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Abstract

We use the techniques of covariant closed string field theory to investigate off-shell proper-
ties of the tachyon and the dilaton. In our study of the tachyon we investigate its effective
potential in the tree approximation. For this purpose we derive general formulae for calcula-
tion of the tree-level off-shell amplitudes and discuss their relation to the effective potential.
We derive explicit modular invariant formulae for tachyonic amplitudes and the coefficients
in the tachyonic potential and prove that closed string polyhedra, among all possible choices
of string vertices, yield a tachyon potential which is as small as possible order by order in
the string coupling constant. We apply our general analysis to the case of four-tachyon
interaction. We investigate both the elementary coupling and the coupling mediated by
massive intermediate states. We show that the elementary coupling presents the major
contribution to the four-tachyon interaction. We also show that the fourth order term in
the tachyonic potential destroys a local minimum that exists in the cubic approximation.
We complete the proof of off-shell dilaton theorem by proving it for the matter part of the
full dilaton field. Our proof is based on the observation that a particular linear combina-
tion of the ghost and the matter parts of the dilaton becomes BRST trivial in an extended
complex which incorporates the string center of mass as a legal operator. We argue that
in an off-shell approach this is a natural choice which does not lead to any contradiction
when string amplitudes are treated as distributions in the momentum space. We present a
complete analysis of the BRST cohomology of the extended complex. We show that all the
states capable, according to the dilaton theorem, of changing the string coupling constant
belong to the same cohomology class in the extended complex. In addition we prove that
for the D = 2 string, for which this cohomology class is trivial, the string coupling constant
is not an observable parameter of the background. We show that this observation is true
in general—in the backgrounds where the dilaton generates a trivial cohomology class the
coupling constant is not an observable parameter.
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Chapter 1

Introduction

1.1 Motivations

String Theory originated in late sixties in an attempt to construct a theory of strong
interactions [1-4]. It was unsuccessful because it contradicted experimental data. The
most apparent inconsistency with the experiment was the proliferation of massless
fields and the appearance of a scalar field with negative mass squared—the tachyon.
Yet it was soon realized that massless states, which were phenomenologically unde-
sirable in the theory of hadrons, can describe Yang-Mills gauge fields [5,6] and the
gravitational field of General Relativity [7]. Based on these discoveries a new phi-
losophy was proposed in 1974 by Scherk and Schwarz [8] who suggested that String
Theory can be viewed as a unification of gauge theories with gravity. Quantum the-
ory of gauge fields was a tremendous phenomenological and theoretical success which
culminated with the formulation of the Standard Model. On the other hand, despite
numerous attempts, a fully satisfactory quantum field theory of General Relativity
had never been constructed. Thus String Theory became the only satisfactory quan-
tum theory which naturally combines gauge fields with gravity. Since then String
Theory took a stage as the most (the only?) promising candidate for the unified
theory of Nature [9].

String Theory is particularly attractive as a unified theory because it appears to
have no adjustable parameters. Consistency conditions leave only five possibilities for
String Theory in 10 dimensions (and no consistent theory exists in D > 10). They
are a theory of nonorientable (type I) open and closed superstrings with gauge group
SO(32) [10], two theories of orientable (type IIA and IIB) closed superstrings [11], and
two heterotic string theories with SO(32) and Fy x Fy gauge groups [12]. In each of
these theories there is only one dimensionless parameter, the string coupling constant,
which can be related to a vacuum expectation value of a scalar field—the dilaton.
When we start building models with lower space-time dimension by compactifying, d
la Kaluza-Klein, the extra dimensions on some small compact manifolds, the resulting
theories seem to have a lot of adjustable dimensionless parameters (i.e., the ratios of
compactification radii for toroidal compactifications). All these parameters, however,
can be interpreted as vacuum condensates of different scalar fields present in the
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theory. This said, an open question remains: how does the theory decide which
vacuum to choose or, in other words, why do we live in four dimensions with four
fundamental forces?

In order to find the true vacuum in quantum field theory, one has to calculate
the effective potential of the theory and find its minimum. The effective potential is
the generating functional for zero-momentum Green functions and these are off-shell
amplitudes, unless the corresponding fields are massless. A pragmatic point of view
is that only massless fields are important for phenomenology, since already the first
mass level is of order of Planck mass, 10'°GeV, and cannot significantly affect the low
energy physics. Restricting the attention to massless fields enormously simplifies the
problem of determining the effective (low energy) action and indeed, the low energy
behavior of superstrings has been successfully identified with supergravity theories.

The study of these low energy effective theories has revealed many surprising
connections between different string theories. Recent progress in this direction has
given further evidence that String Theory is the right way to go in our quest for the
theory of everything, and at the same time, it became likely that String Theory is
not the end of the story. Higher dimensional extended objects will supposedly play
an important role in the future developments.

Despite a lot of progress in superstring theory, very little we know about the
global theory, the one which would incorporate all the fields of String Theory and
provide mechanisms for their condensation to the known vacuum values. String Field
Theory (SFT) is a possible candidate for such global theory. Ideally, SFT should be
formulated as a quantum field theory without an explicit reference to any particular
vacuum or background. Different backgrounds should appear as solutions to the
classical equations of motion. Perturbation theory around them should coincide with
a theory of strings propagating in this background.

Significant progress has been achieved in formulating such a theory for the case
of bosonic strings. The complete quantum theory of covariant closed strings was
constructed [13]. This theory was formulated around a background represented by
any choice of ¢ = 26 conformal field theory (CFT)!. A string field was associated
with every state in this CFT, and the full quantum action was constructed as a series
expansion in string field products. The theory obtained is not manifestly background
independent, since a choice of a background has to be made before we can construct
the action and even then the action is defined only locally. Nevertheless, there is
strong evidence that this local action can be extended to a space of string field con-
figurations not already known (CFT state space should appear as a tangent space at
a stable point). The primary piece of this evidence is the proof of local background
independence. Roughly speaking, local background independence means that two
string field actions built around two nearby backgrounds (or CFTs) are the same up
to a string field redefinition [14,15].

A manifestly background independent formulation of string field theory with a
globally defined string action arising non-perturbatively from some kind of geomet-
rical principle is clearly desirable in order to tell how nature chooses a background

1The standard flat background would be represented by a CFT of 26 free bosons 0.X*.
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for us to live. At the moment, no such principle has been proposed, and the locally
background independent string field theory is probably the best tool we have to try
to find it. In this work we will use this theory to obtain results which cannot be
obtained without it.

Our first subject is the tachyonic potential. We previousely mentioned the tachyon
which has negative mass squared. On the string field theory language, this means
that its potential starts with a negative quadratic term (V(7) = m?7? + --.). This
indicates that bosonic string background is unstable under tachyon condensation.
Closed String Field Theory predicts [ [16] that the full potential includes infinitely
many terms and thus a possibility exists that it has a minimum whose position would
determine? the value of the tachyon condensate (7).

The issue of dilaton is another example where String Field Theory is already ca-
pable of giving new insights. As we mentioned above, the dilaton vacuum expectation
value determines the coupling constant in string theory. This property established
on the level of on-shell string amplitudes can be proven for the full string field ac-
tion [17,18].

Our study of the dilaton will lead to a better understanding of the role of the string
center of mass operator. This is the conjugate operator to the string momentum and
can be represented by a differentiation operator Zfj = 8/dp, or infinitesimal shift in
momentum space. A shift the momentum space can move a physical state away from
its mass-shell; therefore, it cannot be properly realized in the space of physical string
states. This calls for an off-shell treatment possible only in the context of string field
theory.

Let us speculate on the role of these developments in the overall picture of string
theory before we turn to a more detailed summary of our results. We can certainly
justify our interest in bosonic string theory just by saying that it provides a toy model
where many ideas can be tested before they are applied to more realistic models, but
let us try to say more.

During the last year a distinction between more realistic and less realistic string
theories has become vague at best. With evidence of string dualities becoming more
compelling we begin to understand that two perturbatively different string theories
can in fact be just different expansions of the same non-perturbative theory. It is
likely that all the consistent superstring theories are related in this way.

The bosonic string does not seem to fit into this picture. The low energy effective
action approach is flawed by the presence of the tachyon and since supersymmetry
is absent, none of the semiclassical methods that work so well for the superstring
can be applied. Nevertheless, at least some evidence has been presented that may
reserve a place for the bosonic string in the future theory. This was an observation
made a few years ago by Berkovits and Vafa [19] who suggested that bosonic strings
may be viewed as a particular class of vacua for N = 1 superstrings. If this is the
case then there should exist a (probably non-perturbative) mechanism for tachyon
condensation in the bosonic string theory such that the theory with a condensate
does have supersymmetry.

%In section 2.1.2 we will analyze this statement more critically
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1.2 Summary of the results

Covariant String Field Theory [13,20] of closed bosonic strings is based on the quan-
tization procedure of Batalin and Vilkovisky [21,22] (BV) and requires a choice of
a particular background to be made. Once a choice of background (which, roughly
speaking, is a conformal field theory) is made, the BV master action can be found
as a non-polynomial functional S(¥), where the string field ¥ plays the role of co-
ordinates on the state space of the corresponding conformal field theory. Although
the full expression for the action S(¥) is known, it is given as a power series in U,
each term of which is an integral of some differential form over a specific subspace of
the moduli space P, , of Riemann surfaces of genus g with n punctures and a choice
of local coordinate (up to a phase) around each puncture. These subspaces, called
string vertices, must satisfy certain geometrical recursion relations [23] dictated by
the BV master equation on S(¥). These recursion relations do not specify completely
the vertices but there is one solution, given by closed string polyhedra [24], which
in many aspects is the most interesting. This solution can be described in terms of
minimal area metrics or, equivalently, in terms of quadratic differentials of special
kind [25-28]. These quadratic differentials were first studied by Strebel [29] and we
will call them Strebel quadratic differentials.

In chapter 2 we derive explicit formulae for evaluation of the classical (genus zero)
closed string action and for calculation of arbitrary off-shell amplitudes. The formulae
require a parameterization, in terms of some moduli space coordinates, of the family
of local coordinates needed to insert the off-shell states on Riemann surfaces.

The focus is then turned to the evaluation of the tachyon potential as a power
series in the tachyon field. The expansion coefficients in this series are shown to be
geometrical invariants of Strebel quadratic differentials. We show that so defined
coefficients, among all possible choices of string vertices, yield the tachyon potential
which is as small as possible order by order in the string coupling constant. Our
discussion in section 2.4 emphasizes the geometrical meaning of off-shell amplitudes.

In chapter 3.1.4 we apply general formulae for the tachyonic potential to calculate
this potential up to the order of 7¢. The evaluation of the coefficient in front of 7*
is non-trivial because it involves integration over a complicated region in the moduli
space of four-punctured spheres and the integrand is defined implicitly in terms of
a Strebel quadratic differential. The later problem is reduced to a single equation
involving elliptic functions. Surprisingly, the same equation appears in calculation
of the effective tachyonic potential at this order. Numerical values obtained show
that the bare potential calculated up to the fourth order has no local minimum and
that massive states provide only a tiny correction compared to the bare four-tachyon
interaction.

The second part of the thesis is devoted to the dilaton. The zero momentum
dilaton consists of two parts both annihilated by the BRST charge. We call them
the ghost dilaton and the matter dilaton respectively. Only one linear combination
(the dilaton) of the ghost dilaton and the matter dilaton remains on-shell for some
non-zero values of the momentum. The other combination (the longitudinal graviton)
has to be considered as a discrete state at zero momentum. The matter dilaton and
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the ghost dilaton are two very different states. For example, the matter dilaton is a
primary field and the ghost one is not. We show that they, nevertheless, are closely
related. We show that both ghost and matter dilatons affect the coupling constant
while the longitudinal graviton does not.

We will explain that the reason why the longitudinal graviton does not change the
coupling constant is that it can be gauged away with the aid of a gauge parameter
which grows linearly in space-time. An ordinary BRST complex used to describe
physical states of string does not include such field configurations. We show how the
BRST complex can be extended to include field configurations which are polynomial
in space-time coordinates and calculate its cohomology. We find that the cohomology
of the extended complex has a number of features with good physical interpretation.
The most noticeable features are the absence of longitudinal graviton in cohomology
and the correspondence between ghost number one cohomology and Poincaré group,
as expected from the string field theory. We suggest that for each uncompactified
direction in space-time one has to extend the BRST complex by the polynomials in
the correspondent coordinates. As a bonus we will see that this approach resolves the
problem of doubling of physical states when at least one uncompactified direction is
present.

The dilaton theorem has to be reinterpreted for the case of non-critical strings.
For a non-critical string the ghost part of the dilaton becomes a BRST trivial state
due to the presence of a Liouville field. A detailed analysis of the role of the dilaton
for the D = 2 string is presented in section 4.7.
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Chapter 2

Off-shell closed string amplitudes

2.1 Introduction to off-shell calculations

A manifestly background independent field theory of strings should define the concep-
tual framework for string theory and should allow the precise definition and explicit
computation of nonperturbative effects. The present version of quantum closed string
field theory [13,20], developed explicitly only for the case of bosonic strings, while
not manifestly background independent, was proven to be background independent
for the case of nearby backgrounds [14,15,30]. The proof indeed uncovered structures
that are expected to be relevant to the conceptual foundation of string theory. At the
computational level one can ask if present day string field theory allows one to do new
computations, in particular computations that are not defined in first quantization.
While efficient computation may require the manifestly background independent for-
mulation not yet available, it is of interest to attempt new computations with present
day tools.

Off-shell amplitudes are not naturally defined without a field theory. Indeed, while
the basic definition of an off-shell string amplitude is given in first quantization, off-
shell string amplitudes are only interesting if they obey additional properties such as
permutation symmetry and consistent factorization. These properties are automat-
ically incorporated when the off-shell amplitudes arise from a covariant string field
theory [31].

Off-shell string amplitudes are obtained by integrating over the relevant moduli
space of Riemann surfaces differential forms that correspond to the correlators of
vertex operators inserted at the punctures of the surfaces and antighost line integrals.
The vertex operators correspond to non-primary fields of the conformal field theory.
In contrast, in on-shell string amplitudes the vertex operators are always primary
fields. In order to insert non-primary fields in a punctured Riemann surface we must
choose an analytic local coordinate at every puncture. The moduli space of Riemann
surfaces of genus g and N punctures is denoted as _./\—/t_g, ~, and the moduli space of such
surfaces with choices of local coordinates at the punctures is denoted as 739,1\; 1 An
off-shell amplitude is just an integral over a subspace of ﬁg, ~. Typically, the relevant

!The local coordinate at each puncture is defined only up to a constant phase.
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subspaces of ’ﬁg,N are sections over M, y. Such sections are obtained by making a
choice of local coordinates at every puncture of each surface in ﬂg, ~- In closed string
field theory, the use of minimal area metrics allows one to construct these sections
using the vertices of the theory and the propagator. Off-shell amplitudes arising in
open string field theory have been studied by Bluhm and Samuel [32-35].

While interesting in their own right, off-shell amplitudes are not physical observ-
ables. More relevant is the evaluation of the string action for any choice of an off-shell
string field. This computation would be necessary in evaluating string instanton ef-
fects. The string action, apart for the kinetic term, is the sum of string interactions
each of which is defined by a string vertez, namely, a subspace V, y of Py . Typi-
cally V, v is a section over a compact subspace of M, y. Therefore, given an off-shell
string field, the contribution to the string action arising from a particular interaction
corresponds to a partially integrated off-shell amplitude. The classical potential of a
field theory in flat Minkowski space is a simple example of the above considerations;
it amounts to the evaluation of the action for field configurations that are spacetime
constants. Ideally we would like to compute, for the case of bosonic strings formulated
around the twenty-six dimensional Minkowski space, the complete classical potential
for the string field. This may be eventually possible but we address here the compu-
tation of the classical potential for some string modes. In particular we focus in the
case of the tachyon of the closed bosonic string.

For the case of open strings some interesting results have been obtained concerning
the classical effective potential for the tachyon [36]. This potential takes into account
the effect of all other fields at the classical level. In the context of closed string field
theory only the cubic term in the tachyon potential is known [37]. The possible effects
of this term have been considered in Refs. [38-40]. Our interest in the computation
of the closed string tachyon potential was stimulated by G. Moore [41] who derived
the following formula for the potential V' (7) for the tachyon field 7(z)

V(r) = iv where v, ~/ (H d*h, )th’ 0. (2.1.1)

n=3 Voov =1

This potential is the tachyon potential with all other fields set to zero. It is not
an effective potential. It is fully nonpolynomial, and starts with a negative sign
quadratic term (the symbols appearing in the expression for v, will be defined in
section 2.2). The calculation of the tachyon potential amounts to the calculation of
the constant coefficients v, for N > 3. For the cubic term, since Vp 3 is a point, the
integral is actually not there, and the evaluation of the coefficient of v is relatively
straightforward. The higher coefficients are difficult to compute since they involve
integrals over the pieces of moduli spaces Vg n.

We will rewrite Eq. (2.1.1) in PSL(2, C) invariant form in order to understand the
geometrical significance of the coefficients v, and to set up a convenient computation
scheme. Moreover, we will obtain a generalization of Eq. (2.1.1) valid for any com-
ponent field of the string field theory. The expression will be given in the operator
formalism and will be PSL(2, C) invariant.
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2.1.1 Extremal property

We will show that the polyhedral vertices of closed string field theory are the solution
to the problem of minimizing recursively the coefficients in the expansion defining the
tachyon potential. That is, the choice of the Witten vertex, among all possible choices
of cubic string vertices? minimizes v,. Once the three string vertex is chosen, the
region of moduli space to be covered by the four string vertex is fixed. The choice of
the standard tetrahedron for the four string vertex, among all possible choices of four
string vertex filling the required region, will minimize the value of v,. This continues
to be the case for the complete series defining the classical closed string field theory.
This fact strikes to us as the string field theory doing its best to obtain a convergent
series for the tachyon potential. It is also interesting that a simple demand, that of
minimizing recursively the coeflicients of the tachyon potential, leads uniquely to the
polyhedral vertices of classical closed string field theory. It has been clear that the
consistency of closed string field theory simply depends on having a choice of string
vertices giving a cover of moduli space. The off-shell behavior, however, is completely
dependent on the choice of vertices, and one intuitively feels there are choices that
are better than other. We see here nice off-shell behavior arising from polyhedra.

2.1.2 A minimum in the potential?

In calculating the tachyon potential we must be very careful about sign factors. The
relative signs of the expansion coefficients are essential to the behavior of the series.
We find that all the even terms in the tachyon potential, including the quadratic
term, come with a negative sign, and all the odd terms come with a positive sign. It
then follows, by a simple sign change in the definition of the tachyon field, that all the
terms in the potential have negative coefficients. This implies that there is no global
minimum in the potential since the potential is not bounded from below. Moreover,
there is no local minimum that can be identified without detailed knowledge of the
complete series defining the tachyon potential. If the series defining the potential
has no suitable radius of convergence further complications arise in attempting to
extract physical conclusions. We were not able to settle the issue of convergence, but
present some work that goes in this direction. In estimating the coefficient v, we
must perform an integral of the tachyon off-shell amplitude over V, y. In this region
the tachyon amplitude varies strongly. In the middle region the amplitude is lowest,
and if this were the dominating region, we would get convergence. In some corners of
Vo,~ the amplitude is so big that, if those corners dominate, there would be no radius
of convergence.

It is important to emphasize that only the tachyon effective potential (or the full
string field potential) is a significant object. The tachyon potential is not by itself
sufficient to make physical statements. A stable critical point of this potential may not
even be a critical point of the complete string field potential. The effects of the infinite
number of massive scalar fields must be taken into account. Our results, making

*Vertices are defined by coordinate curves surrounding the punctures and defining disks. The
disks should not have finite intersection.
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unlikely the existence of a stable critical point reinforce the sigma-model arguments
that suggest that bosonic strings do not have time independent stable vacua [42], but
are not conclusive. (See also Ref. [43] for a discussion of tachyonic ambiguities in
the sigma model approach to the string effective action.) The calculation of the full
string field potential, or the tachyon effective potential is clearly desirable. We discuss
in appendix A string field redefinitions, and argue that it does not seem possible to
bring the string action into a form (such as one having a purely quadratic tachyon
potential) where one can easily rule out the existence of a local minimum.

2.1.3 General off-shell amplitudes

Since general off-shell computations do not have some of the simplifying circumstances
that are present for the tachyon (such as being primary, even off-shell), we derive
a general formula useful to compute arbitrary off-shell amplitudes. This formula,
written in the operator formalism, gives the integrand for generic string amplitudes
as a differential form in Py n. The only delicate point here is the construction of
the antighost insertions for Schiffer variations representing arbitrary families of local
coordinates (local coordinates at the punctures as a function of the position of the
punctures on the sphere). Particular cases of this formula have appeared in the
literature. If the family of local coordinates happens to arise from a metric, the
required antighost insertions were given in Ref. [44]. Antighost insertions necessary
for zero-momentum dilaton insertions were calculated in Refs. [45].

2.1.4 Organization of the contents of this chapter

We now give a brief summary of the contents of the present chapter. In section 2.2
we explain what needs to be calculated to extract the tachyon potential, set up our
conventions, and summarize all our results on the tachyon potential. In section 2.3 we
prepare the grounds for the geometrical understanding of the off-shell amplitudes. We
review the definition of the mapping radius of punctured disks and study its behavior
under PSL(2,C) transformations (the conformal maps of the Riemann sphere to it-
self). We show how to construct PSL(2, C) invariants for punctured spheres equipped
with coordinate disks, by using the mapping radii of the punctured disks and coor-
dinate differences between punctures, both computed using an arbitrary uniformizer.
We review the extremal properties of Jenkins-Strebel quadratic differentials [29], and
show how our PSL(2, C) invariants, in addition to having extremal properties, provide
interesting (and seemingly new) functions on the moduli spaces Mg . In section 2.4
we compute the off-shell amplitude for scattering of NV tachyons at arbitrary momen-
tum, and give the answer in terms of integrals of PSL(2, C) invariants. This formula is
the off-shell extension of the Koba-Nielsen formula. At zero momentum and partially
integrated over moduli space, it gives us, for each N, the coefficient v, of the tachyon
potential. We show why these coefficients are minimized recursively by the string

3These functions are analogous to the function that assigns to an unpunctured Riemann surface
the area of the minimal area metric on that surface.
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vertices defined by Strebel differentials. In section 2.5 we do large— N estimates for
the coefficients v, of the tachyon potential in an attempt to establish the existence of
a radius of convergence for the series. The measure of integration is computed exactly
for corners in V, y representing a planar configuration for the tachyon punctures on
the sphere. We are also able to estimate the measure of integration for a uniform
distribution of punctures on the sphere. In section 2.6 we give the operator formal-
ism construction for general differential forms on Py x labelled by arbitrary off-shell
states.

2.2 String action and the tachyon potential

In this section we will show what must be calculated in order to obtain the tachyon
potential. This will help to put in perspective the work that will be done in the
next few sections. We will also give some of the necessary conventions, and we will
comment on the significance of the tachyon potential and the limitations of our results.
All of our results concerning the tachyon potential will be summarized here.

The full string field action is a non-polynomial functional of the infinite number
of fields, and from the component viewpoint, a non-polynomial function of an infinite
number of spacetime fields. Here we consider only the part of it which contains
the tachyon field 7(z). We will call this part the tachyonic action S*"(r). It is a
nonpolynomial, non-local functional of the tachyonic field 7(x). In order to introduce
the string field configuration associated to the tachyon field 7(x) we first a Fourier
transform

7(p) = / dPz 7(z) e, (2.2.1)

and use 7(p) to define the tachyon string field |T') as follows

D
7= [ g-ﬂ%ﬁp) el p). (2.2.2)

In the conformal field theory representing the bosonic string, the tachyon vertex
operator is given by T, = cce™ and is of conformal dimension (Lo, Ly) = (-1 +
p*/2,—1+p?/2). The conformal field theory state associated to this field is T},(0)[1) =
c1¢1|1,p). This state is BRST invariant when we satisfy the on-shell condition Ly =
Lo = 0, which requires p? = 2 = —M? (this is the problematic negative mass squared
of the tachyon). The above representative T}, for the cohomology class of the physical
tachyon is particularly nice, because this tachyon operator remains a primary field
even off-shell (p? # 2).

The tachyonic action is then given by evaluating the string field action S(|¥)) for
@) = |T):

U (r) = 5 ([0 = 7)), (2.2.3)

where o
S(¥) = (UG QIE) + 32 S (8, (2.2.4)

N=3 ’

27



and & is the closed string field coupling constant (see [46]). This action satisfies the
classical master equation {S,S} = 0 when the string vertices Vo = > y>; Vov are
chosen to satisfy the recursion relations Vo + 2{V, Vo} = 0 (see Ref. [30])

Let us verify that the above definitions lead to the correctly normalized tachyon
kinetic term

1
Sin = 5 (Tl QIT). (2:2:5)

Recall that the BRST operator @ is of the form Q = cyLg + ¢ Lo + - - -, where the
dots denote the terms which annihilate |T'). Moreover, acting on the state c1¢1(1, p)
the operators Ly and Ly both have eigenvalue p?/2 — 1. We then find

1 de de/
h __ — - =
st =3 [ 5 | Gt tletagaanin 1 10) 0 - 270). 226

We follow the conventions of Ref. [46] where
(—p, 1|c_1eicy cferdlp, 1) = (2m)P (-9, 1°p, 1) = 2m)P6° (' +p),  (2.2.7)
and ¢ = 1(co = ). Using this we finally find

it = =3 [ TP - 21), (223)

which is indeed the correctly normalized kinetic term.* The N-th term in the expan-
sion of the tachyonic action requires the evaluation of string multilinear functions

N 2

SE(T) = {TN Fon » (2.2.9)

and this will be one of the main endeavors in this paper. The answer will be of the
form

{T}vay = / H d”' @n)8 (3p,) - Valor, - p) (@) - (py), (2:2:10)

where V, the function we will be calculating, is well defined up to terms that vanish
upon use of momentum conservation. To extract from this the tachyon potential we
evaluate the above term in the action for spacetime constant tachyons 7(z) = 7,
which gives 7(p) = 79(27)P6(p), and as a consequence

N2

Stach ) N

——Vn(0) 7 - (27)P6(0). (2.2.11)

4We work in euclidean space with positive signature, and the action S should be inserted in the
path integral as exp(S/h), which is a convenient convention in string field theory. The euclidean
action S is of the form § = — [ dPz(K + V), where K and V stand for kinetic and potential terms
respectively.
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Since the infinite (27)P6(0) factor just corresponds to the spacetime volume, the
tachyon potential will read

(N-2 N
T)=—7% — Z NV T (2.2.12)

N>3

where we have used the fact that the potential appears in the action with a minus
sign. Here the expansion coefficients v are given by

v, =V,(0). (2.2.13)
We will see that the coefficient v, is given by®
39
va =~ & 061 (2.2.14)

Analytic work, together with numerical evaluation as we will show in the next chapter
gives
v, = 72.39 £ 0.01. (2.2.15)

Therefore, to this order the tachyon potential reads
V(r) = —7% + 1.602xk7® — 3.016K%74 + - - - | (2.2.16)

and gives no local minimum for the tachyon. The general form for v will be shown
to be given by

)N

> dx dy, 1
: (2.2.17)
WN -3 vON,Hl pr p%_,(0)p%_ (1)p%(o0)

where the quantities p,, called mapping radii, will be discussed in the next section.
Since the integrand is manifestly positive, v, will be positive for even N and negative
for odd N. Note that by a sign redefinition of the tachyon field we can make all terms
in the tachyon potential negative. Therefore the tachyon potential is unbounded from
below and cannot have a global minimum. A local minimum may or may not exist.
Even these statements should be qualified if the series defining the tachyon potential
has no suitable radius of convergence. We will study the large-N behavior of the
coefficients v, in section 2.5, but we will not be able to reach a definite conclusion as
far as the radius of convergence goes.

Even if one could establish the existence of a local minimum for the tachyon
potential, the question remains whether it represents a vacuum for the whole string
field theory. One way to address this question would be to compute the effective
potential for the tachyon. For a complete understanding of the string field potential
we should actually examine all zero-momentum Lorentz scalar fields appearing in the
theory. This would include physical scalars, unphysical scalars and trivial scalars.
Since even the number of physical scalars at each mass level grows spectacularly
fast [47], a more stringy way to discuss the string field potential is clearly desirable.

3The value quoted here agrees with that quoted in Ref. [38] after adjusting for a factor of two
difference in the definition of the dimensionless coupling constant.
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2.3 Geometrical preliminaries

In the present section we will begin by reviewing the definition of mapping radius
of a punctured disk. While this object requires a choice of local coordinate at the
puncture, it is possible to use it to construct conformal invariants of spheres with
punctured disks without having to make choices of local coordinates at the punctures.
We will discuss in detail those invariants. We review the extremal properties of the
Strebel quadratic differentials and explain how to calculate mapping radii from them.
The invariants relevant to the computation of tachyon amplitudes are shown to have
extremal properties as well.

2.3.1 Reduced modulus

Given a punctured disk D, equipped with a chosen local coordinate z vanishing at
the puncture, one can define a conformal invariant called the mapping radius p,, of
the disk. It is calculated by mapping conformally the disk D to the unit disk |w| < 1,
with the puncture going to w = 0. One then defines

| dz

.w:O '
Alternatively one may map D to a round disk |¢| < p,, with the puncture going to
€ =0, so that |dz/d€|o = 1. The reduced modulus Mp of the disk D is defined to be

1
Mp = %lnpD . (2.3.2)

Clearly, both the mapping radius and the reduced modulus depend on the chosen
coordinate. If we change the local coordinate from z to Z/, also vanishing at the
puncture, we see using Eq. (2.3.1) that the new mapping radius p’ is given by

dz'

e = invariant. (2.3.3)

- D
pD = Po z:O’ - |dZ|

Thus the mapping radius transforms like the inverse of a conformal metric g, for
which the length element g|dz| is invariant. For the reduced modulus we have

1 /
Mb—_—MD-’r-————lIlg

2.34
2w dz (2.3.4)

2=0 '

2.3.2 PSL(2,C) invariants

It should be noted that the above transformation property 2.3.3 is not in contradiction
with the conformal invariance of the mapping radius. Conformal invariance just states
that if we map a disk, and carry along the chosen local coordinate at the puncture,
the mapping radius does not change. This brings us to a point that will be quite
important. Throughout this paper we will be dealing with punctured disks on the
Riemann sphere. How will we choose local coordinates at the punctures? It will be
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done as follows: we will choose a global uniformizer z on the sphere and keep it fixed.
If a punctured disk D has its puncture at z = 2, then the local coordinate at the
puncture will be taken to be (z — zp) (the case when zy = oo will be discussed later).
Consider now an arbitrary PSL(2, C) map taking the sphere into itself

az+b
z— f(z) = ot d’ (2.3.5)

Under this map a disk D centered at z = 2o will be taken to a disk f(D) centered
at z = f(20). According to our conventions, the local coordinate for D is z — 2, and
the local coordinate for f(D) is z — f(z2p). This latter coordinate is not the image
of the original local coordinate under the map. Therefore the mapping radius will
transform, and we can use 2.3.3 to find

df

_ 2
2zl = pp=lezn+d| p,,, - (2.3.6)

pf(D) = pD

The off-shell amplitudes will involve the mapping radii of various disks. Moreover,
they must be PSL(2,C) invariant. How can that be achieved given that we do not
have a PSL(2, C) invariant definition of the mapping radius? Let us first examine the
case when we have two punctured disks on a sphere. The data is simply a sphere with
two marked points and two closed Jordan curves each surrounding one of the points.
We will associate a PSL(2,C) invariant to this sphere. The invariant is calculated
using a uniformizer, but is independent of this choice. Choose any uniformizer z
on the sphere, and denote the disks by D;(z;) and D,(z;), where z; and 2, are the
positions of the punctures. We now claim that

|21 — Z2|2

X12 ; (2.3.7)

Ppy(s1) Pyen)

is a PSL(2,C) invariant (in other words, it is independent of the uniformizer, or, it
is a conformal invariant of the sphere with two punctured disks). Indeed, under the
PSL(2,C) transformation given in Eq. (2.3.5) we have that

|21 = 22| = |cz1 +d| - |ezz +d| - |f(21) ~ f(2)], (2.3.8)
and it follows immediately from this equation and Eq. (2.3.6) that
|21 — zo|? _ |f(21) — f(22)

Ppy(y) Ppyiza)  Pror(er)) Prpatze)

(2.3.9)

which verifies the claim of invariance of the object x12. It seems plausible that any
PSL(2, C) invariant built from mapping radii of two disks must be a function of 5. It
is not hard to construct in the same fashion an PSL(2, C) invariant of three punctured
disks. Indeed, we have

72—z — 23| |22 —
X123 = 21 = zal I = 25 |20 = , (2.3.10)

le(zl) pDz(Zz)pDa(za)
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which is easily verified to be a conformal invariant. This invariant can be written in
terms of the invariant associated to two disks, one sees that

X123 = (X12 X13 X23 ) /% - (2.3.11)

This shows the invariant x;,3 of three disks is not really new. It is also clear that we
can now construct many invariants of three disks. We can form linear combinations
of complicated functions build using the invariants associated to all possible choices
of two disks from the three available ones. Nevertheless, the particular invariant xjo3
given above will be of relevance to us later on. Let us finally consider briefly the
case of four punctured disks, and concentrate on invariants having a product of all
mapping radii in the denominator. Let

21 — 29| |29 — 23| |23 — z4||24 —
Xl2345|1 2“2 3”3 4”4 ZI|, (2-3-12)

Pby(21) Paycan) P33 Prya)

and, as the reader will have noticed, the only requisite for invariance is that, as it
happens above, every z, appear twice in the numerator. This can be done in many
different ways; for example, we could have written

|21 — 2 |25 — 24)?

!
X234 = ; (2.3.13)
le("l) pDz(zz)pDa(zs)pD4(Z4)
and the ratio of the two invariants is
! . 21— 29) (23 — 2
X4 _ A, with A= (21 = 2) (78 = 20) _ {z1, 225 23, 24}, (2.3.14)

Xa (21 — 24)(33 — 23)

which being independent of the mapping radii, and, by construction a conformal
invariant of a four-punctured sphere, necessarily has to equal the cross-ratio of the
four points (or a function of the cross-ratio). The cross-ratio, as customary, will be
denoted by A. It is the point where z; lands when 23, 23 and 24 are mapped to zero,
one and infinity, respectively.

