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ABSTRACT

This thesis describes the cloning and characterization of the Drosophila
maternal-effect gene nanos. nanos encodes a posterior determinant which is
localized to the posterior pole of the early embryo to specify abdomen.
Localization of nanos mRNA to the posterior of the developing oocyte
requires the function of eight other maternal-effect genes of the posterior
group. The abdominal mutant phenotype of these eight genes can be rescued
by injection of in vitro transcribed nanos RNA into the prospective abdomen.
This shows that these genes are required for the localization or translation of
the nanos mRNA, but are dispensible for the function of nanos protein. The
abdominal phenotype of embryos derived from mothers mutant for another
posterior group gene, pumilio, cannot be rescued by the injection of nanos
RNA. pumilio, therefore, is absolutely required for the function of nanos in
specifying abdomen. nanos mRNA is translated in the early embryo to form
a protein gradient emanating from the posterior pole. This gradient specifies
the formation of a complementary gradient of the abdominal repressor
protein hunchback. Polysome fractionation analysis of wild-type and mutant
embryo extracts suggests that nanos acts to suppress the initiation of
translation of the hunchback mRNA. Preliminary structural analysis of the
nanos open reading frame shows that the C-terminal of the nanos
polypeptide is essential to its function. This thesis also describes the transient
expression of nanos protein early in oogenesis. This expression may account
for the oogenesis defect associated with some nanos alleles.

Thesis Supervisor: Dr. Ruth Lehmann

Title: Professor of Biology
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A primary event in the development of an embryo is specification of
the body axes (reviewed in Gurdon, 1992)). In the fruitfly Drosophila

melanogaster, embryonic axis specification depends largely on maternally
provided factors. The prominent role of maternal factors in Drosophila is

probably related to the relatively short period in which a fertilized egg
develops into a free-living 1st instar larvae - just 24 hours at 25 C. A large

scale screen for maternal-effect mutations affecting pattern formation
identified a large number of genes, which fall into four classes, affecting either
dorsal/ventral, anterior, posterior, or terminal structures. These gene classes
act largely independently of one another, that is, mutations in one gene do
not affect structures specified by another gene class. Extensive genetic and
molecular studies have led to a detailed understanding of the function of

each of the genes within each group (reviewed in St. Johnston and Niisslein-
Volhard, 1992). These studies have shown that within each group, one gene
acts as a localized signal to specify axis formation. For the dorsal/ventral
group the gene dorsal is active only on the ventral side of the embryo.
Nuclear transport of the dorsal protein is regulated such that it is found in a
nuclear gradient with highest levels on the ventral side (Roth et al., 1989;
Rushlow et al., 1989; Steward, 1989). For the anterior class, bicoid encodes an

RNA which is tightly localized the the anterior pole of embryos (Berleth et al.,

1988; Frigerio et al., 1986). Bicoid protein acts as a morphogen transcription

factor to direct the formation of head and thoracic structures (Driever and

Niisslein-Volhard, 1988; Driever and Niisslein-Volhard, 1989; Struhl et al.,

1989). For the terminal class, the torso transmembrane receptor tyrosine
kinase is selectively activated at the embryonic termini to specify formation of
the acron and telson (Sprenger and Niisslein-Volhard, 1992; Sprenger et al.,
1989). For the posterior group, the gene nanos encodes the localized signal,
and is the topic of this thesis.

The posterior class comprises 12 genes, cappuccino, spire, staufen,

oskar, vasa, valois, tudor, mago nashi, pipsqueak, orb, nanos, and pumilio
(Boswell and Mahowald, 1985; Boswell et al., 1991; Lehmann and Nisslein-
Volhard, 1986; Lehmann and Niisslein-Volhard, 1987a; Lehmann and
Niisslein-Volhard, 1991; Manseau and Schiipbach, 1989; Schiipbach and
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Wieschaus, 1986a; Siegel et al., 1993; Lantz et al., 1994; Christerson and

McKearin, 1994; for a review see St. Johnston, 1993). Mothers mutant for any

of these genes produce embryos which lack abdominal segments. For ten of
these genes (cappuccino, spire, staufen, oskar, vasa, valois, tudor, mago nashi,

pipsqueak, orb), these embryos have a second phenotype - they lack

poleplasm, a specialized cytoplasm from which the germ cell precursors

(called pole cells in Drosophila) originate. The poleplasm is assembled during
oogenesis at the posterior pole of the growing oocyte. Four of the cloned

"poleplasm" genes encode gene products which are indeed localized to or
enriched in the poleplasm (Bardsley et al., 1993; Ephrussi et al., 1991; Hay et

al., 1988; Kim-Ha et al., 1991; Lasko and Ashburner, 1988; St. Johnston et al.,

1991). In particular, oskar appears to encode a germ cell determinant, since

localization of oskar to the anterior is sufficient to induce pole cell formation

(Ephrussi and Lehmann, 1992), and overexpression results in the apparent

formation of germ cells ectopically in the embryo (Smith et al., 1992).

Unlike the other posterior group genes, nanos and pumilio are specific
to the process of abdominal segmentation, and mutant embryos form normal

pole cells (Lehmann and Niisslein-Volhard, 1987a; Lehmann and Niisslein-
Volhard, 1991). However, whereas the pumilio protein is distributed

throughout the early embryo (Barker et al., 1992; Macdonald, 1992), nanos

RNA is strictly localized to the posterior pole (Wang and Lehmann, 1991),
and nanos protein forms a posterior concentration gradient (Barker et al.,
1992; Smith et al., 1992). In addition, misexpression of nanos at the anterior of
the embryo induces the formation of a second abdomen in mirror image to

the first (Gavis and Lehmann, 1992). These results imply that nanos acts as a

localized determinant of abdomen. nanos and pumilio act jointly to specify
abdomen by repressing the translation of the maternal hunchback mRNA
(Barker et al., 1992). Hunchback acts as a transcriptional repressor of the

zygotic abdominal gap genes knirps and giant (Kraut and Levine, 1991a; Rothe

et al., 1989). In the presence of the nanos/pumilio system, hunchback

expression is repressed in the prospective abdomen, allowing expression of
abdominal gap genes, and subsequent specification of abdominal segments.

The specification of abdomen by nanos includes aspects of RNA
localization and translational control, which form recurring themes in the
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maternal control of pattern formation. The remainder of this chapter will

therefore focus on these two processes and their role in specifying
developmental fate.

A. Localized RNAs and pattern formation

Axis specification in a growing oocyte requires some mechanism for
regional specification. In many instances, this mechanism is the localization

of mRNAs encoding developmental or cell fate regulators. Recent studies in

both Drosophila and Xenopus have led to the identification and analysis of

several localized mRNA species.

1. Localized RNAs in Drosophila

A large number of transcripts are now known to be localized in the
Drosophila oocyte or early embryo (reviewed in Ding and Lipshitz, 1993).
Many of these transcripts have been identified in the course of genetic screens

for pattern formation genes. The known localized transcripts may be

subdivided into classes according to the timing of their translation. The first

class, which includes oskar, gurken, and orb, comprises transcripts that are
localized and then translated during oogenesis (for a description of oogenesis,

see Chapter 4). The oskar RNA is localized to the oocyte posterior pole at

stage 9 of oogenesis (Ephrussi et al., 1991; Kim-Ha et al., 1991) (stages according

to King, 1970). Oskar protein is translated at stage 9 of oogenesis (C. Rongo, E.

Gavis, R. Lehmann, submitted), and acts as a poleplasm organizer which is

both necessary and sufficient for the specification of the poleplasm (Ephrussi
and Lehmann, 1992; Lehmann and Niisslein-Volhard, 1986). The gurken

RNA is localized to the dorsal anterior corner of the developing oocyte, also
at stage 9 (Neuman-Silberberg and Schtipbach, 1993). Gurken encodes a
protein of the TGF-alpha family which signals to adjacent follicle cells to

specify dorsal fate and establish the dorsal-ventral axis. Localization of the orb
gene product follows a more complex pattern - at stage 7 both the RNA and
the protein are found in the cortical region at the posterior end of the oocyte,
but at stages 8-10 the gene products are found at the anterior margin of the
oocyte, enriched at the dorsal and anterior cortical regions (Lantz et al., 1992;
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Lantz et al., 1994; Christerson and McKearin, 1994). The orb open reading
frame contains two copies of the RNA recognition motif sequence (RRM)
(Lantz et al., 1992) , and orb protein is postulated to play a role in localizing
RNAs to both the posterior and anterior margins of the growing oocyte.

The second class of transcripts are localized during oogenesis, but not
translated until egg activation. This class includes the positional determinant

genes nanos and bicoid. nanos RNA is localized to the posterior pole of the
oocyte at stage 10 (Wang and Lehmann, 1991), whereas bicoid RNA is
localized at the anterior margin of the growing oocyte (Berleth et al., 1988), but
the respective proteins are not expressed until after egg activation (Wang et
al., 1994; Driever and Niisslein-Volhard, 1988). The RNA product of the gene
germ cell-less (gcl) is also localized to the posterior poleplasm of embryos, and

the gcl protein is necessary but not sufficient for germ cell formation (Jongens
et al., 1994; Jongens et al., 1992). The final class of localized transcripts

includes the cyclin B RNA, which is localized late in oogenesis to the

posterior poleplasm (Dalby and Glover, 1992; Whitfield et al., 1989). Cyclin B
protein is not translated until 9 hours after pole cell formation, when its
function is presumably required to drive the mitotic divisions of the
proliferating pole cells (Dalby and Glover, 1993; Raff et al., 1990).

2. Localized RNAs in Xenopus

The Xenopus oocyte is another attractive system for studying localized

transcripts, due to its large size and the ease in obtaining large numbers of
oocytes for analysis. Successful experimental approaches to identifying
localized transcripts include the manual dissection of oocytes into vegetal and
animal halves, as well as the isolation of cytoskeletal-associated mRNAs
(Mosquera et al., 1993; Regabliatti et al., 1985). These localized transcripts are
found in one of three compartments of the Xenopus oocyte. The transcripts
Anl, An2, and An3 are enriched in the cytoplasm of the animal hemisphere
(Gururajan et al., 1991; Regabliatti et al., 1985; Weeks and Melton, 1987). The
transcripts Xcat-2, Xcat-3, and Xlsirt are cortically localized with the germ
plasm to the vegetal pole (Elinson et al., 1993; Kloc et al., 1993; Mosquera et al.,
1993). Finally, the Vgl and Xwntll transcripts also localized to the vegetal
cortex, but in a somewhat broader region (Ku and Melton, 1993; Melton, 1987).
However, in contrast to the situation in Drosophila, the function of these
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localized RNAs in pattern formation remains unclear. Fortunately, in
several cases sequence homologies can provide a basis for speculation as to
function. Vgl and Xwntll are related to growth factors of the TGF-tg and Wnt
families, respectively (Ku and Melton, 1993; Weeks and Melton, 1987). Forced
expression of a secreted form of Vgl which contains the TGF-tf sequences is
able to induce mesoderm, as well as rescue dorsal-ventral axis formation in
UV-irradiated embryos (Dale et al., 1993; Thomsen and Melton, 1993),
suggesting that localized processing of Vgl may play a role in mesoderm
induction. Xcat-2 and Xcat-3 are both related to Drosophila genes which are
localized as proteins to the poleplasm. Xcat-2 has homology to the C-terminal
region of nanos (Mosquera et al., 1993). Xcat-3 encodes a DEAD box protein
related to vasa (M.L. King, personal communication, cited in St Johnston,
1995). Combined with the recent finding that Xcat-2 and Xcat-3 RNAs
segregate with the germplasm into a subset of vegetal blastomeres that

eventually give rise to the primordial germ cells (Forristall et al., 1995), these
results suggest that these RNAs may encode Xenopus germ line
determinants.

3. Localization signals and trans-acting factors

In all cases studied thus far, sequences specifying RNA localization
map to the 3' untranslated region (3'UTR) of the transcript. More detailed
studies have invariably shown that the "localization signal" entails a
relatively large sequence, on the order of a few hundred nucleotides or so.
This suggests that localization signals may be complex secondary structures,
containing multiple protein binding sites. One of the best studied examples is
the bicoid RNA, for which much is known about the genes and cis-acting
sequences required for localization. Localization of bicoid to the anterior pole
of the early embryo is a stepwise process requiring the functions of the
anterior group genes exuperantia (exu), swallow, and staufen (St Johnston et
al., 1989). Early in oogenesis, bicoid RNA is transiently localized to the apical
region of the nurse cells, then transported to the anterior margin of the oocyte
in an exu-dependent process (Marcey et al., 1991). Anchoring of the RNA in
the cortex depends on swallow activity (Stephenson et al., 1988). The RNA is
released from the cortex at egg activation, and anchoring of the RNA in the
anterior cytoplasm requires the function of the double-stranded RNA binding
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protein staufen (St. Johnston et al., 1992). The 625 nucleotide (nt) bicoid

localization signal contains a 53 nt element required for the early, exu-

dependent steps in localization (Macdonald et al., 1993; Macdonald and
Struhl, 1988). Two copies of this BLE1 element inserted into a heterologous

transcript direct early localization in the oocyte, but not later anchoring of the

RNA to the cortex. Finally, RNA injection experiments have defined a 400 nt

region of the bicoid 3'UTR distinct from the localization signal, but including

BLE1, which associates with staufen protein in embryos (Ferrandon et al.,

1994).

Similarly, genetic and molecular analyses have shown that localization

of oskar RNA to the posterior pole of the oocyte and early embryo occurs via a

stepwise process. Early enrichment in the oocyte requires the functions of

Bicaudal-D and egalitarian (Ephrussi et al., 1991; Kim-Ha et al., 1991; Ran et

al., 1994) . At stage 7, the RNA is transiently localized to the anterior of the

oocyte in a cappuccino and spire-dependent process. Transport of oskar RNA

to the posterior pole requires the functions of staufen and mago nashi

(Newmark and Boswell, 1994). Maintainance of oskar localization at the

posterior requires the function of oskar protein itself (Ephrussi et al., 1991;

Kim-Ha et al., 1991; C. Rongo, E. Gavis, R. Lehmann, submitted). Oskar

protein directs the localization of the nanos RNA, whose localization also

requires the downstream function of vasa and tudor (Wang et al., 1994).

Mapping of sequence elements for oskar and nanos RNA localization again

suggest redundant elements distributed throughout the 3'UTR (Kim-Ha et al.,

1993; E. Gavis, personal communication). Similarly, the 3'UTR of the orb

RNA contains redundant localization elements, although a 280 nt region of

the 3'UTR is sufficient for proper localization (Lantz and Schedl, 1994).

4. Conclusions

A few localized transcripts have been studied in detail to date, and

features of the RNA elements required for their localization are beginning to

emerge. Namely, these localization elements are often redundant and
encompass hundreds of nucleotides, suggesting that a complex secondary
structure and/or multiple RNA binding proteins are involved. Genetic
analyses in Drosophila have identified numerous genes required for
localization of particular RNAs, and two in particular, staufen and orb, may
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encode RNA binding proteins. Elucidation of the molecular mechanisms

behind the function of the remaining localization genes, as well as the link

between these genes and the cytoskeleton, should provide many additional

years of fruitful study.

An interesting additional note is that localized RNAs are likely to be

translationally regulated. In order to restrict a gene product to a particular

location, it seems logical that protein synthesis would occur only when the

transcript is properly localized. In fact, the nanos RNA is under such

translational control, and the RNA sequences required for this control have

been mapped to the 3'UTR (Gavis and Lehmann, 1994). The oskar 3'UTR

also contains sequence elements that repress translation of the unlocalized

RNA in the developing oocyte, and recently a protein has been identified in

oocyte extracts which binds to this sequence element (Kim-Ha et al., 1995).

Clearly, RNA localization is linked to a second issue in the maternal control

of development, translational control.

B. Translational regulation in development

The very first stages of development after fertilization take place in the

absence of transcription - the early embryo executes its developmental

program using only maternally provided gene products. The translational

control of maternal mRNAs is the primary mode of gene regulation during

these stages. The remainder of this review will focus on the role of

translational regulation in developmental control.

1. Generalized translational control

a. Translational masking

A classically studied form of translational control is masking (Spirin,

1966). The term masking describes the phenomenon whereby more than 80%

of the maternal mRNA synthesized in vivo is translationally silent when
tested in an in vitro translation system (Davidson, 1986), yet after phenol

extraction, these same RNAs are translationally active in oocytes (Richter,
1988; Richter and Smith, 1984). Purified mRNAs can be partially
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translationally suppressed by the addition of proteins isolated from storage

ribonucleoprotein particles (Kick et al., 1987; Richter and Smith, 1984). In

Xenopus, the two major protein components of these particles are the closely
related proteins mRNP3 and FRGY2 (Darnborough and Ford, 1981), which
belong to the family of nucleic-acid binding proteins which bind the Y box, a

sequence element found in the promoters of genes which are specifically
active in oocytes (Murray et al., 1992; Tafuri and Wolffe, 1990; Tafuri and

Wolffe, 1993). Misexpression of FRGY2 in somatic cells results in an increase

in mRNA accumulation from Y-box containing promoters, as well as a

general decrease in translation of all transcripts examined (Ranjan et al.,
1993). A recent paper (Bouvet and Wolffe, 1994) has shown that in vivo

synthesized transcript is translated much less efficiently than in vitro

synthesized transcript when tested by injection into Xenopus oocytes. In
addition, the translational efficiency of in vivo synthesized RNA was further
decreased by overexpression of FRGY2 in oocytes, but the translation of in
vitro synthesized RNA was unaffected. These results suggest that FGRY2 acts

to suppress translation of a wide variety of messages by a mechanism which is
closely coupled to transcription. FGRY2 and associated proteins may
therefore mediate transcription-dependent translational repression in a
fashion analagous to the DNA-replication dependent transcriptional

repression mediated by histone proteins.

b. Polyadenylation control

The translation of a group of maternal mRNAs is regulated by

cytoplasmic poly(A) elongation. These transcripts exist in a deadenylated (or
under-adenylated) state in the cytoplasm and as such are translationally

dormant. Upon oocyte maturation, the transcripts are readenylated, and

become actively translated. One of the first demonstrations that

polyadenylation state regulates translation and that this regulation requires
specific sequences in the 3'UTR came from studies of the tissue plasminogen
activator (tPA) RNA in the mouse oocyte (Strickland et al., 1988; Vassalli,
1989). Translation of tPA RNA is activated during meiotic maturation, and
this activation occurs via a polyadenylation which is specified by two
sequence determinants in the 3'UTR - an AU-rich adenylation control
element (ACE), and the hexanucleotide AAUAAA polyadenylation signal
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(Huarte et al., 1992). In addition, the ACE specifies the initial cytoplasmic

deadenylation event which inactivates the tPA transcript, indicating that

adenylation control is a reversible event.

A more extensive understanding of the sequence requirements,

dynamics, and transacting factors involved in regulated polyadenylation has

come from studies in the Xenopus oocyte model system. Polyadenylation

control in the Xenopus oocyte requires a uridine-rich sequence similar to ACE
known as the cytoplasmic polyadenylation element (CPE), as well as the

AAUAAA signal (Fox et al., 1989; McGrew et al., 1989). The spacing between

the CPE and the polyadenylation signal determines the timing and extent of

polyadenylation after oocyte maturation of both the C12 and C11 transcripts of
Xenopus (Simon and Richter, 1994; Simon et al., 1992). A recent comparison

of polyadenylation control elements in the 3'UTRs of cell cycle regulators

confirms that element spacing contributes to timing and extent of adenylation
(Sheets et al., 1994). The differential translational regulation of the cyclin and
c-mos mRNAs conferred by the regulatory sequences in their 3'UTRs may

represent an important mechanism for cell cycle control in the maturing

oocyte. In summary, these studies show that for a given transcript,

translation state is generally correlated with the degree of polyadenylation.

However, a given length of poly(A) will result in different degrees of

translation for different transcripts, indicating that other, less well

characterized sequence elements play a role in specifying translational state.

