
1

Electroporation of Tissue and Cells
for Drug Delivery Applications

by

Mark R. Prausnitz

B.S. Chemical Engineering, Stanford University, 1988

Submitted to the Department of Chemical Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Chemical Engineering

at the

Massachusetts Institute of Technology
September 1994

© Massachusetts Institute of Technology 1994. All rights reserved.

Signature of Author ............. , .- ...... 
Departmnt of Chemical E1ngineering

July 14, 1994

Certified by ..............

/

Robert Langer
Thesis Supervisor

1

/ i

!

Certified by ........................ /.

Accepted by ...... . /
Chair

MASSAC
OF

.... . . .

James C. Weaver
Thesis Supervisor

('

.. , . . v ...................
Robert E. Cohen

'man, Committee for Graduate Students
ite, NlS

HUSErrs INSTTUTE
TECHNO!. OGY

LSEP 23 1994
I 1IQ&QrAaM



2



3

Electroporation of Tissue and Cells
for Drug Delivery Applications

by

Mark R. Prausnitz

Submitted to the Department of Chemical Engineering
on July 14, 1994 in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Chemical Engineering

Abstract

Basic quantitative studies of transport due to electroporation were performed

in single and multiple bilayer systems. This thesis provides, for single bilayer

systems: (a) a systematic study of the absolute number of molecules transported

over a range of electroporation conditions and (b) measurements of

electroporation transport with time resolution shorter than that of the pulse.

Considering tissue electroporation, this thesis provides: (a) the first

demonstration that electroporation of mammalian skin occurs, (b) a systematic

study of transdermal transport due to electroporation, suggesting that

electroporation of skin may be useful for drug delivery applications, and (c)

theoretical analysis supporting the occurrence of skin electroporation.

Electroporation involves creation of transient aqueous pathways in lipid

bilayers by the application of short (s, ms) electric field pulses. We measured

the net number of molecules transported into erythrocyte ghosts over a broad

range of electroporation conditions. A plateau in uptake was found at large field

strength, which did not represent an absolute maximum in transport, but

represented the maximum effect of increasing field strength, for a particular pulse

protocol. Moreover, sub-millisecond measurements of electroporative transport
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demonstrated that under some conditions transport occurs predominantly by

electrophoresis and/or electroosmosis during a pulse, while under other

conditions transport occurs in part or almost completely by post-pulse diffusion.

Widespread clinical use of transdermal drug delivery has been limited, due

largely to the remarkable barrier properties of stratum corneum's intercellular lipid

bilayers. We found that electroporation occurs in the skin by a mechanism

involving transient structural changes in these intercellular lipids, supported by

experimental results and theoretical characterization. Flux increases up to four

orders of magnitude have been observed with human skin in vitro for three

molecules having charges between -1 and -4 and molecular masses up to 1000

Da. Similar flux increases have been observed in vivo with hairless rat skin. The

area fraction of skin available to transport during electroporation was determined

to be up to 0.1 %. Electroporation-mediated transport was rapidly responsive to

changes in electrical conditions, where (a) skin transport properties changed over

a time scale of microseconds or faster and (b) steady-state transdermal flux

could be achieved on a time scale of minutes.

Thesis Supervisor: Dr. Robert Langer
Title: Kenneth J. Germeshausen Professor of Chemical and Biochemical

Engineering
Department of Chemical Engineering, MIT

Thesis Supervisor: Dr. James C. Weaver
Title: Senior Research Scientist

Harvard/MIT Division of Health Sciences and Technology, MIT
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INTRODUCTION

1 Introduction

Because the method of drug administration is now recognized to be of critical

importance to a drug's therapeutic effect, the field of drug delivery has grown

rapidly [Chien, 1991; Kydonieus, 1992; Langer, 1990; Robinson and Lee, 1988;

Tyle, 1988]. Drug delivery across skin shows potential as a noninvasive, user-

friendly, and controllable approach. However, transdermal drug delivery is

presently limited by the remarkable barrier properties of skin, afforded primarily

by skin's outermost later, the stratum corneum. The stratum corneum is a dead

tissue composed of flattened cells filled with crosslinked keratin and intercellular

lipids arranged largely in bilayers [Bouwstra et al., 1991; Elias, 1991].

Intercellular pathways are generally believed to be the most important routes for

transdermal transport. Therefore, permeabilization of the lipid bilayers occupying

these intercellular pathways would be expected to increase transdermal

transport.

Electroporation involves the creation of transient aqueous pores in lipid

bilayer membranes by the application of a brief electric-field pulse [Chang et al.,

1992; Neumann et al., 1989; Orlowski and Mir, 1993; Tsong, 1991; Weaver,

1993b]. Dramatically increased electrical conductance and transport of

molecules, including macromolecules, are generally associated with

electroporation of lipid bilayers, including membranes of artificial planar and

spherical systems, as well as those of living cells. Electric field exposures

causing electroporation typically generate transmembrane potentials of

approximately 1 V and last 10 jus to 10 ms. Electroporation of isolated single

cells is well established, but electroporation of cells that are part of an intact
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tissue has received little attention. Electroporation of stratum corneum has not

been previously demonstrated.

This thesis presents a novel approach to enhancement of transdermal

transport involving skin electroporation, believed to create aqueous pathways in

the multilamellar, intercellular lipid bilayers of the stratum corneum. Here, basic

studies of molecular transport associated with electroporation in a single bilayer

system (red blood cell ghost membranes) are first performed to provide a deeper

quantitative understanding of the phenomenon. Then, the possibility of

electroporating the intercellular, multilamellar lipid bilayers of the stratum

corneum is explored and its potential usefulness to enhance transdermal drug

delivery is assessed.
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BACKGROUND

2 Transdermal Drug Delivery

2.1 Advantages And Limitations

Transdermal drug delivery offers many potential advantages over

conventional methods of drug administration, such as injections or pills

[Bronaugh and Maibach, 1989; Champion et al., 1992; Cullander and Guy, 1992;

Hadgraft and Guy, 1989; Hsieh, 1994; Shah and Maibach, 1993]. First, by

delivering drugs across the skin and into the systemic blood stream, potential

degradation due to the stomach, intestine, or liver is reduced. Degradation can

be a significant problem for many drugs, especially if taken orally. Second,

patience compliance may be improved, since a transdermal delivery device might

only need to be applied to the skin once per day or less frequently. In contrast,

many patients find it difficult or inconvenient to take medication many times each

day, which is often required when injections or pills are used. Finally,

transdermal delivery has the potential for controlled release, where (a) drug can

be continuously provided to the body to maintain a desired therapeutic and non-

toxic drug level or (b) drug delivery rates can be varied, according to pulsed or

other more complex delivery profiles, if needed.

Despite the potential advantages of transdermal delivery, few drugs are now

administered clinically across the skin. This is primarily because transdermal

transport occurs for most drugs at sub-therapeutic rates. Skin's low permeability

is due largely to the remarkable barrier properties of the stratum corneum, the

outermost layer of skin.
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2.2 Skin Anatomy

Skin is the largest organ in the human body and has a surface area of - 2 m 2.

Skin's two principle components are the outer epidermis, derived from surface

ectoderm, and the underlying dermis, of mesodermal origin (Fig 2-1) [Champion

et al., 1992; Monteiro-Riviere, 1991].

The epidermis is 50 - 100 m thick and contains no blood vessels, lymphatics

or nerves, exchanging metabolites by diffusion to and from the dermis.

Keratinocytes, or corneocytes, are the predominant cell type, although

melanocytes, Merkel cells, Langerhans' cells, and indeterminate cells are found

in epidermis as well. Epidermal cells can be classified in layers above the

dermal-epidermal junction: (1) The first layer is the stratum basale, a single layer

of biochemically active columnar or cuboidal cells immediately above the

basement membrane. (2) The second is the stratum spinosum, which contains

several layers of irregular polyhedral shaped cells. (3) Third is the stratum

granulosum, composed of irregularly-shaped, flattened cells which are oriented

parallel to the dermal-epidermal junction. Granules inside these cells contain

lamellar structures which are later released to form the intercellular lipid matrix of

the stratum corneum. (4) The outermost layer, stratum corneum, contains

flattened cornified cells of 14-sided polygonal structure. Each cell is

approximately 30 Im across and 0.5 - 0.8 gum thick. The stratum corneum is 10 -

50 cells thick, usually measuring 10 - 20 gm. Although these cells are generally

stacked in columns, they are sometimes interdigitated [Champion et al., 1992;

Monteiro-Riviere, 1991].

The stratum corneum is unlike any other tissue in the body. First, its "cells"

are filled with bundles of cross-linked keratin and keratohyalin surrounded by a

thickened (15 nm) cell membrane [Champion et al., 1992; Monteiro-Riviere,
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Fig. 2-1 A. Schematic representation of human skin. The principle components

of skin are shown in a composite representation of skin structure typically found

in various regions of the body. Reproduced from Monteiro-Riviere 1991
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Light micrograph of human breast skin, stained with hematoxylin and

eosin. Epidermis (E) and dermis (D) are indicated. Reproduced from [Monteiro-

Riviere, 1991].

Fig. 2-1 B.
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1991]. Second, the intercellular spaces of stratum corneum, which contain

almost no water (estimated at one water molecule per lipid molecule [Mak et al.,

1991]), are made of lipids arranged largely in bilayers (Fig 2-2) [Bouwstra et al.,

1991; Elias, 1991]. Unlike the phospholipids of cell membranes found elsewhere

in the body, stratum corneum lipids are primarily ceramides, cholesterol, and fatty

acids [Elias, 1988; Lampe et al., 1983a; Lampe et al., 1983b]. It is this structure

of keratin-filled blocks surrounded by multilamellar lipid bilayers, which is

believed to give skin its barrier properties and prevents therapeutic transdermal

administration of many drugs.

The dermis is 1 - 3 mm thick, mostly containing dense irregular connective

tissue made up of 60 - 70 % water. This amorphous matrix, called ground

substance, also contains fibrous proteins, such as collagen, elastin, and reticulin.

The predominant cell types are fibroblasts, mast cells, and macrophages. Blood

vessels, lymphatics, and nerves also reside within the dermis [Champion et al.,

1992; Monteiro-Riviere, 1991].

Appendages, including hair follicles and sweat ducts, exist within skin. Hair

follicles have three concentric layers: (1) the inner root sheath, composed of

keratinized cells, (2) the outer root sheath, continuous with and structurally

similar to viable epidermis, and (3) the connective tissue sheath, continuous with

and structurally similar to dermis. At the base of the hair follicle is the bulb with

the hair matrix. Arrector pili muscles and sebaceous glands are also connected

to hair follicles. Sweat ducts are coiled, tubular structures primarily associated

with eccrine sweat glands. Apocrine sweat glands also exist in a few parts of the

body (e.g., axilla, pubis) [Champion et al., 1992; Monteiro-Riviere, 1991].
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Fig. 2-2. Electron micrograph of hairless mouse stratum comeum. The two

large dark regions are keratinocytes, while the central striped band is the

intercellular domain. Within the intercellular region, series of electron-dense and

electron-lucent bands are seen, corresponding to the lipid bilayers of the

intercellular lamellae. Reproduced from [Elias, 1991].
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2.3 Pathways Of Transport

There are three potentially important pathways by which molecules cross

skin. First, a pathway directly across the stratum corneum is possible, where

molecules cross multiple keratinocytes and lipid bilayers. However, because

transport across bilayers and through keratinocytes is believed to be slow, this

path is usually not expected to be important. Second, a tortuous pathway

through the intercellular lipids is possible, where transport through keratinocytes

does not occur. This pathway might involve little transport across bilayers, where

molecules travel laterally within tail group regions, if hydrophobic, or within head

group regions, if hydrophilic. Experimental data support an intercellular lipid

pathway under conditions of passive diffusion [Bodd6 et al., 1989; Bodd6 et al.,

1991; Cullander, 1992; Potts and Guy, 1991; Potts et al., 1992]. Finally, a route

through sweat ducts and/or hair follicles (referred to as the shunt pathway) may

provide a direct route which circumvents the stratum corneum barrier. Although

shunts make up only - 0.1 % of human skin's surface area, experimental

evidence suggests that this pathway may also be important, especially for ion

transport in the presence of electric fields [Abramson and Gorin, 1940; Burnette

and Marrero, 1986; Burnette and Ongpipattanakul, 1988; Cullander, 1992;

Grimnes, 1984; Potts et al., 1992; Scott et al., 1993; Scott et al., 1992].

2.4 Transport Enhancement

Because rates of transdermal delivery are slow for many drugs, a number of

approaches to enhancing transport across skin have been investigated, including

-the use of chemicals, electricity, ultrasound, and prodrugs [Banga and Chien,

1988; Bronaugh and Maibach, 1989; Chien and Banga, 1989; Cullander and

Guy, 1992; Hadgraft and Guy, 1989; Hsieh, 1994; Shah and Maibach, 1993;
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Sloan and Soltani, 1986]. Chemical enhancement has received the most

attention. A chemical enhancer may increase transport by: (a) increasing drug

solubility in the delivery vehicle (outside the body), (b) increasing drug solubility in

the skin, (c) increasing the effective volume in the skin into which drug can

partition, or (d) physically altering the skin. Although chemical enhancers have

received extensive attention in both the scientific [Bronaugh and Maibach, 1989;

Hadgraft and Guy, 1989; Hsieh, 1994; Shah and Maibach, 1993] and patent

[Santus and Baker, 1993] literature, mechanistic insight and broadly-applicable

approaches to enhancement are limited. Identification of chemicals which both

affect transport significantly and are safe for human use has proved difficult.

Nevertheless, chemical enhancers, such as ethanol, are presently used in

transdermal patches approved by the U.S. Food and Drug Administration (FDA).

Electrical enhancement using small electric fields, termed iontophoresis,

usually involves the application of a dc electric field across the skin to increase

the migration of charged species. The delivery of charged drugs can be

enhanced by electrophoresis. Because at physiological pH the skin carries a net

negative charge, transport of uncharged drugs can also be enhanced by

electroosmosis due to convection caused by electrophoresis of mobile cationic

counter-ions. lontophoresis has been used clinically [Abramson, 1941; Arvidsson

et al., 1984; Banga and Chien, 1988; Chien and Banga, 1989; Duvanel et al.,

1988; Ledger, 1992; Meyer et al., 1990; Schwarz et al., 1968; Singh and Roberts,

1989; Sloan and Soltani, 1986], but no drugs are presently approved by the FDA

for iontophoretic delivery. lontophoresis is limited by the maximum current which

can be applied without pain or irritation. For larger patches (- 100 cm 2), this limit

may be up to 0.5 mA/cm 2 [Banga and Chien, 1988; Burnette and

Ongpipattanakul, 1988; Ledger, 1992; Zlotogorski, 1987].
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Ultrasound has been reported by a number of investigators to increase

transdermal transport, even for macromolecules [Antich, 1982; Benson et al.,

1991; Bommannan et al., 1991a; Bommannan et al., 1991b; Kost and Langer,

1993; Kost et al., 1989; Levy et al., 1989; Miyazaki et al., 1991; Novak, 1964;

Tachibana and Tachibana, 1991; Tachibana and Tachibana, 1993; Tyle and

Agrawala, 1989]. Although flux enhancement is sometimes small, ultrasound has

been shown to dramatically reduce transport lag times, to as little as minutes.

Typically ultrasound at 1 - 10 MHz and < 2 W/cm 2 has been employed, selected

largely because of existing FDA-approved ultrasound protocols for other uses

(e.g., heating for physical therapy). Mechanistic understanding of ultrasound

enhancement is limited, but may involve mixing, acoustic streaming, heating,

cavitation, and effects of mechanical stresses.

Prodrugs have been proposed to address a variety of drug delivery problems,

including those of transdermal delivery. For skin, a prodrug would involve

modification of the original drug in such a way that (a) in its modified form, the

prodrug has improved transport characteristics (e.g., more hydrophobic), and (b)

once the prodrug enters the body, the modification is undone or removed by

enzymatic cleavage, hydrolysis, or some other mechanism, to yield the original

drug. Prodrugs for transdermal delivery have received only limited attention and

success [Sloan, 1992; Tojo and Lee, 1991].

:2.5 Clinical Products

Only nine drugs are currently sold in the United States as transdermal drug

delivery products: clonidine, estradiol, fentanyl, isosorbide dinitrate, nicotine,

nitroglycerin, norethisterone, scopolomine, and testosterone [Santus and Baker,

1993]. A few other drugs, such as salicylate and non-steroidal anti-inflammatory
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agents, have been approved in other countries. However, it is believed that

many more transdermal drug delivery systems are currently being considered by

the FDA, including iontophoretic devices, and may be on the market within a few

years.
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3 Electroporation

3.1 Overview

Electroporation involves the creation of transient aqueous pathways in lipid

bilayer membranes by the application of an electric field pulse (Fig. 3-1) [Chang

et al., 1992; Neumann et al., 1989; Orlowski and Mir, 1993; Tsong, 1991;

Weaver, 1993b]. Permeability and electrical conductance of lipid bilayers, such

as cell membranes, are increased by many orders of magnitude. Moreover, the

associated local electric field can simultaneously contribute to transmembrane

molecular transport by electrophoresis and/or electroosmosis. These membrane

changes can persist for up to hours, but are reversible or irreversible, depending

mainly on pulse magnitude and duration, as well as membrane composition.

Electroporation has been demonstrated in many different mammalian, plant,

yeast, bacterial, and other cells, as well as in artificial planar and spherical

membranes. Thus, electroporation appears to be universal in lipid bilayers, with

onset largely independent of their exact composition or structure. Although the

creation of transient aqueous pathways, or electropores, is the proposed

mechanism by which electroporation occurs, the exact physical nature of an

electropore and the possibility of imaging them by any form of microscopy remain

unresolved (Fig. 3-2) [Chang et al., 1992; Chang and Reese, 1990; Neumann et

al., 1989; Orlowski and Mir, 1993; Weaver, 1993a].

Electrical exposures typically involve square-wave or exponential-decay

electric field pulses which generate transmembrane potentials of approximately

·1 V and last 10 ps to 10 ms [Chang et al., 1992; Neumann et al., 1989; Orlowski

and Mir, 1993; Tsong, 1991; Weaver, 1993b]. For lipid bilayers on the order of

·10 nm thickness, this corresponds to a local field strength within the membrane

of order 106 V/cm. Based largely on electrical and optical measurements,
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A

B

Fig. 3-1. Membrane reorganization by which metastable electropores might be

created. A) Intact lipid bilayer. B) Lipid bilayer with a metastable aqueous

pathway, or electropore. Such a reorganization might explain the existence of

pores which exist well after the electric field pulse. Based on a drawing from

[Glaser et al., 1988].
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Fig. 3-2. Freeze-fracture electron micrograph of pore-like structures in a red

blood cell membrane, showing three pores and one depression (arrow).

Suspended red blood cells were pulsed (4 - 5 kV/cm, 0.3 ms) and then rapidly

frozen in a liquid propane/ethane mixture (-80 °C). The large size (20 - 120 nm)

and delayed appearance (3 ms post pulse) of these pore-like structures suggest

that their formation may have involved secondary events following those which

occurred during the pulse. Reproduced from [Chang and Reese, 1990].
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electropores are thought to be created on the sub-microsecond time scale [Benz

et al., 1979; Hibino et al., 1991; Neumann et al., 1992; Serpersu et al., 1985].

They are believed to continue growing in size for the duration of the electrical

exposure, where maximum pore diameters are believed to up to order 10 nm,

although a distribution in sizes is expected (Fig. 3-3) [Barnett and Weaver, 1991;

Freeman et al., in press]. After the pulse, pores are believed to shrink to a

metastable state, over a characteristic time of milliseconds [Chernomordik et al.,

1983; Glaser et al., 1988]. These long-lived metastable pores are thought to be

-1 nm in radius [Abidor et al., 1979; Glaser et al., 1988]. Having lifetimes from

sub-second to hours, these pores eventually disappear completely, under

reversible conditions. The onset of electroporation has been shown to occur

largely independent of exact membrane composition and experimental

conditions. However, the time scale of recovery is a strong function of

conditions, especially temperature, where low temperature (i.e., 4°C) increases

pore lifetimes [Chang et al., 1992; Neumann et al., 1989].

Although electroporation has been demonstrated under a variety of

conditions, there exists a range of electrical parameters for which electroporation

is known to occur, and a smaller range for which electroporation is reversible (Fig

3-4). Both the magnitude and duration of the induced transmembrane voltage

are important to the occurrence of electroporation. For example, electroporation

generally occurs for short pulses (0.1 - 10 gs) which generate a transmembrane

voltage slightly greater than 1 V, medium-length pulses (10 - 100 Us) of 0.5 - 1 V,

and long pulses ( 1 ms) of 0.2 - 0.5 V [Benz and Zimmermann, 1980; Neumann,

1989]. Less work has been done on pulses shorter than 0.1 s.

While electrical characterization of electroporation is important to mechanistic

understanding, most applications have emphasized electroporation's ability to
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Fig. 3-3. Theoretical prediction of pore size distributions in an electroporated

cell membrane as a function of time. Initially, there are no pores (curve A).

However, during a 50 s, 10 kV/cm square-wave pulse, a pore population with a

changing distribution of sizes is created (curves B - L). After the pulse, the pores

rapidly close (curves M - R). Reproduced from [Weaver and Barnett, 1992]
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Fig. 3-4A. Transmembrane voltage plotted versus pulse length required for

onset of electroporation in Valonia utricularis cell membranes. Standard

deviation bars are shown. Data from [Benz and Zimmermann, 1980]
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Fig. 3-4B. Time to cell membrane destruction (irreversibility) shown at different

transmembrane voltages. Using a patch-clamp method, red blood cell

membrane conductivity was measured. Cell membrane destruction was

determined by irreversible membrane conductivity increases of orders of

magnitude. Data from [Chernomordik et al., 1987].
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increase molecular transport across lipid bilayers. Many different molecules have

been transported across membranes by electroporation, ranging progressively in

size from small ions to sugars to oligonucleotides to proteins to DNA to virus

particles [Orlowski and Mir, 1993]. Electroporation has found widespread

application in molecular biology as a method to introduce DNA into cells for gene

transfection [Chang et al., 1992; Neumann et al., 1989]. Other possible

applications exist, including introduction of foreign proteins into cells [Berglund

and Starkey, 1991; Graziadei et al., 1991; Hashimoto et al., 1989; Lambert et al.,

1990; Mir et al., 1988; Zimmermann et al., 1975], release of cellular contents for

intracellular assays [Knight and Scrutton, 1986; Suprynowicz and Mazia, 1985;

Swezey and Epel, 1988], and cell killing for sterilization [Hulsheger et al., 1981;

Jayaram et al., 1992; Sale and Hamilton, 1967].

3.2 Tissue Electroporation

Recently, electroporation has been demonstrated in cells in monolayers

[Kwee et al., 1990; Raptis and Firth, 1990] as well as in cell membranes and

other lipid-containing structures within intact tissues [Dev and Hofmann, 1994;

Orlowski and Mir, 1993; Weaver, 1993b].

The prospect of transiently enhancing transport across a tissue by

electroporation suggests a variety of compelling research and biomedical

applications [Chang et al., 1992; Neumann et al., 1989; Orlowski and Mir, 1993;

Tsong, 1991; Weaver, 1993b]. For example, electroporation of cells within a

selected tissue could cause increased local uptake of drug, allowing drug

targeting. Moreover, some drugs are ineffective because they are unable to

cross cell membranes under normal physiological conditions. However,

electroporation could allow these drugs to enter their target cells and become
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therapeutically useful. Another possible application is electroporation of skin to

enhance transdermal drug delivery.

To date, electroporation of tissue has been reported by only a few research

,groups. Okino et al. first demonstrated in rats that electroporation at the site of a

tumor could increase the effect of a chemotherapeutic agent on tumor destruction

relative to pulse-only or drug-only controls [Kanesada, 1990; Okino and Esato,

1990; Okino et al., 1987; Okino and Mohri, 1987; Okino et al., 1992; Okino et al.,

1991]. Following systemic administration of bleomycin, cylindrical electrodes

were inserted through the skin on opposite sides of the tumor (2 - 2.5 cm

spacing) and a single square-wave or exponential-decay pulse of < 10 kV and

: 7.25 ms was applied. These electrodes produce a highly non-uniform electric

field, with a very large field near the electrodes.

Related studies have been done in mice by Mir et al., employing surface,

parallel-plane electrodes placed across the tumor (6.6 mm spacing) (Fig. 3-5)

[Belehradek et al., 1991; Belehradek et al., 1994; Mir et al., 1991a; Mir et al.,

'1991b; Mir et al., 1992a; Mir et al., 1992b]. These electrodes provide a nominally

uniform electric field, with departures from uniformity due mainly to tissue

heterogeneity. A series of 8 square-wave pulses (100 pas width) at 1 pulse per

second (pps) was applied using 900 - 1500 V/cm. Mir and coworkers have also

shown tumor regression in human patients by administering bleomycin with a

similar pulsing protocol [Belehradek et al., 1993; Mir et al., 1991a]. Both Okino's

and Mir's groups report transient edema as the only significant side effect.

Finally, using a different protocol, Mir and coworkers have recently demonstrated

electroporation-enhanced cancer chemotherapy for treatment of brain tumors in

rats [Salford et al., 1993].
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Fig. 3-5. The effects of bleomycin and electroporation on B16 melanomas in the

flanks of C57B1/6 mice: [o] drug (+), electroporation (+); [] drug (+),

electroporation (-); [o] drug (-), electroporation (-); [] drug (-), electroporation (+).

Only tumors which received both bleomycin (500 jg) and electroporation pulses

(8 pulses of 100 us and 1000 V/6.6 mm at 1 Hz) did not grow. Standard

deviation bars are shown. Data from [Mir et al., 1991 b]
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Of relevance to gene therapy, Titomirov et al. have used surface electrodes to

electroporate dermal cells in mice, thereby enhancing uptake and resulting in

expression of plasmid DNA injected subcutaneously [Sukharev et al., 1994;

Titomirov et al., 1991]. Two exponential-decay pulses of opposite polarity were

applied at 400 - 600 V, 100 - 300 Rs, resulting in tissue necrosis at higher

voltages.

Grasso et al. have demonstrated electrofusion of cells to rabbit corneal

epithelium, potentially important for novel approaches to drug delivery, wound

Ihealing, and development of new animal models [Grasso et al., 1989; Heller and

Gilbert, 1992; Heller and Grasso, 1990]. Electrofusion is a phenomenon which is

believed to be mechanistically related to electroporation [Chang et al., 1992;

Neumann et al., 1989; Tsong, 1991]. Using an electrode which fit the curvature

of the eye and a counter electrode attached to the buccal mucosa, three pulses

of 20 V, 20 us were applied at 1 pps. Ocular inflammation or more severe

damage was not observed.

Finally, Powell et al. have demonstrated electroporation of viable frog skin

[Powell et al., 1989]. Transient changes (< 3 min) in skin electrical properties

'were measured after application of an electric pulse of 2 - 20 V in magnitude and

10 - 100 ps in duration. Skin viability appeared not to be affected.
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METHODS

4 Red Blood Cell Ghosts

4.1 Net Transport Measurement 1

4.1.1 Introduction

Most electroporation studies have used one of the following four methods of

analysis: (A) expression of an introduced gene, (B) total population methods, (C)

image analysis, or (D) flow cytometry.

(A) Studies focusing on the uptake and expression of exogenous DNA by a

living cell are relevant to transfection applications, but are inherently coupled to

other processes. For example, whether a cell grows into a colony which

expresses the introduced gene depends on many more factors than just transport

of DNA across the cell membrane.

(B) Total population methods, such as turbidity changes in cell suspensions

and radioactivity measurements of cell populations pulsed in the presence of

radiolabelled molecules, better isolate electroporative transport, but are

responsive only to the average electroporative behavior of cells. There are,

however, fundamental physical and biological reasons for expecting a

heterogeneous electroporation response within a cell population [Weaver and

Barnett, 1992], and indeed heterogeneity is observed experimentally [Lambert et

al., 1990; Liang et al., 1988; Mir et al., 1988; Rosemberg and Korenstein, 1990;

Tekle et al., 1991; Weaver et al., 1988]. Although the average transport per cell

is of interest, it is important to determine whether the average reflects behavior of

a single population with similar responses, or of two or more distinct

subpopulations with significantly different responses.

1 These methods have also been described in [Prausnitz et al., 1993d] and [Prausnitz et al.,
1994].
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(C) Image analysis of individual cells provides the power of spatial and

temporal resolution. However, limitations include: (1) restricted ability to

measure kinetics on the microsecond level, the time scale during which

electroporation phenomena are believed to occur, based on experimental

observations [Benz and Zimmermann, 1980; Benz et al., 1979; Hibino et al.,

1991] and on theoretical grounds [Barnett and Weaver, 1991; Weaver and

Barnett, 1992], (2) difficulty in observing molecules entering cells (as opposed to

those exiting), even though it is uptake which is relevant to most applications

[Weaver and Barnett, 1992], and (3) restriction to measuring only a few cells at a

time, with the consequence that population distributions of behavior are difficult to

obtain.

(D) Flow cytometry provides large numbers of quantitative optical

measurements on individual cells at rates of 102 to 104 cells per second

[Melamed et al., 1990; Shapiro, 1988]. Although flow cytometry is not attractive

for measuring rapid kinetics, it provides quantitative and statistically significant

end point measurements on large numbers of individual cells. Molecular uptake

and cell damage can be independently assessed. Light scatter is responsive to

morphology and calibrated fluorescence provides a quantitative measurement of

the number of fluorescent molecules. At their present performance levels, image

analysis and flow cytometry are complementary, with neither able to provide all of

the important types of measurements.

Here, flow cytometry has been used because of its quantitative nature at the

single cell level, to conduct a systematic study of the effects of electric and other

parameters on molecular transport due to electroporation.

We have chosen erythrocyte ghosts as model cells because of the following

advantages: (1) large, consistent supply from which ghosts are easily prepared,
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(2) relatively simple spherical geometry for most ghosts, and (3) existence of

many previous electroporation studies [Auer et al., 1976; Chang and Reese,

1990; Dimitrov and Sowers, 1990; Kinosita and Tsong, 1977a; Sale and Hamilton,

1968; Zimmermann et al., 1976]. Because electroporation has been shown to

occur universally in lipid bilayers, irrespective of the details of their composition

[Chang et al., 1992; Neumann et al., 1989], results from red blood cell ghosts are

expected to be representative of cells in general. However, disadvantages

include: (1) heterogeneity of red blood cell ghost size, shape, and age in usual

preparations (including ours) and (2) likely existence of a single, persistent defect

(pore) in each ghost as the result of ghost formation [Lange et al., 1982; Lieber

and Steck, 1982a; Lieber and Steck, 1982b].

4.1.2 Red Blood Cell Ghost Preparation 2

Human blood was obtained from healthy adult volunteers, heparinized, and

stored for < 24 h at 4 °C (Vacutaner tube, Becton Dickinson, Franklin Lake, NJ).

Red blood cells were separated and washed at least three times with Dulbecco's

phosphate-buffered saline (PBS; pH 7.4; 150 mM total salts: 138 mM NaCI, 8.1

mM Na2HPO 4, 2.7 mM KCI, 1.1 mM KH 2 PO4) (centrifugation at 450 g, 12 min. 4

°C). Red blood cells were then immediately converted into erythrocyte ghosts by

hypotonic lysis (5 mM PBS, pH 8.5, 20 min; wash four times with 20 mM PBS, pH

8.5, centrifuge at 10,000 g, 20 min, 4°C; [Dodge et al., 1963]). Ghosts were

stored as a pellet at 4 °C and used within four days.

To preload ghosts with calcein, after lysis and one wash, ghosts were placed in

lysis buffer (5 mM PBS, pH 8.5) containing 10- 3 M calcein at 4 °C for 1 h. Then, an

equal volume of resealing buffer (40 mM PBS, pH 8.5) containing 10 -3 M calcein

2 See detailed protocol in Appendix 1.
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was added and the mixture was stored at room temperature (23 1 °C) for two

hours. Ghosts were then washed four times and stored as above.

.4.1.3 Electroporation Protocol3

Approximately 107 ghosts/ml were suspended in PBS (20 mM, pH 8.2 + 3)

containing 10- 4 M calcein (lot 1 OA-3, Molecular Probes, Eugene, OR) or 10- 5 M of

one of the following fluorescent macromolecules: (1) fluorescein-labeled

lactalbumin (lot 9A, Molecular Probes), (2) fluorescein-labeled bovine serum

albumin (BSA; lots 10C and 65111, Molecular Probes and lot 29F9318, Sigma

Chemical Co., St. Louis, MO), or (3) fluorescein isothiocyanate (FITC)-dextran

(average MW = 71 kDa, lots 105F-5029 and 118F-0821, Sigma). Unlike proteins,

with known molecular weight and structure, dextrans have distributions in size.

One therefore does not know if uptake of dextran molecules represents transport

of dextrans of all molecular weights or, for example, of only the dextrans of low

molecular weight. In spite of this disadvantage, many investigators, including us,

have used dextran [Bartoletti et al., 1989; Dimitrov and Sowers, 1990; Liang et al.,

1988; Rosemberg and Korenstein, 1990; Sowers and Lieber, 1986; Weaver et al.,

1988].

Pulsing was performed with a Gene Pulser (BioRad, Richmond, CA) or an

FCM 600 (BTX, San Diego, CA), using 2 mm gap cuvettes with parallel-plate

aluminum electrodes (BioRad). Cuvettes were reused up to ten times each.

Unless otherwise noted, exponential-decay electric field pulses (exponential

decay time constant, , between 1 - 2 ms) of various magnitudes were used. Five

minutes after the pulse, ghosts were washed twice with PBS (20 mM, pH 8.2 + 3;

centrifuge at 10,000 g, 3 min, room temperature), suspended in PBS (20 mM, pH

3 See detailed protocol in Appendix 2.
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8.2 + 3) containing fluorescent latex microspheres (beads; 106/ml; d = 5.8 jim;

Polysciences, Warrington, PA) and stored at 0 - 4 °C until analysis the same day.

Samples were pulsed either at room temperature (23 1 °C) or 0 - 4 °C,

unless otherwise indicated. Samples pulsed at 0 - 4 °C were kept on ice, while

samples pulsed at 37 °C were kept in a 37 °C water bath (VWR Scientific,

Cleveland, OH) before and after pulsing. Samples pulsed at 23 °C were kept at

room temperature throughout. In multiple pulse experiments with inter-pulse

spacing, tinter = 60 s, samples were kept on ice between pulses, while for tinter =

5 s, samples were on ice only before and after all pulses were applied. Sample

temperature was not controlled for the 5 - 10 s during which samples were placed

in the pulsing unit.

In experiments where the time before pulsing during which BSA could adsorb

to ghosts was controlled, two solutions were prepared: one contained twice the

desired ghost concentration and no BSA, while the other contained twice the

desired BSA concentration and no ghosts. At the appropriate time these

solutions were mixed. For example, to expose ghosts to BSA 5 s post-pulse, a

sample containing the concentrated ghost suspension was first pulsed. Five

seconds later, the concentrated BSA solution was added and shaken by hand,

yielding a preparation with the desired final ghost and BSA concentrations.

Reported electric field values are nominal electric fields (applied voltage

divided by electrode spacing), as commonly used in the literature. The nominal

electric field was determined by dividing the voltage (displayed by the pulsing

device) by the electrode gap: Enominal = Voutput/delectrode. However, if significant

potential drops existed outside the ghost suspension (e.g., at the

electrode/electrolyte interfaces), the field to which the ghosts were exposed would

be lower. In this study, we determined the actual field within the ghost suspension
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using a method described previously [Bliss et al., 1988]: we measured the ghost

suspension electrical conductivity, measured the current though the cell

suspension by placing a 5 Q sampling resistor in series with the cuvette, and then

computed the electric field pulse magnitude within the ghost suspension. We

determined that, under the conditions of this study, the actual electric field within

the cuvette was up to 10% less than the nominal electric field. Although only

nominal electric fields are generally reported in the literature, differences between

nominal and actual electric fields are probably present in many electroporation

protocols.

After most experiments had been performed, it was brought to our attention

that pulsing with standard cuvettes can cause pH shifts. Since our system was

only weakly buffered, pH changes occurred (final range between pH 8 and 9),

which increased with pulse voltage. To assess the effect of pH, we performed

additional studies of BSA uptake at different voltages using 7.4 < pH < 10. In

each case the uptake vs. voltage graph (i.e., Fig. 7-6) was of the same form

(plateau observed) and the absolute values of molecular transport between pH 8

and 9 were within 20% of each other. We therefore conclude that pH had only a

weak effect on uptake under the conditions of our experiments.

In summary, upon electroporation resulting in sufficiently large pores in the

ghost membrane, fluorescent molecules were able to enter the ghosts. After

waiting five minutes and then washing the ghosts, fluorescent molecules inside

the ghosts were measured by the flow cytometer. Fluorescent beads were co-

suspended (at a fixed concentration) with the ghosts as an internal volumetric

standard. This provided a basis for determining if ghosts were destroyed by

electroporation or otherwise lost during sample handling and washing:
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determination of the ghost/bead ratio provided a relative ghost concentration

which could be compared to control samples.

4.1.4 Flow Cytometry Measurements4

Individual measurements on ghosts and beads were performed by a FACStar

Plus flow cytometer (Becton Dickinson) using Consort 40 software (Becton

Dickinson) on a microVAX computer (Digital Equipment Corp., Maynard, MA).

