory to be

applicable to smectic-A-smectic-C* transitions at least for low

chirality.4

Experimentally, first-order SmA SmC* transitions have

been observed as well as second order. Thus it is possible to

study tricritical behavior in appropriate mixtures. In the first such

system that was studied,7 a puzzling behavior was observed near

the SmA-Sm C* tricritical point. In that experiment, the specific

heat peak was rounded and there was an excess C >Co for

temperatures above the transition, as shown in Fig. 3-1. At the

time it was suggested that thermal fluctuations might be the reason

for this non-Landau behavior near the tricritical point. Another

possibility is the coupling between the spontaneous polarization P

and the tilt 0 that is present in more general mean-field models.4

Since P is a secondary order parameter with a different

temperature dependence than 0, this will affect Cp. Indeed such
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5

4

e. 3-
cL

t

T-Tk (K)

Fig. 3-1. Excess heat capacity ACp(SmA-

SmC ) for mixtures of 2f+3f. A a 3/12cTO;

see Eqs. (3.9) and (3.14). The solid line

represents the theoretical Landau curve

(Tk-T)- '/2, which represents the data very

well for -OKT-Tk <-.5K. This detailed

view showing deviations from the Landau

model is taken from Ref. 7. Note that the

data are rounded in the transition region for

the range of T-Tjk< 200-500 mK.
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effects on C will be largest when the spontaneous polarization is

large and strongly coupled to 0, which is the case for the system

studied in Ref. 7. The present work was undertaken to resolve the

situation and establish SmA-Sm C* behavior in mixtures of weak

chirality and small spontaneous polarization.

3.3 Experiment

A systematic series of heat capacity measurements have been

carried out on mixtures of chiral C7 (methylchlopentanoyloxy

heptvloxybiphenyl) and non-chiral 1004 (butyloxyphenyl

decyloxybenzoate):

C7 (MW = 416-99)

C,"O--ODXJ--&-C2H-

100 4 (MW = 426-59)

These materials were synthesized by Bahr and Heppke8 at the

Technical University of Berlin. They have shown9 that the SmA to

Sm C* transition crosses over from first order in C7 to second

order in mixtures via a tricritical point at X=10.5, where X is the

mole percent of 1004. The highest spontaneous polarization in the

Sm C phase is 290 nC/cm 2 for C7 and 100 nC/cm: for the

tricritical mixture. 9 A partial phase diagram is shown in Fig 3-2.

107
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X

Fig. 3-2.

C7+1004

Partial phase diagram for

mixtures with transition

temperatures determined microscopically (o)

and calorimetric transition temperatures ().

X is the mole per cent 1004. The tricritical

point is indicated at Xt,=10.6.

The calorimeter used to study the C7+1004 system was

calorimeter A (without the recent improvements by Dr. H. Yao

and the author). Pure C7 ( the L enantiomer) and five C7+1004
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mixtures with composition X=7.5, 11.1, 14.0, 19.7, and 28.0 were

investigated. The stability of these samples was good; the drift in

transition temperatures observed during successive heating and

cooling runs was in the range of -10 to -40 mK per day.

Furthermore, the calorimetric transition temperatures are in good

agreement with those determined optically. It is necessary to

stress that an ac calorimeter measures heat capacity values but not

the enthalpy. Thus any latent heat at a first-order transition is not

measurable with calorimeter A.

As mentioned previously, the trivial temperature dependence

of the term T/To in C can be neglected and equations (3.5b),

(3.7b), and (3.9b) can be rewritten in the convenient form

ACp =C -Cp =A(Tk- T)- 2 for T<Ttrans (3.14)

where A* = /a3/12cT . The "background" heat capacity C can be

'well represented by C =B+E(T-T 0 ), where B and E are constants.

In ac calorimetry, one identifies phase transitions by

observing singularities in heat capacity data. Although the Landau

model predicts a discontinuous jump in heat capacity at phase

transitions, our experimental C data, like all SmA-SmC data,10

have a sharp peak at the transition. The peak is very asymmetric

(see Fig. 3-3): the high-temperature side is a steep, almost vertical

ramp covering about 100 mK, while the low- temperature side

decays smoothly and extends to about 10 K below the peak. These

features allow us to use the Landau model to describe the data if

we omit the data points in region of the near-vertical ramp.
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318.0 318.5 319.0

T (K)

Fig. 3-3. Detailed view of C data near the

second-order

mixture with

transition for the C7+1004

X=19.6. The vertical dashed

line indicates our choice of TO , and the

horizontal dash-dot line representing C'

was obtained from fitting with Eq. (3.14) C,

data in the SmA phase over a range

several degrees. Data omitted from the

of

fit

are represented by '+' signs. Note the steep

linear ramp (long dashes) over -83 mK, i.e.,

IT-ToI<42 mK, which is typical of the

behavior observed in nonpolar SmA-SmC

data. l
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A. Second-Order Transitions

For second-order transitions, we choose T to be the

midpoint of the very steep, near-linear C variation at the

transition. This choice has been used previously by our group 0

and by Huang'' for SmA-SmC transitions. An example is shown in

Fig. 3-3. Note that Eq. (3.14) does not depend on T explicitly,

therefore fitting ACp data is not sensitive to the choice of T0. The

only constraint for the choice of T is T<Tk. It turns out that our

fitting parameter Tk is always larger than the T value obtained by

the above method. Although the "true" transition temperature may

well be in the region of the rounded peak below the dashed line,

our choice of mean-field transition temperature T is reasonable,

because the mean-field transition temperature T should be higher

than the "true" transition temperature if fluctuation effects (which

Landau theory ignores) play any role. The fits of our experimental

data with Eq.(3.14) are excellent. Examples are given in Fig. 3-3

over a limited temperature range and in Fig. 3-4, which shows

data for the near tricritical mixture. In the fitting, we omitted data

points in the region of the near-vertical ramp around T In

Fig 3-4, the fit with equation (3.14) to the C data for X=11l. is

shown over a 10K temperature range. In this sample, it is not

possible to distinguish whether the transition occurs at T, or just

below Tk, but in any case the system is very close to tricritical.
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No anomalous increase in phase shift or any other feature

associated with a first-order transition was observed for the

X=ll.l sample.

6

5

4
7
_!W
3d

1-
0.

3

2

f

31 2 315 318

T /K

321 324 327

Fig. 3-4. Specific heat capacity in a near

tricritical C7+1004 mixture with X=11 . 1.

The solid curve represents a Landau fit with

Eq. (3.14), and the dashed line represents

the background heat capacity C(T). This is

the best example known of C data near a

mean-field Landau tricritical point.
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B. First-Order Transitions

Recall that we have some qualitative methods to characterize

a first-order transition in ac calorimetry. If the latent heat is large

enough (like most melting transitions), one could observe its

effects on the sample temperature. In the ac mode, the thermal

bath temperature Tb is scanned linearly with time. Recall (Sec.

2.3A) that the average sample temperature is T=Tb +PR-Tb'ex,

outside a first-order transition region, but it will deviate from this

value if there is two-phase coexistence. The sinusoidal sample

temperature oscillation ATa(t) can also be distorted by two-phase

coexistence, if the rate of phase conversion is fast enough

compared to the ac period. (In our experiment, the period of

temperature oscillation is 32 seconds, and one data point requires

measurement over 6 periods of such oscillations.) However, if the

phase conversion and latent heat release is slow enough, its

effects show up as an effective bath temperature as explained in

Chapter 2. When the system releases latent heat (on a cooling run,

like in crystallization), the average sample temperature will be

anormalously higher than the expected value T; if the system

absorbs latent heat (on a heating run, like in melting), the average

sample temperature will be anormalously lower than the expected

value T. When a first-order latent heat is very small, its effects

may not show up in the sample temperature (our machine has

finite resolution). But we can use another useful qualitative

indication of two-phase coexistence that occurs at a first-order
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transition. Data taken in a two-phase coexistence region exhibit

anomalously high C values and an abrupt increase in the phase

shift p between the oscillating heat input and the sample

temperature, as described in Sec. 2.3B. All of these techniques

have been applied to our data analysis

These characteristics of first-order phase coexistence were

clearly observed for X=0 and X=7.5, and the widths of the

coexistence ranges were 150 mK and 120 mK respectively. The C,

and phase shift data for pure C7 is shown in Fig. 3-5. One can

clearly see the four anomalously large C values and the abrupt

increase of the phase shift in the two-phase coexistence region.