2.3.3 Letting one puncture go to infinity

It is sufficient to consider the behavior of the invariant xio, given by

|21 — 212|2

Xi2 = (2.3.15)

le(zl) pDz(zz) ’
which we have seen is independent of the chosen uniformizer. We must examine
what happens as we change the uniformizer in such a way that z; — oco. Given one
uniformizer z there is another one w = 1/z that is well defined at z = oo, the only
point where z fails to define a local coordinate. This is why there is no naive limit to
X2 as z; — 00. Using Eq. (2.3.3) we express the mapping radius of the second disk in
terms of the mapping radius as viewed using the uniformizer induced by w. We have
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dz
dw

_ . 2 . . . .
Ppyiey) = = |22[*pp,(s,,» and substituting into the expression for x;, we

find

P
wo Dz(w2)

1— 2
X12 = N=a/xF , (2.3.16)

pD1(21) 'oDz(wz)

and we can now take the limit as zo — oo without difficulty. Writing, for convenience,
Py uymt) = Pyoayr WE 8 X12 = p;ll(m p;:(oo) . The apparent dependence of x5 on the
choice of point z; is fictitious. Any change of uniformizer z — az + b which changes
2 leaving the point at infinity fixed, will change the uniformizer at infinity, and the
product of mapping radii will remain invariant. The point z; can therefore be chosen

to be at the origin, and we write our final expression for x»

1
X12 = . (2.3.17)
Pp1(0) Ppy(oo)
Following exactly the same steps with x3; and x4 we obtain
ym=—azml (2.3.18)
le(21) pDz(zz)pDa(oo)
X1234 = U R (2.3.19)

Pp1(21) PDy(23)PD3(23) Py (00

One could certainly take z; = 0 and 2, = 1 for x93, and, 25 = 0 and 23 = 1 for
X1234- It should be remembered that whenever a disk is centered at infinity, the local
coordinate used is the inverse of the chosen uniformizer on the rest of the sphere.

2.3.4 Mapping radii and quadratic differentials

In this subsection we will review how one uses the Strebel quadratic differential on
a punctured sphere to define punctured disks. These disks, called coordinate disks,
define the local coordinates used to insert the off-shell states. We will show how one
can use the quadratic differential to calculate the explicit form of the local coordinates,
and the mapping radii of the coordinate disks. We will review the extremal properties
of the Strebel quadratic differentials and then discuss the extremal properties of the
PSL(2, C) invariants.

We will concentrate on the Strebel quadratic differentials relevant for the restricted
polyhedra of closed string field theory. The reader unfamiliar with these objects may
consult Refs. [24,29]. The Strebel quadratic differential for a sphere with N punctures
in Vv induces a metric where the surface can be constructed by gluing N semiinfinite
cylinders of circumference 27 across their open boundaries. The gluing pattern is
described by a restricted polyhedron, which is a polyhedron having N faces, each of
perimeter 27 and, in addition, having all nontrivial closed paths longer than or equal
to 2w. Each semiinfinite cylinder defines a punctured disk with a local coordinate w.
The boundary |w| = 1 corresponds to the edge of the cylinder, to be glued to the
polyhedron, and the puncture corresponds to w = 0.
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The Strebel quadratic differential on the sphere is usually expressed as ¢ =
#(2)(dz)?, where z is a uniformizer in the sphere. At the punctures it has second
order poles; if there is a puncture at z = 2z, the quadratic differential near z, reads

1 b_y
= (- bo + bi(z — ) 2 3.
o= (-G tioy th G oa) )@ (2.3.20)
Moreover, as mentioned above, the quadratic differential defines a disk D, on the
sphere, with the puncture at z,. A local coordinate w, on D,, such that D, becomes
a round disk can be found as follows. We set

z=p,w, +aw +ouw’ 4, (2.3.21)

where p,, ¢y, ¢ - - - are constants to be determined. We have written p, for the coeffi-
cient of w, on purpose. If we can make the D, disk correspond to the disk |w,| < 1,
then p, is by definition the mapping radius of the disk D,, since it is the value of
|d(z — z,)/dw,| at w, = 0 (recall Eq. (2.3.1)). We will actually use the notation

z=h,(w,), and p, =k (0)]. (2.3.22)

Note that as explained in the previous subsection we are using the local uniformizer
on the sphere to define the mapping radius.

Back to our problem of defining the w, coordinate, we demand that the quadratic
differential, expressed in w, coordinates, takes the form

1
o= —E(dw,)? (2.3.23)
I

Since the above form is invariant under a change of scale, w, — aw,, we cannot
determine by this procedure the constant p,. If p, is fixed, the procedure will fix
uniquely the higher coefficients ¢;, ¢z, ---. While for general off-shell states the
knowledge of the coefficients ¢, is necessary, for tachyons we only need the mapping
radius. This radius can be determined by the following method. Given a quadratic
differential one must find an arbitrary point P lying on the boundary of the punctured
disk D, defined by the quadratic differential. Possibly, the simplest way to do this
is to identify the zeroes of the quadratic differential and then sketch the critical
trajectories to identify the various punctured disks and ring domains. One can then
pick P to be a zero lying on the nearest critical trajectory surrounding the puncture.
We now require w,(P) = 1, and this will fix both the scale and the phase of the local
coordinate. This requirement is satisfied by taking

w,(2) = exp (7, /;:P) \/@dﬁ) , (2.3.24)

where we take the positive branch for the square root. If the integral can be done
explicitly then the mapping radius is easily calculated by taking a derivative p, =
|"7";L|;11. If the integral cannot be done explicitly one can calculate the mapping
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radius by a limiting procedure. One computes p, = lim,_, |d% ;II_H. This leads,
using Eq. (2.3.20) to the following result

z(P)

Vo€ +1ne) . (2.3.25)

Inp, 11_[)% (Im -
The integration path is some curve in the disk D,, and using contour deformation
one can verify that the imaginary part of the integrand does not depend on the choice
of P as long as P is on the boundary of D,. When using equation Eq. (2.3.25) one
must choose a branch for the square root, and keep the integration path away from
the branch cut. The sign is fixed by the condition that the limit exist. Equation
Eq. (2.3.25) and the recursive procedure indicated above allow us, in principle, to
calculate the function h,(w,) if we know explicitly the quadratic differential.

2.3.5 Extremal properties

[magine having an N punctured Riemann sphere and label the punctures as P;, P,
--- P,. Fix completely arbitrary local analytic coordinates at these punctures. Now
consider drawing closed Jordan curves surrounding the punctures and defining punc-
tured disks D,, in such a way that the disks do not overlap (even though they might
touch each other). Given this data we can evaluate the functional

F=Mp, +Mp,++-++Mp_, (2.3.26)

which is simply the sum of the reduced moduli of the various disks. This functional,
of course depends on the shape of the disks we have chosen, and is well defined since
we have picked some specific local coordinates at the punctures. We may try now to
vary the shape of the disks in order to maximize F. Suppose there is a choice of disks
that maximizes F, then, it will maximize F whatever choice of local coordinates we
make at the punctures. This follows because upon change of local coordinates the
reduced modulus of a disk changes by a constant which is independent of the disk
itself (see Eq. (2.3.4)). The interesting fact is that the Strebel differential defines
the disks that maximize F [29]. Using the relation between reduced modulus and
mapping radius we see that the functional

(pD] " Pp, )_1 = exP(_27rf) ) (2'3'27)

consisting of the inverse of the product of all the mapping radii, is actually minimized
by the choice of disks made by the Strebel quadratic differential. This property will
be of use to us shortly.

It is worth pausing here to note that the above definition of the functional F
allows us to compare choices of disks given a fized Riemann sphere. Since we have
chosen arbitrarily the local coordinates at the punctures there is no reasonable way
to compare the maximal values of F for two different spheres. It is therefore hard
to think of Max(F) as a function on Mg . This is reminiscent of the fact that
while for higher genus surfaces without punctures we can think of the area of the
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minimal area metric as a function on moduli space, it is not clear how to do this
for punctured surfaces. The difficulty again is due to the regularization needed to
render the area finite, this requires a choice of local coordinates at the punctures, and
there is no simple way to compare the choices for different punctured surfaces. We
now wish to emphasize that our earlier discussion teaches us how to define functions
on —MO,N. These functions are interesting because they are simple modifications of
exp[—27 Max(F)] that turn out to be functions on M y.
Indeed, consider the invariant x;234 that was defined as

|21 — 22| |22 — 23| |23 — 24]|2a — 21]
X1234 = .

(2.3.28)
Ppy (1) Ppy(a2)PD3(a3)Ppy(ag)

Recall that the mapping radii entering in the definition of 1234, as well as the coor-
dinate differences, are computed using the global uniformizer, and the invariance of
X1234 just means independence of the result on the choice of uniformizer. No choice
is required to evaluate xi934. We obtain a function f on mo,4 by giving a num-
ber for each four punctured sphere R, as follows. We equip the sphere R4 with the
Strebel quadratic differential ps(R4) and we evaluate the invariant y;934 using the
disks D![ps(R,)] determined by the differential. In writing

F(R4) = x1234 (D! [0s(Ry)]) . (2.3.29)

We claim that f(R;) actually is the lowest value that the invariant y;234 can take for
any choice of nonoverlapping disks in R4

x1234 ( D' [ps(R4)]) < X1234 (D" [R4]) . (2.3.30)

To see this, fix a uniformizer such that three of the punctures lie at three points (say,
z = —1,0,1) and the fourth puncture will lie at some fixed point, which depends on
the choice of four punctured sphere. This fixes completely the numerator of x and
fixes the local coordinates at the punctures, necessary to compute the mapping radii.
Therefore

X1234 X (pD1(21) pD2(12)pD3(23)pD4(Z4))—1 = exp(—27r.7-'), (2331)

where we recognize that, up to a fixed constant, the invariant is simply related to the
value of F evaluated with the chosen coordinates at the punctures. As we now vary
the disks around the punctures, F will be maximized by the quadratic differential.
This verifies that x is minimized by the disks chosen by the quadratic differential
(Eq. (2.3.30).)

We expect the function f(R,) to have a minimum for the most symmetric surface
in My 4, namely, for the regular tetrahedron [A = (1 + iv/3)/2]. We have not proven
this, but the intuition is that for the most symmetric surface we can get the disks
of largest mapping radii. There is, of course the issue of the numerator of x with
the coordinate differences, which also varies as we move in moduli space. Still, one
can convince oneself that the function f(R,) grows without bound as R, approaches
degeneration.

36



2.3.6 Estimating mapping radii

As we have mentioned earlier, in defining the mapping radius of a punctured disk on
the sphere we use a local coordinate at the puncture which is obtained from a chosen
uniformizer on the sphere. While this mapping radius depends on the uniformizer, we
are typically interested in functions, such as the x functions, which are constructed
out of mapping radii and coordinate differences, and are independent of the chosen
uniformizer.

Consider now the sphere as the complex plane z together with a point at infinity.
The two following facts are useful tools to estimate the mapping radius of a punctured
disk centered at zg.

o If the disk D is actually a round disk |z — 2| < R, then the mapping radius
pp is precisely given by the radius of the disk: p, = R. This is clear since
w = (z — 2)/R is the exact conformal map of D to a unit disk.

e If the disk D is not round but it is contained between two round disks cen-
tered at zp with radii R, and R,, with Ry < Rj, then R; < p, < R,. This
property follows from the superadditivity of the reduced modulus (see Ref. [48],
Eq. (2.2.25)).

Given an N punctured sphere, the Strebel quadratic differential will maximize the
product of the N mapping radii. We can obtain easily a bound pips---p, >
R\Ry---R,, where the R, are the radii of non-overlapping round disks centered
at the punctures with the sphere represented as the complex plane together with the

point at infinity.

2.4 Off-shell amplitudes for tachyons

In this section we compute off-shell amplitudes for tachyons at arbitrary momentum.
We first discuss the case of three tachyons and then the case of N > 4 tachyons
which requires integration over moduli space. We examine the results for the case
of zero-momentum tachyons obtaining in this way the coefficients v, of the tachyon
potential. We explain why the choice of polyhedra for the string vertices, minimizes
recursively the coefficients of the nonpolynomial tachyon potential.

2.4.1 Three point couplings

We will now examine the cubic term in the string field potential. Assume we are
now given a three punctured sphere, and we want to calculate the general off-shell
amplitude for three tachyons. We then must compute the correlator

Apiprps = <caeimx(w1 = 0) cze X (wy = 0) cce?X (wy = 0)> . (2.4.1)

In order to do this, we have to transform these operators from the local coordinates
w, to some uniformizer 2. Let w, = 0 correspond to z = z,. We then have from the
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transformation law of a primary field

dz |p;-2

dw,

where in the last step we have recognized the appearance of the mapping radius for
the disk D,. The correlator then becomes
1

Apiprps = <caeipx( 1) cce® (z2) Céeipx(z3)> 2 P2 2—p2 2-p2’

]zl _ Z2|2+2p1p2|2 _ z3|2+2pzpa|z _ Z3|2+2p1p3

. 2 _
X( =X (z,) g, (242)

ceePrX (w, = 0) = cee’’r* (2 = z,)

w,;=0

(2.4.3)

PP P RS
x[—2(2m)P6P (X p,) ],

where we made use of Eq. (2.2. 7) which introduces an extra factor of —2 (shown in
brackets) due to our convention ¢y = (co + &)/2. In order to construct a manifestly
PSL(2,C) invariant expression we use momentum conservation in the denominator

to write
|21 — 2y|PTPIP2 |y — 23|2H2P3 ) — 5|7 FEPIPs

A =
P1P2P3 (plpz) 1+p1p2 (p2p3)1+p2p3 (p1p3)1+p1ps
x[-2(2m)P8P (X p,) ], (2.4.4)
3
~2(2m)P2(3 p) - [ b
I<J

which is the manifestly PSL(2, C) invariant description of the off-shell amplitude.

We can now use the above result to extract the cubic coefficient of the tachyon
potential. By definition, the operator formalism bra (lq(§'§| representing the three
punctured sphere must satisfy

V& (@1, p)® (@1, p2)? (&)1, 23)® = Apipaps - (2.4.5)

Moreover, the multilinear function representing the cubic interaction is given by

(T}, = (VAITYOITYOITY® |

— dp, dp, dps -, . .
/(27r) D (2rr)D (27)P Apipaps T(P1)T(D2) (p3),

/ H K ;ip),D (2m)262(3 " p,) (2.4.6)
x(—2) H [x, )1 FPr2s -7 (p1) 7 (p2)7(Ps)

I<J

where use was made of the definition of the string tachyon field in Eq. (2.2.2), of
Eq. (2.4.5), and of Eq. (2.4.4). Comparison with Eq. (2.2.10), and use of Eq. (2.2.13)
now gives

v, =—2- H[XIJ] =-2-

I1<J

Z2| |22 — Za| |21 — 2312
010203
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in terms of the PSL(2,C) invariant x;s3. It follows from the extremal properties
discussed earlier that the minimum value possible for v, is achieved for the Strebel
quadratic differential defining the Witten vertex. We will calculate the minimum
possible value for v, in section 2.5.1.

2.4.2 The off-shell Koba-Nielsen formula

We now derive a formula for the off-shell scattering amplitude for N closed string
tachyons at arbitrary momentum. The final result will be a manifestly PSL(2, C)
invariant expression. The computation is simplified because the tachyon vertex op-

erator is primary even off-shell, and because its ghost structure is essentially trivial.
We work in the z-plane and fix the position of the three last insertions at z,,_,, 2, _,
and z,. The positions of the first V — 3 punctures will be denoted as z, z3,- - - 2,,_,.

We must integrate over the positions of these N — 3 punctures. Each will therefore
give a factor

d.’L‘I A dy, b(((;i:l}) b(aa—y) = d.’III A dyl 21 B_]_b_l = —dZI A dZ, l_)_lb_.l y (248)

where z, = z,+1y,. There is a subtlety here, each of the antighost oscillators refers to
the z plane, while the ghost oscillators in each tachyon insertion cllv’ éiu’ |0, p)*r refer
to the local coordinate w,, where z = h,(w,). Transforming the antighost oscillators
we obtain b_; = [I/(0)]716%} + ---, where the dots indicate antighost oscillators

b:éo that annihilate the tachyon state. For the antiholomorphic oscillator we have

_ 1 1,
by = [h'l (O)] b_] + ---. Therefore each of the integrals will be represented by

1 1
2idz, A dy, e |0,p)*r = 2idz, Ady, — = |0, p), (2.4.9)
1 p,

where p, = |h/(0)] is the mapping radius of the I-th disk. The Koba-Nielsen ampli-
tude will therefore be given by

.\ N-3
1 * dx Ay 1
Apppy = (%) 22 o 3/ H 2 pzl 2_p2

—pN 2 27PNy 27P%,
I N 2 pN 1 pN 9 (2.4.10)
x< P1X(21) .., oPy_3X(2y_3) ctePN- 2 X(2y_3) ccePn- 1 X2y l)cce’pNX(zN)>

where the correlator is a free-field correlator in the complex plane. We will not include
in the amplitude the coupling constant factor k¥ 2. The extra factor (i/2m)V=3 in-
cluded in the formula above is well-known to be necessary for consistent factorization,
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and has been derived in closed string field theory.® We then have

dz,dy
7-‘-N 3/1_[ ——pII
XI(ZN—2_zN 1)( n_ 2" N)( Zn_ 1_2'1\/)|2

2—p2 2—p? 2—-p2?
N-2 N-1 N
Pn-2 Pn-1 PN

X ﬁ |z, — z,|*P1Ps - [(QW)D6 (Zp,)] .

Using momentum conservation, and the definition of the invariants x,, and x,,., we
can write the above as

N 2 = dxldyl 2 ~ PP D
A = s [T 5% - TLa - [0 (E01)]
=1 M 1<J

(2.4.12)
It follows immediately from the transformation law for the mapping radius that the
measure dz, AdZ, /p? is PSL(2, C) invariant. Therefore the above result is a manifestly
PSL(2,C) invariant off-shell generalization of the Koba-Nielsen formula. For the case
of four tachyons it reduces to an off-shell version of the Virasoro-Shapiro amplitude

4
Apypy = %/dxl—;iyl X334 - H Xpibs [(27")D5 (ZP:)] : (2.4.13)
I<J

)N

Pl PN_

(2.4.11)

P

If we choose to place the second, third, and fourth punctures at zero, one and infinity
respectively, we end with

z|2”“’2|z _ 1|2p1p3

2 D
Apopy = = / dedy o o [enns (Yn)] . @41y
Pr P2 "P3 P4

Another expression can be found where the variables of integration are cross-ratios.
We define the cross ratio

(zI — zN-—2) (zN—l - ZN)

A, = ; = 2.4.15
I {zI’ZN—2’ZN-1’zN} (Zz — zN) (ZN~1 — ZN_2) ) ( )
and it follows that
dX, A d) — 2|2, — 2
dzl /\ dz] — I 2AI |ZI ZNI |zI zzN—Zl , (2.4.16)
|)‘11 IZN - zN—-Zl
leading to
. N-3 N-3 N
1 dA\, NdA, (Xin—an-1n )2
Am"-pN 2( )N (27r) / [ i)\ ‘2 I ( XIN 2,N lN) ] 'X,QV_Z,N_I,N
=1 ! No2NoLy (2.4.17)

IR [emPs (3on)] -

6The value used here appears in Ref. [15], where a sign mistake of Ref. [46] was corrected.
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For the case of four tachyons the above result reduces to

AWMZ;/M&?MM H%W“k%WNzﬁJy (2.4.18)

In the above expressions the A integrals extend over the whole sphere. This formula
with a slight modification will be used in chapter 3 to calculate the fourth order
tachion term in the effective tachion potential.

Having obtained manifestly PSL(2,C) invariant expressions valid for arbitrary
momenta, we now go back to our particular case of interest, which is the case when
all the momenta are zero. It is simplest to go back to Eq. (2.4.10) to obtain

Al N = WN 3/1—[ dzx dyz Zn_a — Rn_ 1|p|ZN;_’;N|2|ZN—1_zN|2 (2419)
N-1"N o k.
x[(2m)P6(0)],
and for the case N =4
dz, d 29 — 23|°|2z90 — z4|%|23 — 2
PO T o el o i [(27)P6(0)] . (2.4.20)

m P P3P0

These are the expressions we shall be trying to estimate. If we set the three special
points appearing in the above expressions to zero, one and infinity, we find (see
section 2.3.3)

’ dzx dy 1
Ay = (=) / ! 2m)P5(0)],  (2.4.21
LN = ) TN-3 11_[1 1 p?v-z(o)pqu(l)pzzv(oo) [( ) ( )] ( )
and in particular case N =4
Apg = —/ 2m)76(0)]. 2.4.22
5] TR AADAG O e

Let us now use the above results to extract the quartic and higher order coefficient
of the tachyon potential. By definition, the operator formalism bra representing the
collection of N-punctured spheres must satisfy

[ @M@  @allp)® = Ay on), (2428
Vo,n

where the V), y argument of A, .., (Vo ~) indicates that the off-shell amplitude has
only been partially integrated over the subspace V, y. The corresponding multilinear
function is given by

(Thoy = [ (@D -y
Vo,n

v (2.4.24)
/ H dpl Pl DN (VO’N) T(pl) e T(pN) )
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where we made use of the definition of the string tachyon field in Eq. (2.2.2), and of
Eq. (2.4.23). Reading the value of the amplitude at zero momentum, and by virtue
of Eq. (2.2.10) and Eq. (2.2.13) we get

(=)" :

N

d:L‘ dy{ ZN—2 - ZN—1|2|ZN—2 - ZN|2IZN—1 B ZN|2
7rN‘
Vo,n I =L

0y Pa P

/ H ’ dx dy, 1
e von 121 P P (0005 (1)} (00)

Note here the pattern of signs. All v, for N even come with positive sign, and all
v, for N odd come with a negative sign. Including the overall minus sign in passing
from the action to the potential (Eq. (2.2.12)), and the sign redefinition 7 — —7, all
coefficients of the tachyon potential become negative.

It is worthwhile to pause and reflect about the above pattern of signs. In partic-
ular, since v, turned out to be positive, the quartic term in the tachyon potential is
negative, as the quadratic term is. While the calculations leading to the sign factors
are quite subtle, we believe that the result should have been expected. In closed
string field theory, the elementary four point interaction changes if we include stubs
in the three string vertex. Both the original interaction and the one for the case of
stubs must have the same sign, because they only differ by the region of integration
over moduli space, and the integrand, as we have seen, has a definite sign. On the
other hand, the interaction arising from the stubbed theory would equal the orig-
inal interaction plus a collection of Feynman graphs with two three-string vertices
and with one propagator whose proper time is only partially integrated. Such terms,
for completely integrated propagators and massive intermediate fields would give a
contribution leading to a potential unbounded below. For partially integrated prop-
agators they also contribute such kind of terms, both if the field is truly massive, or
if it is tachyonic. This indicates that one should have expected an unbounded below
elementary interaction.

It is now simple to explain why the choice of restricted polyhedra (polyhedra
with all nontrivial closed paths longer than or equal to 27 [49]) for closed string
vertices minimizes recursively the expansion coefficients of the tachyon potential. We
have seen that v, is minimized by the Witten vertex. At the four point level we
then have a missing region V4. In the parametrization given by the final form in
Eq. (2.4.25) the region of integration corresponding to Vy4 is fixed. At each point in
this region, the integrand, up to a constant, is given by 1/ []; p? = exp(—47F), and as
explained around Eq. (2.3.27), this quantity is minimized by the choice of coordinate
disks determined by the Strebel differential. Since the integrand is positive definite
throughout the region of integration, and, at every point is minimized by the use of
the Strebel differential, it follows that the integral is minimized by the choice of the
Strebel differential for the string vertex. That is precisely the choice that defines the
restricted polyhedron corresponding to the standard four closed string vertex. It is
clear that the above considerations hold for any Vy x. The minimum value for v, is
obtained by using polyhedra throughout the region of integration. Therefore, starting

(2.4.25)
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with the three string vertex, we are led recursively by the minimization procedure to
the restricted polyhedra of closed string field theory.

2.5 Estimates for the tachyon potential

The present section is devoted to estimates of the tachyon potential. While more
analytic work on the evaluation of the tachyon potential may be desirable, here we
will get some intuitive feeling for the growth of the coefficients v, for large N. The
aim is to find if the tachyon potential has a radius of convergence. We will not be able
to decide on this point, but we will obtain a series of results that go in this direction.

For every number of punctures N, there is a configuration of these punctures on
the sphere for which we can evaluate exactly the measure of integration. This is the
configuration where the punctures are “equally separated” in a planar arrangement.
These configurations appear as a finite number of points in the boundary of V; v,
and in some sense are the most problematic. The large /V behavior of the measure at
those points is such that if the whole integrand were to be dominated by these points
the tachyon potential would seem to have no radius of convergence. The shape of Vy n
around those points, however, is such that the contributions might be suppressed.

In each Vy n there are configurations where the punctures are distributed most
symmetrically. It is intuitively clear that at these configurations the measure is in
some sense lowest. It is possible to estimate this measure for large N, and conclude
that, if dominated by this contribution, the tachyon potential should have some radius
of convergence.

The behavior of the measure for the tachyon potential is such that the measure
grows as we approach degeneration, and if V4, for example, was to extend over all
of M,A the naive integral would be infinite. This infinity is not physical, because we
do not expect infinite amplitude for the scattering of four zero-momentum tachyons.
We explain how analytic continuation of the contribution from the Feynman graphs
removes this apparent contradiction.

We begin by presenting several exact results pertaining two, three, and four-
punctured spheres.

2.5.1 Evaluation of invariants

Consider first the invariant x;2 of a sphere with two punctured disks (Eq. (2.3.7)).
The disks may touch but they are assumed not to overlap. Since the mapping radii
can be as small as desired, the invariant x;, is not bounded above. It is actually
bounded below, by the value attained when we have a Strebel quadratic differential.
We can take the sphere punctured at zero and infinity, and the quadratic differential
to be ¢ = —(dz)%/22. While this differential does not determine a critical trajectory,
we can take it to be any closed horizontal trajectory, say |z| = 1. This divides the
z-sphere into two disks, one punctured at z = 0 with unit disk |z| < 1 and the other
punctured at z = 0o, or w = 0, with w = 1/z, and with unit disk |w| < 1. It follows
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that their mapping radii are both equal to one. We therefore have, using Eq. (2.3.17),

X1z = Min (x12) = Miﬂ( ) =1. (2.5.1)

Pp,0) Ppy(oo)

We now consider three punctured spheres and try to evaluate the minimum value
of the invariant x93 defined in Eq. (2.3.10). This minimum is achieved for the three
punctured sphere corresponding to the Witten vertex. In this vertex we can represent
the sphere by the z plane, with the punctures at e**"/3, —1. The disk surrounding
the puncture at z = €*™/3 is the wedge domain 0 < Arg(z) < 27/3. This domain is
mapped to a unit disk |w| < 1 by the transformations

t—i
t =252, = : 2.5.2
yA w t+1 ( 5 )

One readily finds that the mapping radius p of the disk is given by p = |&|,_o = 4/3.
Furthermore, the distance |z, — z,| between any of the punctures is equal to /3.
Therefore back in Eq. (2.3.10) we obtain

- . 3v/3\?
X123 = Min (x123) = (T) : (2.5.3)
This result implies that the minimum possible value for |v,| is realized with
v, = —3°/2"quad (see Eq. (2.4.7)). (2.5.4)

Another computation that is of interest is that of the most symmetric four punc-
tured sphere, a sphere where the punctures are at 2 = 0,1,00, and at z = p = e /3,
The Strebel quadratic differential for this sphere can be found to be

_ Qa2 -p) (&)
S (=D - p)H - P72
Here the poles are located at the points z = 0, 1, p?, and p*. The zeroes are located at

z= —%, %p, %ﬁ, and oo. One can use this expression for a calculation of the mapping
radii.

(2.5.5)

2.5.2 The measure at the planar configuration

In each V, v, for N > 4 there is a set of symmetric planar configurations for the punc-
tures. They correspond to the surfaces obtained by Feynman diagrams constructed
using only the three string vertex, and with all the propagators collapsed with zero
twist angle. We will consider the case of N punctures and give an exact evaluation
for the measure. This will be done in the frame where three punctures are mapped to
the standard points z = 0,1, 00, and the rest of the punctures will be mapped to the
points 21, 23, - - - Z,_, lying on the real line in between z = 0 and z = 1. Consequently,
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Figure 2-1: Planar configuration of punctures on the sphere.
Shown are the maps from the ring domain associ-
ated with a specific puncture to the unit disk.

we will take 2z, , = 1,2z, , = oo and 2z, = 0. The measure we will calculate will be
defined as
N-3 2 2 2
dzr. d z -z 2z —z. 1%z -z
dﬂN = H xlzyl I N-2 N—1| |2 N—22 1\2'! | N-1 Nl , (2.5.6)
I=1 Py Pr_2Pn_1Py

which, up to constants, is the measure that appears in Eq. (2.4.19). The result will be
of the form du, = f, 1—[’1:/=—13 dzydyg, where f, is a number depending on the number
of punctures.

We begin the computation by using a & plane where we place all the N punctures
equally spaced on the unit circle |{| = 1. We thus let & be the position of the k-th
puncture, with

& = exp((2k — 1)in/N), k=1,2,---N. (2.5.7)

In this presentation the ring domain surrounding a puncture, say the first one, is
the wedge domain 0 < Arg(¢) < 27/N (see Fig. 2-1) The mapping radius can be
computed exactly by mapping the wedge to the unit disk |w| < 1, via t = £/ and
w = ttﬁ The result is p = 4/N, and picking the three special punctures to be

En_or&y_, and &, we find

dy, =64 sin“(%) -sin2(4ﬁ7r) : (%)w : ﬁd%, (2.5.8)
k=1

where d?¢; = dRe&;, dIm¢&;. This is the measure, but in the & plane. In order to
transform it to the z-plane we need the PSL(2,C) transformation that will satisfy
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2(&y) =0,2(&,_,) =1, and 2(§,_,) = 0o. The desired transformation is

_E—e . _ sin(7/N)
ZT "N -8, with |8 = sin(2r/N) (2.5.9)
and a small calculation gives
dz |2 sin?(27/N) (k+Dr
d2 = |57 = 4 VTt in* M . Je
€k ’df . dzxdyy sin4(7r/N) sin (——N ) dzidys, (2.5.10)

This expression, used in Eq. (2.5.8) gives us the desired expression for the measure

e = 2 ()50 () () ()

[Hsm ( (k+ m )] Hdﬂ?kdyk

This is an exact result, valid for all N > 4. For the case of N = 4 it gives dus =
256 dxdy.” Let us now consider the leading behavior of this measure as N — oo. The
only term that requires some calculation is the product a,, = [J- sin*((k + 1)7/N).
One readily finds that as N — oo

(2.5.11)

N s
Ina, ~ 4- —7r_/ dfln(sinf) = —4NIn(2) = a, ~472N, (2.5.12)
0

and using this result, we find the large N behaviour of the planar measure

dp, ~ 475 [Nz]w ° H daxdy (2.5.13)

This was the result we were after. We see that this measure grows like N*V. This
growth is so fast that presents an obstruction to a simple proof of convergence for
the series defining the tachyon potential. Indeed, a very naive estimation would not
yield convergence. Let us see this next.

Let us assume that this planar uniform configuration is indeed the point in Vy n
for which the measure is the largest. This statement requires explanation, since the
numerical coefficient appearing in front of a measure can be changed by PSL(2,C)
transformations. Thus given any other configuration in V, y with a puncture at 0,1
and oo we do a transformation z — az with @ = 1/zpax, where zmax is the position of
the puncture farther away from the origin. In this way we obtain a configuration with
all the punctures in the unit disk, the same two punctures at zero and infinity, and
some puncture at one. At this point the measures can be compared and we expect

"For N = 4 the measure can also be calculated exactly for the configuration with cross ratio
equal to (14i+/3)/2. As we will become clear in chapter 3, at this configuration dy, = s dedy =
20.07dz dy. This corresponds to the measure at the “center” of Vp 4 and is indeed much smaller
than the measure 256 dz dy at the corners of Vg 4.
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the planar one to be larger. It is now clear from the construction that the full Mg y is
overcounted if we fix two punctures, one at zero, the other at infinity, and among the
rest we pick one at a time to be put at one, while the others are integrated all over the
inside of the unit disk. If we estimate this integral using our value for the measure in
the worst configuration we get that each coefficient v, < [(N —2)7V 3| N*¥-12 where
the prefactor in brackets arises from the above described integrals (this prefactor does
not really affect the issue of convergence). The growth N*V rules out the possibility
of convergence. This bound is quite naive, but raises the possibility that there may
be no radius of convergence for the tachyon potential.

2.5.3 The most uniform distribution of punctures

The corners of V;, y turned out to be problematic. Since we expect the measure for
the coefficients of the tachyon potential to be lowest at the most symmetric surfaces,
we now estimate the measure at this point in Vy n for large N. The estimates we
find are consistent with some radius of convergence for the tachyon potential if the
integrals are dominated by these configurations.

It is possible to do a very simple estimate. To this end consider the z plane and
place one puncture at infinity with |z| > 1 its unit disk. In this way its mapping radius
is just one. All other punctures will be distributed uniformly inside the disk. Because
of area constraint we can imagine that each puncture will then carry a little disk of
radius r, with N7r? ~ 7 fixing the radius to be r ~ 1/v/N. The mapping radius of
each of these disks will be 7. Another of the disks will be fixed at 0, and another to
2r. We can now estimate the measure, which is the integrand in Eq. (2.4.19), where
in dealing with the three special punctures we make use of Eq. (2.3.18). We have
then

d (@r)* 77 du.dy, NN-2 N_Bd d 9.5.14
"I’S}’mNT2.T2.1II-—Il 7'2 ~ 11—11 xl yI‘ ( )

Since all the punctures, except for the one at infinity, are inside the unit disk, we can
compare the measure given above with the measure in the planar configuration. In
that case the measure coefficient went like N*V and now it essentially goes like NV,
which is much smaller, as we expected.® We can also repeat the estimate we did for
the integration over moduli space for the planar configuration, and again, we just get
an extra multiplicative factor of IV, which is irrelevant. Therefore, if we assume this
configuration dominates we find v, ~ NV and the tachyon potential 3 ‘;V—N!TN would
have some radius of convergence.

8Notice that if the punctures in the planar configuration had remained in the boundary of the
unit disk then the measure would have only diverged like N2V. The conformal map that brought
them all to the real line between 0 and 1 introduced an extra factor of N2V, This suggests that the
divergence may actually not be as strong as it seems at first sight.
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2.5.4 Analytic continuation and divergences

Here we want to discuss what happens if we do string field theory with stubs of length
[. Tt is well-known that as the length of the stubs goes to infinity [ — oo then the
region of moduli space corresponding to V; 4 approaches the full Mg 4. In this case the
coefficient of the quartic term in the potential will go into the full off-shell amplitude
for scattering of four tachyons at zero momentum. We will examine the measure of
integration for the tachyon potential as we approach the boundaries of moduli space
and see that we would get a divergence corresponding to a tachyon of zero momentum
propagating over long times. We believe this divergence is unphysical, and that the
correct approach is to define the amplitude by analytic continuation from a region in
the parameter space of the external momenta where the amplitude converges. When
the full off-shell amplitude is built from the vertex contribution and the Feynman
diagram contribution, analytic continuation is necessary for the Feynman part.

