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Abstract

Recent statistical constitutive models of suspensions of neutrally buoyant, non-Brownian, non-
colloidal, solid spheres in Newtonian fluids suggest that the particles nijgrate in response to
gradients in "suspension temperature," defined as the average kinetic energy contained in the
particle velocity fluctuations. These models have not yet been compared systematically with
experimental data.

In addition, the "temperature" models assume isotropic particle velocity fluctuations, since the
"suspension temperature" is given as a scalar, in analogy to molecular systems. However, highly
anisotropic particle velocity fluctuations have been observed in settling suspensions, which
suggests that a "suspension temperature" tensor would be more realistic.

We used laser Doppler velocimetry (LDV) to make a set of experimental observations of particle
velocity fluctuations arising from inter-particle collisions in a concentrated non-colloidal
suspension under nearly homogeneous shear flow in a narrow-gap concentric cylinder Couette
device. We compared the relative sizes of the fluctuating velocity components and observed the
variation of each component with particle volume fraction, shear rate, and radial position. In
addition, we assessed the implications of these observations for suspension temperature models.

The data indicate that the suspension temperature is anisotropic. The flow direction component is
overwhelmingly the largest at every concentration and shear rate, followed by the neutral and then
the gradient components. Meanwhile, each fluctuating velocity component demonstrates a distinct
variation with the shear rate and with the particle volume fraction, but only slight variation with
radial position, over the region of the flow accessible to measurement.

Comparison between model predictions and measured shear rate and particle volume fraction
profiles shows that several models capture the measured profiles qualitatively but not
quantitatively, with better agreement for moderately concentrated suspensions than for highly
concentrated suspensions. Also, comparison between predicted scalar suspension temperature
profiles and the sum of the measured velocity fluctuation components demonstrates that most of the
models underpredict the sum of the temperature components by a large factor. Finally, comparison
among the models shows that the models are quite sensitive to the choice of transport coefficients
that are functions of the particle volume fraction.
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Thesis Supervisor: Robert A. Brown
Title: Professor of Chemical Engineering



Acknowledgements

I want to express my deep gratitude to so many people for helping me with this project. First, I
want to thank my advisors Bob Armstrong and Bob Brown, particularly Bob Armstrong, for his
dedication and encouragement throughout the long years when it seemed like nothing was ever
working and for always being able to ask the essential question that clarified a confusing situation.
My thesis committee, Professors Howard Brenner, Gareth McKinley, and Ken Smith, also
contributed valuable input to the project.

None of the experiments in this thesis would have been possible without the help of Peter Morley
and Mark of the MIT Central Machine Shop, who expertly advised me on the design of the Couette
flow cell and did a wonderful job in building it. The design process was made a lot easier for me
thanks to the generosity of Professors Howard Stone (Division of Engineering and Applied
Sciences, Harvard University) and Sameer Madanshetty (Mechanical and Aerospace Engineering
Department, Boston University) for lending me a Couette cell which became the prototype for the
one I designed and which I used for preliminary experiments.

In addition, I want to credit the LDV/suspension colleagues whose expertise in these difficult
experimental methods helped me get started on the project: Anubhav Tripathi, Mike Lyon, Anat
Shauly, Bir Kapoor, and Gokul Krishnan. Their advice concerning particle procurement, fluid
recipes, refractive index matching, and LDV data interpretation was critical in designing almost
every aspect of the experiments. Also, their friendliness and willingness to share information (and
commiseration!) really impressed me.

I want to thank my fellow members of the Bob & Bob group for an unforgettable grad school
experience. Thanks to: Dave, Fred, Gokul, Radha, Garrett, Mark, Indranil, Jason, Tatsuo, Talid,
Howard, Zihong, Maria, Tony, Yong, Alice, Todd, Lars, and everyone else I overlapped with, for
all the good ideas and fun times. Meanwhile, it was a joy to work with the ChemE support staff,
especially Arline, Elaine, Janet, Linda, Emmi, Patsy and Carol. Also, my terrific roommates
Ginger and Daniel and my other friends at MIT, in Boston and elsewhere have made my time here
very happy.

Two people mentioned here deserve extra special thanks, and they are Professor Gareth McKinley
and my former labmate David Lee. Gareth advised me on many of the tricky experimental issues in
the project and was a mentor to me throughout grad school (and even before, when I worked in his
lab as an undergrad). Dave is a fantastic lab partner and friend, always thinking of good solutions
to problems in the lab or in life, and I learned so much from him. My current and former labmates
Fred and Gokul also made the lab a pleasant home and gave me tons of moral support.

Finally, I want to give the most thanks of all to my parents and my sister Alice, who are the most
wonderful family I could ever have. They even contributed scientifically to this project, and always
gave me love and encouragement the whole way through. I could not have gotten to this point
without you guys, and my thesis is dedicated to you!



Table of Contents

List of Figures ......................................................................... 9

List of Tables ............................................................................. 16

1. Introduction................................................................................17

1.1 M otivation ...........................................................................
1.2 Particle M igration .................................................................. 19
1.3 Experimental Observations of Particle Migration ....................... 20
1.4 Direct simulations: Stokesian Dynamics ................................... 26
1.5 Constitutive Models ............................................................... 28
1.6 Thesis Goals ................................... 29

2. L iterature R eview ...................................................................... 31

2.1 Bulk Rheological Properties of a Concentrated Suspension
of Monodisperse Spheres ............ ......... ............ 31

2.2 Fine Scale Effects in a Concentrated Suspension of
Monodisperse Spheres .............................. 34

2.3 Direct simulations: Stokesian Dynamics and Related Methods .... 36
2.4 Constitutive Modeling . .......................................................... 38

2.4.1 Diffusive Flux Model
2.4.1.1 Rationale for Diffusive Fluxes
2.4.1.2 Equations of the Model of Phillips et al. (1992)
2.4.1.3 Comparison with Experimental Data

2.4.2 The Suspension Temperature Statistical Mechanical Model:
Jenkins and McTigue

2.4.2.1 Statistical Mechanics Applied to Granular Flows
2.4.2.2 Jenkins and McTigue (1990): Suspension Flow
2.4.2.3 The Nott and Brady Model (1994): Statistical -