For first-order transitions, the T value was taken to be the

midpoint of the two-phase coexistence range; note that Eq. (3.14)

does not depend on T explicitly, therefore the fitting is not

sensitive to the choice of T1. In fitting the data, we omitted any

anomalous points taken in the coexistence region for the two

samples with X=0 and X=7.5. The values of the fitting parameters

A*, B, E, Tk are listed in Table 3-1, together with the T and To

values which are the transition temperatures, and t and A

(ACp(max)) values given by A=ACp(max)=A*(Tk-To) - 1/2 for a second-

order transition and A*(Tk -T)%' for a first-order transition.
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Fig. 3-5. C and phase shift data for pure

C7 close to the SmA-SmC* transition. The

anomalous points (denoted by '+' signs) are

in the two-phase coexistence region. This is

a classic example of ac calorimetry data for

a system undergoing a first-order transition.
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Table 3-1. Least-squares values of the

Landau parameters in equations (3.5)-(3.9)

and (3.14) obtained on fitting SmA-SmC*

heat capacity data for C7+1004 mixtures. X

is the mole percent 1004. The background

quantity C(T) is given by B+E(T-TO). The

units are JK-'g-' for A and B, JK-2g-' for E,

JK-'/ 2 g- ' for A*, and K for Tk and To (T 1 ).

The quantity t-b 2/ac is dimensionless. For

first-order transitions when X< 10, T1

values are given in place of To.

X T(T,) T A A B 103E X 10to

0 (328-064) 328141 0-94 0-52 126 16'0 1.19 282

75 (323986) 323-991 3-37 0-48 120 17-7 124 1.9

111 322198 322200 937 0-42 162 24-1 0-93 02
14-0 321185 321213 221 0-37 151 12-0 104 26
19-7 318-221 318-400 0-60 0-25 156 1-8 088 16-9

280 316-439 316-787 0-30 0-18 1-45 75 0-91 33-0
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C. Scaling Plots

A scaling plot of ACp/A* versus T-Tk is given in Fig. 3-6 for

three of the six samples. The solid line represents the theoretical

Landau value: (Tk-T)- below the transition and zero above. The

data for the other three samples also agree very well with the

Landau curve.

3.4 Discussion

In Chapter 1 we mentioned that the modern theory of phase

transitions is the renormalization group (RG) theory. The lowest

order approximation to the RG theory is the Landau (mean field)

theory of phase transitions. Experimentally, if a certain

macroscopic property of a system exhibits a very asymmetric

singularity at the phase transition like the C data presented in

this chapter, one could argue that the critical fluctuation effects

are small in the experimentally accessible region. In this case, the

fluctuation effects only dominates in an experimentally

inaccessible small region very close to the transition. In our ac

calorimeter, the C data were obtained by applying an ac power to

the sample and measuring its sinusoidal temperature response.
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Fig. 3-6. Landau scaling plots of the excess

heat capacity ACP associated with the SmA-

SmC* transition in three C7+1004 mixtures:

X=0 (+), I 1.1 (o), and 28.0 (). The A and

Tk values are given in Table 3-1.
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Since our machine has a finite temperature resolution, we have set

the amplitude for the sample temperature oscillation to be about 5

mK. Thus, we cannot resolve any data within the region of T+5

mK, where T is the transition temperature. Furthermore, sample

impurity could smear out the transition and the data around T,

could be rounded. It is very common that mixtures show more

rounding than pure compounds. Our C data for the SmA-SmC*

transition exhibit a narrow (about 100 mk), almost vertical ramp

above the transition. This ramp could possibly due to fluctuation

effects, but it is not a good practice to fit the data in such a

narrow region to get any functional form, considering the

temperature resolution and the rounding effects. In contrast to

SmA-SmC and SmA-SmC* data, the C data for smectic-A to

nematic transitions clearly show fluctuation effects (excess Cp

wings on both sides of the transition) in a region as large as

+5 K.'2 In this case, the Landau model is not applicable and RG

theory must be used to fit the data.

The results given in Sec.3.3 unambiguously demonstrate the

Landau behavior of ACp near a SmA SmC* transition. Indeed,

C7+1004 mixtures provide a classic example of such behavior.

We plot b/,~ against X in Fig. 3-7; the linear fit gives for the

tricritical composition Xtc=10.6+0.4, which agrees well with

electro-optic experiments by Bahr and Heppke.9 In their work, tilt

angle and polarization measurements were made on the C7+10.0.4
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system. They identify a first-order transition by observing a

discontinuous jump in the tilt angle or the polarization and

associated hysteresis effects. They compared their results with the

predictions of the Landau theory, since no critical fluctuation

effects were observed. Their experimental data also agree

reasonably well with the Landau model but do not show the mean-

field tricritical behavior as clearly as the present C data.

We can also explain the peculiar features observed

previously by Boerio-Goates et al. 7 as due to inhomogeneities in

those samples. During the work on C7 and 1004 mixtures, I

accidentally prepared an inhomogeneous sample due to inadequate

mixing. The initial specific heat data showed a smeared and

rounded peak at the transition. After thermal "annealing" in the

isotropic phase (where diffusion is rapid), the SmA-SmC*

transition peak sharpened and Landau behavior was recovered. If

there are regions of different composition in a particular mixture

sample, the transition temperature will be different for each

region. A simple model 13 is to assume a Gaussian distribution of

transition temperatures To about an average value T,:

ACp = A (Tk - T)- g(To )dTo (3.15)
T

where go)= - T (3.16)~vhre (T)= 72=;W, 2a - o
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Fig. 3-7. Variation with composition near

X,c of the Landau coefficient ratio b/-a-

derived from Cp fits. The error bars are 95

per cent confidence limits based on the least

squares uncertainty in Tk and our estimated

uncertainty in choosing T( and T.. The

assumed linear dependence of b/V-a on X

yields X,,= 10.6+0.4.
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Since to = b2/ac depends on the concentration X, and the

concentration has a distribution that results in the distribution of

To. we can expand to around To:

to = t o (To - T)+to°=( T O-To )+...

Since the Gaussian distribution (3.16) is strongly peaked around

To and the small number to is a smooth function of X (and thus

To ), we can keep just the first term in this expansion, which has

been justified by numerical calculations. Thus we have carried out

the integration in Eq. (3.15) using

ACp A * (T + To - T)-Y g(T o) dTo (3.17)
T

where changes in A* have been ignored. For a second-order

transition,

t(T ) k (TO )-T T = T k (3.8)3- = - ~~~~~~(3.18)
3 T TO

We have taken A* and To values from Ref. 7 and have used Tk and

a as adjustable parameters. An example of the fitting is shown in

Fig.3-8, where we have Tk =393.96K, A = 0.1226, Tk- To = 0.17K and

= 0.17K. We conclude that except for this heterogeneity

broadening, the results of Ref.7 are fully compatible with our

present experimental results.
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Fig. 3-8. Smearing effects of sample

inhomogeneities in a 2f+3f sample

[experimental data taken from Ref. 7]. The

dashed lines represent the behavior in a

homogeneous sample. The solid curve is

obtained by simulation with Eq. (3.17).