Several transacting factors which interact specifically with the CPE
have been identified. Two proteins from mature eggs have been shown to
interact specifically with the CPEs of the Xenopus C12 and C11 RNAs (Simon

and Richter, 1994), although the function of these proteins remains to be

defined. Another CPE-binding protein, this one isolated by virtue of its

interaction with the B4 RNA, was shown to be phosphorylated by p34/cdc2

kinase, indicating a possible link between reactivation of the cell cycle at egg

maturation and polyadenylation control (Paris et al., 1991). Recently, RNA
affinity chromatography has been used to isolate this CPE-binding protein

(CPEB), which is required for polyadenylation in egg extracts (Hake and
Richter, 1994). Interestingly enough, this protein contains significant

homology (62% identity) to the Drosophila orb protein, which has been
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shown to play a role in RNA localization during oogenesis (Christerson and

McKearin, 1994; Lantz et al., 1994). This homology in the RNA recognition

motif region suggests that orb may itself bind to CPE sequences. The diversity
of identified CPE-binding proteins is perhaps not surprising, since different

CPE elements were used for each study, and the timing and extent of

adenylation is known to vary among different messages, suggesting message-

specific elements (see above). In vitro studies of CPE-dependent cytoplasmic

polyadenylation should yield a better understanding of the specific factors
required. Preliminary results suggest that the enzymes which catalyze

nuclear polyadenylation can participate in CPE-dependent polyadenylation in
vitro (Bilger et al., 1994; Fox et al., 1992)

Adenylation and translational activation at fertilization have recently

been examined in Drosophila (Salles et al., 1994). The bicoid, Toll, torso, and

hunchback mRNAs are all adenylated between oogenesis and embryogenesis,

and this addition of poly(A) correlates with translational activation of these
messages. In the case of bicoid mRNA, it was shown that this adenylation is
required for efficient translation. By contrast, the nanos RNA was not found
to change its adenylation state between oocytes and embryos, suggesting that

translational activation of the nanos transcript in the early embryo may occur

via a different mechanism. This hypothesized second pathway may be

necessary to ensure early and/or efficient translation of nanos, which is itself
a translational regulator (see below).

In contrast to the above studies of transcripts which are adenylated at

egg maturation, sequence elements directing deadenylation in embryos have
been described. The Eg maternal RNAs in Xenopus are deadenylated and

released from polysomes after fertilization, despite the presence of CPE

sequences in their 3'UTRs (Paris et al., 1988; Paris and Philippe, 1990). The Eg2
mRNA contains a 17 nt deadenylation control element which when deleted

results in adenylation in the embryo (Bouvet et al., 1994). Similarly,

sequences distinct from the CPE and AAUAAA regions of the 3'UTR of Egl

(cdk2) regulate its deadenylation, and preliminary evidence shows that a
maternal mRNA product controls this deadenylated state (Stebbins-Bouz and
Richter, 1994). Two proteins, p53 and p55, have been identified which bind to
the deadenylation control region of the Eg2 mRNA, and whose binding is
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correlated with the rate of deadenylation (Bouvet et al., 1994; Legagneux et al.,
1992). The function of these proteins remains unknown, however it seems

that regulation by the deadenylation element can override adenylation
specified by the CPE.

2. Specific translational control

Genetic studies of C. elegans and Drosophila have identified a number
of instances in which translational regulation of specific RNAs has distinct
consequences for development. These consequences may include
determination of cell fate, or regional specification in the early embryo. One
emerging theme is that in each case the sequence elements specifying
translational regulation map to the 3'UTR.

a. Translational regulation and cell fate specification

Translational control has recently been shown to play a role in the sex
determination pathway of C. elegans. The tra-2 gene is repressed in
hermaphrodites to allow spermatogenesis (Doniach, 1986; Schedl and Kimble,
1988). Translational regulation of tra-2 was revealed by gain-of-function (gof)
mutations which overexpress tra-2, resulting in hermaphrodites which are
unable to produce sperm. These gof alleles are due to changes within a pair of
direct repeat sequences in the tra-2 3'UTR (Goodwin et al., 1993), suggesting
post-transcriptional control. Analysis of transcript abundance in polysome-
containing fractions shows that the tra-2 gof RNA is translationally activated.
The C. elegans genefem-3 is also negatively regulated in hermaphrodites, to
allow the switch from spermatogenesis to oogenesis (Barton et al., 1987;
Hodgkin, 1986). Gain of function mutations in fem-3 map to a 6 nt region of
the 3'UTR (Ahringer and Kimble, 1991) . The finding that steady-state levels
of wild-type and goffem-3 RNA in hermaphrodites are equivalent suggests
that this regulation is translational. In addition, changes in the poly(A) tail
length which correlate with translation have been shown for fem-3 (Ahringer
et al., 1992). Translational repression of these RNAs may be mediated by
repressor proteins which bind the regulatory sequences and promote a stable
but untranslatable deadenylated state (Goodwin et al., 1993).
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The regulation of the lin-14 gene by lin-4 in C. elegans reveals an

apparently novel mechanism of translational control. lin-14 and lin-4 are

required for the proper temporal expression of cell lineages during larval

development (Ambros and Horvitz, 1987; Chalfie et al., 1981). Loss of lin-14

function results in precocious larval development, manifested by the

appearance of cell lineages characteristic of one or two larval stages later. Lin-

14 gain of function mutations result in a retarded phenotype - later stages of

development reiterate cell fate specifications characteristic of earlier stages.

The lin-14 gain-of-function alleles map to the 3'UTR and result in

abnormally high levels of LIN-14 protein, suggesting that lin-14 is subject to

translational repression (Wightman et al., 1991). lin-4 is a negative regulator

of lin-14 (Ambros, 1989; Arasu et al., 1991), and a lin-4 null mutation results

in a phenotype identical to lin-14 gain-of-function alleles. Surprisingly, the

lin-4 gene does not encode a protein, but produces two small RNA transcripts

which include a sequences with complementarity to a seven-fold repeated

sequence motif in the 3'UTR of the lin-14 RNA (Lee et al., 1993; Wightman et

al., 1993). These results suggest that the lin-4 may suppress translation of lin-

14 via an RNA/RNA pairing mechanism, with seven lin-4 molecules per lin-

14 transcript. This resulting complex may itself constitute an untranslatable

RNA, or may nucleate formation of a ribonucleoprotein particle resistant to

translational initiation.

b. Translational regulation and regional specification

Another characterized function of translational control in

development is as a mechanism for defining specialized regions within a

single cell. In these cases, regional specialization is usually facilitated by a

localized RNA. These principles are exemplified by the maternal system of

abdomen specification in Drosophila. nanos is translated from its posteriorly

localized RNA to form a posterior protein gradient. nanos acts in

conjunction with the pumilio protein, which is distributed throughout the

embryo, to repress the translation of the maternal hunchback RNA. This

regulation is mediated by a pair of bipartite sequence motifs, the nanos

response elements (NREs), in the hunchback 3'UTR which direct nanos-

mediated repression (Wharton and Struhl, 1991). Deletion of the NRE

sequences from hunchback results in the same phenotype (absence of

18



abdominal segmentation) as loss of either nanos or pumilio function,

suggesting that nanos and pumilio act exclusively through these sequences.

Recently it has been shown that pumilio protein and a 55kD protein from
embryo extract bind to NRE sequences in vitro (Murata and Wharton, 1995).
In addition, the sequence requirements for NRE function in vivo correlate
with the requirements for binding of either pumilio or the 55kD factor,
indicating that both these proteins play an important role in regulation in
vivo. The NRE binding activity of these proteins is not dependent on nanos.

These results suggest that hunchback RNA is complexed to one or both of

these proteins throughout the embryo, independent of its translational state.

Repression of translation would then require the additional presence of

nanos protein. pumilio and the 55kD protein may act to provide a "landing

pad" on the hunchback RNA for nanos and possibly other proteins involved

in translational repression (Murata and Wharton, 1995).

A related translational regulatory mechanism may govern the

expression of glp-1 in the early C. elegans embryo. glp-1 RNA is present

throughout the early embryo, but is only translated in the anterior cells

during the first two embryonic divisions (Evans et al., 1994). This

translational regulation is conferred by sequences in the glp-1 3'UTR. Most

strikingly, a 61 nt region required for repression of translation in the posterior

cells contains one and a half copies of a bipartite sequence motif very similar
to the hunchback NRE. These results suggest that 3'UTR-mediated
translational repression of glp-1 may occur via repressor proteins localized in

the posterior half of the embryo.

Studies of the translation of the nanos RNA itself have revealed

another link between localized RNAs, translational regulation, and regional

specification. Unlocalized nanos RNA is not translated, and this translational

suppression is mediated by sequences in the 3'UTR (Gavis and Lehmann,

1994). Levels of nanos protein at the posterior pole depend on levels of oskar

protein, suggesting that oskar may act as a translational activator of localized

nanos RNA (Ephrussi and Lehmann, 1992; Smith et al., 1992). Another
protein localized to the posterior poleplasm, vasa, has sequence similarity to
the translation initiation factor eIF-4A and has RNA helicase activity in vitro
(Hay et al., 1988; Lasko and Ashburner, 1988; Liang et al., 1994). These results
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suggest that oskar and vasa proteins may interact with nanos RNA at the
posterior pole to facilitate its translation. However, no direct interaction
between these species has yet been shown.

Translation of the Drosophila oskar RNA is also regulated by its
localization. oskar is localized to the posterior pole of the growing oocyte, and
translation does not occur until after the RNA is localized (Ephrussi et al.,

1991; Kim-Ha et al., 1991; C. Rongo, E. Gavis, and R. Lehmann, submitted).

Localized oskar protein specifies formation of the posterior poleplasm
(Ephrussi and Lehmann, 1992). Recently it has been shown that the
translational repression of unlocalized oskar RNA is dependent on a short

sequence motif present in two copies in the 3'UTR (Kim-Ha et al., 1995). In

addition, a protein in ovary extracts, bruno, binds to RNA containing this

sequence motif (the bruno response element, or BRE) in vitro. BRE
sequences inserted into a heterologous RNA confer partial translational
suppression in the oocyte. It will be interesting to see if translational
suppression of unlocalized forms of localized RNAs by bruno and the BREs
bears mechanistic parallels to the translational suppression of CPE-containing

transcripts in Xenopus oocytes.

3. Conclusions

It is clear that translational control plays an important role in the

maternal control of development. For the majority of transcripts in the

oocyte, repression of translation is likely to involve packaging into
translationally inert ribonucleoprotein particles. For a subset of transcripts, a

cytoplasmic adenylation element (CPE) sequence in the 3'UTR acts in
conjunction with the hexanucleotide AAUAAA polyadenylation signal to
direct the adenylation of these transcripts in the maturing oocyte, activating

their translation. The spacing of the CPE and hexanucleotide sequences

controls the timing and extent of post-maturation adenylation. Control of
polyadenylation is also implicated in the translational regulation of the tra-2,
fem-3, and possibly the hunchback RNAs. These results, combined with the
observation that the 3'UTR seems invariably to be central to developmentally
regulated translational control, highlight the importance of understanding
the relationship between adenylation and translational initiation. Studies in
yeast imply a link between the poly(A) metabolism and the initiation of
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translation (Sachs and Davis, 1989; Sachs and Deardorff, 1992), although the
significance of these studies to the strict dependence of translation on poly(A)
tail length observed in Xenopus and mouse oocytes, as well as in Drosophila
and C. elegans, remains unclear. The link between 3'UTR regulatory
sequences and translational initiation suggests that the initiating mRNA may
have a complex secondary structure, perhaps even a circular or looped
configuration. Clarification of this and other issues awaits the reconstitution
of regulated translation in vitro.
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The aims of this thesis

The focus of the work presented in this thesis is the structure and
function of the Drosophila maternal-effect gene nanos. Chapter 2, which has
been previously published as an independent paper (Wang and Lehmann,

1991), describes the cloning of nanos, its localization as an RNA to the

posterior pole of wild-type embryos, and introduces an RNA injection assay
which was used to show that nanos RNA is sufficient to rescue the

abdominal phenotype of all posterior group mutants tested. Chapter 3

describes use of this RNA injection assay to perform a preliminary analysis of

possible functional domains in the nanos open reading frame. Also included
in this chapter is a functional comparison between nanos and Xcat-2, a

Xenopus gene encoding an RNA localized in oocytes. Chapter 4 (previously
published as (Wang et al., 1994)) describes the localization of nanos RNA and
protein in a number of mutant backgrounds, and includes a brief discussion

of the nanos oogenesis phenotype. Chapter 5 describes polysome
fractionation studies designed to elucidate the mechanism of nanos-

dependent translational suppression of the maternal hunchback mRNA. The

single appendix describes another test using the RNA injection assay, this
time to determine whether pumilio, another posterior group gene, is
absolutely required for nanos function.
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ABSTRACT

Segmental pattern in the Drosophila embryo is established by two maternal
factors localized to the anterior and posterior poles of the egg cell. Here we

provide molecular evidence that the localized posterior factor is the RNA of
the nanos (nos) gene. nos RNA is localized to the posterior pole of early

embryos, and nos protein acts at a distance to direct abdomen formation.

Synthetic nos RNA has biological activity identical to that of the posterior
poleplasm. Injection of nos RNA rescues the segmentation defect of embryos
derived from females mutant for all nine known posterior group genes.
Injection of nos RNA into the anterior is able to direct formation of ectopic

posterior structures. Our results demonstrate that a localized source of nos

RNA is sufficient to specify abdominal segmentation, and imply that other
posterior group genes are required for localization, stabilization or
distribution of the nos gene product.

INTRODUCTION

Establishment of polarity in the Drosophila embryo requires maternal

information that is provided to the egg cell during its maturation.
Information for the establishment of the anterior-posterior axis consists of
three independent morphogenetic systems which control the spatially
restricted expression of target genes in the embryo (Niisslein-Volhard et al.,
1987). The anterior system controls the development of head and thorax, the
posterior system, the abdominal region, and the terminal system, the most
anterior and posterior larval structures (Frohnh6fer and Niisslein-Volhard,
1986; Lehmann and Niisslein-Volhard, 1991; Klingler et al., 1988). The
anterior and posterior systems act through factors localized to the respective
poles (Frohnhdfer and Niisslein-Volhard, 1986; Lehmann and Niisslein-
Volhard, 1991). At the anterior end, the determining factor is the product of
the bicoid (bcd) gene (Frohnhofer and Niisslein-Volhard, 1986). Localization
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of bcd to the anterior pole requires other anterior group genes (Frohnh6fer

and Niisslein-Volhard, 1987). bcd RNA localization establishes a

concentration gradient of bcd protein over the anterior half of the embryo (St.

Johnston et al., 1989; Driever and Niisslein-Volhard, 1988a) that elicits proper

expression of zygotic target genes such as the gap gene hunchback (hb)

(Driever and Niisslein-Volhard, 1988b; Driever and Niisslein-Volhard, 1989;

Struhl et al., 1989).

For the posterior system, at least nine genes (nanos (nos), pumilio

(pum), oskar (osk), vasa (vas), tudor (tud), staufen (stau), valois (vis),

cappuccino (capu), and spire (spir)) are required for abdomen formation

(Boswell and Mahowald, 1985; Schiipbach and Wieschaus, 1986; Lehmann

and Niisslein-Volhard, 1986; Lehmann and Niisslein-Volhard, 1987;

Manseau and Schipbach, 1989; Lehmann and Niisslein-Volhard, 1991).

Embryos derived from females mutant for any of these genes lack abdominal

segments. This defect can be rescued by transplantation of cytoplasm from the

posterior pole of wild-type embryos into the mutant abdomen (Lehmann and

Niisslein-Volhard, 1986; Lehmann and Ntisslein-Volhard, 1987; Lehmann

and Niisslein-Volhard, 1991). This result led to the hypothesis that the

posterior poleplasm serves as the source of a signal whose function is

required at a distance, in the prospective abdominal region. Synthesis of this

rescuing activity during oogenesis is normal in all mutants, with the notable

exception of nos mutant females (Lehmann and Niisslein-Volhard, 1991).

However, all posterior group mutant embryos, except pum, lack this activity

at the posterior pole (Lehmann and Niisslein-Volhard, 1986; Lehmann and

Niisslein-Volhard, 1987; Lehmann and Niisslein-Volhard, 1991). These

results suggested that the posterior group mutants affect a common, nos-

dependent activity, synthesized during oogenesis, and localized to the

posterior pole of the embryo.

Although the pathway for the establishment of posterior pattern

predicted the existence of a maternally provided "determinant" localized to

the posterior pole, the molecular nature of such a determinant remained

unclear. Here, we describe the isolation and molecular characterization of the

nos gene and present evidence that nos RNA is functionally equivalent to the
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morphogenetic activity found in the posterior poleplasm, and that nos

protein acts at a distance, to direct abdomen development.

RESULTS

The nanos gene

Cytological mapping places nos at band 91F13 on the right arm of the

third chromosome (Lehmann and Niisslein-Volhard, 1991). The nos

genomic region was cloned by chromosomal walking (Figure 2.1A). Two
deficiencies, Df(3R)Dl-A143, which uncovers the nos gene, and Df(3R)DI-

HD28, which complements all nos mutants (Vissin and Campos-Ortega, 1987;

Alton et al., 1988; Lehmann and Niisslein-Volhard, 1991), define a 20 kilobase

(kb) region containing an essential part of nos gene function within a 120 kb

chromosomal walk. Since genetic evidence indicated that nos function is

only required maternally, the 20 kb region was analyzed for maternally

expressed transcripts. This analysis revealed a 2.5 kb SalI-XhoI genomic DNA

fragment which hybridizes strongly to a single RNA species of 2.4 kb present

predominantly in ovaries and 0-2 hour old embryos, and weakly in 2-8 hour

old embryos. No transcript is detected in older embryos, larvae, or pupae
(Figure 2.1B). The developmental profile of this transcript is consistent with

the maternal mode of nos action and parallels that of another maternal-effect

gene, bicoid (Berleth et al., 1988; Figure 2.1B). Low levels of transcript are also

detected in males. At present there is no genetic evidence for a role of nos in

males. P-element mediated transformation of nos mutants with a 7.5 kb

genomic DNA fragment (Figure 2.1A) that includes the 2.5 kb SalI-XhoI

fragment rescues the abdominal phenotype of nos mutants (Gavis and

Lehmann, 1992). We will thus refer to the 2.4 kb transcript as nos RNA.

The 2.5 kb SalI-XhoI genomic fragment was used as a probe to screen

cDNA libraries (Brown and Kafatos, 1988; Frigerio et al., 1986). The nearly full
length (2.3 kb) cDNA clone N5, as well as 3 kb of genomic DNA encompassing

this cDNA, were sequenced (Figure 2.2). Comparison of cDNA and genomic
sequences indicates that the nos primary transcript contains 2 introns which
are excised to produce a single 2.4 kb mRNA. The single large open reading
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frame encodes a protein of 400 amino acids with a predicted molecular weight

of 43 kilodaltons (Figure 2.2). The nos polypeptide is somewhat basic
(predicted pI=9.1), and contains several stretches of polyglutamine (encoded
by OPA-sequences or M-repeats) and polyasparagine which are commonly
found in Drosophila proteins (Wharton et al., 1985). Database comparisons
(March 1995) show two sequences with some degree of homology to the
nanos polypeptide (Altschul et al., 1990). The first is the Xenopus gene Xcat-2,
which is localized as an mRNA to the vegetal cortex of Xenopus oocytes (see

Chapter 3 for details). The second is a C. elegans gene of unknown function
discovered in the genome sequencing project (Wilson et al., 1994), which is
70% identical and 88% similar to nanos in a 26 amino acid region at the C-
terminus of nanos. The functional significance of this similarity is unknown.