Phenomenological Hybrid
2.4.2.4 Comparison with Experimental Data

2.5 Main Experimental Techniques Used for Concentrated
Non-Colloidal Suspensions ...................................................... 50

2.6 Recent Experiments Involving LDV, Concentrated, Non-Colloidal
Suspensions, and Particle Velocity Fluctuations ............. 51

2.7 Objectives of This Study ............ .......... .......... ... 53

3. Experimental Method..................................................................54

3.1 Laser Doppler Velocimetry ...... .................................... 54
3.1.1 Basic principles
3.1.2 Dantec Fiberflow LDV System
3.1.3 Operation of the Burst Spectrum Analyzer
3.1.4 Assessment of the LDV System for Suspension Studies

3.2 Materials . ............................................................................... 65
3.2.1 Particle and Fluid Description
3.2.2 Density Matching Procedure
3.2.3 Refractive Index Matching Procedure
3.2.4 Scattering Sites are Bubbles in Particles

5



3.3 Couette Flow Cell Design ..................................................... 73
3.3.1 Dimensions
3.3.2 Parts and Materials
3.3.3 Important Design Features
3.3.4 Alignment of the Couette Device
3.3.5 Timing the Inner Cylinder Rotation Rate

3.4 Measurement Procedures ..................................................... 82
3.4.1 Suspension Loading Procedure
3.4.2 Steady State Measurements
3.4.3 Measurement of Three Velocity Components
3.4.4 Verification that the Number of Bursts Collected is Statistical
3.4.5 Handling Irregularities in the LDV Velocity Distributions

3.5 Data Reduction Method ............................................................ 91
3.5.1 Shear Rate
3.5.2 Concentration
3.5.3 Particle Velocity Fluctuations

3.5.3.1 Fluctuations Arising from Mean Particle Rotation
3.5.3.2 Particle Rotational Fluctuations are Negligible
3.5.3.3 Fluctuations Arising from LDV Noise
3.5.3.4 Fluctuations Arising from Couette Apparatus Vibrations
3.5.3.5 Separating Dilute and Concentrated Suspension Effects
3.5.3.6 Creating Equal Conditions for Measurements of

the Three Fluctuation Components
3.5.3.7 Probable Sources of Zero Peaks in Tangential Velocity

Measurements
3.5.3.8 Minimizing Wall Effects
3.5.3.9 Uncertainty in the Suspension Temperature

3.6 Testing the Limits of the Techniques . ....................................... 106
3.7 Video Imaging Apparatus and Procedures .. ....... 108

4. D ata ......................................... ....................................................

4.1 Particle Trajectories from Video Imaging .. ................................ 11
4.2 LDV Experiments: Validation of Couette Flow ......................... 116

4.2.1 Validation of Couette Flow with Seeded Newtonian Fluid
4.2.2 2% Concentrated Suspension
4.2.3 One-Dimensional Flow for Concentrated Suspensions

4.3 Physical Observations of the Mean and Fluctuating
Velocity from LDV . ..................................... 133

4.3.1 Mean Velocity Profile: Calculations of the Shear Rate and
Concentration Profiles

4.3.2 Particle Velocity Fluctuations
4.3.2.1 Velocity Fluctuation Components at Fixed Rotation Speed
4.3.2.2 Dependence of Collisional Velocity Fluctuation

Components on Radial Position
4.3.2.3 Dependence of Collisional Velocity Fluctuation

Components on {, Particle Volume Fraction
4.3.2.4 Dependence of Collisional Velocity Fluctuation

Components on Shear Rate

5. Modeling ........................................ 161

5.1 Catalog of Models: Similarities and Differences ................... 161

6



5.2 The Diffusive Flux Model:Phillips et al. (1992) . .................. 163
5.2.1 General Form of the Equations
5.2.2 One-Dimensional, Steady Flow
5.2.3 Analytical Solution

5.3 Suspension Temperature Models: Solving the Equations of the
Nott and Brady Model (1994) ........................................ 167

5.3.1 General Form of the Equations
5.3.2 Steady Flow
5.3.3 One-Dimensional, Steady Flow
5.3.4 Combining the Equations

5.4 Suspension Temperature Models: The Morris and
Brady M odel . .................................................... 177

5.5 Suspension Temperature Models: The Jenkins and McTigue
M odel . ......................................................................... 178

5.6 The Buyevich Model: Phenomenological Temperature
M odel .......................................................................... 179

5.7 Summary ..................................................... 180

6. Discussion ........Dis. .......... .. 1...................85

6.1 Macroscopic properties. ........... .............. ................................ 185
6.1.1 Comparison Between Observed Shear Rate Profiles and

Model Predictions
6.1.2 Comparison Between Corresponding Concentration Profiles

and Model Predictions
6.2 Comparison Between Observed Suspension Temperature and

Model Predictions ........................................................ 194
6.2.1 Observed Suspension Temperature is Anisotropic
6.2.2 Comparison of Predicted and Measured Profiles of the

Sum of the Suspension Temperature Components
6.2.3 Comparison of Predicted and Measured Variation of the

Sum of the Suspension Temperature Components
with Particle Volume Fraction

6.2.4 Comparison of Predicted and Measured Scaling of the
Suspension Temperature Components in Shear Rate

6.2.5 Comparison with the Anisotropic Buyevich Model
6.3 Implications of Observations for Suspension Simulations ........ 212
6.4 Comparison with Other LDV Measurements of Particle Velocity

Fluctuations in Shear Flows........................................ 212

7. Anisotropic Suspension Temperature Model ......................... 215

7.1 What is the Structure of the Suspension Temperature
Tensor T ? ................................................. 215

7.2 Dependence of Tensor T on the Rate of Strain Tensor:
Comparison with the Anisotropic Buyevich iiodel ......... 216

7.3 Relating the Experimental Measurements to the Invariants
of Tensor T .................................................... ........... 217

7.4 Incorporating the Measured Anisotropy of the Suspension
Temperature into the Models' Constitutive Relations ...... 221