So far all SmA-SmC and SmA-SmC* transitions have been

found to be Landau mean-field like. However, a recent experiment

by Prof. C. C. Huang's group seems to show fluctuation effects in

C, data for the SmA to SmC* transition of a newly synthesized

liquid crystal. 4 The high-temperature side of the C peak is above

the background over a temperature range of about 1 K. It would
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be interesting to find new materials that exhibit a wider

temperature range of critical fluctuations at SmA-SmC*

transitions. If this were possible, it would allow one to determine

the critical exponent a for the heat capacity of this transition.

Even in the context of mean-field SmA to SmC* behavior,

there are interesting predictions of unusual temperature

dependencies for C, 0, and P in cases where strong coupling (PO

and P202 terms in the free energy) occurs.4 Such untraditional

Landau results have been seen in P(T) and (T) data4 but not yet in

Cp(T). A final subtlety of SmA to SmC* transitions is the issue of

the Ginzburg criterion. Elastic constant measurements and sound

attenuation data' 5 show critical fluctuation effects over a range of

O< T-Tc <10 K for the SmA-SmC* transition in the liquid crystal

TBBA, while the C measurements 6 on the same compound show

no sign of fluctuations (in agreement with the results reported in

this chapter). It is proposed 5 that the Ginzburg criterion is

different for different physical properties. The calculations show

that the critical fluctuation region for Cp is much smaller than that

for elastic constants.
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Chapter 4

Antiferroelectric

Liquid Crystals

4.1 Structures and Transitions

Chirality can induce various kinds of helical twist into the

structure of liquid crystals [see Chapters 1, 3 and 5]. The N*

and SmC* phases are the simplest examples of such effects.

Chirality also makes it possible for SmC* to be ferroelectric,

thus the SmC* phase has interesting electro-optical properties

that have wide technical applications. Inspired by the

importance of ferroelectric liquid crystals, organic chemists

have since 1988 synthesized new chiral liquid crystals that

exhibit antiferroelectricity in tilted smectic phase denoted as

SmC . Recall that in the ferroelectric SmC* phase the

polarizations of successive smectic layers form a helical

structure, as shown in Fig. 1-1(f). This helical twist can be

unwound by a small electrical field, resulting a macroscopic

polarization (the polarizations in all layers are parallel to each

other) and the molecules all tilting in the same direction.

However, in an antiferroelectric SmCA phase, there is a
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layer-by-layer alternation in the directions of tilt and

polarization for adjacent layers.2 See Fig. 4-1 for a sketch of

the SmC* structure. Also shown in Fig. 4-1 is the more

complicated structure that occurs in the SmC phase, which may

be described by a Devils's staircase. 3 More information about

these new phases and the related ferrielectric SmC; phase is

given in-Ref. 4.
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Fio. 4-1. Sketches of the SmC* and SmC*

structures.
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The work described in this chapter involves the M.I.T.

part of a collaboration with K. Ema and H. Yao of the Tokyo

Institute of Technology which was carried out before Dr. Yao

came to M.I.T. for a postdoctoral/sabbatical visit. We jointly

explored the thermal behavior of antiferroelectric liquid

crystals. The compound studied at T.I.T. was MHPOBC [4-(1-

methylheptyloxycarbonyl)phenyl-4'-octyloxybiphenyl-4-

carboxylate], and the compound studied at M.I.T. was

MHPOCBC (its octylcarbonylbiphenyl analog). A joint

publication describing results on both compounds is given in

Appendix A. MHPOCBC has the simpler phase sequence since

SmC* and SmC* are the only SmC* phases, whereas MHPOBC

exhibits four SmC* phases-SmC*, SmC;, SmC*, and SmC.

The antiferroelectric liquid crystal MHPOCBC has the

structural formula

C, H,- COO- _ '-COO- -COOC* H(CH )C H3.,

where * indicates the chiral center, and its molecular weight is

587 g. The following sequence of phase transitions and

transition temperatures (in kelvin) have been reported: 3

-353 melt
K
T (SmIA)+

3393

) SmCA-SmCa - SmA - I
i 372.7 378.7 420

346.5
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An overview of the C behavior observed with an ac

calorimeter (calorimeter A before recent improvements) is

shown in Fig. 4-2 for MHPOCBC over the 340-385 K range.

The data below 355 K were obtained on cooling at a scan rate

of -1 K/h = -17 mK/min. The location of the SmC -SmCA

transition temperature (as observed by DSC) and the melting

point on heating are marked by arrows in this figure. Note also

the very sharp spike observed at 346 K, which represents a

region of very rapid freezing as described in Sec. 4.3.

2.2

, 1.8- vA I SmCi SmA
-2 I $ i DSC transition

1.6 K meiting
K t point

1.4 

MHPOCBC

1.2 
340 355 370 385

T (K)

FiO. 4-2. Heat capacity of MHPOCBC.

The sharp spike at 346 K represents

artificial Cp values with associated

anomalous phase shifts p in a region of

rapid freezing. A detailed view of the

SmA-SmC' region enclosed in the box is

shown in Fig. 4-3.
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4.2 SmA-SmC*-SmC* Transitions

A detailed view of C variation in the SmA-SmC -SmC*

region is shown in Fig. 4-3. The MHPOCBC sample was quite

stable, and the SmA-SmC*-SmC* transition temperature drift

rate was only about -20 mK/d. None of the ac calorimeter runs

-heating or cooling-showed any thermal anomaly at the

SmC;-SmC* transition. This is not surprising in view of the

results on the closely related compound MHPOBC. Relaxation

calorimetry on MHPOBC material by Prof. K. Ema's group [see

Appendix A] revealed that the Smectic-C* restructuring

transitions are all first order with narrow coexistence ranges,

small hysteresis (0-0.22K), and very small latent heats

(9-16 J/mole). Furthermore, the integrated SmA-SmC* enthalpy

for MHPOCBC (0.11 J/g= 65 J/mole) is much smaller than that

for MHPOBC (0.66 J/g= 370 J/mole). Thus one might expect

the SmC-SmC* latent heat to be very small, and this is

confirmed by a DSC value of -0.02 J/g= -12 J/mole.

The SmA-SmC* transition in MHPOCBC is clearly mean

field in character, as evidenced by the absence of excess heat

capacity above the transition temperature. These C, data are

well represented by the Landau model [see Chapter 3], in which

the heat capacity is expressed by Eqs. (3.5a,b):
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Cp = Cp

C = C+A k TO
here T T-T

where C=B+E(T-T o)

for T>To (4.1a)

for T<To (4.l b)

is the regular background heat-capacity

variation expected in the absence of a transition. Fits with

Eq. (4.1) are in good agreement with the experimental data as

shown in Fig. 4-3.

.95 

1.93

SmCa

F 1.91
7
By

1.89
(CL

1.87

7.85 t
370 373 376 379 382 385

T (K)

4-3. Detail of Cp variation

SmA - SmC* transition in MHPOCBC,

measured

obtained

in the ac mode. This run was

on heating, but equivalent

results were also observed on cooling.

The solid line represents a Landau model

fit with Eq.(4.1) and the dashed line

shows the variation of Cp(T) below Tc.
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The least-squares values of the fitting parameters are listed in

Table 4-1 together with the integrated enthalpy defined by

5H=f(Cp-Cp)dT. The H value in table is in good agreement

with DSC results obtained by Dr. Kawamura at Showa Shell

Sekiyu (0.10 J/g = 60 J/mole), but the high-resolution ac value

is more accurate. Also for comparison are the Landau

parameters and H value for MHPOBC.