We therefore examine the off-shell formula for the evaluation of the four string ver-
tex for general off-shell tachyons. What we need is the expression given in Eq. (2.4.14)
integrated over V4
lz|2p1p2|z _ 1‘2171193

(2.5.15)

2
Apipy = - dz dy P

2 —mn2 2 2
Vo, Pz Po ot

2
P1 " Poo

—Pg

where we have added subscripts to the mapping radii in order to indicate the position
of the punctures. Let us now examine what happens as we attempt to integrate with
z — 0, corresponding to a degeneration where punctures one and two collide. In this
region p; and p, behave as constants, and we have that

a7

A, N/ dr dy ————, (2.5.16)
P1-P4 |zl<c pz_p%pg_p%

As the puncture at z is getting close to the puncture at zero it is intuitively clear
that the mapping radii p, ~ po ~ |2|/2 as these are the radii of the “largest” nonin-
tersecting disks surrounding the punctures. Therefore

dz dy dz dy
py ™ = ——— 2.5.17
Apl P4 ~/|:2|<C |z|4—p§—p§—2p1p2 /|;|<0 |z|4—(P1+P2)2 ( )

and we notice that the divergence is indeed controlled by the momentum in the
intermediate channel. If all the momenta were set to zero before integration, we get
a divergence of the form [ dr/r®. But the way to proceed is to do the integral in a
momentum space region where we have no divergence

dr 1
o / N , 2.5.18
PP e TR 12— (py + )7 ( )

and the final result does not show a divergence for p; = p, = 0. Notice also that the
denominator in the result is nothing else than Ly + Lo for the intermediate tachyon,
if that tachyon were on shell, we would get a divergence due to it.
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2.6 A formula for general off-shell amplitudes on
the sphere

In this section we will derive a general formula for off-shell amplitudes on the sphere.
In string field theory those amplitudes are defined as integrals over subspaces Ay of
the moduli space ﬁo, ~ of N-punctured spheres with local coordinates, up to phases,
at the punctures. We will assume a real parameterization of Ay and derive an
operator expression which expresses the amplitude as a multiple integral over these
parameters. The new point here is the explicit description of the relevant antighost
insertions necessary to obtain the integrand, and the discussion explaining why the
result does not depend neither on the parameterization of the subspace nor on the
choice of a global uniformizer on the sphere.

We also give a formula for the case when the space Ay is parametrized by complex
coordinates. For this case we will emphasize the analogy between the b-insertions
for moduli and the b-insertions necessary to have PSL(2,C) invariance. Finally, we
will show how the general formula works by re-deriving the off-shell Koba-Nielsen
amplitude considered earlier.

2.6.1 An operator formula for N-string forms on the sphere

Recall that the state space H of closed string theory consists of the states in the
conformal theory that are annihilated both by Ly — Ly and by by — by. Following [46]
we now assign an N-linear function on H to any subspace A of ﬁo, ~- The multilinear
function is defined as an integral over A of a canonical differential form

{‘Illa Uy,..., ¥, }A = /AQSI?:I\;;.._\I?LHIMO’N)O’N . (2.6.1)

One constructs the forms by verifying that suitable forms in Py 5 do lead to well
defined forms in Py . This is the origin of the restriction of the CFT state space
to H. The canonical 2(N — 3) + k—form Q®% on P, y is defined by its action on
2(N — 3) + k tangent vectors V, € Tx, Py n as

1

N-3
5w, (Vi Vagv—gyak) = <2—7F) (Zp[b(v1) -+ b(vav—a+) L) . (26.2)

Here the surface state (Xp| is a bra living in (H*)®" and represents the punctured
Riemann surface ¥p. The symbol v, denotes a Schiffer variation representing the
tangent V), and

N

b(v) =3 }{ d—w“v(’)(w,)b(”(wwj{ @b (@,) . (269

= Juw,=0 2Ti @,=0 271

Recall that a Schiffer variation for an N-punctured surface (in our present case a
sphere) is an N-tuple of vector fields v = (v(V),v® ... vM) where the vector v(¥)
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is a vector field defined in the coordinate patch around the k-th puncture.® Let wy
be the local coordinate around the k-th puncture Py (wg(Fx) = 0). The variation
defines a new N-punctured Riemann sphere with a new chosen local coordinates
wy, = wy + ev® (wg). The new k-th puncture is defined to be at the point Pj such
that wj(P;) = 0. It follows that the k—th puncture is shifted by —ev(*)(P;). For
any tangent V € Tpﬁg,N there is a corresponding Schiffer vector. Schiffer vectors are
unique up to the addition of vectors that arise from the restriction of holomorphic
vectors on the surface minus the punctures.

Note that the insertions b(v) are invariantly defined, they only depend on the
Schiffer vector, and do not depend on the local coordinates. Indeed b is a primary field
of conformal dimension 2 or a holomorphic 2-tensor. Being multiplied by a holomor-
phic vector field v it produces a holomorphic 1-form, whose integral § _, 22y (w)b(w)
is well-defined and independent of the contour of integration.

In order to evaluate Eq. (2.6.1) we choose some real coordinates Ay, ..., Adim 4
on A. Let {V},} = 0/0X; be the corresponding tangent vectors, and let {dAz} be
the corresponding dual one-forms, i.e. dAx(V),) = 6x;. Using {V),} we can rewrite
Eq. (2.6.1) as

.\ N—3
i
{9y, ¥ }a= (g) /dAl"'dAdimA
X(Zp[b(va) - b(Vagm )IP1) -+ [Ty

(2.6.4)

In order to continue we must parameterize A as it sits in the moduli space ﬁo,N.
Let w, be a local coordinate around the /-th puncture. Given a global uniformizer
z on the Riemann sphere we can represent w, by as an invertible analytic function
w,(2) defined on some disk in the 2—plane which maps the disk to a standard unit
disk |w,| < 1. The inverse map h, = w; ! is therefore an analytic function on a unit

disk. Therefore, N functions h,(w,) define a point in ’I/D\O,N, namely the sphere with
N punctures at h,(0) and local coordinates given by w,(z) = h;*(z). The embedding

of A in ﬁo, ~ 1s then represented by a set of N holomorphic functions parameterized
by the real coordinates Ax on A: {hi({\c};w1),-- -, hy({Ac}; wy)}. It is well known
how to write the state (Xp| in terms of h,’s (see [50,51]).

(Sp =2 / Hdp, (2)P5P (Zp,)® 1) [ ECECE

3 (2.6.5)
xexp (B(a) + F(b,)) = 3 3 (¢"Mp/e) - IETED) ).

n=1m>-1

where repeated uppercase indices I, J - - -, are summed over the N values they take.

9In general the vector fields v(¥) are defined on some annuli around the punctures and do not
extend holomorphically to the whole coordinate disk, in order to represent the change of modulus
of the underlying non-punctured surface (see [46]). For g = 0 the underlying surface is the Riemann
sphere and has no moduli. Therefore, the Schiffer vectors can be chosen to be extend throughout
the coordinate disk.
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In here

1
E(a) = —3 Y ( (DN o) 4 GIONTT 5 S,{)) ’

F(b,o) = 3 (dDNEHD +EDNLBD)
n>2
m>-1

The vacua satisfy (1¢,p|1,¢) = é6(p — q), and the odd Grassmann variables (" are
integrated using

/d2<1d2€-2d2g3 Clgl CZC_Q <3€3 =1. (267)

Note that the effect of this integration is to give the product of six antighost insertions
coming from the last term in the exponential in Eq. (2.6.5). The minus sign in front
of this term is actually irrelevant (as the reader can check) but it was included for
later convenience. A bar over a number means complex conjugate while a bar over
an operator is used in order to distinguish the left—-moving modes from right-moving
ones. The Neumann coefficients N'I7 and N'I7 are given by the following formulae:

17 _ {log(h’I(O)), I=J
% log(h;(0) — h,(0)), I#J

1 dw -1
1J _ — —npl
M"—n}i(ﬂm h()h(O (w)’

X . (2.6.8)
IJ _ P I w™" [
N = m J,—o 27rz (@), f 0 i i )(h (z) — h,(w))?’
r1J 1 dz ML (g 2 }{ dw w2} 1
Noin = m J,—o omi” ()5 02m ( (w)™ h,(2) = h,(w)"
Moreover,
MP = e ) ), n=123 (269)
w=0

Antighost insertions

Now let us show how to take the b-insertions into account. In order to calculate
the b-insertion associated to a tangent vector V' € TP, v, we must find the Schiffer
vector (field) that realizes the deformation of the surface ¥ specified by V. Consider
a line ¢(t) in 7—”’0 ~ parameterized by the real parameter ¢: ¢: [0, 1] — P N, such that
¥ = ¢(0), and the tangent vector to the curve is V = ¢, ( dt) We will see now how
one can use this setup to define in a natural way a vector field on the neighborhood
of the punctures of the Riemann surface X. This vector field is the Schiffer vector.
We can represent the curve ¢(t) by N functions h,(t; w), holomorphic in w, and
parameterized by t. Choose a fixed value wy of the w disk. We now define a map
f¥° : ¢(t) — ¥ from the curve ¢(t) to a curve on the surface ¥. The function f®°
takes c(t) to z,(t) = h,(t,wp) for each value of . We can now use the map f*° to
produce a push-forward map of vectors f*° : Tc — Th,(0,wo)%- In this way we can
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Figure 2-2: We show how to obtain a Schiffer vector field associated
to a tangent vector in Py . Shown are the Riemann
surface ¥ and the local coordinate plane w.

produce the vector f*°V € T, (0w,)X. By varying the value of wy we obtain a vector
field on the neighborhood of the I-th puncture. We claim that this vector field, with
a minus sign, is the Schiffer vector. In components, and with an extra minus sign,
the pullback gives

v®(z) = —%%’— (t;w,(2)) , (2.6.10)

It is useful to refer the Schiffer vector to the local coordinate w,. We then find, by
pushing the vector further

oh, \ "' Oh,(t;w,)
() - _ I L on s, Wy
v (w,) (810,) — (2.6.11)

By definition, the Schiffer vector v(V) corresponding to the vector V is given by
the collection of vector fields v = (v (wy), -+, v®™(w,)). If we define the vector

Vi, € T’ﬁo, ~ to be the tangent associated to the coordinate curve parameterized by
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Ak, we then write the Schiffer variation for V), as:

Moy 1 Oh(Nuw,)
v,\k (wl) - h,] (wr) a)‘k ’

(2.6.12)

where b’ (w,) = (Oh, /0w, ).

Before proceeding any further, let us confirm that the ‘natural’ vector we have
obtained is indeed the Schiffer vector. This is easily done. Let p denote a point in
the Riemann surface ¥ and let w,(p) denote its local coordinate. By definition, the
Schiffer vector defines a new coordinate w!(p) as w' (p) = w(p) + dt v/ (w(p)), where ¢
is again a parameter for the deformation. Since the z-coordinate of the point p does
not change under the deformation, we must have that h, (t+dt, w!(p)) = h,(t, w,(p)).
Upon expansion of this last relation one immediately recovers Eq. (2.6.11).

One more comment is in order. What happened to the usual ambiguity in choosing
Schiffer vectors? Schiffer vectors are ambiguous since there are nonvanishing N-tuples
that do not induce any deformation. This happens when the N-tuples can be used
to define a holomorphic vector on the surface minus the punctures. In our case the
ambiguity is due to the fact that the functions h,(A, w) can be composed with any
PSL(2, C) transformation S in the form Soh, (A w). We will come back to this point
later.

Using Eq. (2.6.3) we can now write b(v*) as

b(vy,) =~ Y (BEb) + BEBY), (2.6.13)

m>—1

where, as usual, the repeated index J is summed over the number of punctures, and

dw _. o, 1 0h,(\w)
BkJ :% hatad m—2 J\"™H ) 6.
™= fe2mi K (w) oM (26.14)

The range m > —1 has been obtained because the Schiffer vectors can be chosen to
be holomorphic and not to have poles at the punctures (this will not be the case for
higher genus surfaces).

Let us now treat the b-insertions in a way similar to that used for the zero modes
in Eq. (2.6.5). Let ¢, and 75, be anti-commuting variables, then

/dél-« et = /dflem1 N '/déne‘""" =M T (2.6.15)

This observation allows us to represent the product of b-insertions in Eq. (2.6.2) as
an integral of an exponent.

dim A4 dim A
B(Va) B(Vag ) = / [T aehexp(- 3° 3 & (B +BEEY) ),
k=1 k=1 m>-1

(2.6.16)
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where the £"’s are real Grassmann odd variables. The multilinear product Eq. (2.6.1)
now assumes the form

i N-3 N N
{\I/N}A =2 (g) /HdeI(27r)D(SD (Z pI)
=1 dim A I(Ti%nA

N
X ®<1C,p,|/ IT dxe ] 4t
I=1 k=1

k=1

< / 2C 222 exp (E(a) + F(b,c) (2.6.17)
3

=300 (M - CMED)

k=1m>-1

dim A
-3 e (B0 + BED) ),

k=1 m>-1

The above formula together with equations (2.6.6),(2.6.8), (2.6.9) and (2.6.14)gives a
closed expression for a multi-linear form associated with A C ﬁo, N-

The resemblance of the last two terms appearing in the exponential is not a
coincidence. While the last term arose from the antighost insertions for moduli,
the first term, appearing already in the description of the surface state (X|, can be
thought as the antighost insertions due to the Schiffer vectors that represent PSL(2, C)
transformations. This is readily verified. Consider the sphere with uniformizer z. The
six globally defined vector fields are given by v (z) = 2*, and v} (z) = i2* with k =
0,1,2. Referring them to the local coordinates one sees that vi(w) = [k, (w)]*/h! (w)
and v'y(w) = i[h,(w)]¥/R (w). As a consequence

b(oe) = > (M b+ M b ) | (2.6.18)
m>—1

b(o) =i Y (M,’;J brn —H,'?Bm) , (2.6.19)
m>—1

where the M coefficients were defined in Eq. (2.6.9). It is clear that the product of
the six insertions precisely reproduces the effect of the first sum in the exponential of
Eq. (2.6.17).

In order to be used in Eq. (2.6.17) the subspace A is parametrized by some co-
ordinates \;. The expression for the multilinear form is independent of the choice
of coordinates; it is a well-defined form on A.!1° Once the parametrization is chosen,
the space A has to be described by the N functions h, (A, w). These functions, as we
move on A are defined up to a local linear fractional transformation. At every point
in moduli space we are free to change the uniformizer. Let us see why Eq. (2.6.17)

10This is easily verified explicitly. Under coordinate transformations, the product [] d); transforms
with a Jacobian, and the product of antighost insertions, as a consequence of Eq. (2.6.14) transforms
with the inverse Jacobian.
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has local PSL(2, C) invariance. The bosonic Neumann coefficients N/ are PSL(2,C)
invariant by themselves for n,m > 1. The sums ¥, o' N& ol = S, , N&p,p,
and 3, N ol = 3 NIy can be shown to be invariant due to momentum con-
servation »_p, = 0. A detailed analysis of PSL(2, C) properties of the ghost part of a
surface state have been presented by LeClair et al. in [50] for open strings. Their ar-
guments can be readily generalized to our case. The only truly new part that appears
in Eq. (2.6.17) is the last term in the exponential.

Under global PSL(2, C) transformations, namely transformations of the form h —
(ah+b)/(ch+d), with a, b, c and d independent of A, this term is invariant because so
is every coefficient BE/. Since a general local PSL(2, C) tranformation can be written
locally as a global transformation plus an infinitesimal local one, we must now show
invariance under infinitesimal local transformations. These are transformations of the
form

R, = hy +a(A) + b(A\)h, + c(N)R2, (2.6.20)
for a, b, and ¢ small. A short calculation shows that
1 Oh, 10h, 1[da b dc ,
- = —— - — h, + h 2.6.21
Mo Ko B (55 * et + o) (2.6:21)

On the left hand side we have the new Schiffer vector, and the first term the right
hand side is the old Schiffer vector. We see that they differ by a linear superposition of
the Schiffer vectors v{ and v';, introduced earlier in our discussion of PSL(2, C) trans-
formations (immediately above Eq. (2.6.18).) It follows that the extra contributions
they make to the antighost insertions vanish when included in the multilinear form
because the multilinear form already includes the antighost insertions corresponding
to the Schiffer vectors generating PSL(2, C).

Complex coordinates

In some applications the subspace A has even dimension and can be equipped with
complex coordinates. Let dim°®.A denote the complex dimension of A and let

{/\k} = {/\17 Ty /\dimCA}

be a set of complex coordinates. The subspace A can now be represented by the
collection of functions {h,({\¢}, {\};w,)} with I = 1,---, N. In order to derive a
formula for this case we simply take the earlier result for two real insertions and pass
to complex coordinates. We thus consider

2
0 = d)\; A d)y dE'dE? exp [ -V (Bf,fbs,{) n B_f,g"Eg))] , (2.6.22)
k=1

Using complex coordinates A{ = A;+iA; and &' = £ +4€2, and letting [ d?¢' ¢'€' = 1,
we can write the above as

Q? = dX| A d), d*¢] exp [ —¢" (B,l,,]bg,{) + EE,?BS,{)) +é! (B,_ln‘]bﬁ,{) + B—,lnfl—igr{))]
(2.6.23)
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where we have defined

Bk — f d_’w.,w—m—Q 1 0h,(\ X w)
" Jumo 2m By (w) O (2.6.24)
Bl_cJ _ f d_w —m—2_ 1 8hJ (’\a A w)

o2m W(w) O

Note that the B,’-ff coefficients do not vanish because the embedding of A in 730, ~ need
not be holomorphic and, as a consequence, the derivatives Oh, /8] need not vanish.
Using this result we can now rewrite Eq. (2.6.17) for the case of complex coordinates
for moduli

=2 (5 ) / Hde, (enPe” (Yp,)
N dim® A dim® A
x X1 ,p,|/ H dXi A d)y H ek
I=1
3 3
x [ &%¢* exp (E(a )+ F(b) =Y (ng,’:jbg? - E’“M_,':,JB;?)

k=1 1
dim® A

k
- Z [gk (Bka(J) + Bka(J)) & (Bfn B + Bka(J))]) oMy,
k=1

(2.6.25)
where m > —1 for the implicit oscillator sum. It is useful to bring out the similarity
between the antighost insertions for PSL(2,C) and those for moduli. In order to
achieve this goal we introduce £4m°A+k = (¥ for k = 1,2, 3.

(T} =2 (%)N / ﬁdl’m%)”é’) (X7)
dim€ A

X 1C,p,|/ H dx A d)y

=1
dim® A+3

H dzf’“ - exp (E(a) + F(b,c) (2.6.26)
k=t dim¢ A+3

Y (em - e BE)
k=1
dim® A

=S (¢ BEEY - e B) e,
k=1

where the script style B matrix elements are defined as

B — B, for k < dim®A
m M'r(nk—dlmc A)J , for k _ dimCA — 1’ 2, 3.

This concludes our construction of off-shell amplitudes as forms on moduli spaces of
punctured spheres.

(2.6.27)
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2.6.2 Application to off-shell tachyons

Let us see how the formulae derived above work for the case of N tachyons with arbi-
trary momenta. This particular example allows us to confirm our earlier calculation
of off-shell tachyon amplitudes. Specifically, we are going to evaluate the multilinear
function {7,,, -+, 7, } where |7,,) = €1¢1|1,p;). In this case the state to be contracted

N _(I
N ¢ ’c‘l )|1,p,). Upon

contraction with this state we will only get contributions from b_l, b(_?, and the
matter zero modes oz(I) = oz(()l) 1D, -

We will use as moduli the complex coordinates z;,- - -, z,_, representing the po-
sition of the first (N — 3) punctures. Therefore, A\, = 2, for k =1,..., N — 3, and
we must use Eq. (2.6.26) to calculate the multilinear function. Our setting of the

z-coordinates as moduli implies that the functions h, take the form

with the bra representing the multilinear function is |77V) =

h,(2,Z,w) =z, +a(z,Z2)w+---. (2.6.28)
It then follows that
dw 1 k-1
M’CJ 2\% Ratet hl -1 h k—1 _ 7 6.
GNP smiw 5 ()7 R, (w)] W0) (2.6.29)
and furthermore
dw'l 1 Oh 5kJ
el .
-1 w=0 21 W h’J (w) O h', (0) ) (2 6 30)

while BE/ = 0, since 8h,/8z; = 0. With this information, back in Eq. (2.6.26) we
find

. N-3
(Tonr 3Ty Ja = 2 (%) (2)P62(0) / H dzi, A dz Hd2£k
x (1°] exp (E(a) - (B - kBka“’)) ]‘[c(” &[1).

k=1
(2.6.31)

=

We can now calculate the bosonic contribution from F(«)

N

exp(E(a)) = (_% 3" (oMol + NG a") )
I,

(-}

(0

(0

-1 (o

I<J

J
Z ( )pIpJ) (2.6.32)
( )lz)plpl — H ijp’

Il

=1

)

)| - |1, (0)]

<J

where we have used the expression for Neumann coefficients Eq. (2.6.8), momentum
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conservation, and Eq. (2.3.7). We thus obtain

{Tpl’.“7TpN}A=7r]\% /dekdkaXpIpJ
I<J
N
<[Teeuden (- 3 (600 - #5F2)) H D).
k=1 k=1

(2.6.33)
Consider the second line of the above equation. The effect of the ghost state is to
select the term in the exponential proportional to the product of all antighosts. Since

(1¢] H st H Va1 = ()Y (2.6.34)

we can write the second line of Eq. (2.6.31) using a second set of Grasmmann variables

,,’k

/ Hd2§’“ d2n’“exp[z (~& 85w +&B%7)| = () det(B) det(B),

(2.6.35)
where in the last step we used a standard formula in Grassmann integration. We can
now use equations (2.6.29), (2.6.30), and (2.6.27) to calculate | det B|?>. We find

N
ldet B|2 = !(ZN - zN—z)(ZN - ZN—I)(ZN—2 a ZN‘l)lz H |h' (0)|2 ’
o =11 (2.6.36)
N 2,N-1,N H

where we made use of the definition of the mapping radius and of Eq. (2.3.10). We can
now assemble the final form of the tachyon multilinear function. Back in Eq. (2.6.33)
we have

N-3

2 dz,dy
(T Ty ya= ()Y v 7 L xXhan-y [ [ X559 - (2m)P5(0). (2.6.37)
I=1 I I<J

which agrees precisely with the off-shell Koba-Nielsen formula Eq. (2.4.13).
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Chapter 3

Effective tachyonic potential up to
fourth order

3.1 Introduction

The following expression for the classical tachyonic potential has been obtained by
G. Moore [41] and was proven in Ref. [52]:

. 00 tN
Vity=—-t2-> v, i (3.1.1)
N=3

where

N-3 N
= [ Aleeo[Twiel (312)
T VoN 1=1 I=1

The global uniformizer € is chosen such that the coordinates of the last three punctures
are £y,_, = 0, &,_, = 1 and &, = co. w,(£) denotes the local coordinate around
the I-th puncture and the derivative at infinity is to be taken with respect to 1/£.
The integration in (3.1.2) has to be performed over V, y, the region of the moduli
space which can not be covered by the string diagrams with a propagator. We will
distinguish the missing region or the string vertez Vo n from the Feynman region
Fo,n = Mon\Vo,n-

The cubic term does not require integration and can be easily evaluated (see
Eq. (2.5.4)).

V3= ——— 0 —0.61. (3.1.3)

For N > 3 there are two major obstacles to evaluation of (3.1.2): firstly, we need a
description of V, | and secondly we have to define the local coordinates w,. Unfortu-
nately, the string field theory defines the vertex and the local coordinates implicitly
in terms of a quadratic differential of special type and its invariants. Finding the
quadratic differential is a difficult problem on its own and even when an analytic
expression for it is known to find the desired invariants is still not trivial. In this
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article we will deal mostly with the fourth order term:

2
\Z —/ I, (3.1.4)
T Jvoa

where p is the measure of integration on the moduli space. It can be expressed in
terms of local coordinates w;(€) as

= |w (X) w}(0) wi(1) wi(oo) | dA. (3.1.5)

As before the global uniformizer £ is fixed by placing three punctures at £ = 0, 1
and co. The coordinate of the fourth puncture A provides a coordinate on the moduli
space My 4. We will use a notation d) to denote the standard measure d Re AdIm )
on the complex plane of \.

3.1.1 Effective potential

The bare tachyonic potential defined by (3.1.1) and (3.1.2) is not a physical quantity
because the tachyon is coupled to the other fields in the string field theory. In order
to calculate an effective potential (which is physical) one has to perform a summation
over all the diagrams with intermediate non-tachyon states. Thus the effective four
tachyon coupling constant vi¥ consists, in the tree approximation, of the elementary
coupling vy -—>< and the sum over infinite number of diagrams with intermediate
massive states X. We can write it schematically as

vit =X+ ZH (3.1.6)

Instead of summing over all massive states we will calculate the full sum over all the
states including the tachyon as an integral over the Feynman region Fo 4 = Mg 4\Vs

>m<=/foy4u=>l<+;>—x<-

The first term with an intermediate tachyon can be easily evaluated in terms of the
three-tachyon coupling constant vj:

v:>—</3 = 3 . m‘ = "'5 V3, (317)

where p = 0 is the momentum of a propagating tachyon and m2? = —2 is its mass
squared. The factor of three comes from the sum over three channels each giving the
same contribution. Combining the above equations we find

2 3
vy —><+>zm( S = v+ = / B+ = v (3.1.8)
Fo,4 2
We will see that the integral in (3.1.8) is divergent and has to be found by analytic
continuation.
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For the case of M4 the invariants of the quadratic differential can be expressed
in terms of elliptic integrals. Our discussion will involve an extensive use of elliptic
functions and their g-expansions. These g-expansions prove to be a powerful tool in
numerical calculations.

This chapter is organized as follows. First of all we will derive a general formula
for the four-tachyon amplitude. We express the amplitudes in terms of invariants (x;;)
of a four-punctured sphere with a choice of local coordinates. Then in section 3.3 we
will review some basic properties of quadratic differentials and show how a quadratic
differential defines local coordinates in general. In section 3.4 we will apply the general
construction of section 3.3 to the case of M 4. We introduce integral invariants a,
b and c associated with a quadratic differential with four second order poles. In
section 3.5 we show that the integrals over Vy4 and Fy4 can be easily evaluated if
we know the integrand in terms of a and b. In sects. 3.6, 3.7 and 3.8 we express
the measure of integration as a function of a and b. We reduce the problem to
a single equation involving elliptic functions, which we solve approximately in two
limits: one corresponding to a long propagator and an arbitrary twist angle and the
other corresponding to both propagator and twist being small. For the intermediate
region we solve the equation numerically. Finally we calculate the contribution of
the Feynman diagrams (3.1.8) in section 3.9 and the elementary coupling (3.1.4) in
section 3.10.

3.2 Four tachyon off-shell amplitude

In this section we will derive a formula for the scattering amplitude of four tachyons
with arbitrary momenta. Although for the tachyonic potential we only need the am-
plitude at zero momentum, the integral which defines it is divergent and we are forced
to treat it as an analytic continuation from the region in the momentum space where
it converges. We will give the details on the origin of this divergence in section 3.9.

A general formula for the tree level off-shell amplitude is given by Eq. (2.4.17).
For the case of four tachyons it gives the off-shell Koba-Nielsen formula

2 d?\ .
Ly(p1,p2,p3,p4) = T / m | X1234]% - H |xi;[P¥, (3.2.1)

i<j
which expresses the four tachyon amplitude in terms of PSL(2,C) invariants A, x;;

and x1234. The first invariant is just the cross ratio of the poles which we define as!

21— 2 23— 24

A= . (3.2.2)
X1 —R3 R9 — 24
The x invariants can be expressed in terms of the mapping radii p; as
(2 — 2)°
Xij = ———. 3.2.3
’ PiPj ( )

1Here we use a different cross ratio to that in the previouse chapter. In order to use the formulae
of chapter 2 one has to change A to A/(1 — )
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Unlike those in Ref. [52] the x invariants and mapping radii used here are complex
numbers. We achieve the complexification by keeping the phases of the local coordi-
nates. Thus, here p; is given by

1

P i)
and not just the absolute value. The last invariant y;s34 can be expressed in terms
of x;; as

Xi231 = X12X23X34X41, (3.2.4)

By definition ;; = X;; and thus for a four punctured sphere we have (;) = 6 different
invariants. We will call a choice of local coordinates symmetric if the local coordinates
do not change under the symmetries of the Riemann surface. Specifically, if S is an
automorphism of a punctured Riemann surface ¥ which maps the i-th puncture to
the j-th puncture, we require that

w;(S(0)) = wi(o), (3.2.5)

where o € ¥ belongs to the i-th coordinate patch. It is well known, that in most cases
this condition can only be satisfied up to a phase (see Ref. [16]). Nevertheless, for
a general four-punctured sphere the phases can be retained. Four-punctured spheres
have a unique property: there exists a non-trivial symmetry group which acts on any
four-punctured sphere. This group consists of the automorphisms which interchange
two distinct pairs of punctures. One can easily check that these automorphisms exist
for any ¥ € Mg 4. One can visualize this symmetry by placing the punctures at the
vertices of a rectangle—the symmetry group then becomes the group of the rectangle
Zy X Zo. There are a couple of four-punctured spheres which have a larger symmetry
group: a tetrahedral symmetry in the case of A = exp(wi/3), which is the most
symmetric case or the symmetry group of the square for A = —1, 1/2, or 2. It is
not possible to realize the symmetry conditions for these larger groups if we wish to
retain the phases, therefore we can require that (3.2.5) holds only for S € Z; X Z.

For symmetric local coordinates the six y-invariants are not independent. Using
Zy x Ly symmetry one can prove that

X12 = X3¢ = Xs»
X14 = X23 = Xt (3.2.6)
X13 = X24 = Xu-
Furthermore, due to the transformation properties of the mapping radii
Xs/xu=-2A, and  xi/xu=A-1, (3.2.7)
and thus
Xu+ Xs + Xt =0. (3.2.8)
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Equations (3.2.6) and (3.2.8) show that for a symmetric choice of local coordinates
there are only two independent y-invariants.

Now we can rewrite the Koba-Nielsen formula in terms of x,, x:, X. and the
Mandelstam variables

|XSX I d A uUu—Ss UTrs— S —U
Cy(s,t,u) = ﬁh‘g P e D7 e ' ket (3.2.9)

Note that the momentum dependent part of (3.2.9) is manifestly symmetric with
respect to s, t and u. Let us show that the momentum independent part is symmetric
as well. First of all we introduce a differential one-form

t+u— —t +t—
XthdA +u 3 u+§ s u

Ya(s,t,u) = mx Xt © Xu® . (3.2.10)

Given a differential one-form w = w(A)dA we can define the corresponding measure
as g = |w|? = |w(A)|>*d®\. The measure of integration in (3.2.9) is just |y4(s, t, u)|?
and we rewrite the Koba-Nielsen formula as

La(s, t, u) /|fy4(s t, u) (3.2.11)

Consider the momentum independent part of 7,:

XsXtdA

(0) _ _
Y4 = 74(07 070) - )\(1 — /\)

= Xsdxt — XedXs, (3.2.12)

where we have made use of (3.2.7). We can now use x, + xs + x: = 0 and show that

72 = xedxu = Xudxe = XudXs — XsdXau, (3.2.13)

and hence that |7\”|? is totally symmetric.

The following expression for fy( ) although not explicitly symmetric is very simple
and will be particularly useful latter. Using Eq. (3.2.7) we can rewrite Eq. (3.2.12) as

7Y = x2d). (3.2.14)

In the spirit of the string field theory we distinguish the contribution from the
Feynman region Fy4 C M4 (the surfaces which can be sewn out of two Witten’s
vertices and a propagator) and the missing region Vo 4 = My 4\Fo4. The later appears
in the string field theory as the elementary four tachyon coupling

2
vy = —/ || *d® A (3.2.15)
T JVo,4
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3.3 How a quadratic differential defines local co-
ordinates

As we mentioned above, the definition of off-shell string amplitudes requires use of
local coordinates around the punctures of a Riemann surface. In this section we
describe how the local coordinates can be specified by a quadratic differential of
special type.

Given a local coordinate in some region of a Riemann surface, a quadratic dif-
ferential can be written as ¢ = ¢(z)(dz)%. (z) is called the ‘function element’ of
the quadratic differential. Although the value of the function element at a particular
point does depend on the choice of the coordinate, its zeros and poles are coordinate-
independent. The second order poles of quadratic differentials play a similar role to
the simple poles of Abelian differentials. The residue Res,¢ (the coefficient of the
most singular term in the Laurent expansion of the function element) of a quadratic
differential ¢ at a second order pole p is coordinate independent.

Given a Riemann surface ¥ € Mg y of genus G with N punctures we define the
space Dg n(X) of quadratic differentials with second order poles at each puncture
and the space D§ y(X) C Dg,n(XZ) restricted by the condition Res¢ = —1 at every
pole. The space D¢ n(X) is finite dimensional with dim Dg n(¥) = 3G -3 +2N.
Furthermore,

dim Dg y(X) = dim Dgn(X) - N=3G -3+ N

is equal to the dimension of the moduli space Mg . We consider the spaces of
quadratic differentials with N second order poles D¢,y and D§ y as fiber bundles
over Mg n.

With a quadratic differential ¢ we associate a contact field ¢ > 0. The integral
lines of this field are called horizontal trajectories. We define a critical horizontal
trajectory as one which starts at a zero of the quadratic differential and the critical
graph as the set of horizontal trajectories which start and end at the zeros.

Let P n be the moduli space of the genus G Riemann surfaces with N punctures
and a choice of local coordinate up to a phase around each puncture. One can think
of Pg n as of a space of surfaces with N punctures and a closed curve (coordinate
curve) drawn around each puncture. Due to the Riemann mapping theorem, there
is a unique (up to phase) holomorphic map from the interior of a curve to the unit
circle, which takes the puncture to 0. This map defines a local coordinate. Keeping
this description in mind one can define an embedding ® : D§ y — Pg,y using the
critical graph of a quadratic differential to define a set of coordinate curves.

We can describe ® more explicitly. Let ¢ € ’Dg, y be a quadratic differential. By
definition of D’G{, n it has IV second order poles with residue —1. Let p be such a pole.
Then, there exists a local coordinate w in the vicinity of p such that

dw)?
o= —( w2) . (3.3.1)
Indeed, let z be some other coordinate and
¢ = o(2)(dz)>. (3.3.2)
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We can find w(z) solving the differential equation i dw/w = ¢'/%(2)dz. The solution
is given by
z
w(z) = exp (—z/ gol/?(z')dz’> : (3.3.3)
20

The point zy may be chosen arbitrarily and, so far, the local coordinate is defined
by (3.3.1) only up to a multiplicative constant. Moreover (3.3.1) does not change
when we substitute 1/w for w, which is equivalent to the change of sign of the square
root in (3.3.3). The latter arbitrariness can be easily fixed by imposing the condition
w(p) = 0. The inverse map z = h(w) is a holomorphic function of the local coordinate,
which can be analytically continued to a disk of some radius r. We can always rescale
w so that r = 1. this fixes the scale of w. Now we have to show that the coordinate
curves corresponding to this set of local coordinates form the critical graph of the
quadratic differential. Indeed, the coordinate curve given by |w| = 1 is a horizontal
trajectory of the quadratic differential which is equal to (dw)?/w?. Let us show that
it has at least one zero on it. By definition h(w) is holomorphic inside the unit disk
and can not be analytically continued to a holomorphic function on a bigger disk.
Yet h'(w) = dz/dw = 1/(w(2)¢*?(2)) and thus h(w) is holomorphic at w unless
@(h(w)) = 0, or w is the coordinate of a zero of ¢. We conclude then, that there is
at least one zero on the curve w(z) = 1. Finally we can write a closed expression for
the local coordinates associated with the quadratic differential ¢:

w(z) = exp (—z' / 0 \/q_ﬁ) , (3.3.4)

where the sign of the square root is fixed by Res,\/¢ = i and 2, is a zero of ¢. In
general for each pole one has to select a zero to use in (3.3.4), but for the most
interesting case when critical graph is a polyhedron choosing a different zero alters
only the phase of w(z).