7.4.1 Incorporating the Measured Suspension Temperature
Anisotropy into the Statistics for Calculating
Averaged Properties

7



7.4. 1.1 Jenkins and McTigue's Derivation of the
Stress Tensor

7.4.1.2 Modification of the Stress Tensor Derivation to Include
Anisotropic Temperature

7.4.2 Including Rotational Dynamics of Particle Interactions
7.4.2.1 Estimate of the Relative Sizes of the Suspension

Temperature Components
7.4.2.2 Rate of Suspending Fluid Working on a Doublet

7.4.3 Combining the Anisotropic Stress and Doublet Rate of
Working into the Nott and Brady Model

7.4.4 Comparison of the Anisotropically Modified Nott and Brady
Model Predictions with the Original Model Predictions
and the Experimental Data

8. Conclusions .............................................. 241

R eferences ......... .................................................................. 246

8



List of Figures
Figure 1.1 Dimensionless steady-state mean suspension velocity profiles measured by

Karnis et al. (1966) ..................................................................... 21

Figure 1.2 NMR images recorded by Hampton et al. (1997) of the particle volume fraction
(4) profile for pressure-driven suspension flow in a circular pipe .................. 23

Figure 1.3 Mean velocity (a), particle volume fraction (b), and velocity fluctuation
(flow direction) (c) profiles measured by Lyon and Leal (1998) with
laser Doppler velocimetry ............. ......................................... 24

Figure 1.4 NMR imaging of wide-gap Couette flow by Abbott et al. (1991)
for a 50% concentrated suspension of 675 gm diameter spheres .................... 27

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Particle crossing "fringe" planes of two intersecting beams .......................... 58

"Burst" Doppler signal: oscillates at Doppler frequency,
amplitude modulated by Gaussian beam intensity profile ............................. 58

Schematic view of LDV system ................................................... 60

Filtering of the Doppler signal by the Burst Spectrum Analyzer into the
envelope and pedestal . ................................................. 63

Schematic view of refractive index matching apparatus ............................... 70

Plot of data sets from three refractive index matching runs ........................... 71

Figure 3.7 Optical micrographs of Lucite 47G particles, 180-212 gm diameter,
revealing bubbles of monomer inside the particles which act as
scattering sites ................................................ 72

Figure 3.8 a) Schematic side view of Couette flow apparatus ........................................ 75

Figure 3.8 b) Top view of Couette flow cell ................................................ 76

Figure 3.9 Orientation of the LDV beams for measuring each velocity component
in Couette flow ..................................... 85

Figure 3.10 Repeated measurements in a 50% concentrated suspension with varying
numbers of bursts collected ............................ 88

Figure 3.11 Sketch of irregularities found in LDV velocity distributions ......................... 89

Figure 3.12 Baseline measurement for the tangential velocity fluctuation from a 2%
concentrated suspension. Beams pass through a 3mm path length cuvette
filled with 30%, 40% or 50% concentrated suspension ............................. 97

Figure 3.13 Expected trend of the variation of the measured particle velocity fluctuation
with particle volume fraction, at constant shear rate ................................. 101

9

1



Figure 3.14 Measured vertical velocity fluctuation plotted against dimensionless radial
position. These data demonstrate the wall effects on the measured vertical
velocity fluctuation at bulk particle concentrations of 2%, 10%, 30% and 50%,
and an average shear rate = 10 s-I (10 rpm) .......................................... 104

Figure 3.15 Schematic view of video imaging apparatus.......................................... 110

Figure 4.1 Video images of particle trajectories in a dilute 2% concentrated suspension (a)
and in a 50% concentrated suspension (b) ............................................ 113

Figure 4.2 Video images of an "in-plane" collision between two particles in a 50%
concentrated suspension................................................................114

Figure 4.3 Video images of an "out-of-plane" collision between two particles in a 50%
concentrated suspension................................................................115

Figure 4.4 Two measurements of the mean tangential velocity profile for the Newtonian
suspending liquid seeded with silicon carbide 0.75 gm diameter seeding
particles, at an average shear rate = 10 s - (10 rpm). The measured results are
compared with the theoretical velocity profile for a Newtonian fluid ............. 118

Figure 4.5 Mean vertical velocity measured at the 0 ° location as a function of vertical
(axial) position, an average shear rate = 10 s -l (10 rpm), and constant radius
r / Ro = 0.954. Results are for the Newtonian suspending liquid seeded with
0.75 jgm diameter silicon carbide particles . ................................ 19

Figure 4.6 Mean (a) and fluctuating (b) vertical velocity in the Newtonian suspending
liquid seeded with 0.75 gim diameter silicon carbide particles, measured at
different azimuthal positions around the flow ..................................... 120

Figure 4.7 Mean velocities measured in Newtonian suspending liquid seeded with 0.75
jgm silicon carbide particles, average shear rate = 10 s-l (10 rpm).
a) Mean vertical velocity measured profile at the 0 ° location, height = -24 mm,

constant LDV parameters
b) Mean radial velocity measured at the 90 ° location, constant LDV parameters,

two independent runs .................................... 121

Figure 4.8 Mean tangential velocity profile for the 2% concentrated suspension of Lucite
47G particles compared with the Newtonian suspending liquid seeded with
silicon carbide particles and measured twice ........................................ 122

Figure 4.9 Mean vertical (a) and radial (b) velocity profiles measured at the
+ 90 ° locations in a 2% concentrated suspension of Lucite 47G particles in the
suspending liquid, at an average shear rate = 10 s - l (10 rpm) .................... 123

Figure 4.10 Comparing mean tangential velocity profiles for average shear rates = 5 s-1
(5 rpm) and 10 s - l (10 rpm) for a 2% concentrated suspension .................. 124

10



Figure 4.11

Figure 4.12

Figure 4.13

Figure 4.14

Figure 4.15

Figure 4.16

Figure 4.17

Figure 4.18

Figure 4.19

Figure 4.20

Figure 4.21

Figure 4.22

Figure 4.23

Figure 4.24

Figure 4.25

Vertical velocity fluctuation measured at 900 and -90 ° locations, and at 0°

location with varying path length cuvettes, average shear rate = 10 s-1 (10
rpm) ................................................................. 126