Distribution of nanos mRNA

A central prediction of the model for the establishment of posterior
pattern is that nos should encode the posterior rescuing activity and that the
nos gene product should be localized to the posterior pole of early embryos
(Lehmann and Niisslein-Volhard, 1991). Using a digoxygenin-labeled nos

cDNA as a probe for in situ hybridization, we find that the nos transcript is
concentrated at the posterior pole of freshly laid eggs and cleavage stage

embryos (stage 2; Figure 2.3A). At the pole bud stage (stage 3), the transcript
segregates into the nascent pole cells (Figure 2.3B). The transcript remains
concentrated in the pole cells during blastoderm stages (stages 4 and 5; Figure
2.3C). During gastrulation and germband extension when the pole cells are
carried dorsally and internalized into the embryo, staining for nos RNA is
visible in the pole cells, although reduced in intensity as compared to earlier
stages (Figure 2.4D, stages 7 and 8). While the transcript is still visible in the
pole cells at the fully extended germ band stage (stage 10, Figure 2.3E) localized
staining is no longer detected once the pole cells have left the pocket formed
by the posterior midgut invagination (stage 11, Figure 2.3F). In summary, the
developmental profile of nos RNA detected by in situ hybridization to
embryos and by RNA blot analysis suggests that maternally provided nos
transcript is present during oogenesis and early stages of embryogenesis, and
that transcript localization is confined to the poleplasm and pole cells.
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Synthetic nanos RNA is biologically active, and depletes maternal hunchback
in embryos

The localization of nos RNA at the posterior pole of early embryos and
the presence of nos RNA in the pole cells suggests that nos RNA is
responsible for the rescuing activity assayed in transplantation experiments
(Lehmann and Niisslein-Volhard, 1986). If nos RNA is the rescuing activity
found in the poleplasm, synthetic nos transcript should provide rescuing
activity in an embryo injection assay. Sense strand RNA was synthesized in
vitro from the nos cDNA, N5. This RNA was injected into the prospective
abdominal region of cleavage stage (stage 2) embryos derived from nosL7

homozygous mutant females. Uninjected nos mutant embryos lack all
abdominal segments, as seen by the lack of ventral abdominal denticle belts
(Figure 2.4A). By contrast, sibling embryos injected with nos RNA show
rescue of the abdominal segmentation defect (Figures 2.4B, 2.4C). Completely
rescued embryos are indistinguishable from wild type, and hatch and develop
into normal, fertile adult flies.

The role of nos in abdominal segmentation is mediated by the
maternally provided product of the hunchback (hb) gene (Hiilskamp et al.,
1989; Irish et al., 1989; Struhl, 1989). In wild-type embryos, nos is required to

exclude hb protein from the posterior half of the embryo (Tautz, 1988). The
resulting gradient of maternal hb allows proper expression of abdominal gap
genes such as knirps and giant (Hiilskamp et al., 1990; Eldon et al., 1990; Kraut
and Levine, 1990). To see if the phenotypic rescue observed correlated with a
change in the expression pattern of the maternal hb protein, we stained
injected embryos with an antibody directed against hb (Figures 2.4D, 2.4E).
RNA synthesized from the N5 nos cDNA template was injected into embryos
derived from homozygous nosL7 females under the same conditions as
described for phenotypic rescue (see above). After injection the embryos were
incubated for one hour and assayed for hb protein. These embryos were
compared to embryos treated identically but injected with a nos RNA
containing a frameshift mutation at amino acid 51 (Table 1). Uninjected or
frameshift injected (Figure 2.4D) embryos show a uniform pattern of hb
protein staining at pole bud stage. By contrast, embryos injected with wild-
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type nos transcript lack detectable hb protein in the posterior region (Figure
2.4E). In most of these embryos hb protein can be seen at the anterior, furthest
from the site of injection (25-50% egg length, where 0%=posterior pole). Of 22
embryos injected with wild-type nos RNA and stained for hb protein, 5%
showed homogeneous staining, 90% showed only anterior staining, and 5%
gave no detectable staining. For comparison, of 19 embryos injected with nos
frameshift RNA, 84% showed homogeneous staining, and 16% showed
anterior staining. These results demonstrate that nos RNA depletes hb
protein from the vicinity of the site of injection, and strongly suggests that the
phenotypic rescue of embryos by nos RNA injection is mediated by this
interaction.

nanos RNA is equivalent to the posterior rescuing activity

The degree of rescue by nos RNA depends on the concentration of the
injected RNA. Rescue was tested over a 4-fold range in concentration (Table
2.1). At the lowest concentration tested, most embryos show only partial
rescue (Figure 2.4B). At the highest concentration tested, all embryos are
completely rescued and form all eight abdominal segments (Figure 2.4C).
RNA transcribed from a template containing a frame shift mutation fails to
rescue the abdominal defect when assayed by injection (Table 2.1). These
results indicate that the N5 cDNA contains a functional nos open reading
frame and that translation of nos RNA after egg deposition is sufficient to
fully restore the mutant defect.

The degree of rescue by nos RNA depends on the age of the mutant
embryo and the position of injection. Injection of nos RNA into nos mutant
embryos results in optimal rescue when embryos are injected before pole cell
formation (Figure 2.5A). We conclude that nos function is required early in
embryogenesis, at the time when the concentration gradient of maternal hb
product is established (Tautz, 1988). Further, optimal rescue is achieved if nos
RNA is injected into the prospective abdominal region (25-50% egg length)
(Figure 2.5B), indicating that the injected RNA is translated at the site of
injection and does not require localization to the posterior pole for
translation. In summary, the activity of synthetic nos RNA is equivalent to
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the rescuing activity found in posterior poleplasm with respect to the spatial

and temporal parameters of rescue (Lehmann and Ntisslein-Volhard, 1986;

Lehmann and Niisslein-Volhard, 1991).

Synthetic nanos RNA rescues abdominal phenotype of all posterior group
mutants

Embryos derived from females defective for seven of the nine posterior

group genes lack the specialized posterior poleplasm, including the

characteristic polar granules, and subsequently fail to form pole cells, the

germ line precursors (Lehmann and Niisslein-Volhard, 1986; SchUipbach and

Wieschaus, 1986; Boswell and Mahowald, 1985; Manseau and Schiipbach,

1989). Cytoplasmic transplantation experiments have shown that these

embryos lack posterior rescuing activity (Lehmann and Niisslein-Volhard,

1986; Lehmann and Niisslein-Volhard, 1991). To demonstrate the exclusive

role of nos as a localized posterior determinant, we tested the ability of nos

RNA to rescue the abdominal phenotype of all posterior group mutants.

Injection of nos RNA completely rescues the abdominal phenotype of the

genes osk, stau, tud, vas, vis, capu, and spir (Table 2.2). The germ-cell defect,

however, remains. These results indicate that nos acts as a posterior

determinant, and suggest that these posterior group genes are dispensable for

translation and/or activity of nos protein. Since embryos from mothers

mutant for these genes lack the specialized posterior poleplasm, we propose

that localization of nos mRNA to the posterior pole depends on the presence

of an intact poleplasm. The abdominal segmentation defect of these mutants

may therefore be a secondary effect of failure to localize or stabilize poleplasm

components, including the nos mRNA.

Embryos derived from pum mutant mothers have intact poleplasm

and form germ cells. Cytoplasmic transplantation experiments have shown

that the posterior poleplasm of pum embryos contains normal levels of

rescuing activity for all posterior group mutants (Lehmann and Niisslein-

Volhard, 1987; Lehmann and Niisslein-Volhard, 1991). pum mutant embryos

injected with nos RNA show rescue of the abdominal segmentation

phenotype. However, rescue is limited to six abdominal segments or less
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(Table 2.2), and segmentation is restored only locally, near the site of injection

(data not shown). We conclude that pum affects the ability of nos to act at a

distance on abdomen formation and propose that pum affects the distribution

of nos protein, rather than the localization of nos RNA. Further experiments

are required to determine whether pum function involves intracellular

transport, stabilization, abundance or activity of nos protein.

Presence of nanos at the anterior suppresses bicoid

Previous studies have shown that transplantation of posterior

poleplasm to an ectopic anterior position suppresses the formation of head

and thoracic structures and directs the formation of a second abdomen at the

anterior end of the embryo (Niisslein-Volhard et al., 1987; Frohnhofer et al.,

1986). If this respecification is due to nos, injection of nos RNA into the

anterior of embryos should suppress anterior development and cause

development of ectopic posterior structures. We injected synthetic nos RNA

into the prospective head region of nos mutant embryos and followed their

development (Figure 2.6).

The cephalic furrow which normally forms during gastrulation (stages

6-7) at 65% egg length serves as a marker for the anterior region of the

embryonic fate map. In many cases, injected embryos show an anterior shift

in the position of the cephalic furrow, and cuticle preparations of first instar

larvae reveal a reduction of head skeletal structures. In more extreme

instances, injected embryos lack a cephalic furrow altogether, and an ectopic

posterior midgut invagination is observed at the anterior end (Figures 2.6A,

2.6E). The result of this extreme fate map shift is seen more clearly in cuticle

preparations. In the case shown, head structures are completely absent and

structures normally found at the posterior, including a telson and several

abdominal denticle belts, are duplicated in mirror image at the anterior

("bicaudal" phenotype, Figure 2.6F). Of 57 embryos injected anteriorly and

scored for cuticle phenotype, 32% had normal head structures, 30% showed

reduction of head structures, 33% lacked head structures altogether, and 5%

gave a bicaudal phenotype which included reversal of abdominal segments.

These results demonstrate that anteriorly introduced nos RNA is sufficient to

45



suppress formation of head and thoracic structures, and is able to induce the
formation of posterior structures.

The suppression of head structures observed in nos injected embryos
suggests that nos affects genes specifying head and thoracic structures. These
anterior defects resemble those of bicoid and bicaudal mutants (Frohnh6fer
and Niisslein-Volhard, 1986; Niisslein-Volhard, 1977). In no case were
phenotypes characteristic of zygotic hb mutants, such as thoracic segment
deletions, produced. To further distinguish between a direct effect of nos on
bcd, as opposed to an effect of nos on the zygotic hb product, which is under
the control of bcd (Driever and Niisslein-Volhard, 1989; Struhl et al., 1989), we
stained embryos with antibodies against bcd protein (Driever and Nisslein-
Volhard, 1988a). At the syncytial blastoderm stage (stages 3-4), levels of bcd
protein are reduced in embryos injected with nos RNA, whereas normal
levels of bcd protein are found in embryos injected with a frame shifted nos
RNA (Figures 2.6D, 2.6H, Table 2.3). In addition, suppression of anterior

structures is only observed after nos RNA injection in regions where bcd
RNA is normally localized (data not shown). In situ hybridization analysis of
injected embryos indicates that the stability and distribution of bcd mRNA is
not significantly affected by the ectopic introduction of nos (Figures 2.6C, 2.6G,
Table 2.3). These results taken together suggest that nos can affect the
synthesis and/or stability of bcd protein.

DISCUSSION

Previous genetic studies led to identification of nine genes which are
required for normal abdomen formation in Drosophila (Boswell and
Mahowald, 1985; Schiipbach and Wieschaus, 1986; Lehmann and Ntisslein-
Volhard, 1986; Lehmann and Niisslein-Volhard, 1987; Manseau and
Schiipbach, 1989; Lehmann and Nisslein-Volhard, 1991). These studies
revealed a factor concentrated in the poleplasm of wild-type embryos that
rescues the abdominal defect of posterior group mutants (Lehmann and
Niisslein-Volhard, 1991). It was suggested that nanos (nos) is involved in the
synthesis of this factor (Lehmann and Niisslein-Volhard, 1991). Here, we
have demonstrated that the nos gene product is the rescuing factor. nos
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mRNA is localized at the posterior pole and serves as a source of the nos

protein, which acts as a signal in the prospective abdomen. Synthetic nos

RNA is biologically active and rescues the abdominal phenotype of nos and
all other posterior group mutant embryos. This result shows that the other
posterior group genes are not required for nos function, but rather play a role
in localization or distribution of nos gene products. Finally, transplantation

of nos RNA into the anterior pole suppresses head and thoracic development
and promotes the formation of posterior structures in reversed orientation at
the anterior end. These results indicate that a localized source of nos product
is sufficient to specify abdominal segmentation.

How does the nos product determine posterior pattern? The anterior,
posterior and terminal systems of maternal genes regulate the spatial
domains of gap gene transcription in the embryo (Niisslein-Volhard et
al.,1987; Ingham, 1988). For the posterior system, nos activity is required for
the correct embryonic transcription of at least three gap genes: Kriippel (Kr),
knirps (kni) and giant (gt) (Gaul and Jckle, 1987; Nauber et al., 1988; Eldon
and Pirrotta, 1991; Kraut and Levine, 1991). However, nos does not regulate
embryonic transcription directly. nos negatively regulates the abundance of
the maternally provided hunchback (hb) gene products such that a
concentration gradient of hb RNA and protein is established, with highest
concentrations in the anterior (Tautz, 1988). Maternally provided hb itself is
believed to act as a transcriptional repressor, such that low levels of hb in the
abdomen allow proper expression of the gap genes Kr, kni and gt (HUilskamp
et al., 1989; Irish et al., 1989; Struhl, 1989; Htilskamp et al., 1990).

Changes in the levels of nos along the anterior-posterior axis shift the
embryonic fate map (Lehmann, 1988) and can alter the polarity of the
segmental pattern (Lehmann and Niisslein-Volhard, 1991), presumably by
affecting the maternal hb concentration gradient (Tautz, 1988; Wharton, and
Struhl, 1989). However, recent experiments indicate that, under some
conditions, the maternal hb gradient is dispensable for the formation of a
normal segmental pattern (HUilskamp et al., 1989; Irish et al., 1989; Struhl,
1989). Embryos that lack nos and maternal hb products, thereby completely
lacking maternally provided posterior information, develop with a normal
segmentation pattern (Htilskamp et al., 1989; Irish et al., 1989; Struhl, 1989),
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which probably reflects normal expression of gap genes. Segmentation in

such embryos must operate by a second, "nanos-independent" pathway. Gap
gene expression in the abdomen of these embryos is set by neighboring gap
genes, whose spatial domains of expression depend in turn on the anterior
and terminal maternal systems (Hiilskamp et al., 1990). Thus, in the
abdomen, two redundant systems can establish the spatial expression of gap
genes, which control segmentation and polarity. The nos system acts via a

concentration gradient of the transcriptional repressor hb and is independent
of other maternal information (Niisslein-Volhard et al., 1987). By contrast
the zygotic system acts via gap gene interactions established by positional cues
provided by the anterior and terminal maternal genes (Lehmann and
Frohnh6fer, 1989; HUilskamp et al., 1990).

This feature of the abdominal pattern forming system may account for
the observed lack of correlation between the local concentration of nos and

the abdominal structures formed. For example, injection of nos RNA into
nos mutant embryos at various positions results in the formation of

abdominal segments of normal polarity (Figure 2.4, Lehmann and
Frohnh6fer, 1989). According to the model, nos removes the repressor hb,
such that kni and gt can be expressed in the abdominal region. The relative
position of kni and gt expression, however, is determined by interaction with
neighboring gap genes (Lehmann and Frohnh6fer, 1989). This model for
posterior pattern formation can also explain how injection of nos RNA into
the anterior of a nos mutant embryo can result in the formation of two
abdomens in mirror image (Figure 2.6): First, nos suppresses bicoid function
in the anterior (see below); then, ectopically introduced nos eliminates
maternal hb throughout the embryo. This allows expression of abdomen-
specific gap genes in both the anterior and posterior halves of the embryo.
The polarity of the resulting abdomens is most likely set by the terminal
genes (Lehmann and Frohnh6fer, 1989), which are active at either end
(Pignoni et al., 1990).

Transplantation of nos RNA to the anterior not only specifies the
formation of abdominal segments, but also suppresses formation of head and
thoracic structures. This suggests that nos can negatively regulate bcd, the
anterior determinant. Indeed, antibody staining of injected embryos shows

48



that bcd protein levels are decreased after injection of nos RNA in the

anterior (Figure 2.6). In addition, in situ hybridization analysis of injected
embryos shows that the stability and localization of bcd RNA is not
significantly affected (Figure 2.6). This suggests that nos acts on bcd at the
level of translation or protein stability.

We favor the idea that nos regulates the translation of hb and bcd, since

the presence of nos has a pronounced effect on levels of the hb and bcd

proteins, whereas the effect of nos on hb and bcd RNA levels is more subtle,

and appears to occur later (Driever and Niisslein-Volhard, 1988b; Tautz, 1988;
Wharton, and Struhl, 1989; Table 3). One possibility is that nos protein binds

to hb and bcd RNA, decreases their rate of translation, and ultimately these
transcripts are degraded. Evidence from experiments involving replacement
of hb 3' region with the lacZ gene (Hiilskamp et al., 1989), and examination of
the bcd RNA in genetically bicaudal embryos (Wharton and Struhl, 1989)

suggests that targets of nos action reside in the 3' regions of the bcd and hb

RNAs. Analysis of the nos protein sequence, however, has not revealed
homology to sequences known to be involved in RNA binding (Bandziulis et

al., 1989). Further experiments are necessary to determine whether nos

protein directly binds bcd and hb RNA, and to identify sequences within the
nos protein required for such an interaction.

MATERIALS AND METHODS

Cloning of nanos

The nos genomic region is defined by the chromosomal deficiencies Df[3R]Dl-

HD28 and Dfl3R]DI-KX12 which complement all nos mutants, and Df[l3R]Dl-
A143, which uncovers the nos gene (Vissin and Campos-Ortega, 1987; Alton

et al., 1988; Lehmann and Niisslein-Volhard, 1991). The region defined by the
Dfl3R]DI-A143 and Df[3R]DI-KX12 interval contains in addition to nos three
lethal complementation groups: 1(3)91Fb (= (D1X43)c3), 1(3)91Fe (= (DIX43)c4),

and 1(3)91Fc (Vassin and Campos-Ortega, 1987; Alton et al., 1988).

Representative alleles of each of these complementation groups complement
nos mutants. Two lambda phage genomic libraries (in Charon 4 and EMBL 4
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vectors) were used for the chromosomal walk, which was carried out

according to standard procedures (Sambrook et al., 1989). The direction and

progress of the walk was monitored by in situ hybridization of biotinylated

phage DNA to salivary gland chromosomes of larvae heterozygous for the

deficiencies Dfl3R] Dl-A143, Dfl3R] Dl-KX12, and Dfl3R] Dl-HD28 (Vissin and

Campos-Ortega, 1987; Alton et al., 1988). The nos region was further mapped

by blot hybridization of DNA prepared from flies heterozygous for the

deficiencies Dfl3R] Dl-A143 and Dfl3R] Dl-HD28 with representative clones

from the walk (F. Pelegri and R.L., unpublished data). To identify the

genomic region encoding nos, radiolabeled cDNA from specific stages was

hybridized to a blot of genomic DNA from the walk. By this analysis, the 2.5

kb fragment described hybridizes to the most strongly expressed maternal

transcript in this region (data not shown).

Northern blot analysis

Poly A+ RNA prepared from the indicated stages (1.5 ptg per lane) was
fractionated on a 1.2% agarose/formaldehyde gel. After transfer to nylon

membranes, the filter was ultraviolet-crosslinked and probed with the

appropriate 32 P-labeled DNA fragment. The 2.5 kb SalI-XhoI DNA fragment

indicated in Figure 1A was used as the nanos probe. Blots were exposed to X-

ray film with an intensifying screen for 48, 24, or 6 hours, for nos, bcd, or

actin, respectively. Preparation of poly A+ RNA as well as hybridization and

washing of blots were done by standard methods (Sambrook et al., 1989).

cDNA cloning and DNA sequencing

The 2.5 kb SalI-XhoI genomic DNA fragment described in Figure 1A was

labelled with [alpha-32P] dCTP by random primer oligolabelling and used to

screen both lambda and plasmid cDNA libraries. Three independently
isolated cDNA clones were subcloned into Bluescript vectors (Stratagene),

nested deletions were made using exonuclease III and mung bean nuclease

according to manufacturers' protocols (Stratagene), and sequenced using

Sequenase (United States Biochemical). The genomic DNA was sequenced

using sequence-specific oligonucleotide primers, or, for some regions, by
subcloning small fragments. In all cases, sequence was confirmed on the
opposite strand. For comparison of the nanos sequence to those in the latest

50



version of the sequence databases (March 1995), the computation was

performed at the NCBI using the BLAST network service (Altschul et al.,
1990).

In situ hybridization

In situ hybridization was performed as described by Tautz and Pfeifle, 1989.

RNA injections

RNA for injection assays was synthesized in vitro from the full-length cDNA

clone N5, which includes a 43 nucleotide -globin 5' untranslated leader
sequence fused to the complete nos open reading frame (Brown and Kafatos,
1988). In vitro transcript lacking globin sequences has equivalent rescuing

activity (data not shown). Methods for RNA synthesis were as described by

Krieg and Melton, 1984. The in vitro transcription products were precipitated
and resuspended in DEPC-treated water. Concentrations were determined by

optical density measurement at 260 and 280 nm and are corrected for the
presence of residual template DNA. Since the level of active transcription
products obtained varies, the product of a single transcription reaction was
used for any given experiment. "No template" embryos were injected with

product of an in vitro transcription reaction from which template DNA was

omitted. The frameshift template was constructed by filling in a PstI site at nt

406 of the insert, followed by addition of a BamHI linker and religation,

creating a frameshift mutation after amino acid 50 of the open reading frame.