Fluorescence data were collected using a custom-modified three or four-log

decade amplifier. Collection of scatter data was with a standard four-log decade

amplifier. Multiple optical measurements were made at a rate of up to 3000

ghosts/s, which allowed rapid collection of large amounts of statistically

meaningful data at the individual ghost level. Ghosts were diluted into a carrier

fluid (Isoton II balanced electrolyte solution, Coulter Diagnostics, Hialeah, FL) and

passed though a 488 nm laser beam (Innova-90 argon ion laser; 5 W; Coherent,

Palo Alto, CA). Measurements of light scatter of the ghosts gave an indication of

object size and shape, allowing discrimination between ghosts, microspheres, and

debris. With calibration, fluorescence measurements provided a quantitative

determination of the number of fluorescent molecules associated with each ghost.

Microscopy of electroporated ghosts generally showed uniformly fluorescent solid

circles, as opposed to fluorescent rings, supporting the interpretation that ghost

fluorescence was due to molecules inside the ghost rather than molecules bound

to the membrane.

In a typical experiment in this study, measurement of ghost fluorescence

proceeded as follows: as a ghost passed though the flow cytometer, it scattered

light from the laser. This triggered collection of light scatter and fluorescence

4 See detailed protocol in Appendix 3.
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data (90° light scatter trigger used). Fluorescein was excited at 488 nm and the

resulting fluorescence emission was collected though a 530 nm band pass filter.

4.1.5 Quantitative Fluorescence Calibration

Quantitative calibration beads (Flow Cytometry Standards, Research Triangle

Park, NC) were used to convert fluorescein fluorescence measurements into

quantitative numbers of molecules contained inside each ghost [Bartoletti et al.,

1989]. These calibration beads provided the equivalent fluorescence of specified

numbers of fluorescein molecules free in solution. For example, one bead may

be as bright as 106 free fluorescein molecules. However, our fluorescent tracer

molecules may fluoresce differently from free fluorescein, e.g., 106 BSA

molecules with multiple bound-fluorescein labels may have a different

fluorescence intensity than 106 free fluoresceins. Therefore, the fluorescence of

each type of fluorescent molecule must be determined relative to that of free

fluorescein before proper calibration can be done.

This was accomplished by comparing the fluorescence intensities of known

concentrations of each fluorescent molecule to that of known concentrations of

-free fluorescein (lot 20H-3413; Sigma) in a spectrofluorimeter (Fluorolog-2, model

F1 12AI; Spex Industries, Edison, NJ), using the same filter for collection of

fluorescent light as is used in the flow cytometer. Sample excitation was

performed at 488 nm with a 4.6 nm bandwidth. Under the conditions of this

study, the ratios, R, of fluorescent molecule fluorescence to free fluorescein

fluorescence were: Rcalcein = 0.65 + 0.28; Rlactalbumin = 0.51 0.26; RBSA =

1.11 + 0.39 (lot 10C), 0.74 ± 0.21 (lot 65111), and 0.37 + 0.12 (lot 29F9318);

Rdextran = 3.05 ± 0.61 (lot 105F-5029) and 1.63 + 0.62 (lot 118F-0821). The error

ranges are attributed to different degrees of fluorescent sample bleaching.
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4.2 Transport Kinetics Measurement5

4.2.1 Erythrocyte Ghost Preparation

The preparation of erythrocyte ghosts, and their loading with fluorescent

molecules, has been described previously in this chapter. Briefly, human

erythrocytes were washed and lysed by hypotonic shock. Calcein (molecular

mass, M = 623 Da; net charge, z = -4; Molecular Probes, Eugene, OR) was

loaded into the ghosts before resealing by exposure to a solution of 1 mM

calcein. Loaded ghosts were stored as a pellet at 4 °C for up to one day and

washed again before use. Erythrocyte membranes are commonly used in

electroporation studies [Chang and Reese, 1990; Dimitrov and Sowers, 1990;

Kinosita and Tsong, 1977a; Prausnitz et al., 1993d; Sale and Hamilton, 1968;

Zimmermann et al., 1976].

4.2.2 Pulsing Chamber Design

The pulsing chamber is shown in Figure 4-1. A mounting stand made of

microscope slides adhered to each other with silicone rubber (RTV silicone

rubber, General Electric Co., Waterford, NY) provided mechanical stability and

electrical insulation from the metal microscope stage. Two stainless steel

electrodes (4 x 1 x 0.2 mm, with polished surfaces and 90° corners) were affixed

(RTV silicone rubber) in parallel to the mounting stand, with an interelectrode

spacing of 1.6 mm. The electrodes were further polished with emery cloth until

the top surfaces were flat and co-planar. An enclosed trough was made by filling

the interelectrode spaces on the outer edges with silicone rubber.

5 These methods have also been described in [Prausnitz et al., submitted, a]
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Fig. 4-1. Pulsing chamber design. A mounting stand (a) provided a platform for

two parallel, co-planar stainless steel electrodes (b). To form an enclosed

trough, the interelectrode spaces on the outer edges were filled with silicone

rubber (c). A cover slip (d) coated on its underside with erythrocyte ghosts was

placed on top. This design allowed imaging of ghosts by fluorescence

microscopy during and after electroporation.
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4.2.3 Electroporation Protocol

To perform an experiment, ghosts were adhered to one side of a glass cover

slip (16 x 16 mm) coated with Cell-Tak cell adhesive (20 - 180 min adhesion time;

Becton Dickinson Labware, Bedford, MA). The experimental chamber, between

the electrodes, was filled with phosphate-buffered saline (20 mM total salts). A

cover slip was then placed on top of the chamber, with the ghost-coated surface

facing down, bathed in saline. A small drop of silicone grease (high vacuum

grease, Dow Corning Corp., Midland, MI) was placed over one or two corners of

the cover slip to prevent it from moving. The chamber was positioned under a

fluorescence microscope (see below) so that a single adherent and isolated

ghost was illuminated by the excitation beam. A 5 gim radius beam, slightly

larger than a ghost, was used to assure that the ghost remained within the

excitation beam even if the ghost moved or deformed slightly during the pulse.

After waiting one to two minutes to verify that the ghost was well anchored, an

exponential-decay electric field pulse was applied across the chamber using a

capacitor-discharge power supply (Gene Pulser, Bio Rad, Richmond, CA). The

internal trigger signal which started the pulse output from the power supply was

used to initiate data collection.

4.2.4 Fluorescence Measurements

Fluorescence measurements were made using an instrument modified from a

fluorescence imaging apparatus described previously [Corbett and Golan, 1993].

The light source for fluorescence excitation was a 5 watt argon ion laser

(Spectra-Physics 164-08, Mountain View, CA) tuned to 488 nm. Intensity

modulation by an acousto-optic modulator (Newport Electro-Optics N35083-3,

Melbourne, FL) provided the two light intensities required for (a) locating cells
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(low intensity) and (b) following changes in fluorescence after the application of

an electrical pulse (high intensity). Before entering a fluorescence microscope

(Leitz Orthoplan/MPV-3, Rockleigh, NJ), the intensity-modulated light was

passed through a 500 mm biconvex lens (Ealing Corp., Natick, MA). This beam

was directed onto the microscope stage by a 515 nm dichroic (Leitz), and

focused at the sample plane by an adjustable short focal length lens within the

body of the microscope followed by a strain-free 40X 0.65 N.A. air objective.

Experiments were performed at room temperature (-23 °C).

Fluorescence emission from the sample was collected by the microscope

objective and filtered by the dichroic and a 520 nm long pass filter. Emitted light

was detected by a single-photon counting system composed of a thermionically

cooled (Products for Research TE-104RF, Danvers, MA) photomultiplier tube

(PMT; Thorn EMI 9658RA, City) driven by a high voltage power supply (EG&G

1109, Princeton, NJ). An adjustable field diaphragm was used to discriminate

against fluorescence from regions other than the ghost of interest. PMT pulses

were amplified and discriminated to 100 mV (EG&G 1121A). The resulting

transistor-transistor logic pulses were fed into a multi-channel scaler (Nicolet 370,

Madison, WI), triggered by the pulsing unit to begin data collection at the

beginning of the electric field pulse. After each experiment, data were sent to a

computer workstation (Sun 386i/250, Mountain View, CA) for processing.

4.2.5 Electric Field Validation

Because ghosts adhered to cover slips were located slightly above the

electrodes, the local electric field was less than the nominal electric field between

the electrodes. Using the microscope, we determined that ghosts were at most

100 gm above the plane of the upper surfaces of the electrodes. Numerically
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solving by finite element analysis (Maxwell 2D Field Simulator, Ansoft Corp.,

Pittsburgh, PA) for the field in the chamber using the geometry of our apparatus,

the electric field experienced by the ghosts was estimated to be within 1% of the

nominal electric field.
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!5 In Vitro Skin6

5.1 Materials

Phosphate-buffered saline (PBS) was prepared, containing 138 mM NaCI, 8.1

mM Na2 HPO 4, 2.7 mM KCI, and 1.1 mM KH 2 PO4 (Mallinckrodt, Paris, KY), and

adjusted to pH 7.4 by adding NaOH or HCI (Mallinckrodt). Calcein was obtained

from Sigma (St. Louis, MO) or Molecular Probes (Eugene, OR). Lucifer Yellow

and erythrosin - 5 - iodoacetamide were obtained from Molecular Probes. To

make the sulfur alkylated erythrosin derivative, erythrosin - 5 - iodoacetamide

was reacted with excess 6 - mercapto - 1 - hexanol in PBS at 25 °C for over 12 h.

5.2 Skin Preparation7

Using established skin sample preparation methods, full thickness excised

cadaver skin was obtained within 48 h post mortem and stored at 4 C / 95 %

humidity for up to 1 week [Bronaugh and Maibach, 1989; Hadgraft and Guy,

1989]. Full thickness samples were prepared by gently scraping off

subcutaneous fat. Epidermis samples were heat separated by submerging full

thickness skin in 60 °C water for 2 min and then gently removing the epidermis

[Gummer, 1989]. All samples were stored at 4 °C/ 95 % humidity for less than 3

weeks. Tissue was obtained from four sources (three local hospitals and the

National Disease Research Interchange) to minimize any artifacts of tissue

acquisition. Tissue was generally from the abdomen, removed just lateral to the

midline, although tissue from the breast, back, and thigh was used as well.

Because the primary barrier to transport is the stratum corneum (the upper 10

- 20 gm of the epidermis), the use of epidermis rather than full-thickness skin is a

6 These methods have also been described in [Prausnitz et al., 1993a] and [Prausnitz et al.,
submitted, b].
' See detailed protocol in Appendix 4
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well-established model for transdermal drug delivery [Bronaugh and Maibach,

1989; Champion et al., 1992; Cullander and Guy, 1992; Hadgraft and Guy, 1989].

In the literature, transdermal drug delivery is commonly understood to mean

transport of drugs across the skin (not just the dermis) [Bronaugh and Maibach,

1989; Hadgraft and Guy, 1989]. When systemic delivery is desired, a drug must

traverse the stratum corneum, the viable epidermis, and some fraction of the

dermis before entering blood vessels of the systemic circulation. Since

capillaries exist near the dermal-epidermal junction, drugs can enter the systemic

circulation without crossing the whole dermis [Bronaugh and Maibach, 1989;

Champion et al., 1992; Hadgraft and Guy, 1989]. Thus, transport across full-

thickness skin misrepresents the actual transport pathway. For these reasons,

following established practice [Bronaugh and Maibach, 1989; Hadgraft and Guy,

1989], we have performed the majority of our studies with human epidermis, and

have established agreement with select results from full-thickness human skin.

5.3 Electroporation Protocol

5.3.1 Aliquot Method 8

Prepared skin samples were mounted in side-by-side permeation chambers

[Friend, 1992] containing well-stirred phosphate-buffered saline (PBS; pH 7.4,

150 mM total salts; Sigma, St. Louis) (Fig. 5-1). To assure initially intact skin

barrier function, we used only skin samples which had > 100 kQ cm2 resistance

and which exhibited a passive calcein flux below our detection limit (of order 10-4

gg/cm2h). After allowing skin to hydrate (12 - 18 h, 4 °C), the temperature was

raised to 37 °C and a donor solution of 1 mM fluorescent compound (calcein,

Lucifer Yellow, or erythrosin derivative) in PBS was placed in the donor

8 See detailed protocol in Appendix 5
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Fig. 5-1. Schematic of the apparatus for in vitro transdermal drug delivery by

skin electroporation. The pulser applies a voltage pulse across a resistor box

containing ten 5 Q resistors. By providing a constant load of 50 , the pulse

length of a capacitive-discharge pulse ( = R C) is held constant even if chamber

resistances change (chamber resistance is >> 50 Q). Moreover, the resistor box

is used as a voltage divider so that different chambers can be pulsed

simultaneously at different voltages. For example, chamber A is pulsed at 50 %,

while chamber B is pulsed at 80 %, of the voltage applied by the pulser.
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compartment, facing the stratum corneum (0.7 cm2 exposed skin). Contents of

the receptor compartment (facing the viable epidermis) were periodically

removed, replaced with fresh PBS, and analyzed for fluorescence by calibrated

spectrofluorimetry (Fluorolog-2, model F112AI, SPEX Industries, Edison, NJ) to

determine rates of transdermal transport.

Exponential-decay (decay time constant, X = 1.0 - 1.3 ms, unless otherwise

noted; ECM 600, BTX, San Diego, CA or GenePulser, BioRad, Richmond, CA) or

square-wave (model 350 pulser with model 350-12 plug-in unit, Velonex, Santa

Clara, CA; 200 Q minimum load) electric field pulses were applied for 1 h, unless

otherwise noted. Constant-current iontophoresis was performed by providing a

constant current through the permeation chamber for 1 h using a constant-

current power supply. Constant-voltage iontophoresis was performed by

maintaining a constant voltage across the skin using a constant-voltage power

supply (model 721A, Hewlett-Packard, Palo Alto, CA). Alternating-voltage

iontophoresis was performed by providing a sinusoidally-varying voltage across

the skin for 1 h using a test oscillator power source (model 651A, Hewlett-

Packard). Ag/AgCI electrodes (In Vivo Metrics, Healdsburg CA) were used, each

located - 3 cm from the skin. The negative electrode was in the donor

compartment, while the positive electrode was in the receptor compartment,

unless otherwise noted. Electrical properties were measured with an

oscilloscope (model 54602A, Hewlett-Packard), where (a) permeation chamber

voltage was measured directly and (b) the corresponding current was calculated

using Ohm's law by measuring the voltage across a sampling resistor in series

with the chamber.

Reported voltages are average transdermal values determined during the first

of each hour-long sequence of pulses. Because significant voltage drops
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occurred within donor and receptor solutions and electrodes, applied voltages

during these pulses were approximately three-fold higher [Bose, 1994; Pliquett

and Weaver, submitted, a]. Moreover, because skin resistance decreased

further as pulsing progressed, transdermal voltages during subsequent pulses

were lower than the first-pulse values [Pliquett and Weaver, submitted, a].

Reported iontophoresis voltages are also transdermal values, where transdermal

'voltage was directly measured by Ag/AgCI electrodes located on either side of

the skin.

Pulse voltages were determined -100 js after the onset of the pulse. During

a pulse, the apparent resistance of the chamber, without skin (but including

electrodes, saline, and interfacial resistances), was 480 Q, independent of the

pulse voltage. The apparent resistance of the chamber with skin varied from

900 Q during lower-voltage pulses (- 50 V across skin) to 600 Q during higher-

voltage pulses (- 500 V across skin). Transdermal voltages were determined by

calculating the ratio of the apparent skin resistance to the apparent total chamber

(with skin) resistance. This ratio is equal to the ratio of the transdermal voltage to

the voltage across the whole chamber (with skin). By applying a voltage pulse

and measuring the resulting current, apparent resistances were calculated by

dividing the applied voltage by the measured current.

Post-pulse skin electrical characterization was performed using a four-

electrode impedance measurement system [Bose, 1994]. A current step (0.1 - 2

LuA/cm2) was applied and the resulting transdermal voltage was measured.

Using a Fourier transform, skin impedance was calculated over a range of

frequencies (1 - 1000 Hz) by dividing the measured transdermal voltage by the

applied current.
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5.3.2 Flow-Though Method

The experimental methods have been described previously [Pliquett et al.,

submitted; Pliquett and Weaver, submitted, b; Prausnitz et al., 1993a]. Briefly,

heat stripped human epidermis was loaded into a side-by-side, flow-through

permeation chamber containing well-stirred phosphate-buffered saline (PBS; pH

7.4, 150 mM total salts; Sigma, St. Louis, MO) at 21 + 3 °C. A donor solution of

1 mM calcein (Sigma) in PBS was placed in the donor compartment, facing the

stratum corneum (0.7 cm2 exposed skin). Contents of the receptor compartment

(facing the viable epidermis) were continuously flowed through a

spectrofluorimeter (excitation = 488 nm, Remission = 515 nm; Fluorolog-2, model

F1 12AI, SPEX Industries, Edison, NJ) allowing continuous determination of

receptor solution fluorescence. Deconvolution and calibration of the fluorescence

measurements allowed calculation of transdermal fluxes with 10 s resolution

[Pliquett et al., submitted].

After allowing skin to hydrate for 1 - 2 h, electric field pulses (exponential-

decay time constant, X = 1.1 m) were applied with an ECM 600 (BTX, San Diego,

CA) using Ag/AgCI electrodes (In Vivo Metrics, Healdsburg, CA), each located 3

cm from the skin. lontophoresis was performed with a constant-current power

supply. The negative electrode was in the donor compartment, while the positive

electrode was in the receptor compartment. Reported voltages are average

transdermal values, determined - 10 gIs after the onset of each pulse. Because

significant voltage drops occurred within donor and receptor solutions, applied

voltages were significantly higher [Bose, 1994; Pliquett and Weaver, submitted,

a; Prausnitz et al., 1993a].
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6 In Vivo Skin9

The heterogeneous composition and complex geometry of tissues and the

use of living animal models add new complexities not present in isolated-cell

electroporation. For example: (a) concern for animal health and possible pain

and nervous stimulation is required; (b) the use of multiple pulses increases the

need to understand and control electrode properties and electrochemistry; and

(c) heterogeneous and changing tissue electrical properties suggest the need for

new pulse protocols and make interpreting experimental results more

challenging. This chapter describes how we have addressed these

methodological issues for our in vivo tissue electroporation studies.

6.1 Electroporation Protocol

6.1.1 Transdermal Delivery

Unlike other applications of tissue electroporation (e.g., cancer

chemotherapy), electroporation of skin for transdermal drug delivery requires that

a solution or gel containing drug be present between the electrode and the skin.

Fig. 6-1 shows the apparatus we developed for this purpose, based in part on

conventional in vivo transdermal drug delivery techniques and in part on the

approach taken by Titomirov et al. [1991].

CD hairless rats were anesthetized with 75 mg/kg ketamine HCI (Ketaset,

Aveco Co., Ft. Dodge, IA) and 10 mg/kg xylazine (Rompun, Mobay Corp.,

Shawnee, KS) by intraperitoneal injection. Animal care was in accordance with

institutional guidelines. Depth of anesthesia was assessed using corneal and

pedal reflexes. Additional 1/3 doses were given to maintain sedation (every 30 -

9 These methods have also been described in [Prausnitz et al., in press, c].
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Fig. 6-1. Apparatus for in vivo transdermal drug delivery by skin electroporation:

a schematic of the apparatus showing two glass bells, filled with saline solutions,

adhered to a rat. On each, an electrode was inserted though a septum.

Adhesive and a coating of silicone lubricant along the edge of the bell provided

electrical insulation and prevented leakage. A non-conductive clamp held the

apparatus in place (not shown).
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45 min.). Lubricant ointment (Artificial Tears, Vedco, St. Joseph, MO) was

placed on the eyes to prevent drying.

As shown in Fig. 6-1, two glass bells (- 4 ml, 2.8 cm2 ), fitted with rubber septa

and Ag/AgCI electrodes (4 mm diameter disks, - 1 cm from skin, In Vivo Metrics,

Healdsburg, CA), were affixed with cyanoacrylate adhesive (Permabond,

Englewood, NJ) to pinched skin from the caudo-dorsal surface of the rat. Excess

adhesive was added outside the bells to ensure a good seal. The area where the

bells contacted the skin was then covered with silicone lubricant (Dow Corning,

Midland, Ml) to insure electrical insulation. The bells and pinched skin were held

iin place with a non-conductive pinch clamp. One bell was then filled with isotonic

phosphate-buffered saline (PBS, pH 7.4), and the other with a saturated calcein

solution in PBS. Calcein (Molecular Probes, Eugene, OR) is a fluorescent model

for a moderate-size polar drug. Solutions were injected though each septum with

a needle and syringe; during filling, a second needle was also inserted though

the septum to avoid elevated pressure within the bells, which could cause leaks

by breaking the adhesive seal at the skin. Care was taken to eliminate air

bubbles. The anode was located on the "indifferent" PBS side of an exponential-

decay pulse generator (ECM 600, BTX, San Diego, CA), while the cathode was

on the "active" calcein-in-PBS side.

An electric pulse (exponential-decay constant, X = 1.2 ms) was then applied

once every 5 s for 1 h, a much longer electrical exposure than in previous in vivo

tissue electroporation studies. Transtissue pulse voltages between 75 - 300 V

were investigated. Rats were monitored visually throughout. The experiment

was briefly suspended when administration of anesthetics was required to

maintain deep sedation. After the end of 1 h of pulsing, the bells were drained,

again using an extra needle to prevent pressure changes, and carefully removed
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using Q-tips dipped in acetone to dissolve the adhesive. Some skin, probably the

stratum corneum, generally remained adhered to the bells, leaving a thin ring of

exposed pink tissue.

At a few time points between 15 - 120 min after pulsing, blood samples (- 0.5

ml) were taken from the lateral tail vein with a pre-heparinized 25-gauge butterfly

needle and transferred into a serum separator tube (Microtainer, Becton

Dickinson, Rutherford, NJ). The tube was spun at 1000 g for 5 min. The plasma

was then collected for analysis by spectrofluorimetry (Fluorolog-2, model F112AI,

SPEX Industries, Edison, NJ). Samples were excited at 488 nm and emission

spectra were obtained between 505 - 535 nm, as shown in Fig. 6-2. Background

signal was subtracted, as determined with control plasma samples.

Fluorescence was calibrated against known concentration standards.

The appropriate volume of distribution of calcein within the rat was

determined by measuring plasma concentrations over time following intravenous

and subcutaneous injections of known amounts of calcein. Maximum plasma

concentrations were measured 30 - 60 min after injection, suggesting that

significant metabolism or elimination of calcein did not occur over that period

[Sontag, 1980; Suzuki and Mathews, 1966]. The volume of distribution

determined from these measurements was 20 % of total rat volume [Wagner,

1975], which is equal to the volume of the extra-cellular aqueous compartment

[Goldstein, 1977]. Given the very hydrophilic nature of calcein [Furry, 1985],

distribution throughout all extracellular aqueous regions is a reasonable

assumption.

Rats were kept comfortably warm with a heat lamp and under observation

until they recovered from the anesthesia. They were then checked at least once

daily to assess any adverse effects from the pulsing procedure. Mild, transient
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Fig. 6-2. Spectrofluorimetric analysis showing calcein fluorescence in hairless

rat plasma collected 15 - 120 min after electroporating rat skin: (a) pulsed at 300

V, (b) pulsed at 75 V, (c) unpulsed control, (d) normal rat plasma (see text for

pulsing protocols). Samples were excited at 488 nm; emission spectra are

shown, with maxima between 510 - 515 nm. After calibration against known

standards, absolute calcein plasma concentration was determined.
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erythema and edema were generally seen over the area of electrical contact with

the skin (i.e., where the solutions within the bell chambers touched the rat)

immediately after pulsing for transdermal voltages below 150 V; more

pronounced erythema and edema were observed at higher voltages. Deep

tissue necrosis, evident from macroscopic examination, was observed in one rat

two days after pulsing at the highest voltage used (300 V). No other rats

responded to gentle prodding or protected the sites of pulsing, suggesting that

they were not painful and that severe damage had not occurred.

6.1.2 Locally-Enhanced Delivery

Unlike the transdermal procedures, protocols used by us for locally-enhanced

drug delivery were adapted from Mir et al. [Belehradek et al., 1991; Mir et al.,

1991b]. Parallel-plane stainless steel electrodes, with a layer of conductive gel

(Signa Gel, Parker Laboratories, Orange, NJ) coating the surfaces, were applied

to a mouse's skin shortly after local or systemic injection of drug (Fig. 6-3). This

fixed-spacing design was used in studies involving leishmaniasis, since the

lesions being treated did not vary much in size. The electrodes were placed

across the lesion at the base of the tail and held firmly in place.

6.2 Discussion

6.2.1 Electrode Material

We used homogeneously-mixed Ag/AgCI electrodes for the transdermal

delivery studies, primarily for two reasons. First, these electrodes were able to

pass the large instantaneous current densities associated with the high-voltage

pulses applied. Using a current sampling resistor, we have measured peak

instantaneous current densities up to 1 A/cm 2. In contrast, Ag wire electrodes
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Fig. 6-3. Side view of parallel-plane electrodes used for tissue electroporation.

This fixed-spacing electrode design was used in leishmaniasis studies, where

lesions being treated did not vary much in size.
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electrochemically plated with AgCI were problematic, as the outer, insulating

layer of AgCI can detach during pulsing. Electrodes made of a homogeneous

mixture of Ag and AgCI did not have this problem.

Second, Ag/AgCI electrodes reduced harmful electrochemical effects, such as

pH changes due to hydrolysis, which are known to cause skin irritation [Ledger,

1992]. This is particularly important for transdermal delivery applications, where

many pulses might be given over long periods of time. However, even the

Ag/AgCI electrodes used appeared to hydrolyze water at the high current

densities used, indicated by the formation of gas bubbles. Although pH changes

were not observed in our buffered solutions, the formation of gas elevated the

pressure within the bell chambers; occasional insertion of a needle through the

septum alleviated the problem by returning the pressure to atmospheric.

6.2.2 Electrode Position

Our electrodes were place on pinched skin on the back for transdermal

transport studies and across leishmaniasis lesions at the base of the tail for

locally-enhanced delivery studies. Most investigators have placed electrodes at

a single location and applied one or more pulses. However, we found that it may

be advantageous to move the electrodes to different locations near the site being

electroporated. Given the heterogeneities of tissue and the asymmetric shapes

of cells, a pulse in one location may not electroporate a given cell, while a shift in

field orientation may subsequently result in electroporation. However, when

electrodes were moved, the skin had to be cleansed of any residual conductive

paste to avoid electrical shorting. Also, to minimize cardiac risk, we placed

electrodes away from the heart.
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65.2.3 Electrical Parameter Selection

Mir et al. have based their selection of electrical parameters largely on work in

vitro, coupled with further optimization in vivo [Belehradek et al., 1991; Mir et al.,

1991 b], while Okino et al. have studied pulse settings in vivo [Okino and Esato,

1990; Okino and Mohri, 1987; Okino et al., 1992]. Even for simpler in vitro

systems, such as cells in suspension, choosing electrical parameters is highly

empirical due to incomplete understanding of electroporation. Given the greater

complexity of tissues, it is often difficult to translate such empirical in vitro

parameters directly to in vivo applications. Nevertheless, in vitro results provide

useful guides for optimization in vivo.

With this in mind, experimental results from single-cell electroporation in part

motivated our work on locally-enhanced delivery to treat leishmaniasis. It is

known that larger cells will electroporate at lower field strengths than smaller cells

[Chang et al., 1992; Neumann et al., 1989; Orlowski and Mir, 1993; Tsong, 1991;

Weaver, 1993b]. This should cause selective electroporation of macrophages,

which are larger than most other cells [Sixou and Teissie, 1990]. Because

leishmania are found predominantly in macrophages within the skin [Chang and

l3ray, 1985], drug delivery could be targeted to leishmania in macrophages by

selection of appropriate electroporation protocols.

Determination of appropriate electrical parameters, however, was also

dictated by concepts not evident from single cell electroporation. When using

surface electrodes to electroporate cells deeper than the skin's outer layer, the

stratum corneum, we chose to use multiple pulses. Since the stratum corneum

normally has a resistance much greater than that of deeper tissues, the electric

field concentrates at the stratum corneum. As a result, deeper cells experience

much weaker fields, perhaps insufficient to electroporate. However, the stratum
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corneum can also be electroporated, dramatically reducing its resistance after

just one pulse, where significantly lowered resistance can persist for seconds to

hours (see Chapter 10). Therefore, we used multiple pulses, whereby initial

pulses were given to electroporate the stratum corneum, making subsequent

pulses yield greater internal electric fields, more likely to electroporate deeper

cells.

The heterogeneous electrical properties of tissues such as skin point to

another difficulty associated with basing tissue protocols on single-cell results.

For homogeneous cell suspension systems, pulse strengths are generally, and

appropriately, described in units of field strength (e.g., kV/cm). However, the

high resistance of the stratum corneum is an example of how tissue

heterogeneity, and the resultant heterogeneity in field strength, make deceptive

the use of nominal field strength (e.g., expressed as the voltage between the

electrodes divided by electrode spacing) in tissue applications. We have found it

most useful to record both voltages and electrode spacings. However, we have

used comparisons involving assumptions that field strengths are uniform within a

tissue as an initial approximation.

Finally, we also found it important to verify that the pulser used was capable

of delivering square-wave pulses without overloading. During an electric pulse,

the apparent resistance of tissue became very small due to electroporation,

resulting in large instantaneous current densities. As an example, when we

pulsed mouse legs at voltages between 1 - 2 kV (100 s duration, 8 pulses, 1

pps, 3 - 10 mm electrode spacing, 1 cm2 contact area) to enhance transport

locally, the apparent resistance during the pulse was approximately 400 Q,

resulting in currents of a few amperes (unpublished data). Thus, to produce a

square-wave pulse of 2 kV for this experiment, the pulser needed a power rating
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of at least 10,000 W. Because most square-wave generators do not have such

high power ratings, we used the Velonex (Santa Clara, CA) model 350 pulser

with a V1743 output plug-in unit, which is capable of delivering 2 kV into a 200 Q

load. Only when an oscilloscope and appropriate sampling circuit were used,

was it apparent that a square-wave pulser with an insufficient power rating had

delivered a pulse of incorrect magnitude or waveform. A consequence of

overloading a pulser is that the nominal electric field can be significantly smaller

than estimated from the pulser setting and inter-electrode spacing.

.6.2.4 Side-Effects During Pulsing

While animals insufficiently anesthetized responded to electroporation pulses,

'we also observed direct stimulation of motor nerves in fully anesthetized animals.

'This phenomenon is well known [Reilly, 1992]. Although the movement caused

by such stimulation was not inherently problematic, we encountered two

significant difficulties. First, in our transdermal experiments, involving application

of multiple pulses to skin over the lower back, the rats' hind legs kicked in

response to each pulse. The intensity of kicking varied with the applied voltage

and electrode position. This effect lessened significantly within minutes,

presumably due to muscle fatigue. However, the sustained kicking apparently

caused some damage, evidenced by blood in the urine observed in some of the

first rats used. Placement of subsequent rats on a cushioned surface alleviated

this problem.

A second concern became apparent when pulsing leishmania lesions at the

base of the tail in mice. Again, each pulse caused the mouse's hind leg muscles

to contract. In this case, the electrodes (Fig. 6-3) were held by the experimenter

firmly in contact with the mouse. Immediately after pulsing, a mild abrasion to the
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skin under the electrodes was often evident. We believe it was due, at least in

part, to the animal forcefully jumping into the thin metal electrodes. An apparatus

using electrodes attached to the animal might have alleviated this problem, as

would have securing the animal more firmly in place.

A final complication concerned anesthetized animals being awakened by

pulsing. Sometimes animals which appeared to be fully anesthetized and

remained so during a few pulses would start to wake up during subsequent

pulses. Lack of deep anesthesia was demonstrated by animal vocalization and

additional movement which followed the twitch caused directly by the pulse.

6.2.5 Damage To Tissue

At the membrane level, electroporation is a fundamentally gentle

phenomenon, know to be reversible over a range of conditions [Chang et al.,

1992; Neumann et al., 1989; Orlowski and Mir, 1993; Tsong, 1991; Weaver,

1993b]. However, the electroporation literature makes clear that secondary

effects of electroporation are capable of killing cells in suspension, presumably

affecting cells in tissues in a similar manner [Chang et al., 1992; Lee et al.,

1992a; Neumann et al., 1989; Orlowski and Mir, 1993; Tsong, 1991; Weaver,

1993b]. Thermal and pH burns may also occur. Nevertheless, our work and that

of others cited here suggest that severe tissue necrosis and other

macroscopically visible damage due to electroporation do not occur over a useful

range of conditions. However, careful biochemical and pathological studies of

the effects of tissue electroporation are needed.
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ELECTROPORATION OF RED BLOOD CELL GHOST MEMBRANES

7 Plateau In Net Molecular Transport At Large Field Strengthio

7.1 Introduction

Relatively few studies of electroporation have made quantitative

measurements of molecular transport [Chakrabarti et al., 1989; Lambert et al.,

1990; Mir et al., 1988], particularly on a "transport per cell" basis [Bartoletti et al.,

1989; Poddevin et al., 1991]. However, if electroporation is to be better

understood, more comprehensive, quantitative studies which determine the

effects of basic parameters on molecular transport will be important. More

specifically, quantitative determinations at the individual cell level should be

important to: (1) suggesting and testing theoretical models, (2) providing a basis

for comparing data for different molecules and experimental conditions, and (3)

guiding applications of electroporation in research, biotechnology, and medicine.

7.2 Results

Flow cytometric measurements are displayed as two-dimensional contour

plots and one-dimensional histograms for red blood cell ghost populations

exposed to a single exponential-decay electric field pulse, of magnitude ranging

from 0 - 8 kV/cm , and with a time constant between 1 - 2 ms. Fig. 7-1 contains

typical log-log contour plots showing forward scatter (which is sensitive to ghost

morphology) versus fluorescence (which provides a measure of the number of

-fluorescent molecules inside each ghost, after calibration). The lines on these

contour plots represent iso-frequency-of-occurrence values for light scatter and

fluorescence. Each plot represents data from approximately 20,000 ghosts.

10( These results have also been reported in [Prausnitz et al., 1993d].
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Fig. 7-1A. Typical log contour plot of fluorescence versus forward scatter,

obtained from flow cytometry data. This graph shows a population of control

(unpulsed) ghosts with low fluorescence, believed mainly due to a combination of

autofluorescence, "background" surface binding of fluorescein-labeled BSA to

ghosts, and flow cytometer noise. Reference beads comprise the population of

events in the upper right corner; see text for discussion.
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Fig. 7-1 B. Typical log contour plot of fluorescence versus forward scatter,

obtained from flow cytometry data. This graph shows a population of ghosts

exposed to a 6 kV/cm pulse with high fluorescence, indicating uptake of

fluorescein-labeled BSA molecules.
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Fig. 7-1A shows a control (unpulsed) population of ghosts not subjected to an

electric field pulse. Some background fluorescence is evident (autofluorescence,

BSA surface binding, flow cytometer noise). Fig. 7-1 B shows a population of

ghosts with higher fluorescence, indicating uptake of BSA molecules by ghosts

due to electroporation. Also, in the upper right corner is a tight population of co-

suspended reference beads (large forward scatter and fluorescence), which are

used to measure the loss of any ghosts as a result of electroporation or the

washing procedure.

The distributions of net molecular transport per ghost are presented as one-

dimensional log histograms. Fig. 7-2 shows representative histograms of ghost

fluorescence (or molecular uptake) from three individual samples pulsed at

different field strengths. While fluorescence/uptake increases at higher field

strengths, the existence of a single population of ghosts is evident in each case.

As expected for spherical membranes with a range of sizes, all ghosts appear to

respond to a given pulse in a similar way: no subpopulations exist.

These distributions, however, exhibit a large range in fluorescence for both

the control and pulsed ghosts (average coefficients of variation for electroporated

ghosts are approximately 100%); heterogeneity of response is evident.

Moreover, more pronounced heterogeneity is seen in other samples, particularly

at lower field strengths. For example, sometimes (< 1 %) two subpopulations are

seen: one at lower fluorescence (similar to controls) and one at higher

fluorescence. Broader distributions, including trailing edges at lower

fluorescence, are also sometimes present. While these deviations are frequently

observed, they are not consistent or reproducible; they do not support any

identifiable trend. We interpret these data as meaning simply that there is
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Fig. 7-2A. Fluorescence histogram showing uptake of fluorescein-labeled BSA

by control (unpulsed) ghosts. The vertical axis gives the number of events

(ghosts only; beads and debris have been edited out), while the horizontal axis

gives fluorescein fluorescence (here arbitrary units). In Fig. 7-2, the existence of

a single population of ghosts is evident in each case, although the amount of

molecular transport varies widely within each population.
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Fluorescence histogram showing uptake of fluorescein-labeled BSA

by ghosts exposed to a small electric field (2 kV/cm).
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heterogeneity in electroporation, both in the ghosts as well as in the experimental

conditions. Sources of heterogeneity are discussed below.

Individual ghost fluorescence can be converted to an equivalent absolute

number of fluorescent molecules associated with that ghost. Fig. 7-3 shows the

average uptake of calcein versus field strength. The results of Fig. 7-3 indicate

that significant calcein transport first occurred at 0.5 - 1 kV/cm, increased with

increasing field strength, and plateaued at approximately 1.5 - 2 kV/cm. The

plateau uptake value of approximately 6 x 104 molecules per ghost remained up

to 8 kV/cm.

Fig. 7-4 shows a complimentary result, in which ghosts were each loaded with

an average of approximately 8 x 105 calcein molecules before pulsing, so that

release due to electroporation could be observed. As in Fig. 7-3, net calcein

transport first occurred at approximately 1 kV/cm and achieved a maximum efflux

at > 2 kV/cm. In the plateau region, where fluorescence corresponds to an

average of less than 4 x 104 calcein molecules, release is at least 95 %

complete. The inability of progressively larger pulses to further reduce average

ghost fluorescence is probably due to ghost autofluorescence, calcein surface

binding, and flow cytometer noise.