Three measurements of the mean tangential velocity profile at the 0° location in
a 50% concentrated suspension, average shear rate = 10 s-1 (10 rpm) .......... 127

Mean vertical (a) and radial (b) velocities measured at the + 90° locations in the
50% concentrated suspension, at an average shear rate = 10 s-l (10 rpm) ...... 128

Mean vertical (a) and radial (b) velocities measured at the + 90 ° locations in the
40% concentrated suspension, average shear rate = 10 s-1 (10 rpm) ............ 129

Mean vertical (a) and radial (b) velocities measured at the + 900 locations in the
30% concentrated suspension, average shear rate = 10 s-1 (10 rpm) ............ 130

Mean vertical velocity as a function of height (z) in the 50% concentrated
suspension, average shear rate = 20 s-1 (20 rpm), fixed radial position r/Ro =
0.964, constant LDV parameters .................................................... 131

Mean tangential velocity profile for the 10% concentrated suspension compared
with Newtonian theory at an average shear rate = 10 s-1 (10 rpm) .............. 134

Mean tangential velocity profile for the 30% concentrated suspension compared
with Newtonian theory at an average shear rate = 10 s-l (10 rpm) .............. 135

Mean tangential velocity profile for the 40% concentrated suspension compared
with Newtonian theory at an average shear rate = 10 s-l (10 rpm) .............. 136

Mean tangential velocity profile for the 50% concentrated suspension compared
with Newtonian theory at an average shear rate = 10 s-1 (10 rpm) .............. 137

Comparison of the mean tangential velocity profiles for 30%, 40% and 50%
concentrated suspensions with Newtonian theory, at an average shear rate = 10
s-1 (10 rpm) ..................................................... 138

Shear rate profiles calculated from global (Newtonian and 2%,10%
concentrated suspensions) or three-region (30%, 40%, 50% concentrated
suspensions) fits of tangential velocity profile, average shear rate = 10 s- (10
rpm )...................................................................................... 139

Concentration profiles for 10, 30, 40, 50% concentrated suspensions,
calculated from shear rate profiles (figure 4.22) and Krieger relative viscosity
function.................................................................................. 140

Tangential velocity fluctuation for the 30%, 40% and 50% concentrated
suspensions compared with the 2% concentrated suspension baseline, plotted
against local shear rate ....................................................... 143

Radial velocity fluctuation, for various particle volume fractions (2%, 10%,
30%, 40% and 50% concentrated suspensions), measured at the + 90 °

11



locations, plotted against local shear rate. Constant average shear rate = 10 s-l
(10 rpm) ................................................................................. 144

Figure 4.26

Figure 4.27

Figure 4.28

Figure 4.29

Figure 4.30

Figure 4.31

Figure 4.32

Figure 4.33

Figure 4.34

Figure 4.35

Vertical velocity fluctuation, for various particle volume fractions (2%, 10%,
30%, 40% and 50% concentrated suspensions), measured at the + 90 °

locations, plotted against local shear rate. Constant average shear rate = 10 s-l
(10 rpm) ....... ........................................................................... 145

Tangential velocity fluctuation for the 30%, 40% and 50% concentrated
suspensions compared with the 2% concentrated suspension baseline, plotted
against dimensionless radial position. The average shear rate = 10 s-l (10
rpm), and the LDV beams pass through a suspension-filled 3 mm path length
cuvette.................................................................................. 146

Radial velocity fluctuation, for various particle volume fractions (2%, 10%,
30%, 40% and 50% concentrated suspensions), measured at the + 90 °

locations, plotted against dimensionless radial position. Constant average shear
rate = 10 s - l (10 rpm) ..................................................... 147

Vertical velocity fluctuation, for various particle volume fractions (2%, 10%,
30%, 40% and 50% concentrated suspensions), measured at the + 900
locations, plotted against dimensionless radial position. Constant average shear
rate = 10 s - l (10 rpm) ..................................................... 148

Tangential velocity fluctuation, for various particle volume fractions (30%,
40% and 50% concentrated suspensions), measured at the 0 ° location, with the
LDV beams passing through a suspension-filled 3 mm path length cuvette, at a
constant local shear rate of 8.7 s -1 and constant average shear rate of 10 s- 1
(10 rpm) ................................................................... 150

Radial velocity fluctuation, for various particle volume fractions (10%, 30%,
40% and 50% concentrated suspensions), measured at the + 90 ° locations, at a
constant local shear rate of 8.7 s-l and constant average shear rate of 10 s-1
(10 rpm ) ................................................................................. 151

Vertical velocity fluctuation, for various particle volume fractions (10%, 30%,
40% and 50% concentrated suspensions), measured at the + 90 ° locations, at a
constant local shear rate of 8.7 s - l and constant average shear rate of 10 s- l
(10 rpm) ..................................................... 152

Tangential collisional velocity fluctuation for the 30%, 40% and 50%
concentrated suspensions, plotted against local shear rate. These data were
obtained at a small number of adjacent radial positions while the local shear rate
was varied by changing the inner cylinder rotation speed ........................ 154

Radial collisional velocity fluctuation for the 30%, 40% and 50% concentrated
suspensions, measured at the + 90 ° locations, plotted against local shear rate.
These data were obtained at a small number of adjacent radial positions while
the local shear rate was varied by changing the inner cylinder rotation speed.. 155

Vertical collisional velocity fluctuation for the 30%, 40% and 50%
concentrated suspensions, measured at the + 90 ° locations, plotted against local

12



shear rate. These data were obtained at two adjacent radial positions (r/Ro =
0.986 and 0.987) while the local shear rate was varied by changing the inner
cylinder rotation speed.................................................................156

Figure 4.36

Figure 4.37

Figure 4.38

Tangential collisional velocity fluctuation for the 30% concentrated suspension,
plotted against local shear rate. These data were obtained at a small number of
adjacent radial positions while the local shear rate was varied by changing the
inner cylinder rotation speed.......................................................... 158