Table 4-1. Landau parameters for fitting

the SmA-SmC' heat capacity data with

Eq. (4.1). The units of A and B are

J K' g'. The values of background slope

of E in units of J K-2 g-' are E=0.0055 for

MHPOBC and E=0.0047 for MHPOCBC.

Also given are integrated enthalpies H in

both J ' and J mol' 1 units and values of

to.

System T, (K) Tk (K) B A 101t: 6H (J/g) 6H (/mol

MHPOBC 395.92 396.170 2.132 0.243 1.92 0.66 370

±0.07 ±40

MHPOCBC 378.50 378.708 1.896 0.042 1.65 0.11 65

___ ±0.01 ±6
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As mentioned above, the various SmC*-SmC* phase

transitions of MHPOBC have been detected in a relaxation-

mode experiment at the Tokyo Institute of Technology [see

Appendix A]. It is found that these transitions are sharp first

order ones with very small latent heats: 12 J/mole for

SmC*--SmC, 16 J/mole for SmC--SmC*, and 9 J/mole for

SmC -SmC*. There are at least two examples of phase

transitions with similarly small latent heats: (A) the restacking

transitions in the plastic crystal B phase of 707,5 and (B) the

lock-in transition in ferroelectric crystals of the Rb2ZnC14

group.6 The former example involves transitions between crystal

phases with different interlayer orderings. 7 In the latter case,

there is a one-dimensional modulation in the displacement of

atoms, and the period of the modulation shows a subtle change

at the transition. Therefore, both examples are quite similar to

the case of SmC* transitions in the sense that, in every case,

there is only a rearrangement in the interlayer relationship at the

phase transition, and the ordering within each layer remains

essentially unchanged. It should also be noted that

measurements with ac calorimetry failed to detect an anomaly at

the above-mentioned lock-in transitions.8

4.3 SmCA to SmIA Transition and Freezing

Several cooling runs in the region of the SmC* -SmIA

transition of MHPOCBC are shown in Fig. 4-4. SmI[, which is a
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tilted hexatic phase with bond orientational order within the

layers, is only seen on cooling since the SmCA -SmI* transition

lies below the melting point at 353.4 K. Above 349 K, the SmCA

phase is long-term metastable with respect to freezing. The

values of C are reproducible on scanning T from 370 K down

to 349 K and then back up to 370 K. Furthermore the C value

at 349.3 K did not change when the sample was held at that

temperature for 67h. On cooling runs made at a constant scan

rate, the data show evidence of slow freezing that begins around

347.5 K and terminates with a very rapid complete freezing at

346 K. Associated with the dramatic C spike at 346.0±0.2 K

shown in Figs. 4-2 and 4-4, there is an abrupt increase in the

phase shift between the oscillating power input and the resulting

sample temperature oscillation. These two features: artificially

high values for the apparent C and a jump in the phase shift p

are clear indications of two-phase coexistence [see Sec. 2.3].

Three of the data sets shown in Fig. 4-4 were obtained at

constant scan rates. Run 1 at -0.5 K/h exhibits a rounded Cp

maximum at around 347.5 K (indicating that slow freezing has

begun to occur at that temperature) and freezing is complete at

346.4 K two hours later. Run 2 at -1 K/h exhibits a rounded

maximum at 347.35 K and a sharp spike at 346.1 K. Run 3 at

-4 K/h is so fast that no rounded C maximum can be resolved

above 346 K, where a sharp spike occurs (off the scale used in
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Fig. 4-4). Unfortunately, this run had to be terminated just

below 346 K and no data are available at lower temperatures for

rapid scans. Five other runs (not shown) with scan rates from

-0.7 to -1.5 K/h confirm the general behavior shown for Run 2.

3 -

x

MHPOCBC

C'

Q) - --

31 45
344 345

Cp (K melting curve)

346 347 348 349 350

T (K)

Fig. 4-4. Variation of C, near the

SmC* - SmI* transition in MHPOCBC.

Below 349 K, the system freezes into

crystal K at rates that are very sensitive

to temperature. The dashed curve

represents the C melting curve obtained

when K is heated. Runs 1-3 were made at

constant scan rates of -0.5, -1.0, and

-4 K/h, respectively. Runs 4 and 5 were

quench-and hold runs with the

temperature held approximately constant

at 348.5-348.6 K and 346.5 K.
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As discussed in Chapter 2, these C data (except the sharp

spike at 346.1 K) represent average values for two coexisting

phases a and : Cp(coex)=XaCp(a)+XCp(d), where X is the

mass fraction of the sample in the a phase and X =1-XE. This

is the rare case when one can measure Cp(coex) because the

phase conversion rate is very slow compared to our experiment

time scale for T> 346.2 K. The fact that there is a sharp Cp

spike at 346.1 K (with anomalous phase shift p) indicates that

the phase conversion rate becomes fast compared to our

experiment time scale at this temperature. We will argue below

that at this temperature the bond orientational order becomes

quite well developed and that it accelerates the crystallization.

The anomalously high C spike values obtained in the ac mode

cannot be used to calculate the latent heat since the phase

conversion rate is not ideally fast and the sinusoidal modulation

of the sample temperature is distorted by phase conversion

effects.

In order to characterize the rate of freezing at constant

temperature and the dependence of this rate on T, two more

runs were carried out where the sample was cooled rapidly to a

temperature below 349 K and then held at approximately

constant temperature until freezing was complete. These

"quench-and-hold" runs are included in Fig. 4-4 and also

shown in Fig. 4-5. Freezing into the crystal K phase required 7h
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at T= 348.5-348.6 K (Run 4) and 2h at T2 _346.5 K (Run 5). From

rapid constant-scan-rate runs, one can estimate that the freezing

occurs in <0.5h at 346 K. Also shown in Figs. 4-4 and 4-5 is a

smooth dashed curve giving the variation of C for crystal K

when it is heated. The data obtained on cooling runs agree very

well with this curve after freezing is complete. Furthermore,

Cp(K) was also measured for several runs on heating after

freezing was complete, and again the agreement (not shown)

with the dashed curve is excellent.

As a confirmation that freezing is occurring during the

waiting period of the quench-and-hold runs and also during

constant-rate scans for temperatures below the value for the

rounded C maximum, we compared the sample temperature

with the bath temperature. When freezing occurs, the release of

latent heat raises the sample temperature slightly above the

expected value, as shown in Fig. 4-6. These results are

completely consistent with the freezing behavior described

above.
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with MHPOCBC data from Runs 2-5.

Note that the sharp C spike at 346 K

corresponds to the position of the

effective transition temperature in 80SI.

(b) Bond-orientational order C6 for 80SI.

The temperature of the pseudo-transition

in this 80SI x-ray sample is low since the

sample was held at high temperatures for

a long time and "To" shifted down; see

Ref. 9.

.12 

.o e- 1MHPOCBC

.08 

-
O .06r-

.04 K SmC

E .02 -i 

02 region
-. 02

340 343 346 349 352 355

T(bath) (K)

Fig. 4-6. Plot of [ T(sample)-T(bath) ] for

MHPOCBC cooling run 2 made at a scan

rate of -1 K/h. The region where

T(sample) is anomalously high

corresponds to the liberation of latent

heat during freezing.
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As shown in Fig. 4-5, MHPOCBC exhibits pretransitional

excess heat capacity on cooling that is associated with the

approach to the SmC* - SmI; transition. However, on

ac-calorimeter time scales, the sample freezes at or above this

transition. Since our calorimeter requires at least 3 min to

measure C at each point, meaningful data cannot be obtained at

scan rates greater than - 4 K/h which is 50- 100 times slower

than typical DSC scans. A comparison between our MHPOCBC

data and C data for racemic 80SI is given in Fig. 4-5. 80SI is

a chiral compound that exhibits stable hexatic SmI* and plastic

crystal CrJ* phases and the racemic analogs SmI and CrJ.9

Furthermore, the integrated enthalpy for the SmC to SmI

transition H(80SI) is 4.2 Jg-', in reasonably agreement with the

DSC estimate of the enthalpy for MHPOCBC (4.5-6.5 J/g).