So far a quadratic differential defines the local coordinates, but it is not itself
defined by the underlying Riemann surface because the dimension of D¢ y is twice
as big as the dimension of M¢ n. In order to fix the quadratic differential we need
an extra 3G — 3 + 2N complex or 6 G — 6 + 4N real conditions. In the next section
we will describe these conditions for the case G =0, N = 4.

3.4 Quadratic differentials with four second order
poles

In this section we focus on the case of a four-punctured sphere, G = 0 and N = 4.
We define the integral invariants a, b and ¢ of a quadratic differential which control
the behavior of its critical horizontal trajectories. We find explicit formulae for these
invariants in terms of Weierstrass elliptic functions.

Consider a meromorphic quadratic differential on a sphere which one has four
second order poles. Given a uniformizing coordinate z on the sphere we can write the
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quadratic differential as

o= gy (3.4.1)

H (z — 2)?

In order for ¢ to be holomorphic at z = co the polynomial ) should be of degree less
than or equal to 4:

Q(z) = as2* + a3 2° + a2 2* + a1 2 + ao. (3.4.2)

So far we have a five-dimensional complex linear space Dy 4 = C° of quadratic differ-
entials. When we restrict ourselves to quadratic differentials with the residues? equal
—1 at every pole we define a one-dimensional complex affine subspace D& € Dou.
Now we want to parameterize D& in such way that coordinates do not depend on
the choice of global uniformizer z. The following combinations of the coordinates of
the poles and the zeros are invariant: the cross ratio of the poles,

\Poles _ A1~ 2 3 %4

; 3.4.3
21 — R3 X9 — 24 ( )

which parameterize the underlying M, 4, and the cross ratio of the zeros,

€1 — €y €3 — €4
A\ZET0s — . , (3.4.4)
€1 —€3 €2 —¢€4

which fixes the quadratic differential. Such a parameterization is particularly useful
because it separates the fibers of DY, in an obvious way.

Another parameterization can be obtained as follows. Let v;; be a set of smooth
curves connecting e; and e; in such a way that they form a tetrahedron with the poles

z; on the faces. The integrals
L= [ Vo
Yij

are well defined and do not depend on the deformation of 7;;. By contour deformation
we can show that the integrals along the opposite edges of the tetrahedron are equal.
Let

a=1I,= 134,
b= I = I, (3-4-5)

c = I3 = Iy.

Again, by contour deformation arguments, a + b+ c = 27 and thus we have only two
independent complex parameters a and b which can be used as coordinates on ’D&.

2We call the coefficient of the —z(f—i%; in the Laurent expansion of a quadratic differential near

the point zp the residue of the quadratic differential. One can easily see that the residue does not
depend on the choice of a local coordinate.
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So far AP°®s and A\?*™° are analytic functions of @ and b. Note that we propose here
a point of view regarding the a, b, c-parameters differing from that of Ref. [24]. In
that paper a, b and ¢ were real by definition and provided a real parameterization of
the moduli space M, 4, while here they are complex and parameterize D&. This will
be useful to give a unified description of the Strebel and Feynman regions as we will
show later on in section 3.5.

In general integrals in (3.4.5) are complete elliptic integrals of the third kind. In
order to evaluate them we will need the following lemma.

Reduction Lemma. Let ¢ be a quadratic differential on the sphere such that in a
uniformizing coordinate z it is given by

H (2 — 2)?

where Q(z) is a polynomial of degree four. The square root of ¢ defines an Abelian
differential on the Riemann surface ¥ of \/Q(z). Since Q(z) has degree four, ¥ is a
torus. Let the periods of the torus be 2w, and 2w,. The Abelian differential \/¢ has
periods wy and wy if all the poles of ¢ have equal residues.

Proof. The proof is based on the Z; X Z; symmetry of the four-punctured sphere.
Let us show that a quadratic differential ¢ € Dy, with equal residues is invariant
under these symmetries. It is convenient to fix the uniformizing coordinate z on the
sphere so that the zeros of the quadratic differential have coordinates +1 and *k.
Using this coordinate we can write any quadratic differential ¢ € Dy, with equal
residues as
(22 — kY (22 - 1)

((22% — k2)2(22 — (2)2
where ( is a position of one of the poles and C is an arbitrary constant. The symmetry
group is generated by two transformations which can be written as

¢p=C (dz)?. (3.4.6)

Si:z— —2z, and Sy: z—k/z. (3.4.7)
We can extend this symmetry to the Riemann surface of ¢ which is a torus given by
w? = (2% - k*) (2% - 1). (3.4.8)

The generators Sy act on w by

w

Si:w——-w, and Sy: w— —k = (3.4.9)

Clearly, (3.4.9) together with (3.4.7) define the symmetries of the torus given by
(3.4.8). A holomorphic Abelian differential on the torus du = dz/w is invariant under
these transformations and therefore Sy are translations of the torus. By definition
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Figure 3-1: The sphere and the torus

S? =1 and we conclude that Sy is a translation by half a period, Sk(u) = © + wy.
The square root of the quadratic differential can be written in terms of du as

Vo=VCia, —12231212 — (3.4.10)

Expression (3.4.10) is invariant under Sy and therefore \/@ has periods w; and ws.
QED.

Let u be a coordinate on the torus and [2w;, 2ws] be its periods. For a quadratic
differential ¢ € D the reduction lemma states that if /¢ = f(u)du then f(u) has
periods [wq,ws]. The quadratic differential has four second order poles with residue
—1, and four simple zeros. Thus, /¢ has eight poles with residue +i and four
double zeros, or equivalently, f(u) has two poles and a double zero in its fundamental
parallelogram. In Fig. 3-1 we show the sphere and the torus with the positions of
the poles and zeros marked. The shaded region on the torus is the fundamental
parallelogram of f(u).

Any meromorphic function with two periods (an elliptic function) can be written
in terms of two basic elliptic functions — the Weierstrass p-function and its derivative
@ (see Ref. [56]). Let ug be the position of a pole which is inside the parallelogram
[w1,ws]. An elliptic function having two poles with residue +4 and a double zero is
uniquely defined by the positions of the zero an one of the poles. Let the zero be at
u = 0 (we can always shift u by a constant in order to achieve this), and the pole
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Figure 3-2: Four different kinds of the critical graph

with residue ¢ be at u = ug, then

flu) = -2 )

B p(u) — p(uo)

= 1(C(u + uo) — ((u — up) — 2¢(ug)) (3.4.11)
—ii n—_a(u—i—uo)“ Up)U

T du (l o(u — ug) 2€ (uo) )’

where p, ¢ and o are the corresponding Weierstrass functions for the lattice [wy, wo].
Using (3.4.5) and (3.4.11) we can calculate a and b:

a = —/m1 f(u)du=—27 — 24 (C(ug) w1 — M ug),
gz (3.4.12)

b= fu)du = =27 +2¢ ({(uo)wa — M2 ug) -
0

See Fig. 3-1 to justify the limits of integration. The values of @ and b define the
geometry of the critical horizontal trajectories. Using the last equation in (3.4.11) we
can write the quadratic differential as ¢ = (dv)?, where

o(ug + u)

o(ug — u)
69
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(a) Strebel (b) Feynman

Figure 3-3: Riemann surfaces corresponding to Strebel (a)
and Feynman (b) quadratic differentials

On the v plane horizontal trajectories are horizontal lines. From (3.4.13) and
(3.4.12) we can see that on the v-plane the zeros of ¢ are at v(0) = 0, v(w1) = q,
v(wy) = b. Thus when a and b are real any three of the zeros are connected by one
horizontal trajectory and the critical graph is a tetrahedron. If only a is real the
critical horizontal trajectories form two separate connected graphs. When a < 27
the zeros are connected in two pairs, each pair having three horizontal trajectories
traversing from one zero to the other. When a > 27 we have a different picture,
with each pair of zeros having one trajectory passing between them and the others
forming two tadpoles. Finally, when none of the a, b or c is real, two of the three
critical trajectories leaving a zero collide on their way around a pole and come back
forming a tadpole and the other becomes infinite. Figure 3-2 illustrates these four
cases.

3.5 Four-string vertex and Feynman region

In this section we show how integral invariants can be used to find the four-string
vertex. The use of complex values of the integral invariants will allow us to describe
the quadratic differentials used to define local coordinates in the string vertex and
Feynman regions similarly using particular constraints imposed on the possible values
of the invariants.

As was shown in Ref. [24] the elementary interaction can be found using so-
called ‘Strebel quadratic differentials’. A Strebel quadratic differential is a quadratic
differential whose critical graph is a polyhedron, or, — as the analysis in section 3.4
shows — all the integral invariants are real. For the case of four-punctured spheres
we define the Strebel constraint by

Ima=Imb=Imc=0. (3.5.1)
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Figure 3-4: The four-string vertex V4 on the a + b + ¢ = 27 plane

Given a quadratic differential ¢ = ¢(z)(dz)? one can naturally define a metric by
g = |¢(z)|dzdz. Since ¢p(z) is meromorphic, this metric has zero curvature at every
point where ¢(z) # 0:

4 0 0
R= —W‘a—zj% log |¢(2)] = 0. (3.5.2)

Therefore if we cut the sphere along the critical graph it will break into pieces each
isometric to a cylinder. For the Strebel quadratic differential the four-punctured
sphere breaks into four semi-infinite cylinders each of circumference 27 (Fig. 3-3). In
order to reconstruct the Riemann surface one has to glue these four cylinders along
the edges of a tetrahedron with the sides equal a, b and ¢ (see Ref. [16]).

Due to the Strebel theorem [29] one can use real positive values of the integral
parameters (a + b + ¢ = 2m) in order to parameterize Mg 4. It is well known that
we actually need two copies of the abc triangle a + b + ¢ = 27 to cover the whole
whole M, 4. This parameterization is very useful because we can easily describe the
four-string vertex V4 which is given by (see Ref. [24])

a>m, b>n, and c> . (3.5.3)

In Fig. 3-4 we present the view at abc triangle along the line @ = b = ¢. The shaded
region corresponds to V) 4.

In order to calculate the contribution of Feynman diagrams we have to define the
measure y in the Feynman region of the moduli space. We will achieve this goal by
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Figure 3-5: Three Feynman diagrams built with the three-
vertex and propagator that enter in the compu-
tation of the four tachyon amplitude

finding the corresponding quadratic differential for each Riemann surface or a string
diagram in the Feynman region.

A Feynman string diagram for the four-string scattering is a Riemann surface
obtained by gluing together five cylinders with circumference 27: four semi-infinite
cylinders representing the scattering strings and one finite cylinder representing an
intermediate string or a propagator. There are three topologically inequivalent ways
to glue these cylinders together corresponding to the three channels s, ¢t and u. For
each channel we can vary the length of the propagator [ and the twist angle #. This
construction defines three non-intersecting regions in the moduli space F;, F; and F,
each naturally parameterized by [ > 0 and 0 < f < 27. A Feynman string diagram can
be easily constructed using a quadratic differential with complex integral invariants.
Take a look at the case 4 in Fig. 3-2, which shows the critical graph of a quadratic
differential which has one of the integral invariants (a) real and less then 27. The
correspondent Riemann surface consists of two pairs of semi-infinite cylinders glued
to a finite cylinder with length |Im b| and circumference 47 — 2a. If we define the
twist # as an angle between two zeros on the propagator we obtain § = Re b. Thus we
conclude that in order to define a a Feynman string diagram a quadratic differential
should have one integral invariant equal to 7 and another equal to 6 + il. We define
three Feynman constraints corresponding to the diagrams in Fig. 3-5 by

Fo: a=m c=0+1l

Fo: c=m, b=0+1il (3.5.4)

F,: b=m, a=0+1il.
By definition the length of the propagator [ > 0 and the twist # is between zero
and 27. It is convenient to combine [ and # into one complex variable ¢ = ¢~ (for
different channels ¢ is equal to either €@ or to e or to e*). Different values of €

correspond to different Riemann surfaces or different points in M, 4. Therefore each
Feynman constraint defines a section over the correspondent region in the moduli
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space. We define three regions F;, F; and F, as the projections of the correspondent
sections on My 4. Each of these regions can be naturally parameterized by |e| < 1.
We can summarize this construction on the following diagram

U= {le| < 1} =% DE,

| (3.5.5)
fs,t,u C MO,4'

We also obtain an alternative description of the four-string vertex: Vo4 = Mg 4\(FsU
F: U F,). One can easily see that this agrees with (3.5.3).

Both the Feynman and the Strebel constraints define two-dimensional subspaces
in the four-dimensional 'D&, but these subspaces are quite different. The Strebel
constraint defines a global section of D& over Mg 4. This is a result known as the
Strebel theorem [29]. The section defined by the Strebel constraint is not holomorphic
because the constraint is given in terms of real functions on D¢, (3.5.1). The Feynman
constraints are defined by fixing a value of one of the three holomorphic functions on
D(f;l: a=m b=morc=m Itis well known that the Feynman constraints define
holomorphic sections only over a part of M4, namely over the Feynman regions
F. s,tu.

Using complex integral invariants allows us to treat the four-string vertex and the
Feynman regions in a unified manner by imposing some extra conditions (3.5.1) and
(3.5.3) or (3.5.4) on a, b and c and integrating over simple regions which they define.

At this point we face a dilemma: the measure of integration in the formulae
defining the four-tachyon amplitude (3.2.12) is given in terms of x-invariants. On
the other hand, the regions of integration for in the definition of the elementary four-
tachyon coupling and the formula defining the massive states correction are given in
terms of a, b and c. Therefore, our next goal will be to relate the y-invariants and
a, b and c. We will proceed in two steps: in the section 3.6 we will solve the system
(3.4.12) and find the torus modulus 7 = w; /w; and and the position of the pole ug in
terms of a and b. Then, in section 3.7, we will express the x invariants in terms of 7
and ug.

3.6 The main equation

In this section we will explore the system (3.4.12). Let us fix the scale of the coordinate
on the torus so that w; = 7 and w; = 1, then the system (3.4.12) can be written as

a=1+ %(C(uo; )T —m(T) UO)

. (3.6.1)
B=1-=(C(uo; 7) = m(r) wo)
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where . b

a= and (= oy (3.6.2)
This is a system of two equations for two complex variables 7 and ug, and its solution
should define 7(«, ) and ug(e, 3). In the present form it is extremely hard to solve.
Fortunately we can reduce this system to a single equation defining 7(«, 5). Using
the Legendre relation 7y(7)7 — 91(7) = 27t we can deduce that the system (3.6.1) is

equivalent to

1-74 l-a

Uy = T+ ,
2 2 (3.6.3)

1-0 l1-a
C(uo) = —5=m(7) + —5—72(7).
Now we can eliminate vy and get
1-0 l—a, 1-p7 1—-a

(( 5 T+ 5 ,7’) =— m(r) + 5 72 (7). (3.6.4)

This equation plays the major role in our approach to the four-string amplitude
problem. If we knew its solution 7(c, 3) we would know the solution to the system
(3.6.1) because ug(c, §) is given by:

1-08 l1—a
Cr(e,f)+ 152

uo(a, B) = (3.6.5)

We will refer to (3.6.4) as the main equation.

In this section we will discuss the symmetries of this equation and find two regions
for o and 8 which correspond to large values of Im 7. When Im 7 is large the ¢ func-
tion can be expanded as a series with respect to a small parameter ¢, = exp(27ir).
We will call this series the g-series. We will use a truncated g-series to find approx-
imate solutions of the main equation. Then we return to the Strebel case of real o
and (3 and investigate the map from the abc to the 7 plane.

3.6.1 Symmetries

Recall that o and 8 represent three invariants a, b and ¢ which satisfy a+b+c = 2.
A permutation of a, b and c is equivalent to a permutation of the zeros. The torus
modulus 7 is closely related to the cross ratio of the zeros, and permutation of the
zeros results in a modular transformation on the 7 plane. More specifically:

a—b=a<p T — —1/7,
boc=p3—-1—-a-p=17->02-7)/(1-1), (3.6.6)

coa=a—1—-a-p=17->-1-7)/2-71).

One can easily check that the transformations (3.6.6) do not violate (3.6.4) using
modular properties of the ¢-function.
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Using the addition theorem for the ¢ function (see Ref. [57]) one can show that
the change of @ and § to —a and —f does not change Eq. (3.6.4). This is quite
obvious because the integral invariants are defined up to a common sign which comes
from the ambiguity in taking a square root.

3.6.2 3 — 0 limit

Let us rewrite the second equation of the system (3.6.1) using a ¢ expansion for the
Weierstrass (-function (see Ref. [56, page 248)])

C(u) = myu + 1L 4 o i [ Gluo 97 Guo ] , (3.6.7)
qu— 1 1= /que 11— 7 qu

n=1

where we use a notation g, = exp(2miz). Terms linear in u in the expression for j3
cancel and we get

ﬂ Gar/te) 4R Qo ] tos
Z |:1“q7(q?/qu0) 1——q;‘qu0 ) ( -0. )

The reason why we collected the terms ¢,/q,, will be clear in a moment. Expo-
nentiating the first equation in (3.6.3) we can express g,, in terms of ¢,, @ and 3
as .

Qu, = —q2 e~ HeFAT), (3.6.9)

If we substitute the value of ¢,, from eqn. (3.6.9) in to eqn. (3.6.8) we will get an
equation which is equivalent to the main equation. Analyzing equations (3.6.8) and
(3.6.9) we conclude that in the limit 8 — 0

¢ ~B and g, ~pB.

Therefore, in this limit g,, ~ ¢/qu, which is reflected in the way we wrote (3.6.8).
Moreover, ¢, being small in this limit allows us to find an approximate solution to
the main equation. The first two terms in 3-expansion of ¢, give

B s i siné 4 cosé 3 4
= T16cos?6 16 cos?o 21n B 1) 5"+ 008, (3.6.10)
where 1
= (a + ﬂ%) . (3.6.11)
Taking the logarithm of (3.6.10) we find
1 7. 4cosé tané 4 cosd
=41 - ) 6.
T 2+7Tn 3 + o <2ln 5 1),3-}-0(5) (3.6.12)

This solution is valid for complex values of & and 8. Therefore it can be used both
for the vertex and the Feynman regions. The limit 3 — 0 corresponds to the corner
of the vertex (see Fig. 3-4) for real 3 and to the limit of short propagator and small
twist for Im 8 > 0.
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3.6.3 Im a — oo limit

There is another region where Im 7(c, 3) — oo. This is the case when 0 < § < 1
is a fixed real number and o — i00. Indeed, from equation (3.6.8) we derive that in
the limit ¢, — 0 and finite §

B
quo - 2 _ ﬂ, (3.613)
so that gy, is finite unless # = 0 or # = 2. According to equation (3.6.3)
a=1-2uy+(1-p)r (3.6.14)
As we have seen, ug is finite as Im 7 — oo and thus, for real § and a — oo
e
Im7 ~ X .6.
m7T ~ 3 (3.6.15)

Let us set 3 = 1/2, which corresponds to the Feynman (u-channel) constraint. This
constraint makes 7 an analytic function of @. The first equation of (3.6.3) can now
be written as

1 l-a
Up = ZT+ 2 7 Or  Quy = q71_/4 9o 12 ) (3616)
and collecting the terms of the same order, we can rewrite (3.6.8) as
1 G | o [ a7/ Guo a7 Guo
- =- + - - — . 3.6.17
4 1-qu 2 1= /qu  1—q} qu ( )

n=1

Using (3.6.16) we can iterate (3.6.17) and find ¢, as a power series in g,.

1 , 5812 , 94720 6_*_167118848 5 .

4r = 3_4‘1(1 310 9 + 315 o 322 O( ’ (3.6.18)

or

2¢1n3
m(a, 3) =2a+ -

2
256 2 76544 , 99552256 6 8
T ( 36 ot 312 9o+ 319 +0(q )

The appearance of the powers of 3 in the coefficients is quite remarkable. Formula
(3.6.19) provides a good approximation for 7 at large values of Im «. It shows that in
this limit 7 is a linear function of o with a finite intercept 2 In3/7. For small values
of Im o Eq. (3.6.19) does not work, but we can still find an approximate formula.
All we have to do is exchange o and 3 in (3.6.12). According to symmetry relations
(3.6.6) this is equivalent to 7 — —1/7, therefore for § = 1/2 and small o, we have

(3.6.19)

_% =i ‘-‘—“ +0(a?). (3.6.20)

In Fig. 3-6 we show the result of numerical solution of the main equation together
with the first order approximations for small and large Im a.
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Figure 3-6: Solution of the main equation for 8 = 1/2 and imaginary o

3.6.4 The Strebel case

We now return to the case when o and (3 are real and represent a point on the
equilateral triangle a + b + ¢ = 27 where a, b and c are real and positive. Strebel’s
theorem guarantees the existence of a solution to Eq. (3.6.4) for every point on the abc
triangle. Indeed, 7 is related to A" by a modular function of level 2, namely A(7)
(see Ref. [29, page 254] ). This function maps it’s fundamental domain I', defined by

I'={r: -1<Re7<1,|27—1|>1and |27+ 1| > 1},

bijectively to the whole complex plane. Therefore the existence of a Strebel differential
is equivalent to the existence of a solution to the main equation in the fundamental
domain of A(7).

Two Strebel differentials such that the zeros and poles of one are complex conju-
gate to those of the other have the same set of a, b and ¢ invariants. Therefore in the
fundamental domain I' of A(7) we should have two solutions to the main equation.
These two solutions correspond to conjugate values of A(7) and therefore are sym-
metric with respect to the imaginary axis on the 7 plane. Finally, we conclude that
for every point inside the abc triangle there exist a solution to Eq. (3.6.4) satisfying
0<7<1and |27 —1| > 1. We will call this region I'/2.

The main equation defines a map from the abc plane to I'/2. Some information
about this map can be obtained from the symmetry. According to Eq. (3.6.6) the
line @ = ¢ (6 = 0) on the abc plane maps on to the line Im 7 = 1/2. Similarly, a = b
maps on to the circle |[7| =1 and b = c on to |7 — 1| = 1, and we conclude that the
most symmetric point (¢ = b = ¢ = 27/3) is mapped to

uk §

T (a = %, 8= %) =e¥. (3.6.21)

77



According to (3.6.12), the whole line b = 0 maps on to the single point 7 =
1/2 + 300, and therefore the other two sides of the abc triangle a = 0 and ¢ =
0 are correspondingly mapped to 0 and 1 respectively. This seemingly leads to a
contradiction at the corners. For example when a = b = 0 the solution must be 7 = 0
because a = 0; on the other hand it should be 7 = 1/2 4+ 7 00 because b = 0, but at
the same time it should be somewhere on the unit circle |r| = 1 because a = b. In
fact there is no contradiction because if we rewrite the main equation for this case we
get

¢ (g v T) = In()+ im(r), (3.6.22)

which is valid for any value of 7. The arbitrariness of 7 does not contradict the Strebel
theorem which guarantees the uniqueness of the quadratic differential because as we
will show in the next section, the point & = 3 = 0 corresponds to AP°'® = ( which
is excluded from M ,4. It is interesting to investigate how the solution to Eq. (3.6.4)
behaves in the vicinity of a corner.

The corner ¢ = b = 0 corresponds to § = —7/2 (see Fig. 3-4). It is problematic
to use the expression (3.6.10) because the coefficients diverge as § — —7/2.

Let a and § be small, but not both equal to zero. Recall, that ('(u) = —p(u) and
©(7/2+1/2) = e3(7). When we keep only first order terms in & and 3 in Eq. (3.6.4),
we find

a B\ _« B
—e3(7) (5 + 57) = 5772(7') + 2771(7'), (3.6.23)
then, using the Legendre relation to exclude 7;(7), we get
(m2(7) + €3(7)) (% + T) = 2mi. (3.6.24)

Inspecting Eq. (3.6.24), we conclude that the limiting value of 7 depends on the ratio
r = /a. Moreover for any value of 7 there exists an r such that

lim 7(a, ra) = 7.
a—0

From Eq. (3.6.24) we can even find the ratio in terms of 7:
2 -
r=|—e———mm—m-—-7| . 3.6.25
e (3:6:2)

It is hard to tell what values of 7 correspond to real r. For large Im 7 we may use
the ¢ expansion

0 n+%
— 872 ar
1 (7) + e3(1) = 87 ; ST (3.6.26)
and solve (3.6.24) approximately for 7(r)
1 i 4r (i 1. 4r\r ,
I PR (LA L : 3.6.27
7(r) 2—i—ﬁlnr—i-(2 71'lnr)ﬂ_—!-O(r) ( )
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a+b+c=271

Figure 3-7: Solution of the main equation for real o and S.
Corresponding regions on the a + b+ ¢ = 27 and
T-planes are shaded with the matching grey levels.

One can check that (3.6.10) yields the same result in the limit of small o, 3 and 8/a.
It is interesting that the map of the abc triangle to the 7 plane does not cover I'/2.
It is mapped to a curved triangle. The sides of the original triangle (a = 0, b = 0 and
¢ = 0) become the corners (r =0, 7 = oo and 7 = 1), while the corners blow up and
become sides. Fig. 3-7 represents a map from the a + b+ ¢ = 27 plane to the 7-plane.
The corresponding regions of the 7 and abc planes are shaded with matching gray
levels on the plot.

3.7 Infinite products

In this section we will perform the second step of the program announced at the
end of section 3.5. We will derive explicit formulae for the y invariants as functions
of the torus modular parameter 7 and the position of the pole uy. We will find
APOles — ' /xu and A2, The latter will be found as a special case ug = 0 of a
formula defining APO'es,
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Recall that the y invariants are defined in terms of the positions of the poles and
the mapping radii as
(2 — 2)°

PipPj
As before, the coordinate u on the torus is fixed by wy; = 1. We can choose the
coordinate z on the sphere so that z = p(u/2). The positions of the poles on the
sphere are given by

Xij = (3.7.1)

u.

zi=p(§’), wi=p+wi, i=1,....4 (3.7.2)
where w; = 7, wy = 1, w3 = 1+ 7 and wy = 0. So far, the only nontrivial part of
Eq. (3.7.1) are the mapping radii. Due to the translational symmetry all four mapping
radii of the coordinate disks on the torus are equal and we denote their common value
value by p. According to the general procedure described in section 3.3, in order to
calculate p we have to find a local coordinate w around wuy such that locally

(dw)?

p=-" and  w(0)=1.

The last condition fixes the scale of w as well as its phase. From equation (3.4.11)
we derive

w(u) = ol = 10) agtuoyu, (3.7.3)
o(u + uo)

Note that w(u) is just an exponent of the function v(u) introduced in section 3.4,
w(u) = exp(iv(u)). The mapping radius is the inverse of the derivative of w(u) at
ug.
0 62 ¢(uo) uo
o(2ug)
When we go from the torus to the sphere we make a change of coordinates from u to
z = p(u/2), therefore each mapping radius picks up a factor of (d/du)p(u/2) and we
find

pt=w'(w) = (3.7.4)

_ 1 y Ui
pi = 580 (5) p- (3.7.5)
Now we can combine equations (3.7.2), (3.7.4) and (3.7.5) with Eq. (3.7.1) to obtain
(p(5) -0 ()"
=4 - ——p . 3.7.6
Y @ () -

This expression can be rewritten in terms of Weierstrass o-functions. In order to do
that we need the formulae for the difference of two p functions (see Ref. [56, page

243))
_o(utv)o(u—v)

p(u) — p(v) = a) o) (3.7.7)
and their derivatives 5
o (u) = —Z_g (;‘)) . (3.7.8)
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The latter formula is just the derivative of (3.7.7) with respect to v at the point v = u.
Now we see that the powers of o(u;/2) cancel and we get

witw; i—wj
02 (U(] + 2w )02 (w 2w ) p—2_ (379)
o(ug + wi)o(ug + wj)

Xij =

The prefactor of p~2 in this expression is an elliptic function of uy with periods w; and
ws, which was not obvious from Eq. (3.7.6) because it was written in terms of elliptic
functions of /2. This extra periodicity enforces the symmetry relations (3.2.6). We
can further simplify Eq. (3.7.9) by introducing a new function ¢(u) which is closely
related to the Weierstrass o(u) (see Ref. [56, page 246]),

1
p(u) = e 2™ gl o(u), (3.7.10)

where g, = €?™ and 7, = 3((3) is a quasi-period of the (-function. This function
has the following properties

1
o(u+1) = ¢(u), and p(u+7T)= —E—cp(u). (3.7.11)
We can use ¢ to replace o in Eq. (3.7.9) and we find

Ly Pt ) e (F)

Xs = X12 = X34 = qé 22 (uo) P
2 T 2(r
wo P7 U0+ 3) P (5) _
Xt = Xi14 = Xo23 = 4q—1° ( 0 > 2) (2)p 2 (3.7.12)
gz * (o)
2 1} ,.2 (1
" (wo+3)9°(35) _
e 4P DEE)
©*(uo)

The cross ratio of the poles does not depend on p and we can find it as

Guo ©* (u0 + 5) ©° (5F)

/\poles(uo) — _& == (3713)
w4 Pwrde ()
In the special case, ug = 0, this gives the cross ratio of the zeros
1 T+1
zeros /\poles(o) — (IT (P ( ) (3714)

¢®'
The ¢-function has a simple infinite product expansion in terms of g, and ¢, (see
Ref. [56, page 247)):

o(u; 7) = (2mi) " (gu — 1) H (=g fuz; ;qT/qu). (3.7.15)

This product converges as a power series with ratio ¢, for small values of ¢,. Note
that by symmetry we can always choose 7 to lie in the fundamental region defined
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by |Re 7| < 1/2 and |7| > 1. The maximum value of |¢;| in this region is obtained at
7 = (£1 + 41/3) /2, therefore

|g:| < exp(—7V/3) ~ 0.00433.

Such a small value of |¢,| makes the product (3.7.15) very useful for numerical calcu-
lations.

Equations (3.7.13) and (3.7.14) together with Eq. (3.7.15) provide infinite product
expansions for AP°® and A\**™5. In order to find similar products for x’s we have to
express the mapping radius p in terms of the function ¢,

= e2uoC(uo) _ quoe%o(C(uo)—nzuo) _ qgo (3.7.16)
2245 g1 p(2ug) ©(2u0) ©(2uo)’
where we use the second equation of the system (3.6.1) for 3.
For future reference we present here the products for all x’s.
Xs = q’l‘:w L X
’ (1 + quo) (1 - QUO)
n— n—l n_.l.
x H (L+g ) 1+ qu)’(1+ar */qu,)’
-z, )*(L—ar/ad)® (1 —q7que)*(1 — ¢ /que)? '
1+2B
quo 1
Xt = 4= 21 — o 4 °
00 = n—s n—3
<1 (1-gr )" (1—gr *¢uo)*(1 —gr */qu,)’
s =t )’ —at/ai,)? (1 —42qu)*(1 — ¢7/qu,)?
qun
Xu = 16 —3"——x
(1 ) 4 2 2
y H (1+q}) (1 + ¢79u0)" (1 + 47 /qu,)

qrquo)Z(l 07/%)* (1 — 47 que)*(1 — @7 /quo)*

It is not so easy to show that the sum of these products is zero as required by
Eq. (3.2.8).

Dividing the first equation of (3.7.17) by the third we find an infinite product for
the cross ratio of the poles:

_1
Xs 1+QT ‘Iuo)2(1+q¢ 2/q?to)2

\poles _ __ Xs 1 H
X« 4(1 +quo)2 (14 ¢Pque)* (1 + 7/ qu,)?

(3.7.18)

3.8 From a, b and c to x;, x; and x,

In this section we combine the results of the previous two and investigate how x
invariants depend on a, b and c.

82



3.8.1 Exact results

There are very few cases when the x invariants can be found exactly. These are the
cases when we know the solution of the main equation. Such a solution is available
for example in the case of a degenerate quadratic differential i.e. when any of a, b or
¢ is zero. According to Eq. (3.6.10) b = 0 corresponds to ¢, = 0 and g, / qT = —je®
and the y invariants are found to be

—siné . 1+siné ; 8 .
ﬂelé 4&616 —_ —_— 7'6.

Xs=4‘ Xt =

cos 6 cos 8

Note that for real § all the ¥ have the same phase, and therefore the cross ratio Apeles

is real: .
ppoles _ 1 75100 (3.8.1)

2
The small parameter g, is also exactly zero in the limit Im o — oo (see section 3.6).

In this limit, gq,, is given by Eq. (3.6.13), and the x invariants are

_ G
(1 Quo)4

These results can also be obtained by an elementary approach. For example, in the
case b = 0 and real a and ¢, we can choose the uniformizing coordinate z so that the
poles of the quadratic differential are located at the vertices of a rectangle and the
two degenerate zeros are at 0 and oo. From symmetry, the horizontal trajectories
are the symmetry lines and we can find the mapping radii by making a conformal
transformation.

The other case of infinite Im o corresponds to the degeneracy of the poles. In
this limit, two poles collide and we effectively have a three punctured sphere. For the
case § = %, this sphere is the Witten vertex and the x, in the formula (3.8.2) gives
correct value |x| = 33/2%.

The only nontrivial point where an exact solution is still available is the most
symmetric point a = b = c¢. In this case

Xs =00, Xt=00, Xu=—Xs—X¢=16 (3.8.2)

Xy

T=e3,

which corresponds to the so-called equianharmonic case in the theory of elliptic func-
tions. In this case, all the necessary values of the Weierstrass functions can be eval-
uated explicitly in terms of elementary functions (see Ref. [57]) and we obtain

2°y/2 - 25\/& 2°V/2
XS 3) 37 Xu: .
32 32 32

Xt = (3.8.3)

The upper left picture on Fig. 3-2 shows the critical graph for this case. It is
formed by three straight lines connecting the first three zeros with the last placed at

infinity and three arcs connecting two finite zeros having the center at the third.
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3.8.2 Approximate results

For other values of the integral invariants no exact solution for the main equation

is available, but we can still solve perturbatively as we did in section 3.6 and find

approximate formulae for the x’s. Consider the case of large Im « and 8 = % In

section 3.6 we found the solution of the main equation up to the 8-th order of ¢, (see
Eq. (3.6.18)).