Tangential collisional velocity fluctuation for the 40% concentrated suspension,
plotted against local shear rate. These data were obtained at a small number of
adjacent radial positions while the local shear rate was varied by changing the
inner cylinder rotation speed ................................... .................. 159

Tangential collisional velocity fluctuation for the 50% concentrated suspension,
plotted against local shear rate. These data were obtained at a small number of
adjacent radial positions while the local shear rate was varied by changing the
inner cylinder rotation speed ....................................................... 160

Figure 5.1 Comparison of the variation of the suspension temperature with particle
concentration in a homogeneous shear flow for the suspension models
considered in this thesis ................................. 183

Comparison between model predictions and experimental measurements of the
shear rate profile across the Couette gap, 30% particle concentration, average
shear rate = 10s-1 (10 rpm) .......................................................... 188

Comparison between model predictions and experimental measurements of the
shear rate profile across the Couette gap, 40% particle concentration, average
shear rate = 10s-1 (10 rpm) .................................... 189

Comparison between model predictions and experimental measurements of the
shear rate profile across the Couette gap, 50% particle concentration, average
shear rate = 10s-1 (10 rpm) .............. ...................... 190

Comparison between model predictions and experimental measurements of the
particle volume fraction profile across the Couette gap, 30% particle
concentration, calculated from data with average shear rate = l0s-1 (10 rpm).. 191

Comparison between model predictions and experimental measurements of the
particle volume fraction profile across the Couette gap, 40% particle
concentration, calculated from data with average shear rate = 10s-1
(10 rpm ) ......... ......... ......... ......... .............................................. 192

Comparison between model predictions and experimental measurements of the
particle volume fraction profile across the Couette gap, 50% particle
concentration, calculated from data with average shear rate = 10s-1
(10 rpm ) . ............................................................... 193

13

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6



Figure 6.7 Comparison between model predictions of the scalar suspension temperature
profile and experimental measurements of the tangential (flow, or 1 direction)
suspension temperature component profile across the Couette gap, 30%
particle concentration, average shear rate = 10s-1 (10 rpm)........................196

Figure 6.8 Comparison between model predictions of the scalar suspension temperature
profile and experimental measurements of the tangential (flow, or 1 direction)
suspension temperature component profile across the Couette gap, 40%
particle concentration, average shear rate = 10s-1 (10 rpm) ....................... 197

Figure 6.9

Figure 6.10

Figure 6.11

Figure 6.12

Figure 6.13

Figure 6.14

Figure 6.15

Figure 6.16

Comparison between model predictions of the scalar suspension temperature
profile and experimental measurements of the tangential (flow, or 1 direction)
suspension temperature component profile across the Couette gap, 50%
particle concentration, average shear rate = lOs-1 (10 rpm) ....................... 198

Comparison between model predictions of the scalar suspension temperature
profile and experimental measurements of the sum of the radial (gradient, or 2
direction) and vertical (neutral, or 3 direction) suspension temperature
components profile across the Couette gap, 30% particle concentration,
average shear rate = lOs-1 (10 rpm) .................................................. 200

Comparison between model predictions of the scalar suspension temperature
profile and experimental measurements of the sum of the radial (gradient, or 2
direction) and vertical (neutral, or 3 direction) suspension temperature
components profile across the Couette gap, 40% particle concentration,
average shear rate = 10s-1 (10 rpm) .................................................. 201

Comparison between model predictions of the scalar suspension temperature
profile and experimental measurements of the sum of the radial (gradient, or 2
direction) and vertical (neutral, or 3 direction) suspension temperature
components profile across the Couette gap, 50% particle concentration,
average shear rate = 10s-1 (10 rpm) .................................................. 202

Comparison between the dependence on particle volume fraction of model
predictions of the scalar suspension temperature and experimental
measurements of the tangential (flow, or 1 direction) suspension temperature
component, average shear rate = 10 s-1 (10 rpm), local shear rate = 8.7 s -1 .... 203

Comparison between the dependence on particle volume fraction of model
predictions of the scalar suspension temperature and experimental measurements of
the sum of the radial (gradient, or 2 direction) and vertical (neutral, or 3 direction)
suspension temperature components, average shear rate = 10 s-1 (10 rpm), local
shear rate = 8.7 s -1 ...... 204............................204

Plots of the estimated dependence of the suspension temperature on particle volume
fraction .................................................... 207

Dependence of the flow direction velocity fluctuation on particle volume fraction.
a) Reproduced from Nicolai et al. (1995). Vertical velocity fluctuation in a settling
suspension, normalized by mean settling velocity. b) Data from this study ....208

14



Figure 6.17 Vertical collisional velocity fluctuation (or suspension temperature component)
for the 30%, 40% and 50% concentrated suspensions, measured at the + 90 °

locations, plotted against local shear rate ............................................. 209

Figure 7.1 Definition of angles (p and O describing the orientation of a particle doublet in the
reference frame of the center of mass of the two particles .......................... 232

Figure 7.2 Comparison of the anisotropically modified Nott and Brady model predictions
with those of the original Nott and Brady model (1994), for a 50% particle
volume fraction suspension at an average shear rate of 10 s-I (10 rpm).
a) Shear rate profile
b) Scalar suspension temperature profile ................................. 239

Figure 7.3 Comparison of the anisotropically modified Nott and Brady model predictions with
those of the original Nott and Brady model (1994) and with experimental
measurements of the tangential (flow, or 1 direction) suspension temperature
component, for a 50% particle volume fraction suspension at an average shear rate
of 10 s -1 (10 rpm) .............................. 240

15



List of Tables

Table 4.1 The set of experiments performed on suspensions ............................ 132

Table 5.1 Correspondence of the models' nomenclature ................................. 162

Table 5.2 Model coefficients that are functions of particle volume fraction. These are
used in computing model predictions to compare with experimental data in
Chapter 6 ........................................................................... 184

16



Chapter 1

Introduction

1.1 Motivation

Suspensions, or fluids with solid particles of comparable density mixed into them,

surround us in our daily lives. These mixtures appear in industrial processes for manufacturing

such familiar and essential items as concrete, molded plastics, ceramic superconductors, packaging

for computer chips, paper pulp, chromatography beds, and chocolate. Sand slurries, a type of

suspension, also are used in the oil drilling process. Highly filled suspensions also are used in

exotic applications such as solid propellants for rocket engines; solid propellants are also used as

the inflation mechanism for emergency air bags in automobiles.