Figure 4-5(a) shows that the size and the shape of the

MHPOCBC C wing matches that for 80SI quite nicely if one

shifts the origins of the T and C scales without changing the

scale sizes. Furthermore, the sharp spike in the heat capacity of

MHPOCBC at 346 K corresponds to the position of Cp(max) in

80SI, which is the "effective" transition temperature for this

supercritical material. 910 The variation of the long-range bond-

orientational hexatic order parameter C6 for 80SI is shown in

Fig. 4-5(b). Due to the presence of a finite tilt field, there is

long-range bond orientational order above the effective SmC-

141



SmI transition temperature. Let us assume that C6(T) for

MHPOCBC is similar to that shown for 80SI. Thus we would

expect C6 =0.04 at 349 K rising to C6 0.23 at 346.5 K and

C6 = 0.54 at "Tc"=346 K. These values are based on the

hypothesis that in the absence of freezing MHPOCBC would

undergo a continuous supercritical evolution of bond-

orientational order like 80SI and not a discontinuous first-order

SmC; -SmI transition.

We propose that the SmC phase does not freeze easily to

crystal K for moderate ranges of supercooling. However, it

seems reasonable that the bond-orientationally ordered SmIA

phase can freeze much more easily since only translational

lock-in is required. The equilibrium freezing point of

MHPOCBC is 353.4 K. In the range from 349 K down to 346.5

K, the extent of C6 ordering is rather fragmentary, and the

freezing proceeds only gradually. But when T approaches 346

K, C6 increases dramatically and the rate of freezing does so

also.

Although our measurement were not designed to

characterize the freezing kinetics, it is possible to obtain a

preliminary view of this interesting feature. The fraction X(t)

crystallized at a given time t after a quench can be estimated

from Cp(t)=XC(K)+(1-X)Cp(SmC;), where C(K) is given by the

dashed line in Fig. 4-5. For a two-dimensional Avrami model of

142



nucleation and growth," which is appropriate for the freezing of

a smectic liquid crystal, one has X = 1-exp[-A(t)], where

A(t)=fGxGyNoJ(t-:)2e-Vdt. Gx and Gy are linear growth rates, f is

a geometric shape factor, N=i4oe- is the two-dimensional

nucleation rate (number of nuclei formed per unit area per sec)

that decays with time, and is an incubation time. For vt>>l

(long times, associated with slow growth), A(t)=(fv)GGyNot2,

and for vt<<l ( the regime probed when the growth is rapid),

A(t)= (5f3)GxGyN0 t3. In these limits, one can write A(t)=B,t",

which leads to In[ln 1 ]=lnA=nlnt+lnB . Thus a log-log plot

of In(l-X)-1 vs t should yield a limiting slope of n=3 at short

times, curving down to a final limiting slope of n=2 at long

times. Such plots of our data over the most reliable range

0.15<X<0.95 are curved for Run 4 at early times and yield n=2

at later times and are quite straight for Run 5 yielding n=3. This

trend toward the homogeneous nucleation limit for the rapidly

freezing system is just what one would expect.
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Chapter 5

Twisted-Grain-Boundary Phases

In Chiral Liquid Crystals

5.1 Structure of TGBA Phase

We have seen in Chapters 3 and 4 that the chirality of liquid

crystal molecules can induce certain kinds of helical structure in

liquid crystal phases such as N* and SmC*. As the chirality

increases, more complicated liquid crystal phases can be formed.

The blue phases BPI, BPII, and BPIii are examples of structures

that can occur between the isotropic (I)

phases. Experimental data show that BPI

and cholesteric (N*)

has a body-centered

cubic structure, BPI has a simple cubic structure, and BPII is

amorphous but with short-range chiral order.' High-resolution

adiabatic scanning calorimetry by Thoen2 demonstrated that the

I- BPI, transition is weakly first order(like a N-I transition in

achiral compounds), while BPl,-BPIl , BPI,- BP, and BP, -N*

transitions are strongly first order (no pretransitional effects in

Cp) but have very small latent heats.

In order to discuss the effects of chirality on the structures

of smectic liquid crystals, one can make an analogy between a
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superconductor and a SmA liquid crystal, as first done by de

Gennes.3 The SmA phase is a layered phase with the director

normal to the plane of the layers. According to the analogy, the

application of a twist or bend distortion to a SmA liquid crystal is

analogous to the application of a magnetic field to a

superconductor. There are two types of superconductors. For a

type-I material, there is only one phase transition between the

normal metal state and the superconducting (Meissner) state. In

the Meissner state, the magnetic induction is expelled from the

superconductor (B=O up to a critical external field He). However,

for a type-II material, in addition to the normal and Meissner

phases, a more complicated superconducting state can exist even

in the mean-field approximation. The magnetic induction can

penetrate the material in a lattice of flux vortices referred to as

the Abrikosov flux lattice. There is experimental evidence for the

existence of even more complicated flux vortex states in High-Tc

superconductors that may be' described as flux liquids or flux

glasses.4 In Table 5-1 we list detailed information about the

superconductor-liquid crystal analogy5 obtained by comparing

Ginzburg-Landau mean-field theory of superconductivity and

Chen-Lubensky model of liquid crystals. According to this

analogy, the TGBA phase corresponds to the Abrikosov flux lattice

phase and N* corresponds to the normal metal state. Thus the

TGBA-N* transition is analogous to the melting of the Abrikosov

flux lattice to the metallic state. This transition is found to be first
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order in some high-Tc superconductors. 4 By the same analogy,

SmA corresponds to the Meissner phase. Thus TGBA to SmA

transition corresponds to the expulsion of magnetic induction B

from the superconductor. This transition is predicted to be second

order in mean field theory but may be first order due to fluctuation

effects.

There have been very few experimental results on the

thermodynamic properties (heat capacity and latent heats) for the

phase transitions between the vortex flux states in

superconductors. These thermal anomalies have been estimated to

be very small,3 and maybe this is the reason why the phase

transitions between the vortex flux states have eluded calorimetry

experiments. Recall that in order to measure small latent heats,

one needs to use high-resolution adiabatic calorimeter or

relaxation calorimeter [see Chapter 2]. If the superconductor-

liquid crystal analogy is valid, one may gain some insights about

the vortex flux states by studying the phase transitions of the

liquid crystal analog, i.e., the N*, TGBA. and SmA phases.

Recently there have been both theoretical and experimental

advances in the study of twisted smectics. Renn and Lubenskys5

postulated a specific model for the liquid crystal analog of the

type-II Abrikosov flux lattice. This model consists of regularly

spaced grain boundaries of screw dislocations which are parallel

to each other within a given grain boundary but are rotated by a
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Table 5-1. The de Gennes analog between

liquid crystals and type-II superconductors.