Similar molecular transport behavior is found for fluorescence-labeled

lactalbumin, BSA, and dextran (Figs. 7-5, 7-6, and 7-7). In these cases,

however, the extracellular concentration was ten-fold lower (10-4 M for calcein,

10-5 M otherwise). Nevertheless, for all cases, an initial region exists where

uptake increased with field strength, which is followed by a plateau region where

transport appears independent of field strength. However, there are significant

quantitative differences (Table 7-1).
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Fig. 7-3. Uptake of calcein by ghosts as a function of pulse magnitude. Above

approximately 0.5 - 1 kV/cm, uptake increased with field strength, while above

approximately 1.5 - 2 kV/cm, a plateau is observed. Graphs in Figs. 7-3 through

7-8 each include data from on the order of 106 individual ghosts. Each point

represents the average of between 4 - 30 samples collected during at least 3

different experiments. Standard error bars are shown.
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Fig. 7-4. Release of calcein from pre-loaded ghosts as a function of pulse

magnitude. Calcein transport out of ghosts increased and then plateaued at

approximately the same field strengths as calcein transport into ghosts (Fig. 7-3).

Standard error bars are shown.
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Fig. 7-5. Uptake of fluorescein-labeled lactalbumin by ghosts as a function of

pulse magnitude. Above approximately 1 kV/cm, uptake increased with field

strength, while above approximately 2 - 3 kV/cm, a plateau is observed.

Standard error bars are shown.
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Fig. 7-6. Uptake of fluorescein-labeled BSA by ghosts as a function of pulse

magnitude. Above approximately 1 kV/cm, uptake increased with field strength,

while above approximately 4 kV/cm, a plateau is observed. Standard error bars

are shown.
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Fig. 7-7. Uptake of fluorescein-labeled dextran (71 kDa average MW) by ghosts

as a function of pulse magnitude. Above approximately 1 - 2 kV/cm, uptake

increased with field strength, while above approximately 5 kV/cm, a plateau is

observed. Standard error bars are shown.
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Finally, Fig. 7-8 shows the number of ghosts "lost" by the electroporation

process. At field strengths > 1 kV/cm, approximately 30% of ghosts were "lost,"

determined as follows. Ghosts have known light scatter characteristics; by

gating, only events which scatter like ghosts (or reference beads) were used in

the analysis. A constant concentration of reference beads was present in each

sample, so that the ratio of ghosts/bead was proportional to the ghost

concentration. Since all samples had the same initial ghost concentration (and

therefore the same ghosts/bead ratio), it is possible to identify what percent of

ghosts were "lost" during the experimental protocol. Data for Fig. 7-8 come from

the experiments shown in Figs. 7-3 though 7-7 and other similar experiments

where fluorescent tracer molecules were present.

7.3 Discussion

7.3.1 Molecular Transport Plateau

For the single exponential pulse used, the uptake of four very different

molecules exhibits qualitatively similar behavior. There appear to be two

domains of transport: a sub-plateau domain at lower field strengths and a

plateau domain at higher field strengths. In the sub-plateau domain, transport

increased with increasing field strength, indicating that electrically-driven

phenomena (e.g., electrical drift, electroosmosis, pore population characteristics)

controlled the transport. In the plateau domain, transport occurred independent

of field strength, suggesting that electrically-driven phenomena may not have

controlled transport. The existence of such a plateau in uptake has not been

reported before. This is not surprising, given that most previous studies have

characterized transport as either occurring or not occurring; absolute amounts of

transport have not been assessed.
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We considered the possibility that artifact or error may have caused this

transport plateau. However, (1) we have verified that the actual electric fields

which the ghosts experienced were the fields selected on the pulser. Moreover,

the plateau occurred at different pulse magnitudes for different molecules, also

indicating that the pulser was not malfunctioning. (2) We have observed this

trend with four different molecules. (3) Upon varying the time between pulsing

and washing up to one hour, we found that the plateau still exists. This suggests

that molecules were not coming back out of ghosts due to premature washing.

(4) Finally, we continue to find pulse-amplitude plateaus in uptake under other

conditions (e.g. multiple pulses, longer pulses, different external molecule

concentrations), although the plateau transport value is different (see Chapter 8).

For these reasons we believe that this plateau is real.

A plateau could be easily explained if the molecular concentration inside the

ghost at the plateau were equal to its concentration outside the ghost, as there

would be no net transport. However, plateau values of the intracellular

fluorescent-molecule concentration (e.g., 6 x 104 molecules/ghost or 7 x 1 0
-7 M)

correspond to between 0.7 and 20 % of the external concentration at the time of

the pulse (Table 7-1). Since ghosts are believed to be essentially "empty"

spherical membranes, with negligible cytoplasmic residue, an equilibrium altered

by the content of the ghost's interior, such as a Donnan equilibrium associated

with a negatively-charged cytoplasm, can be excluded. Moreover, microscopy

showed that in most cases ghosts appeared as uniformly fluorescing solid circles,

not fluorescent rings. This suggests that molecules are distributed within the

interior of the ghosts and not binding to the membrane. Finally, other studies

iindicate that this uptake plateau can be exceeded by altering other electrical

parameters (e.g., number of pulses; see Chapter 8). Therefore, this plateau is
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not an absolute maximum in uptake by the ghost, but rather indicates a maximum

effect of increasing field strength.

Considering mechanisms by which transport occurs, Dimitrov and Sowers

[990] suggest that molecular efflux from erythrocyte ghosts is controlled by

electroosmosis. Others argue that uptake of DNA by intact cells is controlled by

DNA electrophoresis [Klenchin et al., 1991]. In either case, transport is governed

by the electric field and increasing pulse magnitude is expected to increase

transport. That a plateau in transport is observed at high field strengths suggests

that molecular uptake may be a multistep process: at lower field strengths, an

electric-field dependent step, such as electroosmosis or electrophoresis, is rate

limiting. However, when this step becomes very fast at higher field strengths, a

different step, which does not depend on electric field strength, becomes rate

limiting. The exact nature of this second step is unclear, but could involve

diffusion.

Observations presented by Abidor and Sowers [1992] on electrofusion, an

electroporation-related phenomenon, also suggest a two-step process. They

found that at lower electric field strengths, fusion rate increased strongly with

increasing field magnitude, while at higher field strengths, fusion rate increased

only moderately with increasing fields. Although they proposed a single step

mechanism, it would instead appear that at lower field strengths a single voltage-

dependent step was rate limiting and, after a sharp transition, at higher field

strengths a different single weakly voltage-dependent step was rate limiting.

Other possible hypotheses for the observed plateau behavior include: (1)

diffusion controlled transport, (2) increased field strength did not alter pore

population characteristics in ways which affected transport, (3) there was a

limited effective volume inside the ghost available to entering molecules, and/or
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(4) there was no net effect generated by the sum of a number of electrically-

governed parameters.

We have considered hypotheses which could explain our results, but

concluded that this data, even when combined with other information in the

literature, is insufficient to conclusively support any one mechanism by which a

plateau in transport was achieved. This plateau was probably a consequence of

the detailed, interactive behavior of a dynamic pore population, the

transmembrane voltage, and one or more molecular transport mechanisms.

Presently the microscopic mechanisms by which molecules are transported

across a cell membrane due to electroporation are poorly understood; they

presumably include diffusion, electrophoresis of molecules and cells, and

electroosmosis. Although some progress has been made, the ability to make

complete quantitative predictions of molecular transport which are consistent with

known electrical behavior of the cell membrane does not yet exist. With this in

mind, the present results present a challenge to the development of models of

electroporation and its associated molecular transport.

A final consideration concerns the quantitative differences in uptake between

the four molecules investigated. These molecules can be ranked in order of

decreasing charge density: calcein (-4 charge/623 Da = 6 x 10-3 e/Da) >

Ilactalbumin (-15 charge/14.5 kDa = 1 x 10-3 e/Da) > BSA (--25 charge/68 kDa =

4 x 10 - 4 e/Da) > dextran (-4 charge/71 kDa = 6 x 10-5 e/Da). Examination of the

plateau characteristics summarized in Table 7-1 shows that the plateaus began

at higher field strengths for molecules with lower charge densities; the field

strength at which the plateau was achieved correlates inversely with molecule

charge density. This suggests that the transition from electrically-controlled
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transport to field-independent transport occurred at a lower field strength for a

molecule with a higher charge density.

The different plateau concentrations of macromolecules inside ghosts also

correlate inversely with charge density (see Table 7-1). Calcein was present at

an external concentration of 10- 4 M. It has an internal plateau concentration 6 x

104 molecules / 150 jim3 (erythrocyte ghost volume, [Sowers and Lieber, 1986])

= 7 x 10- 7 M, or approximately 0.7% of the external concentration. Lactalbumin

and BSA, at external concentrations of 10-5 M, had internal plateaus at 7% of the

external concentration. Finally dextran, at 10- 5 M externally, plateaued at 20% of

the external concentration. There appears to be a trend of increasing relative

plateau concentration with decreasing charge density.

Even though present externally at different concentrations, the absolute

number of molecules inside each cell was approximately the same for calcein

and lactalbumin or BSA. This appears to be coincidental. Other studies indicate

that internal plateau concentration is a function of external concentration and

indicate that had calcein been present at 10- 5 M, its uptake would have been

significantly lower (unpublished data). Also, different transport plateau values

have been found under a variety of different conditions (see Chapter 8). This

argues against some sort of receptor binding limiting the plateau concentration to

the order of 100,000 molecules per cell. Moreover, repeated examination under

the microscope shows fluorescence throughout electroporated cells, indicating

that uptake is not localized, for example, at the membrane.

7.3.2 Population Distributions

Fluorescence histograms, such as Fig. 7-2, show that no significant

subpopulations of ghosts existed; all ghosts responded to a given electric-field
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pulse in a similar manner. This is not surprising for spherically-symmetric ghosts,

since many of the possible sources of variation in response are related to the

relative size and orientation of asymmetric cells [Weaver and Barnett, 1992].

Exceptions, however, are sometimes observed where two subpopulations

coexisted and/or where population distributions became much broader. These

were especially evident at field strengths where transport due to electroporation

began (e.g., 1 or 2 kV/cm). Sources of this heterogeneous behavior might

include: (1) ghosts which were not spherical and/or were not the same size (both

are supported by microscopy), and (2) possibly variable membrane properties

due to ghost age (inherent to erythrocytes) and inter-ghost variability.

Despite these heterogeneities, in most cases only one population of ghosts

was found, consistent with the widely-held view that electroporation occurs

universally in lipid bilayer membranes if the transmembrane potential is raised to

order 1 V; approximately 0.5 - 1 V for short pulses (- 10 us) and 0.2 - 0.5 V for

longer pulses (> 100 ps) [Neumann, 1989]. The maximum change in

transmembrane voltage, AU(t), across a spherical cell in an imposed uniform

electric field, E(t), is well known at small field strengths to be [Foster and

Schwann, 1986]

AU(t) = 1.5 E(t) Rcell

where Rcell is the cell radius. In this study, molecular transport seems to first

have occurred at less than 1 kV/cm. Using the above equation (Rghost = 3.3 gm,

[Sowers and Lieber, 1986]), a 1 kV/cm electric field corresponds to a

transmembrane voltage of approximately 0.5 V, in good agreement with the

"universal" breakdown voltage of 0.2 - 0.5 V for longer pulses.
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7.3.3 Direction Of Transport

Figs. 7-3 and 7-4 show transport of calcein into and out of ghosts. The finding

that transport begins and plateaus at approximately the same field strengths

indicates that the direction (influx/efflux) of transport across the membrane was

not important in this case.

7.3.4 Destruction Of Ghosts

The results in Fig. 7-8 suggest that up to approximately 30% of the ghosts

were destroyed by electroporation. However, these ghosts experienced more

than just exposure to an electric-field pulse which may have contributed to their

destruction. First, as erythrocyte ghosts, they were opened by osmotic swelling,

released their hemoglobin, and then allowed to reseal. Although this is a well

established procedure [Dodge et al., 1963; Sowers and Lieber, 1986], it is not a

fully reversible process, leaving the membrane permanently altered [Lange et al.,

1982; Lieber and Steck, 1982a; Lieber and Steck, 1982b]. Moreover, after

electroporation, ghosts were washed, involving centrifugation twice at 10,000 g,

which subjected the ghosts to mechanical stress. Nevertheless, the control

preparations were subjected to these same procedures, which indicates that the

exposure to the electric field pulse was responsible. From this study we

conclude that significant losses of ghosts were observed at field strengths where

electroporation occurs; further investigation is needed to establish whether these

results showing ghost destruction can be generalized to other systems.
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7.4 Conclusions

A quantitative study of molecular uptake due to electroporation was

presented, including data on the transport of four different molecules from

measurements of more than 106 individual ghosts. Under the conditions of this

study, the findings were: (A) A single population of ghosts generally existed,

indicating that all ghosts responded to a given electric field pulse in a similar

manner. However, the amount of transport per ghost within this population

varied widely, indicated by average coefficients of variation of approximately

1100 %. The onset of transport due to electroporation occurred at < 1 kV/cm,

corresponding to a transmembrane voltage of approximately 0.5 V. (B) After the

onset of electroporation, average uptake increased with increasing field strength

and then plateaued at higher field strengths. Although a detailed mechanism

was not proposed, it appears that transport was controlled by electric field-

dependent processes at lower field strengths, but may have been controlled by

electric field-independent processes at higher field strengths. Both the field

strength at which the plateau was achieved and the relative internal plateau

concentration appear to correlate inversely with the molecule's charge density.

(C) The direction of transport (influx/efflux) did not appear to affect net molecular

transport significantly. This result is based only on calcein transport data. (D)

Up to -30 % of ghosts were destroyed by the electroporation procedure.

However, it is unclear whether these results can be generalized to intact cells.
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8 Effects Of Other Parameters On Net Transportl

8.1 Introduction

Most applications of electroporation have the common goal of transporting

useful numbers of molecules across cell membranes. However, few studies

have measured the actual number of molecules transported, making efforts to

advance both applications and basic modeling difficult. For example, the

majority of published electroporation studies emphasize transfection and

generally assess gene expression, not molecular transport into cells [Chang et

al., 1992]. While transport across the cell membrane is a necessary part of

transfection, it is not sufficient, because successful gene expression involves

many other processes, including cell survival and correct incorporation of DNA

into the cell's genetic material. Thus, determinations of gene expression are of

limited use for characterizing molecular transport due to electroporation.

Some studies have directly measured indicators of molecular transport.

However, most have not actually measured transport itself, but instead assess

"percent of cells electroporated" or unitless "relative transport" [Berglund and

Starkey, 1991; Brown et al., 1992; Dimitrov and Sowers, 1990; Escande-Geraud

et al., 1988; Graziadei et al., 1991; Hashimoto et al., 1989; Kinosita and Tsong,

1977b; Kwee et al., 1990; Mishra and Singh, 1986; Rosemberg and Korenstein,

1990; Sixou and Teissie, 1990; Sowers and Lieber, 1986; Weaver et al., 1988].

A few studies have provided quantitative determinations (i.e. numbers of

molecules transported) for one or a few electroporation conditions [Bartoletti et

al., 1989; Casabiance-Pignede et al., 1991; Chakrabarti et al., 1989; Lambert et

al., 1990; Michel et al., 1988]; others have systematically measured the number

of molecules transported over a range of conditions [Bazile et al., 1989; Glogauer

11 These results have also been reported in [Prausnitz et al., 1994] and [Lau et al., 1993].
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and McCulloch, 1992; Mir et al., 1988; Poddevin et al., 1991; Rols and Teissie,

1990; Wilson et al., 1991].

To further assist applications and aid in understanding mechanisms, more

studies which quantitatively measure molecular transport over a range of

conditions are essential. In Chapter 7, we measured the number of molecules

transported into erythrocyte ghosts as a function of applied field strength. We

found that net molecular transport increased with field strength, but reached an

apparently non-equilibrium plateau at higher field strengths, i.e., uptake saturated

at higher field strengths, even though the internal concentration was less than the

external concentration. This finding could not have been made without

measurements of the numbers of molecules transported per cell. Here we

examine the dependence of molecular transport on other electroporation

conditions.

8.2 Results And Discussion

8.2.1 Multiple Pulses

Erythrocyte ghosts were exposed to different numbers of electric field pulses

in the presence of fluorescein-labeled bovine serum albumin (BSA). Fig. 8-1A

shows BSA uptake as a function of field strength, E, for different numbers of

pulses, Npulse, with inter-pulse spacing, tinter = 5 s. Uptake increased with both

Npulse and E, but appeared to plateau at large E, as reported previously (see

Chapter 7) and discussed further below. A related result is shown in Fig. 8-1 B,

for which multiple pulses were applied with tinter = 60 s.

Figs. 8-1 C and 8-1 D present the data from Figs. 8-1 A and 8-1 B, respectively,

in another form to show the enhancement of uptake caused by additional pulses

relative to the uptake due to one pulse at each E. For smaller E, multiple pulses
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charge) due to different numbers of exponential-decay pulses is plotted versus

field strength. Npulse = () 1, (o) 2, () 3, (o) 5. Inter-pulse spacing, tinter = 5 s.
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experiments. Representative standard error bars are shown. There was little
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higher field strengths. Moreover, no difference in effects on uptake were evident
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resulted in up to seven times greater uptake than a single pulse. However, the

relative enhancement of multiple pulses at larger E was progressively less.

Finally, to assess the effect of tinter = 5 s versus 60 s, Fig. 8-1 E shows ratios of

uptake with tinter = 5 s to tinter = 60 s. In each case the ratio was approximately

one.

This result shows that application of multiple pulses increased uptake, as

reported previously [Dekeyser et al., 1990; Rols and Teissi6, 1990]. However,

the relationship between Npulse and uptake is not linear, i.e., the net effects of a

series of pulses were not additive. The relative enhancement caused by

additional pulses at small E was greater than at large E. This and other data

(see below) suggest the existence of a transport maximum beyond which

additional pulses could not increase uptake under the conditions of this study.

For applications this suggests that more pulses at moderate E may lead to the

same uptake as fewer pulses at larger E. However, pulses at larger E are

generally associated with lower cell viability [Chang et al., 1992]. Multiple pulses

at moderate E may maximize transport and cell viability. Finally, multiple pulses

with tinter = 5 s and 60 s caused approximately the same uptake. Rols and

Teissie [Rols and Teissi6, 1990] have also reported that pulse rate (< 0.1 Hz) did

not affect net transport.

8.2.2 Longer Pulses

The uptake of BSA by ghosts due to single pulses having different time

constants, ', was also assessed. Fig. 8-2A shows uptake as a function of E for

: < 2 ms, while Fig. 8-2B shows uptake due to longer pulses, but only at small E.

Longer pulses at large E were not used, because under those conditions, large

(> 50 %) fractions of ghosts were destroyed (i.e., appear as many small particles
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in the flow cytometer). Overall, uptake generally increased when longer pulses

were used.

It has been widely reported that increasing pulse length increases transport

[Dekeyser et al., 1990; Kinosita and Tsong, 1977b; Rols and Teissie, 1990;

Rosemberg and Korenstein, 1990; Wilson et al., 1991], where longer pulses may

be associated with larger pores [Kinosita and Tsong, 1977b; Rosemberg and

Korenstein, 1990; Serpersu et al., 1985]. However, we found that our ghost

preparation appeared to be destroyed when longer pulses with E > 2 kV/cm were

used. For cell electroporation, this suggests that longer pulses may be less

effective than multiple pulses for maximizing transport while minimizing damage.

8.2.3 Multiple Vs. Longer Pulses

A comparison is made of the effects of multiple pulses and single pulses

having the same time integral of field strength (INT), defined as

INT = J Eo e-v/ dt = Eo X

where Eo is the peak field strength, t is time, and X is the decay time constant. In

Fig. 8-3, uptake is plotted versus INT, where INT = E0o for a single pulse and

INT = Z Eo ' for multiple 1 ms pulses. Proportionality between transport and INT

has been previously proposed [Jayaram et al., 1992; Liang et al., 1988;

Schwister and Deuticke, 1985] and was therefore investigated here. Linear

regressions are shown.

Fig. 8-3 addresses two issues: (a) whether INT correlates well with uptake

and (b) whether multiple pulses and longer pulses with the same INT were
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described by a linear function of INT and (b) multiple short pulses and single long

pulses having the same INT result in similar uptake, over the range of conditions

used.
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equivalent. Addressing the first point, there is a relationship between INT and

uptake, which seems to be roughly linear. Thus, the linear regressions for the

multiple pulse data and the longer pulse data, each treated separately, may be

useful for application-oriented estimations. However, for mechanistic

understanding, a linear fit seems inappropriate. First, the r2 correlation constants

are approximately 0.6, indicating only a mediocre fit. Second, the y-axis

intercepts (corresponding to no pulse) are approximately 3 x 104 molecules per

ghost. However, this value should be zero, since "background" fluorescence of

unpulsed controls was subtracted from all pulsed samples. Finally, the

correlation consistently overpredicts the measured uptake for INT < 10 V s / cm

and generally underpredicts at higher values. Such systematic deviations

suggest that a non-linear model is appropriate.

The second issue concerns equivalency of multiple and single pulses of the

same INT. The points corresponding to multiple and single pulses in Fig. 8-3

have approximately the same distribution. Moreover, their linear regressions are

very similar. This suggests that different pulsing protocols having the same INT

caused approximately the same uptake, over the range of conditions used. This

has important mechanistic implications. First, it suggests that transport occurred

primarily during pulses, since different tinter -- whether 60 s, 5 s, or 0 s (for longer

single pulses) -- did not cause differences in transport. This point is discussed

further below. Second, the non-linear dependence of uptake on INT is probably

a result of the complex, time-dependent behavior of the pore population

distribution and transmembrane voltage. Nevertheless, given the complexity of

the phenomenon, it is remarkable that uptake can be approximated as a linear

function of INT under the conditions used.
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8.2.4 BSA Adsorption To Ghosts

To assess the possible role of BSA adsorption to ghost membranes, BSA was

added to ghost suspensions at different times before pulsing. Fig. 8-4 shows that

-50 % more uptake resulted when BSA was added to ghost suspensions 1 h

before pulsing than when added only 5 s before. This suggests that an

interaction between BSA and ghosts occurred which affected uptake. It is

reasonable to expect that an interaction might have occurred, such as non-

specific binding (adsorption) of BSA to ghost membranes. Microscopy supports

this, since we have observed weak fluorescence apparently associated with the

ghost membrane of unpulsed control samples. However, no quantitative

difference between fluorescence of unpulsed ghosts exposed to BSA for 5 s

versus 1 h could be detected. Note that such "background" fluorescence has

been subtracted from all data presented in this paper, since it does not represent

uptake. Thus, higher fluorescence associated with longer co-incubation of

ghosts and BSA before pulsing did not represent additional adsorption to the

external surface, but represented increased uptake upon pulsing, probably due to

B3SA adsorption.

Similar results have been reported, where DNA expression following

electroporation was enhanced up to three-fold by longer pre-pulse exposure of

cells to DNA [Dekeyser et al., 1990; Klenchin et al., 1991]. Moreover, Xie et al.

[1990] have demonstrated that enhanced DNA binding to cell membranes,

caused by elevated divalent cation concentrations, increased DNA expression by

up to almost two orders of magnitude. Finally, membrane interactions with

molecules having surfactant properties have been shown to alter electropore

growth kinetics [Klotz et al., 1993]. Although there are differences in

experimental protocols, there appears to be evidence from a number of
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investigators that adsorption of a molecule to a cell membrane can increase

transport of that molecule across the membrane.

8.2.5 Time Scale Of Transport

To distinguish between the relative importance of uptake during a pulse and

that after a pulse though long-lived electropores, BSA was added to ghost

suspensions either before pulsing or at various times after pulsing. Different

waiting times (i.e., the time between pulsing and washing the ghosts) were also

used. Fig. 8-5 shows these results and suggests that: (a) Although some uptake

occurred when BSA was added after a pulse, much more occurred when BSA

was added before. (b) The waiting time allowed after the pulse had only small

effects on uptake. (c) The time of BSA addition, when added after the pulse, also

had only small effects on uptake. This constrains possible mechanisms of

transport.

Uptake is expected to occur by different mechanisms at different times: (a)

13efore, or in the absence of, a pulse, transport could in principle occur by

diffusion though the intact lipid bilayer membrane. (b) During a pulse, transport

could occur by diffusion and/or electrically-driven transport (e.g. electrical drift

and electro-osmosis) though electropores. (c) After a pulse, transport could

occur though electropores, as long as pores exist, by diffusion and/or low-voltage

electrically-driven transport due to a small transmembrane diffusion potential

[Weaver and Barnett, 1992]. Because no uptake was observed in unpulsed

controls, it appears that significant diffusion of BSA across an intact membrane

(lid not occur. Given the unfavorable energy cost to insert a charged species into

the membrane [Parsegian, 1969], this result is expected. That uptake was

observed even when BSA was added 5 min post-pulse suggests that long-lived
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electropores capable of allowing penetration of BSA by diffusion and/or low-

voltage electrically-driven transport existed for at least minutes after a pulse.

Finally, because uptake was much greater when BSA was added before a pulse

suggests that: (a) a larger total effective pore area existed during and within 5 s

after a pulse and/or (b) electrically-driven transport present during a pulse was

significantly greater than post-pulse transport.

Additional results from the present study further suggest that the important

events which affect transport occur during a pulse. First, Fig. 8-6 shows BSA

uptake at three different temperatures (0, 23, and 37 °C). The results suggest

that uptake was independent of temperature from 0 - 37 °C. Temperature has

previously been shown to have little effect on pore formation, but strongly affect

pore lifetime [Escande-Geraud et al., 1988; Kinosita and Tsong, 1977a; Michel et

al., 1988; Serpersu et al., 1985]. If significant transport occurred post-pulse

though long-lived pores, then elevated temperature would be expected to

decrease pore lifetime and thereby decrease uptake. This was not the case,

indicating that pore lifetime did not affect uptake. In this analysis, we have

neglected changes in post-pulse transport due to increased diffusion and

diffusion potentials at elevated temperature. However, these parameters are

expected to vary less than an order of magnitude over the temperature range

considered [Bockris and Reddy, 1970], while pores are believed to close orders

of magnitude more quickly at 37 °C than at 0 °C.

Second, Fig. 8-1 E suggests that multiple pulses applied every 5 s or 60 s

result in the same uptake. Moreover, comparisons between multiple and single

pulses suggests that transport approximately correlates with total INT,

independent of Npulse (Fig. 8-3). If significant transport occurred between pulses,

then, for the same INT, single long pulses should have resulted in the least
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uptake while pulsing every 60 s should have caused the most. However, if most

transport occurred during pulses, then tinter (0, 5, or 60 s) should not have

affected uptake, as was observed.

Additional evidence from the literature supports these findings. Although

extensive transport of ions or molecules smaller than -1 kDa has been shown to

occur seconds to hours after electroporation [Kinosita and Tsong, 1977b; Rols

and Teissi6, 1990; Schwister and Deuticke, 1985; Serpersu et al., 1985], uptake

of larger molecules, such as BSA, is not expected to occur extensively though

long-lived electropores [Orlowski and Mir, 1993]. Many investigators have

demonstrated this for DNA, where essentially no expression was observed in

unpulsed controls, orders of magnitude more was seen when DNA was added

within minutes post-pulse, and still orders of magnitude more expression was

found when DNA was added before the pulse [Chang et al., 1992; Klenchin et al.,

1991; Taketo, 1988; Xie et al., 1990]. Also, a number of investigators have

argued that macromolecular uptake by electroporation occurs primarily by

electrically-driven transport though electropores [Dimitrov and Sowers, 1990;

Klenchin et al., 1991; Weaver and Barnett, 1992]. It is presently unclear whether

transport is driven predominantly by electrical drift or electro-osmosis, although

both appear to be important. An exception to this is found in the early

electroporation literature, where release from erythrocytes of hemoglobin (67

kDa) occurred for hours post-pulse [Kinosita and Tsong, 1977a; Kinosita and

Tsong, 1977b; Schwister and Deuticke, 1985]. However, in this case,

hemoglobin release was a result of cell rupture caused by water uptake due to

osmotic imbalances. This was not an example of hemoglobin transport though

long-lived electropores, but represented a secondary irreversible effect of

electroporation.
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Thus, the present study, in combination with previous work, suggests that

most uptake of macromolecules appears to occur by electrically-driven transport

during a pulse, although transport, at a much slower rate, can also occur for at

Ileast minutes after a pulse.

8.2.6 Transport Plateau At High Field Strength

It was previously shown, with four molecules of different physical

characteristics, that uptake into erythrocyte ghosts first increased with E, but

reached an apparently non-equilibrium plateau at large E (Chapter 7). The onset

of the plateau was different for each molecule, ranging from 2 - 5 kV/cm. To

explain this result, it was proposed that transport may be controlled by E-

dependent processes at small E, but could be controlled by E-independent

processes at large E. The existence of a non-equilibrium large-E plateau has

also recently been demonstrated in yeast cells for transport of calcein and BSA

[Hui, 1994].

The present study provides additional examples of transport plateaus for

IBSA. Moreover, it gives further evidence that the amount of uptake at the

plateau is not an absolute maximum in transport, but represents the maximum

effect of increasing E, for a particular pulse protocol. Fig. 8-1 demonstrates this

point most clearly. For a given Npulse, a plateau was observed at large E, but the

plateau amount of transport for each Npulse was different. For example, in Fig. 8-

1 A, application of a single pulse for E > 3 - 4 kV/cm did little to further increase

uptake. In contrast, application of additional pulses increased uptake up to four-

fold above the single-pulse large-E plateau. Thus, our interpretation is that the

plateau represents the maximum effect of increasing E for a particular pulse

protocol, rather than the maximum uptake possible under any condition.
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In some experiments, a plateau was not clearly observed (e.g., Figs. 8-4 and

8-6). Instead, uptake appeared to continue to increase for larger E over the

range investigated. While sometimes the large error bars associated with this

inherently-heterogeneous biological preparation allow a plateau, in other cases a

plateau is excluded. The most notable exceptions are seen in Figs. 8-4 and 8-6.

However, the data in these two figures come from the same set of experiments,

suggesting that they may represent an isolated result. Nevertheless, it is evident

that although plateaus are usually observed, they are not always observed.

Plateaus are probably a consequence of the interactive behavior of a dynamic

pore population, the transmembrane voltage, and one or more molecular

transport mechanisms. A number of potential explanations have been proposed:

(a) We previously suggested that transport may be controlled by E-independent

processes at large E; (b) Wang et al. [1993] recently demonstrated that a

detailed computer simulation of electroporation predicted transmembrane voltage

and molecular transport which featured an approximate plateau in transport at

large E. This result was based on a dynamic, heterogeneous pore population

and local electrophoretic transport though the transient pores; (c) Non-

equilibrium steady-state transport could be achieved at large E by a mechanism

which in part involves molecules which may enter a cell and then exit it on the

other side, by electrophoresis and/or electro-osmosis. This could also result in a

plateau in net uptake.

8.2.7 Transport Maximum

While the maximum uptake which was achieved by increasing E alone was

apparently not an absolute maximum, there does appear to be a maximum

amount of BSA which could be transported into a ghost in this study. Under any
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condition used, uptake never exceeded approximately 2.5 x 105 BSA molecules

per ghost. Assuming a spherical ghost with an internal volume of 150 um3

L[Sowers and Lieber, 1986], this corresponds to an internal BSA concentration of

approximately 2.8 x 10-6 M. Given that the supplied external BSA concentration

was 10- 5 M, then the maximum BSA internal concentration corresponds to only

one fourth of the external concentration, an apparently non-equilibrium state,

assuming no partition coefficients or binding sites.

Determination of apparent equilibrium requires correct assessment of ghost

volume. We have used the volume determined by Sowers and Lieber [1986] for

ghosts prepared and used under conditions similar to those of the present study.

Examination by microscopy showed that our ghost preparation appeared

spherical and had average diameters of 6 - 7 ,m, in good agreement with

Sowers and Lieber. To explain the apparent non-equilibrium presented here, our

estimate of ghost volume would have to be a factor of four too large, which we

believe is unlikely.

Apparent non-equilibrium uptake has precedent in the literature. Uptake of

molecules ranging from antibodies to oligonucleotides to simple carbohydrates

has corresponded to internal concentrations from 0.1 - 60% of external

concentration [Bartoletti et al., 1989; Bazile et al., 1989; Casabiance-Pignede et

al., 1991; Mir et al., 1988; Poddevin et al., 1991; Serpersu et al., 1985]. In

contrast, other studies have reported uptake of proteins where internal

concentrations appear to correspond to as much as 1 - 2 orders of magnitude

above external concentrations [Glogauer and McCulloch, 1992; Wilson et al.,

1991], according to our calculations. Although direct assessment of relative

concentrations was not discussed by these authors, our calculations were made

using cell dimensions and molecular uptakes given in the papers. These higher
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internal concentrations suggest that protein binding within cells may have

occurred. In contrast to studies with macromolecules, uptake corresponding to

equilibrium or Donnan equilibrium has been reported for Lucifer Yellow (450 Da)

[Mir et al., 1988] and small ions [Kinosita and Tsong, 1977b; Schwister and

Deuticke, 1985; Serpersu et al., 1985].

To summarize, the literature reports equilibrium uptake only for small

molecules; macromolecules were transported at sub-equilibrium levels, except

when internal binding appeared to occur. However, experiments in the literature

differ significantly from the present study; non-equilibrium uptake did not

represent the maximum possible uptake, but simply represented uptake

observed under the particular conditions used. Nevertheless, to our knowledge,

uptake of a macromolecule corresponding to apparent equilibrium has not been

reported under any experimental conditions, including ours. This poses an

intriguing problem relevant to mechanistic understanding. Explanations may

involve the mechanisms proposed above to explain plateaus and/or other

mechanisms, such as an electric field-altered equilibrium or a Donnan

equilibrium.

8.2.8 Approaches To Increase Transport

The findings of this study may aid approaches to increase transport of

molecules across lipid bilayer membranes in cells and in tissues, relevant to

many existing electroporation protocols. These findings are summarized below.

Note that issues of cell viability are beyond the scope of this study and therefore

not considered.
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, Increasing E may not always increase transport. The E above which

transport plateaus is expected to be a function of cell size and orientation, as

well as the molecule being transported.

0 Using longer and/or multiple pulses can increase transport, even beyond the

large-E plateau. INT appears to be the most important parameter, where tinter

is less important. The added constraint of cell viability issues may determine

the best pulsing protocol.

, It may not be possible to transport macromolecules to apparent equilibrium,

although transport to well within an order of magnitude of apparent equilibrium

has been demonstrated with macromolecules here and previously. Binding

within cells may affect maximum possible transport.

· Because molecule-membrane interaction may be important, longer pre-pulse

exposure times could increase transport.

· Most transport appears to occur primarily during pulses and is electrically

driven. Transport after pulsing may be limited by lack of a powerful driving

force to transport molecules though long-lived pores. Additional driving

forces, such as pressure gradients or weak electric fields (e.g.

electrophoresis), could be applied after pulsing to enhance post-pulse

transport.

· Temperature does not appear to have substantial effects on transport.

8.3 Conclusions

Results have been presented for a quantitative study of the number of bovine

serum albumin (BSA) molecules transported into erythrocyte ghosts caused by

electroporation: 1) Uptake of BSA was found to plateau at high field strength.

However, this was not necessarily an absolute maximum in transport. Instead, it
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represented the maximum effect of increasing field strength, for a particular pulse

protocol. 2) Maximum uptake under any conditions used in this study

corresponded to approximately one fourth of apparent equilibrium with the

external solution. 3) Multiple and longer pulses each increased uptake of BSA,

where the total time integral of field strength correlated with uptake, independent

of inter-pulse spacing. 4) Pre-pulse adsorption of BSA to ghost membranes

appears to have increased transport. 5) Most transport of BSA probably

occurred by electrically-driven transport during pulses; post-pulse uptake

occurred, but to a much lesser extent. Finally, approaches to increasing

transport were discussed.
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9 Kinetics Of Transport 1 2

9.1 Introduction

Electroporation involves the creation of transient aqueous pathways in lipid

bilayer membranes by the application of a short (s, ms) electric field pulse

[Chang et al., 1992; Neumann et al., 1989; Orlowski and Mir, 1993; Tsong, 1991;

Weaver, 1993b]. Well established in cell membranes and artificial bilayer

systems, permeability and electrical conductance of lipid bilayers are increased

by orders of magnitude, where membrane changes can be reversible or

irreversible, depending mainly on pulse magnitude and duration. Electrical

exposures typically involve electric field pulses which generate transmembrane

potentials of approximately 1 V and last 10 gs to 10 ms [Chang et al., 1992;

Neumann et al., 1989].

Electropores are thought to be created on the sub-microsecond time scale

[Benz et al., 1979; Hibino et al., 1991; Kinosita and Tsong, 1977c; Neumann et

al., 1992] and continue growing in size for the duration of the electrical exposure

[Barnett and Weaver, 1991; Freeman et al., in press; Kinosita and Tsong, 1977a].

After the pulse, pores are believed to shrink to a metastable state, over a

characteristic time of milliseconds [Chernomordik et al., 1983; Glaser et al., 1988]

and, under reversible conditions, disappear completely over lifetimes from sub-

second to hours [Abidor et al., 1979; Chang and Reese, 1990; Hibino et al.,

1991; Zhelev and Needham, 1993; Zimmermann et al., 1975].