An even larger group of industrially relevant substances is granular materials, such as

powders, which alone account for 40% of the total "value added" by the chemical industry in the

U.S. (Ennis et al., 1994) Thus, any development in granular flow processing has a large industrial

impact. Granular materials are also extremely abrasive to piping systems set up to transport them.

A smoother way to transport these materials is to suspend them in liquids which lubricate their

contacts with pipe walls and therefore reduce wear on machinery. In this way, suspensions may

play a role in granular material processing. Finally, suspensions are critical in biomedical

engineering, since the most important biological fluid of all, blood, is clearly a mixture of liquid

blood plasma and solid red and white blood cells.

Although people come into frequent contact with suspensions and depend on them to

satisfy many needs, the dynamics of these mixtures is poorly understood. Current industrial

processes involving flowing suspensions typically operate at rates of 40 to 50% of their designed

efficiency. In addition, these flow processes often experience long startup times and frequent

problems simply because the flow and stress properties of the materials involved are not known

and thus cannot be controlled in order to optimize the efficiency and safety of the processes
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(Knowlton et al., 1994). Economic losses, waste, and safety hazards result from this ignorance. In

order to improve the processing of particulate materials and suspensions, it is necessary to

understand the fluid dynamics of suspensions and be able to predict suspension flows as a function

of flow conditions. Although the solid particles in the suspension come in different shapes and

sizes, different fluids may exhibit different flow properties, and design parameters may vary

widely between processes, there is still some basic physics common to all suspension flows. The

goal of fundamental research in suspension fluid mechanics is to elucidate these common features.

From an abstract perspective, the study of suspension flow is a "many-body problem,"

which involves extracting essential information from a system with such a large number of

particles that the system's complete dynamics are too difficult to compute. Although it is possible

to know a lot of detailed information about the microscopic properties of the system, such as the

trajectory of an individual particle, the quantities which are relevant to a human observer are the

averaged, macroscopic properties of the flow. Statistical mechanics and other systematic averaging

techniques can be used in order to translate incomplete information about the system into

predictions about its large-scale average behavior. The rheological properties which distinguish a

suspension from a familiar Newtonian fluid, such as water, arise because a suspension is a

complex system of this type, where the microstructure affects the macroscopic properties.

The suspensions of interest in this research are concentrated collections of neutrally

buoyant, monodisperse spherical particles in highly viscous Newtonian fluids. These suspensions

are model systems in which the hydrodynamic interactions of identical, isotropic particles are

isolated. Neutral buoyancy means that the densities of the particles and fluid are equal and thus

settling of the particles due to gravity does not occur. Suspensions which are concentrated contain

an average solid volume fraction f = 0.4 or larger, fairly close to the maximum hexagonal close-

packing density for monodisperse spheres Chcp = 0.74 (Phillips et al., 1992; Koh, 1991).

Concentrated suspensions are also the type most frequently encountered in industry and biology.

In addition, the discussion here is focused on particles that are large enough, with diameters on the

order of 100 gm or larger, so that Brownian and colloidal interactions may be neglected. Brownian
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interactions arise from thermal fluctuations, and colloidal forces from intermolecular attraction. At

the same time, the particles are small enough so that inertial effects may be neglected when these

particles move in the surrounding viscous fluid phase. This assumption requires that the Reynolds

number based on particle size is low.

Since the particles are relatively large and are in close contact, it is assumed that the main

interactions experienced by the particles are binary interactions with other particles. A

complication, though, is that the fluid squeezed between two particles during an inter-particle

interaction affects the dynamics of the interaction. Microscopically, the fluid phase is made up of

discrete molecules which collide with the large particles and with each other. However, since the

particle length scale is large enough to allow the fluid to be treated as a continuum, the net effect of

all collisions involving tiny fluid molecules in the gap between two large particles can be

approximated as a lubrication hydrodynamic force on the particles, acting to separate them.

Successful understanding of a suspension requires the development of conservation

equations and constitutive relations that describe the average velocities and densities of the fluid

and solid phases and their coupling to process conditions. Suspensions of inertialess, neutrally

buoyant, monodispersed, non-Brownian and non-colloidal spheres in a Newtonian fluid are the

simplest imaginable and the starting point of this and most analyses. Complications caused by

particle-particle interactions and by particle shape, which lead to internal degrees of freedom, can

be added once a framework exists for the simple isotropic case.

1.2 Particle Migration

Particle migration is a phenomenon that plagues many industrial processes involving flows

of concentrated suspensions in which the quality of the product depends on the uniformity of

particle distribution in the material. For example, an initially well-mixed suspension flowing in a

pipe typically reaches a steady state in which the particles have clustered, or migrated, into the

center of the pipe. Such a rearrangement of the particles can be disastrous in a process where a

homogeneous mixture is required at the end of the pipe, but often cannot be predicted or prevented
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due to the current lack of understanding of suspension dynamics. A better understanding of particle

migration would have an impact on processing of concrete, ceramics and solid propellants, and

transport of powders.

1.3 Experimental Observations of Particle Migration

Experimental observations of particle migration in the laboratory motivate modeling, in

order to explain this counterintuitive de-mixing behavior. All these experiments were performed in

simple flow geometries on model suspensions of non-colloidal, monodisperse spheres suspended

in viscous Newtonian liquids. The shearing flow geometries discussed below include pressure-

driven flow in a circular pipe, pressure-driven flow in a rectangular channel, narrow-gap annular

Couette flow, and wide-gap annular Couette flow. In each case, the particles were initially

uniformly distributed in the flow, but at a later time, when the flow reached a steady state, the

particles had rearranged such that the resulting concentration profile was nonuniform.