Superconductor (SC) Liquid crystal (LC)

x=Cooper pair amplitude i=density wave amplitude

A=vector potential fi=nematic director

B = V xA = magnetic induction ko iVx i=twist

normal metal nematic phase

normal metal in a magnetic field cholesteric (N*) phase

Meissner phase Smectic-A phase

Meissner effect twist expulsion

London penetration depth x twist penetration depth X2

superconducting coherence length 5 smectic correlation length ,

vortex (magnetic flux tube) screw dislocation

Abrikosov flux vortex lattice twist grain boundary TGBA phase

Abrikosov flux vortex liquid twisted line liquid (N = N* with SRO

of screw dislocation lines)

Smectic-C* phase (due to negative

gradient coefficient c) 9' 10
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fixed angle with respect to the screw axis in adjacent grain

boundaries. Thus the grain boundaries separate the sample into

SmA blocks, each of which is rotated about the pitch axis by a

discrete amount relative to adjacent blocks. See Fig. 5-1 for a

sketch of this structure. The resultant phase has been named a

"twist-grain-boundary" (TGBA) phase. On the experimental front,

Goodby et al.6 reported the discovery of a novel SmA-like phase

composed of chiral molecules in which the layers twist along an

axis parallel to the layer planes, thus forming a macroscopic

helical structure. They referred to this phase as smectic-A*. Their

optical, calorimetric (DSC), and x-ray investigations 7 showed that

the TGBA phase of Renn and Lubensky was a feasible model for

this smectic-A* phase.

Fig

gra

cor

arr:

smectic slabs. Sketch

taken from Ref.5.
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Further experimental studies have confirmed the existence of

TGBA phases. A helical structure with a 0.5-gm pitch along a

pitch axis that is parallel to 4.1-nm thick smectic layers has been

found by freeze fracture in the liquid crystal 141M7. 8 The

layers are disrupted by a lattice of screw dislocations oriented

normal to the helical pitch axis. The rotation of smectic blocks

occurs in discrete steps of about 170, the screw dislocations are

15 nm apart and the grain boundaries are 24 nm apart.

More recently, tilted smectic analogs of the TGBA phase

described above have been predicted theoretically and found

experimentally. 9 -11 Instead of twisted blocks of SmA, the structure

of the new' phase involves blocks of SmC. Thus the new phase is

called TGBc Indeed, there may possibly be more than one type of

TGBc phase.

5.2 Experimental Phase Diagram

TGBA phases have been found in a new series of chiral

molecules with a tolan core (called nFBTFO1M7) synthesized at

the Centre de Recherche Paul Pascal (CRPP) in Bordeaux

France.12 The structural formula for this series is

F F

H-(C H)n-0 QCOO- -C Q O-CH-CH,3

CH3

where n=7-18, and the chemical name is 3-fluoro-4[(R) or (S)-l-

methylheptyloxy] 4'-(4"-alkoxy-3"-fluorobenzoyloxy) tolan. The

molecular weight for the n=9 member of the series is 604.78 g.
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The N-TGBA-SmA phase sequence is observed in several

compounds with moderate chain lengths (n=8-10) and the N*-

TGBA-SmC* sequence for longer chain lengths (n=11-14). The

experimental phase diagram determined from x-ray studies, optical

microscopy, and DSC is shown in Fig. 5-2.

T I°C
I-

1051

100

95

90 I . I , , . I 0
7 10 14 18

n

Fig. 5-2. Phase diagram for nFBTFOlM 7

homologs with terminal chain length n. S,

denotes our TGBA phase; SA and S are

SmA and SmC*. Taken from Ref. 12 with

corrections. A detailed phase diagram

corresponding to the dashed rectangle has

been obtained from our C, data;

see Fig. 5-7.
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Although numerous phase transitions occur in nFBTFOM

(we will suppress the subscripts on O and M), the principle

interest is the N*-TGBA and TGBA -SmA ( or TGBA -SmC*)

transitions. The only published evidence concerning these

transitions is the DSC data obtained by the group at CRPP.' 2

Their result for the n=10 homolog is shown in Fig. 5-3 as a typical

example of such DSC data. The scanning rate used was 0.1 K/min,

which is slow for DSC but very fast compared to our ac

calorimeter scan rate of -0.1 K/h. Although DSC is a sensitive

tool for detecting small enthalpy changes, the temperature

resolution is poor. Furthermore, DSC cannot distinguish between

first-order and second-order transitions. In order to study the

thermodynamic behavior at TGBA phase transitions, I have carried

systematic studies on a series of nFBTFOM liquid crystals using

our high-resolution ac calorimeter (calorimeter A) and the new

complex calorimeter (calorimeter B) capable of measuring latent

heat in the relaxation mode.
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5.3 Heat Capacity Data From ac Calorimetry

A. Overall View of Heat Capacity Data

I have made heat capacity measurements on the homologous

nFBTFOM materials for n=9,10,11, and an equimoler mixture of

n=10 and n=l 1. The C data for n=9 and n=10 with the

corresponding phase shift data are shown in Fig. 5-4. These data

were obtained in the ac mode at the standard operation frequency

0o =0.19635 (Tac periods of 32 s). Notice the rich structure of

features in the phase shift data. The sharp spikes are indications

of first-order two-phase coexistence, which has been confirmed by

relaxation calorimetry described later. Also notice the presence of

"steps" in the phase shift data. The C data corresponding to

these steps exhibit very small anomalies. Relaxation calorimetry

has revealed that these steps in (p also indicate two-phase

coexistence, as we will discuss later. An overview of the C data

for all four investigated samples is given in Fig. 5-5.
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B. Discussion Of the Phase Shift (p

The zero-dimensional model discussed in Sec. 2.1 is only the

simplest approximation to a complicated thermal system. Although

this model has been demonstrated to be applicable to our set-up

for measurements of Cp, the phase shift behavior has not been

fully discussed. In the past, an abrupt increase (spike) in the

phase shift p was taken to as a qualitative indication of two-phase

coexistence. This practice was supported empirically by the

appearance of qp spikes at N-I transitions and melting

(crystal K-SmA or K-N) transitions, both of which are well known

to be first order. Such an empirical "rule-of-thumb" already

implied that the anomaly in phase shift is caused by thermal

properties of the sample. It is clear that the silver sample cell,

heater, electrical leads, and GE vanish do not have such

anomalous behavior since they do not have any phase transitions

in the investigated temperature range. We will argue that the

observed p anomalies are caused by changes in the effective

sample thermal conductivity. In the case of TGBA materials, the

phase shift is more sensitive to first-order phase transitions than

the C data itself.

Many authors1 3 have discussed the one-dimensional model

for thermal analysis shown schematically in Fig. 5-6. In ac

calorimetry, a sinusoidal power is input onto one surface of the

sample. The sample temperature is monitored at the opposite
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surface. The system exchanges heat with a thermal bath. Assume

the heat flow can be described by a simple one-dimensional

diffusion equation; then in the steady state the sample temperature

has the same ac component as in the zero-dimensional model.

Under the condition tin, << ext, one obtains 3

1 ( __tintt24 t 6)
tangp P t(5.1)1 int int 1 1+ t-( + )((Oext)2

2 ext 
6 !¶ext 5!

where int is the internal thermal diffusion time of the sample

(depending on its thermal conductivity and geometry), R is the

thermal resistance between the sample cell and the thermal bath

(including exchange gas, electrical leads, etc.), and text ,=RCs is

the time constant for heat exchange between the sample and the

bath. This model predicts that the phase shift p depends not only

on R and C but also on the sample thermal conductivity and the

operating frequency o. At very low frequencies o---O and when

tint <<'ex,, Eq. (5.1) reduces to the result for a zero-dimensional

model Eq. (2.16b): tanp1//RCsys. Since R is a smooth function of

T, tanp is almost inversely proportional to the heat capacity C in

the low-frequency limit.

It should be realized that our experimental setup cannot be

fully described by the zero-dimensional model. Actually, our

experimental data on the phase shift exhibit some features of

the one-dimensional model. The tang data we obtained are indeed
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Fig. 5-6. One-dimensional model for

thermal analysis. The sample is slab-like

with power input on one surface and

thermistor on the other surface monitoring

the temperature at this back surface.

almost inversely proportional to the heat capacity C when the

operating frequency is very low in the ac mode (say 0o/9).