Injections and cuticle preparations were carried out as previously described

(Lehmann and Niisslein-Volhard, 1986; Lehmann and Niisslein-Volhard,

1991). All embryos for injection were derived from nosL7 mutant females

and injected at early cleavage stage (stage 2) at 25-50% egg length unless

otherwise indicated. Final concentration of donor RNA was 2 gg/gl in DEPC-
treated water. Assuming an embryo volume of 2 nanoliters, and an injection
volume of 1% egg volume (20 picoliters) (Ashburner, 1989), each embryo

receives approximately 3x107 molecules of injected RNA. In addition,

quantitative hybridization comparisons of embryonic RNA and prepared in
vitro transcript indicate that a single wild-type embryo contains
approximately 800,000 molecules of nanos mRNA (data not shown).
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In general, 50-80% of injected embryos developed a cuticle and could be scored

for segmentation phenotype. For the injections into other posterior group
mutants (Table 2), all allele combinations used were the strongest available
for the abdominal segmentation phenotype (Boswell and Mahowald, 1985;

Schiipbach and Wieschaus, 1986; Lehmann and Nisslein-Volhard, 1986;

Lehmann and Niisslein-Volhard, 1987; Manseau and Schiipbach, 1989;

Lehmann and Niisslein-Volhard, 1991). In experiments where rescued

embryos were allowed to develop through adulthood, both heterozygous and

homozygous progeny were obtained. For the experiment in Figure 6,

embryos were injected at 75% egg length, observed through gastrulation by

phase microscopy and photographed, then allowed to develop through the

end of embryogenesis and mounted for scoring of cuticle phenotype. Staging

of embryos was as described by Campos-Ortega and Hartenstein, 1985.

hb and bcd antibody staining of injected embryos

Embryos derived from nosL7 mutant females were injected with the

appropriate RNA at 25-50% egg length for the hb stainings, and at 75% egg

length for the bcd stainings. Injected embryos were aged at 180C for 1 to 1.5

hours after injection, then fixed at pole bud and syncytial blastoderm stages

(stages 3 and 4) and devitellinized by hand. Antibody distribution was

detected using a biotinylated anti-mouse secondary antibody and a

commercially available horseradish peroxidase detection kit (Vector labs).

in situ hybridization of injected embryos

Injected embryos were prepared, fixed, and devitellinized as described above

for the antibody staining, then hybridized with a bicoid cDNA probe for
whole mount in situ hybridization as described by Tautz and Pfeifle, 1989.
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Figure 2.1. Cloning of nanos

A) Physical map of the nos region.

Shaded bars at top indicate DNA which is absent in the indicated

deficiency chromosomes; the Delta-nos genomic region is represented by the

central line; the location of the starting clone (HP2 5.3) (Vissin et al., 1987) of

the chromosomal walk, as well as the locations of the Delta and nos

transcribed regions are shown. Distances are given in kb with numbering

starting at the beginning of the walk. The nos region is shown in greater

detail below. Heavy line indicates 2.5 kb genomic fragment which hybridizes

to nos transcript. The 7.5 kb DNA fragment used for P-element mediated

transformation spans from an EcoRI to an SphI site as indicated by the
vertical arrows. Arrow at bottom indicates structure and 5' to 3' orientation

of nos primary transcript (restriction sites for the following enzymes are

shown: R = EcoRI, S = SalIl, X = XhoI; scale as indicated).
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B) Northern blot analysis.

Main panel shows nos transcript. nos is a single species present

predominantly in ovaries, early embryos, and females. In this exposure, a

weak signal is also detectable in males. For comparison, the same blot was

reprobed for bcd, a maternal transcript which serves as a comparison for the

profile of a maternal transcript (Frigerio et al., 1986), and actin 5C, a

constitutively expressed transcript (Fyrberg et al., 1983) to show equal
amounts loaded in each lane.
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Figure 2.2. Sequence of the predicted nos polypeptide.

This is a translation of the single large open reading frame encoded by
the nanos gene. The transcriptional start site is designated as residue 1. The
position of the transcriptional start was verified by primer extension (data not

shown), and lies 20 nucleotides upstream of the 5' end of the cDNA N5. A

potential TATA box sequence, ATTATT (underlined), occurs 25 nucleotides
upstream of the transcriptional start. The first AUG (underlined) begins a
short ORF which is followed by several stop codons (the first in-frame stop is
underlined). The second AUG, at residue 263, begins the single large open
reading frame. This translational start site shows a 2 out of 4 match with the
Drosophila translation initiation consensus as determined by Cavener
(Cavener, 1987). The nos polypeptide sequence is shown as a translation of
the large open reading frame which is interrupted by two introns, spanning
nucleotides 734-1281 and 1752-1824. The ATATAA polyadenylation signal is

underlined, and the polyadenylation site is marked by an arrow.
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Figure 2.3. Whole mount in situ hybridization.

The cDNA N5 (see Figure 2A legend) was used to prime synthesis of a
uniformly labeled digoxygenin-UTP probe which was hybridized to wild-type

embryos. A) Early cleavage stage embryo (stage 2, 0:25-1:20 hours). The probe
recognizes a transcript which is localized to the posterior pole. B) Embryo at

pole bud stage (stage 3, 1:20-1:30 hours). The transcript is concentrated in the

pole cells. C) Embryo at syncytial blastoderm stage (stage 4, 1:30-2:30 hours).
Transcript is restricted to pole cells and lacking from the blastoderm which
will give rise to the somatic tissues. D) Embryo during early germband

extension (stage 8, 3:45-4:30 hours). Pole cells are carried inside the embryo

and are clustered inside a pocket of cells which will give rise to the posterior
midgut. Reduced levels of nos RNA are detected in the pole cells. E) Embryo

with fully extended germband (stage 9, 4:30-5:10 hours). By this stage most

pole cells have migrated through the midgut epithelium. Only a few pole

cells are found within the midgut pocket, and only those show residual

staining. F) Embryo just prior to germband retraction (stage 10, 5:10-6:15
hours). No specific staining for nos RNA can be detected. In all cases anterior

is left, dorsal up. The final staining reaction was carried out longer in

embryos shown in D-F than in A-C. Developmental stages are as described in
Campos-Ortega and Hartenstein, 1985, duration of stages at room temperature
(22°C) are according to Wieschaus and Niisslein-Volhard, 1986.
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Figure 2.4. Rescue of the nos mutant phenotype by in vitro synthesized nos

transcript.

A-C) Dark field photographs of cuticle preparations of first instar larvae

derived from females homozygous for nosL7. A) Uninjected embryo, anterior

up, dorsal aspect. Note lack of abdominal segments. Head and thoracic

segments are normal. B) Partially rescued embryo, anterior up, ventral aspect.
This embryo shows bilaterally asymmetric rescue and has developed 6 partial

abdominal segments. C) Fully rescued embryo, anterior up, ventral aspect.

This pattern is indistinguishable from wild type. D, E) Embryos injected with

nos RNA and stained for hb protein using an anti-hb antibody. Embryos

shown are at late cleavage stage (stage 2), anterior left, dorsal up. D) Embryo

injected with RNA synthesized from a template containing a frameshift

mutation. E) Embryo injected with RNA from a template containing wild-

type nos RNA sequences. The control embryo (D) shows uniform levels of hb

protein while the embryo injected with functional nos RNA (E) shows

reduced levels of hb protein in the posterior but normal levels in the anterior

third. In some of the control embryos we detected slightly reduced levels of

hb protein at the posterior pole which may indicate that the nosL7 mutation is

not a complete lack of function mutation.
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TABLE 1. RESCUE OF NANOS ABDOMINAL PHENOTYPE
BY NANOS TRANSCRIPT

embryos abdominal segments
scored (N) formed (% total)

DONOR FRACTION 0-1 2 -5 6 - 8

uninjected 29 100

no template 49 100

frameshift template 79 96 4
(1.7Ig/l)*

pN5-RNA (0.03tg/tl) 50 66 28 6

pN5-RNA (0.07,ug/!il) 45 15 49 36

pN5-RNA (0.13gg/gl) 46 - - 100
*Of the 79 cuticles scored, 3 developed more than one segment. Of
these, 2 had 2 segments, and one cuticle had 3 segments. Note that
the concentration of frameshift transcript injected was about 10-
fold higher than the concentration of wild-type transcript used. We
interpret the low degree of rescue observed as a reflection of some
low level of readthrough translation, or a residual activity of the 50
aa amino terminal polypeptide.
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Figure 2.5. Developmental stage and position dependence of rescue.

"Strong rescue" (open squares) indicates more than five abdominal

segments, and "rescue" (solid squares) indicates two or more abdominal
segments, as judged by presence of abdominal ventral denticle belts. Fifteen
to eighty cuticles were scored for each data point. A) Developmental stage

dependence. Staging of recipient embryos as in Campos-Ortega and

Hartenstein, 1985 (stages 1 and 2, cleavage stage; stage 3, pole bud formation;

stage 4, syncytial blastoderm; stage 5, cellular blastoderm; stage 6, beginning of
gastrulation). Developmental events are indicated along horizontal axis. B)

Position dependence. Cleavage stage embryos were injected at the positions

shown along the horizontal axis.
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TABLE 2: RESCUE OF POSTERIOR GROUP ABDOMINAL
PHENOTYPE BY NANOS TRANSCRIPT

EMBRYOS EMBRYOS NUMBER OF ABDOMINAL

ANALYZED DEVELOPED SEGMENTS FORMED (% TOTAL)

MATERNAL GENOTYPE OF (N) (N)
RECIPIENTS 0-1 2-5 6-8

nanosL7

injected 72 58 5 5 90
control 41 29 100 - -

oskar1 66
injected 37 29 - 10 90
control ND 35 100 -

vasaPD/vasaD1
injected 95 50 8 36 56
control 52 38 100 -

staufenD3

injected 108 56 29 16 56
control ND 39 100 -

pumilio68 0

injected 140 75 33 65 2

control 24 19 84 16

valoisP E/valoisP G
injected 180 9 22 22 55
control 167 25 92 8

tudorWC 8/Df[2R]purP1 33*
injected 115 62 2 5 93
control 193 67 6 24 70

cappuccinoG 7/Df[2L]edS 7 1 .2
injected 41 14 21 21 58

control 24 11 91 9

spireR P
injected 164 42 12 12 76

control 53 28 86 14 -

"Control" indicates phenotype of uninjected embryos. ND = not determined.
*No tudor alleles with complete penetrance for the abdominal phenotype have been
identified. For the tudor embryos, the phenotypic scores for control and injected
populations were compared by the Wilcoxon-Mann-Whitney ranks test and shown to be
significantly different with P 0.004.
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Figure 2.6. Ectopically introduced nos alters embryonic pattern.

A-D) Control embryos derived from nosL7 mutant females (A, B, uninjected;
C, D, injected with in vitro synthesized nos RNA containing a frameshift
mutation) show normal head development (A, B), and wild-type pattern of
bcd RNA (C) and bcd protein (D) distribution. E-H) Embryos derived from
nosL7 mutant females injected with RNA synthesized from a wild-type nos
cDNA template develop posterior structures at the expense of head structures
(E, F), and show normal levels and distribution of bcd RNA (G), while levels
of bcd protein are reduced (H). Top panel (A, E): living embryos during
gastrulation (stage 7); the position of the cephalic furrow is indicated in (C) by
an arrow. Star in (E) indicates the position of an ectopic posterior midgut
invagination at the anterior. Second panel (B, F): dark-field photographs of
cuticle preparations from first instar larvae developed from embryos similar
to those shown above. Embryo in F shows a bicaudal phenotype such that the
telson and posterior abdomen is duplicated in mirror image at the expense of
head and thoracic structures. Third panel (C, G): syncytial blastoderm (stage 4)
embryos stained for bcd RNA. Bottom panel (D, H): syncytial blastoderm
(stage 4) embryos stained for bcd protein. In all cases anterior is to the left,

dorsal up. All embryos were injected at 75% egg length.
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TABLE 3: EFFECT OF NANOS ON BICOID

nanos Staining pattern (%)
transcript

species injected N wildtype weak none ectopic

bicoid RNA frameshift 30 47 30 10 13

wildtype 29 31 38 27 4

bicoid protein frameshift 49 61 25 14

wildtype 45 20 13 67

All embryos were derived from homozygous nosL7 mothers, and injected at 75% egg
length with the indicated RNA. N= number of embryos analyzed.
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Chapter 3

Preliminary structural analysis of the nanos open reading frame
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INTRODUCTION

The maternal-effect gene nanos (nos) encodes a posterior determinant
which is localized to the posterior pole of early embryos. Embryos derived
from females homozygous mutant for nos develop into first instar larvae
which completely lack abdominal segments. The mutant phenotype of these
embryos (henceforth referred to as "mutant embryos") can be rescued by
injection of in vitro transcribed nos RNA into the prospective abdominal

region of early-stage embryos. The extent of this phenotypic rescue can be
assessed by examining the cuticles of the resulting larvae and counting the
number of abdominal segments formed. Injections of serially diluted
samples of in vitro transcribed nos RNA have shown that the RNA injection
assay is sensitive over a ten-fold range of RNA concentration (i.e., the
minimal RNA concentration giving full rescue is ten times that required for
minimally detectable rescue) (Curtis et al., 1995; Wang and Lehmann, 1991).
Thus the RNA injection assay constitutes a rapid and sensitive method to
assess the potential function of any constructs containing nanos sequences.

Nanos encodes a novel 400 amino acid protein, which bears no
homology to proteins of characterized function. Therefore the sequence itself
provides limited clues as to the biochemical function of the protein. One
strategy for defining functional domains of the nanos polypeptide is to make
derivatives of the nanos cDNA which encode truncated versions of the

protein. These cDNA constructs can then be easily transcribed and injected
into nos mutant embryos to assay for the ability to rescue the abdominal
phenotype. These experiments should eventually define the minimal nanos

sequences required for protein function, and these regions of the polypeptide
can then be singled out for further, more detailed studies.

Another approach to defining residues critical to the function of the
nos polypeptide is to isolate sequence homologues, which can then be tested
for function by the RNA injection assay. The Xenopus gene Xcat-2 was
originally identified as a transcript associated with the insoluble cytoskeletal
fraction, is localized as an mRNA to the vegetal cortex of late stage oocytes
(Forristall et al., 1995; Mosquera et al., 1993) The putative Xcat-2 polypeptide
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contains a 53 amino acid region with strong sequence homology to a C-

terminal region of nos (55% identity, 64% conservation). These striking

similarities between nanos and Xcat-2 in both RNA localization pattern and

peptide sequence suggest that the parallels may extend to protein function.

Therefore we used the RNA injection assay to test whether Xcat-2 sequences

provide nos rescuing activity, either on their own or in the context of nos

sequences.

RESULTS AND DISCUSSION

In-frame deletion derivatives of the nanos open reading frame

As a first step towards characterizing functional domains of the nanos

polypeptide, we constructed a number of in-frame deletion derivatives of the

nos open reading frame in the context of a full length nos cDNA. The

deletion sites were chosen to take advantage of naturally occurring restriction

endonuclease sites within the nos coding sequence (see Materials and

Methods). The smallest deletion tested shortened the 400 amino acid nos

open reading frame by 70 amino acids; the largest deletion omitted 259 amino

acids (Table 3.1, Materials and Methods). After transciption in vitro, the

RNAs were injected into embryos derived from nosL7 mutant females. The

resulting larval cuticles were scored for the rescue of abdominal segments. Of

the four constructs tested, only one, deleting amino acids 218-288, showed any

rescuing activity (Table 3.1). The 218/288 construct gives rescuing activity

essentially equivalent to wild-type RNA. None of the other deletion

constructs showed any detectable rescuing activity.

These results suggest that the 70 amino acids between residues 218 and

288 are dispensible for nanos function. In addition, these results suggest that

areas flanking this region are essential for function. Recently published

evidence is consistent with this hypothesis (Curtis et al., 1995). Specifically,

sequence comparison between nanos homologues from other insect species

(homologues which have been shown to be functional in D. melanogaster )

reveals several regions of significant homology, including residues 61-97 and
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317-400 (high degree of conservation), and residues 170-180 and 290-415

(enrichments of particular amino acids). This pattern of conserved sequences

is entirely consistent with the results obtained from the deletion injection
assays. In sum, these results suggest that the C-terminus of nanos is almost

certainly key to its function, and that other important regions lie N-terminal
to amino acid 218 (see Figure 1). It should be noted that definitive

interpretation of the deletion analysis described here requires proof that the

protein derivatives which fail to rescue are stably expressed in embryos.
However, the in vitro transcribed RNAs which fail to rescue when injected

are competent for translation in vitro in rabbit reticulocyte extract (data not

shown).

Xcat-2 - a functional homolog?

The Xenopus gene Xcat-2 encodes an RNA which is localized to the

vegetal cortex of late stage oocytes. In addition, a portion of the Xcat-2 open
reading frame bears significant homology to the C-terminal region (Forristall

et al., 1995; Mosquera et al., 1993) of the nanos open reading frame. Given

these interesting parallels to nanos, we decided to assay Xcat-2 sequences for
nanos activity by RNA injection. Initially, we tested an intact Xcat-2 cDNA by

this assay in nosL7 mutant embryos. Out of 125 embryos injected, no rescue
was observed (Table 3.2). We conclude that Xcat-2 sequences alone do not

provide functional nanos activity. This result might have been expected,

however, since the Xcat-2 protein is only 128 amino acids long, and the

homology to nanos is only over a 53 amino acid region of the 400 amino acid
nanos open reading frame. Also, independent evidence suggests that regions

besides the C-terminus of nos are important for its function (see above). In

addition, a C-terminal 87 amino acid fragment of nos lacks rescuing activity
(D. Curtis, personal communication).

In an effort to provide a sequence "context" which might be required
for the Xcat-2 domain to provide nanos function in embryos, we next
constructed a chimeric cDNA. Xcat-2 sequence was substituted for nanos

sequence within the 53 amino acid region of homology, in the background of
the wild-type nanos cDNA (Fig 3.1). This chimeric cDNA fails to rescue when
assayed by RNA injection (Table 3.2). In order to test whether the chimeric
fusion protein was properly synthesized and stable in embryos, the injections
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were repeated, into nosBN mutant embryos, which lack endogenous nanos

protein and therefore provide a negative background for antibody staining.

As a control, embryos were injected with RNA transcribed from an intact
nanos cDNA. Just as with the nosL7 embryos, the abdominal phenotype of
nosBN embryos is fully rescued by the wild-type, but not the chimeric
transcript (data not shown). Antibody staining of the injected embryos shows
that both the wild-type and the chimeric fusion proteins are stably
synthesized to roughly equal degrees (Figure 3.2). We therefore conclude that
despite the high degree of sequence conversation, Xcat-2 is not a functional

homologue of nanos. In addition, we may conclude that the 53 amino acid

region of homology is absolutely essential to nanos function.

The nanos C-terminus includes a pair of cysteine containing motifs
similar to that found in the retroviral nucleocapsid class of zinc finger
proteins (Curtis et al., 1995). Most interestingly, these paired cysteine motifs

occur in the region of Xcat-2 homology, and are also present in the Xcat-2
sequence (Mosquera et al., 1993). In addition, preliminary evidence suggests
that bacterially produced nanos protein binds zinc (A. Hannaford and D.
Curtis, personal communication). However, while the retroviral
nucleocapsid proteins contain the invariant motif C-X2-C-X4-H-X4-C

(Schwabe and Klug, 1994), the nanos/Xcat-2 sequences differ in spacing both
between the members of the pairs, and from the nucleocapsid consensus.
These findings suggest that Xcat-2 and nanos may constitute a novel family of
zinc-finger domain proteins. In this context, the failure of Xcat-2 to rescue in

the RNA injection assay could be interpreted as a difference in substrate
specificity of the two proteins.