Transport due to electroporation is expected to occur by different mechanisms

at different times. During a pulse, transport could occur by diffusion and/or

electrically-driven transport (e.g. electrical drift and electroosmosis) through

electropores. After a pulse, transport could occur through electropores, as long

12 These results have also been reported in [Prausnitz et al., submitted, a].
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as pores exist, by diffusion and/or low-voltage electrically-driven transport due to

a small transmembrane diffusion potential [Weaver and Barnett, 1992].

While a number of studies have shown that molecular transport through

electropores can occur seconds to hours post-pulse [Lambert et al., 1990; Lee et

al., 1992b; Mishra and Singh, 1986; Rols and Teissi6, 1990; Tekle et al., 1991], it

has been proposed that most transport occurs during a pulse, driven by electrical

drift or electroosmosis [Dimitrov and Sowers, 1990; Klenchin et al., 1991;

Orlowski and Mir, 1993; Prausnitz et al., 1994; Weaver and Barnett, 1992].

However, until now, the kinetics of transport due to electroporation have not been

measured on a time scale the same as or faster than that of the pulse, making it

difficult to compare transport rates during and after the pulse. Such information

could give direct insight into transport mechanisms. This need motivated the

following study, which measured transport across erythrocyte ghost membranes

on the sub-millisecond time scale during and after electroporation pulses of a few

milliseconds duration.

9.2 Results

Erythrocyte ghosts were preloaded with calcein, a small (M = 623 Da), highly

charged (z = -4), fluorescent molecule, which is unable to cross resealed

erythrocyte ghost membranes. Then, fluorescence of individual ghosts was

measured during and up to 10 s after single exponential-decay electric field

pulses. Rates and time scales of calcein transport across ghost membranes

were assessed with time resolution as short as 200 s. Representative results

are shown in Figs. 9-1 to 9-3.

Due to a single pulse, extensive transport of calcein out of a ghost occurred,

where the ghost was partially (Fig. 9-1 A) or fully (Fig. 9-1 B) emptied, over the
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Fig. 9-1A. Normalized fluorescence of a calcein-loaded erythrocyte ghost during

and after an exponential-decay electric field pulse (5 ms resolution). Calcein is a

small (M = 623 Da) fluorescent molecule which is unable to cross resealed

erythrocyte ghost membranes. Fluorescence has been normalized to prepulse

values. Approximately 25 % of the calcein was transported out of the ghost over

the time scale of the experiment. Electric field strength, E = 1.0 kV/cm;

exponential decay time constant of pulse, = 2.3 ms.
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Fig. 9-1B. Normalized fluorescence of a calcein-loaded erythrocyte ghost during

and after an exponential-decay electric field pulse (5 ms resolution). At least

90 % of the calcein was transported out of the ghost over the time scale of the

experiment. E = 1.5 kV/cm, r = 2.7 ms.
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time scale of the experiment. When a ghost was only partially emptied,

additional transport may have occurred after the experiment concluded, possibly

emptying the ghost completely over a longer time scale.

To distinguish between transport during and after a pulse, measurements

over shorter times with greater time resolution were made. Generally, one of four

possible outcomes was observed, where the ghost was: (1) partially emptied of

calcein, involving transport primarily after the pulse (Figs. 9-2A and 9-2B); (2)

completely emptied of calcein, involving transport primarily after the pulse (Figs.

9-2C and 9-2D); (3) completely emptied of calcein, involving transport both during

and after the pulse (Figs. 9-2E and 9-2F); or (4) completely emptied of calcein,

involving transport primarily during the pulse (Figs. 9-2G and 9-2H). For cases

where transport occurred largely during the pulse, transport kinetics are shown

with still greater time resolution in Fig. 9-3 .

Data from 97 experiments like those shown above are summarized in Fig.

9-4. Significant transport occurred both during and after a pulse. This point is

further illustrated in Table 9-1, which suggests that post-pulse transport

accounted for 30 - 75 % of the transport which occurred over the time scale of

the experiment.

9.3 Discussion

Some experimental studies have assessed membrane structural changes due

to electroporation with sub-millisecond time resolution by electrical [Coster and

;Zimmermann, 1975; Hibino et al., 1991; Kinosita and Tsong, 1977c; O'Neill and

'Tung, 1991] and optical [Neumann et al., 1992] techniques. However,

measurements of the molecular transport associated with these changes have

not been performed on time scales faster than the applied pulse length, making
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Fig. 9-2A. Normalized fluorescence of a calcein-loaded erythrocyte ghost during

and after an exponential-decay electric field pulse (0.5 ms resolution). The

ghost was only partially emptied of calcein, where most transport occurred after

the pulse. E = 2.5 kV/cm, X = 3.4 ms.
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Fig. 9-2B. Normalized fluorescence of a calcein-loaded erythrocyte ghost during

and an single exponential-decay electric field pulse (0.5 ms resolution). The

ghost was only partially emptied of calcein, where most transport occurred after

the pulse. E = 2.5 kV/cm, X = 3.4 ms. This figure contains the same data as Fig.

9-2A shown on a different time scale. The dashed line indicates the time

constant, , of the pulse.
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Fig. 9-2C. Normalized fluorescence of a calcein-loaded erythrocyte ghost during

and after an exponential-decay electric field pulse (0.5 ms resolution). The

ghost was completely emptied of calcein, where most transport occurred after the

pulse. E = 2.5 kV/cm, r = 2.6 ms.
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Fig. 9-2D. Normalized fluorescence of a calcein-loaded erythrocyte ghost during

and an single exponential-decay electric field pulse (0.5 ms resolution). The

ghost was completely emptied of calcein, where most transport occurred after the

pulse. E = 2.5 kV/cm, r = 2.6 ms. This figure contains the same data as Fig. 9-

2C shown on a different time scale. The dashed line indicates the time constant,

'r, of the pulse.
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Fig. 9-2F. Normalized fluorescence of a calcein-loaded erythrocyte ghost during

and after an exponential-decay electric field pulse (1 ms resolution). The ghost

was completely emptied of calcein, where extensive transport occurred both

during and after the pulse. E = 2.5 kV/cm, ' = 3.4 ms. This figure contains the

same data as Fig. 9-2E shown on a different time scale. The dashed line

indicates the time constant, , of the pulse.
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Fig. 9-2G. Normalized fluorescence of a calcein-loaded erythrocyte ghost

during and after an exponential-decay electric field pulse (0.5 ms resolution).

The ghost was completely emptied of calcein, where most transport occurred

during the pulse. E = 2.5 kV/cm, X = 2.4 ms.
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Fig. 9-2H. Normalized fluorescence of a calcein-loaded erythrocyte ghost during

and after an exponential-decay electric field pulse (0.5 ms resolution). The

ghost was completely emptied of calcein, where most transport occurred during

the pulse. E = 2.5 kV/cm, = 2.4 ms. This figure contains the same data as Fig.

9-2G shown on a different time scale. The dashed line indicates the time

constant, r, of the pulse.
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Fig. 9-3A. Normalized fluorescence of a calcein-loaded erythrocyte ghost during

and after an exponential-decay electric field pulse (0.2 ms resolution). Most

transport occurred on a time scale on the order of 10 ms. E = 2.5 kV/cm, = 2.6

ms. The dashed line indicates the time constant, x, of the pulse.

I -Ia - )'x I
. I

I



139

kE I

"' 0.6

v r1 Ia, 04 = 1 * AXQ~~ LI'\~~~~ II.~, . I 0,-wnx " .,... as
0.2 N

0 II
0 5 10 15 20

Time (ms)

Fig. 9-3B. Normalized fluorescence of a calcein-loaded erythrocyte ghost during

and after an exponential-decay electric field pulse (0.2 ms resolution). Most

transport occurred on a time scale on the order of 1 ms. E = 3.8 kV/cm, ' = 3.8

ms. The dashed line indicates the time constant, , of the pulse.
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Fig. 9-3C. Normalized fluorescence of a calcein-loaded erythrocyte ghost during

and after an exponential-decay electric field pulse (0.2 ms resolution). Most

transport occurred on a time scale on the order of 1 ms. E = 3.8 kV/cm, ' = 4.7

ms. The dashed line indicates the time constant, r, of the pulse.
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Fig. 9-4A. Average normalized fluorescence of individual calcein-loaded

erythrocyte ghosts during and after single exponential-decay electric field pulses.

E = 1.0 kV/cm (o), 1.5 kV/cm (a), 1.9 kV/cm (o), 2.5 kV/cm (v), 3.1 kV/cm (o), 3.8

kV/cm (); = 3.6 + 1.1 ms (mean ± standard deviation). This figure contains

data from 97 different experiments like those shown in Figs. 9-1 to 9-3. Each

point represents the average fluorescence of ghosts from 2 - 40 different

experiments. Standard error bars are shown.
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Fig. 9-4B. Average normalized fluorescence of individual calcein-loaded

erythrocyte ghosts during and after single exponential-decay electric field pulses.

E = 1.0 kV/cm (o), 1.5 kV/cm (a), 1.9 kV/cm (), 2.5 kV/cm (v), 3.1 kV/cm (), 3.8

kV/cm (); : = 3.6 + 1.1 ms (mean ± standard deviation). This figure contains the

same data as Fig. 9-2C shown on a different time scale.
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NOMINAL
FIELD STRENGTH

(kV/cm)

1.0

1.5

1.9

2.5

3.1

3.8

FRACTION RELEASED FRACTION RELEASED
"DURING" PULSE TOTAL

0.04

0.19

0.22

0.44

0.54

0.50

0.16

0.52

0.78

0.63

0.95

RATIO
(DURING/TOTAL)

0.25

0.37

0.28

0.70

0.57

Table 9-1. Comparison of transport during and after a pulse. Using data from

Fig. 9-4, the fraction of calcein transported out of the ghost "during" the pulse and

the total fraction transported out over the time scale of the experiment are shown.

Transport "during" the pulse corresponded to the amount transported within the

first 10 ms of the exponential-decay pulse (- 3 time constants). Total transport

represents calcein transported after approximately 8 s. However, additional

transport may have occurred at later times in some cases. These data suggest

that although transport generally occurred during the pulse, significant transport

also occurred after the pulse, probably by passive diffusion through long-lived

pores.

__
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separate assessment of transport during and after the pulse difficult. Until now,

the fastest electroporation transport measurements had 17 ms time resolution

[Dimitrov and Sowers, 1990]. Here, data have been collected which have time

resolution as short as 0.2 ms.

Moreover, some previous studies of electroporation transport kinetics have

used molecules which fluoresce upon binding to a substrate (i.e., ethidium

bromide binding to DNA) [Marszalek et al., 1990; Sixou and Teissie, 1993; Tekle

et al., 1991], thereby coupling transport and binding rates. In contrast, we

measured calcein fluorescence, which should be directly related to transport

kinetics.

9.3.1 Mechanisms Of Transport

To aid in the interpretation of data presented here, we can consider the

mechanisms by which transport might have occurred. During a pulse, transport

could have occurred through electropores by diffusion and/or electrically-driven

transport, such as electroosmosis and electrical drift. To compare the relative

importance of diffusion to electroosmosis, calculation of a Peclet number, Pe,

yields a ratio of the characteristic times of diffusion to electroosmotic convection:

Pe = u r
D

u= E

where u is electroosmotic velocity, r is ghost radius (4 x 10-4 cm [Prausnitz et al.,

1993d]), D is calcein diffusivity (3.5 x 10-6 cm2 /s [Prausnitz et al., submitted, b]),

p. is electrophoretic velocity of the mobile cations, assumed to be sodium

(5 x 10- 4 cm2 N s [Atkins, 1986]), and E is electric field strength (2.5 kV/cm, as a

representative value).
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To compare diffusion to electrical drift, a modified Peclet number, Pe*, can be

defined, which has the same form as Pe, except the electrophoretic velocity of

calcein, u, is used and calculated utilizing the electrophoretic mobility of calcein,

E* (-6 x 10- 4 cm2 N s [Prausnitz et al., submitted, b]). Employing the values given

above, Pe = 143 and Pe* = 171. Such large Peclet numbers indicate that during

a pulse electrically-driven transport, by either electroosmosis or electrical drift, is

much faster than diffusion, in agreement with previous calculations [Dimitrov and

Sowers, 1990; Weaver and Barnett, 1992].

In contrast, after a pulse, no electric fields were applied, suggesting that

transport occurred only by diffusion. Low-voltage electrically-driven transport due

to a small transmembrane diffusion potential has also been proposed [Weaver

and Barnett, 1992]. However, with the exception of calcein, the composition of

solutes inside and outside the ghosts used in this study was the same, making

diffusion potentials unlikely.

With these mechanisms in mind, this suggests that when ghosts were

completely emptied of calcein during the pulse (e.g., Figs 9-2G and 9-2H),

transport was driven predominantly by electrophoresis and/or electroosmosis, in

agreement with previous studies [Dimitrov and Sowers, 1990; Klenchin et al.,

1991; Orlowski and Mir, 1993; Prausnitz et al., 1994; Weaver and Barnett, 1992].

However, when significant transport occurred after the pulse (Figs. 9-2A to 9-2F),

transport occurred in part or almost completely by diffusion. Although rates of

electrically-driven transport were generally faster than diffusion, electrophoresis

and electroosmosis only occurred for the duration of a pulse (milliseconds), while

transmembrane diffusion occurred orders of magnitude longer (as long as pores
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exist). Thus, the net, time-integrated contribution of diffusion was often greater

than that of electrically-driven transport1 3.

Some previous studies have concluded that most transport due to

electroporation occurs during the pulse and is electrically driven [Dimitrov and

Sowers, 1990; Klenchin et al., 1991; Prausnitz et al., 1994; Taketo, 1988;

Weaver and Barnett, 1992]. However, most studies which have compared

transport during and after a pulse have involved experiments where the

molecules to be transported were added to cell suspensions either before or

seconds to minutes after pulsing [Chang et al., 1992; Klenchin et al., 1991;

Prausnitz et al., 1994; Taketo, 1988]. Using this approach, post-pulse transport

may not have been detected because molecules were added too late. Evidence

suggests that post-pulse diffusion may often occur predominantly within a few

seconds after the pulse: (a) significant transport by post-pulse diffusion was

observed here to occur on a time scale of seconds or less (Figs. 9-1 to 9-2) and

(b) pore closure kinetics have also been determined to occur often over seconds

or less [Chang and Reese, 1990; Chernomordik et al., 1987; Hibino et al., 1991;

Zhelev and Needham, 1993; Zimmermann et al., 1975].

Kinetic studies have suggested that rates of transport are greater during a

pulse than after [Dimitrov and Sowers, 1990; Sixou and Teissie, 1993], in

agreement with results reported here. However, given the vastly different time

scales over which diffusion and electrically-driven transport occur, this does not

exclude a significant net contribution of diffusion to transport. Finally, studies

which indicate transport predominantly in a single direction oriented parallel to

13 In this study, transport by diffusion after a pulse may have been facilitated by calcein's
realtively small size (Stokes-Einstein radius, r = 0.6 nm [Edwards et al., submitted]). In contrast,
the contribution of post-pulse diffusion of macromolecules, such as proteins or DNA, may be
significantly smaller, since long-lived electropores are thought to be - 1 nm in radius [Abidor et
al., 1979; Glaser et al., 1988b].
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the applied electric field [Dimitrov and Sowers, 1990; Klenchin et al., 1991] more

strongly suggest transport by electrophoresis and/or electroosmosis.

Thus, based on our data and that in the literature, we conclude that under

some conditions transport due to electroporation is predominantly electrically-

driven, in agreement with others. However, we also conclude that under other

conditions transport can occur in part or almost completely by diffusion within

seconds after a pulse.

9.3.2 Functional Dependence Of Transport Kinetics

The functional dependence of rates of transport can give additional insight

into transport mechanisms and electropore closure kinetics. Fig. 9-4B suggests

a reasonable correlation with a logarithmic dependence of concentration on time

(C - log t; r2 = 0.93 + 0.04, mean correlation constant + standard deviation).

Moreover, a reasonable fit with a power function dependence was also found (C

- ta; 0.02 < a < 0.34; r2 = 0.90 ± 0.08). However, no mechanistic basis for these

correlations is evident.

One-dimensional transport by electrical drift would be proportional to the

electric field strength [Bockris and Reddy, 1970], but correlation with an

exponential decay was poor (C - e-t; r2 = 0.65 + 0.22). For one-dimensional

diffusion from a point source, which would show a linear dependence of

concentration on the inverse of the square root of time [Crank, 1975], the data

correlated better (C - t-1/2; r2 = 0.80 ± 0.13). For one-dimensional diffusion from

a source of finite thickness, linear correlation with the error function is expected

[Crank, 1975],

C=erf x8)(2 f ~
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where C is the concentration at the center of the ghost, x is ghost radius (4 x 10- 4

cm [Prausnitz et al., 1993d]), D is calcein diffusivity (3.5 x 10-6 cm2 /s [Prausnitz

et al., submitted, b]) and t is time. In this case, correlation was better (r2 = 0.89 +

0.08), where deviation from linearity was primarily observed at short times (i.e.,

during the pulse).

To more fully capture the physics of the problem, diffusion from concentric

spheres having different diffusivities (representing the ghost membrane and

interior) could be used. For time-independent diffusivities, the solution takes the

form of an infinite sum of exponentials (C = , e- t) [Bell, 1945]. However, to

reflect the time-dependent nature of electropores, the derivation would need to

be modified to include an outer sphere with time-dependent diffusivity. Moreover,

electrically-driven transport during a pulse should be included. Analysis at this

level of complexity is beyond the scope this study.

9.4 Conclusions

Electroporation involves the application of an electric field pulse which creates

transient aqueous pathways in lipid bilayer membranes. Transport through these

pathways can occur by different mechanisms during and after a pulse. To

determine the time scale of transport and the mechanism(s) by which it occurred,

transport of a fluorescent molecule, calcein, across erythrocyte ghost membranes

was measured with a fluorescence imaging apparatus with sub-millisecond time

resolution during and after electroporation pulses of a few milliseconds duration.

Generally, one of four possible outcomes was observed, where the ghost was:

(a) partially emptied of calcein, involving transport primarily after the pulse; (b)

completely emptied of calcein, involving transport primarily after the pulse; (c)

completely emptied of calcein, involving transport both during and after the pulse;
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or (d) completely emptied of calcein, involving transport primarily during the

pulse. We conclude that under some conditions transport due to electroporation

occurs predominantly by electrophoresis and/or electroosmosis during a pulse,

while under other conditions transport occurs in part or almost completely by

diffusion within seconds after a pulse.
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ELECTROPORATION OF SKIN

10 Electroporation Of Mammalian Skin14

10.1 Introduction

Transdermal drug delivery offers a number of potential advantages compared

to conventional methods, such as pills and injections: 1) no degradation due to

stomach, intestine, or first pass of the liver, 2) likely improved patient compliance

because of a user-friendly method, and 3) potential for steady or time-varying

controlled delivery [Bronaugh and Maibach, 1989; Champion et al., 1992;

Cullander and Guy, 1992; Hadgraft and Guy, 1989]. Nevertheless, very few

drugs can be administered transdermally at therapeutic levels, due to the low

permeability and lipophilic nature of human skin. As a result, fewer than ten

drugs are now clinically administered transdermally. However, the market for

these drugs exceeds one billion dollars in the United States alone, indicating the

importance of this delivery method. Therefore, significant enhancement of

transdermal drug delivery has the potential for major impact on medicine.

A number of approaches have been taken to increase transdermal transport

[Bronaugh and Maibach, 1989; Cullander and Guy, 1992; Hadgraft and Guy,

1989]. Most common is the addition of chemical enhancers, compounds which

are believed to increase the partitioning of drugs into the skin. Another approach

is chemical modification of a drug into a "prodrug," which penetrates the skin

well, but is subsequently converted by epidermal enzymes into the original

pharmacologically-active drug. Application of ultrasound has been used as well

to increase transdermal flux and to reduce transport lag times. Yet another

approach is iontophoresis, the movement of drugs across the skin by an electric

14 These results have also been reported in [Prausnitz et al., 1992], [Prausnitz et al., 1993a],
[Prausnitz et al., 1993b] and [Prausnitz et al., in press, a].
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field. Mechanistically similar to electrophoresis, iontophoresis is believed to act

primarily by moving charged species across the skin by an electrical force.

The barrier properties of skin are attributed primarily to the stratum corneum,

the skin's outer layer. The stratum corneum is a dead tissue composed of

flattened cells filled with cross-linked keratin and intercellular spaces made up of

lipids arranged largely in bilayers [Bouwstra et al., 1991; Elias, 1991]. Unlike the

unilamellar phospholipid bilayers of cell membranes, these multilamellar,

intercellular bilayers contain no phospholipids, being composed primarily of

ceramides, cholesterol, and fatty acids [Bronaugh and Maibach, 1989; Champion

et al., 1992; Hadgraft and Guy, 1989]. Intercellular pathways are generally the

most important routes for transdermal transport [Bronaugh and Maibach, 1989;

Champion et al., 1992; Hadgraft and Guy, 1989]. Therefore, permeabilization of

the lipid bilayers filling these intercellular pathways would be expected to

increase transdermal transport.

Electroporation is a method of reversibly permeabilizing lipid bilayers,

involving the creation of transient aqueous pores by the application of an electric

pulse [Chang et al., 1992; Neumann et al., 1989]. Dramatically reduced electrical

resistance and extensive transport of molecules, including macromolecules, are

generally associated with electroporation of lipid bilayers, including membranes

of artificial planar and spherical systems, as well as those of living cells. Electric

field exposures causing electroporation typically generate transmembrane

potentials of - 1 V and last 10 gs to 10 ms. Electroporation of isolated single

cells is well established, but electroporation of cells that are part of an intact

tissue has received little attention [Belehradek et al., 1994; Dev and Hofmann,

1994; Okino and Mohri, 1987; Titomirov et al., 1991]. To our knowledge,
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electroporation of multilamellar or non-phospholipid systems has not been

previously demonstrated.

In this study, we examine the possibility of electroporating the multilamellar,

non-phospholipid, intercellular lipid bilayers of the stratum corneum as a

mechanism to enhance transdermal drug delivery. Although both electroporation

and iontophoresis involve electric fields, the two approaches are fundamentally

different. While iontophoresis acts primarily on the drug, involving skin structural

changes as a secondary effect [Bronaugh and Maibach, 1989; Hadgraft and Guy,

1989], electroporation is expected to act directly on the skin, making transient

changes in tissue permeability. Because electroporation of cells has been

shown to increase transmembrane fluxes dramatically and reversibly,

electroporation of skin could make possible transdermal delivery of many more

drugs at therapeutic levels.

10.2 Results

Quantitative measurements of transdermal molecular fluxes and electrical

measurements are compared with the three characteristic features of

electroporation [Chang et al., 1992; Neumann et al., 1989; Orlowski and Mir,

1993; Tsong, 1991; Weaver, 1993b]: 1) large increases in molecular flux and

ionic conductance, 2) reversibility over a range of voltages, where recovery has

two time constants (ms and min), and 3) structural changes in the membrane

barrier.

First, transdermal fluxes of calcein (623 Da, -4 charge), a moderate-sized,

highly polar, fluorescent molecule which does not normally cross skin in

detectable quantities, were measured during application of low-duty-cycle

electric-field pulses. Fig. 10-1 shows average transdermal flux of calcein
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Fig. 10-1A. Transdermal flux of calcein (623 Da, -4 charge) before, during, and

after "forward" pulsing () and "reverse" pulsing () at 55 V. In Fig. 10-1, flux

increases up to four orders of magnitude are observed under "forward" pulsing

conditions (see text). These increases are at least partially reversible. "Reverse"

pulsing facilitates independent assessment of changes in skin permeability due to

electroporation (see text), suggesting that skin electroporation may be fully

reversible below approximately 100 V, under the conditions used. Fluxes are

shown one hour before pulsing, during pulsing (indicated by a "P"), and at times

after pulsing. Pulsing was performed for 1 h (see text). Elevated fluxes at 18 -

24 h could be caused be skin deterioration. Each point represents the average of

3 - 7 skin samples, from 2 - 4 different subjects. Standard deviation bars are

shown. The (*) symbol indicates a flux below the detection limit of order 10-4

Sig/cm 2 h.
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Fig. 10-1B. Transdermal flux of calcein before, during, and after "forward"

pulsing () and "reverse" pulsing (I) at 90 V. See caption for Fig. 10-1A for

explanation and discussion.
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Fig. 10-1C. Transdermal flux of calcein before, during, and after "forward"

pulsing () and "reverse" pulsing (l) at 165 V. See caption for Fig. 10-1A for

explanation and discussion.
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Fig. 10-1D. Transdermal flux of calcein before, during, and after "forward"

pulsing ) and "reverse" pulsing () at 300 V. See caption for Fig. 10-1A for

explanation and discussion.
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before, during, and after pulsing at representative voltages. Fluxes before

pulsing were below the detection limit (imposed by background fluorescence),

while fluxes during pulsing were up to 10,000-fold greater. Fig. 10-2 shows that

flux increased nonlinearly with increasing pulse voltage, i.e. the flux increased

strongly with increasing voltage below -100 V and increased weakly with

increasing voltage at higher voltages. Supporting electrical measurements also

showed increases in skin conductance of one to three orders of magnitude

[Bose, 1994; Pliquett and Weaver, submitted, a].

Second, reversibility was assessed. Following electrical pulsing for 1 h,

transdermal fluxes generally decreased by -90 % within 30 min. and > 99 %

within 1 - 2 h, consistent with significant reversibility. Electrical conductance

measurements also showed recovery [Bose, 1994; Pliquett and Weaver,

submitted, a]. However, elevated post-pulsing fluxes could be caused not only

by irreversible alterations of skin structure, but also by the efflux of calcein

'"loaded" into the skin during high fluxes caused by pulsing.

The results of an additional, and possibly better, test of reversibility are also

shown in Figs. 10-1 and 10-2: skin was pulsed with the electrode polarity

reversed, leaving the transtissue voltage magnitude during pulsing the same.

However, the reverse-polarity electrophoretic driving force associated with the

pulse should have moved calcein away from the skin, significantly reducing

transdermal transport during pulsing. By measuring fluxes -1 h after such

reverse-pulsing, long-lived changes in skin permeability can be assessed

independently (Fig. 10-2). These data suggest that pulses <100 V caused no

detectable long-lived changes in skin permeability. However, higher voltage

pulses appear to have caused lasting changes. Fig. 10-2 also suggests that a

transition region may exist at -100 V, below which flux increased as a strong
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Fig. 10-2. Transdermal flux of calcein due to exposure of human skin to different

electrical conditions. Calcein flux during application of "forward-polarity" pulses

(U) and approximately 1 h after pulsing in the "reverse" direction (see text) (A).

This figure suggests that a transition point may exist at approximately 100 V,

below which flux increases as a strong function of voltage and flux increases are

reversible, and above which flux increases only weakly with voltage and effects

are only partially reversible. Each point represents the average of 3 - 7 skin

samples, from 2 - 4 different subjects. Standard deviation bars are shown.

Fluxes below the calcein flux detection limit are indicated below the dashed line.
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function of voltage and flux increases were reversible, and above which flux

increased only weakly with voltage and effects were only partially reversible. The

exact mechanism underlying this transition is presently unclear. However, for

medical applications, it is potentially important that up to 1000-fold flux increases

which appear to be fully reversible can be achieved using pulses below -100 V.

'The longer-lived changes associated with up to 10,000-fold flux increases may

limit application of higher-voltage electroporation.

Third, changes in skin structure cannot be expected to be revealed by

microscopy, for reasons discussed below. However, demonstrating that

increased fluxes caused by pulsing cannot be explained by electrophoresis alone

suggests that changes in skin structure are necessary to explain our results. We

therefore compared fluxes caused by low-duty-cycle high-voltage pulsing to

fluxes caused by the continuous low-voltage dc current which would provide the

same total electrophoretic transport contribution if no changes in skin structure

occurred. For example, if the skin were unaltered (i.e., same conductance), then

constant application of 0.1 V would transfer the same amount of charge across

the skin as the pulsed application of 500 V for 1 ms every 5 s, making these

conditions "equivalent" electrophoretically. As seen in Fig. 10-3, application of

continuous voltages caused fluxes three orders of magnitude smaller than

pulsing under "equivalent" conditions, suggesting that skin structural changes are

needed to explain these results. Moreover, Fig. 10-1 indicates that during

reverse-pulsing, transdermal flux increased, even though the electrophoretic

driving force should have moved calcein away from the skin. This also suggests

that structural alterations in the skin occurred.

To appropriately characterize electroporation, we believe that measurement

of changes in molecular flux and electrical properties is the best approach,
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because these measures are widely used in the electroporation literature. Upon

initial consideration, electron microscopy might also appear to be an appropriate

tool for visualizing the pores created by electroporation. However, there currently

exist no satisfactory electron micrographs of electropores in any membrane,

primarily because electropores are believed to be small (< 10 nm), sparse

(< 0.1% of surface area), and generally short-lived (s to s). Thus, visualization

of electropores by any form of microscopy is not expected [Weaver, 1993a].

Moreover, although the name electroporation suggests the creation of physical

pores, all that has been experimentally established is that transiently elevated

transport and electrical conductance occur. We therefore did not employ electron

microscopy to look for pores in the complex multilaminate structures of the skin,

as they have not been imaged in simpler systems.

Enhanced transport of two other polar molecules across the skin was

achieved by electroporation: Lucifer Yellow (457 Da, -2 charge) and an

erythrosin derivative (1025 Da, -1 charge), a small macromolecule, neither of

which normally crosses skin at detectable levels. These molecules were

selected because they are fluorescent and have different physical properties than

calcein. As seen in Fig. 10-4, pulsing can cause fluxes of both molecules similar

to those caused for calcein under the same conditions. This suggests that

electroporation-enhanced transport may be broadly applicable to many

molecules, possibly including those of larger molecular weights.

Finally, electroporation in vivo was performed on anesthetized hairless rats.

Using protocols similar to those employed in vitro, electroporation at voltages

ranging from 30 to 300 V caused transport of 10 - 20 pg/cm 2 h (Fig. 10-5). No

calcein was detected in the serum of unpulsed rats. That the in vivo fluxes did

not increase with voltage suggests that a rate-limiting step other than transport
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Fig. 10-4. Transdermal flux of (1) an erythrosin derivative (1025 Da, -1 charge),

(E) Lucifer Yellow (457 Da, -2 charge), and ) calcein across human skin. This

figure demonstrates that electroporation increases the flux of a number of polar

molecules having different molecular characteristics. Each point represents the

average of 3 - 7 skin samples, from 2 - 4 different subjects. Standard deviation

bars are shown. The (*) symbol indicates a flux below the detection limit: order

10-2 jg/cm 2 h for the erythrosin derivative and order 10-3 !g/cm 2 h for Lucifer

Yellow.
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indicates a flux below the detection limit of order 10-1 jg/cm2 h.

163

,- 1"

.I v 



164

across the stratum corneum existed, perhaps uptake of calcein from a skin depot

into the bloodstream. No visible skin damage was observed after pulsing at

voltages below 150 V; erythema and edema were evident at higher voltages

(see Chapter 6). Long term biochemical and pathological studies are needed.

Together these results have implications for understanding mechanisms and

for applications to transdermal drug delivery. First, the three characteristic

features of electroporation were found in pulsed skin, suggesting that

electroporation is the mechanism of flux enhancement. Moreover, for

applications, the marked flux increases which are reversible over a range of

voltages could make possible the therapeutic delivery of many drugs across skin.

10.3 Discussion

10.3.1 Mechanisms And Interpretations

It is well established that the stratum corneum is the primary barrier to

transdermal transport [Bronaugh and Maibach, 1989; Champion et al., 1992;

Cullander and Guy, 1992; Hadgraft and Guy, 1989]; thus, our interpretation is

that changes in the stratum corneum account for the observed increases in flux

due to electroporation. Although studied mainly in the context of living cells,

electroporation has also been widely investigated in artificial planar bilayer

membranes and liposomes [Abidor et al., 1979; Chang et al., 1992; Neumann et

al., 1989; Orlowski and Mir, 1993; Tsong, 1991; Weaver, 1993b]. Because

electroporation is a physical process based on electrostatic interactions and

thermal fluctuations within fluid membranes, no active transport processes are

involved [Chang et al., 1992; Neumann et al., 1989; Orlowski and Mir, 1993;

Tsong, 1991; Weaver, 1993b]. Thus, electroporation could occur in the stratum

corneum, even though it does not contain living cells.
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"Proving" that electroporation occurs in skin is difficult. In the literature,

electroporation has been described experimentally as (1) characteristic behavior

(e.g., very large increases in molecular transport and conductance in lipid

bilayers) (2) occurring at characteristic voltages (e.g., approximately 1 V across a

bilayer) and (3) over characteristic times (e.g., sub-microsecond onset and

biphasic recovery over milliseconds and minutes). Although there are plausible

mechanisms by which these events occur (e.g., creation of aqueous pores, called

electropores), these mechanisms are hypotheses; electropores have not been

experimentally observed by imaging. Therefore, an experimental investigation of

skin electroporation should establish whether phenomena similar to those

observed in cell electroporation occur in skin as well.

The above experiments demonstrate very large increases in transdermal flux,

which are reversible over a range of conditions and appear to be associated with

structural changes. These results were seen with three different molecules

having molecular masses up to slightly more than 1000 Da. Similar results were

observed in vivo with animal skin. Electrical analysis has shown dramatic

electrical changes occurring within 1 s and recovery with millisecond and

second to minute time constants [Bose, 1994; Pliquett and Weaver, submitted,

a]. Our interpretation is that these experimental results exhibit the characteristic

behavior of electroporation. We therefore conclude that electroporation of skin

has occurred.

10.3.2 Applications

Although electroporation causes large flux increases across stratum corneum,

deeper viable tissue may be essentially unaffected. This localization is expected

because the stratum corneum has a much higher electrical resistance than other
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regions of the skin. As a result, an electric field applied to the skin will

concentrate in the stratum corneum, resulting in other, viable tissues being

exposed to much lower fields. Therefore, an electric field sufficient to cause

electroporation could exist in the stratum corneum, while a significantly lower field

exists in viable tissues, insufficient to cause electroporation. An implicit targeting

mechanism results, where the greatest electric fields are generated where the

largest resistivities exist, thereby protecting the already-permeable viable parts of

the skin and deeper tissues.

It is presently difficult to state with certainty which electrical conditions will be

acceptable for clinical use. Many features, including pulse

voltage/current/energy, pulse length, pulse frequency, duration of total exposure,

and electrode size, site, and design, will be important. A complete consideration

of the safety of electroporation of skin is beyond the scope of this study.

However, that the electrical exposures used were fully reversible over a range of

voltages is a strong indication that the procedure is not damaging and may be

safe. Moreover, there exists a clinical precedent for safely applying electric

pulses to skin with voltages up to hundreds of volts and durations up to

milliseconds. Such diagnostic and therapeutic applications include

transcutaneous electrical nerve stimulation, functional electrical stimulation,

electromyography, and somatosensory evoked potential testing [Reilly, 1992;

Webster, 1988].

Because of the stratum corneum's overall hydrophobic character and net

negative charge, transdermal transport of negatively-charged hydrophilic

molecules is especially challenging [Bronaugh and Maibach, 1989; Champion et

al., 1992; Cullander and Guy, 1992; Hadgraft and Guy, 1989]. Calcein, with eight

charge sites and a net charge of -4 [Furry, 1985], is therefore considerably more
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difficult to transport across the skin than many other molecules. Approaches to

transdermal flux enhancement involving chemical enhancers have been

successful with some lipophilic and moderately polar molecules, but limited in

applicability to highly polar and charged molecules. lontophoresis has been

successfully employed with some polar and charged molecules. For many drugs,

delivery rates in the gg/cm 2h range could be therapeutic, while significantly

higher rates of delivery may be required for other drugs. In general, a 10-fold

increase in flux caused by an enhancement method is impressive, while a 100-

fold increase is of great interest. Thousand-fold increases are rarely found. The

up to ten thousand-fold increases in flux caused by electroporation are therefore

potentially very significant and could make possible transdermal delivery of many

drugs at therapeutic levels.

Finally, transdermal flux enhancement has been demonstrated with other

techniques, including chemical, iontophoretic, and ultrasonic methods. Because

electroporation is mechanistically different, involving temporary alterations of skin

structure, it could be used in combination with these or other enhancers.

Together, these results suggest that electroporation of skin occurs and may be

useful to enhance transdermal drug delivery.

10.4 Conclusions

Mammalian skin owes its remarkable barrier function to its outer-most and

dead layer, the stratum corneum. Transdermal transport through this region

occurs predominantly through intercellular lipids, organized largely in bilayers.

Electroporation is the creation of aqueous pores in lipid bilayers by the

application of a short (is, ms) electric pulse. Our measurements suggest that

electroporation occurs in the intercellular lipid bilayers of the stratum corneum by
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a mechanism involving transient structural changes. Flux increases up to four

orders of magnitude are observed with human skin in vitro for three polar

molecules having charges between -1 and -4 and molecular weights up to more

than 1000 Da. Similar flux increases have been observed in vivo with animal

skin. Moreover, theoretical consideration suggests that a mechanism involving

electroporation may be responsive for these effects. These results may have

significance for drug delivery and other medical applications.
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11 Theoretical Analysis of Enhanced Transdermal Transport By

Skin Electroporation 15

11.1 Introduction

The oral administration of many drugs is prevented by significant degradation

in the stomach, intestine and liver [Langer, 1990]. While injections may reduce

these effects, parenteral delivery is invasive and generally unpleasant. An

attractive alternative to conventional methods is drug delivery across the skin, a

noninvasive, user-friendly approach which reduces degradation by the stomach,

intestine and liver [Bronaugh and Maibach, 1989; Hadgraft and Guy, 1989].