However, Fig. 5-4 clearly shows that the phase shift data have

more complicated structures at the standard frequency o; and this

is presumably due to the behavior of the effective thermal
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conductivity of the sample, which can be quite complicated in a

two-phase coexistence region where many small domains form.

(Note that if one treat the ac calorimetry as a kind of spectroscopy

to measure the dynamic heat capacity, the phase shift should be

reformulated and it has contributions from slow dynamics. See

Chapter 6.)

C. Transition Temperatures

The phase transitions and anomalous features in nFBTFOM

materials observed with high-resolution calorimetry are listed in

Table 5-2A. A phase diagram based on these data is shown in

Fig. 5-7. Detailed analysis of the order of transitions will be given

later. Note that there is a large metastability for the cholesteric

(N*) phase on heating. On cooling, the BP - BPI transition occurs

at temperature T3c followed by the BPI-N* transition at T4c, which

is about 1 K lower than T3 c. On heating, no BP, phase is observed

and N* transforms directly to BPI at T3h, which is -0.4 K higher

than T3c. The rounded C feature at T5 is reproducible on heating

and cooling but it should be noted that there is no thermodynamic

phase transition here, as discussed later.

We also list transition temperatures obtained by the CRPP

group in Table 5-2B. Note that the temperature scales for DSC

data are poor(systematically low by 0.8-1.15 K compared to our

high-resolution ac calorimetry results in Table 5-2A). If the DSC

transition temperature values for a given n are all increased by the

same amount, there is reasonably good agreement with our Cp
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data. Also note that the TGBA range obtained by optical

microscopy agrees well with that given by our Cp measurements,

as shown in Fig. 5-7.

Table 5-2A. Transition Temperatures (in C)

of nFBTFOM (Cp data). The symbol N;

denotes a cholesteric line liquid, which has

short-range TGBA structure. 14 N' and NL

both have the same symmetry, and T5 is not

a transition temperature.
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n=9 n=10 n=10.5 n=11

T1 I-BPIII 108.7 108.4 106.8 105.3

T2 BPII -BPII 108.1 107.8 106.1 104.6

T3h N*-BPII 107.2 107.0 105.5 104.1

T3c BPII-BPI missing 106.6 105.3 103.6

T4c BPI-N* 104.7 105.3 104.0 102.7

(T5) N -NL 103.2 104.1 103.0 101.5

T6 N -TGBA 102.0 102.5 100.8 missing

T7 TGBA-SmA 101.4 101.4 100.0 N/A

T8 TGBA-SmC N/A N/A N/A 97.0

T9 SmA-SmC* N/A 94.2 96.3 N/A
,, ,I , I,, , ,



Table 5-2B. Transition Temperatures (in °C)

of nFBTFOM

from CRPP'2)

(microscopy and DSC

164

data

n=9 n=9 n=10 n=0 n=10 n=11

micro DSC micro DSC micro DSC

T1 107.6 107.6 104.6

T2 106.3 106.8 106.8 107.0 103.7 104.0

T3h 106.2 106.35 103.2

T3c 106.1 106.1 103.5

T4c 105.2

(T5) 102.0 103.2 -100.6

T6 101.8 102.6 100.5

T7 100.8 100.4 101.2 101.1

T8 97.4 96

T9 -96

freeze 59.4 63.4 68
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D. Features in N* Phase

Detailed views of C data in the N*-TGBA-SmA(SmC*)

region are shown in Figs. 5-8a-d. These C data exhibit large

rounded peaks (T5) in the middle of the N* phase. This is the sort

of behavior which usually represents supercritical enthalpy

evolutions not true thermodynamic phase transitions. 15 A recent

paper by Kamien and Lubensky'4 proposes a model of "twisted

line liquids" that are cholesterics with melted entangled screw

dislocation lines(short range order) that may explain this feature.

We denote this chiral line liquid as N. Notice also the very small

Cp features at the N -TGBA and TGBA-SmA transitions to be

discussed below.

E. NL-TGBA Transitions

The N-TGB A transitions (T6 ) show up in the ac C data as

small steps, detailed views of which are shown in Fig.5-9. The

corresponding phase shift data show peaks at the standard

frequency o,0 [see Figs. 5-4(a) and (b)], which indicates two-

phase coexistence. This first-order character has been confirmed

:for n=9 by relaxation Calorimetry to be described in Sec. 5.4.

Note that the C step is most distinct for n=9 and becomes

progressively less distinct for n=10 and 10.5. No step could be

detected in the C data for n=11 but a smeared (p anomaly was

seen at 373.8 K.

166



1.0

0.8

:) 0.6

0-

0.n

0.(

374 376 378 380
T (K)

Fig. 5-8. (a) Excess heat capacity (above

the dashed line in Fig. 5-5) for 9FBTFOM.

Transitions are marked by arrows. The total

integrated enthalpy SH=fACpdT is 1.91 J/g.
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Fig. 5-8. (c) ACp for equimolar mixture of

10FBTFOM and 11FBTFOM. H= 1.05 J/g.
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5-9. Detail of Cp variation
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(T6 ) and TGBA-SmA (T7 ) transitions.

171

-
(9

2.4

n= 9
heat T 

.lIr

T7.

:

-. ;
5_

2.5

24

23

22
374

T (K)
375

Fig. for

. . . * . .

2.6 2.6 2.7

4

2 I I3



F. TGBA-SmA Transitions

The TGBA-SmA transitions give rise to very small indistinct

features in the ac C data (see Fig. 5-9 at the positions marked

T7), but the corresponding phase shifts exhibit clear steps and

significant hysteresis. The positions of the q step differed on

heating and cooling runs by 0.25 K for n=10. In the case of n=11,

a badly smeared step-like p variation occurred in the vicinity of

T6 to T7 but this should be associated with the N*-TGBA transition

since microscopic textures show no SmA phase.12 The first-order

character of this transition has been confirmed by relaxation

calorimetry.

G. SmA-SmC* and TGBA -SmC* Transitions

The SmA-SmC* and TGBA -SmC* transitions are shown in

Fig. 5-10. The C data for the SmA-SmC* transitions show Landau

mean-field behavior as explained for achiral SmA-SmC and chiral

SmA-SmC* transitions in Chapter 3. No phase shift anomaly has

been observed for these transitions, indicating that they are

second-order transitions. No SmA-SmC* transition was found in

the n=9 material, which is consistent with the microscopic texture

and DSC results obtained at CRPP.' 2 The C data of the SmA-

SmC* transitions can be well described by the Landau model [see

Chapter 3]. The fitting parameters obtained with Eq. (3.14) are

given in Table 5-3, and the least-squares best fit lines are shown

in Fig. 5-10. The TGBA-SmC* transition for n=l11 cannot be
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described well by the same model since the C data in this case

exhibit a small anomaly below the transition (broad "hump" at

-369 K). This small feature may be due to neglected couplings

between the polarization P and the tilt angle 0.16

Table 5-3. Fitting parameters for

representing SmA-SmC* transitions with

Eq. (3.14) (or Eq. (3.5)). The units are

J K-' g-1 for A and B, J K 2 g l for E,

J K-05 g-' for A*, K for To and Tk .
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B E A A* To Tk 103 to

n=10 2.039 0.0134 0.031 0.029 367.15 368.06 7.44

n=10.5 2.043 0.0466 0.072 0.083 369.30 370.64 10.9
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5-10. Cp data for SmA-SmC*

transitions in nFBTFOM (n=10 and 10.5)

and also for the TGBA -SmC* transition in

1 1FBTFOM. The lines represent Landau

fits, where C is given by the dashed linefits, where Cp

below To. As can be seen, no good Landau

fit was possible for 11FBTFOM.
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5.4 Relaxation Calorimetry Data

A. NL-TGBA and TGBA-SmA Transitions and

Feature at T5

We have stressed that ac calorimetry cannot measure

latent heats. In order to confirm the first-order character for the

N* -TGB and TGBA-SmA transitions we have carried out

measurements on the n=9 material with our relaxation

calorimeter (calorimeter B). An effective heat capacity Ceff was

introduced in Chapter 2, and it will be used here to calculate the

latent heats. This effective heat capacity in the T5-T7 transition

region is plotted in Fig. 5-11. The C data obtained with

calorimeter B near the N*-TGBA and TGBA-SmA transitions

show hysteresis on heating and cooling runs. A comparable

hysteresis in the tanp anomalies was observed in ac calorimetry

data on n=10 (see Fig. 5-4b). This hysteresis is one indication

these transitions are first order. Furthermore, the Cff data in the

transition region are anomalously higher than the C value

obtained in the ac mode indicating that there are latent heat

effects. Recall that outside a two-phase coexistence region, the

Cf values are identical to the system heat capacity Cs. We

have compared the Cff data with ac mode data obtained at

frequency co/9 in Fig.5-1 1.
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Fig. 5-11. Effective heat capacity of

9FBTFOM in the T5-T7 transition region.