MATERIALS AND METHODS

Cloning

The nanos deletion clones were derived from the plasmid pN5, which
contains a full-length nanos cDNA (Wang and Lehmann, 1991). DNA
manipulations were carried out using standard protocols (Sambrook et al.,
1989). Briefly, for the 51/220 deletion construct, the plasmid was digested to
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completion with restriction endonuclease PstI, then religated to generate the

in-frame deletion of nucleotides 391-898 (numbering from the beginning of

the full length cDNA (Wang and Lehmann, 1991)). For the 119/378 deletion,

the same procedure was carried out with restriction endonuclease NcoI,

generating an in-frame deletion of nucleotides 592-1369. For the 218/288

deletion, the plasmid was partially digested with restriction endonuclease

PvuII and the partial digestion product representing cleavage at nucleotides

893 and 1103 of the cDNA was gel purified and religated to generate the in

-frame deletion. For the 258/400 deletion, the pN5 plasmid was digested to

completion with restriction endonuclease BstXI, then treated with T4

polymerase and calf intestinal phosphatase to generate a linear blunt-ended

fragment. The linearized plasmid was religated in the presence of

polynucleotide kinase-treated NheI linker (New England Biolabs, #1060) to

generate stop codons in all reading frames at nucleotide 1016.

For the Xcat-2 cDNA injection construct, the Xcat-2 coding sequence

was placed behind a Xenopus 8-globin 5' untranslated leader sequence (in

order to match the nanos cDNA plasmid). Briefly, a pSPORT (GibcoBRL)

clone containing Xcat-2 (Mosquera et al., 1993) was digested with SalI, treated

with Klenow fragment, then digested with NotI to excise an intact 780 base

pair cDNA. As a vector, an insert-containing plasmid from the Nick Brown

4-8 hour cDNA library was digested to completion with NheI and NotI to

generate a 2150 base pair truncated version of the cDNA vector pNB40

(Brown and Kafatos, 1988). To generate a fragment containing the R-globin

linker which could be ligated to the Xcat-2 sequence, the polymerase chain

reaction (PCR) was employed using the the primers CW50 and CW53 and a

template plasmid containing pNB40. CW50 overlaps the unique NheI site in

pNB40 and adds a KpnI site; CW53 overlaps the 3'end of the 9t-globin 5'
untranslated leader and adds a BamHI site.

Primer CW50: 5'-CGATCGGTACCGATCTGGCTAGCGATGAC-3'

Primer CW53: 5'-GCGGATCCCCCAAAGTTGAGCGTTTATTC-3',

The PCR product was filled in with Klenow fragment and digested with NheI

to generate a 300 base pair NheI/blunt fragment. The three fragments were

directionally ligated to generate the plasmid pNBXCAT2.
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For the Xcat-2/nanos "swap" construct, PCR was used to generate two

fragments. The first, a 936 base pair fragment containing most of the nanos

coding region, was generated from a pN5 template using the primers Nde-R

and CW56. Nde-R overlaps with and creates an NdeI site at the start codon of

the nanos open reading frame; CW56 hybridizes perfectly to the nanos open

reading frame just upstream of the homology region, and contains a NaeI

half-site.
Nde-R: 5' TTCCATATGTTCCGCAGC-3'

CW56: 5'-GGCTGATCTCTTTGGCCTTG-3'

After PCR and Klenow fill-in, this fragment was cut at a unique BstEII site to

generate a 741 base pair product. The second PCR-generated product of 190

base pairs, containing the homology bearing region of Xcat-2 was generated

from the Xcat-2 clone using the primers CW55 and CW54. CW55 contains 5

residues at the 5'end which introduce a NaeI half site while preserving the

amino acid coding; CW54 is a 'bridge' primer containing both Xcat-2 and

nanos sequences, including an NcoI site from the nanos coding region.

CW55: 5'-GGCACTGCGGGTTCTGCAGGAGC-3'

CW54: 5-ATCCTCCATGGTGATGATCGGCTTCTTGGGGCAGTACCGCATG-3'

After PCR and Klenow fill-in, this second fragment was cut with NcoI to

generate a 185 base pair product. The 3.9 kilobase vector backbone fragment

which includes the nanos 5' and 3' untranslated regions was generated by

digesting pN5 to completion with BstEII and NcoI. The three fragments were

directionally ligated to generate the plasmid pN5/X1.

All DNA constructs were checked by DNA sequencing of junction and

PCR-generated regions.

RNA injection and subsequent analysis

RNA injections were carried out as previously described (Wang and

Lehmann, 1991). Recipient embryos were derived from females homozygous

for either the nosL7 or nosBN allele(Lehmann and Niisslein-Volhard, 1991;

Wang et al., 1994). The nosL7 allele is a hypomorph, producing a small

amount of nanos activity, whereas nosBN is a null in embryos (Wang and

Lehmann, 1991; Wang et al., 1994). For staining experiments, the injected

embryos were fixed after injection as previously described (Wang and

Lehmann, 1991), and stainings were carried out as previously described (Gavis
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and Lehmann, 1992) using an anti-nanos antibody which was raised against a

nanos C-terminal peptide (Wang et al., 1994). This peptide is preserved intact

in the chimeric fusion protein.
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Table 1. RNA injection rescue assay of nanos deletion constructs

Percent of developed embryos

N 0-1 2-5 6-7 8 or hatch

wild-type nanos

nosA51 /220

nosA119/378

nosA218/288

70

84

60

11 4 6 79

100

100

17 16 4 6357

nosA258/400 78 100

Recipient embryos for the injection assay were derived from homozygous
nosL 7 mutant females. Uninjected embryos develop into larvae which
completely lack abdominal segments. "Construct" denotes the cDNA
template used for in vitro transcription of RNA for injection. "N" is the
number of scored larval cuticles. The table entries represent the percent of
the total number of larval cuticles scored showing a given number of
abdominal segments.
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Figure 3.1. Structural analysis of the nanos polypeptide

This figure depicts a schematic of the nanos open reading frame. The

top half of the figure shows the in-frame deletion clones which were tested

for function by the RNA injection assay. The column on the right shows

whether a given deletion was able to rescue the nanos mutant phenotype.

The lower half of the figure shows the 53 amino acid region of homology

between nanos and the Xenopus gene Xcat-2. Residues which are identical

between the two polypeptide sequences are denoted with a dot, and a

connecting line denotes conservative amino acid changes. The percentages to

the right are based on 29/53 identities, plus 3 conservative changes. Both the

nanos and Xcat-2 open reading frames are depicted as open boxes, with lines

drawn to indicate the location of the 53 amino acid homology region for each

protein. N and C, the N- and C- termini of the respective open reading

frames; aa, amino acids. Drawing is made to scale.
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Table 2. RNA injection rescue assay of Xcat-2 sequences

# of abdominal segments ( % )

RNA injected N 0-1 2-5 6-8

pN5/X1 132 99 1 0

(swap)

pNBXCAT2 125 100 0 0

(intact Xcat-2)

pN5 84 0 2 98

(intact nanos)

Recipient embryos for the injection assay were derived from homozygous
nosL 7 mutant females. Uninjected embryos develop into larvae which

completely lack abdominal segments. "RNA injected" denotes the cDNA
template used for in vitro transcription of RNA for injection. "N" is the
number of scored larval cuticles. The table entries represent the percent of
the total number of larval cuticles scored showing a given number of
abdominal segments.
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Figure 3.2. Expression of injected RNAs detected by whole-mount antibody

staining

Embryos were injected with RNA, then fixed and stained in whole-

mount to detect expression of nanos-derived protein sequences. Recipient

embryos were obtained from nosBN homozygous mutant mothers. These
embryos lack endogenous nanos protein. A. Embryo injected with pN5 (full
length nanos cDNA) in vitro transcript. B. Embryo injected with pN5/X1

(chimeric nanos/Xcat-2 protein) in vitro transcript. In both cases, high levels

of expression of protein derived from injected RNA are observed. Embryos

are oriented with the anterior on the left, dorsal side towards the top of the

figure.
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Chapter 4

The genetics of nanos localization in Drosophila
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AUTHOR'S NOTE

This chapter has been previously published as Wang, C., Dickinson, L.K., and

Lehmann, R. (1994) "Genetics of nanos localization in Drosophila"

Developmental Dynamics 199, 103-115. Laura Dickinson participated in the

whole-mount in situ hybridization and antibody staining analyses of ovaries

and embryos.
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ABSTRACT

The Drosophila gene nanos is required for two processes. During
oogenesis, nanos function is required for the continued production of egg
chambers, and nanos is expressed in the early germarium. During
embryogenesis, nanos is required maternally to specify abdominal

segmentation. Nanos shares this latter function with nine other genes,
collectively known as the posterior group. Of this group, nanos encodes a
determinant, and is localized as an RNA to the posterior pole of early

embryos. This RNA is translated to form a gradient of nanos protein with
highest concentrations at the posterior. Analysis of the distribution of nanos
gene products in embryos mutant for posterior group genes shows that eight
of these genes are required for localization, but not stability, of the nanos
RNA. Embryos mutant for posterior group alleles which produce weak
abdominal phenotypes show reduced amounts of localized nanos RNA. This

correlation between nanos RNA localization and abdominal phenotype
suggests that nanos acts as a localization-dependent posterior determinant.
Localization of nanos is not affected by mutations in bicoid or torso,

confirming that the three maternal systems of anterior-posterior
determination initially act independently.

INTRODUCTION

In Drosophila, three classes of maternal-effect genes, the anterior,

posterior, and terminal classes, control embryonic pattern formation along
the anterior-posterior axis (Niisslein-Volhard et al., 1987; Ntisslein-Volhard,
1991; St. Johnston and Niisslein-Volhard, 1992). The posterior class comprises
ten known genes (cappuccino (capu), spire (spir), mago nashi (mago), oskar

(osk), staufen (stau), vasa (vas), tudor (tud), valois (vis), nanos (nos), and
pumilio (pum)) which are required for formation of the abdominal segments
(Boswell and Mahowald, 1985; Schupbach and Wieschaus, 1986; Lehmann
and Nisslein-Volhard, 1986; Lehmann and Niisslein-Volhard, 1987b;
SchUpbach and Wieschaus, 1989; Manseau and Schtipbach, 1989; Lehmann
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and Niisslein-Volhard, 1991; Boswell et al., 1991). Eight of these genes (capu,

spir, mago , stau, osk, vas, tud, and vis) display a second mutant phenotype,
the grandchildless phenotype. Grandchildless mutant mothers produce
embryos which lack poleplasm, the specialized cytoplasm at the posterior
pole. The poleplasm contains large ribonucleoprotein particles known as
polar granules, and becomes incorporated into the germline precursor cells,
the pole cells. Several of the grandchildless genes have been cloned, and the
gene products shown to be localized to the poleplasm as RNAs and/or
proteins (Hay et al., 1988; Lasko and Ashburner, 1988; Ephrussi et al., 1991;
Kim-Ha et al., 1991; St. Johnston et al., 1991). Genetic analysis of the
localization of these poleplasm components has resulted in a model in which
the grandchildless genes act in a stepwise pathway to assemble poleplasm
(Hay et al., 1990; Lasko and Ashburner, 1990; Kim-Ha et al., 1991; Ephrussi et
al., 1991; St. Johnston et al., 1991). Genes early in the pathway nucleate or
otherwise achieve the assembly of downstream gene products into the
poleplasm. In this pathway, capu, spir, stau, and mago act upstream of osk,
which in turn acts upstream of vas, followed by tud and vs.

Cytoplasmic transplantation experiments have shown that wild-type
poleplasm contains an activity which rescues the abdominal segmentation
phenotype of posterior group mutant embryos. This activity is absent at the
posterior pole of posterior group mutant embryos (Lehmann and Niisslein-
Volhard, 1986; Lehmann and Niisslein-Volhard, 1987b; Lehmann and
Niisslein-Volhard, 1991; Boswell et al., 1991). Synthesis of this rescuing

activity during oogenesis depends strictly on the gene nos (Lehmann and
Nfisslein-Volhard, 1991). Subsequent cloning of nos revealed that the nos
messenger RNA is localized to the posterior pole of embryos, and that nos
RNA is functionally equivalent to the posterior rescuing activity (Wang and
Lehmann, 1991). nos therefore encodes a posterior determinant which is
localized to the posterior pole of wild-type embryos, and posterior group
mutant embryos lack localized nos activity. In wild-type embryos, localized
nos RNA is a source for a gradient of nos protein with highest levels at the
posterior (this report; Ephrussi and Lehmann, 1992; Smith et al., 1992; Barker
et al., 1992). nos protein prevents expression of hunchback (hb) protein from
the maternal hunchback RNA (Hiilskamp et al., 1989; Irish et al., 1989a;
Struhl, 1989). Hb, in turn, acts as a morphogen to repress expression of
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abdominal gap genes (Hiilskamp et al., 1990; Struhl et al., 1992). In the
posterior half of the embryo, reduced levels of hb protein allow abdomen
development.

Analysis of strong nos alleles reveals that, in addition to its role in
specifying abdomen, nos also plays a role in oogenesis. Females mutant for
either of two nos alleles lay very few eggs. Examination of the mutant
ovarioles shows that while oogenesis continues normally once it has been
initiated, stem cell proliferation appears to be defective such that few cysts are
produced (Lehmann and Nfisslein-Volhard, 1991). The target of nos function
in oogenesis remains unknown.

In this report, we examine the distribution of nos gene products during
development. Furthermore, we show that the genes of the grandchildless
class are required to localize nos RNA to the posterior pole of early embryos.
Mutations in these genes do not affect the stability of the nos RNA. Embryos
mutant for posterior group alleles giving weak abdominal segmentation
phenotypes show abnormal or reduced localized RNA. Finally, we show that
other maternally-acting segmentation genes do not play a role in nos
localization.

RESULTS

Genetic analysis has shown that nos is required at two stages of
development, oogenesis and early embryogenesis. RNA analysis confirms
that nos transcript is detectable at significant levels only in females and early
embryos (Wang and Lehmann, 1991). Moreover, genetic and cytoplasmic
transplantation analyses suggest that nos function depends strictly on the
correct spatial distribution of its gene product(s). We therefore examined the
distribution of nos gene products in both ovaries and embryos. In summary,
we find that patterns of nos expression correspond to the sites defined by
genetic analysis as critical for nos function.
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Distribution of nanos gene products in embryos

nos transcript is tightly localized to the posterior pole of early embryos,
and appears to be restricted to the poleplasm (Figure 4.1A). nos RNA is

included in the forming pole buds (Figure 4.1B), and is visible afterwards in

the pole cells (Figures 4.1C,D). The transcript remains detectable in pole cells

until the extended germ band stage, where it is faintly visible within the

pocket of the posterior midgut invagination (Figure 4.1E). After germ band

retraction, no RNA is detectable within the early embryonic gonad (Figure
4.1F). To test whether nos is zygotically transcribed in embryos, we examined

embryos produced by nosBN mutant females which had been crossed with

wild-type males (data not shown). Females mutant for the nosBN allele

deposit no nos RNA into embryos (see below). In situ hybridization analysis

of these embryos failed to detect any nos RNA, indicating that nos is not
newly transcribed in either the pole cells or the embryonic somatic tissue.

Translation of nos protein from its localized RNA begins soon after egg

deposition. At the earliest embryonic stages examined, faint staining is

visible at the posterior pole (Figure 1G). As the cleavage stages progress, the

level of staining increases, and a gradient of nos protein is generated which is
highest at the posterior pole. This gradient reaches its most anterior extent,

about 30% egg length (0%= posterior end), at the pole bud stage (Figure 4.1H).
More sensitive staining methods have been employed to show that nos
protein can be detected as anteriorly as 50% egg length (Barker et al., 1992).

Both the nanos and hunchback protein gradients are detected in unfertilized

eggs (data not shown). nos protein is incorporated into the pole cells, and
staining outside the pole cells is largely undetectable by blastoderm stage
(Figures 4.11, J). The pole cells continue to stain strongly for nos protein
through gastrulation and germ band extension (Figures 4.1K, L). nos protein

can be detected in the primordial germ cells as late as embryonic stage 15
(stages according to Campos-Ortega and Hartenstein, 1985), when the cells
have reached the bilaterally symmetric embryonic gonad. The persistence of

the protein in pole cells until late embryogenesis contrasts with the nos RNA,
which is undetectable in pole cells after germ band extension (see above).
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Distribution of nanos gene products in oogenesis

The observation that some nos alleles exhibit oogenesis defects implies
that nos is expressed very early in oogenesis. Detection of nos transcript in
the pre-vitellogenic germarium is made difficult by very low amounts of nos

RNA present in these stages (Figure 4.2) (see figure legend for a description of
oogenesis). More sensitive in situ hybridization methods occasionally detect
low concentrations of nos RNA in regions 2 and 3 of the germarium. nos

transcript is clearly detected by stage 5 of oogenesis, when both the nurse cells
and the oocyte contain nos RNA, which appears to be enriched in the oocyte
(Figure 4.2A). During stages 7/8, nos RNA appears to be transiently localized
to the anterior margin of the growing oocyte. Several other localized
transcripts in Drosophila show a similar pattern of transient anterior

localization in these stages (Suter et al., 1989; Ephrussi et al., 1991; Kim-Ha et
al., 1991; Cheung et al., 1992; Lantz et al., 1992; see also Theurkauf et al., 1992).

At stage 10, the nurse cells contain high levels of nos RNA. Shortly
afterwards, the nurse cells contract and deposit their contents, including nos

RNA, into the oocyte. Nanos RNA localization occurs during the final stages
of oogenesis (stages 13/14), and small amounts of RNA can be observed
accumulating at the posterior pole of the oocyte as early as stage 12 (Figure
4.2A).

nos protein is first detected in regions 1/2a of the germarium (Figures

4.2A, B). The 4 and 8 cell cysts (region 1) stain most strongly, and lower levels

of staining are observed in the 16 cell cyst (region 2a). In the subsequent
vitellogenic stages, nos protein is present at low levels in nurse cell/oocyte

clusters in stages 3 through 6. High levels of expression are observed in nurse
cells at stage 10. At no point in oogenesis do we observe nos protein in the
growing oocyte.

Nanos mutant alleles

To further investigate the dual role of nos in development, we
examined the distribution of mutant nos gene products (Table 4.1) (note: for
maternal effect genes, we will hereafter refer to embryos derived from
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homozygous mutant females as "mutant embryos"). The five existing nos

alleles fall into three phenotypic classes. The first class, which includes nosL7

and nosRW, results in abdominal, but not oogenesis, defects. nosL7 produces

stronger abdominal defects than nosRW (Lehmann, 1988; Lehmann and
Niisslein-Volhard, 1991). Embryos mutant for the nosL7 or nosRW alleles

show normal distribution patterns of both nos RNA and protein. These data

suggest that these alleles encode nos proteins of either reduced function, or
with defects specific for abdomen formation. The nosBN allele, the result of a
P element insertion in the nos promoter region (see Materials and Methods),

comprises the second class of nos mutations. nosBN produces strong
abdominal defects, but oogenesis is unaffected. nosBN embryos lack nos
RNA (see Figure 4.4) and do not contain detectable nos protein (Table 4.1).
nosB N mutant ovaries contain greatly reduced amounts of nanos protein
(Table 4.1). We conclude that the nosBN allele reduces nos transcription
below a level critical for abdomen formation, but still sufficient to complete
oogenesis. The third class of nos alleles includes the two strongest alleles,
InosRC and nosRD. Females homozygous for these alleles produce only a few

embryos, all of which show strong abdominal defects. Both the oogenesis and
abdominal segmentation phenotypes are fully complemented by a transgene

containing 5 kb of genomic DNA capable of encoding only the nanos

transcript (E. Gavis, personal communication). nosRD encodes a stable RNA
(data not shown), which is properly localized to the posterior pole (Table 4.1).

However, nosRD protein appears to be poorly synthesized or unstable, as
protein levels are severely reduced in both ovaries and embryos (Table 4.1).

nosRC encodes an unstable transcript (data not shown), and we detect no

protein in either ovaries or embryos (Table 4.1). We conclude that the nosRC

phenotype represents the nos null phenotype.