However, transdermal drug delivery is presently limited. Few drugs are able to

cross the skin at therapeutic rates, due to the remarkable barrier properties of the

skin's outermost, dead layer, the stratum corneum. The stratum corneum is

composed of flattened cells (corneocytes) separated by narrow regions of

intercellular lipids, arranged largely in bilayers [Bouwstra et al., 1991; Elias,

1991]. Corneocytes are usually considered to be impenetrable, forcing drugs to

cross the stratum corneum through the intercellular lipids.

Recently, a novel transdermal drug delivery approach, believed to involve

electroporation of stratum corneum lipids, has been shown [Bommannan et al.,

1993; Prausnitz et al., 1992; Prausnitz et al., 1993a] to dramatically increase drug

transport across the skin. This phenomenon is believed to be distinct from the

more commonly observed phenomenon of skin iontophoresis [Bronaugh and

Maibach, 1989; Cullander and Guy, 1992; Hadgraft and Guy, 1989], whereby

molecules are forced by application of an electric field through existing aqueous

pathways of the skin.

15 This chapter was written in collaboraion with David Edwards and has also been reported in
[Edwards et al., submitted].
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Electroporation involves the formation of transient aqueous pathways in lipid

bilayers by the application of a brief electric field pulse [Chang et al., 1992;

Neumann et al., 1989; Orlowski and Mir, 1993; Weaver, 1993b]. This

phenomenon occurs when the voltage across a lipid bilayer reaches

approximately 0.5 to 1 V for short pulses [Abidor et al., 1979; Weaver and

Barnett, 1992]. Typical electrical exposures last 10 s to 10 ms. Electropores are

thought to be created on the sub-microsecond time scale and, under reversible

conditions, to disappear over time scales ranging from milliseconds to hours.

Electroporation has been demonstrated in many different mammalian, plant,

yeast, bacterial and other cells, as well as in artificial planar and spherical

membranes [Chang et al., 1992; Neumann et al., 1989]. It has found application

as a method of introducing DNA into cells for gene transfection in vitro [Chang et

al., 1992; Neumann et al., 1989] and, more recently, for transporting drugs into

tumor cells for improved chemotherapy in vivo [Mir et al., 1991b; Okino and

Mohri, 1987; Salford et al., 1993].

This study seeks to determine if there is theoretical evidence supporting the

electropore origin of skin electroporation. Transport of charged species through

the skin is described on the basis of a recently derived theory [Edwards and

Langer, in press], by considering three routes of transport through the skin (i.e.,

'intercellular', 'shunt' and 'transcorneocyte' pathways). Predictions based upon

the shunt route of transport are found to agree with iontophoretic data at low

electric field strengths, whereas transcorneocyte route predictions agree with

experimental data at high electric field strengths. These results are shown to be

consistent (qualitatively as well as quantitatively) with single lipid bilayer

electroporation at high electric field strengths.
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11.2 Theory

1'1.2.1 lontophoresis Vs. Electroporation

Experimental evidence [Cullander, 1992; Phipps and Gyory, 1992] suggests

that the transport of charged molecules through the stratum corneum in the

presence of electric fields typical of iontophoresis occurs via pre-existing

pathways, viz. either a 'shunt' (hair follicle and sweat duct) route or an

intercellular route between corneocytes. This conclusion is supported by

theoretical considerations as well [Edwards and Langer, in press; Kasting, 1992].

However, if a suitably large electric field is applied across the skin, new,

perforating pathways through the intercellular lipid bilayers (and possibly through

the corneocytes as well) may be created via bilayer electroporation.

An estimation of the transdermal voltage AV necessary to electroporate lipid

bilayers within the stratum corneum may be made upon assuming lipid bilayers to

be simple voltage dividers. That is, the voltage AV across the skin is taken to be

the sum total of the individual voltage drops across the stratum corneum's lipid

bilayers. Given that there exist approximately 100 lipid bilayers between the

upper and lower surfaces of the stratum corneum [Elias, 1991], and that

electroporation of single bilayers occurs at a transbilayer voltage of

approximately 1V [Abidor et al., 1979; Weaver and Barnett, 1992], we have that

AV < < 100 V skin iontophoresis (1)

typifies the transdermal voltage for which charged molecules may be expected to

follow the standard intercellular and/or shunt routes of transport through the skin,

whereas

AV > 100 V skin electroporation (2)

characterizes the conditions for which electroporation of lipid bilayers may be

expected to occur, possibly resulting in a transcorneocyte route of transport.
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In the remainder of this paper, theoretical expressions are developed for the

transdermal flux of charged solute molecules in the low field-strength conditions

of standard skin iontophoresis [cf. Eq. (1)] and in the high field-strength

conditions of skin electroporation [cf. Eq. (2)]. We begin by presenting general

expressions for transdermal solute flux in terms of effective transport properties

of the skin.

11.2.2 Transdermal Flux Formulas

The steady-state, time-average, one-dimensional solute flux across the

stratum corneum may be expressed as [Edwards and Langer, in press]

(,T)1 1' I - ~ i(3)(f )= T Jdt = K(E*)C,,

assuming transport by diffusion is negligible. These conditions are typical of

electric-field mediated transport of charged molecules across the skin [Phipps

and Gyory, 1992; Kasting, 1992]. Here, J is the solute flux normal to the skin

surface, Tthe time period of any oscillatory process, K the skin/donor-solution

equilibrium partition coefficient, U * the mean solute velocity component normal

to the skin surface (with (U *) its time average), and C the time-independent

solute concentration in the donor compartment. The receptor solute

concentration is taken to be zero.

In the absence of convection (i.e. mean, electric-field drift),

(U *)= O, (4)

the diffusive contribution to (J ), which is neglected in Eq. (6), predominates, and

the time-average, steady-state flux of solute is given by

(/ )= I [l(O*)c1, (5)
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with D * the effective dispersivity of the solute in the stratum corneum and h the

stratum corneum thickness.

The formulas (3) and (5) may be used to offer predictions of steady-state,

transdermal solute flux () data in the presence of an electric field given

expressions for the mean solute velocity U * and dispersivity D * in terms of the

geometrical and physicochemical properties of the specific transdermal

pathways. These expressions are summarized below for the cases of skin

iontophoresis (intercellular/shunt pathway) and skin electroporation

(transcorneocyte pathway).

11.2.3 lontophoretic Transport Through Unaltered Tissue

At low electric fields [cf. Eq. (4)], the structure of intercellular lipids is assumed

to be unaltered, and the transport pathways of charged molecules through the

skin are taken to be the standard pre-existing intercellular and/or shunt routes.

These pathways of transport have been discussed previously [Edwards and

Langer, in press], where it was predicted that the mean, transdermal velocity of

charged solute in the presence of an electric field appropriate to the combined

intercellular and shunt routes of transport is given by16

U*= . 02594 (¢s + 0. 042/-)z AV (6)

Here, U * is given in units of cm/s, ¢SH denotes the area fraction of shunt

pathways relative to the total skin surface area (for the abdomen region of human

skin, ¢S=- 2 .7 x10-4: see [Edwards and Langer, in press]), and /'4 is a

hydrodynamic hindrance factor characterizing hydrodynamic interactions

16 It is important to emphasize that the numerical values appearing in Eq. (6) have been
obtained [Edwards and Langer, in press] by use of estimates [principally those reported following
Eq. (10)] for geometrical and physicochemical properties of the stratum corneum. They have not
been fitted to the data in this study.
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between the convecting molecule (of valence z) and the lipid head groups

between which it convects in an applied electrical field. The transdermal voltage

AV is expressed in units of volts.

Intercellular and shunt routes are jointly considered in the preceding flux

expression because both involve transport through the skin via aqueous

pathways and each are accessed over a similarly small skin surface area

fraction. The first term in Eq. (6) characterizes the flux through shunts. This route

exhibits relatively large (m-size) pathways. Thus, hydrodynamic hindrance is

negligible; this is reflected implicitly in the first term of Eq. (6) by a hydrodynamic

hindrance coefficient of unity. The second term accounts for hindered transport

through the lipid head group channels of the intercellular route. The factor 0.042

appearing in the second term in parenthesis in Eq. (6) represents an inverse

tortuosity for intercellular transport [Edwards and Langer, in press]. The tortuous

pathway between corneocytes is only slightly reduced by the creation of pores in

intercellular lipid bilayers, owing to the fact that the lateral corneocyte dimension

(=23 pum [Rougier et al., 1988]) is much larger than the spacing between

corneocytes (=0.05 an [Scheuplein, 1978]). Thus, Eq. (6) can be used to

describe intercellular transport during electroporation as well (as described in the

next subsection).

A characteristic value for the thickness (Iw) of the bound-water layers

between lipid head groups is 0.7 nm [Bouwstra et al., 1991]. Because the

molecules (i.e., calcein) considered in comparisons with experimental data

(presented below) possess a Stokes-Einstein diameter 2a>0.7 nm [cf. the

discussion following Eq. (13)], the hindrance coefficient /:- appearing in Eq. (6)

is expected to be negligibly small. Thus Eq. (6), with PSH =2.7x10- 4 , simplifies to

U 7. 00 6 z AV, (7)
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characterizing the mean iontophoretic velocity of solute species through the hair

follicles and/or sweat ducts. In this case, the solute partition coefficient, which

accounts for area exclusion effects, is simply

K, -= :H2.7 x 10 (8)

Thus, Eq. (3) may be expressed as

(J) = 6.8z (AV)C1 (nmol / cm 2 / h),

with C, given in units of mol/l.

11.2.4 Electrophoretic Transport Through Porated Tissue

For the electric-field conditions of Eq. (2), electroporation of intercellular lipid

bilayers is assumed to permit transport of charged molecules across lipid bilayers

and through the corneocytes of the stratum corneum. This pathway of transport is

expected to predominate over the intercellular and shunt pathways since it is

characterized by a significantly greater exposed surface area fraction than the

latter pathways, which are essentially unaffected by the creation of electropores.

Owing to the thinness of the intercellular regions relative to the thickness of

corneocyte layers, electrophoretic transport of charged molecules is expected to

be rate-limited by transport through the corneocytes, whence [Edwards and

Langer, in press]

Us (lC + L)2(l + ) 1
*L ( lo + 1lw)Lc + (l + o) L]

ICL( LC+ L#HC(W + R10 )L h

= O. 012WPcZ AV. (10)

Here, IL (0.05 ,um [Scheuplein, 1978]) is the thickness of a single stratum

corneum lamella, Ic (=1.0 um [Scheuplein, 1978]) is the characteristic thickness

(9)
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of a corneocyte, lo ( 5.8 nm [Bouwstra et al., 1991]) and Iw (= 0.7 nm [Bouwstra

et al., 1991]) are the respective thicknesses of the lipid bilayer and bound-water

layers within intercellular lamellae, ¢c (=0.5 [Campbell et al., 1977]) is the lateral

area fraction of aqueous channels within the corneocytes, L (10 - 3 (see Chapter

12)) is the net area fraction of the lamellar layers accessible to ion transfer, h

(= 15 um [Bouwstra et al., 1991]) is the thickness of the stratum corneum, R is the

gas constant, T is the absolute temperature and Dw= 10- 5 cm2/s is the free-

volume diffusion coefficient of the transporting substance. The hindrance factors

H c , H respectively characterize hydrodynamic hindrance coefficients in the

aqueous channels of the corneocytes, and in the aqueous electropores in the

lipid bilayers.

The effective dispersivity for the transcorneocyte route is given by [Edwards

and Langer, in press]
2 2

-*=(ZFRCV)D 3 ( + 10) (C + oL)L

[H +c7. 42 x 10-6H3(RczAV )]x 10-5 ()

in units of cm2/s. Here, Rc is the radius of corneocyte channels (see below)

expressed in units of nm, HE is a convective-dispersion transport coefficient,

which depends upon molecular size and shape and the dimensions of the

aqueous channels of the corneocytes.

Aqueous channels within corneocytes can be characterized as circular

cylinders of radius Rc. This idealization has frequently been used [Deen, 1987;

Malone and Anderson, 1978; Frenkel, 1944] to characterize pore spaces within

biological porous media as it allows explicit analytical expressions to be
developedforthehindrancecoefficients H. Characterizing solute3

developed for the hindrance coefficients H, H . Characterizing solute
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molecules as hard spheres (of radius a), allows the calculation of the hindrance

factors introduced above by [Brenner and Edwards, 1993]

1-9 - 1. 539Ra
8 RC R

9C a ) 2 (12 a)

RC

for small aRc,
5/2

1 R
'1 -R ) (12 b)

for large alRc, and

R. )2[° 158 In 2(ac) -0. 901 n( ) + 1 385]
H3 _ _ _ (13)

For intermediate ratios of aIRc (i.e., 0.2 < a/Rc < 0.8), Hc can be determined by

extrapolation, as shown in Fig. 2 of Mavrovouniotis and Brenner [1988].

The characteristic radius Rc can be estimated upon noting that corneocytes

are composed of cross-linked keratin fibers of radius = 7 nm [Scheuplein, 1978]

and contain approximately 50 % water when fully hydrated [Campbell et al.,

1977]. Assuming a uniform distribution of keratin fibers within the corneocytes,

Rc= 1.8 nm is found from the geometric relationship [7 nm / (Rc+ 7nm)] 3 = 0.5.

The Stokes-Einstein radius of calcein (the molecule principally examined in

subsequent comparisons with experiments) is estimated17 as a = 0.6nm.

Assuming calcein molecules to be hydrated by a uniform layer of water

17 Use of Lyderson's method [Lyderson, 1955] for estimating critical volumes suggests an
estimate for the critical volume of calcein of Vc=1260 cm3/gmol. Combination of the Stokes-
Einstein equation for a spherical particle together with the Wilke-Chang and Tyn-Calmus relations
[Reid et al., 1977] permits the hydrodynamic radius a (in nm) to be related to the critical volume
as, a=0.00683 Vc0.62 88.
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molecules (molecular diameter = 0.2 nm), suggests a hydrated calcein radius of

a = 0.8 nm. Thus, a/Rc= 0.44 and Eqs. (12) and (13) give

c- = . 20, H3 = 5. 09,

such that Eqs. (10) and (11) furnish

U* = 0. 0024 z AV, (14)

D* [0.20 +0.0001(z AV)] x 10- (15)

The skin/donor compartment partition coefficient characterizing the

transcorneocyte route is equivalent to the skin area fraction accessible to

charged molecular transport during skin electroporation. Recent experiments

involving skin electroporation (see Chapter 12) suggest a steady-state value for

this calcein area fraction of

K, = 10-, (16)

for skin voltages satisfying Eq. (2). For transdermal voltages on the order of 1 OOV

or less, this value has been observed (Chapter 12) to diminish sharply with skin

voltage, and to depend strongly on the size of the transporting substance.

It is interesting to observe that the partition coefficient (16) is consistent with

theoretical predictions made for single bilayer electroporation [Freeman et al., in

press]. These calculations suggest a maximum aqueous area fraction of 10-3,

though the aqueous area fraction may be many orders of magnitude smaller than

10-3, depending upon factors such as voltage pulse duration and magnitude.

However, given that direct experimental evidence of aqueous pore area fraction

in single lipid bilayers is presently lacking, and that experimental studies of

multilipid bilayer electroporation have not been reported in the literature, the

precise physical state and kinetics of stratum corneum lipid bilayers during skin

electroporation is not well enough understood to make a clear physical
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interpretation of the partition coefficient value experimentally observed in Chapter

12 and shown in Eq. (16).

Upon combining Eqs. (14)-(16) with Eqs. (3) and (5) we have

(J ) 8. 64 x 10z (AV )C, (nmol / cm 2 / h) (17)

for convectively-dominated transdermal transport, and

(J) 2.4xo [020 + 0. 0001 (zAV ) (nmol / cm 2
/h) (18)

in the conditions (4) of zero time-average convection.

For voltages characteristic of electroporation [cf. Eq. (2)], the dispersive flux

(18) is much smaller in magnitude than the purely convective (i.e., electric-field

drift) flux (17). This explains our neglect of the diffusional contribution in Eq. (17).

Similarly, the diffusion contribution to the iontophoretic flux (9) is also negligible in

conventional iontophoretic conditions.

11.3 Results

Here we compare theoretical predictions and experimental data for both small

and large electric field strengths.

'11.3.1 Small AV: lontophoresis.

In the experiments of Chapter 10, a continuous dc voltage was applied across

human epidermis. In these conditions,

(AV ) = AV.

Calcein molecules (MW=623, z=-4) were placed in the donor compartment of an

in vitro diffusion-cell apparatus at a concentration of C =1 mM. The transdermal

flux of calcein was measured for 'small' transdermal voltages (AV <2V). For

iontophoretic transport through unaltered tissue, Eq. (9) yields
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(J) = 1.7 x 10- AV ( g / cm2 / h ) , (19)

whereas for electrophoretic transport through porated tissue Eq. (17) gives

(J ) 2. 5 x 10'AV (. g / cm2 / h). (20)

A comparison of the experimental data with the theoretical estimates based

upon Eqs. (19) and (20) is made in Fig. 11-1. The shunt-route (nonporated)

prediction (19) nearly matches the experimental data over most of the voltage

range considered. In contrast, the porated (transcorneocyte) formula (20)

overpredicts the transport of calcein by several orders of magnitude. This

suggests that the hair follicle/sweat duct route is the most likely pathway for

charged calcein transport through the skin, at least for AV <1 V. The poor

correspondence between the shunt-route prediction (19) and the experimental

data at the largest voltages examined (i.e., 2V), and, particularly, the nonlinear

dependence of the experimental flux values versus voltage, might be explained

by an increase in the number of shunt pathways accessible by the iontophoresed

molecules with increasing voltage, as described by Scott et al. [1993].

11.3.2 Large AV: Electroporation.

Transdermal calcein flux values were measured in a second set of

experiments (Chapter 10) at significantly larger pulsed voltages (40V< AV <500V)

across human epidermis. The electric field pulses exponentially decayed with a

time constant ,, of approximately 1 ms. One pulse was applied every T= 5 s for

one hour (corresponding to a duty cycle of 0.02%). In the present notation, these

conditions correspond to

AV)=2x10 4 AV.
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Fig. 11-1. Calcein flux versus transdermal voltage due to standard skin
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Equation (9) adopts the form

(J)= 3. 4 x 10-6 AV ( g / cm 2 / h) (21)

characterizing the flux of calcein associated with the shunt-route (nonporated)

route of transport, whereas, Eq. (17) gives

(J) = 4.4 x 10- 3AV (Y, g/cm 2 /h) (22)

characterizing transport through electroporated skin (transcorneocyte route).

Figure 11-2 provides a comparison of the theoretical estimates (21) and (22)

with the experimental data. At the lowest voltages examined (AV <100 V), the

data fall between the predictions based upon the shunt (nonporated) formula (21)

and the porated (transcorneocyte) formula (22). However, as AV increases

beyond 100 V, predictions based upon the porated-route formula (22) match the

experimental data. At the highest voltages, the transcorneocyte route

underpredicts the experimental data. While this discrepancy may owe to many

factors, as discussed in the following section, it may be significant that for

transdermal voltages exceeding 100 V, irreversible damage to the skin was

observed (Chapter 10). In general, however, the severalfold enhancement of

charged molecule transport associated with the porated, transcorneocyte route of

transport appears to offer evidence that pores were created in the intercellular

bilayers and that a transcorneocyte (rather than an intercellular or shunt) route of

transport is followed by the calcein'molecules at the highest voltage drops shown

in Fig. 11-2.

Further support of transcorneocyte transport through bilayers at high electric

field strengths is provided by the comparisons made in Fig. 11-3. This figure

supplements the calcein data of Fig. 11-2 with experimental data (shown in

Chapter 10, collected under identical conditions) for Lucifer yellow (MW = 457,

z = -2) and an erythrosin derivative (MW = 1025, z= -1). Attributing to each
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molecule its respective hindrance coefficient via Eq. (12) [for Lucifer yellow,

I; : O. 2 (a 0.78 nm); for the erythrosin derivative, -c 0. 17 (a = 0.90 nm)],

Eqs. (3), (10) and (16) may be combined to give

[4.4x 10 3 AV (calcein)

) 1. 6 x 10 AV (Lucifer yellow) (/ g / cm 2 / h) (23)

1. 5 < 10- 3AV (erythrosin derivative )

characterizing the transport rates for the three different molecules according to

the porated route through the stratum corneum. Predictions based upon the

above equations are shown with the experimental data in Fig. 11-3. The

convergence of experimental and theoretical results as AV increases above 100

V is consistent with the comparisons made between theory and experiment in

Fig. 11-2.

11.3.3 Large AV (Alternating Polarity): Electroporation.

In Chapter 12, calcein flux was measured during skin electroporation due to

electric field pulses, with z = 1 ms, T = 5 s, and C = 1 mM, but with the polarity

alternating from one pulse to the next (Fig. 12-1); thus,

(AV)= o.

These are the conditions of validity of Eq. (18); i.e., there is zero net convection

[cf. Eq. (4)] across the skin. Even in the absence of net solute convection, a

significant enhancement of transport was experimentally observed (see Fig. 11-

4). This phenomenon cannot be explained in the standard electrophoresis (or

electroosmosis) terms by which electric field enhancement of charged molecule

transport across the skin has been explained in the past, since, on average, there

is no net forced diffusion or convection.

For zero net skin convection, Eq. (18) gives

(J : 3. 0 x 10-3[0. 20 + 0. 0008 V2] ( g/cm 2 / h). (24)
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'The first term in brackets identifies the contribution arising from the purely

diffusive transport of calcein in the conditions of skin electroporation. This term is

seen to be of order 10- 4 ,g/cm 2/h, the order of the sensitivity of the experimental

measurements. The second term in brackets identifies a convective-dispersive

contribution, quantifying the (oscillatory) convective enhancement of net solute

'diffusion'. This contribution remains even in an alternating electric field because

it depends upon the square of the transdermal voltage. The physical origin of

convective dispersion is further discussed in the following section.

Predictions based upon Eq. (24) are shown in Fig. 11-4 together with the

experimental data. Very good agreement is found between the experimental data

and the theoretical predictions for AV >100 V. This appears to be strong

evidence both for the validity of a porated, transcorneocyte route of transport in

the conditions of Eq. (2) and for the occurrence of convective dispersion in the

skin.

11.4 Discussion

The theoretical/experimental comparisons made in Figs. 11-1 to 11-4 strongly

suggest that charged molecules follow different pathways through the stratum

corneum below and above a transdermal voltage of approximately 100 V. At

transdermal voltages significantly less than 100 V, transport of charged calcein

appears to occur through nonporated skin via a shunt route (Fig. 11-1). However,

for AV >100 V, the comparisons made in Figs. 11-2 to 11-4 indicate that

transport through porated intercellular bilayers and corneocytes is preferred,

consistent with the known characteristics [cf. Eqs. (2) as well as Eq. (16)] of lipid

bilayer electroporation.
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Additional evidence for the electroporation of stratum corneum bilayers can

be offered on the basis of the electrical properties of skin. It has been found

[Edelberg, 1967; Inada et al., 1994; Kasting and Bowman, 1990; Stephens, 1963]

that the specific electrical resistance of the skin exhibits a steady-state value of

approximately 1,000-10,000 Q-cm2 following application of a low-strength

electric field for about one hour. In the high-strength conditions of Eq. (2), the

skin's electrical resistance can diminish up to three orders of magnitude, to a

value of approximately 10-100 Q-cm2 [Bose, 1994; Pliquett and Weaver,

submitted, a]. This drop in resistance is found to be consistent with the current

analysis.

Thus, the electrical resistance of unaltered skin has been estimated as

[Edwards and Langer, in press]

p = 4000 - cm2, (25)

with ions transporting through intercellular and shunt routes. As previously [cf.

Eq. (10)], if we assume /L = 10- 3 for the stratum corneum area fraction

accessible to ion transfer in electroporation conditions, a value that has been

experimentally observed (Chapter 12), it follows that the transport of ions through

electropores and corneocytes causes a reduction of the skin's electrical

resistance to approximately [cf. Eq. (31 b) of Edwards and Langer [in press]]

p 6 - cm2. (26)

Ths latter result is substantially lower than the experimental skin resistance data

[Bose, 1994; Pliquett and Weaver, submitted, a] at high electric field strengths. A

potential explanation for this underprediction is that the result (26) does not

include hindrance effects arising in the transport of ions through electropores.

However, the predicted diminution of skin resistance by several orders of
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magnitude appears to lend further support to a transcorneocyte route of transport

in skin electroporation circumstances.

The results of this study indicate that multiple lipid bilayers within the stratum

corneum electroporate at conditions similar to those for which electroporation has

been observed or predicted in single bilayer systems [Abidor et al., 1979; Chang

et al., 1992; Neumann et al., 1989; Orlowski and Mir, 1993; Weaver, 1993b;

Weaver and Barnett, 1992]. As in single bilayer systems, whether planar or

spherical, electroporation of skin appears to give rise to a dramatic enhancement

of transbilayer molecular flux, leading to pathways for molecular transport

through the aqueous channels of the corneocytes.

The successful description of key features of electric-field mediated

transdermal transport, based upon the physical characteristics of the stratum

corneum and the transporting molecules, constitutes an essential step toward

understanding the mechanisms of transport and optimizing experimental

protocols. However, the physical and geometrical complexity of the stratum

corneum, including its possible dependence upon applied (e.g., electric) fields,

limits the scope of conclusions that may be drawn via each set of theoretical

predictions until a broad range of experimental observations have been

confirmed.

In the current study, experimental flux data at relatively low transdermal

voltages (< 1 V) have been fairly well predicted (Fig. 11-1) on the basis of a shunt

route of charged-molecule transport. Yet, the observed nonlinear dependence of

molecular flux upon voltage is not predicted by the current theory. This may

reflect the creation of new transport pathways through the skin with increasing

applied voltage (as observed by Scott et al. [1993]). Nonlinear electrical
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properties of skin above 1 V is well documented [Edelberg, 1967; Inada et al.,

1994; Kasting and Bowman, 1990; Stephens, 1963].

Experimental transdermal flux values have been found (Fig. 11-2) to be

approximated by theoretical predictions based upon an electroporated,

transcorneocyte route of transport through the stratum corneum. However, the

strong nonlinearities exhibited by the data over the entire range of voltages

shown in Fig. 11-2 suggest a significant dependence of electropore area fraction

upon voltage (a dependence not accounted for here), and perhaps irreversible

skin damage at the very highest voltages. Moreover, Eqs. (10) and (11), which

describe the transcorneocyte route of transport, apply to circumstances where

transport across the intercellular lipids occurs relatively fast in comparison to

transport across the corneocytes. It may occur, however, that at the intermediate

voltages shown in Fig. 11-2, significant hindrance of transport across the

intercellular lipids occurs, requiring modification of Eqs. (10) and (1 1).

Other approximations made in the theory, such as the idealization of circular

cylindrical aqueous pores within corneocytes, may give rise to significant errors in

conditions other than have been examined here. For example, very large

molecules (i.e., R > 1.8 nm), may potentially transport across corneocytes

during electroporation. However, our assumption of a uniform pore size in the

corneocytes [see following Eq. (13)] would wrongly preclude this possibility

because it does not account for the heterogeneous distribution of aqueous

pathway dimensions within corneocytes.

One of the striking features of skin electroporation is the observation (Fig. 11-

4) that a dramatic enhancement of charged species is possible even in the

absence of a net transdermal voltage. This has been explained here by the

convective dispersion of charged molecules within corneocytes-a phenomenon
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that appears not to have been discussed previously in the context of transdermal

transport.

Convective dispersion resulting from oscillating flow conditions have been

observed in numerous practical capillary and porous media problems [Brenner

and Edwards, 1993], such as human lungs (i.e., high-frequency ventilation

schemes) [Fung and Sabin, 1977], abdominal cavities [Rudoy et al., 1987] and

river estuaries [Fisher et al., 1979]. Physically, these phenomena occur because

solute molecules instantaneously transport through porous media at significantly

different rates depending upon their individual 'local' trajectories through the

medium. In the case of skin, a charged molecule may transport (under the action

of an oscillatory electric field) predominately along the centerline through

aqueous channels of the corneocytes, avoiding contact with keratin fibers, and

thereby maximizing its speed through the skin. However, diffusion may cause

another molecule to follow a trajectory that frequently brings it into contact with

keratin fibers, so that it moves much more slowly through the skin than the

'centerline' molecule. On average, all molecules will move with a mean speed

through the skin. In the case of oscillatory flow, this mean speed may even be

zero. However, the dispersion-or spatial spread-of the solute molecules about

this mean speed will be significantly enhanced (over that enhancement which

normal molecular diffusion provides) owing to the interaction between convection

and diffusion.

11.5 Conclusions

The transport of charged molecules across human skin can be dramatically

enhanced by application of high-strength, pulsed electric fields. This

phenomenon is theoretically characterized here in terms of the electroporation of
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lipid bilayers within the stratum corneum above the transbilayer voltage for which

electropores have been observed in single bilayer membranes. Accounting for

the size, shape and charge of the transporting molecules, predictions of

transdermal molecular flux are made in two electric field conditions. At small field

strengths (transdermal voltage <<100 V), representative of standard skin

iontophoresis, charged molecules are modeled as transporting through the pre-

existing shunt routes of the skin. At electric field strengths sufficiently large

(transdermal voltage >>100 V) to electroporate lipid bilayers, a transcorneocyte

pathway is accessible to charged molecules, with transbilayer transport occurring

through electropores within the lipid bilayers. Experimental data of transdermal

molecular flux compared favorably with the respective theoretical predictions in

the small and large electric field strength limits. Predictions of the skin's electrical

resistance are also found to be consistent with experimental data at small and

large electric field strengths. In both limits, electrophoretic transport is shown to

be predominately convective (i.e., dominated by electric-field drift); however, a

form of transport enhancement involving convective dispersion may also be

significant during skin electroporation.
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12 Effects Of Pulse Parameters On Transport18

12.1 Introduction

Although transdermal drug delivery has the potential to be a noninvasive,

user-friendly method of delivering drugs, its clinical use has found limited

application due to the remarkable barrier properties of skin's outermost layer, the

stratum corneum [Hadgraft and Guy, 1989]. As a result, chemical, iontophoretic,

ultrasonic, and other methods of enhancement have been studied as approaches

to increase rates of transport. Recently, application of low duty cycle, high-

voltage pulses has been shown to cause largely or completely reversible

transdermal flux increases up to four orders of magnitude [Bommannan et al.,

submitted; Bose, 1994; Pliquett and Weaver, submitted, a; Prausnitz et al., 1992;

Prausnitz et al., 1993a; Prausnitz et al., submitted, c; Prausnitz et al., in press, a].

These large increases in transport may be explained by electroporation, a

mechanism involving transient structural changes in the intercellular lipid bilayers

of the stratum corneum.

Well established in cell membranes and artificial bilayer systems,

electroporation is believed to involve the creation of transient aqueous pathways

in lipid bilayers by the application of a short (s, ms) electric field pulse [Chang et

al., 1992; Orlowski and Mir, 1993; Weaver, 1993b]. Permeability and electrical

conductance of lipid bilayers are increased by many orders of magnitude, where

membrane changes can be reversible or irreversible, depending mainly on pulse

magnitude and duration. Electroporation has also been demonstrated in cells in

monolayers [Kwee et al., 1990], as well as in cells part of intact tissues

[Belehradek et al., 1994; Dev and Hofmann, 1994].

18 These results have also been reported in [Prausnitz et al., submitted, b], [Prausnitz et al.,
1993c], and [Prausnitz et al., in press, b].
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Electroporation occurs when the transmembrane voltage reaches - 1 V for

electric field pulses typically of 10 gs to 10 ms duration. During electroporation,

the following sequence of events is believed to take place: (1) within

nanoseconds to microseconds, electropores are created, (2) molecules are

moved through electropores primarily by electrophoresis and/or electroosmosis

due to the local electric field, and (3) after the pulse, pores close over

characteristic times ranging from milliseconds to hours [Chang et al., 1992;

Orlowski and Mir, 1993; Weaver, 1993b].

Recent theoretical estimates suggest that some features of ionic transport

across the multilamellar system of bilayers in human stratum corneum might be

accounted for by electroporation at transdermal voltages of approximately 100 V

[Chizmadzhev et al., submitted; Edwards et al., submitted]. This study seeks to

better characterize the effects of higher-voltage pulsed electric field conditions on

transdermal transport and to use these results to better understand possible

mechanisms for flux enhancement, especially as compared to conventional

lower-voltage iontophoresis.

12.2 Results

Calcein transport across human epidermis was studied due to the effects of

lower-voltage continuous electric fields (iontophoresis) and higher-voltage pulsed

electric fields (electroporation). The dependence of transport on electric field

parameters was evaluated and transport numbers were calculated to facilitate

mechanistically-oriented comparisons.

In Fig. 12-1, transdermal calcein transport due to electric field pulses of

forward polarity and of alternating polarity is shown. According to our

terminology, forward-polarity pulses were applied with the positive electrode in
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Fig. 12-1. Average calcein flux across human epidermis due to forward-polarity

and alternating-polarity exponential-decay electric-field pulses (exponential-

decay time constant, = 1.0 - 1.3 ms; pulse rate, r = 12 pulses per minute

(ppm)). Forward-polarity pulsing (0) could cause both creation of electropores

and electrophoresis through electropores. Data from Fig. 10-2. Alternating-

polarity pulsing (0) could cause creation of electropores, but should result in no

net electrophoretic movement. See text for discussion. Each point represents

the average of 2 - 5 different skin samples. Standard deviation bars are shown.
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the receptor compartment and the negative electrode in the donor compartment.

For this configuration, electric field pulses could (a) cause structural changes in

the skin due to electroporation and (b) move calcein across the skin by

electrophoresis through both previously-existing and newly-created transport

pathways. Forward-polarity pulsing resulted in flux increases of up to four orders

of magnitude. In contrast, alternating-polarity pulses were applied such that the

electrode polarity alternated with each pulse. In this way, the pulses could cause

electroporation, but should cause no net ion transport by electrophoresis (see

Discussion). However, under these conditions, flux increases of up to three

orders of magnitude were observed. In contrast, application of continuous

sinusoidal ac voltages up to 5 Vrms at 1 kHz for 1 h caused insignificant

enhancement of transdermal calcein transport (data not shown).

The effects of pulse rate and pulse time constant of exponential-decay electric

field pulses were assessed in Fig. 12-2. We previously reported that there

appeared to be a transition at 100 - 150 V, below which flux increases were fully

reversible, and above which they were only partially reversible [Prausnitz et al.,

1993a]. We therefore studied the effects of pulse rate and pulse time constant

both below (75 V) and above (300 V) the transition region. Over the range of

conditions studied, there appears to be approximate proportionality between

calcein flux and total pulse "on" time (i.e., the product of pulse time constant

multiplied by pulse rate).

Previous studies of skin electroporation [Bommannan et al., submitted;

Prausnitz et al., 1992; Prausnitz et al., 1993a] and results presented here

measured transdermal transport due to electrical exposures of 1 h or less. Fig.

12-3 shows the effects of pulsing for 7 h continuously, where steady state

transport was achieved within - 10 min and maintained throughout.
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Fig. 12-3. Average transdermal calcein flux due to exponential-decay pulses

(transdermal voltage, v = 300 V; X = 1.1 ms; r = 12 ppm) applied for 7 h. The flux

remained approximately constant throughout. Each point represents the average

of 2 different skin samples. Standard deviation bars are shown.
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In Fig. 12-4, the effects of pulse rate and pulse length were examined for

square-wave pulses. Only voltages below the reversible-irreversible transition

region were studied, since fully-reversible conditions may be more relevant for

drug delivery applications. In Fig. 12-4A, the dependence of flux on pulse length

was examined. For pulses longer than 10 ts, flux increased approximately in

proportion with pulse length. However, 10 ts pulses caused a disproportionately

low flux. Fig. 12-4B shows the effects of pulse rate on transdermal calcein flux.

There also appears to be approximate proportionality between pulse rate and

flux, except at 3 pps, where flux appears to be disproportionately low.

Fig. 12-4C further addresses the proportionality between flux and total "on"

time. Five different pulsing protocols are compared, where the product of pulse

length multiplied by pulse rate was held constant. In each case, the resulting flux

was approximately the same, except for 10 !ps pulses applied at 200 pps. This is

in agreement with Fig. 12-4A, which also suggests that 10 lps pulses cause

disproportionately small increases in transport.

To assess changes in skin electrical properties under conditions examined in

this study, time traces of current and voltage during a pulse were collected. Fig.

1 2-5A shows the voltage across a permeation chamber during a 200 V, 10 us

square-wave pulse. The corresponding current through the chamber is shown in

Fig. 12-5B. While time-varying effects were seen for the first 1 - 2 ps of the

pulse, no further changes in electrical properties were observed during the

remainder of the pulse. Although the initial time-varying behavior could be due to

changes in skin properties, it is more likely to be associated with the electrical

properties of the pulse application system. Thus, any changes in skin electrical

properties occurred on a time scale of microseconds or less.
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Fig. 12-5A. Characterization of changes in skin electrical properties due to

higher-voltage electrical exposures. Voltage across a permeation chamber

containing skin (i.e., not the voltage across the skin) due to a 200 V square-wave

electric-field pulse of 10 gis duration.
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Fig. 12-5B. Characterization of changes in skin electrical properties due to

higher-voltage electrical exposures. Current measured through the permeation

chamber during the voltage pulse shown in Fig. 12-5A. This figure suggests that

the skin resistance dropped from - 100,000 Q to - 90 Q on a time scale of < 2 s

(see text).
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Fig. 12-5C. Characterization of changes in skin electrical properties due to

lower-voltage electrical exposures. Current measured through the permeation

chamber during continuous application of 1 V iontophoresis. This curve suggests

that the skin resistance dropped from - 100,000 Q to - 10,000 Q on a time scale

of an hour (see text).
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During the time-invariant, purely resistive portion of the pulse, the voltage was

- 200 V and the current was - 350 mA. Using Ohm's Law, the apparent

resistance of the system was - 570 Q. The apparent resistance of the

permeation chamber without skin (but including electrodes, saline, and interfacial

resistances) was measured during a pulse to be 480 Q, independent of voltage

[Bose, 1994; Prausnitz et al., 1993a]. Therefore, the apparent resistance of the

skin, Rskin, fell to - 90 Q within 2 gs after the onset of the pulse. Since Rskin was

on the order of 100,000 Q before pulsing, Rskin dropped three orders of

magnitude on a time scale of microseconds or less.