Data points were obtained with the new

relaxation calorimeter operating in its

ramped power (nonadiabatic scanning)

mode. The solid line represents ac

calorimetry data obtained at o0/9.
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In the rounded region at T5 the Ceff (relaxation) curve is

identical to the C (ac) data, indicating that there are no latent

heat effects in this rounded region. We have compared (not

shown here) ac mode C data obtained at oo, 0o/3, and 0o/9;

no differences could be found. This indicates that there are no

finite frequency rounding effects. The rounding of this T5

feature cannot be due to impurities, since other transitions of

the same sample show very sharp peaks. Thus the data near T5

shown in Fig. 5-11 represent true static C values. Since there

is no latent heat and no singularity in C, we conclude that the

rounded feature at T5 does not correspond to a thermodynamic

phase transition. In contrast to that, the N -TGBA (T6 ) and

TGBA-SmA (T7) transitions have finite latent heats and are first

order.

Latent heats for the TGBA-N* and TGBA-SmA transitions

can be calculated by Eq. (2..8) or Eq. (2.10). In Fig. 5-12, the

line is our choice for the C, and the '+' signs represent the

Ceff values (in units of J/K). Latent heats correspond to the

shaded areas. The latent heat for the N -TGBA transition is

8.2 mJ/g = 4.95 J/mole, and that for TGBA-SmA transition is

40.1 mJ/g = 24.2 J/mole. We must stress that these are very

small latent heats.
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Fig. 5-12. Calculation of latent heats

the N -TGBA and TGBA-SmA transitions

in 9FBTFOM.
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As mentioned in Chapter 4, the various SmC*-SmC* phase

transitions of MHPOBC have been detected with relaxation

calorimetry. It is found that these are sharp first order

transitions with very small latent heats: 12 J/mole = 21.5 mJ/g

for SmC*-SmC*, 16 J/mole = 28.5 mJ/g for SmC-SmC*, and

9 J/mole = 16 mJ/g for SmCA-SmC;. Another example of phase

transitions with similarly small latent heats are the restacking

transitions in the plastic crystal B phase of 70.7 with latent

heats 5 to -15 J/mole = 12.5 to -38 mJ/g.17

The latent heats for the N -TGBA transition is 4.95 J/mole

=8.2 mJ/g and that for TGBA-SmA transition is 24.2 J/mole

=40.1 mJ/g. These are among the smallest latent heats ever

detected by high-resolution calorimetry in a small sample like

ours (32 mg compared to more than 10 g usually used in

adiabatic calorimetry).

The author believes that when comparing the resolution of

high-resolution calorimeters, one should compare the smallest

HEAT that can be detected by the machines, not the latent heats

in units of J/mole or J/g. By investigating the data obtained

from the relaxation mode, we believe that we have achieved

ultra-high resolution thermal analysis with the new Calorimeter

B in its nonadiabatic scanning mode operation.
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B. BPII-BPIII Transition

The BPII-BPIII transition for the n=9 material was also

investigated with both the ac mode and the relaxation mode. It

is found to be first order as expected from J. Thoen's work on

blue phase transitions.2 In Fig. 5-13 we display the analysis of

0.31

,),

0.30

n o0

381.1 381.2 381.3 38 1.4

T (K)

Fig. 5-13. Calculation of the latent heat

for the BPII-BPII transition in 9FBTFOM.
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the C data and the calculation of the latent heat L= 19.9 mJ/g

= 12.0 J/mole. This can be compared to Thoen's value of L= 3.6

mJ/g = 1.9 + 0.5 J/mole for the same transition in cholesteryl

nonanoate (CN).

5.5 Discussion

We have demonstrated using high-resolution calorimetry

that the N -TGBA and TGBA-SmA transitions are first-order and

have obtained the latent heats for these transitions. We also

demonstrated that above the N -TGBA transition temperature

and inside the range of the N* phase, there is a rounded Cp

feature (Ts5) indicating large enthalpy changes but no

thermodynamic phase transition.

Our experimental results on the TGB materials may

provide useful information about the corresponding phase

transitions in superconductors. In Table 5-1 we listed detailed

information about the superconductor-liquid crystal analogy. 5

According to this analogy, the TGBA phase corresponds to the

Abrikosov flux vortex lattice phase. Thus the N -TGBA

transition at T6 is analogous to the melting of the Abrikosov

lattice, which is found to be first order in some high-Tc

superconductors. 4 The experimental evidence for this first-order

character in superconductors is hysteresis in the transport

properties at finite fields. So far it seems there are no

thermodynamic measurements on this transition in type II
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superconductors although theory predicts first order.' 8 If we

make the mapping between smectic liquid crystals and

superconductors, our thermodynamic measurements on these

TGBA materials confirms that the melting of an Abrikosov

vortex lattice is a first-order transition. The region between T6

and T5 (where the large rounded C feature has its maximum )

for our chiral liquid crystal samples, denoted by N, can be

mapped onto a vortex liquid state in superconductors. The

TGBA-SmA transition corresponds to the transition of the

Abrikosov vortex lattice into the Meissner phase, and our

results indicate clearly that it is a first-order transition. See

Fig. 5-14 for a sketch of the universal phase diagram for type-II

superconductors and chiral liquid crystal paths for n=9,10,11

materials.
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Chapter 6

Suggestions For Future Work
Calorimeter A and Calorimeter B described

have been demonstrated to be high-resolution

However, further improvements could be made.

in Chapter 2

calorimeters.

6.1 Nonadiabatic Scanning Calorimetry

One possibility is to carry out continuous scanning over a

wide range of temperature in the linear power mode, in the same

style as adiabatic scanning calorimetry and DSC. This will make

the measurements more efficient and will not lose any information

during the "hold" period in our current method. It is obvious that

one can not measure the thermal resistance R in this continuous

mode, but R can be measured in a separate run with the current

method. One should also try to increase the thermal resistance.

This will keep the heat leak small and reduce the uncertainties in

Cp data from relaxation mode measurements.

6.2 Calorimetry Spectroscopy

The heat capacity is usually

However, some researchers have

studied "dynamic heat capacity"

regarded as a static property.

generalized the concepts and

or "frequency dependent heat
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capacity". The ac calorimetry described in Chapter 6 can be used

for this kind of calorimetry spectroscopy.'

Actually, the ac calorimetry data obtained outside the two-

phase coexistence region can only be interpreted as the static heat

capacity if the operation frequency is low enough (data obtained

with relaxation mode can better represent the static heat

capacity. ). By changing the operating frequency in ac

calorimetry, one can analyze the real part as well as the imaginary

part of the complex heat capacity Cp(o).'
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