Posterior group mutants

Embryos derived from females mutant for any posterior group gene
lack abdominal segments. Eight of the ten known posterior group genes
display a second, grandchildless phenotype. Cytoplasmic transplantation and
RNA injection experiments both suggest that grandchildless mutant embryos
lack localized posterior rescuing activity (i.e. nos activity) at the posterior pole
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(Lehmann and Niisslein-Volhard, 1986; Lehmann and Niisslein-Volhard,
1987b; Lehmann and Niisslein-Volhard, 1991; Wang and Lehmann, 1991).
We were therefore interested to see how the grandchildless mutations affect
the distribution of nos gene products.

strong mutants

This group comprises strong alleles of capu, spir, stau, osk, and vas.
These genes function early in the genetically defined poleplasm assembly
pathway, and mutant embryos develop strong abdominal defects (Manseau
and Schiipbach, 1989; Lehmann and Niisslein-Volhard, 1986; Schfipbach and
Wieschaus, 1986). The distribution of nos gene products in embryos derived
from the respective mutant females (see Materials and Methods for a
description of the alleles examined) was analyzed by in situ hybridization and
antibody staining. No localized RNA or protein can be detected in embryos
mutant for vas, capu, spir, stau, or osk (data shown for vas, Figure 4.3). We
therefore conclude that capu, spir, stau, osk, and vas play an essential role in
nos RNA localization.

weak mutants

We next examined the localization of nos in mutant embryos that fail
to form poleplasm or pole cells, but give weak abdominal phenotypes (Figure
4.3). The mutation osk30 1 is temperature sensitive for abdomen formation.
At the permissive temperature (20°C), normal, complete abdomens form,
whereas at the restrictive temperature (29°C), strong abdominal defects occur
(Lehmann and Niisslein-Volhard, 1986). At the permissive temperature, nos
RNA is most often observed as a small, strongly staining area at the posterior
pole (Figure 4.3D). This localization pattern is distinct from the posterior
"crescent" of staining seen in wild-type embryos (Figure 4.3A). At the
restrictive temperature, no localized nos RNA or nos protein is observed
(Figures 4.3C, J). The distribution of nos protein in osk301 at the permissive
temperature parallels the altered RNA distribution, with a reduction in both
the amount of protein as well as the anterior extent of the protein gradient
(Figure 4.3K). Alleles of capu and stau which produce weak abdominal
phenotypes show patterns of nos distribution similar to osk301 at the
permissive temperature (data not shown).
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Of the known grandchildless genes, tud and vis are the farthest

downstream in the genetic pathway of poleplasm assembly. Both mutations

partly affect nos RNA localization. Tud mutant embryos develop a variable

number of abdominal segments, with the majority forming 6 to 8 of the

normal 8 segments (Boswell and Mahowald, 1985; Wang and Lehmann,

1991). About half of tud embryos contain localized RNA, but the signal

appears to be weaker than in wild type, while the other half have very little or

no localized RNA (Figure 4.3E). Vs mutations have strong effects on

abdomen formation, with greater than 90% of the developed embryos

completely lacking abdominal segments (Schiipbach and Wieschaus, 1986;

Wang and Lehmann, 1991). Correspondingly, the majority of embryos

produced by vs mutant females fail to localize nos RNA, while

approximately 10% show localized RNA which appears to occupy a smaller

area than in wild type (Figure 4.3F). As might be expected from their patterns

of RNA localization, tud and vis embryos differ in their patterns of nos

protein distribution. Most tud mutant embryos show a fairly normal or

slightly reduced nos protein gradient (Figure 4.3L). Most vis mutant embryos

lack detectable nos protein. However, a small number of vis mutant embryos

(about 10%) show a weak concentration of nos protein at the posterior (Figure

4.3M).

Mago is unique among the posterior group genes in that a variety of

mutant phenotypes have been reported, ranging from weak to strong

abdominal defects, as well as bicaudal (double abdomen) embryos at a low

frequency (Boswell et al., 1991). The role of mago in poleplasm assembly

remains unclear, but genetic analysis suggests that mago acts upstream of osk

in the pathway (Ephrussi and Lehmann, 1992). In our observations, mago

embryos frequently lacked abdominal segments. Bicaudal embryos were

observed much less commonly than previously reported. Most mago mutant

embryos lack localized nos RNA, although some embryos are observed with a
"dot" of localized RNA at the posterior (Figure 4.3G). Correspondingly, many

mago embryos have no detectable nanos protein, although some weak
gradients are seen (Figure 4.3N). We did not detect at a significant frequency

any nos RNA or protein at the anterior of mago mutant embryos.
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In summary, we conclude that these mutations which give weak

abdominal phenotypes partly disrupt posterior localization of nos RNA.

These results suggest that the extent of nos function depends on the degree of
nos RNA localization.

RNA analysis of posterior group mutants

As shown above, grandchildless mutant embryos are impaired for nos
RNA localization. It remains possible, however, that instead of or in addition
to their role in localizing nos RNA, the grandchildless genes might affect
RNA stability. We therefore prepared RNA from grandchildless mutant and
wild-type embryos for analysis by Northern blot hybridization. Similar

amounts of intact nos transcript were detected in both wild-type embryos and
mutant embryos lacking localized nos RNA (Figure 4.4). In particular,
grandchildless mutations do not appear to affect the stability of the RNA.

Mutants in other maternal-effect systems

Genetic analysis has shown that each of the anterior, posterior, and

terminal classes of maternal effect genes affects a subset of the complete

embryonic pattern (Nisslein-Volhard et al., 1987; Niisslein-Volhard, 1991; St.

Johnston and Niisslein-Volhard, 1992). Each of these classes defines a system
for specifying pattern. These three systems are thought to act largely
independently of one another (Niisslein-Volhard et al., 1987; Niisslein-
Volhard, 1991; St. Johnston and Niisslein-Volhard, 1992). To confirm the
independent action of the three maternal systems, we examined the
localization of nanos gene products in embryos mutant for torso, bicoid,

exuperantia, or swallow.

The terminal class gene torso (tor) encodes a tyrosine kinase receptor
which plays a key role in specification of the specialized terminal structures,
including the acron and telson (Klingler et al., 1988; Sprenger et al., 1989).
Mutant embryos lacking tor activity show normal distribution patterns of nos
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gene products (Figures 4.5A,E). Terminal class activity is therefore
independent of, and not required for, nos RNA localization.

Bicoid (bcd), exuperantia (exu), and swallow (swa) are anterior class
genes required for proper formation of the head and thoracic structures
(Frohnh6fer and Niisslein-Volhard, 1986; Frohnh6fer and Niisslein-Volhard,
1987). Bcd encodes a homeodomain-containing transcription factor which
acts as an anterior morphogen, and its RNA is localized to the anterior end of
the embryo (Berleth et al., 1988; Driever and Niisslein-Volhard, 1988). Exu
and swa are required for proper localization of the bcd RNA (Berleth et al.,
1988). Bcd mutations do not affect nos RNA localization or protein
distribution (Figures 4.5B, F). The posterior localization machinery therefore
functions independently of the activity of the anterior morphogen. Similarly,
mutations in exu do not affect localization of nos RNA (Figure 4.5C). In swa
mutant embryos, nos RNA is localized to the posterior, but the staining
appears patchy or ragged (Figure 4.5D). nos protein distribution in exu or swa
mutants is consistent with their respective RNA patterns (Figures 4.5G, H).
We conclude that while swa is not absolutely required for localization of
RNAs to the posterior, some components of the RNA localization machinery
may be shared between the anterior and posterior systems.

DISCUSSION

Nanos during oogenesis

We have detected nos protein expression during two distinct periods of
oogenesis. The early phase of nos expression is primarily limited to the early
stages of the germarium and correlates with the genetic requirement for nos
in oogenesis. Females mutant for the alleles nosRC or nosRD lay very few
eggs. Examination of the mutant ovarioles shows that although oogenesis
proceeds normally once initiated, stem cell proliferation appears to be
defective, and few cysts are produced (Lehmann and Niisslein-Volhard, 1991).
Combined with the observed expression pattern, this phenotype suggests that
nos may act to promote stem cell or cystoblast divisions. How would nos
carry out this function? By analogy to its later role in embryonic
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development, nos could repress hb translation. Absence of hb protein would
allow oogenesis to continue normally. In the absence of nos, hb would
repress stem cell or cystoblast divisions. This scenario appears unlikely,
however, since there is no evidence that hb is expressed in early oogenesis (F.
Pelegri, unpublished data). Moreover, oogenesis occurs normally in females
which lack hb in the germline (Lehmann and Niisslein-Volhard, 1987a).
Finally, expression of a hb transgene lacking the RNA nos response elements
(NREs), which have been shown to be necessary and sufficient for regulation
by nos in embryogenesis, has no dominant phenotype in oogenesis (Wharton
and Struhl, 1991). Thus it seems likely that, during oogenesis, nos acts not
through hb, but rather through a different target. nos function in oogenesis
does not require its 3' untranslated region (UTR), as a nos transgene
containing a different 3'UTR fully complements the oogenesis defect (Gavis
and Lehmann, 1992).

nos protein can be detected at a second time in oogenesis, in the nurse
cells at stage 10 (Figure 4.2A). The function of this expression remains
unclear. However, the presence of high levels of nos protein in stage 10
nurse cell cytoplasm is consistent with the earlier finding that this cytoplasm
is able to rescue the abdominal phenotype of posterior group mutant embryos
when assayed by cytoplasmic transplantation (Sander and Lehmann, 1988).
Although staining for nos protein is no longer detectable after stage 10, it
should be noted that formation of the chorion and vitelline membrane
during the later stages of oogenesis probably renders the growing oocyte
impermeable to antibody. In any case, it is critical that nos protein be
excluded from the oocyte, because nos activity can interfere with the
expression of the anterior morphogen bcd (Wharton and Struhl, 1989; Wang
and Lehmann, 1991; Gavis and Lehmann, 1992).

Other posteriorly localized elements

Past work has identified several genes whose products are localized to
the posterior pole of embryos as RNAs or as proteins. In some cases, these
components have been shown to be part of the poleplasm, the specialized
cytoplasm at the embryonic posterior pole. Products localized to the posterior
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pole include osk RNA and protein (Ephrussi et al., 1991; Kim-Ha et al., 1991;

Ephrussi and Lehmann, 1992), stau protein (St. Johnston et al., 1991), vas

protein (Hay et al., 1988; Lasko and Ashburner, 1988), cyclin B RNA

(Whitfield et al., 1989), and the germ cell-less (gcl) RNA (Jongens et al., 1992).

Localization of these components depends on the grandchildless genes.
Analysis of the distribution of localized components in grandchildless
mutants defines a genetic hierarchy, and therefore a pathway for poleplasm
assembly. Localization of nos RNA occupies the same position in the
assembly pathway as localization of the cyclin B and gcl RNAs (this work, Raff

et al., 1990; Jongens et al., 1992). That is, localization of these three RNAs
requires the function of all known grandchildless genes.

However, the Bicaudal-D (Bic-D) mutation reveals a difference in the
localization of these three RNAs. Embryos produced by Bic-D mutant females

develop two abdomens in mirror image (Mohler and Wieschaus, 1986).
Poleplasm and pole cells are observed at the posterior, but the anterior end of
these mutant embryos contains neither poleplasm nor pole cells (Mohler and
Wieschaus, 1985). Osk RNA, nos RNA, and cyclin B RNA are ectopically

localized to the anterior in Bic-D mutant embryos, but stau protein, vas

protein, and gcl RNA are not detectably enriched at the anterior (Ephrussi et
al., 1991; Raff et al., 199; St. Johnston et al., 1991; Hay et al., 1990; Lasko and

Ashburner, 1990; Jongens et al., 1992). These results suggest that at the
anterior, localization of stau, vas, and gcl is not necessary for nos RNA
localization.

RNA localization and abdominal phenotype

Grandchildless mutant embryos exhibit a series of nos RNA

localization patterns. How do these patterns relate to the abdominal
phenotypes observed? For strong grandchildless mutations (i.e. strong alleles
of capu, spir, stau, osk, and vas), no localized nos RNA is seen, and no nos
protein is detected. These embryos lack nos activity, and develop strong
abdominal defects. Most vis mutant embryos lack localized nos RNA, but a
few embryos appear to contain reduced amounts of localized nos RNA.
Accordingly, a large majority of vis mutant embryos lack localized protein,
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and develop with strong abdominal defects (Schiipbach and Wieschaus, 1986;

Wang and Lehmann, 1991). Tud and mago mutant embryos show a broad

range of nos distribution patterns, resulting in variable and weak abdominal
defects (Boswell and Mahowald, 1985; Schfipbach and Wieschaus, 1986;
Boswell et al., 1991; Wang and Lehmann, 1991). Osk301 embryos at the

permissive temperature show reduced amounts of localized nos RNA and
protein. However, this reduced amount of nos protein is sufficient for the

formation of a complete abdomen. These results demonstrate a strong

correlation between the degree to which nos RNA is localized, the amount of

nos protein observed, and the degree of abdominal segmentation achieved.

In addition, an increase in maternal osk gene dosage results in increased

amounts of localized nos RNA, and increased nos activity (Ephrussi and

Lehmann, 1992; Smith et al., 1992). These correlations suggest that nos'

activity as an abdominal determinant is localization-dependent.

Grandchildless mutant embryos which lack localized nos RNA
nevertheless contain normal levels of stable, but unlocalized, nos transcript

(Figure 4.4). These embryos lack posterior rescuing activity as assayed by

cytoplasmic injection (Lehmann and Nfisslein-Volhard, 1986; Lehmann and

Niisslein-Volhard, 1991) and develop severe abdominal defects. This result

suggests that the unlocalized nos RNA in these embryos is inactive.

Additionally, comparison of the levels of nos RNA detected by whole-mount

in situ hybridization to wild-type versus nosBN embryos (nosBN is an RNA

null allele in embryos) shows that wild-type embryos contain detectable levels

of unlocalized nos RNA (data not shown). If this unlocalized RNA were

active, ectopic nos activity at the anterior might interfere with the function of

the anterior morphogen bcd. However, no difference in head development is

observed between wild-type and nosBN embryos (unpublished data). These

observations suggest that the unlocalized nos RNA in wild-type embryos, like

the unlocalized nos RNA in grandchildless mutant embryos, is inactive. One

possible explanation for this result is that the levels of nos protein produced
by the unlocalized nos RNA are insufficient to prevent translation of hb or
bcd RNAs. An alternative hypothesis is that expression of nos in the early

embryo is regulated at the level of translation such that only localized RNA is
active. We favor this latter hypothesis, since experimental evidence indicates
that localization of nos RNA to the posterior pole is specified by its 3'UTR
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(Gavis and Lehmann, 1992), and that substitution of an unregulated 3'UTR
for the nos 3'UTR allows unrestricted nos activity (Gavis and Lehmann,
1994). This 3'UTR-mediated control mechanism apparently ensures that only
nos transcript which is properly localized to the posterior pole can produce
active nos protein, which acts as a determinant to specify abdomen.

MATERIALS AND METHODS

Fly stocks

The nosBN allele, a generous gift of T. Schiipbach, was isolated in a P
element mutagenesis screen using a white-marked P element (Bier et al.,
1989). nosBN homozygous mutant females produce embryos which
completely lack abdominal segments (unpublished data). These mutant
females do not display the oogenesis defects associated with some nos alleles
(Lehmann and Niisslein-Volhard, 1991). Genomic Southern blot analysis
was used to map the insertion site of the P element to a 220 bp ClaI-NruI
restriction fragment which spans the putative nos transcription start site
(L.K.D., unpublished data). The P element was mobilized by the introduction
of transposase, and resulting stocks were screened for the loss of the white
marker. White- revertants were then tested for the maternal-effect

abdominal defect. This screen produced both wild-type revertants as well as
new nos alleles (L.K.D., unpublished data). Genomic Southern analysis of
revertant lines shows that the wild-type revertants are the result of precise P
element excision events. Revertants which give nos mutant phenotypes are
associated with the partial loss of P element DNA (imprecise excisions)
(L.K.D., unpublished data). These results indicate that the nosBN allele is
caused by a P element insertion in the nos gene.

For all other mutants, the alleles used are the strongest available
combination, unless otherwise noted. Specifically: nanos - nosL7/nosL 7,
nosBN/nosBN, nosRC/ n osBN, nosRD/nosBN, or nosRW/nosBN (weak)
(Lehmann and Niisslein-Volhard, 1991; this work). oskar - osk54 /osk54,
osk166/osk 16 6, or osk301 /osk54 (weak) (Lehmann and Niisslein-Volhard,
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1986; Lehmann and Niisslein-Volhard, 1991). cappuccino/spire-
capuRK /capuRK, capuHK/capuHK (weak), spirRP/spirRP, or
capuRKspirO35/capuRKspirO35 (Manseau and Schiipbach, 1989). staufen -
stauD3 /stauD 3, or stauC8 /stauD 3 (weak) (Lehmann and Niisslein-Volhard,
1991). vasa - vasaD1/vasaPD (Schiipbach and Wieschaus, 1986; Lehmann and
Niisslein-Volhard, 1991). tudor - tudWC8/Df[2R]PurP 133, or
tudWC8/tudWC8 (Boswell and Mahowald, 1985; SchUpbach and Wieschaus,
1986). valois - vlsPE/Df[2R]TW2, or vlsPE/vlsPG (Schiipbach and Wieschaus,
1986; Schiipbach and Wieschaus, 1989). mago nashi - mago1/mago 3, or
mago1/Df[2R]PuF 3 6 (Boswell et al., 1991). pumilio - pum68 0/pum 6 80

(Lehmann and Niisslein-Volhard, 1987b). Note that for technical reasons, the
strongest available pum- combination, In(3R)Msc/T(3,1)FC8 was not used
(Barker et al., 1992). torso - torXR1/torXR 1 (Sprenger et al., 1989). bicoid -
bcdEllbcdEl (Frohnhdfer and Niisslein-Volhard, 1986). exuperantia -
exuPJ/exuPJ (Schiipbach and Wieschaus, 1986). swallow - swa14/swa 1 4

(Frohnh6fer and Niisslein-Volhard, 1987). All laying cages for embryo
collections were kept at 220C, except for mago females, which were kept at
18°C, the restrictive temperature for abdomen formation (Boswell et al., 1991).

Whole-mount in situ hybridization

Whole-mount in situ hybridizations to embryos and ovaries were
performed as described previously (Tautz and Pfeifle, 1989), with
modifications as described (Ephrussi et al., 1991; Gavis and Lehmann, 1992).
Antisense RNA probes were synthesized by in vitro transcription of a
plasmid containing an intact nos cDNA (pN5; Wang and Lehmann, 1991)
with T7 RNA polymerase.

Antibodies

The anti-nos antibody is directed against a 14 amino acid peptide which
includes the C-terminal 13 residues of the predicted nos polypeptide
(RLAKSSYYKQQMKV) (Wang and Lehmann, 1991) and an additional N-
terminal cysteine to facilitate chemical coupling. The peptide was coupled to
keyhole limpet hemocyanin (KLH) using the Imject kit according to the
manufacturer's directions (Pierce). This KLH-peptide conjugate was injected
into rabbits, using Freund's adjuvant. The resulting antiserum was used for
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whole-mount staining of embryos or ovaries directly after preabsorption to 0-
2 hour old wild-type embryos. Collection, preparation, and staining of
embryos and ovaries were carried out as described previously (Gavis and
Lehmann, 1992).

It should be noted here that vs mutant embryos are inefficiently
devitellinized by the standard methanol protocol referred to above. This
defect may be related to the cellularization defects seen in a large percentage of
vls mutant embryos (Schiipbach and Wieschaus, 1986; Schiipbach and
Wieschaus, 1989; Lehmann and Niisslein-Volhard, 1991). Only a small
percentage of vs mutant embryos are therefore recovered for staining. This
poor recovery could possibly result in a bias in the population of stained
embryos observed.

RNA analysis

Poly A+ RNA was prepared from 0-2.5 hour oldembryos and analyzed
by Northern blot hybridization as described previously (Wang and Lehmann,
1991). The blot was probed with random-primed labeled nos cDNA (a 1.7 kb
SalI-EcoRI fragment) (Wang and Lehmann, 1991), or with an actin 5C probe as
a control for loading (Fyrberg et al., 1983).
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Figure 4.1. Nanos RNA and protein distribution in wild-type embryos

Fixed embryos were analyzed by whole-mount in situ hybridization to

detect nos RNA (A-F) or stained with antibodies directed against nos protein

(G-L) as described in Materials and Methods. A, G) cleavage stage (stage 1); B,
H) pole bud formation (stage 3a); C, I) pole cell formation (syncytial

blastoderm) (stage 3b); D, J) blastoderm (stage 4); E, K) late gastrula (stage 8); F,

L) post-germ band retraction (stage 13). Note that after pole bud formation,

nos protein is rapidly (1-2 nuclear cycles) degraded outside of the pole cells,

implying that the nos protein has a relatively short half life. This short half
life suggests a mechanism for the formation of the nos protein gradient.