1 512 94720 167118848
qr = 3_4 quz + '3T q:i 315 qg + 322 ‘12 + O(quo) (384)

We can find ¢, as

1
¢f 1 128 , 15488 , 7280128
Qo =—"T="3" 37 b~ 3n % g5 %t 0 (3.8.5)

do

Using these values to substitute in (3.7.12) we get the following approximate formulae
for x’s
31 3 3 5 5, 1609 ,

Xs = §§q_a+2_5+§5q°‘+2.33qa+27.36qa

343 , 16981 . 163174 4 7
+2 . 38qa + 25 . 311qa + 315 4q + O(qa)a

31 3 3 5 , 1609 ,
= 42 = 2 — 3.8.6
Xt =" T T plt gl o gt (380)

343 , 16981 , 163174

6 7
. +2 38% 7 55 311l + 355 o + 0(4a),
3 5 343 326348

and the cross ratio

X 3 1 1lge 1621 , 413941 o -
)\_—_X_u:2—4qa +§—22-33_23.38qa_ 2.315 qa+0(qa)- (387)

As expected x5 + Xt + X« = 0 up to this order.

For small 3 an approximate solution to the main equation is given by Eq. (3.6.12).
We can use this approximate solution together with the infinite products (3.7.17) and
find x’s, but if we leave all the terms the expressions become too complicated. We
will need the full expression depending on a and b only for the case of real a and b.
Most interesting is the dependence of A on a and b, which describes a map from abc
triangle to Mg 4. Keeping only the first non-vanishing terms in both the real and
imaginary part of A\P°!®*, we can write

\Poles _ 1 —siné _ .Ccosd (1+ln4 CI;)S(S

1

2 2
The image of the missing region V, 4 under this map is presented in Fig. 3-8. The
approximate expression above is valid in the vicinity of A = 1/2.

) B+ 0(B%). (3.8.8)
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3.9 Summing the Feynman diagrams

In this section we compute the part of the tachyonic amplitude which comes from
the Feynman diagrams. We show how to express this partial amplitude in terms of
an integral over a part of the moduli space. We analyze analytic properties of this
integral and show that it has no singularity at zero momentum. Our analysis allows
us to calculate the Feynman part of the amplitude at zero momentum.

We define the partial or Feynman amplitude as an integral over the Feynman
region of Mg, (see Eq. (3.2.11)):

eyn 2
FEY = —/ I74(s, t, u)|2 (3.9.1)
T Fo,4

Instead of integrating over the Feynman region we can integrate over three unit disks
le| < 1, one for each channel. Consider for example the contribution of the u channel:

I‘g")(s, t, u) = % s |v4(s, t, u)|?. (3.9.2)
We can find v4(s, ¢, ) from equation (3.2.9) which we rewrite as
N(e)de
AE)F (1= AE)T T FH

Ya(s, t, u) = (3.9.3)

In terms of ¢ the region of integration F, is just the unit disk |¢| < 1. Recall that
(see Eq. (3.8.7))

3, 1 1le 1621 , 413941

Ae) e’ + 0O(e"), (3.9.4)

=5 T3 T3 3.3t T .30

is of order of ¢! for small € and x,, = O(1). Therefore we can represent v4(s,t,%) in
the u channel as

Ya(s,t,u) =725 > (s, t)e" de. (3.9.5)
n=0

We can now evaluate the integral in Eq. (3.9.2). If the coefficients ¢, vanish sufficiently
fast for n — oo, this integral converges for Re u < —2 and is given by

2 4]e 2
T{(s, t,u) =Y %t_)—'u (3.9.6)
n=0

Note that m from the prefactor in Eq. (3.9.2) cancels with the area of the unit disk.
Equation (3.9.6) shows that the amplitude has an analytic continuation to the whole
region Re u > —2, except for even integer values of u, where it has first order poles.
These poles correspond to the spectrum of the closed string.

In order to find the constants c,(s, t) it is sufficient to find the series expansion for
7v(s,t,0). For the tachyonic potential we need only c, (0, 0), so let us restrict ourselves
to this case,

19 = 340, 0, 0) = x2 dA. (3.9.7)
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First of all, recall that x, is an even function of £ and that A(—¢) = 1 — A(¢). Indeed,
when we make a twist by 7 it is equivalent to an exchange of the poles 2, and z3. This
exchange does not affect x,, = x14 but changes A to 1 — . We can now conclude that
fyi ) is even with respect to ¢ and ¢,(0,0) = 0 for odd n. In particular, this means
that massless states (n = 1) are decoupled from the tachyon. The sum over massive

states which appears in Eq. (3.1.6) is given by

e = (399)

where we have introduced an extra factor of 3 which comes from summation over
three channels. Each term in the series corresponds to a particular mass level and
can be found by summing corresponding Feynman diagrams. For example, on the
lowest mass level there is only one state — the tachyon, and we therefore conclude

that of? , .

One can similarly evaluate the Feynman diagrams for some other massive levels and
thus evaluate some more ¢,. An alternative way to do thlS is to use the series for x,
and A from section 3.7 (see Eq. (3.8.6)) and evaluate 74 ) directly as

9

A0 = \2dx = (2% e+ 1231707 + 1;39 e? + 423 %‘;1 et + 0(56)) de.  (3.9.10)
Although we can in principle find as many coefficients ¢, as we want, it is very

inefficient to evaluate v, summing the series because 1t converges very slowly. The

reason for this poor convergence is that the series for 74 dlverges at € = 1. Indeed,

£ = 1 corresponds to 8 = 0 and we can use approximate formulae for A(e) and x,(¢)

in the vicinity of this point to get:

%(10) = (8 In (18_71'

Looking at the first term of this expansion we conclude that

6) +0Q1 - 5)> de. (3.9.11)

1
Cn ™ for n— oo (3.9.12)

Therefore the series in Eq. (3.9.8) converges as slowly as y_ n™>

Instead of summing the series we therefore decide to calculate the integral itself.
First of all, we have to regularize 74 by subtracting the divergent term (co/e?)de.
We can then evaluate convergent integral numerically:

2
© _ gg dg| ~ 6.011. (3.9.13)

b'e 6
Se=2 [ b
X T Jlel<1
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Figure 3-8: The moduli space M, 4 and the measure of integration p,

3.9.1 Historical remarks

Calculations of the Feynman region contribution to the closed string amplitude are
very similar to those in the case of the open string. Indeed in the open string we have
to consider the same differential form ~4 and integrate it along the real interval [—1, 1]
in order to get a contribution from one channel. The results of this section have been
found in the realm of open string in the works of Kostelecky and Samuel [58, 59].
Using different methods to those applied here, they were able to find the quartic term
in the effective potential. The series expansion analogous to Eq. (3.9.10) has been
found in Ref. [60] up to order €* and it was verified that the coefficients agree with
what one gets from the Feynman diagrams with an intermediate massive state.

3.10 Bare four tachyon coupling constant and full
effective potential

As we saw in the previous section the four punctured spheres which can be obtained
from Feynman diagrams do not cover the moduli space Mg 4. The contribution of
the rest of My 4 can be introduced in the string field theory as an elementary 4-string
coupling In this section we evaluate this elementary coupling for the case of four
tachyons.

The four-string vertex Vo 4 = M 4\ Fo,4 can be easily described in terms of integral
invariants a, b and c introduced in section 3.4. The whole moduli space can be
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Figure 3-9: Tachyonic potential

parameterized by real values of these invariants varying from 0 to 27 restricted by
the condition a + b+ ¢ = 2. In fact, each triple defines two points A and X in Mg 4,
so we need two copies of the abc triangle to cover it. The four-string vertex can now
be described as a region in the abc triangle defined by

a>m, b>m, and c>m. (3.10.1)

The four tachyon coupling is given by the same integral as the amplitude, taken not
over the whole moduli space, however, but rather restricted to only V4.

2

vy=— / Ixu|*d® N, (3.10.2)
T JVo,4

where d?)A = dIm AdRe ).

3.10.1 Numerical results

For the numerical calculations we use the complex secant method with the starting
point given by (3.6.10) in order to solve the main equation. Then we calculate x,
and AP yusing the first few terms of the infinite products (3.7.17) and (3.7.18).
Results are presented in Fig. 3-8 which shows the region of integration Vg4 and the
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contour plot of the measure uy = |x.|*. We perform calculations only for § > 0,
B <1/3 —(2/37)6 which is 1/6 of the whole abc triangle (see Fig. 3-4). The values
of A\P°!es and py in the rest of the triangle are found from symmetry. As we can see
py has its maximum value of 28 = 256 at A = 1/2 and drops exponentially as we
go away from this point. Note, that the value of the measure p, at the point where
the unit circle intersects the boundary of V; 4 is equal to 64 exactly (at least up to
machine precision 1071%). We could not find any explanation to this curious fact.

We have performed numerical integration triangulating 1/12-th of Vy 4 correspon-
dent to 6 > 0 and 3 < 1/3 — (2/37) 6. Here we present the result of the calculation
which involved about 500, 000 triangles.

2
vy =~ / Ixu]*d®\ ~ 72.39 (3.10.3)
4 Vo,4

Combining equations (3.10.3) and (3.9.13) we can finally write the tachyonic potential
up to the fourth order:

Vel (t) = —12 + 1.60181 3 — 3.267¢* + O(t%). (3.10.4)

We present the plot of the effective tachyonic potential computed up to the fourth
term in Fig. 3-9. One can see that the fourth order term is big enough to destroy the
local minimum suggested by the third order approximation (dashed line in the plot).
The plot also shows the bare tachyonic potential computed up to the fourth order.
One can see that the effective four-tachyon interaction gives only a small correction.
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Chapter 4

The role of the dilaton

4.1 Introduction and summary

The soft-dilaton theorem is an old result in critical string theory. It is stated as a prop-
erty of string amplitudes for on-shell vertex operators. A physical string amplitude
involving a zero-momentum dilaton is written in terms of derivatives, with respect to
the dimensionless coupling and the slope parameter, of the string amplitude with the
dilaton suppressed [61,62]. It is natural to ask what does this result tell us about the
role of the dilaton field in the string action. There has been much work on the role of
the dilaton in effective field theory limits of strings. Our interest here is on the role
of the dilaton in the complete string action. This line of work began with Yoneya [63]
who investigated the dilaton theorem using light cone string field theory. Subsequent
studies [64-66] considered the dilaton in the context of covariantized light-cone string
field theories.

A dilaton state has a component built by acting on the vacuum by operators from
the ghost sector. This component is called the ghost-dilaton [D,), and its relevance
for the on-shell dilaton theorem was studied in Ref. [67,68]. This work was extended
recently to prove the off-shell “ghost-dilaton theorem” in covariant quantum closed
string field theory [17,18]. This result states that an infinitesimal shift along the
zero-momentum ghost-dilaton changes the quantum string action, or more precisely,
the path integral string measure, in a way equivalent to a shift in the dimensionless
string coupling. This work showed concretely that conformal field theories and string
backgrounds are not in one to one correspondence: while the ghost-dilaton deforms
the string background, it does not deform the conformal field theory underlying the
string background. The string background has at least one parameter which is absent
in the conformal field theory.

A study of the ghost-dilaton alone is not enough to understand how the value
of the string coupling can be changed in string theory. In critical string theory the
zero-momentum “matter-dilaton” also shifts the coupling constant. Moreover, the
properties of the ghost-dilaton depend on the matter sector of the conformal theory.
In critical string theory it is a nontrivial BRST-physical state, but in two-dimensional
string theory, for example, it becomes BRST-trivial. If the ghost-dilaton is trivial one
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may think that the string coupling cannot be changed. This is not correct, a shift
of the ghost dilaton will always shift the string coupling. What happens is that the
string coupling becomes unobservable. Thus the ghost-dilaton plays a fundamental
role: if it is trivial the background has no string coupling constant parameter. This
is one of the main results of this paper.

Another point we develop in detail is the analysis of conformal field theory defor-
mations and string background deformations induced by the dimension (1, 1) primary
field 0X - 0X. In critical string theory this is the matter-dilaton. We first consider
the analog of this state in a conformal theory containing a single scalar field X living
on the real line. We ask if 9X3X deforms the conformal theory. The deformation
involves integrating the two-form 0X0Xdz A dz over the surface, and this two form
can be written as the exterior derivative [d (X0Xdz)]. Stokes theorem cannot be
used directly because (X0X) is not primary, and therefore (X0Xdz) is not a true
one-form. Apart from a piece that can be absorbed by a redefinition of the basis of the
conformal theory, we show that the deformation amounts to a scaling of correlators
with a factor proportional to the Euler number of the underlying surface. Since the
conformal theory has non-vanishing central charge, correlators depend on the scale
factor of the metric and the deformation simply corresponds to a variation of this
scale factor. Strictly speaking, the conformal field theory has been deformed: the
correlators of the two theories on any firzed surface cannot be made to agree with a
redefinition of the basis of states.

If the matter conformal theory includes twenty six scalars and is coupled to the
ghost system, the operator X - 0X does not deform the conformal theory. This
result has been verified earlier to various degrees of completeness in interesting works
by Mende [69] and Mahapatra et.al. [40]. Indeed, following [17] the deformation
can be absorbed by a change of basis generated by the ghost-number operator. For
integrated correlators this cannot be done, implying that the matter dilaton alters
the string coupling. We emphasize, however, that the matter dilaton does not change
the value of the dimensionful slope parameter ¢'.

In addition to the dilaton we also consider the graviton trace G. This state,
physical only at zero momentum, is the linear combination of the ghost-dilaton and
the matter-dilaton that does not change the string coupling. The graviton trace can
be written as Q acting on the state |¢) created by (cX -0X — X - 0X). This state is
usually considered illegal since it uses the operator X which is not a scaling field of
the conformal theory. We argue in this paper that G is legally BRST trivial. There is
an immediate issue with this interpretation. The failure of G to decouple [44], easily
verified in (G, phys, phys) # 0, seems to be in contradiction with the claim that G is
BRST trivial: by contour deformation the BRST operator that occurs in G can be
made to act on the physical states giving zero. We show that this is not a correct
argument, the point being that correlators involving X are distributions. Careful use
of delta functions confirms that G does not decouple.

Refining the discussion of Mahapatra et.al. [40] and, in agreement with them, we
claim that the graviton trace G does not change any physical property of the string
background. On the face of it this seems puzzling given the failure of decoupling for
G. There is no contradiction, however. Strictly speaking, a state leaves the physics
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of the background invariant if it appears as the inhomogeneous term of a nonlinear
string field transformation that can be verified to leave the string action invariant.
A state capable of having such behavior need not decouple. For G this is possible
if correlators of operators including X’s can be defined, and, once defined, obey the
standard properties of sewing and action of the BRST operator. We discuss these
matters and argue that the requisite nonlinear field transformation is simply a gauge
transformation with gauge parameter |£).

Once we accept X in the gauge parameters we must accept it in the physical
states as well. Having a larger set of gauge parameters, we lose some physical states;
having a larger state space, we may also gain some new physical states. We formalize
this setup via a new refined cohomology problem: BRST cohomology in the extended
(semirelative) complex where X and powers of it are accepted as legal operators.
The cohomology of this complex appears to capture accurately the idea of a string
background: we lose the states that do not change the string background, as the
graviton trace, and we gain no states describing new physics. In this cohomology
the matter-dilaton is the same as the ghost-dilaton. Similarly, in two-dimensional
string theory we show that the states in the semirelative cohomology that are trivial
in the extended complex do not appear to change the string background. A detailed
computation of BRST cohomology at various ghost numbers in the extended complex
of critical string theory will be presented in the next chapter.

This chapter is organized as follows. In section two we set up notation and con-
ventions. We discuss zero momentum physical states, and the uses of the X field
operator. In section three we define the extended BRST complex, explain the fail-
ure of G to decouple, and argue that the usual BRST action on correlators holds in
the extended complex. We summarize the properties of the new BRST cohomology
which will be calculated in chapter 5. In section four we consider CFT deformations
induced by the matter dilaton, and derive formulae for the integration of insertions
of matter dilatons over spaces of surfaces. We use these results in section five to give
a complete proof of the dilaton theorem in closed string field theory. In section six we
prove that whenever the ghost-dilaton is BRST trivial the string coupling constant is
not observable. Finally, in section seven we illustrate some of our work in the context
of two-dimensional string theory.

4.2 Zero momentum states and uses of the X*(z, z)
operator

In this section we begin by enumerating the zero-momentum physical states in critical
string theory. This enables us to set our conventions and definitions for the dilaton,
the ghost-dilaton, the matter dilaton, and the graviton trace. We then elaborate
on the definition of the X* field operator and how it can be used to write all zero
momentum states, with the exception of the ghost-dilaton, as BRST trivial states.
The ghost-dilaton can be also be written in BRST trivial form, but, as is well known,
in this case the gauge parameter is not annihilated by b, . Finally, we discuss charges
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that can be constructed using currents that involve the field operator X*.

4.2.1 Zero momentum physical states in critical string theory

In this section we will list the ghost number two physical states of critical bosonic
closed strings at zero momentum. These states are defined as cohomology classes
of the semirelative BRST complex. We will find that only some of those states can
be obtained as a zero momentum limit of physical states that exist for non-zero mo-
mentum (states corresponding to massless particles). This is a familiar phenomenon
noted, for example, in Ref. [70] for the case of the fully relative closed string BRST
cohomology. The present section will also serve the purpose of setting up definitions
and conventions.
Let |¥) be the string field state and ) the BRST operator. Physical states are
defined by
Q|¥) =0, (4.2.1)

up to gauge transformations

6 |¥) = Q|A). (4.2.2)
Here both |¥) and |A) must be annihilated by by = by — by. To look for states that
can be physical at zero momentum the relevant part of the string field is

) = Eu et eia,|p)
—A,cteot |p) + Auciea” |p) (4.2.3)
+F clc_1|p) — FEIE—IIP) + ..

where ¢ = (1/2)(¢co + Co), and that of the gauge parameter
|A) = e ci0t|p) — € C1at |p) +ect|p) + -+ - . (4.2.4)

Let us work at zero momentum p, = 0. Equation (4.2.1) gives A, = A, = 0 and
Eq. (4.2.2) gives us the gauge transformations 6F = —6F = —¢. It follows that at
zero momentum the d? degrees of freedom of E,,, are unconstrained, the combination
F + F is gauge invariant and unconstrained, and F — F can be gauged away. This
gives a total of d?> + 1 nontrivial BRST physical states in the semirelative complex.
For p, # 0, it is well known that there are (d — 2)* nontrivial BRST states for each
value of momentum satisfying p*> = 0 . These considerations indicate that we have
(4d — 3) states that are only physical at zero momentum. These states are called
discrete states.

The (d? + 1) zero-momentum physical states correspond to the following CFT
fields

Dy = 1 (cd?c— ¢0°0),

(4.2.5)
D* = X OX".
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The state associated to D, is called the ghost-dilaton and we will refer to the state
associated to the trace 7,, D" as the matter dilaton. In addition we identify two rel-
evant linear combinations of the ghost and the matter dilaton. The first combination
is the zero-momentum dilaton

D =7,,D* - D,, (4.2.6)

which is the zero-momentum limit of the scalar massless state called the dilaton. It is
recognized as such because the corresponding spacetime field transforms as a scalar
under gauge transformations representing diffeomorphisms. The second state is the
“graviton trace”

d
G =nuD" ~ 2D,. (4.2.7)

This state corresponds to the trace of the graviton field in the convention where the
gravity action is of the form [ ,/gRdz without a factor involving the dilaton (see, for
example, Ref. [71]).

It is of interest to consider the gauge transformation generated by |A) for the case
when we set € = 0. We find

6Em/ = pugu + Pu€p,

OF = —pWe,, (4.2.8)

Transforming to coordinate space we obtain the linearized gauge transformations

6E,,(z) = Ouen(x) + 0,8,(2),
§F(z) = —0ke,,, (4.2.9)
6F(z) = —0"z, .
Now consider the gauge parameters
e(z) = Cpa*, 2,(z)=Cua”, (4.2.10)

where C,,, is a matrix of constants. Equation 4.2.9 implies that the following constant
field configurations are pure gauge:

Eu(z)=2C,,, F(z)=F(z)=Cl. (4.2.11)

In string field theory the coefficient E,,(p) in Eq. (4.2.3) should be interpreted as
a Fourier component of the space-time field E,,(z). The above spacetime constant
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field configurations must correspond to zero momentum states. The corresponding
string field in 4.2.3 should be expected to be BRST trivial. This requires that
1

D¥ — 21Dy = G*, (4.2.12)

is BRST trivial

g = —{Q, e}, (4.2.13)
In the ordinary closed string BRST complex there is no state £*” satisfying 4.2.13. It
is necessary to extend the BRST complex to include states corresponding to field con-
figurations growing linearly in space-time. An example is the state lim,_,o X*(z,Z)|0),
which requires the consideration of X*(z,Z%) as a field operator. We analyze this next.

4.2.2 Definition of the X* operator

In the ordinary CFT of 26 free bosons only derivatives of X#(z,Z) appear as conformal
fields. These derivatives have the mode expansions

(o ¢] o0

i0X*(2,7) = Y Zi‘—f_l . i0XH(2,7) = ;—i , (4.2.14)
n=—o00 n=—o0
where the o#’s are operators with commutation relations
[ah ,ar] = mn*énm , @, ek = mn* 6 m - (4.2.15)
Formally integrating Eq. (4.2.14) we find
XH#(2,2) = X§ — 2iaflog |z| + nz;éo Z Z:; (4.2.16)

The zero mode operator X}, which appears in Eq. (4.2.16) as a constant of integration
is not specified by Eq. (4.2.14) and has to be defined independently. It is standard
to interpret it as the position operator for the center of mass, and taken to commute
with all a’s except the momentum operator of

[XE, ab] = i (4.2.17)

This interpretation is usually justified by canonical analysis of the two-dimensional
quantum field theory. Eqs. (4.2.16) and (4.2.17) provide an abstract definition of
X*(2,Z) as an element of a Lie algebra.

4.2.3 A gauge parameter involving X*(z, z)

Now we will try to use the X* field to find a gauge parameter which will generate
G**. Equations (4.2.4) and (4.2.10) suggest that the proper candidate is

e — %(c . X"0X": —2: XFIX":). (4.2.18)
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We have to explain what the products like : X#*0X" : or : X*0X* : mean. Normal
ordering amounts to placing annihilation operators to the right of creation operators.
In our case it is not clear how to order the product of X{ and «y. We adopt the
following definition

. XYOXH: (2,7) = f R(OXH(w)X"(z,7)) dw (4.2.19)

. w2z 2my

where R denotes the necessary radial ordering. Note that the integral is contour
independent because 0X* is a holomorphic field. As usual, to evaluate the integral
we replace the contour around z by two constant radius contours, one with |w| > |z|,
and the other with |w| < |z|. Because of radial ordering one must use different
expansions for 1/(w — z) in the two contours. A small calculation gives

(XHEOXY: (2,2) = X*(2,2) Z ;Zi" + E ;iflnX“(z,Z), (4.2.20)
n>0 n<0

which shows that the momentum zero mode aff appears to the right of the coordinate
zero mode X¢'.
We now calculate the action of the BRST operator on &#:

(s 7)) = 2)e(2)+ :¢(2)0c(2)b(2): ’“’ziﬁ
Q7)) = § (Taleel)t e2e0(2):) € E
+ }{ (Tm(z)e(z)+ :¢(2)0¢(z)b(2) :) £ (2,7) 2—;

Using Wick’s theorem! to expand the operator product under the integral, we obtain
1 — _
(@, &) = {w(cdPe - ed'°c) — cedX X", (4.2.22)

and, as expected,
g = —{Q,&"}. (4.2.23)

The ghost dilaton, the first state in Eq. (4.2.5), is a nontrivial state in the semirel-
ative cohomology, but in the absolute complex it can be represented as [67,68]

Dy = —{@Q, x4}, (4.2.24)
where x, is given by
1 —
Xg = —5(60 — 0¢). (4.2.25)

The state x, does not belong to H since it is not annihilated by b, . Using x, we can
represent the matter states of Eq. (4.2.5) as {Q, - }. Indeed, let

14 v 1 v
X = ¢H +§7]" Xg - (4.2.26)

'As explained in Ref. [72] Wick’s theorem for composite operators is valid when normal ordering
is defined as in Eq. (4.2.19).
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Dy = 3(cd*c — 6520) D, = —{Q, x4} Xg = —3(0c — 0¢)

DWW = cedX*0XY | D* = —{Q,x*'} X =M + %n‘“’xg

Gw =D — LypwD, | G = —{Q, 6™} | £ = L(cX¥OX* — eXHDXY)

D=D,-D Xp = Xh— X

© g D n g
Dgz_{Q’XD}
— g+ (), - g+ (5%

Table 4.1: Summary of ghost and matter dilaton combinations

Unlike x, and £, the state x% can be verified to be a (1, 1) primary. Now combining
Eq. (4.2.24) with Eq. (4.2.22) we obtain

=—{Q,x"}, (4.2.27)

and conclude that x*” is the gauge parameter generating the matter states given by
Eq. (4.2.5). We therefore conclude that all semirelative cohomology states at zero
momentum can be represented as {Q, - } when we allow gauge parameters using the
X operator and/or violating the b; = 0 condition. This information is summarized
in Table 4.1. ‘

4.2.4 Properties of : XY0X": dz

It is of interest to consider some additional properties of : X¥0X*: dz and : X*9X":
dz. Both of them have an exterior derivative proportional to the two-form

OXMDX"dz A d7 = —d : X" 9X*: dz) =d (:X@X"; az). (4.2.28)
Nevertheless : XY0X*: dz is not a one form because the field : X*0X*: is not primary

—nH : XYOX*: (w, W) 4 I(: X0X*:)(w, w) N

T(z) : X"0X*: (w, @) =

(z —w)? (z — w)? z—w
(4.2.29)
As a consequence we have an anomalous transformation law under analytic maps
d*z/dz"
(XYOXH: (2,Z2)d7 = { : XYOX*: (2,2) — =n* dz. 4.2.30
ox*: (4,217 = ( (02)— g s ) (4.2:30

See [50] for details. Similar results hold for : X*8X": dz.

This implies that : X¥0X*: dz and/or : X#0X": dZ cannot be integrated unam-
biguously over a contour unless we fix a coordinate in the vicinity of it. Nevertheless,
we can show that an integral over a contractible path does not change if we make a

98



coordinate transformation which is holomorphic inside the path. Indeed, according
to Eq. (4.2.30), when we make a holomorphic change of coordinate the anomalous
piece which appears in the transformation law is a holomorphic (or antiholomor-
phic) one-form whose integral over a contractible path is zero. Thus the integrals
f7 : XY0X*: dz and §7 : XHOX"?: dZ are well defined if 7 is contractible but they still
depend on the choice of the contour 7 itself. For later use we define

DY = — 7{ 9 ¢) CHE z)— —f{ XX (2, z)ﬁ (4.2.31)
|2]=1 2mi l2|=1 m

where the equality follows by use of 4.2.28. Using Eq. (4.2.20) we rewrite the above
as

dz —1ak

HY = — XY(2,Zz - — —r X" . 4.2.32
Pp--f mXEILIHE-f T IEXE . w2

n>0

The integration is done using Eq. (4.2.16). Since we integrate over the unit circle the
logarithm in Eq. (4.2.16) vanishes, and we obtain

1
DY =iXgoh - ~aja). (4.2.33)
n#0

This operator appeared earlier in the dilaton theorem analysis of refs. [63,64].

4.3 Extended BRST complex

In this section we define an extended BRST complex where the coordinate zero mode
Xo acts as a linear operator. We will show how the BRST operator Q% acts on
this complex and explain why BRST exact states in this complex may not decouple
from physical correlations. We will explain, through an example why the usual BRST
action on correlators holds in the extended complex. This, together with the fact that
sewing also holds in the extended complex, implies that string field theory is well
defined in the extended complex. The explicit computation of the BRST cohomology
in this complex will be given in chapter 5. The present section concludes with a
review of the results of this computation.

4.3.1 Definition of the extended complex

We define the extended space of states at any given momentum p as a tensor product
of the original state space H, with the space of polynomials of D variables z#:

H™ = Clz#] @ H,,. (4.3.1)

A state in this complex is written in the form P ® v where P € C[z*] is a polynomial
in z#, and v € H, is a vector from the original state space. The operator X} acts by
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multiplying the polynomial by z#. All the mode operators, except for af, act as they
acted on H,. For af it is natural to define

P
int % ®v, (4.3.2)

preserving in this way the commutation relation [X{',af] = in**. With the matter
Virasoro generators written as

Zn,u, akaor L,= %Znu,, ok ar_ (4.3.3)

af Pev=p'PQu-—

the BRST charge reads

Q™ = Z enl_p — Z(m —N) :ComConbmin: +a.h. (4.3.4)

Although equations (4.3.3) and (4.2.2) have the standard form, when acting on the

extended complex we must use Eq. (4.3.2). For the BRST operator this implies that
9P

(6 ale i

oP =
QextP®1;_P®Q’U—'lau® Z(cna’in—l-éna’in) ’I’)

n=—oo

® cfv. (4.3.5)

4.3.2 The failure of BRST decoupling

The analysis of section two shows that the states G are BRST trivial in the extended
complex. Indeed, as written in the table at the end of section 2.3, G = {Q, &* },
where £ contains an explicit X operator. Correlators involving an explicit X oper-

ator should be evaluated using X*(z) = —i a exp(ipX(2))| , which operationally
p=

means evaluating the correlator with X#(z) replaced by exp(sz (z)) and evaluating
the derivative —i% of the resulting correlator at p = 0.
In general, the correlation functions of a BRST trivial state with physical states are

known to vanish. Indeed, let |¢) = —Q|x) be BRST trivial, and |¢;) for k =1,...,n
be BRST physical (Q|r) = 0). It follows by contour deformation that the BRST
operator can be taken to act on the physical states giving

n

(GU1-Pn) = D (X1 Qe+ 9n) = 0. (4.3.6)

k=1

On the other hand, consider the three point function of the BRST trivial zero-
momentum state G#¥ with two tachyons 7,(z,%Z) = ccexp(ipX)(z,Z). One readily
verifies that for p # v

(g’“’(zl,il) Tp(Z2,—Z-2) Tq(Zg, 23)) = 2pp.pu |22 - 23|4_2p2 (27r)d6d(p + Q) 5 (437)

and observes that this is not zero for on-shell tachyons (p? = ¢*> = 2), in apparent
contradiction with Eq. (4.3.6). Since the computation leading to Eq. (4.3.7) is beyond
doubt we must find why the usual argument for decoupling fails.
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The problem with Eq. (4.3.6) is that when ¢ = G, the field X* is present in the
correlators under the sum, and we cannot make sense of their on-shell values. This
is because correlators are not functions but rather distributions. In the absence of
X fields, however, we associate an ordinary function to a correlator because every
correlator can be represented as an ordinary function of momenta times the standard
momentum conserving é-distribution

(Y192 -+ -Pn) = F (p1, D2, - .-, Pa) (2m)46 (1 + P2 + -+ + Pa) - (4.3.8)

When we say that the correlator (¢ - --1,) vanishes for particular values of mo-
menta what we really mean is that the function F’ vanishes. On the other hand, if
the fields v; contain X without derivatives, correlators have a more general structure

(Vg -Yn) = F(p1,...,pn) 2m)%6%(p1+ -+ + pn)
(4.3.9)

+ FH(py,...,pn) (2m)46%,(p1+ - +pn) +--- .
where 67 (p) = dp%éd(p), and the dots indicate possible terms with higher derivatives
of delta functions. A function F* that vanishes on-shell can contribute to the cor-
relator if its derivative does not vanish on shell. This implies that the right hand
side of Eq. (4.3.6) need not vanish when the correlator contains an X. We will illus-
trate this with an example. Rather than using the field G#¥, the point can be made
by considering open string theory where the analogous field is the zero-momentum
photon cOX* = {Q, X*#}. We therefore examine the correlator of this state with two
tachyons

(cOXH(z) ceP X (@) ceiP2X(@2)y — _jpht |3y — 1 |>7P1 (21)46%(py + po),  (4.3.10)

where z, ; and z; denote the insertion points on the real axis. On the other hand,
using the BRST property we are led to write

(C(‘)XM(:E) ceiplx(zl) ceip2X(z2)> — _<X”($) {Q’ ceiplx(zl)} Ceip2x(z2)>
(4.3.11)

+<Xﬂ(x) ceiplx(zl) {Q, ceip'ZX(m2)}) .
Using {Q, ce?X(?)} = (1"2—2 — 1)cOce?X(#) | we obtain

(1) = (X*(@) {Q, cem X} e X)) = (FL—1) foy — (X () X (@) g X (o))

(4.3.12)
and the remaining matter correlator is evaluated using the prescription given at the
beginning of the section

2

(D T—z
(I)=—i (31 - 1) |z) — 3y |PTPIP2 [P’f log l“w_—x;‘ (27)? 6%(p1 + p2) + (2m)? 5,2(171 +P2)] .

| (4.3.13)
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In this expression, the term including the ordinary delta function is unchanged under
the simultaneous exchanges z; < z2 and p; < p,, and thus back in Eq. (4.3.11) we
obtain

(caXﬂ(x) Ceiplx(zl) ceiPZX(z2)> = .;- (p% — p%)lxl — x2|2+P1P2 (27T)d 63‘(1)1 +p2) ,

= $p-qloy — PO (2m) 54 (p)
(4.3.14)
where p* = p' + p§ and ¢* = p} — ph. Since zf(z)é'(z) = — f(0)6(z) we find

(cOXH(z) ce’PX @) ceiP2X(22)y — i ph |z — g, [27P1(27)% 6%(py + po), (4.3.15)

in agreement with Eq. (4.3.10), and confirms the failure of decoupling. This exam-
ple also illustrates that with proper treatment of distributions the BRST property
of correlators holds in the extended complex. There is no problem with the contour
deformation arguments that are used to prove the BRST property. This will also be
the case when we deal with integrated correlators. The sewing property of correla-
tors is also preserved in the extended complex. This follows from the definition of
correlators when a field X is present and the fact that the sewing ket is not changed.
Since the consistency of string field theory depends only on the proper BRST action
on correlators and sewing, the above arguments indicate that there is no difficulty in
defining string field theory on the extended complex.

Let us comment on the significance of the BRST property for the issue of decou-
pling. The fact that the BRST property holds in the extended complex means that
moduli space forms Q)..;u) representing correlators of states |¥) in the extended
complex satisfy Qs g)jw)..jvy ~ d€w)..;v). Consider a simple case when we have two
states, |G) = —Q|£), and a physical state [¥,). Then dQgv,) ~ Qgyw,) + Qeyoiv,)-
As we mentioned previously in this section, whenever we consider correlators involv-
ing £ we must deal with distributions since they generally have the form indicated in
Eq. (4.3.9) and the fact that |¥,) is physical does not mean that Q¢gv,) vanishes,
since Q|¥,) = 0 only for on-shell values of momentum. We therefore conclude that
a form Qg)¢,) representing the correlator of G with a physical state can be written
as Qgyw,) ~ dQey v,y — Qeyg|v,), and therefore it is not an exact form. Its integral
over moduli space is non-zero, and G need not decouple. This failure to decouple is
not an issue for the consistency of the string field theory action. Here only the BRST
property, which ensures gauge invariance, is necessary. This property holds off-shell
in the extended complex.