In contrast, changes in skin electrical properties due to lower-voltage

iontophoresis are less dramatic and much slower. In Fig. 12-5C, transdermal

voltage was maintained at 1 V for 3 h and the resulting current is shown. Using

Ohm's Law, Rskin can be calculated. Under these conditions, which are

representative of typical iontophoresis, Rskin decreased from 100,000 Q to -

10,000 Q over a characteristic time on the order of an hour. This resistance drop

was two orders of magnitude less than that seen during the higher-voltage pulse.

Moreover, it occurred over a time scale at least nine orders of magnitude slower.

The vastly different magnitudes and times scales suggest that different

mechanisms are responsible for the changes in skin electrical properties

observed during lower-voltage and higher-voltage electrical exposures.

To further explore mechanisms of transport enhancement, transport numbers

were calculated for fluxes associated with different electrical exposures. The

transport number is the fraction of total current carried by a given ionic species,

which can be thought of as the efficiency of electrophoretic transport of that

species [Bockris and Reddy, 1970; Bommannan et al., submitted; Phipps and

Gyory, 1992]. The transport number, ti, of ionic species, i, is defined as
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ti = Ji zi F

where Ji is the transdermal flux of i, zi is the valence (charge) of i, F is Faraday's

constant, and I is the total current passed across the skin [Bockris and Reddy,

1970]. In transdermal transport, current can be carried across the skin by any ion

present, such as sodium, chloride, or charged drug. Thus, in this study, the

transport number gives the efficiency with which current transported calcein

across the skin, compared to competing ions, such as sodium or chloride.

To perform an analysis involving transport numbers, we used exponential-

decay pulse, square-wave pulse, and constant-voltage iontophoresis data shown

above and presented previously [Prausnitz et al., 1993a]. This was

supplemented with constant-current iontophoresis data, shown in Fig. 12-6.

Transport numbers for transdermal calcein transport, tcalcein, are shown in

Fig. 12-7 during constant-voltage and constant-current iontophoresis. Here,

tcalcein increased with increasing voltage and current. This suggests that (a) the

transport properties of skin were altered by the electric field and (b) the nature of

these alterations were functions of voltage and current.

Fig. 12-8 shows tcalcein under exponential-decay and square-wave pulsed

conditions. Fig. 12-8A indicates that tcalcein increased with increasing voltage.

However, Figs. 12-8B and 12-8C suggest that tcalcein was not a function of pulse

length or pulse rate. Moreover, no clear difference between exponential-decay

and square-wave electric field pulses is evident.

Finally, direct comparison between continuous lower-voltage electric field

exposures (Fig. 12-7) and pulsed higher-voltage electric field exposures (Fig 12-

8) requires evaluation on a common basis. Fig. 12-9 contains all these data,
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Fig. 12-7B. Average transport number for transdermal calcein transport by

continuous constant-current iontophoresis. Transport number, which is a

measure of transport efficiency, increased with increasing current. Data are from

Fig. 12-6. Standard deviation bars are shown.
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Fig. 12-8A. Average transport number for transdermal calcein transport by

exponential-decay and square-wave electric-field pulses as a function of pulse

voltage. Transport number increased with increasing voltage. Square-wave

pulse data (,V) are from Fig. 12-4. Exponential-decay pulse data (0) are from

Figs. 10-2, 12-1 and 12-2. Standard deviation bars are shown. The three up-

side-down triangle data points (V) were calculated from the anomalous 10 gs

(Figs. 12-4A and 12-4C) and 3 pps (Fig. 12-4B) data (see text).
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Fig. 12-8C. Average transport number for transdermal calcein transport by

exponential-decay and square-wave electric-field pulses as a function of pulse

rate. Transport number showed no significant dependence on pulse rate. See

caption for Fig. 12-8A for explanation.
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expressed on the basis of total charge transferred. No clear dependence of

tcalcein on total charge transferred is evident. However, the range in tcalcein seen

for both lower-voltage and higher-voltage protocols is approximately the same

(10-5 - 10-2).

12.3 Discussion

.12.3.1 Alternating-Polarity Pulses

Higher-voltage forward-polarity pulses are expected to increase transdermal

transport by first creating structural changes in the skin and then transporting

molecules across the skin by electrophoresis [Prausnitz et al., 1993a]. Because

structural changes due to electroporation are believed to occur independent of

electric field polarity [Chang et al., 1992; Orlowski and Mir, 1993; Weaver,

1993b], alternating-polarity pulses should also cause skin structural changes, but

result in no net ion electrophoresis. Evidence for these structural changes is

given in Fig. 12-1, where alternating-polarity higher-voltage pulses increased

calcein transport by up to three orders of magnitude. In contrast, no

enhancement was provided by electrically "equivalent" continuous lower-voltage

ac fields, which also provide no net electrophoresis, but are not expected to

cause electroporation.

We now explain what is meant by electrically "equivalent" pulsed and

continuous electric fields. Although they provide no net ion electrophoresis,

alternating-polarity electric fields can enhance transport of a given ionic species

(e.g., calcein) by electrophoresis and/or by convective dispersion [Brenner and

Edwards, 1993; Edwards et al., submitted]. Considering transport enhancement

by electrophoresis, which is proportional to the time integral of the voltage

applied [Bockris and Reddy, 1970], continuous application of 5 V should provide
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the same electrophoretic contribution to transport as 25,000 V applied at a

1:5000 duty cycle (a 1 ms pulse every 5 s). Considering transport enhancement

by convective dispersion, which is proportional to the time integral of the square

of the applied voltage [Brenner and Edwards, 1993], continuous application of 5

V should provide the same convective dispersive contribution to transport as

exponential-decay pulsing at 177 V. Therefore, iontophoresis at < 5 V is

electrically "equivalent" to pulses on the order of 100 V. For this reason, we used

continuous sinusoidal ac voltages up to 5 Vrms at a frequency of 1 kHz, selected

because its period, 1 ms, is the same as the time constant of the alternating

pulses used.

12.3.2 Effects of Pulsed Electrical Conditions on Transport

Understanding the dependence of transport on electrical conditions can guide

applications and provide insight into transport mechanisms. Transport showed a

highly non-linear dependence on pulse voltage, as discussed previously

[Prausnitz et al., 1993a]. However, Figs. 12-2 and 12-4 suggest that over a

range of conditions transport was approximately proportional to total pulse "on"

time (i.e., the product of pulse length multiplied by pulse rate). Transport

associated with electroporation of single bilayer membranes has also been

shown to depend non-linearly on pulse voltage, but vary linearly with total pulse

"on" time (Chapter 8).

There were two anomalous cases where transport was apparently not

proportional to total "on" time. First, in Fig. 12-4B, pulsing at 3 Hz was

disproportionately low when compared to pulsing at faster rates. Although it is

presently unclear, an explanation could involve pores which close between

pulses at 3 Hz but do not close when pulsing more rapidly (> 10 Hz).
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Second, Figs. 12-4A and 12-4C suggest that 10 gs pulses also caused a

disproportionately low flux. Possible explanations relating to skin electrical

behavior include: (a) if the capacitive charging time of the skin were longer than

10 s, then current would have gone to charging the skin, rather than causing

transport across the skin and (b) if skin electroporation occurred on a time scale

slower than 10 us, then new pathways would not have been created to enhance

transport. However, after 1 - 2 gs of a 10 ps pulse, transdermal current was

constant (skin acted like a resistor) and skin resistance had dropped by three

orders of magnitude (Fig. 12-5). This suggests that at the beginning of the pulse

(a) the skin was charged and (b) skin electroporation had occurred. This result

was expected, since (a) for this apparatus, the capacitive charging time of skin,

Tskin, should be on the order of 1 us (skin = Rchamber (chamber resistance, 10-2

!Q) X Cskin (skin capacitance, 10-8 F/cm 2 [Bose, 1994; Pliquett and Weaver,

submitted, a]) and (b) electropores are believed to be created in single-bilayer

systems on a time scale of nanoseconds to microseconds [Chang et al., 1992;

Orlowski and Mir, 1993; Weaver, 1993b].

Thus, although skin electroporation occurred and small ion transport (current)

increased by orders of magnitude within 2 us, calcein transport did not increase

dramatically until after 10 us. This suggests that during the first 10 Ps of a pulse,

pathways too small for calcein transport may have existed, while larger pathways

were created at later times. This agrees with studies of electroporation in single

bilayer membranes, which suggest that longer pulses may be associated with

larger pores [Chang et al., 1992; Freeman et al., in press; Orlowski and Mir,

11993; Weaver, 1993b].
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12.3.3 Transport Number Functionality

By calculating the transport number, or transport efficiency, associated with

transport under different electrical conditions, we can partially characterize the

pathways available to ion transport. In this study, tcalcein is a measure of the

ease with which calcein can transport through ion transport pathways relative to

small ions, such as sodium or chloride. Thus, transport numbers can give

information about the effective average size of transport pathways.

Figs. 12-7 and 12-8 show that tcalcein increased with increasing current and

voltage during iontophoresis and skin electroporation. This suggests that larger

currents and voltages altered the skin's transport properties in ways that favored

calcein transport over small ion transport, perhaps due to creation of larger

transport pathways. At the lowest voltages and currents (tcalcein = 10-5),

transport pathways may have dimensions of the same order of magnitude as

calcein (Stokes-Einstein radius, rcalcein = 0.6 nm1 9 [Edwards et al., submitted]).

In this case, sodium or chloride (crystal ionic radius, rNa+ = 0.1 nm and rcil- = 0.2

nm19 [Weast, 1985]) transport would be less hindered, while calcein would find

considerable steric hindrance. At higher-voltages or currents (tcalcein = 10- 3 to

10-2), larger pathways could exist, having dimensions much larger than calcein.

In this case, small ion transport would remain unhindered while calcein transport

would become less hindered, thereby increasing tcalcein by increasing its

transport relative to small ions.

The predicted maximum value of tcalcein would occur if calcein and small ion

transport were both completely unhindered. In this case, their transport numbers

would scale with the product of electrophoretic mobility multiplied by

concentration multiplied by valence [Bockris and Reddy, 1970]. Since their

19 Hydration shells have not been considered and could make effective molecular dimensions
larger.
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mobilities were approximately equal (in water at 25 °C: ltsodium = 5.2 x 10-4

cm 2 N s [Atkins, 1986], PJchloride = -7.9 x 10-4 cm2 N s [Atkins, 1986], J tcalcein =

-5.7 x 10-4 cm 2N s 20), their relative concentrations were 1:300 (1 mM calcein

and - 300 mM small ions), and their relative valences were 4:1 (Zcalcein = -4 and

generally Zion = -1 or +1), then tcalcein, max would be approximately 10-2 if all

transport were unhindered. However, at pH 7.4 the skin carries a negative

charge, showing permselectivity for cations [Hadgraft and Guy, 1989], suggesting

that tcalcein, max may be somewhat lower, between 10-3 and 10-2.

Reexamining the transport number data in this light suggests that at the

lowest voltages and currents used during iontophoresis and skin electroporation,

on a relative scale, small ion transport was favored over calcein transport by a

factor of 100 to 1000 (tcalcein = 10-5). Pathways which might show this selectivity

could include transport between head-groups of the stratum corneum intercellular

lipid bilayers (r = 0.7 nm [Bouwstra et al., 1991]) or through intercellular junctions

in the lining of shunt pathways. Another possibility is that many pathways exist

which only allow small ion transport, such as Angstrom-size "holes" in lipid

bilayers created by random thermal motion [Hamilton and Kaler, 1990], along

with a few much larger routes which readily permit passage of calcein, perhaps

associated with appendages.

At the highest voltages and currents, tcalcein appeared to reach its predicted

maximum value (tcalcein, max = 10-3 to 10-2). Under these conditions, calcein

transport appears to have been unhindered, suggesting that transport pathways

!0 Calcein mobility was calculated using the relation [Bockris and Reddy, 1970], lcein = D zF,
RT

where z is valence (-4 [Prausnitz et al., 1993a]), F is Faraday's constant, R is the gas constant, T
is temperature (298 K), and D is diffusivity, calculated using the Stokes-Einstein relation [Bockris
and Reddy, 1970], D- k T , where k is Boltzman's constant, T is temperature, r is molecular

6lrlq
radius (0.6 nm (Chapter 11)), and 1 is viscosity (1 cp [Weast, 1985]).
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were significantly larger than calcein. However, with this data alone we cannot

assess (a) how much larger than calcein these pathways were or (b) whether

these were newly-created pathways or enlargements of pre-existing pathways.

Finally, tcalcein showed no clear dependence on pulse length, pulse rate,

pulse waveform, or total charge transferred. This is consistent with known

mechanisms for single-bilayer electroporation, where pore characteristics are

believed to be determined largely by voltage [Chang et al., 1992; Orlowski and

Mir, 1993; Weaver, 1993b]. It is also consistent with known changes in skin

electrical properties due to iontophoresis, where reduction of skin resistance is a

function of voltage [Edelberg, 1967].

There are some similarities between changes caused by iontophoresis and

skin electroporation. Both showed a dependence on voltage and led to the

creation of transport pathways significantly larger than calcein. However, as

discussed below, electrical characterization indicates that different mechanisms

are involved.

12.3.4 Electrical Characterization of Skin Electroporation and lontophoresis

The mechanistic insight provided by transport data can be supplemented by

characterization of changes in skin electrical properties due to different electric

field exposures. First, we can calculate what fraction of the skin is available to

ion transport. Second, we can determine over what characteristic times these

transport pathways become accessible.

By measuring skin resistance and assuming that ion transport pathways are

filled with saline, we can calculate the area fraction of skin made up of these

pathways, Fion. After minutes to hours of conventional iontophoresis (up to a few

volts), human skin resistance can drop to 1,000 - 10,000 Q cm2 [Hadgraft and
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Guy, 1989; Inada et al., 1994; Kasting, 1992], in agreement with Fig. 12-5C. This

corresponds to ion transport pathways occupying 0.01 - 0.001 % of the skin's

surface area (Fion = 10- 5 - 10-4) for stratum corneum of 17 gm thickness

[Hadgraft and Guy, 1989] and saline resistivity of 72 Q cm [Weast, 1985].

Making the same calculation during higher-voltage pulses, where skin

resistance drops to - 100 Q cm2 (see Fig. 12-5 and references [Bose, 1994] and

[Pliquett and Weaver, submitted, a]), suggests that 0.1 % of skin surface area is

available to ion transport (Fion = 10-3). Electroporation in single bilayer systems

is also believed to cause up to 0.1 % of membrane area to contain pores,

although areas are often much smaller [Freeman et al., in press]. Therefore, 10 -

100 times more skin area is available for ion transport during skin electroporation

than during conventional iontophoresis. This may correspond to a shift from

iontophoretic transport largely through shunt routes to transport through

electropores within the bulk of the stratum corneum.

We can also consider differences between pathways available to small ions

and those available to calcein. Since Fion gives the fraction of skin area

containing ion pathways and tcalcein / tcalcein, max gives the fraction of ion

pathways available to calcein transport, then the fraction of skin area available to

calcein transport is

Fcalcein = Fion x tcalcein
tcalcein, max

Using this relationship, Fcalcein = 10-6 to 10-3 during skin electroporation and

Fcalcein = 10-8 to 10-4 during iontophoresis.

Finally, we consider the time scale over which these transport pathways

become accessible. Changes in skin resistance due to conventional
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iontophoretic exposures occur over a characteristic time of at least minutes

[Hadgraft and Guy, 1989; Inada et al., 1994; Kasting, 1992], in agreement with

Fig. 12-5C. In contrast, ion transport pathways created by skin electroporation

become accessible at least eight orders of magnitude more quickly, over a

characteristic time of microseconds or faster (see Fig. 12-5 and references

[Bose, 1994] and [Pliquett and Weaver, submitted, a]). Electroporation in single

bilayer systems is also known to occur on a time scale of microseconds or faster

[Chang et al., 1992; Orlowski and Mir, 1993; Weaver, 1993b]. Given that skin

electroporation causes 1 to 2 orders of magnitude greater resistance drops which

occur at least 8 orders of magnitude more quickly than those associated with

iontophoresis, it seems unlikely that the mechanistic bases for changes

associated with these two phenomena are the same.

There is little reason to expect electroporation of stratum corneum lipids to

occur at typical iontophoresis voltages (i.e., up to a few volts across the skin).

Electroporation is known to occur when the voltage across a single lipid bilayer

membrane reaches - 1 V, which corresponds to an electric field within the

membrane (- 10 nm thick) on the order of 106 V/cm [Chang et al., 1992; Orlowski

and Mir, i993; Weaver, 1993b]. To achieve a field strength of 106 V/cm within

the membrane, bulk electric fields of 104 V/cm are often used for electroporation

of bacteria cells in suspension (- 1 gim diameter), 103 V/cm for yeast (- 10 gim

diameter) and 102 V/cm for sea urchin eggs (- 100 gim diameter) [Chang et al.,

1992]. This is because the electric field concentrates within the membranes of

spherical cells in suspension, due to their large resistance, following the well-

known relationship [Foster and Schwann, 1986]

AVmembrane = 1.5 Ebulk rcell
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where AVmembrane is the maximum transmembrane voltage, Ebulk is the imposed

uniform electric field strength, rcell is the cell radius, and the factor 1.5 is

introduced due to local distortion of the electric field by the cell. Thus, typical

iontophoretic exposures might be sufficient to electroporate a few bilayers,

perhaps affecting the lining of appendages [Kasting, 1992]. However, to

electroporate the approximately 100 bilayers in series found in a pathway across

human stratum corneum, transdermal voltages on the order of 100 V should be

required [Chizmadzhev et al., submitted; Edwards et al., submitted; Prausnitz et

al., 1993a].

12.3.5 Implications for Applications

These results may give insight into how protocols could be designed to

optimize transdermal transport by electroporation. First, steady-state flux can be

reached within minutes and maintained for many hours (Fig. 12-3), as discussed

previously [Prausnitz et al., submitted, c]. This short lag time may aid

applications requiring rapid onset of therapeutic action and/or complex drug

,delivery profiles. Moreover, the long-term maintenance of steady state suggests

'that results obtained from experiments for 1 h could be generalized for longer

times.

Higher-voltage protocols appear to be more efficient, as they increase

transport number for both electroporation and iontophoresis (Figs. 12-7 and 12-

8). However, higher-voltage pulses may be associated with nerve stimulation

and unpleasant sensation. Thresholds for nerve stimulation are non-linear

functions of pulse current, pulse length, and contact area, where threshold

currents increase exponentially with decreasing pulse length for short pulses (< 1
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ms) [Reilly, 1992]. Therefore, shorter pulses at higher-voltage may provide

increased transport efficiency without sensation or pain. However, Fig. 12-4

indicates that pulses longer than 10 gs may be required for dramatic flux

enhancement, suggesting that pulses between 10 ps and 1 ms may be most

useful.

Transdermal delivery by pulsed protocols described here may reduce

sensation, compared to conventional iontophoresis. In a recent review, Ledger

identified three sources of unwanted cutaneous effects of iontophoresis: direct

nerve stimulation, high current densities associated with skin appendages, and

transfer of ions into the skin [Ledger, 1992]. First, as discussed above, short

pulses (< 1 ms) significantly reduce direct nerve stimulation, thereby potentially

causing less irritation in vivo than continuous electric fields. Pulsed iontophoresis

has previously received considerable attention [Bagniefski and Burnette, 1990;

Chien et al., 1987].

Second, irritation during iontophoresis caused by high current densities

concentrated within skin appendages may be reduced by skin electroporation.

Because the area for ion transport was dramatically increased during higher-

voltage pulses (Fion = 10-3), irritation may be reduced by distributing current more

evenly across the stratum corneum through new pathways.

The third potential cause of irritation involves introduction of ions into skin,

resulting in pH changes or electrical polarization of the skin [Ledger, 1992].

Because no net current (or ion transfer) occurs in an alternating-polarity protocol,

pH changes may be reduced or eliminated and electrical polarization of the skin

should not occur. As shown in Fig. 12-1, an alternating-polarity pulsed protocol

can dramatically increase transport across the skin. In contrast, lower-voltage (<

5 V) alternating-polarity iontophoresis did not enhance transport.
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In conclusion, higher-voltage pulsed electric fields appear to make dramatic

changes in skin transport properties, probably by a mechanism involving

electroporation. It is already evident that potential advantages of this approach

include dramatically increased flux, short transport lag times, and the possibility

to reduce irritation. However, the present challenge is to gain a deeper

understanding of skin electroporation and thereby assess more fully how this

mechanism might best be used for drug delivery and other applications.

12.4 Conclusions

Transdermal transport of calcein was measured during lower-voltage,

continuous electric fields (iontophoresis) and higher-voltage pulsed electric fields

i(electroporation). Transport due to pulsing showed a nonlinear dependence on

pulse voltage, but was proportional to total "on" time (the product of pulse length

multiplied by pulse rate), except at the shortest pulse length (10 us) and at the

slowest pulse rate (3 Hz). Alternating-polarity pulses increased transport by up to

three orders of magnitude, while electrically "equivalent" continuous alternating-

current fields provided no enhancement. For both iontophoresis and skin

electroporation, calcein transport number, or transport efficiency, (a) ranged from

10- 5 to 10-2, (b) was a function of voltage and current, and (c) did not show

dependence on pulse length, pulse rate, pulse waveform, or total charge

transferred. The area fraction of skin available to small ion transport was 10-5 to

10-4 during iontophoresis and 10' 3 during skin electroporation, while that

available to calcein transport ranged from 10-8 to 10-4 during iontophoresis and

10-6 to 10-3 during skin electroporation. Skin transport properties changed due to

electroporation over a time scale of microseconds or faster. Potential strengths

of transdermal drug delivery by skin electroporation include dramatically
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increased flux, short transport lag times, and the possibility of reduced irritation

compared to iontophoresis.
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13 Rapid Temporal Control Of Transport 21

13.1 Introduction

Transdermal drug delivery has the potential to be a noninvasive, user-friendly

method of delivering drugs at steady or time-varying rates [Bronaugh and

Maibach, 1989; Hadgraft and Guy, 1989]. However, to date it has found limited

clinical application, largely because transport of most drugs across human skin is

very slow, exhibiting lag times of hours to days and steady-state rates which are

often subtherapeutic. Recently, evidence for electroporation of skin has been

demonstrated and proposed as a mechanism to enhance transdermal drug

delivery [Bommannan et al., 1993; Bose, 1994; Prausnitz et al., 1992; Prausnitz

et al., 1993a; Prausnitz et al., in press, a].

Electroporation involves the application of a brief electric field pulse which

creates aqueous pathways in lipid bilayers, such as cell membranes [Chang et

al., 1992; Neumann et al., 1989; Orlowski and Mir, 1993; Weaver, 1993b].

During electroporation, the electric field is believed to dramatically increase

molecular transport by a combination of two mechanisms: 1) electropores are

created and 2) as pores appear, molecules are rapidly moved through the pores

by electrophoresis and/or electroosmosis due to the local field.

Electroporation of skin could have significance for drug delivery, having been

shown to cause transdermal flux increases up to four orders of magnitude which

are largely or fully reversible, possibly involving transient structural changes in

the intercellular lipid bilayers of the stratum corneum [Prausnitz et al., 1993a;

Prausnitz et al., in press, a]. This study focuses on the rapid kinetics of

transdermal transport by electroporation, which may allow rapid onset of

21 These results have also been reported in [Prausnitz et al., submitted, c].
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therapeutic action and/or complex drug delivery profiles during transdermal drug

delivery.

13.2 Results

13.2.1 Time Scale Of Transport

Transdermal transport by electroporation of calcein across human epidermis

was continuously measured (Figure 13-1). Figure 13-1A shows calcein flux

versus time due to pulsing at three different voltages at the same pulse rate (1

pulse per minute, ppm) for 1 h. At each voltage, flux reached a steady state

within minutes and then decreased below background levels within seconds after

pulsing stopped.

At first, the curves in Figure 13-1 A may appear to contain a lot of noise.

However, the same data shown with an expanded time axis in Figure 13-1 B,

indicates that flux varied with a regular period of approximately 1 peak per

minute. This is the same rate at which pulses were applied. Our interpretation is

that these variations show the effects on transport of individual pulses. This is

also supported by results seen during pulsing at other rates (data not shown).

After each pulse, the flux initially increased, but then decayed as the effects of

the pulse decreased. Although the time over which the flux decayed after each

pulse appears to be tens of seconds, it may be shorter, as discussed previously

[Pliquett et al., submitted].

Figure 13-1C shows this data replotted as cumulative calcein transported.

From the graph, steady-state lag times (the characteristic time for flux to reach

steady state) can be calculated by extending the linear portion of the graph to the

time axis. The intercept is the steady-state lag time, determined to be

approximately 10 min, independent of voltage. Figure 13-1 D, which shows the
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Fig. 13-1A. Time profiles of transdermal transport of calcein due to

electroporation at different voltages. Transdermal flux due to pulsing at 1 pulse

per minute (ppm) for 1 h: 270 V (solid line), 135 V (dashed line), 115 V (dotted

line) (Data from [Pliquett et al., submitted, b]). This graph demonstrates that

transdermal flux was rapidly responsive to electrical conditions, over

characteristic times of seconds to minutes (see Table 13-1).
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Fig. 13-1 B. Time profiles of transdermal transport of calcein due to

electroporation at different voltages. This figure contains data in Fig. 13-1 A

replotted with the time axis expanded.
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Fig. 13-1C. Time profiles of transdermal transport of calcein due to

electroporation at different voltages. This figures contains data from Fig. 13-1 A

replotted as cumulative calcein transported, for calculation of steady-state lag

times, indicated by the time-axis intercept.
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Fig. 13-1 D. Time profiles of transdermal transport of calcein due to

electroporation at different voltages. This figure contains data in Fig. 13-1 C

replotted with the time axis expanded, to show transport onset time.
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same data with an expanded time axis, indicates that the onset time for transport

was 3 min, independent of voltage: pulsing was started at 3 min and the first

detectable transdermal transport was measured at 6 min.

13.2.2 Empirical Characterization Of Flux Vs. Time Profiles

Data similar to that of Figure 13-1 have been collected over a range of pulsing

conditions by Pliquett and Weaver [submitted, b]. Characteristic values

describing these data are summarized in Table 13-1. They indicate that while

flux depended on both pulse voltage and pulse rate, the steady-state lag time

and onset time depended only on pulse rate. Decay time was independent of

both pulse voltage and pulse rate.

Using the data in Table 13-1, flux as a function of time was empirically fit

using the following equations:

J J ,[1 ~-(t -T)]
J = Jss -e (1)

Jss = k V R (2)

I = k2 (3)
R

T = k3 (4)
R

where J = calcein flux (g/cm 2h), Jss = steady-state calcein flux (g/cm 2h), t =

time (min), T = onset time (min), = steady-state lag time (min), V = pulse

voltage (V), R = pulse rate (ppm), and k1, k2 , and k3, are empirical constants

equal to 8 x 10 -4 gg/(cm 2 hVppm), 10, and 4 respectively.
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Pulse voltage Pulse rate Steady-state Steady-state
(V) (ppm) flux (g/cm 2hr) lag time (min)

63 1 0.055 13
63 3 0.074
63 6 0.11
63 12 0.14

86 1 0.073 10
86 3 0.13
86 6 0.25
86 12 0.49

134 1 0.16 12
134 3 0.30
134 6 0.47
134 12 0.74

191 1 0.1 11
191 3 0.43 5
191 6 1.1 3
191 12 2.1 2

231 1 0.24 11
231 3 0.64 6
231 6 1
231 12 1

Table 13-1. Characteristic values of transdermal transport of calcein due to

electroporation. These data have been obtained and summarized from [Pliquett

et al, submitted, b]. Each data point is the average of 1 - 2 experimental values,

including results from a total of 15 different skin samples. Steady-state lag time

(the characteristic time for flux to reach steady state) corresponds to the time-

axis intercept of graphs of cumulative calcein transported versus time (see Fig.

13-1C). Onset time, which indicates the time at which an increased flux was first

measured (see Fig 13-1 D), generally corresponded to the time required to give 3

- 5 pulses (e.g., 3 - 5 min for 1 ppm or 15 - 25 s for 12 ppm). Decay time, which

corresponds to the characteristic time over which flux decayed after pulsing was

stopped, was < 10 s under all conditions investigated (determined by fitting to an

exponential decay).
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The three empirical constants were determined using the data in Table 13-1.

To calculate kl, steady-state flux was plotted versus the product of pulse voltage

'time pulse rate and a least-squares linear regression was performed (correlation

constant, r2 = 0.83) yielding a slope equal to k1. Similarly, k2 equaled the slope

of a linear fit of steady-state lag time versus the inverse of pulse rate (r2 = 0.95).

Average onset time corresponded to the time required to give 4 pulses, which

determined the value for k3.

The form of these flux equations does not yet have a mechanistic basis.

Instead, their form was suggested by (a) the shape of the curves (see Figure 13-

1), which appear to exponentially approach a steady-state value after an onset

time (eq. 1), and (b) the observation that steady-state flux appeared to be

proportional to pulse rate and voltage (eq. 2), while lag time (eq. 3) and onset

time (eq. 4) appeared to be inversely proportional to pulse rate (see Table 13-1).

The flux equations can predict the time profile of transdermal flux for a given

pulse rate and voltage. Similarly, pulsing parameters can be determined for a

desired delivery schedule. However, these equations are only valid under the

conditions of this study and only over a limited range of electrical parameters.

IGiven the large variability in flux across different skin samples from different

donors, these equations should only be used in their present form for order of

magnitude estimates.

13.2.3 Rapid Temporal Control Of Transport

Figures 13-2 and 13-3 show how the rapidly responsive behavior of

transdermal drug delivery by electroporation can be used to achieve desired

delivery profiles. For example, continuous low-level delivery of a drug with

intermittent boluses may be a desirable delivery schedule for some drugs. To



236

U.>

0.25

E
0.2

X 0.15

· -..4 0.1

U4 0.05

0
0 60 120 180

Time (min)

Fig. 13-2A. Complex delivery profiles using transdermal delivery by

electroporation: continuous low-level delivery with intermittent boluses. Low-

level delivery corresponded to continuous dc iontophoresis at 14 gA/cm2.

Boluses corresponded to pulsing at 115 V and 12 ppm for 5 min, each separated

by 55 min of iontophoresis.
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Fig. 13-2B. Complex delivery profiles using transdermal delivery by

electroporation: a complex delivery schedule achieved by changing pulse

voltage. Pulse rate was held constant at 1 ppm, while pulse voltage was

changed in the following sequence: 270 V for 30 min, 115 V for 60 min, 165 V for

15 min, 0 V for 30 min, 135 V for 60 min, 0 V for 5 min.
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Fig. 13-3. More-rapid attainment of steady-state flux using a time-varying pulse

protocol. Reaching steady state within approximately 1 min, transdermal flux is

shown due to pulsing at 165 V initially at 12 ppm (15 s) to "prime the pump,"

followed by pulsing at 1 ppm (40 min) to maintain the desired steady-state flux.
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achieve this type of delivery, iontophoresis was applied to supply baseline

delivery, while electroporation pulses provided rapid boluses (Figure 13-2A). A

more complex delivery profile is shown in Figure 13-2B. In these figures,

changes in delivery rates were achieved by changing pulse voltage. However,

changes in pulse rate can also achieve similar results (data not shown). Using

the time-invariant pulsing protocols shown above, steady-state transport was

achieved within minutes, depending on pulse rate used (e.g., Table 13-1).

However, we wanted to determine whether steady state could be reached more

quickly by further improving the pulsing protocol. For this reason, an initial series

of three pulses were applied more rapidly (12 ppm), to "prime the pump,"

followed by less rapid pulsing (1 ppm) to provide the desired steady-state flux.

The result is shown in Figure 13-3, where steady state was achieved within

approximately 1 min.

13.3 Discussion

It has been previously demonstrated that electroporation of skin can cause

reversible transdermal flux increases up to four orders of magnitude, which

appear to involve transient structural changes within the stratum corneum

[Prausnitz et al., 1993a; Prausnitz et al., in press, a]. The present study shows

that during skin electroporation, steady-state lag times and onset times of

minutes can be achieved, indicating rapid temporal control of transport. In

contrast, steady-state lag times associated with other methods of transdermal

transport are often hours to days [Bronaugh and Maibach, 1989; Hadgraft and

Guy, 1989].

Flux versus time profiles were characterized by a simple set of empirical

equations, which could be used to (a) predict delivery profiles under a given set
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of electroporation conditions and (b) select the pulsing conditions required to

achieve a desired delivery schedule. While these equations have been

determined only with limited data, additional characterization could yield

equations which are more broadly applicable.

Examples of how specialized delivery profiles can be created using the rapid

temporal control of electroporation are shown in Figures 13-2 and 13-3.

Sequential application of different sets of pulsing conditions allowed creation of

complex delivery profiles, limited by temporal control not faster than minutes.

Better understanding of skin electroporation and further optimization of pulsing

protocols may lead to still more rapid control of transport.

13.4 Conclusions

Many unresolved issues must be addressed before transdermal drug delivery

by electroporation finds clinical application. However, an ability to increase

transdermal transport by orders of magnitude with lag times of only minutes may

be significant. Rapid onset of therapeutic action and/or complex drug delivery

profiles could be achieved, where delivery rates could be swiftly adjusted by

medical personnel, patients, or a microprocessor either (a) controlled by

preprogrammed schedules or (b) interfaced with sensors for automatic feedback.
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CONCLUSIONS

14 Conclusions

14.1 Cell Electroporation

Most applications of electroporation have the common goal of transporting

useful numbers of molecules across cell membranes. However, few studies have

measured the actual number of molecules transported, making efforts to advance

both applications and basic modeling difficult. Here, flow cytometry has been

used because of its quantitative nature at the single cell level, to conduct a

systematic study of the effects of electric and other parameters on molecular

transport due to electroporation, considering pulse field strength, pulse length,

pulse rate, number of pulses, temperature, molecule size and charge, molecule-

membrane interactions, and the time scale of transport.

While the quantitative characterization of transport performed in this thesis

should serve as an important guide to both applications and modeling, this study

yielded two particular results which may provide deeper insight into mechanisms

of transport. First, uptake was found to plateau at high field strength. However,

this was not necessarily an absolute maximum in transport. Instead, it

represented the maximum effect of increasing field strength, for a particular pulse

protocol. Second, maximum uptake under any conditions used here

corresponded to approximately one fourth of apparent equilibrium with the

external solution. These results constrain mechanisms and are probably a

consequence of the complex, interactive behavior of the dynamic pore population

associated with electroporation.

Although the early literature often assumed that transport due to

electroporation occurred by post-pulse diffusion through long-lived electropores,
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more recent studies suggested that electrically-driven transport during the pulse

may be dominant (see Chapter 9). However, electroporation transport kinetics

had only been measured on time scales at least an order of magnitude longer

than that of the pulse, making it difficult to compare transport rates during and

after the pulse. To determine the time scale of transport and the mechanism(s)

by which it occurred, we measured transport with sub-millisecond time resolution

during and after electroporation pulses of a few milliseconds duration. We found

that under some conditions transport occurred predominantly by electrophoresis

and/or electroosmosis during a pulse, while under other conditions transport

occurred in part or almost completely by diffusion within seconds after a pulse.

The short time resolution of these studies should make them especially useful for

developing models of electroporation transport.

Because pore formation is a heterogeneous, time-dependent, and highly

nonlinear phenomenon, understanding mechanisms of transport through a

population of electropores is challenging. This thesis provides (a) a systematic

study of the absolute number of molecules transported over a range of

electroporation conditions and (b) measurements of electroporation transport with

time resolution shorter than that of the pulse. These results give insight into

mechanisms and form a basis for future study, where the present challenges lie

in developing a theoretical framework which can fully explain the experimental

findings.

14.2 Tissue Electroporation

Our study of tissue electroporation was motivated primarily by potential

applications in transdermal drug delivery. Although electroporation of cells within

tissue has received limited attention, electroporation of the multilamellar,
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intercellular, nonphospholipid bilayers of the skin has not been investigated

previously. We wanted to determine (a) whether electroporation occurs in skin

and (b) if so, whether the associated transport occurs at levels useful for

transdermal drug delivery or other applications.

Our measurements suggest that electroporation occurs in the skin by a

mechanism involving transient structural changes in the intercellular lipid bilayers

of the stratum corneum. Flux increases up to four orders of magnitude have

been observed with human skin in vitro for three molecules having charges

between -1 and -4 and molecular masses up to 1000 Da. Similar flux increases

have been observed in vivo with hairless rat skin. The area fraction of skin

available to transport during electroporation was determined to be up to 0.1 %.

Skin electroporation was also theoretically characterized, indicating that changes

in transport due to electroporation of lipid bilayers within the stratum corneum

were consistent the observed results.