Stages are as described in Campos-Ortega and Hartenstein, 1985. Photos were
taken at 200X magnification. Anterior to the left, dorsal up.
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Figure 4.2. Nanos RNA and protein distribution in wild-type ovaries

Ovaries dissected from wild-type females were analyzed by whole-
mount in situ hybridization to detect nos RNA, or stained with antibodies
directed against nos protein. Drosophila oogenesis is divided into
previtellogenic and vitellogenic stages. In the three regions of the germarium
(the previtellarium), stem cells divide 4 times without cytokinesis to form 16
cell clusters. One of these sixteen cells becomes the oocyte, while the other
cells become polyploid nurse cells. The oocyte is always situated at one end
(the posterior end) of the cluster. The entire cluster is surrounded by somatic
follicle cells, which secrete the chorion and vitelline membrane.
Vitellogenesis is divided into 14 stages. By stage 6, the oocyte is visibly larger
than any of the other 15 cells. By stage 10, the oocyte and the nurse cell cluster
are approximately equal in size. During stages 11-14, the chorion and
vitelline membrane are secreted by the follicle cells, and the oocyte grows to
its final size as the nurse cells degenerate. (See also King, 1970 and Mahowald

and Kambysellis, 1980 for descriptions of oogenesis.) A) 200X magnification
view; oogenetic stages are indicated for each panel. Anterior up, dorsal right.
B) 640X magnification view; whole-mount germarium stained for nos
protein. Diagram to right of panel shows a schematic presentation of the
germarium, with the regions of the germarium labelled.
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Table 1. Nanos localization in nanos mutants

Localization pattern in :

Allele

L7

RW

RC

RD

BN

Ovary

(germarium)

Protein

normal

N. D.

none

reduced

reduced

Ovary Embryos

(st. 10
nurse cells)

Protein

normal

N. D.

none

normal

reduced

RNA

normal

normal

none

normal

none

Protein

normal

normal

none

weak

none

Ovaries derived from females mutant for various nos alleles were stained
with antibodies against nos protein, and scored for nos expression both in the
germarium and in stage 10 nurse cells (see Figure 2 for wild-type staining
pattern). Cleavage stage embryos derived from females mutant for various
alleles of nos were analyzed by whole-mount in situ hybridization to detect
nos RNA, or stained with antibodies directed against nos protein. Entries in
the table reflect the degree to which the various nos species are localized in
the relevant genotypes (see Materials and Methods for genotype descriptions).
For the ovary antibody stainings, "reduced" indicates that protein was
detectable, but at lower amounts than in wild type. "Weak" indicates that
levels of protein were not much above background staining. For the embryo
antibody stainings, "weak" indicates that localized signal is readily detectable,
but the localization is not as tight as in wild type. N. D., not determined.
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Figure 4.3. Nanos localization in posterior group mutants

Cleavage stage embryos derived from females mutant for posterior
group genes were analyzed by whole-mount in situ hybridization to detect
nos RNA (left) or stained with antibodies directed against nos protein (right).
A, H) wild type; B, I) vasaPD/vasaD1; C, J) oskar3 0 1 /oskar5 4 , 29°C; D, K)

oskar3 0 1 /oskar5 4 , 20°C; E, L) tudorWC8/Df[2R]PurP133; F, M)

valoisPE/Df[2R]TW2; G,N) mago nashil/mago nashi3. In the cases of tud,
vls, and mago, the localization patterns observed were variable, and the
embryos shown in the figure do not necessarily represent the majority pattern
(see text). The distributions of observed localization patterns were: tudor -
50% have reduced amounts of localized RNA as shown in the figure, 20%
have even less localized RNA, and 30% show no visibly localized RNA (N=
112), 50% show gradients of nanos protein as in the figure, 30% show fainter
gradients, and 20% show no detectable protein gradient (N= 94); valois - >90%
of embryos show no localized RNA, <10% show reduced amounts of
localized RNA as shown in the figure (N= 61), >90% show no protein
gradient, <10% show a reduced gradient as shown in the figure (N= 58); mago

nashi - 75% show no localized RNA, 25% show reduced amounts of localized
RNA, or "dot" localization as shown in the figure (N= 42), 70% of embryos
show no detectably localized protein, 30% of embryos show very faint traces of
posteriorly localized protein as shown in the figure (N=101). Photos were
taken at 200X magnification. Anterior to the left, dorsal up.
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Figure 4.4. Nanos RNA in posterior group mutants

Poly-A+ RNA was prepared from cleavage-stage embryos derived from
posterior group mutant females. Main panel shows nos transcript. Normal
levels of nos RNA are present in all genotypes examined, except nosBN. The
lower panel shows the same blot reprobed for actin 5C, a constitutively

expressed transcript (Fyrberg et al., 1983), as a loading control. Mutant

genotypes analyzed were as follows: mago1 /Df[2R]F36;

capuRKspir035 /capuRKspir 03 5; stauD3 /stauD 3; osk166 /osk1 66 ;

vasaDl /vasaPD; tudWC8/tudWC8; valPE/Df[2R]TW2; nosL7 /nosL7 ;
nosBN/nosBN; pum 68 0/pum 68 0 . Note that the vas mutant embryo lane is

underloaded. Also note that the pumilio allele used was pulm680 instead of

the strongest available combination, In(3R)Msc/T(3,1)FC8 (Barker et al., 1992).
In(3R)Msc/T(3,1)FC8 embryos contain localized nanos RNA and protein in
patterns indistinguishable from wild-type embryos (Barker et al., 1992). We
therefore conclude that pum function in abdominal segmentation lies

downstream of nos translation, and anticipate that In(3R)Msc/T(3,1)FC8

embryos contain normal levels of intact nos RNA.
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Figure 4.5. Nanos localization in other maternal-effect mutations

Cleavage stage embryos derived from females mutant for other
maternal systems were fixed and analyzed by whole-mount in situ
hybridization to detect nos RNA (left panels), or stained with antibodies
directed against nanos protein (right panels). A, E) torXR1; B, F) bcdEl; C, G)

exuPJ; D,H) swa4. Photos taken at 200x magnification. Anterior to the left,
dorsal up.
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Chapter 5

nanos and translational control of maternal hunchback
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INTRODUCTION

The Drosophila gene nanos (nos) acts as a posterior determinant whose
RNA is localized to the posterior pole of early embryos (Wang and Lehmann,
1991). This localized RNA is the source for a nanos protein gradient which

extends to about 50% egg length (0%=posterior pole) (Barker et al., 1992;
Ephrussi and Lehmann, 1992; Smith et al., 1992). nanos mutant embryos

completely lack abdominal segments, showing that nos is essential for
abdomen formation(Lehmann and Niisslein-Volhard, 1991). In terms of

zygotic gene expression, abdominal segmentation requires the properly
restricted expression of abdominal gap genes including knirps and giant. In
the absence of nos, knirps and giant are not expressed in the prospective

abdomen (Kraut and Levine, 1991a; Rothe et al., 1989). However, it has been

shown that activation of gap gene expression by nos occurs by an indirect,
double negative mechanism (Hiilskamp et al., 1989; Irish et al., 1989; Struhl,

1989). nanos suppresses the function of an intermediary gene product, the
maternal hunchback (hb) RNA. Hunchback protein represses transcription of
the abdominal gap genes. In the posterior half of the embryo, therefore,
nanos protein is present, hunchback protein is not translated from the
maternal RNA, and knirps and giant are transcribed. In the absence of nos

(for instance in the anterior of wild-type embryos, or throughout nos mutant
embryos), maternal hunchback RNA is freely translated, and the hunchback
protein suppresses abdominal gap gene expression.

Several lines of evidence indicate that this regulation of maternal
hunchback is at the level of RNA translation. First, whole mount in situ

hybridization analysis of wild-type embryos shows that hb RNA is initially
distributed evenly throughout the embryo, whereas hb protein is expressed
only in the anterior half of the embryo (Tautz and Pfeifle, 1989). Secondly, the
hb RNA has been shown to contain sequence elements in its 3' untranslated

region (3'UTR) which are both necessary and sufficient for nos-dependent

translational regulation (Wharton and Struhl, 1991). These elements have
been named NREs, for nos regulatory elements. This latter result indicates
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that nos-dependent regulation of hunchback occurs at the RNA level, and not
at the level of protein stability.

Overall this evidence suggests that nos acts as a translational repressor
of the maternal hunchback RNA, and that this regulation is mediated by the
NRE sequences in the mRNA. The nos open reading frame contains

conserved C-terminal sequences related to sequences in retroviral
nucleocapsid proteins which have been shown to bind zinc and package

single stranded nucleic acid (Curtis et al., 1995; Schwabe and Klug, 1994).
Indeed, preliminary evidence suggests that bacterially synthesized nanos

protein is able to bind RNA in vitro (D. Curtis and P. Zamore, personal

communication). Another approach to investigating the mechanism of nos-
mediated regulation of hb translation is to recapitulate this regulation in an

in vitro or a cell culture assay system.

None of these described experiments, however, address the more basic
question of the manner in which hunchback translation is regulated. A direct
way to examine translational control is to fractionate polysomes. Polysomes

represent messages which are bound to multiple ribosomes, so a polysome-

enriched fraction would be expected to contain mRNAs which are being
actively translated. Conversely, mRNAs that are found predominantly in
non-polysome (i.e. monosome or smaller) fractions are not being actively
translated. Such a correlation between translational state and residence in a

polysomal fraction would indicate that the transcript in question is regulated
at the level of translational initiation. With these considerations in mind, we

set out to examine the polysome distribution of maternal hb RNA in embryos
derived from wild-type mothers, or from mothers that either lack or
misexpress nos. In an adjunct experiment, we also examined the effect of nos

on the polysome distribution of another maternal RNA which is also subject
to nos-dependent translational control, the bicoid (bcd) mRNA. Finally, we
outline a transgenic strategy designed to clarify the role of nos in mediating
NRE-dependent translational regulation in embryos.
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RESULTS AND DISCUSSION

Polysome fractionation of maternal hunchback RNA

The interpretation of polysome gradients derived from wild-type

embryos can be somewhat unclear due to the presence of a mixed population

of maternal hunchback RNA - in the anterior of the embryo there is no nanos

protein and hb RNA is freely translated, whereas in the posterior half nanos

protein suppresses the translation of hb. Fortunately nos mutant

backgrounds are available which provide embryos constituting homogeneous

sources of regulated maternal hb RNA. Specifically, embryos derived from
homozygous nosBN mothers completely lack detectable nos protein (Wang et

al., 1994), and maternal hb RNA is translated throughout the embryo. To

achieve expression of nanos protein throughout the embryo, transgenic

females carrying the nanos-bicoid 3'UTR fusion transgene (hereafter referred
to as nos-bcd) were used. This transgene contains a fusion of the nos open

reading frame to the bicoid RNA localization sequence, resulting in anterior

localization and expression of nanos (Gavis and Lehmann, 1992). Embryos

derived from otherwise wild-type mothers carrying a single copy of the nos-

bcd transgene contain high levels of nanos protein, due to synthesis of nos
from the anteriorly localized transgenic nanos/bicoid 3'UTR RNA. In this

latter case, maternal hb RNA translation is suppressed throughout the

embryo.

Embryos aged 0.5-2.5 hours were chosen for the fractionation protocol,

since this time window includes the period when the hunchback protein
gradient is most distinct as shown by whole mount antibody staining (Tautz,

1988). A post-mitochondrial supernatant was prepared (see Materials and
Methods), and sedimented over a 20-45% sucrose gradient. The gradient was

collected and analyzed using a gradient analyzer in conjunction with a UV

detector. Figure 5.1 shows a typical profile in which peaks corresponding to
free ribosomal subunits, monosomes, and polysomes numbering from 2 to

about 11 are readily detected. Fractions corresponding to free subunits,

monosomes, low and high numbered polysomes were pooled into 5 fractions
covering the entire gradient as indicated in the figure, and RNA was extracted
for Northern blot hybridization analysis. The blots were probed for maternal
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hb and actin 5C transcripts. The actin signal serves as a control, since actin
translation (and translation in general) are not expected to be regulated by

nos. Data was collected on a phosphorimager, and the signal of each band
was quantitated and is displayed in Figure 5.2 as the percentage of the

summed signal for all the fractions.

The results show that there is a small but detectable shift in the

distribution of maternal hb RNA on polysomes. Specifically, a comparison of

fraction 2 shows that about 20% of the maternal hb RNA of wild-type (Figure

5.2A) and nos-bcd (Figure 5.2C) embryos is found in this monosome-

containing fraction (with nos-bcd embryos containing a slightly higher

percentage), whereas only 12% of the hunchback in nosBN embryos is found
in this fraction (Figure 5.2B). This result suggests that in the absence of nos, a

smaller portion of hb RNA is found in the monosomes, which are relatively
inactive for translation. Conversely, examination of fraction 4 (the polysome-

containing fraction) shows that in both wild-type and nosBN embryos, about
40% of the hunchback RNA is in this fraction, but in nos-bcd embryos that
figure is reduced to approximately 30%. This result suggests that when nanos

is overexpressed, the proportion of maternal hunchback RNA present on

polysomes is reduced. As an internal control, these blots were reprobed for
the actin 5C transcript. Examination of the actin signals in the various
backgrouinds studied shows that the distribution of actin transcripts on
polysomes is unaffected. This indicates that nos does not affect translation at
a global, or housekeeping, level. As an additional control, preparation of
RNA from unfractionated post-mitochondrial extract shows that equivalent
amounts of hunchback, actin, bicoid and nanos mRNAs are recovered in the

various nanos backgrounds (data not shown). This latter control shows that

changing nanos dosage does not result in a large-scale sequestration of
transcripts into fractions that pellet at low speed (i.e. transcript association
with the cytoskeleton).

In sum, these results are consistent with the hypothesis that nos

regulates maternal hb at the level of translational initiation. In the absence of
nos, less hb transcript is found associated with monosomes, implying that the
RNA is enriched in larger complexes. Accordingly, more hb protein is
present in this circumstance. When nos is overexpressed, less hb mRNA is
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found associated with polysomes, implying that the RNA is shifted to smaller
complexes. In this case, less hb protein is present. Since in this case

enrichment of mRNA in monosome fractions corresponds to low levels of
protein synthesis, and enrichment of mRNA in polysomes corresponds to
high levels of protein synthesis, we may tentatively conclude nos interferes
with the initiation of maternal hunchback translation. Regulation of the rate
of translational elongation may be ruled out, since if this was the case
enrichment of transcript in the polysome fraction should lead to decreased
protein synthesis.

Polysome fractionation of bicoid RNA

The translation of bicoid RNA was examined by reprobing the same
Northern blots with a bicoid probe. Although the bcd mRNA and nanos
protein are normally found at opposite ends of the wild-type embryo, bcd
RNA is subject to translational repression by nos. In circumstances where
nos is present at the anterior of embryos, translation of the bcd mRNA is
undetectable (Gavis and Lehmann, 1992). Accordingly, we examined the
polysome distribution of bcd mRNA in wild-type and nosBN embryos, where
bcd mRNA is translated normally, as well as in nos-bcd embryos, where bcd
mRNA translation is repressed. Figure 5.3 shows that nos does not detectably
affect the distribution of bcd mRNA on polysomes. Specifically, the profile of
bcd mRNA in nos-bcd embryos (Figure 5.3C) is not significantly different
from the profile in wild-type (Figure 5.3A) or nosBN (Figure 5.3B) embryos.
This result constitutes a difference between nos-mediated regulation of the hb
and bcd RNAs, and suggests that translational repression of the two
transcripts might occur by differing mechanisms.

Independent evidence has also shown differences in the regulation of
these transcripts. For example, the translationally repressed bcd mRNA has a
significantly shorter poly-A tail than the actively translated form of the
mRNA (Wharton and Struhl, 1991). However no such difference has been
found for the regulated maternal hb RNA (Wharton and Struhl, 1991),
although this latter result cannot be definitive due to technical limitations
(e.g. the higher abundance of zygotic hb mRNA interferes with detection of
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the maternal transcript). In addition, the bcd 3'UTR contains NRE-like

sequences which are necessary for regulation by nanos, but do not fully

functionally substitute for hb NREs (Wharton and Struhl, 1991). Also,
although nos regulation of hb is strictly dependent on the NRE sequences
(Wharton and Struhl, 1991), preliminary evidence suggests that bcd sequences

outside of the NREs can confer nos-mediated translational regulation (E.

Gavis, personal communication). Specifically, when nos is mislocalized to
the anterior (nos-bcd ), the resulting head defect cannot be suppressed by one

copy of a transgene encoding a bcd transcript which lacks the NRE sequences.

However, two copies of this bcd ANRE transgene do suppress the head defects

of nos-bcd (Simpson-Brose et al., 1994). This suggests that some aspect of nos-

mediated suppression of bcd translation may be directed by sequences outside

of the bcd NRE, but this effect is weak. Thus it is plausible that translational
repression by nos of the hb and bcd maternal RNAs may occur by differing

mechanisms, and that these differences account for the failure to detect
altered polysome distribution of the bcd mRNA. An alternative postulate is

that nos regulation affects the sequestration or packaging of mRNAs into

ribonucleoprotein particles. In the case of maternal hb, the sucrose gradient

conditions employed resolve the nos-repressed versus the translatable forms
of the mRNA. However, these gradient or buffer conditions do not resolve

the analogous forms of the bcd mRNA. Further investigation using varying
buffer and or fractionation conditions should clarify this issue.

Transgenic analysis

While early results with detection of the endogenous maternal hb

transcript on polysomes were encouraging, the polysome assay in this form

was somewhat problematic. First, unambiguous detection of the relatively

unabundant maternal hb transcript is made difficult by the complicated
transcriptional control of the hb gene. Hb has two promoters, one (termed P1)

is primarily maternal, while the other (P2) is zygotically active and provides
the gap gene function of hb (Schr6der et al., 1988). Although specific probes
can distinguish P1 versus P2 transcripts, the P1 promoter undergoes a second,
zygotic mode of expression in a posterior stripe at about 3-3.5 hours of
development (division cycle 14, cellular blastoderm stage). Thus in the
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previous experiments a P1-specific probe will detect not only the maternal

transcript, but also this "posterior stripe" expression in incorrectly staged
embryos, confusing the interpretation. Another problem with the previous
experimental design is the inability to accurately quantitate levels of
synthesized hunchback protein. Whole mount staining of embryos does not
give quantitative data, and interpretation of Western blots is severely
complicated by the expression of zygotic hunchback protein which is
indistinguishable from the maternal. Accurate quantitation of levels of the
translationally regulated protein is especially important in light of the
relatively low magnitude of the mRNA polysome shifts that were observed.

In order to simplify the interpretation of the polysome fractionation
experiments, a transgenic reporter construct was designed which should offer
unambiguous identification of the regulated RNA. This reporter construct
contains the entire hb 3'UTR sequence, including the two NREs which have
been shown to confer nos-dependent translational regulation to a
heterologous transcript (Wharton and Struhl, 1991). Regulation of this
transgenic message should thus authentically reflect nos-mediated
translational control in vivo. The transgene itself consists of the 5' end of nos
including a functional promoter and a short (nonfunctional) region of the
open reading frame fused in-frame to the Aequoria victoria green fluorescent
protein (GFP) coding sequence, attached to the hb 3'UTR and downstream
region (see Figure 5.4). The nos promoter should provide strictly maternal
expression, and the GFP sequence can be unambiguously identified as an
RNA in Drosophila extracts. In addition, the intrinsic fluorescent properties
of GFP allow for easy detection and quantification (Chalfie et al., 1994; Inouye
and Tsuji, 1994). Transformant lines can be easily checked quite easily for
proper regulation of the reporter by confocal microscopic examination of
living embryos.

At present, these experiments are in progress and multiple stable
transformant lines have been obtained which apparently express the
transgene. After confocal microscopy has established that the chimeric
transcript is properly translationally regulated (see above), the transgene will
be crossed into nos loss- and gain-of-function backgrounds. Polysome
analysis will be carried out on the resulting mutant embryos to test if the
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reporter RNA varies in its abundance among the gradient fractions in a

fashion similar to the endogenous maternal hunchback transcript.