4.3.3 Cohomology of Q**

While the extended BRST complex is larger than the original one, a priori, this has no
immediate implication for the cohomologies. When we extend a complex we increase
both the number of BRST closed states and the number of BRST trivial states. As we
saw earlier, some zero momentum states that were physical in the original complex
are trivial in the extended one. On the other hand there might be new solutions
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to Q|¥) = 0 in the new complex. Explicite calculation of the cohomology of the
extended complex Hext i presented in chapter 5. Indeed, we lose some states, in
particular states that do not change the physics of the background, and states of
peculiar ghost numbers. We gain some states, but the new states can be understood
in terms of the old complex.

When we have a physical state |v,p) which remains physical under continuous
variations of the momentum p, we can easily construct physical states in the ex-
tended complex by taking linear combinations of |v, p;) where all p; ~ p are on-shell.
Adjusting the coeflicients we can get as many derivatives with respect to p as we want
which we can interpret as factors of X}. Since mass-shells are not flat, in general
we get nontrivial combinations of states with different numbers of X}. At non-zero
momentum and ghost number two (G = 2), all new physical states can be obtained
from standard states by the above limiting procedure [73] .

Let us recall the structure of the semirelative cohomology. At non-zero momentum
p the cohomology at G = 2 and at G = 3 can be represented by the states ¢,¢;|v, p),
and (co + Co)c1€1|v, p) respectively, where |v,p) is a dimension (1, 1) primary matter
state. All G = 3 states are trivial in the extended complex. Indeed, using Eq. (4.3.5)
we can write

1® (co + ©o)erCr|v, p) = Q% % Q 1T |v, p) — Z % ® c1Ti(c_pahy +T_,05)|v, p) .

(4.3.16)
The last sum must be @ trivial because, being annihilated by Q, by and by, it would
represent a non-trivial relative cohomology class at G = 3. Such a class does not
exist.

Calculation of the cohomology of the extended complex at zero momentum is more
delicate [73]. In the standard semirelative case the physical states go as follows. At
G = 2 we have the (d® + 1) states of section three, and at G = 3 the (d? + 1) states
obtained by multiplying the G = 2 states by (co + ¢p). There are 2d states at G =1
and at G = 4, and one state at G = 0 (SL(2,C) vacuum) and at G = 5. In the
extended complex there are no zero-momentum physical states at G > 2. There is
an infinite tower of G = 2 states which can be described as different limits of linear
combination of massless states as all momenta are taken to zero. There is only one
G = 0 state, the SL(2,C) vacuum, and there are d(d + 1)/2 physical states at G = 1
which contain no more than one X{. These are precisely the states that generate
Poincare symmetry. While in the standard complex one gets the states that generate
translations, the states generating Lorentz transformations are missing. They appear
properly in the extended complex.

4.4 CFT Deformations and the matter dilaton

In this section we give a detailed analysis of the operator XX and its effect on
conformal theories that include a free field X living on the open line. There are two
cases of interest. In the first one, the conformal theory includes the ghost system and
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has total central charge of zero. We derive identities that show that 0X 0X induces
a trivial deformation of the CFT, the ghosts playing a crucial role here.

We then consider the second case, when this operator appears in the context of
the ¢ = 1 matter conformal field theory of the free field (no extra ghosts). We use
the definition of a ¢ # 0 conformal theory in the operator formalism to show that the
deformation is not strictly trivial. The detailed analysis shows that the deformation
in question can be mostly eliminated by a change of basis in the conformal theory,
but the scale of the world sheet metric is changed by the deformation.

The above results are certainly not controversial for the case of zero central charge.
The triviality of the operator in question has been argued earlier at various levels of
detail. In ref. [40], for example, the usual argument that such perturbation can be
redefined away from the conformal field theory lagrangian is reviewed, along with
a discussion from the viewpoint of gauge transformations in string field theory. In
ref. [69] the deformation of the two-point function of stress-tensors is investigated
explicitly. For the case of non-zero central charge our result appears to be new.

We then turn to integrals of string forms over moduli spaces of Riemann surfaces
and consider their deformation by the insertion of the matter operator in question.
The resulting integral expressions will be needed in section six in order to establish
the complete dilaton theorems.

4.4.1 Operator 0X0X in ¢=0 CFT

Here we answer the following question: does the (1,1) primary field : 0X#9X" : define
a non-trivial deformation of a conformal field theory? Being a (1,1) primary we can
write the corresponding deformation by integrating the field over the surface minus
unit disks [74,75]

1

6“11 (ng' = %

/ (Zgn41(2,2)|0XH 0X") dz N dzZ (4.4.1)
Eg,n—UDk
This deformation is trivial if there is an operator O*” such that
n
8" (Bgn| = —(Zgn | Z ow®, (4.4.2)
k=1

since this means that the deformation can be absorbed by a change of basis in the
CFT, a change induced by the operator O**. We will show that O*” is given by
1
o =D + 6 "G, (4.4.3)

where DY’ was defined in Eq. (4.2.31) and G is the total ghost number operator.
This shows that the the operator :X*9X": induces a trivial conformal field theory
deformation.

We now give a simple proof of the above assertion. Note that the operator-valued
two form that is being integrated can be written as

:0XH0XY:dzANdzZ=d [ % : XHOXY: dz — % : XYOXH: dz + (AM(2)dz — Z“"(z)dz)] :

(4.4.4)
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where A#(z) and A" (%) are arbitrary holomorphic or antiholomorphic operators,
and are therefore are annihilated by the exterior derivative. They are important,
however. The left hand side of the above equation is a well defined two-form, but
the expression within brackets in the right hand side is not a well-defined one-form
unless the A operators are suitably chosen. This is the case because the operators
: X#OX" : and : X¥OX* : are not primary. We can obtain primary operators by
choosing non-primary A and A operators. We take

nz

:0XFIX": dz A dz = d [ XHOX": d2 - 5 XOX": dz + T (G(2)dz - G(2)d7)|

(4.4.5)
where G(z) =:¢(2)b(z): and G(Z) =:¢(Z)b(Z): are the holomorphic and antiholomor-
phic ghost currents. Indeed, since T'(2)G(w) ~ —3/(z — w)® + - - -, the anomaly in
the transformation law of : X¥0X*: is canceled (see Eq. (4.2.30)). The expression
inside the parenthesis is now a well-defined one form. This allows us to use Stokes’s
theorem to convert the integral over the surface minus the disks to an integral over
the disks. Therefore, the original expression (4.4.1), written in correlator language as

1

, <---:8X“5X":dz/\d2 > (4.4.6)
271 Sgn—UDj

becomes

1 < 1 v
15 YOXH: dr—  XHTX: d2)Y® — T G2V — ®
o k:1< fép S(:X*0X#: do— : X40X": 7)) — T(G(2)dz ~ G(2)d2) )

(4.4.7)
where the contour integrals are over the boundaries of the disks oriented as such. We
now recognize that the contour integrals simply represent a single operator acting on
each puncture, one at a time. The operator is just

1 1 G
v M. _ I v, _ ) — — 124 Ly
ori I 12( XY0X*: dz— : X*OX": dZ) ——(G(z)dz G(z)dz) (DX +7 —6).

(4.4.8)
This concludes our proof of the triviality of the deformation.

4.4.2 Alternative analysis for ¢ =0

It is instructive to verify the main identity of the previous subsection for the case of
the Riemann sphere the one for which an explicite operator expression for (T, ,| is
given by Eq. (2.6.5). An explicite analysis is interesting for several reasons. First of
all it will convince a sceptic that the prior methods do work despite a questionable
use of X} operator. It will also further emphasise the importance of the momentum

conserving delta function (and in part will be based on its properties.
According to Eq. (4.4.2)

§(En| = 2N|< G+ZD<S>> (=n| (1+ZD(5)) (4.4.9)

s=1
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where we suppress Lorentz indices and denote by Dgﬁ) the generalized dilatation
operator acting on the s-th state space.

1
PP =" (zXOaO 3 W;ag) (4.4.10)

s n#0

Now Eq. (4.4.2) reduces to the following identity which we will verify by an explicite
calculation.

2 / 2(Sy o (2)| DYV = (3] = )
— | @2(Sy(2)|D) =Syl =[1+)_DY ], (4.4.11)

s=1
where the dilaton state being inserted at the N + 1 puncture is given by

vy ot lal
|D) = T OF 1,0} n41- (4.4.12)

We will show that (4.4.11) holds by direct evaluation of the both sides.
Let us start with the right hand side. The bosonic part of the surface state
corresponding to an /N-punctured sphere ¥y is given by

1
(x| =(1...N|exp (5 Z (a;N,f;afn + a;, ,q:nafn)) , (4.4.13)

n,m>0

where
- / Hdps (2m)P6” (3 ps) é 1¢, p,| (4.4.14)

is the string vertex in the point-like string limit. We will use the following properties
of the (¥ | state. Due to the commutation relations

[ar,, il = [a),, @] = m 6™ bmino (4.4.15)
we have
N o
(Enlel, = (Sn| DD mNgS o
s=1 n=0
and

(Eylal, =(EnY DY m

s=1 n=0

Using these relations we can evaluate the sum over negative modes in (4.4.11) as

N fes)
(2N|Zza_n &', =(Snl Y > PN NE, 6] (4.4.16)

s=1 n>0 s,rt=11mmn=0
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Now consider the first term. It acts by differentiation with respect to momenta. The
momenta appear in the surface state at two places: the delta function in the definition
of (1...N| and in the exponent by alias ap. Using properties of delta function one
can show that

N
1..N|Y af=0 and (1...N|iX:—iX] =0. (4.4.17
0 0 0

together with the commutation relation
[ag, 1 X5 = 6", (4.4.18)
relations (4.4.17) give
1...N) iX305=—(1...N]. (4.4.19)

Now we add a commutator with the exponent and get

(vl S {ps X3} = 2N|~1+ZZps( mwoh+ NGaL).  (44.20)

s,t=1n=0

Now we combine Egs. (4.4.20) and (4.4.16) and see that Eq. (4.4.11) is equivalent to
the following identity

2
> [ @a(Ern(@) Dy =

N o
sz(( o+ NG+ 30D Not n ) e
r,t=1 s—ln 1
©
mz_:l( +;; (ﬁnNrthn)pra:n (4.4.21)
00 N o
e 30 (W + 30 S NG W) el
m=1 s=1 n=1
oo 6lm6T N o
b3 (=80 S S ) o )
l,m=1 s=1 n=1

Note that for the contact interaction the integral in the 1.h.s. vanishes and we arrive to
three conditions on the Neumann coefficients. These are exactly the same conditions
as those set forth in [75,76].

Let us evaluate the integral. Commuting the a._; operators which appear in the
definition of the dilaton (4.4.12) through the exponent we obtain

=/ Dl =

. (4.4.22)
o2 [ s 3 Y M QNI

rst 1l,m,n=0
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We expect that the terms containing the zero modes are different from those that
don’t. Therefore, we rewrite Eq. (4.4.22) as

%—/d22<2N+1(z)|D>N+1 =
(Sn|H(p +ZZG (Plan +>_ D Ch(P)ar, + ZZ R

t=1 m=1 t=1 m=1

(4.4.23)

where

2 d*z = N+1r Is(
H(p) = - /mz (2) V] N+ (2) pr Pt

rtl

t _ lr N 1s 4.4.24
Gnlp) = / th+1(0)|22 Nt PN @pe (42

— / IhN+1 N+1r(z) N+1t(2).

Let us calculate H(p). By definition of the Neumann coefficients

N—Hr N+1(O)
()= 7200 (4.4.25)

and thus

prptd2
H(p) = / Z =1 (0) G~ 0)) (4.420)

Note, that it is important to perform a summation in Eq. (4.4.26) before taking
the integral because otherwise the integrals would be logarithmically divergent. The
integral of the sum is finite due to momentum conservation law Y p, = 0. The
integral in Eq. (4.4.26) is an integral of an exact form and can be reduced to a sum
of contour integrals. The region of integration is the whole complex plane without
coordinate patches. One can check that due to momentum conservation law integral
over the contour at infinity vanishes and we obtain

Hp) =3 74%: } tzlp’pt log [hs(w5) — b (O)]? o

y (_ h;(ws)d_ms B R (ws)dw )
hs(ws) — he(0)  hs(ws) — hs(0) )
where we use the local coordinate w; to perform the integration over the boundary

of the s-th coordinate patch. In the expression (4.4.27) we recognize the generating
function on the Neumann coefficients (see (2.6.8)).

o0
log |hs(ws) — e (0)2 = 8 log [w,|* + > Nifsw," + N3pw,", (4.4.28)

n=0
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and its derivatives

(ws) +Zn moWs" (4.4.29)
hs( s)_
and ~
h/(—u—)—s) &t o )
L= — S p NEw, 4.4.30
hs(w,) — hy(0) W, ; 0 ( )

Using equations (4.4.28), (4.4.29) and (4.4.30) we can evaluate the contour integrals

and find
N

H(pp)=), ( N+ Z Z ,fg) Dr i (4.4.31)

rit=1 s=1 n=1

In order to calculate the coefficients G?,(p) we introduce the generating function

Gp(w) = z ZmGt (p)w™ ! = / Z = ht () 3 ~—I;_:,(0) d*z  (4.4.32)

t=1 m=1

Now we can evaluate G, (w) reducing the double integral (4.4.32) to a sum of contour
integrals in tho same manner as we evaluated H(p).

pr h (wt)
Gplw) = Z fw 4i hy(ws) — he(0)

fosl=1 5= (4.4.33)
9 ( R (1) dw, _ hy(ws)duw, )
71 (’lﬁs) — ]_lt(wt) hs(ws) — ht(wt) )
The series Expansions from equations (4.4. 29) and (4.4.30) together with
hi(we)
=6° mNSt w1 4.4.34
o = X e+ Ak (4434

n= 0 m=0
enable us to evaluate the integrals in Eq. (4 4.33), and we find

- Z i ( L+ Z ZW”Nifn) prws™ (4.4.35)

rt=1m=1 s=1 n=1

We calculate the remamlng coefficients F! by introducing the generating function

F(W,W):Z Z lm Fpw, !~ o,

r,s=1m,n=1 _ (4436)
_ h, (wr) hi(wy) 2,
=27 £ s e i

which we evaluate in the same fashion as G,(w) and obtain

F(w,w) = i i ( 5lm ZZ n N3t ) w,! W™ (4.4.37)

rit=11lm=1 s=1 n=1

One can see that the formulae (4.4.31), (4.4.35) and (4.4.37) together with Eq. (4.4.22)
give the same answer as the right hand side of Eq. (4.4.21).
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4.4.3 Operator 0X0X in c# 0 CFT

If we have any matter conformal theory coupled to the ghost conformal theory, the
ghost number operator G acting on surface states will give

(Sl 3260 = 61~ 9)(yl. (1.4.38)

Using this result we recognize that the result of the previous subsection showing the
triviality of the deformation can be written as

1 _
6 (Zgnl = 5= (Lgnt1(2,2)|0X 0X")dz N dZ

2me -
B~ DDk (4.4.39)
= —(Zgn | Z,Dg('/(k) - (=g (Egnl,
k=

In this form, of course, the triviality of the deformation is not manifest since the
second term in the right hand side is not written as a sum of linear operators acting
on the surface state.

We now claim that equation (4.4.39) applies for the case when the matter confor-
mal theory does not include the ghost conformal theory. By construction, Eq. (4.4.39)
applies when the total conformal theory is the ¢ = 1 matter theory coupled to the
ghosts. The surface states in this total conformal theory are the tensor product of the
surface states in the two separate conformal theories (5, | = (£¢5!| ® (£¢% |. Since
the operators in the right hand side of Eq. (4.4.39) are ghost-independent it is clear
that we can factor out the ghost part (ng‘n | of the surface state. Since the insertion
in the left hand side carries no ghost dependence the additional puncture is deleted in
the ghost sector (Sgn11(2,2)|0X*0X") = (T,54(2,2)|0X*0X") © (£ |. Tt follows
that we can factor the ghost sector out of equation 4.4.39 totally, and we find

1 -
(S = 5= (E,mt1(2,2)|0X 0X") dz A dzZ
2Tt S 2gn 0D (4.4.40)
_ Zc—l |§ :DuV(k) —g) ™ (2;21 .

We can now address the issue of triviality. As mentioned earlier, the first term in
the right hand side is just a similarity transformation. The second term is not. To
give an interpretation to that term we recall the scaling properties of ¢ # 0 CFT.
Under a scale change of the metric on the surface the correlators change as

<. . .>gea = exp [ESL( ;g)] <...>g (4.4.41)

where

Si(o;g) = /d2§\/_( g*?o 0650+R(g)0) (4.4.42)
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For constant o we get S;(0;g) = o [ d*¢\/g8 R(g) = 4no (1 — g), where g is the genus
of the surface. This shows that for an infinitesimal scaling parameter o the correlators

scale as
<. : .>gea — (1 4 %0(1 _ g)) < : .>g, (4.4.43)

This shows that the last term in Eq. (4.4.40) corresponds to a constant scale defor-
mation of the metric on the two-dimensional surface. The deformation induced by
0X0X is not completely trivial.

4.4.4 Generalization to spaces of surfaces

We must now extend the discussion of the ¢ = 0 case to include spaces of surfaces.
Since we will use the ghost sector in a nontrivial fashion we use the ghost number
two primary states D*” defined in Eq. (4.2.5). Rather than integrating the matter
dilaton over a single surface 3, an operation that we can denote as fpu (KX), we
want to consider the object fpur(K.A), where A is a space of surfaces. We claim that
the following result holds

Fom (ICA) + fumw (CA) = % 7™ (29 — 2+ 1) f(A), (4.4.44)

where x*” is the state defined in Eq. (4.2.26) and whose main property is that upon
action by the BRST operator it gives us the matter dilaton state. The purpose of the
present subsection is to prove equation (4.4.44).

We begin the proof of the above relation by evaluating fp.. (K.A). Since the matter
dilaton state can be written as |[D*) = —Q|é*) + in*|D,) we find

o (A) = = [ (@M QIe) 4 S i, (CA). (4.4.5)

Using the relation fp,(KA) + fy,(LA) = (29 —2 —n) f(A) [17], we rewrite the above
as

1 1 1
fou (KA) + 57 fiy (LA) = —— / (AT Qlem) + o0 (29 — 2+ ) f(A).
- Jka
(4.4.46)
By virtue of Eq. (4.2.26), we see that Eq. (4.4.46) implies the desired result (4.4.44)
if
1
fe(LA) = — / (QU2lon 1 g|gnvy (4.4.47)
n: Jra

We must therefore establish this equation. Our first step is to replace the BRST
operator, which is only acting on the additional puncture, by a sum of BRST operators
acting on all punctures. The right hand side then becomes

1 QUA+2lgnt1 Q®emy - L / QA+2lg,n+1) cpv (k) . 4.4.48
1) |k2:; €)= ) € >,§Q (4.4.48)
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The second integral can be seen to vanish identically. It involves the motion of the
insertion over fixed surfaces, and thus includes two antighost insertions that have the
property of annihilating the vacuum state. Since the £ state only has a single ghost
operator acting on the vacuum, the two antighost insertions will annihilate it. The
first integral is rewritten by using the BRST property of forms and Stokes’s theorem

l d(Q[A+1]g,n+1|€uV) — _1_/ (Q[A+1]g,n+1|£;w> ) (4.4.49)
A(KA)

'n,' A 'n'

We now recall that 0(KA) = K(0A) + LA. The integral over K(0.A) vanishes for
exactly the same reason as quoted in the above paragraph; two antighosts insertions
for position that annihilate the state. Thus the above term is simply

l <Q[A+1]9,n+1|€ltu> — fguv (EA) . (4.4.50)

n! Jea
This establishes the correctness of 4.4.47, and as a consequence concludes our proof
of Eq. (4.4.44).

4.5 Complete dilaton theorem

In this section we write a general hamiltonian that induces string field diffeomorphisms
relevant for the dilaton theorem. Such hamiltonian will take a form similar to that of
Ref. [17] and will allow us to treat in a uniform way the dilaton, the ghost-dilaton, the
matter-dilaton and the graviton-trace states. We explain what kind of deformations
these various states produce, and emphasize that none of them leads to a change of
the slope parameter /. We then establish the complete dilaton theorem for critical
closed string field theory. The main point is that the complete dilaton state can be
written as P
D) =—qlgn + 4
and therefore in the cohomology of the extended complex the complete dilaton is just
proportional to the ghost-dilaton

2D,y (4.5.1)

(d—
2

Dy~ =Y py. (4.5.2)

In the extended complex only the ghost-dilaton changes the string coupling, and the
above equation indicates that the complete dilaton changes the string coupling with
a proportionality factor (d — 2).

4.5.1 A general hamiltonian

What we have in mind here is writing a hamiltonian U that generates a diffeomor-
phism F' of the string field via a canonical transformation

F:|U) — |U)+dt{|¥),U}. (4.5.3)
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Associated to such canonical transformation we can imagine that a parameter A of
the string measure is shifted. This is expressed as

F* {du(A) exp (%S(A)) } — dp() + dA) exp (%S(/\ + d)\)) , (4.5.4)

namely, the diffeomorphism pulls back the relevant measure of the theory with pa-
rameter A to the measure of the theory with parameter A + d\. In order to express
the requirement 4.5.4 explicitly we use the following two relations [15]

F*(du(N)) = 5% dp(A + d)) (1+2dt AU),

(4.5.5)
F{S(N)} = 5(A) +dt{S(}), U},
where du(A) = p(A) [[ d¢. Equation (4.5.4) then reduces to
dX d 1
(E) = (s + 5mnp> = {S,U} + KAU = hAsU . (4.5.6)

If the right hand side of the above equation is zero for some specific hamiltonian U,
we must conclude that the diffeomorphism does not change anything in the string
field measure. The diffeomorphism is then a symmetry transformation.

The hamiltonian we will introduce depends on a pair of states O and x related
by a BRST operator:

O+{Q,x}=0 — [0)=-Qlx)- (4.5.7)

We demand that |O) € H, namely by |O) = Ly |O) = 0, but |x) need not be anni-
hilated by b;, and may involve the coordinate operator. Neither state needs to be
primary. We define

Uoy = UM = fo(Bs) + fx(Vos + {Bos, V}). (4.5.8)

Note that this hamiltonian may involve a state x which is not annihilated by b since
this state only appears inserted on three punctured spheres and there is no problem
defining the phase of a local coordinate on such collection of surfaces (see [17]).
Using this hamiltonian we will be able to treat ghost and matter dilatons in a similar
fashion. We now follow [17] to compute the right hand side of Eq. (4.5.6). Since the
computation is rather similar, we will be brief. The first term of the right hand side
gives
{5, Uox} = {5, US%} + {5, ,(Va,))
) (4.5.9)
{8, fo(B)} + {5, fu({Bos,V]) }.
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Making use of the identities given in Eqs. (2.47) and (2.48) of Ref. [17] we can rewrite
Eq. (4.5.9) as

(8, Uox} = ~ fo¥) = foVas) = F({V Vo)) + 1 o (08> + (V,5.})

~fo({Bos, V}) = fi(01Bos, V} +{V, {Bos, V}})

(4.5.10)

where each row in Eq. (4.5.10) is equal to the corresponding row in Eq. (4.5.9). Using
the Jacobi identity in the fourth row, the geometrical recursion relations, and the
definition 0By3 = V3 — V3, we obtain

1
{8, Uox} =~ fo (0B + (v, BY + 1, ) + fi({Bos, AV} = {Vs5, V). (4511)
A similar calculation gives
1
hAUp, = — hfy (AV,3) + - fo(RABs) — f,, ({Bos, iAV}) . (4.5.12)

Egs. (4.5.12) and (4.5.11) must be added to give the right hand side of Eq. (4.5.6).
Doing this, and using the recursion relations

0Bs = kKV — RABs, — {V,B} =V, + kY, (4.5.13)

for the B spaces we finally find

AsUoy = fo(KV) + [ (V) + Bl fo(V1,) — fx(AVy3)]. (4.5.14)

Note that by definition, the term £) does not include vertices with zero punctures.
Writing out the above equation more explicitly we have

AsUox =D gns1 fo(KVyn) + f(LVyn)
+ g2 fo(KVyo) (4.5.15)

+h{f0(£1,1) - fx(A£0,3) ]

4.5.2 Application to the various dilaton-like states

In this section we will use the general hamiltonian Eq. (4.5.8) and its basic property
Eq. (4.5.14) to calculate the effect of shifts of the ghost dilaton D,, the matter dilaton
D4, the true dilaton D, and the graviton trace G;. We begin with the case of the
ghost-dilaton, fully analyzed in Refs. [17,18], as a way to use the present general
formalism.
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Ghost-dilaton

Since D, + {Q, x,} = 0, we consider the hamiltonian Up, ,, (a simpler form of the
ghost-dilaton hamiltonian will be given in the next section). The identities

I, (KVyn) + fry(LVgn) = (29 — 2+ 1) f(Vyn), (4.5.16)

established in Ref. [17], and the identities

ng(’Cvg,O) = (29 - 2)f(vg,0)a g > 27

(4.5.17)
ng (21,1) = fxg (Ayos) =0,
established in [18] imply that Eq. (4.5.15) yields
AsUp,y, = 3 WKM7 (29 — 2+ n) f (V) - (4.5.18)

g,n

Since the string action is given by S = Sp2 + f(V) + hS1o and the kinetic term
So,2, the elementary vacuum term S, and the measure In p are all coupling constant
independent we can write Eq. (4.5.18) as

d 1
AS UDgng =K ?d—lﬁ', (S + §hlnp> . (4519)

This equation shows that the ghost dilaton changes the coupling constant x. Com-

paring with Eq. (4.5.6) we see that ‘fi—'t‘ = K, or kK = Koet. Here t plays the role of the
vacuum expectation value of the ghost-dilaton.

Matter dilaton

Since D* +{Q, x*'} = 0, we are led to consider the hamiltonian Upuv yuv. This time
Eq. (4.4.44) is relevant in the form

1
Four (KVgn) + fxur (LVyn) = 5 " (2g—2+n)f(Vyn)- (4.5.20)
Moreover we claim that
1
fDPu(Kvg’o) = 5 77’“’ (29 — 2)f(Vg’0) g 2 2 (4521)

This follows from |D#) = —Q|€*) + in**|D,), the first equation in Eq. (4.5.17), and
the vanishing of foeu (KV,0). On the other hand

four(Y1,1) = ferr(AVgz) =0, (4.5.22)
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by virtue of Eq. (4.2.12) and Stokes theorem which is valid here because b, annihilates
the state £&#/. Since D* = G* + 31** Dy, it now follows that

fow(Vi) = fow (Vi) + 57 fp,(V11)

= few (AVy3) (Using Egs. (4.5.17) and (4.5.22))
(4.5.23)
= fon(AVy3) — 107 £, (AV,;)  (Using Eq. (4.2.26))
= fyw (AVy3) (Using Eq. (4.5.17))
and therefore
fD‘“’ (Vl,l) — fxy.u (AZO,B) = 0 . (4524)

The computation of AgUpuv yuv is now straightforward. The terms in the right hand
side of Eq. (4.5.15) have been evaluated in Eqgs. (4.5.20), (4.5.21), and (4.5.24). We
then find
AsU i@ S-l—lhl 4.5.25
s Upww yor = 50" - K o hlnp) . (4.5.25)
Note that the off-diagonal states (¢ # v) have no effect whatsoever, they ought to be
interpreted as generating gauge transformations. Each one of the d diagonal states
change the coupling constant. In particular, for the trace state we have

d d 1

The only effect of a shift of the matter dilaton D% is a shift of the string coupling,
with a strength proportional to the number of noncompact dimensions.

Complete dilaton
This state is written as D = Dl — Dy, = —{Q, X% — x,}. Therefore

d—2 d 1
AsUpy, = AsUps \u — AgUp, , = (—2—) o (S + —2-hlnp> ,  (4.5.27)

where use was made of Egs. (4.5.26) and (4.5.19). This equation shows that the only
effect of a dilaton shift is changing the string coupling with a strength proportional
to the number of noncompact dimensions minus two. This is the complete dilaton
theorem in critical bosonic closed string field theory.

It is sometimes said that the effect of a dilaton is to change the dimensionless
string coupling and the slope parameter . We believe such statements are at best
misleading. We see in the above discussion that AgU amounts to just changing
the dimensionless string coupling. The slope parameter is the only dimensionful
parameter in the string theory, and, as such, it is not really a parameter but a
choice of units. There is no invariant meaning to a change in o'. If the theory had
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another dimensionful parameter, say a compactification radius R, then there is a new
dimensionless ratio R/v/a/ that can be changed in the theory. One can view such
change, if so desired, as a change of the dimensionful radius of compactification, or
equivalently, as a change in o'. Still, it should be remembered that only changes in
dimensionless couplings have invariant meaning.

Graviton trace

The final case of interest is that of the states G*” written as

1 1
gt = D" — 577WD9 =-—{Q, x* - EUWXg } (4.5.28)
Therefore .
ASUguV’guu = AsUDuv,Xuv - EU“VASUDg,Xg = 0, (4529)

where use was made of Egs. (4.5.25) and (4.5.19). This shows that none of the G*”
states deforms the string background. In particular, the graviton trace G does not
deform the string background. Note that the hamiltonian Ugu» ¢ur defines a string
field transformation whose inhomogeneous term is indeed G*, and leaves the string
measure invariant. Our discussion of the extended complex indicates that a com-
pletely equivalent field transformation would be a gauge transformation generatred

by &#.

4.6 The relevance of the ghost-dilaton

In this section we wish to consider the case when the ghost-dilaton becomes a trivial
state in the standard semirelative BRST cohomology. This is not a hypothetical
situation, it happens in D = 2 string theory, as will be reviewed in sect.8. If the
ghost dilaton is trivial it may seem that it cannot change the coupling constant,
leaving the possibility that other states change it. This is not the way things work
out. Inspection of Ref. [17] reveals that the ghost-dilaton shifts the string coupling
whether or not it is BRST trivial. It then seems clear that the string coupling should
not be an observable. We give a proof that this is the case. Explicitly this means the
following: while the string coupling is a parameter appearing in the string action its
value can be changed by a string field redefinition having no inhomogeneous term.

If the ghost dilaton is trivial, it can be written as |D,) = —Q|n) with |7) a legal
state in the standard semirelative complex. If the two-form associated to the motions
of the state |n) vanishes, as is the case for D = 2 strings, the field redefinition changing
the string coupling is simply a homogeneous field redefinition. This will be the case
whenever |n) involves a single ghost field acting on the vacuum. If this is not the
case, the field redefinition is nonlinear; while it lacks an inhomogeneous term at the
classical level, there may be h-dependent inhomogeneous terms. We do not know of
an example where |n) is this complicated. If this happens the string coupling might
not be completely unphysical at the quantum level.
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4.6.1 Simplifying the ghost-dilaton hamiltonian

In this subsection we examine again the ghost-dilaton hamiltonian and show that it
can be simplified considerably. The simplified hamiltonian will be of utility to show
that a trivial ghost-dilaton implies an unphysical coupling constant.

The ghost-dilaton hamiltonian reads

UDg = U[B;Z] — ng (B>) + fXg (Vo,g + {30,3, V}) (4.6.1)

We now show that the last term in this hamiltonian, involving x, can be replaced by
a simpler term involving the ghost-dilaton. Consider the evaluation of Agfy (Bo3)

Asfy,(Bogz) = Afy, (Bogz) + {S, fx,(Boa)},
= —fxo, (ABo3) — fox,(Bos) — fx,(0Bos +{V, Bos}), (4.6.2)
= —fx,(ABo3) + fp,(Bo3) + fx,(Vos + {Bos, V}),

where we made use of the relation f, (V;;) = 0, which follows from sect.6.2 of
Ref. [17]. Rearranging the terms in the equation we write

Fxo Vo3 +{Bos, V}) = —fp,(Bos) + fy,(ABoz) + Asfy,(Bogs) - (4.6.3)

Constant terms are irrelevant for hamiltonians since they do not generate transforma-
tions. We can therefore drop the second term in the above right hand side. Moreover,
the third term in the right hand side can also be dropped since it is annihilated by
Ag. It follows that we can replace fy,(Vo,s+{Bo3, V}) by (—fp,(Bo,3)) in the dilaton
hamiltonian. We thus find that

Up, = U - fn,(B), (4.6.4)

is a hamiltonian equivalent to the original one, and by a slight abuse of notation we
denote it with the same symbol. This hamiltonian is completely analogous to the
background independence hamiltonians found in Ref. [15]. It is straightforward to
verify that this hamiltonian has the desired properties. One computes

AsUp, = {S, U™} - Afp,(B) - {S, fp,(B)}
= fn, (aB+ (v, B} +AB + y) w63

= fo,(RV+ Vs + ABos + V)

= fp,(KV),

where use was made of the recursion relations (4.5.13) together with 0By 3 = Vg 3— Vo 3.
In the last step we used fp,(V;3) = 0, which follows from f,,(V; ;) = 0 and the BRST
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property, and, of the result of [18] that the two-form associated to the ghost-dilaton
vanishes identically on the moduli space of once punctured tori. The fact that the
ghost-dilaton hamiltonian can be written in the standard background independence
form was not anticipated in [17] because both the identity fp,(Vj3) = 0, and the
understanding of the behavior of dilatons at genus one were missing.

4.6.2 Triviality of the ghost-dilaton and the string coupling

The ghost-dilaton theorem in string field theory, as established in Refs. [17,18] holds
true whether or not the ghost-dilaton is BRST trivial or not. The ghost-dilaton
hamiltonian will always have the effect of changing the string coupling. This ghost-
hamiltonian produces a string field redefinition that includes an inhomogeneous term,
a shift along the ghost-dilaton state. If the ghost-dilaton is trivial in the standard
semirelative BRST cohomology, then it can be written as |[Dy) = —Q|n), where |n) is a
standard vector in the closed string field theory state space. It then follows that there
is another hamiltonian, the hamiltonian corresponding to a gauge transformation,
that also has the property of inducing a shift along the direction of the ghost-dilaton.
This gauge hamiltonian Ug reads

Ug = AsURA = URA 4+ £,(v), (4.6.6)

where the gauge invariance property follows from AgUg = 0. Since the gauge hamil-
tonian induces no change in the string action, it follows that the hamiltonian

Up = UDQ — UG = —ng (B) - fn(V) y (467)

still shifts the string coupling constant. The term U[B’Q] inducing the shift along the

ghost dilaton is absent in Uy and therefore the hamiltonian Up is a hamiltonian that
induces a field redefinition without physical import; it does not change the vacuum
expectation value of the string field. The fact that the string coupling parameter
in the action can be changed by a field redefinition without an inhomogeneous term
implies that the string coupling is unphysical. As we will see now, strictly, and in all
generality, this is only the case for genus zero, or the fi-independent part of the string
field redefinition generated by Up. In order to appreciate this point we now obtain a
simple expression for the hamiltonian Upg.