Electroporation-mediated transport is rapidly responsive to changes in

electrical conditions, where (a) skin transport properties change over a time scale

of microseconds or faster and (b) steady-state transdermal flux can be achieved

on a time scale of minutes. Thus, the ability of electroporation to achieve both

dramatic flux enhancement and short lag times could make possible transdermal

delivery of many drugs at therapeutic rates.

Having demonstrated that electroporation appears to occur in skin and that

rates of transport are at levels useful for some applications of transdermal drug

delivery, challenges for future research lie primarily in two areas. First, a deeper

understanding is required of skin structural alterations responsible for the

observed changes in electrical and transport properties and whether they might

allow transport of macromolecules. Assessment of other skin properties could be
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employed, as assessed by various forms of spectroscopy, microscopy, and

molecular indicator probes. Moreover, the transition region between 1 V and

100 V across the skin should be more fully studied to identify differences

between conventional iontophoresis and skin electroporation. Experimental

studies should be guided by further theoretical treatment.

The second area concerns medical applications. Although electrical and

transport measurements suggest that changes in stratum corneum barrier

properties due to electroporation are largely or fully reversible, consequences in

viable tissues have not been studied. Electroporation of living cells in the

epidermis, dermis and deeper tissues, and any subsequent damage, should be

considered. Also, possible stimulation of nerves which can lead to unpleasant

sensation and/or muscle stimulation should be addressed. Because these

effects will be strongly affected by electric field properties and distribution within

the skin, careful design of electrodes and pulsing protocols will be essential to the

reduction of unwanted side-effects and to the eventual utility of skin

electroporation in a clinical setting.



245

References

Abidor, . G., V. B. Arakelyan, L. V. Chernomordik, Y. A. Chizmadzhev, V. F.
Pastushenko and M. R. Tarasevich (1979) Electric breakdown of bilayer
membranes: I. The main experimental facts and their qualitative discussion.
Bioelectrochem. Bioenerget. 6:37-52.

Abidor, . G. and A. E. Sowers (1992) Kinetics and mechanism of cell membrane
electrofusion. Biophys. J. 61:1557-1569.

,Abramson, H. A. (1941) Skin reactions. X. Preseasonal treatment of hay fever by
electrophoresis of ragweed pollen extracts into the skin: preliminary report. J.
Allergy 12:169-175.

,Abramson, H. A. and M. H. Gorin (1940) Skin reactions. IX. The electrophoretic
demonstration of the patent pores of the living human skin; its relation to the
charge of the skin. J. Phys. Chem. 44:1094-1102.

Antich, T. J. (1982) Phonophoresis: the principles of the ultrasonic driving force
and efficacy in treatment of common orthopaedic diagnoses. J. Orthop.
Sports Phys. Ther. 4:99-102.

Arvidsson, S. B., R. H. Ekroth, A. M. C. Hansby, A. H. Lindholm and G. William-
Olsson (1984) Painless venipuncture. A clinical trial of iontophoresis of
lidocaine for venipuncture in blood donors. Acta Anaesthesiol. Scand. 28:209-
210.

Atkins, P. W. (1986) Physical Chemistry. W. H. Freeman and Co., New York.

Auer, D., G. Brandner and W. Bodemer (1976) Dielectric breakdown of the red
blood cell membrane and uptake of SV 40 DNA and mammalian cell RNA.
Naturwiss. 63:391.

IBagniefski, T. and R. R. Burnette (1990) A comparison of pulsed and continuous
current iontophoresis. J. Controlled Release 11:113-122.

iBanga, A. K. and Y. W. Chien (1988) lontophoretic delivery of drugs:
fundamentals, developments and biomedical applications. J. Controlled
Release 7:1-24.

IBarnett, A. and J. C. Weaver (1991) A unified, quantitative theory of reversible
electrical breakdown and rupture. Bioelectrochem. and Bioenerg. 25:163-182.

Bartoletti, D. C., G. . Harrison and J. C. Weaver (1989) The number of molecules
taken up by electroporated cells: quantitative determination. FEBS Lett.
256:4-10.



246

Bazile, D., L. M. Mir and C. Paoletti (1989) Voltage-dependent introduction of a

d[a]octothymidylate into electropermeabilized cells. Biochem Biophys Res
Commun 159:633-639.

Belehradek, J., S. Orlowski, B. Poddevin, C. Paoletti and L. M. Mir (1991)
Electrochemotherapy of spontaneous mammary tumors in mice. Eur. J.
Cancer 27:73-76.

Belehradek, J., S. Orlowski, L. H. Ramirez, G. Pron, B. Poddevin and L. M. Mir
(1994) Electropermeabilization of cells in tissues assessed by the qualitative
and quantitative electroloading of bleomycin. Biochim. Biophys. Acta
1190:155-163.

Belehradek, M., C. Domenge, B. Luboinski, S. Orlowski, J. Belehradek and L. M.
Mir (1993) Electrochemotherapy, a new antitumor treatment. Cancer 72:3694-
3700.

Bell, R. P. (1945) A problem of heat conduction with spherical symmetry.
Proceedings of the Physical Society London 57:45-48.

Benson, H. A. E., J. C. McElnay, R. Harland and R. Hadgraft (1991) Influence of
ultrasound on the percutaneous absorption of nicotinate esters. Pharm. Res.
8:204-209.

Benz, R. and U. Zimmermann (1980) Relaxation studies on cell membranes and
lipid bilayers in the high electric field range. Bioelectrochem. and Bioenerg.
7:723-739.

Benz, R. F., F. Beckers and U. Zimmermann (1979) Reversible electrical
breakdown of lipid bilayer membranes: a charge-pulse relaxation study. J.
Membrane Bio. 48:181-204.

Berglund, D. L. and J. R. Starkey (1991) Introduction of antibody into viable cells
using electroporation. Cytometry 12:64-67.

Bliss, J. G., G. . Harrison, J. R. Mourant, K. T. Powell and J. C. Weaver (1988)
Electroporation: the population distribution of macromolecular uptake and
shape changes in red blood cells following a single 50 s square wave pulse.
Bioelectrochem. Bioenerg. 20:57-71.

Bockris, J. O. and A. K. N. Reddy (1970) Modern Electrochemistry. Plenum
Press, New York.

Bodde, H. E., M. A. M. Kruithof, J. Brussee and H. K. Koerten (1989)
Visualisation of normal and enhanced HgCI2 transport through human skin in
vitro. Int. J. Pharm. 53:13-24.



247

Bodde, H. E., I. van den Brink, H. K. Koerten and F. H. N. de Haan (1991)
Visualization of in vitro percutaneous penetration of mercuric chloride;
transport through intercellular space versus cellular uptake through
desmosomes. J. Controlled Release 15:227-236.

Bommannan, D., L. Leung, J. Tamada, J. Sharifi, W. Abraham and R. Potts
(1993) Transdermal delivery of luteinizing hormone releasing hormone:
comparison between electroporation and iontophoresis in vitro. Proceed.
Intern. Symp. Control. Rel. Bioact. Mater. 20:97-98.

Bommannan, D., G. K. Menon, H. Okuyama, P. M. Elias and R. H. Guy (1991a)
Sonophoresis: II. Examination of the mechanism(s) of ultrasound-enhancer
transdermal drug delivery. Pharm. Res. 9:1043-1047.

IBommannan, D., H. Okuyama, P. Stauffer and R. H. Guy (1991 b) Sonophoresis:
I. The use of ultrasound to enhance transdermal drug delivery. Pharm. Res.
9:559-564.

Bommannan, D., J. Tamada, L. Leung and R. O. Potts (submitted) Effect of
electroporation on transdermal iontophoretic delivery of luteinizing hormone
releasing hormone (LHRH) in vitro.

Bose, V. G. (1994) Electrical Characterization of Electroporation of Human
Stratum Corneum. M. S. thesis, Massachusetts Institute of Technology,
Cambridge, MA.

Bouwstra, J. A., M. A. d. Vries, G. S. Gooris, W. Bras, J. Brussee and M. Ponec
(1991) Thermodynamic and structural aspects of the skin barrier. J.
Controlled Release 15:209-220.

Brenner, H. and D. A. Edwards (1993) Macrotransport Processes. Butterworth-
Heinemann, Boston.

Bronaugh, R. L. and H. . Maibach, eds. (1989) Percutaneous Absorption,
Mechanisms -- Methodology -- Drug Delivery. Marcel Dekker, New York.

Brown, R. E., D. C. Bartoletti, K. T. Powell, J. G. Bliss, G. . Harrison and J. C.
Weaver (1992) Multiple-pulse electroporation: macromolecule uptake by
intact Saccharomyces cerevisiae. Bioelectrochem. Bioenerget. 28:235-245.

Burnette, R. R. and D. Marrero (1986) Comparison between the iontophoretic
and passive transport of thyrotropin releasing hormone across excised nude
mouse skin. J. Pharm. Sci. 75:738-743.

E3urnette, R. R. and B. Ongpipattanakul (1988) Characterization of the pore
transport properties and tissue alteration of excised human skin during
iontophoresis. J. Pharm. Sci. 77:132-137.



248

Campbell, S. D., K. K. Kranino, E. G. Schibli and S. T. Momii (1977) Hydration
characteristics and electrical resistivity of stratum corneum using a
noninvasive four-point microelectrode method. J. Invest. Dermatol. 89:290-
296.

Casabiance-Pignede, M. R., L. M. Mir, J. B. Le Pecq and A. Jacquemin-Sablon
(1991) Protection against ricin conferred by the introduction of antiricin
antibodies into chinese hamster cells by electropermeabilization. J. Cell
Pharmacol. 2:27-33.

Chakrabarti, R., D. E. Wylie and S. M. Schuster (1989) Transfer of monoclonal
antibodies into mammalian cells by electroporation. J. Biol. Chem. 264:15494-
15500.

Champion, R. H., J. L. Burton and F. J. G. Ebling, eds. (1992) Textbook of
Dermatology. Blackwell Scientific, London.

Chang, D. C., B. M. Chassy, J. A. SaundE and A. E. Sowers, eds. (1992) Guide
to Electroporation and Electrofusion. Academic Press, New York.

Chang, D. C. and T. S. Reese (1990) Changes in membrane structure induced
by electroporation as revealed by rapid-freezing electron microscopy.
Biophys. J. 58:1-12.

Chang, K.-P. and R. S. Bray, eds. (1985) Leishmaniasis. Elsevier, New York.

Chernomordik, L. V., S. . Sukharev, . G. Abidor and Y. A. Chizmadzhev (1983)
Breakdown of lipid bilayer membranes in an electric field. Biochim. Biophys.
Acta 736:203-213.

Chernomordik, L. V., S. . Sukharev, S. V. Popov, V. F. Pastushenko, A. V.
Sokirko, . G. Abidor and Y. A. Chizmadzhev (1987) The electrical breakdown
of cell and lipid membranes: the similarity of phenomenologies. Biochim.
Biophys. Acta 360-373.

Chien, Y. W., ed. (1991) Novel Drug Delivery Systems: Fundamentals,
Developmental Concepts, Biomedical Assessments. Marcel Dekker, New
York.

Chien, Y. W. and A. K. Banga (1989) lontophoretic (transdermal) delivery of
drugs: overview of historical development. J. Pharm. Sci. 78:353-354.

Chien, Y. W., O. Siddiqui, Y. Sun, W. M. Shi and J. C. Liu (1987) Transdermal
iontophoretic delivery of therapeutic peptides/proteins. Ann. N. Y. Acad. Sci.
507:32-51.



249

Chizmadzhev, Y. A., V. G. Zarnytsin, J. C. Weaver and R. O. Potts (submitted)
Mechanism of electroinduced ionic species transport through a multilamellar
lipid system.

Corbett, J. D. and D. E. Golan (1993) Band 3 and glycophorin are progressively
aggregated in density-fractionated sickle and normal red blood cells:
evidence from rotational and lateral mobility studies. J. Clin. Invest. 91:208-
217.

Coster, H. G. L. and U. Zimmermann (1975) The mechanism of electrical
breakdown in the membranes of Valonia utricularis. J. Membrane Biol. 22:73-
90.

Crank, J. (1975) The Mathematics of Diffusion. Clarendon Press, Oxford.

Cullander, C. (1992) What are the pathways of iontophoretic current flow through
mammalian skin? Adv. Drug Deliv. Rev. 9:119-135.

Cullander, C. and R. H. Guy (1992) Transdermal delivery of peptides and
proteins. Adv. Drug Deliv. Rev. 8:291-329.

Deen, W. M. (1987) Hindered transport of large molecules in liquid-filled pores.
AIChE J. 33:1409-1425.

Dekeyser, R. A., B. Claes, R. M. U. De Rycke, M. E. Habets, M. C. Van Montagu
and A. B. Caplan (1990) Transient gene expression in intact and organized
tissues. Plant Cell 2:591-602.

Dev, S. B. and G. A. Hofmann (1994) Electrochemotherapy -- a novel method of
cancer treatment. Cancer Treat. Reviews 20:105-115.

Dimitrov, D. S. and A. E. Sowers (1990) Membrane electroporation -- fast
molecular exchange by electroosmosis. Biochim. Biophys. Acta 1022:381-
392.

Dodge, J. T., C. Mitchell and D. J. Hanahan (1963) The preparation and chemical
characteristics of hemoglobin-free ghosts of human erythrocytes. Arch.
Biochem. Biophys. 100: 119-130.

Duvanel, T., M. Harms and J. Saurat (1988) New technique to perform local
anesthesia: pulsed iontophoresis. Dermatolog 177:30.

Edelberg, R. (1967) Electrical properties of the skin. In Methods in
Psychophysiology. Brown, C. C., ed. Williams & Wilkins, Baltimore, pp. 1-53.

Edwards, D. A. and R. Langer (in press) A linear theory of transdermal transport
phenomena. J. Pharm. Sci.



250

Edwards, D. A., M. R. Prausnitz, R. Langer and J. C. Weaver (submitted)
Analysis of enhanced transdermal transport by skin electroporation.

Elias, P. M. (1988) Structure and function of the stratum corneum permeability
barrier. Drug Develop. Res. 13:97-105.

Elias, P. M. (1991) Epidermal barrier function: intercellular lamellar lipid
structures, origin, composition and metabolism. J. Controlled Release 15:199-
208.

Escande-Geraud, M. L., M. P. Rols, M. A. Dupont, N. Gas and J. Teissie (1988)
Reversible plasma membrane ultrastructural changes correlated with
electropermeabilization in chinese hamster ovary cells. Biochim. Biophys.
Acta 939:247-259.

Fisher, H. B., E. J. List, R. C. Y. Koh, J. Imberger and N. H. Brooks (1979) Mixing
in Inland and Coastal Waters. Academic Press, New York.

Foster, K. R. and H. P. Schwann (1986) Dielectric properties of tissues. In CRC
Handbook of Biological Effects of Electromagnetic Fields. Polk, C. and E.
Postow, eds. CRC Press, Boca Raton. pp. 27-96.

Freeman, S. A., M. A. Wang and J. C. Weaver (in press) Theory of
electroporation of planar membranes: predictions of the aqueous area,
change in capacitance and pore-pore separation. Biophys. J.

Frenkel, J. (1944) On the theory of seismic and seismoelectric phenomena in a
moist soil. J. Phys. U.S.S.R. 8:230-241.

Friend, D. R. (1992) In vitro skin permeation techniques. J. Controlled Release
18:235-248.

Fung, Y. C. B. and S. S. Sabin (1977) Mechanics of pulmonary circulation. In
Cardiovascular Flow Dynamics and Measurements. Hwang, N. H. C. and N.
A. Norman, eds. University Park Press, Baltimore. pp. 665-730.

Furry, J. W. (1985) Preparation, Properties and Applications of Calcein in a
Highly Pure Form. PhD. thesis, Iowa State University, Ames, IA.

Glaser, R. W., S. L. Leikin, L. V. Chernomordik, V. F. Pastushenko and A. I.
Sokirko (1988) Reversible electrical breakdown of lipid bilayers: formation
and evolution of pores. Biochim. Biophys. Acta 940:275-287.

Glogauer, M. and C. A. G. McCulloch (1992) Introduction of large molecules into
viable fibroblasts by electroporation: optimization of loading and identification
of labeled cellular compartments. Exp. Cell Res. 200:227-234.



251

Goldstein, L., eds. (1977) Introduction to Comparative Physiology. Holt, Rinehart
and Winston, New York.

Grasso, R. J., R. Heller, J. C. Cooley and E. M. Haller (1989) Electrofusion of
individual animal cells directly to intact corneal epithelial tissue. Biochim.
Biophys. Acta 980:9-14.

Graziadei, L., P. Burfeind and D. Bar-Sagi (1991) Introduction of unlabeled
proteins into living cells by electroporation and isolation of viable protein-
loaded cells using dextran-fluorescein isothiocyanate as a marker for protein
uptake. Anal. Biochem. 194:198-203.

Grimnes, S. (1984) Pathways of ionic flow through human skin in vivo. Acta
Derm. Venereol. (Stockh) 64:93-98.

Gummer, C. L. (1989) The in vitro evaluation of transdermal delivery. In
Transdermal Drug Delivery: Development Issues and Research Initiatives.
Hadgraft, J. and R. H. Guy, eds. Marcel Dekker, New York. pp. 177-186.

Hadgraft, J. and R. H. Guy, eds. (1989) Transdermal Drug Delivery:
Developmental Issues and Research Initiatives. Marcel Dekker, New York.

Hamilton, R. T. and E. W. Kaler (1990) Akali metal ion transport through thin
bilayers. J. Phys. Chem. 94:2560-2566.

Hashimoto, K., N. Tatsumi and K. Okuda (1989) Introduction of phalloidin labeled
with fluorescein isothiocyanate into living polymorphoneclear leukocytes by
electroporation. J. Biochem. Biophys. Met. 19:143-154.

Heller, R. and R. Gilbert (1992) Development of Cell-Tissue Electrofusion for
Biological Applications. In Guide to Electroporation and Electrofusion. Chang,
D. C., B. M. Chassy, J. A. Saunders and A. E. Sowers, eds. Academic Press,
New York. pp. 393-410.

Heller, R. and R. J. Grasso (1990) Transfer of human membrane surface
components by incorporating human cells into intact animal tissue by cell-
tissue electrofusion in vivo. Biochim. Biophys. Acta 1024:185-188.

Hibino, M., M. Shigemori, H. Itoh, K. Nagayama and K. Kinosita Jr. (1991)
Membrane conductance of an electroporated cell analyzed by
submicrosecond imaging of transmembrane potential. Biophys. J. 59:209-
220.

Hsieh, D. S., ed. (1994) Drug Permeation Enhancement. Marcel Dekker, New
York.

Hui, L. (1994) Electroporative Molecular Uptake by Saccharomyces Cerevisiae.
B.S. thesis, Massachusetts Institute of Technology, Cambridge, MA.



252

Hulsheger, H., H. Potel and E. G. Niemann (1981) Killing of bacteria with electric
pulses of high field strength. Radiat. Environ. Biophys. 20:53-65.

Inada, H., A.-H. Ghanem and W. . Higuchi (1994) Studies on the effects of
applied voltage and duration on human epidermal membrane
alteration/recovery and the resultant effects upon iontophoresis. Pharm. Res.
11:687-697.

Jayaram, S., G. S. P. Castle and A. Margaritis (1992) Kinetics of sterilization of
lactobacillus-brevis cells by the application of high voltage pulses. Biotechnol.
Bioeng. 40:1412-1420.

Kanesada, H. (1990) Anticancer effect of high voltage pulses combined with
concentration dependent anticancer drugs on Lewis lung carcinoma, in vivo.
J. Jpn. Soc. Cancer. Ther. 25:2640-2648.

Kasting, G. B. (1992) Theoretical models for iontophoretic delivery. Adv. Drug
Deliv. Rev. 9:177-199.

Kasting, G. B. and L. A. Bowman (1990) DC electrical properties of frozen,
excised human skin. Pharm. Res. 7:134-143.

Kinosita, K. and T. Y. Tsong (1977a) Formation and resealing of pores of
controlled sizes in human erythrocyte membrane. Nature 268:438-441.

Kinosita, K. and T. Y. Tsong (1977b) Hemolysis of human erythrocytes by a
transient electric field. Proc. Natl. Acad. Sci USA 74:1923-1927.

Kinosita, K., Jr. and T. Y. Tsong (1977c) Voltage-induced pore formation and
hemolysis of human erythrocytes. Biochim. Biophys. Acta 471:227-242.

Klenchin, V. A., S. . Sukharev, S. M. Serov, L. V. Chernomordik and Y. A.
Chizmadzhev (1991) Electrically induced DNA uptake by cells is a fast
process involving DNA electrophoresis. Biophys. J. 60:804-811.

Klotz, K.-H., M. Winterhalter and R. Benz (1993) Use of irreversible electrical
breakdown of lipid bilayers for the study of interaction of membranes with
surface active molecules. Biochim. Biophys. Acta 1147:161-164.

Knight, D. E. and M. C. Scrutton (1986) Gaining access to the cytosol: the
technique and some applications of electropermeabilization. Biochem. J.
234:497-506.

Kost, J. and R. Langer (1993) Ultrasound-mediated transdermal drug delivery. In
Topical Drug Bioavailability, Bioequivalence, and Penetration. Shah, V. P. and
H. . Maibach, eds. Plenum Press, New York. pp. 91-104.



253

Kost, J., D. Levy and R. Langer (1989) Ultrasound as a transdermal enhancer. In
Percutaneous Absorption. Mechanisms -- Methodology -- Drug Delivery.
Bronaugh, R. L. and H. . Maibach, eds. Marcel Dekker, New York. pp. 595-
601.

Kwee, S., H. V. Nielsen and J. E. Celis (1990) Electropermeabilization of human
cultured cells grown in monolayers. Bioelectrochem. Bioenerg. 23:65-80.

IKydonieus, A., ed. (1992) Treatise on Controlled Drug Delivery. Marcel Dekker,
New York.

Lambert, H., R. Pankov, J. Gauthier and R. Hancock (1990) Electroporation-
mediated uptake of proteins into mammalian cells. Biochem. Cell Biol.
68:729-734.

Lampe, M. A., A. L. Burlingame, J. Whitney, M. L. Williams, B. E. Brown, E.
Roitman and P. M. Elias (1983a) Human stratum corneum lipids:
characterization and regional variations. J. Lipid Res. 24:120-130.

Lampe, M. A., M. L. Williams and P. M. Elias (1983b) Human epidermal lipids:
characterization and modulations during differentiation. J. Lipid Res. 24:131-
140.

Lange, Y., A. Gough and T. L. Steck (1982) Role of the bilayer in the shape of
the isolated erythrocyte membrane. J. Membr. Biol. 69:113-23.

Langer, R. (1990) New methods of drug delivery. Science 249:1527-1533.

Lau, B. S., C. D. Milano, M. R. Prausnitz, R. S. Langer and J. C. Weaver (1993)
Quantitative determination of molecular transport across erythrocyte ghost
membranes by electroporation. In Electricity and Magnetism in Biology and
Medicine. Blank, M., ed. San Francisco Press, San Francisco. pp. 141-143.

Ledger, P. W. (1992) Skin biological issues in electrically enhanced transdermal
delivery. Adv. Drug Deliv. Rev. 9:289-307.

Lee, R. C., E. G. Cravalho and J. F. Burke, eds. (1992a) Electrical Trauma: the
Pathophysiology, Manifestations and Clinical Management. Cambridge
University Press, Cambridge.

Lee, R. C., L. P. River, F. Pan, L. Ji and R. L. Wollmann (1992b) Surfactant
induced sealing of electropermeabilized skeletal muscle membranes in vivo.
Proc. Natl. Acad. Sci. USA

Levy, D., J. Kost, Y. Meshulam and R. Langer (1989) Effect of ultrasound on
transdermal drug delivery to rats and guinea pigs. J. Clin. Invest. 83:2074-
2078.



254

Liang, H., W. J. Purucker, D. A. Stenger, R. T. Kubiniec and S. W. Hui (1988)
Uptake of fluorescence-labeled dextrans by 10T 1/2 fibroblasts following
permeation by rectangular and exponential-decay electric field pulses.
Biotechniques 6:550-558.

Lieber, M. R. and T. L. Steck (1982a) A description of the holes in human
erythrocyte membrane ghosts. J. Biol. Chem. 257:11651-11659.

Lieber, M. R. and T. L. Steck (1982b) Dynamics of the holes in human
erythrocyte membrane ghosts. J. Biol. Chem. 257:11660-11666.

Lyderson, A. L. (1955) Estimation of critical properties of organic compounds.
Univ. Wisconsin Coill. Eng., Eng. Exp. Stn. Rep. 3, Madison, WI.

Mak, V. H. W., R. O. Potts and R. H. Guy (1991) Does hydration affect
intercellular lipid organization in the stratum corneum? Pharm. Res. 8:1064-
1065.

Malone, D. M. and J. L. Anderson (1978) Hindered diffusion of particles through
small pores. Chem. Eng. Sci. 33:1429-1444.

Marszalek, P., D.-S. Liu and T. Y. Tsong (1990) Schwan equation and
transmembrane potential induced by alternating electric field. Biophys. J.
58:1053-1058.

Mavrovouniotis, G. M. and H. Brenner (1988) Hindered sedimentation, diffusion
and dispersion coefficients for Brownian spheres in culindrical pores. J.
Colloid Interface Sci. 124:269-283.

Melamed, M. R., T. Lindmo and M. L. Mendelsohn (1990) Flow Cytometry and
Sorting. Wiley-Liss, New York.

Meyer, B. R., W. Kreis, J. Eschbach, V. O'Mara, S. Rosen and D. Sibalis (1990)
Transdermal versus subcutaneous leuprolide: a comparison of acute
pharmacodynamic effect. Clin. Pharmacol. Ther. 48:340-345.

Michel, M. R., M. Eligizoli, H. Koblet and C. Kempf (1988) Diffusion loading
conditions determine recovery of protein synthesis in electroporated P3X63
Ag8 cells. Experientia 44:199-203.

Mir, L. M., H. Banoun and C. Paoletti (1988) Introduction of definite amounts of
nonpermeant molecules into living cells after electropermeabilization: direct
access to the cytosol. Exp. Cell Res. 175:15-25.

Mir, L. M., M. Belehradek, C. Domenge, S. Orlowski, B. Poddevin, J. Belehradek,
G. Schwaab, B. Luboinski and C. Paoletti (1991a) Electrochemotherapy, a
novel antitumor treatment: first clinical trial. C. R. Acad. Sci. (Paris) Ser III
313:613-618.



255

Mir, L. M., S. Orlowski, J. Belehradek and C. Paoletti (1991 b)
Electrochemotherapy: potentiation of antitumor effect of bleomycin by local
electric pulses. Eur. J. Cancer27:68-72.

Mir, L. M., S. Orlowski, B. Poddevin and J. Belehradek (1992a)
Electrochemotherapy tumor treatment is improved by interleukin-2 stimulation
of the host's defenses. Eur. Cytokine Netw. 3:331-334.

Mir, L. M., C. Roth, S. Orlowski, J. Belehradek, F. Fradelizi, C. Paoletti and P.
Kourilsky (1992b) Potentiation of the antitumoral effect of
electrochemotherapy by an immunotherapy with allogenic cells producing
interleukin 2. C. R. Acad. Sci. Paris 314:539-544.

Mishra, K. P. and B. B. Singh (1986) Temperature effects on resealing of
electrically hemolysed rabbit erythrocytes. Indian J. Exp. Biol. 24:737-741.

IMiyazaki, S., H. Mizuoka, M. Oda and M. Takada (1991) External control of drug
release and penetration: enhancement of the transdermal absorption of
indomethacin by ultrasound irradiation. J. Pharm. Pharmacol. 43:115-116.

Monteiro-Riviere, N. A. (1991) Comparative anatomy, physiology, and
biochemistry of mammalian skin. In Dermal and Ocular Toxicology. Hobson,
D. W., ed. CRC Press, Boca Raton, FL. pp. 3-71.

Neumann, E. (1989) The relaxation hysteresis of membrane electroporation. In
Electroporation and Electrofusion in Cell Biology. Neumann, E., A. E. Sowers
and C. A. Jordan, eds. Plenum Press, New York. pp. 61-82.

Neumann, E., A. E. Sowers and C. A. Jordan (1989) Electroporation and
Electrofusion in Cell Biology. Plenum Press, New York.

Neumann, E., E. Werner, A. Sprafke and K. Kruger (1992) Electroporation
phenomena. Electrooptics of plasmid DNA and of lipid bilayer vesicles. In
Colloid and Molecular Electro-Optics 1992. Jennings, B. R. and S. P. Stoylov,
eds. lOP Publishing, Bristol.

Novak, F. J. (1964) Experimental transmission of lidocaine through intact skin by
ultrasound. Arch. Phys. Med. Rehabil. 64:231-232.

O'Neill, R. J. and L. Tung (1991) Cell-attached patch clamp study of the
electropermeabilization of amphibian cardiac cells. Biophys. J. 59:1028-1039

Okino, M. and K. Esato (1990) The effects of a single high voltage electrical
stimulation with an anticancer drug on in vivo growing malignant tumors. Jpn.
J. Surg. 20:197-204.



256

Okino, M., M. Marumoto, H. Kanesada, K. Kuga and H. Mohri (1987) Electrical
impulse chemotherapy for rat solid tumors. Proc. Jpn. Cancer Congress
46:420.

Okino, M. and H. Mohri (1987) Effects of a high voltage electrical impulse and an
anticancer drug on in vivo growing tumors. Jpn. J. Cancer Res. 78:1319-
1321.

Okino, M., H. Tomie, H. Kanesada, M. Marumoto, K. Esato and H. Suzuki (1992)
Optimal electric conditions in electrical impulse chemotherapy. Jpn. J. Cancer
Res. 83:1095-1101.

Okino, M., H. Tomie, H. Kanesada, M. Marumoto, N. Morita, K. Esato and H.
Suzuki (1991) Induction of tumor specific selective toxicity in electrical
impulse chemotherapy -- analysis of dose-response curve. Oncologia 24:71-
79.

Orlowski, S. and L. M. Mir (1993) Cell electropermeabilization: a new tool for
biochemical and pharmacological studies. Biochim. Biophys. Acta 1154:51-
63.

Parsegian, V. A. (1969) Energy of an ion crossing a low dielectric membrane:
solutions to four relevant electrostatic problems. Nature 221:844-846.

Phipps, J. B. and J. R. Gyory (1992) Transdermal ion migration. Adv. Drug Deliv.
Rev. 9:137-176.

Pliquett, U., M. R. Prausnitz, Y. A. Chizmadzhev and J. C. Weaver (submitted)
Measurement of rapid release kinetics for transdermal and other types of drug
delivery.

Pliquett, U. and J. C. Weaver (submitted, a) The change in the passive electrical
properties of human stratum corneum due to electroporation.

Pliquett, U. and J. C. Weaver (submitted, b) Transport of a charged molecule
across the human epidermis due to electroporation.

Poddevin, B., S. Orlowski, J. Belehradek and L. M. Mir (1991) Very high
cytotoxicity of bleomycin introduced into the cytosol of cells in culture.
Biochem Pharmacol 42:S67-S75.

Potts, R. 0. and R. H. Guy (1991) A pore pathway is not necessary to explain
skin permeability. Proceed. Intern. Symp. Control. Rel. Bioact. Mater. 18:

Potts, R. O., R. H. Guy and M. L. Francoeur (1992) Routes of ionic permeability
through mammalian skin. Solid State onics 53-56:165-169.



257

Powell, K. T., A. W. Morgenthaler and J. C. Weaver (1989) Tissue
electroporation: observation of reversible electrical breakdown in viable frog
skin. Biophys. J. 56:1163-1171.

Prausnitz, M. R., V. G. Bose, R. Langer and J. C. Weaver (1992) Transdermal
drug delivery by electroporation. Proceed. Intern. Symp. Control. Rel. Bioact.
Mater. 19:232-233.

Prausnitz, M. R., V. G. Bose, R. Langer and J. C. Weaver (1993a)
Electroporation of mammalian skin: a mechanism to enhance transdermal
drug delivery. Proc. Natl. Acad. Sci. USA 90:10504-10508.

Prausnitz, M. R., V. G. Bose, R. Langer and J. C. Weaver (in press,a)
Electroporation. In Percutaneous Penetration Enhancers. Maibach, H. I. and
E. W. Smithe, eds. CRC Press, Boca Raton, FL.

Prausnitz, M. R., V. G. Bose, R. S. Langer and J. C. Weaver (1993b) Transtissue
molecular transport due to electroporation of skin. In Electricity and
Magnetism in Biology and Medicine. Blank, M., ed. San Francisco Press, San
Francisco. pp. 122-124.

Prausnitz, M. R., V. G. Bose, C. S. Lee, J. C. Pang, R. Langer and J. C. Weaver
(1993c) Effects of electroporation conditions on transdermal delivery.
Proceed. Intern. Symp. Control. Rel. Bioact. Mater. 20:95-96.

Prausnitz, M. R., V. G. Bose, U. Pliquett, C. H. Liu, T. P. Singh, J. A. Gimm, R.
Langer and J. C. Weaver (in press, b) Changes in skin properties due to
electroporation. Proceed. Intern. Symp. Control. Rel. Bioact. Mater..

Prausnitz, M. R., J. D. Corbett, J. A. Gimm, D. E. Golan, R. Langer and J. C.
Weaver (submitted, a) Sub-millisecond measurement of transport during and
after an electroporation pulse.

Prausnitz, M. R., B. S. Lau, C. D. Milano, S. Conner, R. Langer and J. C. Weaver
(1993d) A quantitative study of electroporation showing a plateau in net
molecular transport. Biophys. J. 65:414-422.

Prausnitz, M. R., C. S. Lee, C. H. Liu, J. C. Pang, T.-P. Singh, R. Langer and J.
C. Weaver (submitted, b) Transdermal transport efficiency during skin
electroporation and iontophoresis.

Prausnitz, M. R., C. D. Milano, J. A. Gimm, R. Langer and J. C. Weaver (1994)
Quantitative study of molecular transport due to electroporation: uptake of
bovine serum albumin by erythrocyte ghosts. Biophys. J. 66:1522-1530.

Prausnitz, M. R., U. Pliquett, R. Langer and J. C. Weaver (submitted, c) Rapid
temporal control of transdermal drug delivery by electroporation.



258

Prausnitz, M. R., D. S. Seddick, A. A. Kon, V. G. Bose, S. Frankenburg, S. N.
Klaus, R. Langer and J. C. Weaver (in press, c) Methods for in vivo tissue
electroporation using surface electrodes. Drug Delivery.

Raptis, L. and K. L. Firth (1990) Electroporation of adherent cells in situ. DNA
Cell Biol. 9:615-621.

Reid, R. C., J. M. Prausnitz and T. K. Sherwood (1977) The Properties of Gases
and Liquids. McGraw-Hill, New York.

Reilly, J. P. (1992) Electrical Stimulation and Electropathology. Cambridge
University Press, New York.

Robinson, J. R. and V. H. Lee, eds. (1988) Controlled Drug Delivery:
Fundamentals and Applications. Marcel Dekker, New York.

Rols, M.-P. and J. Teissie (1990) Electropermeabilization of mammalian cells:
quantitative analysis of the phenomenon. Biophys. J. 58:1089-1098.

Rosemberg, Y. and R. Korenstein (1990) Electroporation of the photosynthetic
membrane: a study by intrinsic and external optical probes. Biophys. J.
58:823-832.

Rougier, A., C. Lotte, P. Corcuff and H. . Maibach (1988) Relationship between
skin permeability and corneocyte size according to anatomic site, age, and
sex in man. J. Soc. Cosmet. Chem. 39:15-26.

Rudoy, J., R. Kohan and J. Ben-Ari (1987) Externally applied abdominal vibration
as a method for improving efficiency in peritoneal dialysis. Nephron 46:364-
366.

Sale, A. J. H. and W. A. Hamilton (1967) Effects of high electric fields on
microorganisms. I. Killing of bacteria and yeasts. Biochim. Biophys. Acta
148:781-788.

Sale, A. J. H. and W. A. Hamilton (1968) Effects of high electric fields on
microorganisms. III. Lysis of erythrocytes and protoplasts. Biochim. Biophys.
Acta 163:37-43.

Salford, L. G., B. R. R. Persson, A. Brun, C. P. Ceberg, P. C. Kongstad and L. M.
Mir (1993) A new brain tumour therapy combining bleomycin with in vivo
electropermeabilization. Biochem. Biophys. Res. Com. 194:938-943.

Santus, G. C. and R. W. Baker (1993) Transdermal enhancer patent literature. J.
Controlled Release 25:1-20.

Scheuplein, R. (1978) The skin as a barrier. In The Physiology and
Pathophysiology of the Skin. eds. Plenum, New York.



259

Schwarz, V., C. H. Sutcliffe and P. P. Style (1968) Some hazards of the sweat
test. Arch. Dis. Childh. 43:695-701.

Schwister, K. and B. Deuticke (1985) Formation and properties of aqueous leaks
induced in human erythrocytes by electrical breakdown. Biochim. Biophys.
Acta 816:332-348.

Scott, E. R., A. . Laplaza, H. S. White and J. B. Phipps (1993) Transport of ionic
species in skin: contribution of pores to the overall skin conductance. Pharm.
Res. 10:1699-1709.

Scott, E. R., H. S. White and J. B. Phipps (1992) Direct imaging of ionic pathways
in stratum corneum using scanning electrochemical microscopy. Solid State
lonics 53-56:176-183.

Serpersu, E. H., K. Kinosita and T. Y. Tsong (1985) Reversible and irreversible
modification of erythrocyte membrane permeability by electric field. Biochim.
Biophys. Acta 812:770-785.

Shah, V. P. and H. . Maibach, eds. (1993) Topical Drug Bioavailability,
Bioequivalence, and Penetration. Plenum Press, New York.