Concomitantly, the levels of the green fluorescent reporter protein, which
presumably reflect the efficiency of translation of the reporter RNA, will be
accurately quantitated in crude extracts by simple fluorimetry. In addition, a
version of the construct which is identical in all respects, but lacks the NREs,
will be examined using polysome gradients. This RNA should be translated

in a nos-independent fashion, and its polysome profile will presumably

represent a transgenic RNA which is being actively translated in embryos. It

is hoped that these transgenic experiments will provide quantitative proof

that nos suppresses the initiation of hb mRNA translation via an NRE-

dependent mechanism.

MATERIALS AND METHODS

Polysome fractionation

Embryos staged 0.5-2.5 hour after egg deposition were collected, washed,

and dechorionated as previously described (Lehmann and Niisslein-Volhard,
1986). For mutant genotypes, embryos were collected in batches,

dechorionated, then frozen and stored at -80 C. A crude extract was prepared

by homogenization using a hand pestle in 2 volumes of the following lysis

buffer (0.5 M NaCi, 25 mM MgOAc, 50 mM Tris HCl pH 7.5, 0.2% Triton X-100,

2 mg/mL heparin, 1 ug/mL cycloheximide). This extract was spun in an
Eppendorf microfuge for 10 minutes at 10,000 rpm (12,000 g). The resulting

post-mitochondrial supernatant was collected carefully and loaded onto a 20-

45% sucrose gradient prepared in gradient buffer (0.25 M NaCl, 25 mM

MgOAc, 50 mM TrisHCl pH 7.5). For 12 mL gradients, approximately 35 A260

units were loaded. The gradients were spun for 1.5 hours at 41,000 rpm in a

Beckman SW41Ti rotor at 4 C. Fractions were collected using an ISCO

gradient analyzer, and elution was monitored via an ISCO UA-5 absorbance

detector at 254 nm. All biochemical reagents were obtained from Sigma.
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Preparation and analysis of RNA

Appropriate fractions were pooled, and RNA was prepared by the
following method. SDS, EDTA and proteinase K (Boehringer Mannheim)
stock solutions were added to each pool to bring the final concentrations to
1%, 10 mM, and 150 tg/mL, respectively. Digestions were carried out for 30
minutes at 25 °C after which the RNA was precipitated by addition of 3
volumes of EtOH. After resuspension in DEPC-treated ddH20, the RNA was

analyzed by Northern blot hybridization as described previously (Wang and

Lehmann, 1991).

In order to obtain a hybridization probe specific for the maternal
hunchback transcript, a full length cDNA (hbml) corresponding to transcript
from the hunchback P1 promoter was isolated from the Nick Brown 4-8 hour
plasmid cDNA library (Brown and Kafatos, 1988) by standard methods

(Sambrook et al., 1989). A 550 bp HindIII/XbaI fragment from this cDNA was
labelled as the probe for maternal hunchback. The other probes (bicoid, actin,

and nanos) have been previously described (Wang and Lehmann, 1991). The
resulting hybridization signals were analyzed and quantitated by
phosphorimager analysis (Fuji). Each signal was expressed as the percentage
of the sum of the signals from all fractions. Data was pooled from two
independent trials.

Mutant strains

The wild-type strain used was Canton-S. The nosBN and nanos-bicoid

3-UTR (i.e. nos-bcd ) strains have been described previously (Gavis and

Lehmann, 1992; Wang et al., 1994).

P-element construction and transformation

In order to construct the plasmids pDM30/nostGFP+NRE and
pDM30/nostGFPANRE, first a version of the 5' end of the nanos gene was

constructed which contains a hemagglutinin epitope tag cloned in-frame just
upstream of the nanos open reading frame. This "epitope tag" should allow
detection of the transgenic protein (Kolodziej and Young, 1991). The tagged
nanos fragment was excised from the transformation plasmid pDM30-5'tag
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(D. Curtis, personal communication) as a 2.0 kilobase (kb) HindIII fragment,
which was subcloned into Bluescript (Stratagene) to yield the intermediate
plasmid pCW9tag. The in-frame nanos-GFP fusion was achieved by
digesting pCW9tag to completion with HindIII and NlaIV, which cuts early in
the nanos open reading frame. The insert fragment,derived from the GFP
cDNA-containing plasmid TU#65 (Chalfie et al., 1994), was prepared as a 0.75

kb blunt/EcoRI GFP-containing fragment by digestion with AgeI, treatment
with Klenow fragment, then secondary digestion with EcoRI. The two
fragments were ligated directionally into a HindIII/EcoRI digested Bluescript
vector to create another intermediate clone, pBSnostag/GFP. The resulting
fusion contains the first 58 amino acids of the nanos open reading frame, and
introduces 4 extra amino acids (proline-valine-glutamatic acid-lysine)
upstream of the GFP starting methionine. The junction region was checked
by DNA sequencing. The hunchback 3'UTR fragment was reconstructed by
ligating the DdeI/XbaI 150 base pair NRE-containing fragment (Wharton and
Struhl, 1991) which had been isolated as the subclone pSP72DX (D. Curtis,
personal communication) back to the 1.6 kb XbaI fragment from the
downstream genomic region of hunchback (Tautz et al., 1987). In the process
of cloning a portion of polylinker sequence from the plasmid pSP72 (EcoRV
to XbaI) (Promega) was inadvertently retained at the internal XbaI junction.
For the ANRE version, the 1.6 kilobase XbaI fragment itself was used. In both
cases, the hunchback fragments were cloned between the BglII and XbaI sites
of pSP72. The pBSnostag/GFP plasmid was then prepared by digestion with
XbaI, Klenow treatment, then secondary digestion with BamHI. The
hunchback sequences were then subcloned in as BglII/PvuII or BamHI/PvuII
fragments for the NRE and ANRE versions, respectively to create the
plasmids pBS nostag/GFP+NRE and pBS nostag/GFPANRE. The inserts were
finally subcloned as unique SalI fragments into the ry+ marked P-element
transformation vector pDM30 (Mismer and Rubin, 1987). Injections were
performed as previously described (Gavis and Lehmann, 1992).
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Figure 5.1. A typical polysome profile

A post-mitochdrial extract from wild-type embryos was prepared and

polysomes were fractionated on a 20-45% sucrose gradient as described in
Materials and Methods. Elution of the gradient is plotted with the Y-axis

showing UV absorption at 254 nm. The double hash mark indicates a 5-fold

change in scale necessary to detect the less abundant polysome fractions. The
inferred content of portions of the gradient, as well as the composition of the

pooled fractions, is indicated along the bottom of the figure. The top, lighter

portion of the gradient is towards the left of the figure.
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Figure 5.2. Nanos-dependent polysome distribution of maternal hunchback
RNA

Polysome gradients were prepared from embryos derived from wild-

type, nosBN, and nos-bicoid mothers. Fractions were collected as indicated in
the previous figure and RNA was prepared and analyzed as described in
Materials and Methods. The blots were probed for maternal hunchback and

actin transcripts, and the quantified hybridization signals are plotted as a

percentage of the total signal summed across all the fractions. A.) Wild-type

embryo extract. B.) Extract of embryos derived from mothers homozygous

for the nosBN allele. C.) Extract of embryos derived from mothers carrying

the nos-bcd transgene.
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Figure 5.3. Nanos-dependent polysome distribution of bicoid RNA

The same RNA blots as in the previous figure were reprobed for the
bicoid mRNA. A.) Wild-type embryo extract. B.) Extract of embryos derived
from mothers homozygous for the nosBN allele. C.) Extract of embryos
derived from mothers carrying the nos-bcd transgene.
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Figure 5.4. A transgenic GFP-containing reporter construct

A schematic diagram indicating the structure of the nanos

promoter/green fluorescent protein/hunchback 3'UTR transgenic reporter
construct. The restriction endonuclease sites bounding the construct are
indicated. The nanos transcriptional start site is denoted by the arrow, and

the positions of the hemagglutinin epitope tag and the NRE nanos regulatory

element sequences are indicated with triangles. The boxes represent coding

sequences, with the number of encoded amino acids indicated. The captions
underneath indicate the extent of the denoted sequence regions. Drawing is

made to scale.
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Chapter 6

Conclusions and future prospects
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The studies described in this thesis have shown that nanos, a maternal-
effect Drosophila gene required for abdomen specification, encodes an RNA
which is localized to the posterior pole of the embryo. This localized source
of RNA is translated to form a posterior-to-anterior protein gradient. nanos

is one of a family of maternal-effect posterior group genes, all of which are
required for abdomen formation. However, the majority of the posterior

group genes act to specify abdomen solely through ensuring the proper

localization and translation of nanos. Mutations in these genes disrupt

localization of the nanos RNA, suggesting that they may encode components

of the localization machinery. Indeed, the observation that oskar protein
localization precedes nanos RNA localization in all situations thus far

examined, including ectopic localization to the anterior, strongly suggests that

oskar protein itself directs the localization of nanos RNA to the posterior pole

(Ephrussi and Lehmann, 1992). The observation that nos protein translation
varies with the dosage of oskar further suggests that oskar protein also acts to

promote the translation of nanos (Ephrussi and Lehmann, 1992; Smith et al.,
1992). In addition, unlocalized nanos RNA is not translated (Gavis and

Lehmann, 1994). These results indicate that oskar protein nucleates the
formation of a ribonucleoprotein complex including nanos RNA, factors

necessary for its translation, and components of the poleplasm.

With the exception of pumilio and nanos itself, the numerous genes of

the posterior group all constitute attractive potential components of the

posterior RNA localization machinery. The additional phenotypes of several

of these genes (cappuccino, spire, valois, mago nashi, pipsqueak, and orb)

suggest a more general role in the localization process (Boswell et al., 1991;

Christerson and McKearin, 1994; Lantz et al., 1994; Manseau and Schiipbach,

1989; Schiipbach and Wieschaus, 1986a; Siegel et al., 1993). However, a few

genes, including staufen, oskar, vasa, and tudor, encode RNAs or proteins

enriched or localized at the posterior pole, and thus may play a more specific
role (Bardsley et al., 1993; Ephrussi et al., 1991; Hay et al., 1988; Kim-Ha et al.,

1991; Lasko and Ashburner, 1990; St. Johnston et al., 1991). Staufen encodes a
double-stranded RNA binding protein, and associates with injected RNAs in
embryos, while vasa encodes an RNA helicase related to eIF-4A (Ferrandon et
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al., 1994; Liang et al., 1994). However, as of yet, none of these factors has been

shown to interact directly with any other localized component. This suggests

that several factors in the localization complex remain to be identified.

An alternative approach to understanding nanos RNA localization is

the dissection of the nanos 3'UTR to identify the sequence elements which

specify localization. However, similar studies of oskar and bicoid localization

signals have identified extensive redundant elements, and have not generally

shed much light on the actual mechanism of RNA localization (Kim-Ha et

al., 1993; Macdonald, 1990; Macdonald et al., 1993). Ultimately, the RNA

localization apparatus will involve the cytoskeleton, which is presumably

used as a framework for translocating and tethering RNAs. Indeed

microtubules have been implicated in the localization of bicoid and oskar

RNAs during oogenesis (Clark et al., 1994; Pokrywka and Stephenson, 1991).

Finally, an exciting new area of study may be the translational control of

nanos itself, and the link between RNA localization and translational

activation. The specific cis-elements required for repression of unlocalized or

activation of localized nanos RNA translation remain unidentified. As for

trans-acting factors, proteins like the newly identified bruno (Kim-Ha et al.,

1995) may mediate translational repression, while the RNA-binding proteins

vasa and staufen may play a role in translational activation. Although

activation of nanos translation at egg activation does not involve

polyadenylation (Salles et al., 1994), it remains to be seen whether adenylation

state plays a role in the translational inactivation of unlocalized nanos RNA.

nanos specifies abdomen by acting in conjunction with pumilio to

repress translation of the maternal hunchback RNA. nanos-dependent

translational repression is mediated through a pair of bipartite sequence

elements in the hunchback 3'UTR, the nanos response elements (NREs)

(Wharton and Struhl, 1991). Recently it has been shown that pumilio

protein, as well as a 55kD protein found in embryo extracts, bind directly to

NRE sequences (Murata and Wharton, 1995). Since these factors bind even in

the absence of nanos, it is possible that they act as targeting factors which

promote a direct or indirect association of nanos protein with the hunchback

mRNA. nanos then somehow acts to repress translation of this RNA.
Clearly we need to understand more about the mechanism of nanos function.
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One approach is detailed study of the nanos protein. A saturation

mutagenesis of the nanos polypeptide is currently in progress. This screen

utilizes a transgene which maternally expresses nanos in an unlocalized

fashion in embryos, resulting in a dominant female sterile phenotype.
Mutated females carrying this transgene will produce viable progeny only if
the transgenic copy of nanos has lost its function (G. Arrizabalaga, personal

communication). This screen therefore comprises a powerful saturation
screen for additional nanos alleles. A precise definition of functional regions

of the nanos polypeptide can only facilitate the search for a biochemical
function for the protein.

Other approaches to understanding the mechanism of nanos-mediated

translational repression include attempts to demonstrate the formation of

specific ribonucleoprotein complexes containing nanos, pumilio, and/or
55kD proteins, and hunchback RNA. These studies can be carried out in wild-

type embryo extracts, in extracts from embryos expressing transgenes designed

to facilitate the detection of specific species, or in partially purified extracts.

Also, polysome fractionation analysis as described in this thesis should offer

not only an basic understanding of the mechanism by which nanos represses

hunchback translation, but may also provide a tool for isolating translational

regulatory complexes. There is no doubt that the study of nanos-mediated

translational control would greatly benefit from the development of an in
vitro system which recapitulates nanos-dependent repression of NRE-

containing transcripts. Recently, sequence-specific translational regulation
has been demonstrated for the 15-lipoxygenase (Lox) RNA (Ostareck-Lederer

et al., 1994). Translation of Lox RNA in a reticulocyte lysate translation assay

is repressed by the addition of a purified sequence-specific RNA binding
protein. The availability of such an in vitro assay for the nanos/hunchback

system should allow the detailed elucidation of the factors and mechanisms
involved.
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Appendix A

The role of pumilio in posterior determination
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AUTHOR'S NOTE

The work described in this appendix has been published as Barker, D.D.,
Wang, C., Moore, J., Dickinson, L.K., and Lehmann, R. (1992) "Pumilio is

essential for function but not for distribution of the Drosophila abdominal
determinant Nanos" Genes and Development 6, 2312-2326.
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INTRODUCTION

Genetic analysis has identified a set of maternal-effect genes required

for Drosophila abdominal development known as the posterior group genes

(reviewed in St. Johnston, 1993). Of these genes, most have a second,

grandchildless phenotype. Only two posterior group genes (nanos (nos) and

pumilio (pum)) are specific for abdomen development. Embryos derived

from females mutant for either of these genes develop pole cells normally,

but fail to form a segmented abdomen. Both nos and pum are required for

the suppression of maternal hunchback (hb) RNA translation in the posterior

half of the embryo (Barker et al., 1992; Macdonald, 1992). nanos encodes a

localized determinant. nos RNA is localized to the posterior pole of early

embryos, and this localized RNA is the source for a gradient of nanos protein

which is highest at the posterior, and extends to at least 30% egg length (0% =

posterior pole) (Barker et al., 1992; Smith et al., 1992; Wang and Lehmann,

1991). When nos RNA is mislocalized to the anterior of embryos, it directs

the formation of a secondary abdomen in mirror image to the first (Gavis and

Lehmann, 1992). This latter result demonstrates the importance of restricting

nos expression to the posterior half of the embryo.

By contrast, pum RNA and protein are found ubiquitously throughout

the early embryo, although some enrichment can be detected in the

poleplasm (Barker et al., 1992; Macdonald, 1992). Other data corroborate this

suggestion that pum is required for processes beyond its maternal role in

abdomen formation. Flies mutant for some pum alleles (Lehmann and

Niisslein-Volhard, 1987a), as well as those which completely lack pum

(Barker et al., 1992) show bristle defects as well as reduced viability and

fertility. The polypeptide sequence of pum offers no obvious clues to its

function, although an eight-repeat sequence motif found in sequences from a

wide range of species has been noted (Barker et al., 1992) , D. Barker, personal

communication). In order to clarify the role of pum in specifying abdomen,

we tested whether nos can function in the complete absence of pum.
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RESULTS/DISCUSSION

Earlier studies of pumilio had suggested that its function was not
absolutely required for abdomen formation. Injection rescue experiments
using wildtype posterior poleplasm (Lehmann and Niisslein-Volhard, 1987a)
or in vitro transcribed nanos RNA (Wang and Lehmann, 1991) showed that
overexpression of nos can partially rescue abdominal segmentation in pum
mutant embryos. However, these experiments were carried out using an
ethylmethanesulfonate (EMS) -induced pum allele (pum680) which is a
probable hypomorph. Subsequently, two chromosomal rearrangements
(In(3R)Msc ("Msc"), and T(3;1)FC8 ("FC8")) have been found to disrupt the
pumilio transcribed region. Flies transheterozygous for these aberrations
completely lack pum function, and accordingly are subviable and show strong
scutellar bristle defects. Embryos derived from females transheterozygous for
Msc/FC8 completely fail to develop abdomen. Injection of in vitro
transcribed nos RNA has no effect on the abdominal phenotype of Msc/FC8
embryos (Table A.1). As a positive control, the same transcription reaction
product was used to inject nosL7 embryos, which were fully rescued.

The ability of nanos RNA to rescue the abdominal phenotype of
pum68 0 embryos indicates that overexpression of nos can bypass a partial loss
of pum function. However, the Msc/FC8 result shows that pum is absolutely
required for abdomen formation. Both pumilio and nanos are equally
required for hb RNA repression and abdomen formation, despite the fact that
in early embryos nanos protein is spatially restricted and pumilio protein is
not. pumilio function is required for nos-specified abdomen formation even
in embryos containing nos at the anterior (E. Gavis, personal
communication). Several experiments have attempted to further distinguish
the function of pumilio from that of nanos in abdomen formation. It had
been previously suggested (Lehmann and Niisslein-Volhard, 1987a) that pum
is involved in the transport of nanos protein from the posterior pole to the
prospective abdomen. However, the distribution of nanos protein is not
affected by pumilio mutations (Barker et al., 1992; Smith et al., 1992). A search
for pum-dependent post-translational modification of the nanos protein has
also been negative (D. Barker, personal communication). Recently published
data (Murata and Wharton, 1995) shows that pumilio protein from embryo
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extracts, as well as pumilio protein translated in vitro, bind to the NRE
sequences found in the 3'UTR of the hb RNA, as assayed by UV crosslinking
and gel mobility shift. These results suggest that pum plays a rather direct
role in the control of hb RNA translation by binding to its 3'-UTR.

Presumably, this binding occurs throughout the embryo, and the additional

presence of nanos protein causes or triggers an inhibition of hb RNA
translation. Interestingly enough, neither nanos protein/hunchback RNA
complexes nor nanos protein/pumilio protein complexes were detected
(Murata and Wharton, 1995). The DNA sequence of the 13 existing EMS-
induced pum alleles, coupled with functional assays of these mutant proteins,

should provide significant insight into pumilio function.

MATERIALS AND METHODS

For the RNA injections, recipient embryos lacking pumilio were
derived from mothers transheterozygous for the chromosomal
rearrangements In(3R)Msc and T(3;1)FC8 (Barker et al., 1992). Control

recipient embryos were derived from mothers homozygous for the nosL7

allele (Lehmann and Niisslein-Volhard, 1991). RNA was transcribed and

injected into embryos as previously described using the nanos cDNA plasmid
pN5 (Wang and Lehmann, 1991).
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Table A.1. RNA injection rescue of pumilio mutant embryos

# of segments formed
(% of total)

recipient embryos # injected # developed 0-1 2-4 5-8
In(3R)MSC/ 220 60 100
Tp(3;1)FC8

nos L 7 122 60 3 - 97

A plasmid containing a nanos cDNA was transcribed in vitro and the
resulting RNA was injected into the prospective abdomen of embryos
derived from females of the indicated genotype ("recipient embryos") Rescue
is scored as the percentage of the total number of embryos scored which form
a given number of abdominal segments.
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