The first quantitative experiments involving pressure-driven flow of concentrated

suspensions through tubes at low Reynolds number were performed by Karnis, Goldsmith, and

Mason (1966). These early researchers observed a velocity profile in the flow direction which was

"blunted" in the center compared with the parabolic velocity profile obtained for a Newtonian fluid

with the same average material properties, such as density and viscosity, and flow rate, resulting in

plug flow for a core region of particles near the tube center. A set of velocity profiles measured by

Karnis et al. is shown in figure 1.1 which contrasts the velocity profiles of dilute and concentrated

suspensions.

These velocity profiles suggest that the particles had drifted into a nonuniform

configuration in response to the inhomogeneous shear rate, or velocity gradient, in the flow.

Specifically, particles moved away from regions near the tube wall where the local shear rate was

high to regions near the tube center where the local shear rate was low. However, in their

experiments, Karnis et al. did not observe any of the particle migration they suspected and

eventually attributed the blunted velocity profiles they saw to wall effects. It was not until Leighton
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Figure 1.1 Dimensionless steady-state mean suspension velocity profiles
measured by Karnis et al. (1966) for three values of particle concentration. The
velocity profiles shown become increasingly blunted with increasing particle
concentration. Other flow parameters are: the tube radius RO=0.4 cm, the ratio of
tube radius to particle radius Ro / a = 36, and the volumetric flow rate Q=0.0356
cm 3/s. The solid lines are the best fit through the experimental points. The =
0.14 (open circles) curve is parabolic, and accordingly indicates the velocity
profile for a Newtonian fluid in this geometry.
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and Acrivos (1987b) that quantitative evidence supporting the idea of particle migration was

presented, and a mechanism for shear-induced particle migration was proposed.

Later, Hampton et al. (1997) used NMR imaging to measure the velocity and concentration

profiles of particles for pressure-driven flow in circular pipes. This work yielded direct observation

of nonuniform concentration profiles and simultaneous blunted velocity profiles, for bulk particle

volume fractions ranging from 0.1 to 0.45. Large peaks in particle concentration were observed at

the center of the tube for particle volume fractions 0.2 to 0.45. This evidence, shown in figure 1.2,

finally confirmed the idea that particle migration was what Karnis et al. (1966) observed.

Koh, Hookham, and Leal (1994) investigated pressure-driven flow in a rectangular channel

by using laser Doppler velocimetry (LDV). These researchers adapted LDV so that they were able

to measure concentration as well as velocity profiles, by recording the time between the Doppler

scattering signals from individual particles as well as the frequency of the signals, which yielded

the velocity. Like Hampton et al., (1997) they observed not only a blunted velocity profile, but

also a nonuniform particle concentration profile in the cross-channel direction with a definite peak

at the channel center indicating particle aggregation there. For the most concentrated suspensions,

with average solid volume fraction of 0.3, the center-line velocities were as small as half the

expected values of a Newtonian fluid moving at the same bulk flow rate, and the center-line

concentrations were measured to be as large as six times the concentration values near the wall.

Lyon and Leal (1998) extended these LDV measurements of pressure-driven channel flow

into the concentrated regime, from bulk particle volume fractions of 0.3 to 0.5. They observed

similar particle aggregation at the center line and blunting of the velocity profile, displayed in figure

1.3, and compared their measurements with model predictions for the highly concentrated regime.

In the process of making viscosity measurements in a narrow-gap annular Couette cell,

Gadala-Maria and Acrivos (1980) noticed a decrease in the effective viscosity of a concentrated

suspension after long shearing times. Leighton and Acrivos (1987b) suggested that the apparent

decrease in viscosity is due to the axial migration of particles out of the gap between the two

rotating concentric cylinders and into a stagnant region of suspension below the shearing region of

22



0.6

0.2

0.0

(a)
U. 

0.4

-o-

0.2

0.0

U.
v

0.4

O.Z

0.0

ob

(b)

U.4

.-
0. 2

0.o

(c)
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the apparatus. They proposed a mechanism which explained the existence of particle migration in

the direction normal to the shearing direction and also the rate of migration. The mechanism is

particle diffusion in response to gradients in shear rate and in particle concentration acting through

irreversible interactions between particles. Gradients in shear rate and concentration directly affect

the frequency and dynamics of collisions between particles. Leighton and Acrivos used the

transient shear flow experiments to measure diffusion coefficients for the particle fluxes.

Leighton and Acrivos developed their model of shear-induced axial particle migration by

comparing analytical results with experimental measurements of the torque and shear rate in the

Couette cell. Recent NMR experiments by Chow et al. (1994) in this geometry dramatically

confirm Leighton and Acrivos' theoretical description. By means of NMR imaging, Chow et al.

watch the nonuniform particle concentration profiles develop and show that although the stagnant

region at the bottom of the Couette cell begins at the same particle concentration as the bulk

suspension, after a prolonged period of shearing, the particles in the stagnant region are so closely

packed that solid-like order is induced. Ordered packing allows the particles to reach a higher

density than a random packing configuration.

Another striking example of particle migration is seen in wide-gap annular Couette flow.

Abbott et al. (1991) used NMR imaging to show that particles in an initially homogeneous 50%

solid suspension sheared between two concentric cylinders migrate radially to cluster at the wall of

the outer, stationary cylinder. These researchers reported that the particle volume fraction near the

outer cylinder wall at steady state reached a value near 0.6, close to 0.63, the maximum random

packing fraction for monodisperse spheres. Abbott et al. (1991) also measured the suspension

velocity profile and found that the flow in the densely packed region near the outer, stationary

cylinder, is almost stagnant. Meanwhile, near the center, the particle concentration decreased by at

least 30%. These results indicate that radial migration in the wide-gap annular geometry is a

significant effect.