Shapiro, H. M. (1988) Practical Flow Cytometry. Alan R. Liss, New York.

Singh, J. and M. S. Roberts (1989) Transdermal delivery of drugs by
iontophoresis: a review. 4:1-12.

Sixou, S. and J. Teissie (1990) Specific electropermeabilization of leucocytes in a
blood sample and application to large volumes of cells. Biochim. Biophys.
Acta 1028:154-160.

Sixou, S. and J. Teissie (1993) Exogenous uptake and release of molecules by
electroloaded cells: a digitized videomicroscopy study. Bioelectrochem.
Bioenerg. 31:237-257.

Sloan, J. B. and K. Soltani (1986) lontophoresis in dermatology. J. Am. Acad.
Dermatol. 15:671-684.

Sloan, K. B., ed. (1992) Prodrugs. Topical and Ocular Drug Delivery. Marcel
Dekker, New York.

Sontag, W. (1980) An automatic microspectrophotometric scanning method for
the measurement of bone formation rates in vivo. Calcif. Tissue Int. 32:63-68.

Sowers, A. E. and M. R. Lieber (1986) Electropore diameters, lifetimes, numbers,
and locations in individual erythrocyte ghosts. FEBS Lett. 205:179-184.



260

Stephens, W. G. S. (1963) The current-voltage relationship in human skin. Med.
Electron. Biol. Eng. 1:389-399.

Sukharev, S. I., A. V. Titomirov and V. A. Klenchin (1994) Electrically-induced
DNA transfer into cells. Electrotransfection in vivo. In Gene Therapeutics:
Methods and Applications of Direct Gene Transfer. Wolff, J. A., ed.
Birkhauser, Boston, pp. 210-232.

Suprynowicz, F. A. and D. Mazia (1985) Fluctuation of the Ca2 + -sequestering
activity of permeabilized sea urchin embryos during the cell cycle. Proc. Natl.
Acad. Sci. USA 82:2389-2393.

Suzuki, H. K. and A. Mathews (1966) Two-color fluorescent labeling of
mineralizing tissues with tetracycline and 2,4-bis[N,N'-di-
(carbomethyl)aminomethyl] fluorescein. Stain Techn. 41:57-60.

Swezey, R. R. and D. Epel (1988) Enzyme stimulation upon fertilization is
revealed in electrically permeabilized sea urchin eggs. Proc. Natl. Acad. Sci.
USA 85:812-816.

Tachibana, K. and S. Tachibana (1991) Transdermal delivery of insulin by
ultrasonic vibration. J. Pharm. Pharmocol. 43:270-271.

Tachibana, K. and S. Tachibana (1993) Use of ultrasound to enhance the local
anesthetic effect of topically applied aqueous lidocaine. Anesthesiology
78:1091-1096.

Taketo, A. (1988) DNA transfection of Escherichia coli by electroporation.
Biochim. Biophys. Acta 949:318-324.

Tekle, E., R. D. Astumian and P. B. Chock (1991) Electroporation by using
bipolar oscillating electric field: an improved method for DNA transfection of
NIH 3T3 cells. Proc. Natl. Acad. Sci. USA 88:4230-4234.

Titomirov, A. V., S. Sukharev and E. Kistanova (1991) In vivo electroporation and
stable transformation of skin cells of newborn mice by plasmid DNA. Biochim.
Biophys. Acta 1088:131-134.

Tojo, K. and A. R. C. Lee (1991) Penetration and bioconversion of drugs in the
skin. J. Chem. Eng. Japan 24:297-301.

Tsong, T. Y. (1991) Electroporation of cell membranes. Biophys. J. 60:297-306.

Tyle, P., ed. (1988) Drug Delivery Devices: Fundamentals and Applications.
Marcel Dekker, New York.



261

Tyle, P. and P. Agrawala (1989) Drug delivery by phonophoresis. Pharm. Res.
6:355-361.

Wagner, J. G. (1975) Fundamentals of clinical pharmacokinetics. Drug
Intelligence Publications, Hamilton, IL.

Wang, M., S. Freeman, V. Bose, S. Dyer and J. C. Weaver (1993) Theoretical
modeling of electroporation: electrical behavior and molecular transport. In
Electricity and Magnetism in Biology and Medicine. Blank, M., ed. San
Francisco Press, San Francisco. pp. 138-140.

Weast, R. C., ed. (1985) CRC Handbook of Chemistry and Physics. CRC Press,
Boca Raton, FL.

Weaver, J. C. (1993a) Electroporation: a dramatic nonthermal electric field
phenomenon. In Electricity and Magnetism in Biology and Medinine. Blank,
M., ed. San Francisco Press, San Francisco. pp. 95-100.

Weaver, J. C. (1993b) Electroporation: a general phenomenon for manipulating
cells and tissues. J. Cell. Biochem. 51:426-435.

Weaver, J. C. and A. Barnett (1992) Progress towards a theoretical model for
electroporation mechanism: membrane electrical behavior and molecular
transport. In Guide to Electroporation and Electrofusion. Chang, D. C., B. M.
Chassy, J. A. Saunders and A. E. Sowers, eds. Academic Press, New York.
pp. 91-118.

Weaver, J. C., G. . Harrison, J. G. Bliss, J. R. Mourant and K. T. Powell (1988)
Electroporation: high frequency of occurrence of a transient high-permeability
state in erythrocytes and intact yeast. FEBS Lett. 229:30-34.

'Webster, J. G., ed. (1988) Encyclopedia of Medical Devices. Wiley, New York.

'Wilson, A. K., J. Horwitz and P. De Lanerolle (1991) Evaluation of the
electroinjection method for introducing proteins into living cells. Am. J.
Physiol. 260:C355-C363.

Xie, T.-D., L. Sun and T. Y. Tsong (1990) Study of mechanisms of electric field-
induced DNA transfection I: DNA entry by surface binding and diffusion
through membrane pores. Biophys. J. 58:13-19.

;Zhelev, D. V. and D. Needham (1993) Tension-stabilized pores in giant vesicles:
determination of pore size and pore line tension. Biochim. Biophys. Acta
1147:89-104.

Zimmermann, U., G. Pilwat and F. Riemann (1975) Preparation of erythrocyte
ghosts by dielectric breakdown of the cell membrane. Biochim. Biophys. Acta
375:209-219.



262

Zimmermann, U., F. Riekmann and G. Pilwat (1976) Enzyme loading of
electrically homogeneous human red blood cell ghosts prepared by dielectric
breakdown. Biochim. Biophys. Acta 436:460-474.

Zlotogorski, A. (1987) lontophoresis in dermatology. J. Am. Acad. Derm. 17:690.



263

,Appendix 1 Red Blood Cell Ghost Preparation 22

A1.1 Protocol Sheet

· Obtain at least 6 ml freshly-drawn whole human blood in a test tube containing
heparin ("green top").

· Put 6 ml of blood in a plastic centrifuge tube (orange cap). Centrifuge in the
IEC Centra-7R centrifuge in E25-344 at 1500 rpm, T = 10 °C for 10 min.

* With a Pasteur pipette, aspirate off the clear phase on top. Remove yellow
"buffy coat" as much as possible. Add 3 ml PBS (isotonic, pH 7.4). Mix gently
by hand. Centrifuge as above (1500 rpm) for 10 min. Repeat two more times.
After final centrifugation and aspiration, do not add PBS.

* Put 1.5 ml cleaned red blood cells (RBC) into each of two round-bottom plastic
centrifuge tubes. Add 30 ml PBS (5 mM saline, pH 8.5). Mix gently by hand.
Let sit on ice for 20 min.

* Centrifuge both samples in Sorvall RC-5B centrifuge with SA-600 rotor in E25-
345 at 8300 rpm, T = 10 °C for 20 min.

For loaded ghosts:

* With Pasteur pipette, aspirate off pink phase on top of each sample.
Add 2 ml of fluorescent molecule solution in PBS (5 mM saline, pH 8.5)
to ghost button. Mix gently by hand. Let sit 1 h on ice.

* Add 2 ml fluorescent molecule solution in PBS (40 mM saline, pH 8.5).
Mix gently by hand. Let sit for 2 h at room temperature.

* Centrifuge in Sorvall RC-5B centrifuge with SA-600 rotor in E25-345 at
8300 rpm, T = 10 °C for 20 min.

* With Pasteur pipette, aspirate off pink phase on top of each sample. Add 2 ml
PBS (20 mM saline, pH 8.5) to ghost button. Mix gently by hand. Centrifuge
as above (8300 rpm) for 20 min. Repeat two more times.

* Transfer cleaned RBC ghosts to microcentrifuge tubes (1.5 ml) with adjustable
pipetter. Add PBS (20 mM saline, pH 8.5) almost to rim of tubes. Mix gently
by hand. Centrifuge in Biofuge A at 10700 rpm, room temperature for 20 min.

Remove top phase and store ghosts in tubes in the refrigerator until needed.

22 This section supplements Section 4.1.2
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Solutions needed:

PBS (isotonic, pH 7.4) -- Prepare from Dulbecco's packet. Follow directions on
box. Adjust pH after filtration to 7.4 (isotonic = 150 mM).

PBS (5 mM saline, pH 8.5) -- 0.0325 ml isotonic PBS/ml to make 5 mM PBS (i.e.,
add 16.25 ml isotonic PBS to 484 ml Dl water. Filter. Adjust pH to 8.5.)

PBS (20 mM saline, pH 8.5) -- 0.13 ml isotonic PBS/ml to make 20 mM PBS (i.e.,
add 65 ml isotonic PBS to 435 ml DI water. Filter. Adjust pH to 8.5.)

PBS (40 mM saline, pH 8.5) -- 0.26 ml isotonic PBS/ml to make 40 mM PBS (i.e.,
add 130 ml isotonic PBS to 370 ml DI water. Filter. Adjust pH to 8.5.)

le-5 M coumarinamino-dextran (70 kDa) in PBS (5 mM saline, pH 8.5) -- 0.712
mg/ml (i.e., add 1.424 g coumarinamino-dextran to 2 ml PBS. Mix well until all

dissolved. Transfer with adjustable pipetter to syringe. Push through 0.2 m
filter.)

le-5 M coumarinamino-dextran (70 kDa) in PBS (40 mM saline, pH 8.5) -- 0.712
mg/ml (i.e., add 1.424 g coumarinamino-dextran to 2 ml PBS. Mix well until all

dissolved. Transfer with adjustable pipetter to syringe. Push through 0.2 ,um
filter.)
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Appendix 2 Red Blood Cell Ghost Electroporation23

A2.1 Protocol Sheet

Materials

* labeled and/or unlabeled cleaned red blood cell ghosts

* PBS (20 mM, pH 8.5)

* 1 e-5 M labeled dextran or lactalbumin or bovine serum albumin or 1 e-4 M
calcein in PBS (20 mM, pH 8.5).

· 1 e6/ml FITC-equivalent reference beads in PBS (20 mM, pH 8.5)

· Gene Pulser or BTX electroporator, 5 Q safety resistor box, and 0.2 cm
cuvettes.

· Orbitron shaker, vortexer, Biofuge A microcentrifuge, bucket of ice, DI water
squirt bottle, Pasteur pipettes and bulbs, adjustable pipetters and tips, syringes
and 0.2 gm filter tips.

Preparation of Solutions

· Weigh out needed amount of fluorescent molecule and put into centrifuge tube.
Add needed amount of PBS and mix in vortexer. Put on orbitron shaker until
completely dissolved.

· Pour solution into syringe with 0.2 gm filter on tip. Push solution through into a
new centrifuge tube. Vortex.

· Add RBC ghosts in 1:1000 ratio (i.e., 1 pl ghosts per 1 ml solution). Mix gently
by hand and put on ice until needed for experiment.

Running the Experiment

· Put 0.4 ml of sample into pulser cuvette, using adjustable pipetter. Make sure
there are no bubbles on top of the solution. Load cuvette into pulser and apply
pulse(s) with desired parameters [i.e., 1 kV (5 kV/cm), 0.25 F ( = 1 ms)].
Listen for arcing.

23 This section supplements Section 4.1.3
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* Quickly remove cuvette and empty contents into microcentrifuge tube, without
spilling. Let sample sit on ice for 5 min after the pulse. Then add 0.4 ml of
PBS (20 mM, pH 8.5), mix gently by hand, and spin sample in Biofuge A
microcentrifuge at 7200 rpm (4500 g) for 3 min.

* Carefully remove sample from microcentrifuge and still more carefully remove
and discard supernatant from tube with a Pasteur pipette, leaving behind the
often invisible ghost pellet. It is better to leave a little of the supernatant behind
that it is to suck up and throw away the sample.

* Add 0.8 ml PBS (20 mM, pH 8.5), mix by hand, and spin sample in the Biofuge
A microcentrifuge at 7200 rpm (4500 g) for 3 min.

* Remove supernatant again, as above, and add 0.8 ml of FITC-equivalent
reference beads in PBS (20 mM, pH 8.5) to ghost pellet. Mix by hand and
store sample on ice until ready for flow cytometry analysis.

* Clean out cuvette with DI water squirt bottle, dry off outside electrode contacts,
and load in another sample. Do not use cuvettes more than 5 - 10 times each.
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Appendix 3. Flow Cytometry 2 4

A3.1 Flow Cytometer Set-Up

A FACStar Plus flow cytometer was used to collect data. The Epics flow

cytometer at the Cell Sorter Facility did not appear to be sensitive enough to

,detect ghosts by light scatter. Typically, 20,000 events were collected from each

sample. Forward scatter (manual amplification set to "fully noisy," digital setting

on "LO"), side scatter (manual amplification set to "fully quiet," digital setting on

"LO" and -375), and fluorescence (excitation = 488 nm, emission = 530 nm band

pass; manual amplification set to "fully quiet," digital setting on "LO" and -510)

were collected. The laser was set to 50 mW. No neutral density filter was used.

'When red fluorescence (i.e., Texas Red) was needed, the dye laser was set to

610 nm (setting = 5.715).

A side scatter (SS) trigger was found to be best, where the threshold was set

at -310 and a gate at -380 was used as the final collection threshold. An artifact

of the system made the use of a collection window work properly, whereas simply

setting a threshold did not. To set up, generally a few samples representing

extreme conditions (i.e., unpulsed controls, samples pulsed at high voltage) were

initially run. Using SS histograms, the SS of unpulsed ghosts was noted. Then,

using samples pulsed at high voltage, or other conditions which might destroy

ghosts, SS histograms usually showed many events at SS values lower than

control ghosts. These low SS events were interpreted as debris from destroyed

!ghosts. A threshold gate was set at a SS between the control ghosts and the

debris (usually - 380). This allowed collection only of apparently intact ghosts.

24 This section supplements Section 4.1.4 and 4.1.5
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A3.2 Data Analysis Protocol Sheet

* Print contour plots (i.e., 14FEB001.FCS) using the DISP2D program. Put a
window on the beads and any other relevant sub-populations. Include
percent of events within each window on print out (to later calculate
ghost/bead ratio).

* Create edited data files (ED14FEB001.FCS) with beads and any other
undesired populations edited out. Do this by putting a window around the
desired population on a FS vs. FL contour plot (DISP2D) and making edited
files containing the contents of the window.

* Print log-scale fluorescence histograms (ED14FEB001.FCS) of desired cell
populations selected above. Use the DISP2D program. Define the
"electroporation threshold" value (maximum fluorescence of ghosts with no
uptake, i.e., unpulsed controls). Identify any artifacts which should be edited
out (i.e., channels 15 and 31). Include any relevant statistics (i.e., % of
ghosts above electroporation threshold) on print outs.

* Create linear-scale data files (ED14FEB001 .FCC) using CALC4 program
(P3=1 000.A%3/1 000.*1023) (see section A3.4).

* Print linear-scale fluorescence histograms (ED14FEB001.FCC) using DISP4.
Include relevant statistics, especially mean values of ghosts above the
electroporation threshold.

* Enter data into an Excel spreadsheet on the Macintosh. Make graphs of
- Calibration curve (fluorescence of calibration beads vs. equivalent

fluorescent molecules/bead)
- # of molecules taken up vs. voltage (or vs. any other parameters

investigated, such as pulse length.)
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A3.3 Data Analysis Procedure

Data are shown in Fig. A3-1 from a representative pulsed sample. To

facilitate analysis and editing, windows have been created, where window #1

contains the reference beads, window #2 contains ghosts having fluorescence

corresponding to unpulsed controls (no uptake), and window #3 contains all

ghosts. Note that the diagonal collection of events at large fluorescence and

forward scatter is not included in window #3. These events are believed to be

aggregates of debris, where fluorescence appears to vary linearly with size (or

forward scatter). Therefore, they should not be included in calculations of ghost

fluorescence.

Ghost concentration can be calculated by taking the ratio of the percent of

events in window #3 (3.8 % in Fig. A3-1) to the percent of events in window #1

(75.8 % in Fig. A3-1). By multiplying this ratio times the bead concentration,

which is known, the ghost concentration can be determined. This is useful to

identify if significant numbers of ghosts were destroyed or otherwise lost during

the electroporation procedure.

New files containing only the data within window #3 can be created to

facilitate statistical analysis of the ghost population only. A log-scale

fluorescence histogram of the contents of an edited file containing only ghosts is

shown in Fig. A3-2. After linearization of the data using the CALC4 program (see

section A3.4), a linear-scale fluorescence histogram can be made (Fig. A3-3),

from which average fluorescence can be calculated. Using calibration beads with

known fluorescence (see section 4.2.4), a calibration curve can be generated to

convert ghost fluorescence values into numbers of fluorescent molecules

associated with each ghost. Whether this fluorescence is associated with
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Fig. A3-1. Typical log contour plot of forward scatter (FS-H) versus

fluorescence (FL1-H) obtained from flow cytometry. Window #1 contains

reference beads, window #2 contains ghosts having background fluorescence,

and window #3 contains all ghosts. Window #1 contains 728 events (3.8 %) and

window #3 contains 15614 events (75.8 %). Here, ghosts suspended in 10- 3 M

calcein were exposed to a single exponential-decay electric field pulse (2.75

kV/cm, X = 1.3 ms). See text for discussion.

270

I

, i

LOG FS-H ' 1)
64

- -
-:

- r'

4 _



':, :5 -. =: .; E 
,: = 1 ., - = ' ., , _. C

-_ -, = _ l 1 +
W'a'-L"- = FI 'I-'W= --,T

L ! ' ti] F L 1 -
0.,10 1 

_: 0 t _ 

4 t 

Log fluorescence histogram containing the contents of window #3 in

Fig. A3-1 (ghosts only; debris and beads edited out).

271

Fig. A3-2.

1 -,C, 



i lsI :~~~~~~~ 

-=~ ~ ~ U;: 3:;

' , - = '="= 1 f1 d

LOG _:. ' i=0 -l
L :i;D 1 Ctt-1 -, -1

CI - I O M J 

4t 1 lI: 1

Fig. A3-3. Linear fluorescence histogram containing the data shown in Fig. A3-

2. Linear data are needed to correctly calculate average fluorescence. Here, the

average fluorescence is 9.38, with a coefficient of variation of 76.27 (standard

deviation = 7.15). After calibration, average fluorescence can be converted to

average number of calcein molecules associated with each ghost.
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membranes or appears to exist throughout the ghost interior can be assessed by

fluorescence microscopy.

A3.4 CALC4 Progam Operation

CALC4 is a program, available on the Cell Sorter Facility's VAX, which can be

used to manipulate data obtained from the flow cytometer. Because data is

collected on a log scale, it is often necessary to convert that data to a linear

scale. Instructions on how to use CALC4 are outlined below (technical support

and instruction manuals are apparently not available). Input keystrokes are bold-

face, computer output is plain-face.

Converting one file to linear scale

$ calc4 A
CALC4 V02-17
CALC4> input B
INPUT FILE: 14feb001 C
Reading from FCS file 14feb001.FCS
CALC4> new D
CALC4 Parameter definition> pl=10000. % 1/10000.*1023 E
CALC4 Parameter definition> p2=10000." %2/1000.*1023 F
CALC4 Parameter definition> p3=1000.A %3/1000.*1023 G
CALC4 Parameter definition>
CALC4> output 14feb001a.fcs H
Output file is SYS$SYSDEVICE:[CONSORT.PRAUSNITZ] 14FEBOO1A.FCS
[Buffers completed: .............. ]
('ALC4> ex I

Meanings of bold-face keystrokes

A enters CALC4 program
B tells progam in accept input file
C gives name of input file (file with log data to be converted to linear data)
D allows definition of new parameters
E parameter 1 converted from 4-log scale to linear scale
F parameter 2 converted from 4-log scale to linear scale times 10 (fourth

decade is off scale.
G parameter 3 converted from 3-log scale to linear scale
H gives name of output file (file into which converted data should be put)
I exits CALC4
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Batch File Operation

$ calc4 A
CALC4 V02-17
CALC4> do 14febO* B
CALC4> input/next C
Next file is SYS$SYSDEVICE: [CONSORT.PRAUSNITZ] 14FEB00 1.FCS; 1
Reading from FCS file SYS$SYSDEVICE: [CONSORT.PRAUSNITZ] 14FEBOO 1.FCS; 1
CALC4> new D
CALC4 Parameter definition> p3=1000. ^ %3/1000.*1023 E
CALC4 Parameter definition>
CALC4> output F
Output file is SYS$SYSDEVICE: [CONSORT.PRAUSNITZ] 14FEBOO A.FCC
[Buffers completed: .............. ]
CALC4> enddo G
CALC4> input/next H
Next file is SYS$SYSDEVICE: [CONSORT.PRAUSNITZ] 14FEB002.FCS; 1
Reading from FCS file SYS$SYSDEVICE: [CONSORT.PRAUSNITZ] 14FEB002.FCS; 1
etc.

Meanings of bold-face keystrokes

A enters CALC4 program
B designates files for batch conversion
C instructs program to identify first file to be converted
D allows definition of new parameters
E parameter 3 converted from 3-log scale to linear scale
F tells program to create an output file (which automatically ends with .FCC)
G completes the set of batch instructions
H initiates batch processing (C through G will be repeated for all files identified

in B).
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Appendix 4 Skin Preparation 25

A4.1 Protocol Sheet

Fresh tissue is kept in the refrigerator if to be used within 1 week. Otherwise,
tissue should be frozen at -80 °C (flash freezing optional).

Preparing the Bench Top
All skin preparation should be on a designated biohazard benchtop. Prepare by
covering the bench with bench paper (one side absorbent, one side waxy --
available from Lab Supplies), with the absorbent side up.

Materials required: "gentle" forceps (no teeth or pointed ends), forceps with
teeth, large (8 - 12") forceps, scalpel handle, scalpel blades, spatula, dissecting
scissors (rounded tips), hole punch (1" diameter), soft headed mallet, plastic
dissecting board, floating tray (any large pan, i.e., 6" x 12") filled with DI water,
extra bench paper (> twice the size of skin being prepared), waste can containing
a biohazard bag.

Preparing Yourself
Wear a plastic surgical gown (from Lab Supplies), double layered latex gloves,
and a surgical mask and glasses or a face shield to protect from biohazards.

Preparing Skin
If frozen, place skin in refrigerator to defrost overnight. If skin is needed
immediately, it can be placed in a warm (i.e., 37 °C) incubator or a warmed (DI)
water bath to expedite defrosting. Record all available information (i.e., sample
#; date of death, receipt, and preparation; age; sex; etc.) in skin log book.

To remove any fat (yellow tissue) from the underside of the skin, use forceps to
grasp the fat and cut carefully with dissecting scissors or a scalpel. Be careful
not to puncture the epidermis with the forceps or scissors. Once only a little fat
remains (the white of the dermis can be seen), scrape away the remaining fat
with the blunt part of a scalpel handle (with no blade). If full-thickness skin is
needed, as much fat as possible should be removed. If skin will be heat-
stripped, then some remaining fat is OK.

Heating Skin
If the skin is bigger than the floating tray, cut the skin up so that all pieces are
smaller than the tray. Then, cut two pieces of bench paper for each piece of skin,
where each piece of paper is a little bigger than each piece of skin.

Heat > 500 ml DI water to 60 °C (59 - 62 °C is OK) in a beaker. Place skin in the
water, stirring occasionally and gently with a spatula. After 2 min, remove skin
and place on one of the prepared pieces of bench paper, where the dermis side

:25 This section supplements Section 5.2
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of the skin faces the absorbent side of the paper. Spread the skin so that it
makes a flat surface.

Stripping Skin
Grab the dermis of a corner of the skin with the toothed forceps. Then scrape at
the epidermis immediately above the forceps with the rounded end of a spatula.
Use a light, short scooping motion, where more force is applied downward
(toward the dermis), than laterally (toward the epidermis). It may be difficult to
get started, but the epidermis should separate from the dermis. The dermis
should be white, while the epidermis will have color (depending on the donor's
skin color). Slowly and patiently scrape the epidermis from the dermis, rolling the
epidermis into a cylinder. Beware of skin defects (i.e., mole, laceration, belly
button) -- do not let a small hole turn into a big hole. Also, be especially careful
around hair follicles, where skin has a tendency to snag. Do not pull at the
epidermis.

Finding Holes in the Skin
Once the epidermis has been removed, lift it from the dermis (keeping track of
which side is the stratum corneum), and place it stratum corneum side up in the
floating tray with DI water. The epidermis should spread out on top of the water.
If it does not spread out fully, carefully use the big (dull) forceps or, preferably, a
gloved finger to spread it out. If it does not spread at all, then carefully spread it
out by hand. Be careful not to rip it.

Once the skin is spread, remove water puddles on the skin with Kimwipe paper
towels. Rather than wiping off water, just rest the Kimwipe on the skin and let it
soak the water up. Then, look for holes in the epidermis. This can be done by
gently probing the skin with blunt-tipped forceps and looking for reflections from
water crossing the skin through holes. Because holes can be seen much more
easily when the skin is floated than when it is on paper, any identified holes
should be made obvious by cutting from the hole to the nearest edge of the skin
with scissors. Try to damage as little skin as possible in the process.

Take the second piece of bench paper and slide it under the skin (in the floating
tray) with the waxy side up. Because the paper tend to curl under water, place
forceps on the end of the paper to weigh it down and slowly slide the paper until it
is fully under the skin. Then, lift the end of the paper without the forceps up to
the edge of the skin and let the skin stick to the paper. The skin should stick by
itself. The stratum comeum side should still be up. Slowly lift the paper out of
the tray, with the skin sticking to it all the way. At the end, the skin should be out
of the tray and completely on the paper.

Cutting and Storing Skin
Place the skin and paper on the dissecting board. If not already, smooth out the
skin with a gloved finger so that it is flat. Identify the holes marked while the skin
was floated. With the hole punch and hammer, punch out discs of skin and
underlying paper. Position the punch to get as many discs as possible. Place
the discs in large plastic weigh-boat trays. Label each tray on the outer-bottom
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surface with the skin identification number. Place trays in a large dessicator, with
saturated K 2 SO 4 solution at the bottom to maintain 95 % humidity. Keep
refrigerated until needed. Skin should be used as soon as possible. Within a few
days is best, within a week is OK, or up to 2 - 3 weeks may be OK too (check
electrical and passive transport properties -- see Section A5.1).

Clean Up
Throw all biohazardous materials (i.e., fat, dermis, other contaminated
disposables) into a biohazard bag. Place scalpel blades into a sharps container.
Place all tools into a large plastic tub and spray everything generously with 70%
ethanol in water. Pour bleach into the floating tray and beaker to > 10% bleach
(i.e., Clorox). If may be necessary first to remove any pieces of fat in the beaker
with Kimwipes. Spray anything which may have become contaminated with 70%
ethanol.

After soaking in 70% ethanol or 10% bleach for 10-15 min, rinse all items off with
lots of tap water. Place metal tools in the ultrasonicator bath for 10 - 15 min.
Remove and rinse again with tap water. Scrub the dissection board. Give all
items a final rinse with DI water.

Biohazard bags should be double-bagged, taped shut, and labeled with
"Biohazard, Human Tissue, Please Burn," as well as the researchers name and
the date. Bring bags to the animal facility in the basement of E25 (a key card is
needed for access). Bags can be placed in the walk-in refrigerator for
incineration. Check with the facility staff for details.
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Appendix 5 Tissue Electroporation2 6

A5.1 Protocol Sheet

Set-Up For Experiment
Prepare isotonic phosphate-buffered saline. A typical 10-chamber experiment
requires 0.5 - 1 liters. Set out magnetic stirrers (2 chambers/stirrer). Cover each
stirrer with a paper towel. Set out chambers with their metal holders, but do not
tighten the holders yet. Put glass (or plastic) stoppers in any ports on the sides
of chambers, unless the ports are to be used for some special purpose. Put an
Ag/AgCI electrode into each side of each chamber through the outer (furthest
from the skin) upper port. Use tape to secure each electrode. Attach tubing to
the chambers and connect the ends to the water bath. Make sure all tubing
connections are good and continuous before turning the water bath pump on.
Set the water bath to 4 °C. Check the water bath level and add DI water to the fill
line, if needed. Air bubbles within the water jackets of the chambers can be
removed by tipping the chambers, starting with the one closest to the pump
outlet, and moving the air through the pump inlet into the water bath.

Loading The Skin
Remove skin from the dessicator in the refrigerator. Get forceps (no teeth or
pointed tips) and a small dish of DI water for floating skin. Place a spacer (3-4
microscope slides taped together) under the chamber to be loaded with skin. The
spacer helps center the chamber in the metal holder. Place the left side of the
chamber with the hole facing up. Using forceps, moisten a piece of skin (with
waxy paper underneath) briefly in the DI water. Carefully separate the epidermis
from the paper beneath. Be careful not to separate the waxy part of the paper
(with epidermis attached) from the absorbent part of the paper by mistake. Make
sure only the epidermis has been removed and all paper is left behind. Float the
skin in the DI water.

Use forceps to pick up the paper disc from which the skin was removed, waxy
side up. Position the paper under the floating skin and slowly scoop it up,
stratum corneum side up. One arm of the forceps should remain between the
skin and paper, while the other arm is below the paper. Place the skin and paper
on the up-turned left side of the chamber, paper side down. With one gloved
finger, gently press down on the skin while pulling the paper disc out from
underneath the skin. This is something like the famous trick of pulling the
tablecloth from the table without disrupting the dishes. Carefully remove the
finger from the skin, making sure that the skin does not stick to the finger. The
end result should be that the paper is removed and the skin is lying flat on the
chamber surface, covering the hole. If the skin is not flat, gently smooth it out
with a gloved finger. If this cannot be done easily, then refloat the skin and start
the process over again.

26 This section supplements Section 5.3.1
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Once the skin is on the chamber, position both sides of the chamber within the
holder so that their large holes are opposite each other. Be careful not to let the
two chambers touch, thereby disturbing the skin. Then, in one smooth motion,
bring the two chambers together, sandwiching the skin. Hold the chambers
tightly in place with one hand, while tightening the holder with the other hand.
'The holder can be made quite tight without breaking the chambers. Once the
chamber is secure within the holder, fill both sides of the chamber with saline.
Fill to the joint between the main chamber compartment and the upper sampling
port. Using the Ag/AgCI electrodes already in the chambers, measure skin
resistance with an ohm meter. If the resistance is > 70 kQ (it can be as high as 1

IMP), the skin will probably be good. If the skin is < 20 kQ, it probably has a hole

iin it. If it is between 20 - 70 kQ, the skin is not worthless, but will probably be a
leaker (in general, do not use). Bad skin should be removed, discarded, and
replaced with another piece. While sometimes all the skin from a given donor is
,good, often half or more of the pieces from another donor may have to be
discarded. Once a good piece of skin is secured, place a small stir bar in each
side of the chamber.

Repeat this process until all chambers are filled. Turn on the magnetic stirrers
and leave overnight. Leaving overnight accomplishes a number of goals. First it
hydrates the skin fully, although this probably takes less than an hour. However,
the main purpose is that it facilitates fluorescence measurements. There appear
to be fluorescent particles associated with skin, which distort fluorescence
measurement used to determine transdermal flux. If the skin is soaked
overnight, most of this fluorescence appears to be removed. If the skin is kept at
4 C, little degradation occurs overnight. In contrast, degradation is much more
rapid at higher temperatures. Thus, if fluorescence measurements will not be
made, such as in experiments involving radioactivity assay, this overnight soak is
not needed.

Starting The Experiment
Turn off the magnetic stirrers and empty and discard the saline from both sides of
the chambers using plastic pipettes and refill with fresh saline. Turn the stirrers
back on. Switch the temperature bath to 37 °C. Measure skin resistance with an
ohm meter and record the values.

To prepare the donor solution, weigh out the needed compound and add to
saline. Mix. Each donor compartment holds approximately 3.5 mi. Thus -40 ml
of donor solution should be more than sufficient for a 10 chamber experiment.
Turn off the magnetic stirrers, empty and save (put in labeled fluorimeter cuvette)
the contents of the receptor compartment (facing the viable epidermis -- should
be on the left) and empty and discard the contents of the donor compartment
(facing the stratum corneum). Refill the receptor with saline and the donor with
the prepared donor solution. Turn the stirrers back on. Make sure the donor and
receptor fluid levels are the same. Wait 30 - 60 min before taking the next
sample.
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Start up the SPEX spectrofluorimeter, by turning on the power strip, turning on
the lamp and pushing the start button, and turning on the computer and monitor.
Select "fluorescence measurement" and wait for the program to load. When
prompted, enter the excitation (left of sample chamber of the fluorimeter) and
emission (on right) wavelengths which appear on the fluorimeter. Once the
program has loaded fully, press F10 and turn both high voltage sources on.
Then select "define experiment" and select either an emission scan or a time-
based scan. For an emission scan, the data acquisition parameters should be:
excitation at 488 nm, emission at 505 - 535 nm, step 2 nm, and collection time of
1 s. For a time-based scan, data acquisition parameters should be: excitation at
488 nm, emission at 515 nm, and sample time of 1 to 5 s.

Prepare a calibration curve, by making serial dilutions (1/10) of the donor
solution. Also prepare saline and DI water samples for background
measurements. Obtain fluorescence of each and establish the relationship
between fluorescence and concentration. There should be a 3 - 4 order of
magnitude linear range.

To sample the receptor compartments, stop the stirrers, remove the receptor
solution and put it in a fluorimeter cuvette, refill and empty the receptor
compartment with saline to rinse, refill the receptor compartment again, and
finally turn the stirrers back on. Measure the fluorescence of each receptor
solution, which can be converted into a quantitative molecular flux.

Based on the first samples taken (before the donor solution was added), the
cleanliness of the chamber can be assessed. Measurements made after donor
solutions were added can be used to assess passive transport as a measure of
the integrity of the skin barrier properties. If the fluorescence is more than 4 - 5
times higher than PBS-only background, then the skin in probably leaking
(assuming a molecule which cannot cross skin is used). Data from leaky skin is
of questionable value. While the resistance measurements provide a useful
guide, the quality of a piece of skin is ultimately determined by passive flux
measurements.

Pulsing Skin
Once good pieces of skin have been identified, electrical protocols can be
applied. Using one of the electroporators (BTX or Gene Pulser), one of the
square-wave pulsers (Velonex), a constant-current or constant-voltage generator,
or some other power supply, electrical protocols can be applied across the
Ag/AgCI electrodes to the skin. Typically, protocols are applied for 1 h, after
which the receptor compartment is samples. Additional washes (2 - 4) should be
performed after protocols which increase transdermal flux. Additional samples
may be taken at different times after pulsing.

Clean-Up
Collect all liquids (donor compartment, receptor solution in cuvettes, etc.) in a
beaker and add bleach to > 10%. Detach tubing from chambers, loosen metal
holders, and separate chambers into halves. With forceps and a paper towel,
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remove skin from the chambers and clean off residue. Collect stir bars,
electrodes, and stoppers and place them in a plastic tub. Place the chambers in
the tub too and fill with 10% bleach. Set the tubing, holders, and other metal or
plastic objects (i.e., forceps) aside and spray generously with 70% ethanol.
Spray the lab bench, including stirrers, with 70% ethanol. Let everything soak (in
bleach or ethanol) for 10 - 15 min.

Rinse everything off well with tap water. Tubing and metal holders are shaken
dry and put away. Everything else is put into the ultrasonic cleaner for 10 - 15
min, rinsed again with tap water, and given a final DI water rinse. Chambers may
need extra scrubbing before ultrasonication to remove all skin residue. Be
careful not to lose stir bars or stoppers; they easily go down the drain. Sand the
electrodes with fine sandpaper until the surfaces become shiny. Sand as little as
possible, to prolong the electrodes' lifetime.
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A5.2 Data Sheet

Skin donor #: Died: / I

Load into chambers -- Date: / / Time:
at 4 °C in isotonic PBS (pH 7.4), stirred

Stripped: / /

Date / I Your name:

Donor compartment: stratum corneum side, negative (-) electrode,
10-3 M calcein in isotonic PBS (pH 7.4)

Receptor compartment: epidermis side, positive (+) electrode,
isotonic PBS (pH 7.4)

at 37°C (time switched ), stirred

pH of PBS: (filter and adjust pH if off)

10- 3 M calcein = 0.623 mg/ml = mg/ ml

Spex excitation: nm, slit width: mm

Spex emission: nm to nm, step

slit width: mm, right angle collection

donor and receptor emptied, replaced with fresh PBS: ·

calcein added to donor compartment:

Sample #

1

2

3

4

5

6

7

8

9

10

Calcein concentration Peak + Background

10 -4 M

10 -5 M

10-6 M

10-7 M

10-8 M

10-9 M

10-10 M

DI water

PBS 1

PBS 2
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Chamber# Time/Conditions Peak + BackgroundSample #
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44