Our calculation begins by simplifying the expression for fp,(B) in the ghost-
dilaton hamiltonian by taking into account that |D,;) = —Q|n). We consider

{S, 1(B)} = —fan(B) — f, (9B + (v, BY). (4.6.8)
Using Af, (B) = —f,(AB), we rewrite the above equation as
—~f0,(B) = —f, (9B +{V, B} + AB) — As f,(B). (4.6.9)
Using the recursion relations (4.5.13) we find
10, (B) = ~fo (Vea + BV =) = £, (ABos + V1)) = As £,(B).  (46.10)
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Since the left hand side is to be used in a hamiltonian we can drop the second term,
being a constant, and the last term, being annihilated by Ag. It follows that back in
Eq. (4.6.7) the hamiltonian Up can be taken to be

Up=—f, Vos +KV). (4.6.11)

This is the simplest form of the hamiltonian. We see that at genus zero the hamilto-
nian is quadratic, and thus generates a field redefinition without an inhomogeneous
term. Thus, at genus zero it is completely clear that the string coupling is unphysical.
At higher genus there are, in principle, non-vanishing inhomogeneous terms arising
from the surfaces KV, ;. This might mean that the string coupling is not fully un-
physical at the quantum level. More likely, it may be that whenever the ghost-dilaton
is trivial the two-form corresponding to the motion of the state |n) vanishes. This
happens, for example, when each term in |n) only has one ghost field acting on the
vacuum, as is the case in D = 2 string theory. If the two-form vanishes the contribu-

tion from KV vanishes as well, and the hamiltonian Up = — f, (V; ;) simply generates
a homogeneous field redefinition
510) = ~{fs Vha), 1901} = [ (Vi sl | 19)2. (46.12)

The linear operator acting on the string field has the interpretation of a contour
integral of the conformal field operator 7(z, Z) using local coordinates induced by the
special puncture in the string vertex V ;.

It is a straightforward calculation using £ = —{V03,V} to show that acting on
the first part of the hamiltonian (4.6.11) the operator Ag gives

As (= 12(%a) ) = F,(Vha) + Fo(AVh3) = Fo(ZV),

= —fn (ZV) .

In the last step we have used the vanishing of f,(A)) ;) which is readily established

(4.6.13)

fn (AV('),z) = fn (Av0,3 - 8ABO,3)
= £, (=0[V11 — ABy3)) (4.6.14)

= ng (V1,1 - ABo,3) =0.

Using once more the vanishing of the ghost-dilaton two-form on the moduli space of
punctured tori. It follows from Eqs. (4.6.13) and (4.6.11) that in general

AsUp=—f,(LY) — Asf, (KV). (4.6.15)

Whenever the two-form associated with moving the state |n) vanishes we see that
the effect of U reduces to inserting the state n (via £) on all the coordinate disks
of the string vertices. One can readily verify that for an arbitrary |n) the relation
As fn (KV) = fon (KV) — fo(LV) holds. This confirms that 4.6.15 is equivalent to
AsUp = fp,(KV) as befits a hamiltonian that must change the string coupling.
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4.7 Application to D = 2 string theory

In this section we consider the case of D = 2 string theory as an illustration of the
ideas developed in the previous sections of this paper. We analyze zero-momentum
physical states that are candidates for deformations of the string background. The
semirelative BRST-physical states are seen to be trivial in the extended complex and
should not deform the string background. We discuss why they do not appear to
deform the conformal theory. Our analysis here is a refinement of that of Mahapatra,
Mukherji and Sengupta [40]. We argue that states in the absolute cohomology that
are not annihilated by b; do not lead to CFT deformations, thus evading a possible
conflict with background independence. Finally, noting that in this background the
ghost-dilaton is BRST trivial, we explain how to apply our earlier considerations
showing that the string coupling is unobservable.

4.7.1 Zero-momentum states and CFT deformations

Two dimensional string theory is based on a matter CFT including a Liouville field
¢(z,Z) and a field X(z, 2). The holomorphic matter energy-momentum tensor reads
T = —10X0X — 1098p + v/20%p. Due to the background charge, the field ¢ does
not transform as a scalar. Under general analytic coordinate changes 2'(z)

—_ dz'
o(Z,2") = p(2,2) — 2\/§ln’£ : (4.7.1)

In this string theory an important operator a(z) [77,78] is obtained by taking the
commutator of the BRST operator with the field ¢

a(z) = % {Q, o(2,2)} = 0c+ % cop. (4.7.2)

The operator a(z) is trivial in semirelative cohomology of the extended complex, but
it is nontrivial in the standard semirelative cohomology.

Let us consider the absolute cohomology BRST physical states at ghost number
two that can be formed without using exponentials of the free fields. The space of
such states is spanned by a total of six states [78], the first three of which are states
in the semirelative cohomology

81 = 5 cc0Xdyp + cdX (e + 5¢),

Sy = J5 ce0Xdp + 60X (dc + 0¢) (4.7.3)
83 = CE@XEX,
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and the other three are states that do not obey the semirelative condition

A = % cc0X0p + cdX(0¢ — dc),
Ay = 25 c20X 8 + 20X (0c — de), (4.7.4)
A3 =a -a.

The states in (4.7.3) are the only states in the semirelative cohomology at ghost
number two under the condition of zero momenta [78].

Let us begin our analysis with the first two semirelative states. We first observe
that they are trivial in in the extended complex

1
Si(z, 2) {Q, sl} ;o= s egdX, (4.7.5)
with an exactly analogous statement holding for S;. This indicates that such states
do not deform the string background. Indeed, since the BRST property holds for the
class of states containing ¢, we may simply use the state s; as the gauge parameter
in a string field gauge transformation.

As further confirmation that the string background is not changed, let us now see
that if we try to use the state S; to deform the underlying CFT the only possibility
seems to be zero deformation. In order to use S; to deform the CFT we must find
the corresponding coordinate invariant two-form. We introduce a metric p on the
Riemann surface and a brief computation using [17] gives

1
V2

We see that only the first term in S; has contributed to the result. Moreover, ¢
has been replaced by the coordinate invariant combination (¢ — 2v/21lnp). While
the two-form is well-defined (it is coordinate invariant), it is not Weyl invariant. The
difficulty of obtaining a coordinate invariant and Weyl invariant two-form was pointed
out in [78]. At that time it was not clear how to obtain the two-form associated to
arbitrary states. We now see that there is no Weyl-invariant two-form and thus no
well-defined way to integrate the two-form on Riemann surfaces.

The analysis cannot stop here. A similar situation happens for the ghost-dilaton:
its two-form is not Weyl independent. This dependence drops out of surface integrals
when we add the integral of a suitable one-form over the boundary of the region of
integration. That one-form is the one associated to the state |x,) which acted by the
BRST operator gives the ghost-dilaton. We therefore consider the state s; defined
in (4.7.5) and construct the corresponding one-form. We find

SP = ——_dzAdz [ax (¢ —2v2In p)] . (4.7.6)

3[11] = % dz (p — 2v21n p)dX . (4.7.7)

This one-form is coordinate invariant but it is not Weyl invariant. One readily verifies
that 8{2] = ds[ll], as expected from 4.7.5. In the case of the ghost-dilaton the gauge
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parameter is not annihilated by by, and the one-form, sensitive to the phase of the
local coordinates, is difficult to define globally. This time the state is annihilated by by
and the one-form is phase independent. If we attempt to use the one-form to cancel
out the Weyl dependence of the integral of the two-form, the relation SP] = ds[ll]
holding globally, and Stokes theorem will imply that we get a total result of zero. This
concludes our plausibility argument for the absence of a nontrivial CFT deformation
induced by the semirelative states S; and S;. The analysis of S3 will be done shortly.

Consider now the states that are not annihilated by b;. These states, being
outside the closed string state space, do not correspond to linearized solutions of
the string equations of motion, and therefore do not represent deformations of string
backgrounds. One can ask if such states can deform the CFT. If this were the case
we would have a problem with background independence; we would have two nearby
conformal theories giving rise to two string theories that are not related by a shift of
the string field. As we will explain now we believe it is unlikely that states which are
not annihilated by b; define CFT deformations.

Consider the first state listed in (4.7.4). The associated two-form is found to be
given by

AD = L g naz [aX 8(p—2V2 z'o)] , (4.7.8)
V2

where 6 is the phase of the quantity a(zy, Zp) appearing in the definition of the local
coordinate: z—zy = a(2o, Zo)w+ O(w?). The deformation induced by this state of the
CFT partition function on a fixed surface would be given by integrating the above
two-form over the complete surface. Due to the non-zero Euler number, the phase
of the local coordinate cannot in general be defined globally throughout the surface
and the integral is not well defined. It seems very unlikely that one can define a
nontrivial CFT deformation using the states in the absolute cohomology that are not
annihilated by b; .

4.7.2 The coupling constant in D = 2 strings

The ghost-dilaton, always trivial in absolute cohomology, becomes trivial in semirela-
tive cohomology for the background defining D = 2 string theory. Indeed, one readily
verifies that
_ 1 _
c620—6826=———{ , c0p — €0 } 4.7.9
7 Q, cdp — €0y (4.7.9)
Note that cdp — €0¢ is fully legal; it is a state in the standard semirelative complex.
Not only is the ghost-dilaton absent in D = 2 string theory, but now the last semirel-
ative state S3 = cc0X0X, is recognized to be trivial in the extended complex. This
is because S3 is equivalent to the ghost-dilaton in the extended complex.
Let us see explicitly why the string coupling is unobservable in this background.

A change of coupling constant in string field theory amounts to scaling the string
forms as

(Qldon| _, (ldom| (1 —e2—2g- n]) , (4.7.10)
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where d is the degree of the form. On the other hand in D = 2 strings
- dz . : .
22 16 (y) = —9/2 (2 — 2 O () = 90 (2) -
a3 § 22 I06) = =222 - 20) Syl IO =099(). (47D

Since this current has no ghost dependence, an identical relation holds for string forms.
Since one can always add to the above right hand side a contribution proportional to
n by adding a constant to the charge associated to J, we see that the deformation
(4.7.10) can be implemented by a similarity transformation induced by J. This means
that a homogeneous string field redefinition changes the coupling constant making it
unobservable. Indeed, the background we are considering, called the linear dilaton
vacuum, has a coordinate dependent string coupling. The coupling is not observable
since a shift of coupling is equivalent to a translation along the ¢ coordinate.
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Chapter 5

Cohomology of the extended
complex

5.1 Motivations for using extended complex

As it we argued in the previous chapter, the gauge parameters that include the zero
mode of the X* operator have to be considered in order to prove the complete dilaton
theorems. If we allow X* to appear in gauge parameters, it is natural to allow it to
appear in the physical states as well. This calls for an extended version of the BRST
complex where the zero mode of X* or, in other words, the string center of mass
operator z is well defined.

We will define the extended complex simply as a tensor product of the BRST
complex with the space of polynomials of D = 26 variables. Our main objective is to
calculate the semi-relative cohomology of this complex.

When we add new vectors to a complex, two phenomena may occur in cohomology.
First, some vectors that used to represent nontrivial cohomology classes may become
trivial, and second, some new cohomology states may appear. Our original motivation
to use the extended complex was that the graviton trace G, BRST-physical state, was
trivial in the extended complex. As we will see, the extended complex provides many
more examples of this kind. We will show that only one out of D?+1 ghost number two
zero-momentum BRST-physical states remains non-trivial in the extended complex.
In the BRST complex, the spectrum of non-zero momentum physical states is doubled
due to the presence of the ghost zero modes. We will see that there is no such
doubling in the extended complex: only ghost number two states survive and all the
ghost number three states become trivial'. Returning to the second phenomenon,
the appearance of new physical states, we will be able to show that all such states
can be obtained from the old ones by differentiation with respect to the continuous
momentum parameter along the corresponding mass shells. In this sense no new

!The observation that ghost number three states are physical only in the case of finite space
time volume was made in the book by Green, Schwarz, and Witten [79]. In the finite space time
volume the momentum is discrete and z§ = —id/8p,, cannot be defined. A suggestions that a proper
incorporation of the string venter of mass variables should remove the doubling has been made by
M. Henneaux [80]
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physical state will appear.

Zero momentum states will require special attention and the calculation of the
cohomology of the zero momentum extended complex is technically the most diffi-
cult part of this work. We will find that the ghost number one discrete states at
zero momentum correctly describe the global symmetries (Poincaré group) of the
background.

The analysis presented below shows that the semi-relative cohomology of the ex-
tended complex correctly describes the physics of the closed bosonic string around
the flat D = 26 background. The arguments that lead to this conclusion are the
following:

1. Ghost number two non-discrete physical states are the same as in the BRST
complex up to infinitesimal Lorentz transformations. In this sense the extended
complex is as good as BRST (section 5.5.1).

2. There is no doubling of the physical states,—ghost number three BRST-physical
states are trivial in the extended complex (section 5.4.2).

3. There is only one zero-momentum physical state at ghost number two, which
can be represented by the ghost dilaton (section 5.4.3 and 4.2).

4. Ghost number one discrete states are in one to one correspondence with the
generators of the Poincaré group (section 5.4.3).

This chapter is organized as follows. In section 5.2 we start by describing the
extended complex and the nilpotent operator (). We define a cohomology problem
for the extended complex and explain what we are going to learn about its structure.
In section 5.3 we formulate a simplified version of the problem in which we replace the
closed string BRST complex by its chiral part. Section 5.3 is devoted to a detailed
analysis of the cohomology of this complex. In section 5.4 we investigate the (semi-
relative) cohomology of the full extended complex using the same methods as in
section 5.3. At the end of section 5.3 and section 5.4 we will formulate two theorems
which summarize our results on the structure of the cohomology of the chiral and
the full extended complexes. We present a detailed analysis of the Lorentz group
action on the cohomology of the extended complex in section 5.5. For the sake of
completeness we add two appendices: B, where we review some basic algebraic facts
which we use to calculate the cohomology and C, where we prove the results which
are necessary to calculate the cohomology at zero momentum.

5.2 Definition of extended complex

When we describe a string propagating in flat uncompactified background, it seems
natural to let the string center of mass operator zp act on the state space of the
theory. This operator must satisfy the Heisenberg commutation relation

[k, zg] = =1 6n 01", (5.2.1)
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where n*” is the Minkowski metric. In order to incorporate an operator with such
properties we define an extended Fock space as a tensor product of an ordinary Fock
space with the space of polynomials of D variables:

Fola,@) = Clz°,...,2°7 Y ® Fple, @). (5.2.2)
All operators except o act only on the second factor which is an ordinary Fock space,

T operators act by multiplying the polynomials by the corresponding z* and, finally,
the action of ¢ is defined by

0

Note that in the extended Fock module the action of «f does not reduce to the
multiplication by p*.

The extended Fock module is also a module over Virasoro algebra or, strictly
speaking, over a tensor product of two Virasoro algebras corresponding to the left
and right moving modes. The generators are given by the usual formulae

1 14
L, = 527)“,, ok ap_
m (5.2.4)

— 1 v v .
L, = 2 Emn;w Oy Oyt

The central charge of the extended Fock module is 26, the same as that of F,(a, @),

and we can use it to construct a complex with a nilpotent operator Q (see refs. [79,81]).
Following the standard procedure we define the extended complex as a tensor product
of the extended Fock module with the ghost module F(b, ¢, b, )

V, = F(b,¢,b,8) ® Fpla, ) (5.2.5)
and introduce the nilpotent operator Cj as
A~ ~ 1
Q= ;an_n ~3 ;(m —n) 1CemConbmin: +ah., (5.2.6)

where we put a hat over Virasoro generators in order to emphasize that they are
acting on the extended Fock space.

We can alternatively describe the extended complex as a tensor product of the
BRST complex V}, with the space of polynomials C[z° - - - zP~1]:

V,=Clz®---zP @V, (5.2.7)
and express the nilpotent operator @ in terms of the BRST operator @) as follows
~ 0 o
R=1Q - o ® Z(cna’in +cat,) —0Qcf, (5.2.8)

where ¢f = (co +©)/2, and O = p# 81321""

So far we have constructed an extended complex ¥, = C[z° - - - z°~1|®V,, equipped
with a nilpotent operator @ given by Eq. (5.2.8). One can easily check that Eq. (5.2.8)
does define a nilpotent operator using Q? = 0 and commutation relations between ok
operators.
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5.2.1 Cohomology of extended complex

Our major goal is to calculate the cohomology of the operator Q acting on the ex-
tended complex V for different values of the momentum p. More precisely, we will
be looking for the so-called semi-relative cohomology, which is the space of vectors
annihilated by Q and b; = by — by modulo the image of Q acting on the vectors
annihilated by by (see refs. [13,68,82,83]).

In mathematical literature it is called the semi-infinite cohomology of the algebra
Vir x Vir relative to its sub-algebra £, generated by the central charge and L; =
Lo — Lo with the values in the extended Fock module .7-' and is denoted by

H(Vir x Vir, Ly, Fp)

(see refs. [84,85]). We denote this cohomology by Hs(Q, V).

Before we start the calculations, let us describe what kind of information about
the cohomology we want to obtain. Ordinarily, we are looking for the dimensions
of the cohomology spaces at each ghost number. In the presence of the zy operator
these spaces are likely to be infinite dimensional (since multiplication by  does not
change the ghost number). In order to extract reasonable information about the
cohomology we have to use an additional grading by the degree of the polynomials in
z. The operator ) mixes vectors of different degrees and we can not a priori expect
the cohomology states to be represented by homogeneous polynomials.? Instead of
the grading on V' we have to use a decreasing filtration

D FV DO F VoD RV =Y, (5.2.1)

where F_kv is the subspace of v consisting of the vectors with = degree less or equal
to k. The operator (Q respects this filtration in a sense that it maps each subspace
F,.V to itself:

Q: FV > FV. (5.2.2)

This allows us to define a filtration on the cohomology of Q. By definition F_H (@, \7)
consists of the cohomology classes which can be represented by vectors with the z-
degree less or equal to k. Although as we mentioned above there is no z-grading on
the cohomology space, we can define a graded space which is closely related to it. We
define A R A

GI',-H(Q, V) = FTH(Qa V)/F,.+1H(Q, V) (523)

By definition Gr, H (@, \7) (for 7 < 0) consists of the cohomology classes which can be
represented by a vector with z-degree —r but not —r + 1. These spaces carry a lot of
information about the cohomology structure. For example if we know the dimensions
of Gr, for r = 0,—1,...,—k we can find the dimension of F_; as their sum. On
the other hand the knowledge of representatives of Gr, states is not enough to find

2For the p = 0 extended complex and only for this case we will be able to show that the
cohomology can be represented by homogeneous polynomials, but this will come out as a non-trivial
result.
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the representatives of cohomology classes. This is so because Gr, spaces contain
information only about the leading in x terms of the cocycles of Q.

To find the graded space GrH = @ Gr,H we will use the machinery known as
the method of spectral sequences. The idea is to build a sequence of complexes E,,
with the differentials d,, such that E, ., = H(d,, E,,) which converges to the graded
space GrH. In our case we will be able to show that all differentials d,, for n > 2
vanish and thus F3 = E; = -+ = E. Therefore, we will never have to calculate
higher then the third terms in the spectral sequence. We will give some more details
on the application of the method of spectral sequences to our case in B.

5.3 Chiral extended complex

Before attempting a calculation of the cohomology of the full extended complex let us
consider its chiral version. This is a warm up problem which, nevertheless, captures
the major features.

We replace the Fock space F,(a, @) by its chiral version, F,(a) which is generated
from the vacuum by the left moving modes «,, only.

Repeating the arguments of the previous section we conclude that the chiral ver-
sion of @) is given by

~ . 0 1
Q=10Q-iz—® > enat, - 5108 . (5.3.1)

We will calculate the cohomology of chiral extended complex 17,, for three different
cases: case p® # 0, which describes the massive spectrum; case p* = 0—the massless
one; and case p = 0, which besides the particular states from the massless spectrum
describes a number of discrete states.

5.3.1 Massive states

Let us start the calculation of the cohomology of the chiral extended complex 17,, by
considering the case of p? # 0. For this case the cohomology of the BRST complex is
non-zero only for ghost number one and ghost number two. The cohomology contains
the same number of ghost number one and two states which can be written in terms
of dimension one primary matter states. Let |v,p) € V], be a dimension one primary
state with no ghost excitations; then the following states,

coc1|v, p) and  ¢|v,p), (5.3.1)

represent nontrivial cohomology classes and, moreover, each cohomology class has a
representative of this kind (see ref. [86]).

We will calculate the cohomology of the extended complex in two steps. First, we
extend the BRST complex by adding polynomials of one variable Z = (p - ). The
resulting space, _

Ve =ClZ] ® V,, (5.3.2)
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Figure 5-1: Anatomy of a double complex

is a subcomplex of V and we define its cohomology as H (Q V. »), where Q is the restric-
tion of Q on V Calculation of GrH (Q V) is the obJectlve of the first step. Second,

we obtain the full extended space as a tensor product of V with the polynomials of
the transverse variables

V,=Cli'...,z° eV, (5.3.3)
where _
~i i p(p-z

Using GrH(Q, 17,,) found in the first step, we will calculate GrH (Q, ‘71,)
Let us calculate GrH(Q,V},). Beside the ghost number, complex V, has an addi-
tional grading—the z-degree. According to these two gradings we can write V}, as a

double sum
V, = D E;* (), (5.3.5)

where E7* = 3" ® V"™ is the space of ghost number 7 + s states with —r factors
of Z. Note that in our notations r < 0. _

It will be convenient to represent a double graded complex like V), graphically by
a lattice (see Fig. 5-1) where each cell represents a space E’S’s, columns represent the
spaces with definite z-degrees and the diagonals represent the spaces with definite
ghost numbers.

The action of Q on V can be easily derived from the general formula (5 3.1). Any

vector from Ej ** can be represented as i* ® |v, p), where |v,p) € V&R is a vector
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Figure 5-2: Spectral sequence for 17,,

from the BRST complex V, with ghost number s — k. Applying é to this state we
obtain

Q 7" ® |v,p) = * ® Q|v,p)
kil ch (p- a—n)|v,p) (5.3.6)

-1
_ ( )2k2®COI'Up>

2
According to Eq. (5.3.6) we decompose Q in the sum of operators with a definite
x-degree _
Q =0 + 01 + 0o, (5.3.7)
where each 0, reduces the z-degree, or increases r, by n (see Fig. 5- 1).
Now we start building the spectral sequence of the complex (Vp, Q) For a short

review of the method see B. The first step, the calculation of E” = Gr, H™*%(d,, ),
reduces to the calculation of the cohomology of the BRST complex. Indeed, according
to Eq. (5.3.6), 3o = 1 ® @, and therefore

EY* =37 @ HTH)(Q,V,). (5.3.8)

As we mentioned above, the BRST complex has nontrivial cohomology only at ghost
numbers one and two. Thus the space E; = € E7” looks as shown in Fig. 5-2 (left),
where shaded cells correspond to non-zero spaces.

The differential d, is induced on E, by 0;, and acts from ET * to Er+1 * as shown
in Fig. 5-2 (left). Since there are no states below the ghost number one and above
ghost number two, the cohomology of d; at ghost number one is given by its kernel:

E}'" = kerd,, (5.3.9)
and at ghost number two by the quotient of E7*~" by the image of d;:
ET*" = EP*7 /Smd,. (5.3.10)
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We are going to show that d; establishes an isomorphism of the corresponding spaces
and, therefore, the only non-empty component of E, is E01 ~ HY(Q,V,) as shown in
Fig. 5-2 (right).

Consider an operator By = Z®by. This operator is well defined on E’l 1.€., it maps
cohomology classes to cohomology classes. On the other hand, its anticommutator
with d; is given by X

{dy, By} = p* k, (5.3.11)

where k the z-degree operator. The last equation shows that if p* # 0, nontrivial
cohomology of d; may exist only in k = 0 subspace of E,. Moreover, if we apply
{d1, Bo} = d1 Bo+ By d; to ghost number one states only the second term will survive
because there are no ghost number zero states in E;. Thus we conclude that up to a
diagonal matrix By is an inverse operator to d;. Since ET™" and ETTHT have the
same dimension and d, is invertible it is an isomorphism between E’ s and ET+1 1-r
for any r < 0.

As shown in Fig. 5-2 (right), E, contains only one non-empty component. This
means that second differential d; and all higher are necessarily zero and the spectral
sequence collapses at E2 E . Therefore, we conclude that

GrH(Q,V,) = HY(Q,V,). (5.3.12)

The second step in our program is trivial because the spectral sequence {E‘n} of

the full complex R _
=C[z',..., 727 ®V,, (5.3.13)

stabilizes at El and
E1 E = C[fL‘l, ey i'D—l] ® GI‘H(Q, ‘71,) (5314)

This happens simply because, according to Eq. (5.3.12), GrH (@, 17,,), and thus Ej,
contains only ghost number one states and therefore d; and all higher differentials
must vanish. Combining Egs. (5.3.14) and (5.3.12) we obtain

GrH(Q,V,) = Cz,..., 2" @ HY(Q,V}). (5.3.15)

This completes our analysis of the cohomology of the chiral extended complex for
2
p*#0.

5.3.2 Massless states

The analysis presented above can not be applied to the light-cone, p> = 0. We could,
in principle, repeat all the arguments using & - = instead of Z, where ¢ is some vector
for which &-p # 0, to build V and this would work everywhere except at the origin of
the momentum space, p = 0. Yet it is instructive to make a covariant calculation in
this case. Since there is no covariant way to choose a vector £ we can not apply our
two step program. Instead we will start from scratch and build a spectral sequence

for the whole module R
V,=Clz%...,2° '@V, (5.3.1)
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graded by the total z-degree. N
According to Eq. (5.3.1), we can decompose () into a sum of operators of definite
x-degree

Q=00+ 0, + 0y, (5.3.2)
where
=180,
8 = IR > enet, (5.3.3)
Ox -
Oy = —%D ® cg.

The first step is to find cohomology of 0y, which is just the tensor product of the
BRST cohomology H(Q®,V,) with the space of polynomials

E = H(,V,)=Clz’--- 2P )@ H(Q,V,). (5.3.4)

Multiplying the representatives of H(Q,V,) by arbitrary polynomials in 2 we obtain
the following representatives of £, cohomology classes

Pﬂ(x) ® cia” ) |p), (53.5)

Qu(x) ® COCla‘iﬂP),

where P,(z) and Q,(z) are polynomials in x that satisfy the transversality condition,
P*Qu(z) = p*P,(x) = 0, and are not proportional to p,. These transversality condi-
tions come from the same conditions on BRST cohomology classes at p?> = 0. The
first differential acts non-trivially from ghost number one to ghost number two states
according to the following formula

., 0
—ip @Pu- (5.3.6)

di: P,—-Q,=
It is easy to check that the map (5.3.6) is surjective and therefore E3* = 0 for r+s = 2.
As expected the cohomology of the massless complex has a similar structure to that
of the massive one. There are no cohomology states with ghost number two and there
is an infinite tower of ghost number one states with different z-degree.

5.3.3 Cohomology of the zero momentum chiral complex

The zero momentum complex is exceptional. Already in the BRST cohomology we
encounter additional “discrete” states at exotic ghost numbers (see ref. [87]). The
cohomology is one dimensional at ghost numbers zero and three and D-dimensional
at ghost numbers one and two. Explicit representatives for these classes can be written
as given in Table 5.1.
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Ghost # | Representatives | Dimension
3 c1¢oc—1/0) 1
2 coa” 1 |0) D
1 o”,|0) D
0 |0) 1

Table 5.1: Chiral BRST cohomology at p =0

Let us denote the direct sum of spaces E;* with the same ghost number m = r+s
by ES™.

EM=PE™ (5.3.1)

r<0

As usual, the cohomology of d; can be written in terms of the BRST cohomology as
EM™ = H™(8, Vo) = Cla®, ..., 2P @ H™(Q, Vo).

According to Table 5.1, H(Q,Vy) ~ H*(Q,V,) ~ C. Therefore, Efo) and E§3) are
isomorphic to the space of polynomials C[z*]. Similarly, E§1) and E?) are isomorphic
to the space of polynomial vector fields C”[z#]. Evaluating the action of 0, on the
representatives (see Table 5.1), we get the following sequence

0 — Cla*] % CPz#] > CPz*] > Cla#] — O, (5.3.2)

where the first nabla-operator is the gradient, which maps scalars to vectors and
the second is the divergence, which does the opposite (and we have dropped an
insignificant factor —i). It is convenient to interpret Clz#] = O° and CP[z#] = O as
a space of polynomial zero and one-forms on the Minkowski space. The first nabla-
operator in Eq. (5.3.2) will be interpreted as an exterior derivative d and the second
as its Hodge conjugate 6. With new notation we rewrite the sequence in Eq. (5.3.2)
as

0-0°%0' 50500 (5.3.3)

This is illustrated by Fig. 5-3 (left). Note that individual cells in Fig. 5-3 correspond
to the subspaces of homogeneous polynomials rather than whole O or ©°. One can
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Figure 5-3: Spectral sequence for Vo

easily calculate cohomology of this complex and obtain
EY =,

EY = 0'/d0°, 6530

EY = ker(5,01),
E® =o.

Thus the second term in the spectral sequence has the structure presented by Fig. 5-3
(middle).

Now we have to calculate dy. This differential acts as shown in Fig. 5-3 (middle)
and can be found from the following formula (see B):

d2 - (92 - 3186_181. (535)

Let P = P,dz* € O' be a polynomial one form. Corresponding state representing a
Eél) cohomology class is given by

P, ® ca”,)0). (5.3.6)
Applying 0, to (5.3.6) we obtain
0P, 10P,
o1 P, ® a”,c1|0) = _ng_: ® c_1¢1|0) = Gy 258_xf ® co|0), (5.3.7)

where we use the metric 7" to raise and lower indices. From Eq. (5.3.7) we derive

that
. i P, 1 9P
81(90 181 PII ® a’ilcﬂO) = 81 55‘1‘1‘f ® CO'O> = 50.’11“6:"}

With the definition of 9, (see Eq. (5.3.3)) we immediately get

X 011116160|0). (538)

1
0, P, ® o¥,c1|0) = EDP;LCICOIO)- (5.3.9)
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By adding the last two equations, and dropping an insignificant factor 1/2, we see

that the second differential acts on Egl) = CP[z#]/VC[z#] as the following matrix
differential operator:
(ds),, = 06}, — 9,0", (5.3.10)

or, using the differential form interpretation EZ(,I) =0'/d0°,
dy = O — d6 = 6d. (5.3.11)

In order to calculate E5 = H(dy, F3) we have to calculate the cohomology of the
following complex:

0—C 2 0'/d0° % ker(5,0") — 0, (5.3.12)
or equivalently
0503080250 0. (5.3.13)

The later sequence is known to be exact in the last two terms® and thus Ej is given
by

EY =,
E{" = ker(sd,0")/dO", (5.3.14)

EP =EY = 0.

Looking at Fig. 5-3 (right) one can easily deduce that all differentials dy for £ > 3
vanish. This allows us to conclude that

Gr,H™(Q, Vo) = E = E5”*, (5.3.15)

and GrH has the structure shown in Fig. 5-3 (right). Since cohomology is non-trivial
only at one ghost number for every z-degree, we can easily find the dimensions of
different Gr, H spaces. We present the summary of our results on the cohomology of
the chiral extended complex in the following theorem.

Theorem 1 The cohomology of the chiral extended complex 17;, admits a natural fil-

tration (by the minus x-degree) F. H (17,,, @) The cohomology can be described using
the associated graded spaces

Gr,H(V,, Q) = FH(Vy, @)/ Frin H(V,, Q)
as follows

1. Non-zero momentum (p # 0): cohomology is trivial unless p? = n — 1, where n
s a non-negative integer. In the latter case

~ A~ 24 —
dim Gr, H'(V,,§) = ( 42 ) T) d,,

dimH’(Vp,@) =0 forl #1,

3We would like to thank Jeffrey Goldstone for pointing this out to us.
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where d,, denotes the number of the BRST states at mass level n. These numbers

are generated by
oo

(1—2F)2 = Zdnz".
n=1

k=1
see ref. [T9].

2. Zero momentum (p = 0): the cohomology appears at ghost number zero (the

vacuum)
dim H°(V,, Q) =1,

and ghost number one (physical states, recall that r is minus x-degree).

0 'I;fr=0).
D(D-1) forr=-1;
. Y7 O) = 2 |
dim Gr, H*(V;,Q) = D(D - 2)(D +2) forr = —2;
3 — T4
Xr forr < -3.

where

D-1-r D—-4-—r D—r D-3-r
X"D( D-1 )+( D-1 )_<D—1)_D< D-1 )
The cohomology is trivial for all the other ghost numbers

dimH’(‘Z,,Q\) =0 forl #0,1.

5.4 Cohomology of full extended complex

In this section we will calculate the semi-relative cohomology of the full extended
complex. We will use the same technique as for the chiral complex and obtain similar
results.

5.4.1 Review of semi-relative BRST cohomology

By definition, the semi-relative cohomology 7'75 consists of () invariant states an-
nihilated by by — by, modulo Q|A) where |A) is annihilated by by — by. For future
convenience we set by = by & by and ¢ = (1/2)(co £ ).

Semi-relative cohomology '}Zg of the BRST complex can be easily expressed in
terms of relative cohomology Hg. The latter consists of the ) invariant states an-
nihilated both by b and by modulo Q|A) where |A) is also annihilated by b and b,
separately. We can express 7:25 in terms of ﬁR using the following exact sequence
(see ref. [88]):

_._)Hn_L)HniHn—l{%}Hn+li)Hn+1_*“. (541)
R S R R S : <
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The map ¢ is induced in the cohomology by the natural embedding of the relative
complex into the absolute complex. The relative cohomology can be found as a tensor
product of the relative cohomologies of the left and right chiral sectors.

This is particularly easy for the case p # 0 because in this case the chiral relative
cohomology is non-zero only at ghost number one (see [86]) and, therefore, Hp, consists
of ghost number two states only. The exact sequence (5.4.1) reduces in this case to

o b~ i o~
0——)7‘(?9—&7{%40 and 00— H% — Hz —0, (5.4.2)

which means that 73 is isomorphic to H3 which in turn is isomorphic to 72 and there
are no semi-relative cohomology states at ghost numbers other than two or three. We
can even write explicit representatives in terms of dimension (1,1) primary matter
states. Let |v,p) denote such a state. Representatives of semi-relative cohomology
classes can be written as

01(_31|v,p) and C3-0161|U,p>. (543)

5.4.2 Semi-relative cohomology of p # 0 extended complex

calculation of the extended cohomology for the semi-relative complex in the case of
p Z 0 is line by line parallel to that of the chiral one. When we add polynomials of
T = (p- z) the resulting cohomology is given by ghost number two BRST states only,
and the semi-relative cohomology of the full extended complex is obtained by adding
polynomials of transverse components of z:

GrHs(Q,V,) = Cl3',---, 2P| @ HE. (5.4.4)

The case of the massless (p? = 0) complex may require some special consideration
because there is no straightforward way to choose the transverse variables z* but the
answer is the same.

In our opinion, an important result is that the extended cohomology does not
contain ghost number three states. Let us explain in more details what happens to the
ghost number three semi-relative states when we extend the complex by zy. According
to the results on extended cohomology for every state cg i€ |v, p) we should be able
to find a vector |w,p) in the extended complex such that ¢fc;¢1|v,p) = @|w, p). We
have found the leading part of |w, 13) when we calculated the spectral sequence. It is

given by? (- )clcl|v p). Applying @ to this state we get

~ - _ _ _ _
Q(p > )c161|v,p) =cjeialv,p) + Zpuclcl(c_naﬁ +C_na)|v, p). (5.4.5)

n
Thus in order to prove that cgc,c|v,p) is trivial we have to prove that the sum in
the right hand side represents a @ exact state. The latter is a direct consequence
of the absence of relative cohomology of ghost number three. Indeed, this sum is
annihilated by by, by, and @ and if it were nontrivial it would have represented a
non-zero cohomology class of ghost number three in the relative complex.

4This is not applicable to the massless case p? = 0 which has to be analyzed separately.
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Ghost # Representatives Dimension
0 |0) 1
1 aa? 110y, ¢at, o) 2D
2 a6 @ 4|0), cic4|0), T y)[0) | D?+2
3 ciat €e_1]0), ce_16@”,|0) 2D
4 c1¢_1¢1¢-10) 1

Table 5.2: Cohomology of the relative BRST complex at p =0

5.4.3 Semi-relative cohomology of p = 0 extended complex

The calculation of the cohomology of the zero-momentum extended complex is based
on the same ideas that we used for the chiral case but is technically more difficult.
The major complication is due to a much larger BRST cohomology.

We can find the BRST cohomology of the zero momentum semi-relative complex
using the long exact sequence we mentioned above (see Eq. (5.4.1)) which in this case
breaks in to the following exact sequences:

~ : ~ bt
1
0—HY — HI 0,

S1 i e 8 0 {(@cg) 5
0—>Hp — Hy — Hyp — Hf,

Q.cf

~ i e b~ ~
0_,7{}2_’)7-(%_1’2*7{01%{__,}7{%, (5.4.1)

bt

Q,ct} ~ i~ ~
{ Co} 4 ) Hg—-o—}H%—)O,

e, e e 1
—~~ + ~~
5 b 474

0 — 75 25 AL - 0.

The cohomology of the relative complex can be found as a tensor product of the left
and right relative cohomologies. The later can be found, for example, in ref. [86]
and consists of ghost number zero, one, and two states. Therefore, the relative com-
plex has non-trivial cohomologies at ghost numbers from zero through four and their
representatives and dimensions are listed in Table 5.2.

Using the exact sequences (5.4.1) we can easily find the dimensions and represen-
tatives of the semi-relative cohomology as shown in Table 5.3.

The extended module Vj is given by

Vo=Clz°,...,2° e Vs, (5.4.2)
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Ghost # Representatives Dimension
0 |0) 1
1 cia”,]0), ¢ @, |0) 2D
2 et 6@”,0), (cic-1 — ©¢-1)|0) D*+1
3 cfea @ ,|0), cf(cicoy —¢c-y)|0) | D*+1
4 cfco” 6e_1]0), cfcicc@ty|0) 2D
5 cgcic_1c1c_1]0) 1

Table 5.3: BRST cohomology of the semi-relative complex at p =0

and the operator @ has the following z-degree decomposition

Q=08+ 01+ 0y, (5.4.3)
where
% =10Q,
o = —zi ® Z caa, + et ), (5.4.4)
Ox*

1
82 == —§D® (Co +Eo) == —D®C+.

As it was the case for the chiral complex, the cohomology of &y coincides with the

cohomology of the semirelative BRST module, Hs tensored with Cfz?,...,2P~!] and
the first term in the spectral sequence is given by
E\ = Hs(8o, Vo) = Cz°, ...,2°7Y ) ® Hs (5.4.5)
Using information from Table 5.3, we can parameterize the space
=Clz®-- 2P @ Hs
as follows
(R) = R9 g |0),
(Plll F[”) = PU® ¢y, |0) + P @ &, |0),
(QF, rY) = Q[Z] ® e 183%,]0) + RP @ (cic-y — ©12.1)|0),
Q¥ , R®) = Q¥ ® cfero ey@”,[0) + RPI'® ¢f(c1c_y — ©1T-1)|0),
(P, " PY) = P @ ¢fero @21 |0) + P ® cf cre_iea, [0),
(RP) = R @ cfcic_181-1]0), (5.4.6)
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b3 =FE

s s
t : 4
4 4
3 3
2 2
1 1
0 0
—4 -3 -2 -1 0 —r -4 -3 -2 -1 0 —r1

Figure 5-4: Spectral sequence for the zero momentum closed string states.

where Q*”, P, and ?u and R are correspondingly tensor-, vector-, and scalar-valued
polynomials of D variables z#. Applying J; to the representatives given by (5.4.6)
and dropping @-trivial states we can find that the first differential acts according to
the following diagram

0: (RI%) \d‘
1- (plg , pg) \Q (8,R9, 8,R0)
2 @,P — a,pl, P _ gupll)

lev d v I [
( \ (5.4.7)
3: (Q, R¥) (di (0, 0)

.J>

(P, Py (0°QE + 0,RB, 07Qll + 5,RD)

AN

(B (@,PY~0,P")

(%)

Consider the cohomology of d;. From the explicit formulae (5.4.7) it is clear that
E, = H(dy, E) contains no ghost number five states and the only state that survives
at ghost number zero is given by a constant R and is the vacuum. It is less trivial
to show that E2 Y = 0, and that E2 contains only z-degree one and two states. We
will prove these two results in C (lemmas 3 and 1). This shows that the space E,
looks as shown in Fig. 5-4 (left). From the structure of F» we conclude that d, may
only act from E§2) to E§3). In order to find

ds ( ,u2w 2]) = (82 010y 161) (Quw [2])a

we have to keep the &y trivial terms when we apply 8; to (QI2, R®) which were
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dropped in Eq. (5.4.7). Using (5.4.6) and (5.4.4) we infer

o1 (Qff, B¥) = o ((0°Qf2 + 0,R) ® cfziat, o) Gas)

—(0“QP + 8,R¥) ® ¢t eia”, |o)) .
Now we can apply 0; to the argument of 0y above and add the image of J, to obtain
dy(Qj, B™) = (6QL), 8R™), (5.4.9)
where
6Qk) = 0QLl - 98,01 - 9,Q% +29,0,RY,

(5.4.10)
SR1Bl = —6"6”@&2}, +20RM.

As we will prove in C, this map is surjective and therefore the cohomology at ghost
number three is trivial. The structure of Ej5 is presented in Fig. 5-4 (right). It is
obvious that the spectral sequence collapses at E3 and E, = E3. Therefore, we
obtain the result that is similar to that in the chiral case (see Eq. (5.3.15)):

Gr, H*(Q, Vo) = E* = E&°. (5.4.11)

Note that d, acts non-trivially only between ghost number two and ghost number
three states, at the point where d; vanishes. This observation allows us to combine
the calculation of £y and Fj5 into one cohomology problem for the following complex

0= VO A,y 4, y@) E, ye) b, e b ye) g (5.4.12)

where V®) = @, E7*" are the ghost number k subspaces of E;. This is very
similar to what we did for the chiral complex (Eq. (5.3.12) and Eq. (5.3.13)), but,
unfortunately, we lack a simple geometrical interpretation for the complex above.

Since d; and d, have z-degree —1 and —2 correspondingly, we can decompose the
complex above into the sum of the following subcomplexes

0 VO, G,y b,y b y@ b0 dope) g (5.4.13)

where the subscripts refer to z-degree. Using this decomposition and the results of C
one can easily calculate the dimensions of Gr, H(Q, V) = E3* spaces.

Let us summarize our results on the semi-relative cohomology of the extended
complex.

Theorem 2 The semi-relative cohomology of the extended complex 171,, admits a nat-
ural filtration (by the minus x-degree) F.Hs(V,, Q). The cohomology can be described
using the associated graded spaces

Gr,Hs(V,, Q) = FHs(V,,Q)/ Fri1Hs(V,, Q)

as follows
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1.

Non-zero momentum (p # 0): cohomology is trivial unless p* = 2n — 2, where
n 18 a non-negative integer. In the latter case

dim Gr, H3(V,, Q) = (242; T) 2,

dmHL(V,,Q) =0  forl#2

where d,, are generated by the following partition function

(1= 252 =3 dyom.
n=1

o0

k=1
see ref. [79].

Zero momentum case (p = 0): the cohomology appears at ghost number zero
(the vacuum)

dim H3(V},, Q) = 1,

ghost number one (global symmetries of the background, the Poincaré algebra),

D ifr=0;
dim GrrHé(Vp, Q) = D(D—z_l). ifr=—1;
0 otherwise;

and ghost number two (physical states),

dimGrOHg(f/\;,,@) =1,
D(D*-3D+8)

dim Gr_, H3(V,,Q) =

6 )
dim Gr 1 (7,,Q) = 22204,
(D+2)(5D*—-16D*+ 15D — 12)

dim Gr_sH2(V,,, Q) =

24 ’
dim Grng(f/\;,,@) = x, forr < —4.

D-1-r D-3-r
r — -D2 -

v (%5 07) - (%)

D—-r—-4 D-—r

22|(% 01 - (573)]

4 D—r+1 _(D-r-5
D-1 D-1 /)

There are no non-trivial cohomology states at any other ghost number,

dim Hy(V,,Q)=0  forl+#0,1,2.

where
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There is no evident structure among the ghost number two cohomology states.
In the next section we are going to make some order in this zoo of zero momentum
physical states using their transformation properties under the Lorentz group.

5.5 Lorentz group and extended complex

Since the cohomology of the extended complex is designed to describe the string
theory near the flat background, the Lorentz group should act on it naturally, mapping
the cohomology states to the cohomology states. In this section we investigate the
action of the generators J** of the infinitesimal Lorentz transformations.

5.5.1 Lorentz group acting on non-zero momentum extended
complex

The generators of the infinitesimal Lorentz transformations, or the angular momen-
tum operators of the closed string can be written as [79]

J# =1+ B + B, (5.5.1)

where

v _ LM,V {7
lu —_ xoao - xoao,

o0
1
wo— g - I v _ v u
E i E_lj ~ (0,07 = a¥ ), (5.5.2)
— Z“’ 1
E“ :_' _—I‘ —V_'—V _u.
IL n=1 n (a_nan a—nan)

Applying the zero mode part I*¥ to f;;,, we obtain

W =x¢Qp" —z"®p"+2" 9 ®1—w"i®1. (5.5.3)
0z, oz,

One can easily check that the J*” operators commute with @ and therefore are well
defined on the cohomology. Note that for p # 0 these operators mix states of different
x-degree.

Consider the massive case, p* # 0. Recall that any physical state in the extended
complex can be represented by

P(il,"',fD‘l)®0151|U,P)+"’ , (5_5_4)

where |v, p) is a dimension (1, 1) primary matter state with the momentum p and dots

stand for the lower z-degree terms. Suppose the transverse components are chosen
as .
Y3

=g POD) (5.5.5)

p
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We can obtain a state with the same leading term by applying the following operator
to ¢11|v, p)

1p D—-1u

P <%—,-.-,1—’“—i)-2—) ciéi|v,p) = P(&',---, 2" ) @ eii|v,p) + -+ . (5.5.6)
Together with the results on the cohomology of the extended complex obtained in the
previous section, Eq. (5.4.4), this shows that the semi-relative cohomology of a p? # 0
extended complex is spanned by the states which are generated from the standard
physical states by the infinitesimal Lorentz boosts. Although the analysis above fails
for the massless states p?> = 0 (p Z 0), the result is still the same. One can check it
using the explicit formulae for the cohomology states at p? = 0.

We conclude that the ghost number two cohomology of the extended complex at
p Z 0 has the same physical contents as that of the BRST complex.

5.5.2 Lorentz group and the zero momentum states

The Lorentz generators, J*”, act on the zero-momentum states as linear operators of
zero z-degree:

0 0 —u
1—2"— W+ ET). 0.
0x,,® xaxu®1+1®(E +E) (5.5.1)

JH = gt

Consider the complexes
0— ‘/;1(3-)2 S Vn(-l|-)1 - 4% s Vrfi)2 R Vn(i)3 A Vn(i)4 — 0. (5.5.2)

which calculate GrH 5(‘70, @) By definition Vi and V,® are the spaces of homoge-
neous polynomials of degree n. These spaces are reducible under the Lorentz group
because the subspaces of the polynomials of the form (z#z,)*h, o are invariant un-
der SO(1, D — 1). Furthermore, if h,_s are harmonic, Oh,_y, = 0, these subspaces
form irreducible representations of SO(1, D—1). We will denote these irreducible rep-
resentations by H,. These representations can be alternatively described by Young

tableaux as
n

H,=(TT-T). (5.5.3)

Now we can write the decomposition of Vn(o) or n(s) into irreducible representations

as
VO =vVO® —H, +H, s +H, 4+ . (5.5.4)

At the ghost numbers one and four spaces we find another kind of irreducible repre-

sentations:
n

V, =[TT 111, (5.5.5)
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n—2
H, o 2H, 0 Hyyo
5H,+S,
H, 4H,+2V, H,
+A,+2V,

6Hn—2+sn—-2 5Hn—2+sn—2
Hn-—2 4Hn—2 +2 Vn—2 2:Hn—Z

+A, 24+4V, o | +A, 2+2V, o

6Hn——4+sn—4 6Hn—4+sn—4
Hp 4 |4H, 4+2V,y 2Hp 4+2Vp_y | Hoy

+A 4 +4 Vg | HA L _4+4V 4

6Hn—6+sn—6 6Hn—6+Sn—6
Hn—G 4Hn—6+2 Vn——6 2Hn—6+2 Vn—6 Hn—G

4+A, _6+4 V6 | tAn—6+4V,_s

Table 5.4: Decomposition of the complex (5.5.2) into irre-
ducible representations of SO(1,D — 1) for n > 2

and, finally in the decompositions of ) and Vn(3) we will encounter

n n

m——N——
A,=[1L-]] and S,= el . (5.5.6)

Suppose n > 2. Table 5.4 shows the decomposition of the whole complex (5.5.2)
into irreducible representations. From the series of lemmas presented in C, we know
that the complex (5.5.2) has cohomology only in v, Using Table 5.4 we conclude
that

Gr_,H%(Vy,Q)=H, + A, + S,, (5.5.7)

which we obtain by “subtracting” the odd columns from column two and “adding” the
even columns. é more detailed analysis shows that if we choose the representatives
of Gr_an(VO,Q) so that they belong to H,, A,, or S,, they also will represent
cohomology classes of Q, no lower z-degree corrections required.

Two exceptional cases, n = 0 and n = 1, have to be treated separately. The
decompositions of the complex (5.5.2) into irreducible representations for these the
first case is presented in Table 5.5. Using the results of C we can infer from Table 5.5
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Vz(o) Vl(l) VO(2) VE;(O) V2(1) V1(2)

H2 2H2 H2 H3 2H3 H3
H, |2H;+2V, | Hy+V, H, |[4H,+2V; |4H;+A;+2V,
Table 5.5: Decomposition of the complex (5.5.2) into ir-
reducible representations for n = 0 (left) and
n =1 (right)
(left) that
Gr_1Hg(Q,Vs) = Vo and GroH3(Q, Vo) = Ho, (5.5.8)

and from Table 5.5 (right) that
GI'-]H%(@, i}O) = H1 + Al; (559)

and again, if we pick the representatives of GrHg from the irreducible representa-
tions, they will be annihilated by @ and therefore represent the cohomology classes
without lower z-degree corrections. For this case this can be easily checked by explicit
calculation (see C).

It is tempting to interpret the irreducible representations H,,, S,, and A, as
the dilaton, graviton, and antisymmetric tensor. If we do so, it is not quite clear
why we have infinitely many irreducible representations for each field, and not just
one. We speculate that these representations are related by infinitesimal shifts (the
translational part of the Poincaré algebra), which acts on the spaces of polynomials
by differentiation with respect to z*.
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Appendix A

The tachyon potential and string
field redefinitions.

Here we wish to discuss whether it is possible to make a field redefinition of the string
field tachyon such that the string action is brought to a form where one could rule
out the existence of a local minimum. Even at the level of open string field theory
this seems hard to achieve. The tachyon potential is of the form V ~ —72 4+ g73. The
cubic term produces a local minimum with a nonzero vacuum expectation value for
7. We are not allowed to just redefine 7 to absorb the cubic term in the quadratic
one; this is a non-invertible field redefinition. Using the massive fields is no help since
the transformations must preserve the kinetic terms, and therefore should be of the
form 7 — 7+ f(¢;, 7) and ¢; — ¢; + g(¢s, 7), with f and g functions that must start
quadratic in the fields. Such transformations cannot eliminate the cubic term in the
tachyon potential.

Let us examine the question of field redefinitions in a more stringy way. Assume
it is possible to write the string action as

5= / 4z [L(Vr, 65) + 7(1 + f(6)], (A.0.1)

namely, that one can separate out a term just depending on derivatives of the tachyon
field, and all other fields, and a quadratic term for the tachyon potential. The term
f(¢:) was included to represent couplings to fields like dilatons or background metric.
If the above were true we would expect no perturbatively stable minimum for the
tachyon (the factor (1 + f(¢;)) is expected to be nonvanishing). We will now argue
that the string action cannot be put in the form described in Eqn.Eq. (A.0.1) by
means of a string field redefinition. It is therefore not possible to rule out a local
minimum by such simple means.!

If Eqn.Eq. (A.0.1) holds, a constant infinitesimal shift of the tachyon field 7 — 7+¢
would have the effect of shifting the action as

S—S+ 26/d2: (1 + f(¢:)) + O(e?). (A.0.2)

11t is not clear to us whether this result is in contradiction with that of Ref. [42], where presumably
the relevant action is the effective action obtained after integrating out classically the massive fields.
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We should be able to prove such “low-energy tachyon theorem” with string field
theory. For this we must find the change in the string action as we shift the string
field as follows

[0); — [O); + €| To)s + (Al [0)o|Sia) + -+, (A.0.3)

where |Tp) = ¢,¢,]1), the dots indicate quadratic and higher terms in the string field,
(hg?l is a symmetric bra, and |S;3) is the sewing ket [15]. Indeed the transformation
of the string field cannot be expected to be a simple shift along the zero-momentum
tachyon, since the string field tachyon should differ from the tachyon appearing in
Eq. (A.0.1). If we now vary the string action Eq. (2.2.4) we find

S — S+ e(¥|c;QITp) +§e {<v§§§|To>3+ (1@ +Q2>] [T)[T)+--- . (A.04)

We must now see that by a suitable choice of (hg)| the variation of the action takes
the form required by Eq. (A.0.2). Indeed, the term e7 arises from the ¢(¥|cy Q|To)
term in Eq. (A.0.4) since ¢; Q|Tp) can only couple to the tachyon field in ¥. Assume
the function f(¢;) in Eq. (A.0.2) is zero, in that case there is no extra variation in
the action, and we must require that

(ViTo)s + (R1(Q1 + Q) = 0. (A.0.5)

This equation cannot have solutions; acting once more with (@Q; + @Q2) we find that
Eq. (A.0.5) requires that (V\2)|Qs|To)s = 0 which cannot hold (recall Q|Tp) # 0).
Even if f(¢;) is not zero, we do not expect solutions to exist. In this case we still
must have that Eq. (A.0.5) should be zero contracted with any arbitrary two states,
except when one of them is a zero momentum tachyon. Again using states of the
form (Q; + Q2)|a)1|b)1 where neither |a) nor |b) is a zero momentum tachyon, we
see that again the equation cannot be satisfied. This shows that there is no simple
“low-energy tachyon theorem” that rules out a local minimum.
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Appendix B

Spectral sequence

In this section we review some basic facts about a particular type of the spectral
sequence which we use in our analysis of the extended complex. This is not intended
to be a complete introduction to the method. Our only goal is to introduce the spaces
Ey, E, and F, equipped with differentials dy, d; and d, acting on them. We will prove
that these differentials have zero square and provide some motivations to why their
cohomologies are related to GrH. For a more detailed analysis of the first three terms
of a spectral sequence, the reader is referred to the book by Dubrovin, Fomenko and
Novikov [89]. A general introduction to the spectral sequences from the physicist’s
point of view and further references can be found in refs. [90,91].
Let (C,d) be a complex with additional grading C = @ C,. such that the differ-
ential d can be written as
d=0y+ 01+ Os, (B.0.1)

where 0, maps C, to C,,. Since d mixes vectors from different gradings we can not
define grading on cohomology H(d, C), but we can still define a decreasing filtration.
By filtration of the element z € H(d,GrC) we will mean the smallest (negative)
integer s such that z is representable by a cocycle

T = :L'r+xr+1 +-.-, (B02)

where z, € C,. We will denote the space of such vectors by F.H(d,C). Using the
filtration we can define a graded space associated to the cohomology H(d, C)

GrH = @GrsH, where Gr,H = F;H/F, .1 H. (B.0.3)

The investigation of the spaces GryH™ is carried out using the method of “successive
approximations” based on what is called the “spectral sequence”. The idea is to con-
struct a sequence of complexes (E,, d,,) such that E, ., = H(d,, E,) which converges
to GrH

Gr,H" = E3"°. (B.0.4)

Differentials d,, are acting on the spaces E* as follows

dp: ED® — EItms—ntl (B.0.5)
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For a complete description of the spectral sequence and the proof of the theorem
which states that the spectral sequence converges to GrH we refer to [89,92]. Let us
describe the first few terms of the spectral sequence. Suppose T given in Eq. (B.0.2)
represent a cohomology class z in FyH(d,C). Applying d = 0y + 01 + 02 to T we
obtain

dT = 00T + (01T + OoTr41) + (Tr + O1Tr41 + O0Tr42)
(B.0.6)

+(82T7-+1 + 8157-4.2 + aofr,»_;_;;) + .-
where we enclosed in braces the terms from the same C, space. It follows that
0%, =0, O\Tr = —00Try1, 02Ty = —01Tp41 — OTria, .- -, (B.0.7)

form which we conclude that Z, is a 0y cocycle and a 0, cocycle modulo image of
Jo- This suggests that the first approximation in the spectral sequence should be
E; = H(9,,C) and dy = 0y, the second approximation is Ey = H(dy, E}), where d;
is induced on E; = H(0,,C) by 0,. Using the second equation of (B.0.7) we can
formally find Z,,; in terms of Z, as Z,4+1 = —0; 10,7, and rewrite the last equation
of (B.0.7) as

(8 — 01051 01)T, = — 0Ty (B.0.8)

The last formulae suggests that dy is induced on E, = H(d,, E;) by 0, — 8,0, 0, and
the third approximation is E3 = H(d,, E»).

Let us show that these differentials are well defined and square to zero. For dy the
first is obvious since it acts on the same space as 9y and 93 = 0 follows from d? = 0
which is equivalent to

03 = {00, 01} = 8} + {80, 02} = 85 = 0. (B.0.9)

In order to show that d; is well defined we have to show that J; maps Jy-closed
vectors to Jp-closed vectors and Oyp-trivial to Jdp-trivial. This easily follows from the
anticommutation relation {8p,0,} = 0. Let us prove that d> = 0. Suppose z € E;
can be represented by a cocycle T € C, 9% = 0. Then applying 6? = —{0y, 02} to T
we obtain a trivial cocycle 8?7 = —9y3,Z. In cohomology this implies that diz = 0.

Before we consider the differential d,, let us describe the space Fy on which it acts
in greater details. By definition Ey; = H(d,, E), but E; in turn is the cohomology of
the original complex with respect to dy. Therefore, in order to find a d, cocycle we
should start with a g cocycle T and require that its image under 0, is 0, exact. Two
cocycles T and T’ represent the same d; cohomology class if Z/ —Z € Smd, + 0, ker 0.
Let T be a d; cocycle, which means that

(90:'5 =0 and 6@ = 8@ (BO].O)

We define d,T as
doT = 0T — 0,7 = (0 — 0,07 01)T. (B.0.11)
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Let us show that the result is again a d; cocycle. Indeed, using the properties of d,
listed in Eq. (B.0.9) we obtain

80(125 = 60625 + Boalﬂ — 80825 - 3160? — {80, 82}T it 8ff =0

and
aldQT - 61827 - ny - 3082?.

Similarly we can prove that if T and T’ belong to the same d; cohomology class
then their d; images belong to the same class as well. This will finally establish the
correctness of the definition of d, as an operator on F,. In conclusion let us show
that d7 = 0. With T as above we have

d%fZGQ (625 - Bly) - 8180_181 (82f - 8@)
=0,0,7 + 0,051 0,0,T — 0105 1800,7 — 0,05 02047
=0,0,y — 010y =0

which completes our analysis of ds.
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Appendix C

Three lemmas

In this appendix we will calculate the cohomology of the following complex
0— VO 22y 28 y@ 42 @) 4O e 4O 6 o (C.0.1)

where V(O ~ V(O ~ C[z? ... 2P71], VO ~ V(O ~ C?P[20. .. 2P and VO ~ V(O ~
CP*+1[g0 ... zP-1]. Following the notations of section 5.4.3 we represent the elements
of VO and V® as (RI) and (RF), elements of V® and V® as (Q, R?) and
(QY), R1), and elements of V® and V& by (P,, P,). Differentials d™ act as follows

(R g (0)

=1
P, PLLQ(auRM, 9,RY)

Sl (1] Bl (1)
(@i, RIQJ)Q@PV -o,P", 0P, - onPll)

) y (C.0.2)
(Qiw, R ¢® (6Qis, 6RP)
(P, ?E])E:(a"czkﬂ +8,RB, 3QL) + 9,RB)
(RE)  (3uP¥ - 9,P")
where
sQE=0Q - 89,01 — 8*9,Q% + 28,8, R™ (C.0.3)
§RP=-0*07Q%) + 20R™ (C.0.4)

It is obvious that d® is surjective and the kernel of d® contains only constant poly-
nomials. Thus we conclude that H® = C and H® = 0. The other cohomology spaces

are described by the following lemmas
Lemma 1 H! is finite dimensional and dim H' = LDQ‘H—). H' cohomology classes
can be represented by polynomials of degree no bigger than one.
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Proof. According to (C.0.2) H' is a quotient of the space S of solutions to the system
of first order differential equations

{ 9,P, =0,P,

oAty (C.0.5)

by the space T' of trivial solutions P, = P, = J,R. Note that both S and T naturally
decompose into direct sum of the spaces of homogeneous polynomials and so does the
quotient

S=@Ps, T=PT1", H'=5/T=H"/T" (C.0.6)

We want to prove that S” =T for n > 1. Let P, and _P-u be homogeneous polynomi-
als of degree n > 1 that satisfy Eq. (C.0.5). First, it is obvious that P, = 0 for every
p requires P, = 0. Indeed, if P, = 0 for every u then according to the first equation
in Eq. (C.0.5) 8,P, = 0 for every p and v and since by assumption deg P, > 1 this
means P, = 0. Second, using the first equation of (C.0.5) twice we obtain

0.0, P, = 0,0,P, = 0,0,P, = 0,0,P,. (C.0.7)
Therefore for any o, p and v
0u(0a P, — 0,P,) = 0. (C.0.8)

And since deg(0y P, — 0,P,) = n—1 > 0 we conclude that 8, P, —9,P, = 0 and there
exist R such that P, = 0,R. Subtracting a trivial solution (d,R, 0,R) from (P,, P,)
we get another solution (P, = 0,P, = P, — ,R). According to our first observation
P, = 0 requires ﬁ:‘ = 0 and thus P, = P, = ,R.

It is easy to see that there are exactly @ non-trivial solutions of degree one

and D non-trivial constant solutions which can be written as

P,=-P,=§uz", and PB,=—P,=const (C.0.9)
where £},,,] is an antisymmetric tensor.
Lemma 2 H3=0

Proof. This is the most difficult lemma in this work. We have to show that any
solution of the system

Q) + 9, RPI=0 ©010)

& QL% + 9,RPI=0

can be represented in the form

sQi=0Q% - 99,Q% - 89,Q% +20,0,R?
S e T (C.0.11)

§RPF=-89°QY) + 20R™
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We will start from an arbitrary solution of the system (C.0.10) and will be modifying
it step by step by adding the trivial solutions of the form (C.0.11) in order to get
Z€r0.

We can use the same arguments as in lemma 1 to consider only homogeneous
polynomials of some degree m. Suppose m > 1. We will describe an iterative proce-
dure which will allow us to modify (Q5}, RB) so that Q) will depend only on one
variable, say z° and its only nonzero components be QE(]) and Q([):ﬂ.

If this is the case, the cocycle condition (Eq. (C.0.10)) tells us that

auR = 30Qu,o = aOQO,;u (0012)
moreover, Quo = Cuzg" and Qo = C,z. Furthermore, using Eq. (C.0.12) we
conclude that C, = C,,. Integrating Eq. (C.0.12) we obtain

D-1
RP =" mCizizf™" + Coxfl. (C.0.13)
i=1
One can check that such solution (QE,},, RBY) can be written in the form (C.0.11) with
QE],, =0 and

D-1
1 C C
2] — - E : 1 am+l 0 m+2
B =3 (m+1$’x° * (m+1)(m+2) 0 )

Now let us describe the procedure which reduces any solution to the abovemen-
tioned form. Our first objective is to get rid of z; dependence for ¢ = 1..D — 1. Let
us pick i. The following four step algorithm will make (Q,,, R) independent of z;.
We will see that when we apply the procedure to (Q,., R) which does not depend on
some other zy it will not introduce z; dependence in the output. This observation
will allow us to apply the algorithm D — 1 times and make (@, R) depend only on
ZIg-

Step 1 Let us introduce some notations. For a polynomial P we will denote the minimal
degree of z; among all the monomials in P by n;(P). For a zero polynomial we
formally set n;(0) = +o0o. Given a matrix of polynomials @, ,, let

Ni(Quv) = minn;(Q) (C.0.14)
v#i

Since QE’;J, are homogeneous polynomials of degree m we can write them as
B= " > Copempoy,w@y® - 3po7 (C.0.15)
mo+-+mp_1=m

Let us show that it is possible to add a trivial solution to (Q,., R) and increase
Ni(Q,.) by one. Indeed, let

CmO"'mD 1, pv :l,‘o 0... x’ini 2 e x""fD;l
QY = ~ — for p,v #1
2 E ) _ D , ’
Lz]/ ; Mo+-+mp_1=m (m; +1)(m; + 2)
0 otherwise,
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Step 2

Step 3

Step 4

and R =0.

It is easy to see that
Ni(QF) +6QR0) > Ni(@Qf)) +1

where (SQE,], comes from the trivial solution generated by ( Lz,],, R™®) according
to (C.0.11). Repeating this procedure, we will increase NZ(QE,],) at least by one

every time. Since QE’,], are homogeneous polynomials of degree m, NN; is either
less then m + 1 or equal +00. Therefore after a finite number of steps we will
make N; = +o0o which means that all QE’,], are zero for p # i and v # 1.

Since ( E,],, RB)) is a solution to the system (C.0.10) we can write

0,:Qu=0,R® = 0,Q%), p#i
o Q=0,R¥ = 6" Qf.

Suppose
B2 Y Dupmptf ool

mo+-+mp_1=m

then we choose R = 0,

D
2] _ mo-mp_mo | imit2 | jmpos
@ 2 i+ D(mi+2) 0 " To-1

mo+:-+mp_1=m

and QE,], = 0 for all the other 1 and v. It is easy to see that QE,], = QE,], + (5QE,],
have the following properties:

—all éEI]/ except Q;; do not depend on ;
~ QP =0forall p+iandv+i.

Suppose (QE,],,R[3]) is of the form we obtained at the end of step 2. Since
8,@5} = 0 for pu # i, then §,RP! = 0 for p # i and therefore, RPl depends only
on z;. Thus there exists R such that RPl = —26? R and R depends only
on z;. adding a trivial solution generated by (0, R¥) we can make Rl = 0.

Using R®l = 0 we can rewrite the system (C.0.10) as follows.

0:Qi == Q)
v#i

Therefore, QEZ;’] = QS’]O + xiQE‘Z']l, where QE‘Z’]O and Q£?11 do not depend on z;.
For every QE']I we can find a polynomial P which depends on the same set of
variables and OP = —QE‘?’]I. Choose Qg] = z; P, R® = 0 and QE,], = 0 for
(u,v) # (i,1). Adding the corresponding trivial solution we achieve that QE.]/
and RP do not depend on z;.
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Featlng this program D — 1 times for each value of + = 1,...,D — 1, we make
,f’,,, RB) depend only on z,. Now we can repeat the first step once again with ¢ = 0
and make QS’} =0for k,7=1,...D — 1. We have already proven that such solution
is trivial.

Recall that in the very beginning of our analysis we have made an assumption that
the polynomials have non-zero degree (m > 1). Therefore we have to consider this

last case separately. If polynomials QE’,], and RP! are constant, they trivially satisfy
the system (C.0.10). To show that any such constant solution can be represented

in the form (C.0.11), it is sufficient to take QI = Quv,0(20)%/2 + quy1(z1)?/2, which
generates (QE‘,]., RB) if g0 and q,,,, are chosen so that

400,1 — qoo O—QE)%],
q11,0 — q11,0= Qn,
goo,1 + qoo,0 + qu1,1 + (I11,0:R[ ,
Qo= Eﬂ for v # 0,
qu0,1=Q£?(]) for p #0,
Q0= 1,, | for v #1,
Guro=Q% for p#1,
Quvo + q;w,leE,], for p,v > 1.
This completes the proof of Lemma 2.

Lemma 3 H* =0.

Proof. It is almost obvious that the image of d® covers the whole kernel of d¥ in
V) because the space V3 is much bigger than V(* at every degree. Indeed we will
show that it is sufficient to consider a subspace of V® spanned by the zeroth row
and the zeroth column of the matrix @,,. Loosely speaking the row will cover P,
and the column will cover P,,.

Suppose (Pu,?,,) € ker d¥ or equivalently

d*Pp,,P,) = (0*P, — 0"P,) =0 (C.0.16)

we want to show that subtracting vectors of the form d®(Q,,,0) from (P,, P,) we
can get reduce it to zero. First of all we can easily get rid of the spacial components
P;and P; fori =1---D—1 using Q,, which has the only non-zero components given

by
= /P,dxo and QiO = /?1(1.’170 + Cz(.'L'l - 'CL‘D_I) (0017)

This will reduce P, and P, to the form P, = a6y, and P, = @6 ,. Furthermore,
according to Eq. (C.0.16) polynomials a and @ have the same derivative with respect
to z°. Thus varying say Ci(z!---zP~!) in Eq. (C.0.17) we can achieve that a = .
Flnally if we have a vector given by P, =P, = ab, we can use Qg to reduce it to
Z€ro0.
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