Abbott et al. also showed that migration is irreversible by switching the direction of

shearing. In addition, the authors checked for the occurrence of axial migration, but found no
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significant evidence of it. This result was not inconsistent with the findings of Leighton and

Acrivos (1987b), however, because the Couette apparatus Abbott et al. (1991) employed was

constructed differently from that of Leighton and Acrivos (1987b), being closed at the bottom end

of the shearing region. Another dramatic effect Abbott et al. observed visually and with NMR was

the formation of distinct microstructures in both monodisperse and bidisperse suspensions. In both

cases, larger spheres formed concentric hexagonal-close-packed circular sheets near the outer wall.

A NMR image of this microstructure formation is shown in figure 1.4.

1.4 Direct simulations: Stokesian Dynamics

In principle, the fluid mechanics of a suspension of spherical particles in a Newtonian fluid

at low Reynolds number can be exactly described. Here, momentum transport in the fluid

surrounding the particles is described by the Stokes flow equations which must be solved subject

to the no-slip boundary condition on the surface of each particle. The fluid mechanical problem is a

many-body problem for the evolution of the particle positions and velocities as a function of time.

These variables are influenced by the fluid through the force balance on each particle.

Stokesian Dynamics (Brady and Bossis, 1988) is the fluid mechanical equivalent of

molecular dynamics for solving the averaged behavior of a collection of particles whose motion is

described in the manner above. However, in practice, the simulation method is limited in its

application because of its large computational cost, due to the long range interactions which result

from the Stokes equations, the complexity of close-range binary particle interactions, and the large

number of particles needed to properly approximate a real system. Consequently, the description of

process flows using Stokesian Dynamics is impractical. As in other areas of non-Newtonian fluid

mechanics (Bird et al., 1987), constitutive equations and conservation laws are needed that

describe the average properties of the fluid during flow: this is the domain of constitutive

modeling.
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rotating the inner cylinder until steady-state was achieved (4000 revolutions). The
dark area near the inner cylinder represents a higher fluid fraction, indicating
that the particles have migrated away from this region of higher shear rate. The
shear-induced structure is easily seen in the steady-state image.
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1.5 Constitutive Models

Currently, two major classes of models for particle migration in concentrated suspensions

exist. The first type consists of phenomenological models, such as those of Leighton and Acrivos

(1987) and Phillips et al. (1992). In these models, particle migration is driven by gradients in shear

rate. The second type is granular flow-based models, such as those of McTigue and Jenkins

(1992) and Nott and Brady (1994). In these models, migration is driven by gradients in

"suspension temperature," defined as the average kinetic energy of particle velocity fluctuations

due to inter-particle collisions.

The phenomenological models were developed to describe particle migration in

inhomogeneous shear flow. The local shear rate, which plays a central role in these models, has

proven difficult to generalize for other kinematics. We are focusing on "temperature" models

because we think they are promising for studying complex flows, where both shearing and

elongation are present. In these flows, the question of how to define the "shear rate" challenges the

phenomenological models, but the "temperature" models may be able to avoid this problem by not

defining the suspension temperature explicitly in terms of any deformation rate quantity.

The concept of granular "temperature" in particulate systems was introduced by Ogawa

(1978), in analogy to the thermal vibration of molecules in a gas. An individual particle's velocity

can be written as the sum of mean and fluctuating parts,

= (y + v' (1.1)

mean fluctuating

where the angle brackets represent an ensemble average. The ensemble average of a quantity is

defined as the average over a large number of simultaneous realizations of the same system. In a

system for which the driving conditions do not change in time, which we assume follows the

ergodic hypothesis, the ensemble average is equivalent to a time average, computed on a time

interval long compared to the rate of fluctuations, but short compared to any macroscopic variation

in the system.

Then, the "temperature" is given specifically as
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T '- vv}) (1.2)

The models express the temperature in this scalar form, which is isotropic, in analogy to molecular

systems. A more general form for the suspension temperature would be a tensor,

T=-'v) (1.3)

which would allow for anisotropic velocity fluctuations. Although the kinetic energy of particle

velocity fluctuations due to inter-particle collisions is presented as a particle migration mechanism

in the McTigue and Jenkins and Nott and Brady models, a complete set of measurements of the

properties of the these velocity fluctuations in a simple, homogeneous flow does not exist, but is

necessary to ensure that the models incorporate a realistic migration mechanism.

1.6 Thesis Goals

The objectives of this thesis are twofold. The first goal is to assemble a set of physical

observations of particle velocity fluctuations arising from inter-particle collisions for a concentrated

suspension in homogeneous shear flow. The second aim is to assess the implications these

observations have on suspension models. We focus our measurements on several properties,

including the relative sizes of the collisional velocity fluctuation components, the dependence of the

fluctuation components on particle volume fraction, the dependence of the fluctuation components

on shear rate, and the variation of the fluctuation components with position.

The suspension temperature models contain the assumption that the suspension temperature

is isotropic, even though anisotropic velocity fluctuations have been observed in suspension

settling (Nicolai et al., 1995). Our goal is to measure all three fluctuating velocity components at

constant shear rate and particle concentration, to determine whether the temperature is anisotropic.

Also, the models involve a particular assumed scaling of the suspension temperature with

shear rate and particle volume fraction. Specifically, all the models considered here scale the

collisional particle velocity fluctuations with the shear rate squared. Each model utilizes a different

scaling for the suspension temperature with particle volume fraction. In this work, we measure the

dependence of each temperature component with shear rate and particle volume fraction.

29



Finally, the suspension temperature models predict the variation of the suspension

temperature with position in an inhomogeneous flow. Our goal is to measure the fluctuating

velocity components as functions of position and compare the results to the models' predictions.

Since the models only predict the behavior of the sum of the temperature components, we will add

the observed temperature components and compare the sum to the models' predictions.

Our approach is to measure these properties in homogeneous shear flow to eliminate

particle migration effects. We have chosen laser Doppler velocimetry (LDV) as the measurement

method due to its fine spatial and temporal resolution, which is necessary for observation of

fluctuations.
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Chapter 2

Literature Review

This chapter contains a summary of observed properties of concentrated suspensions,

principal methods of modeling concentrated suspensions, and major experimental techniques

applied to these systems. The discussion at the end of the chapter places this study in context.

2.1 Bulk Rheological Properties of a Concentrated Suspension of

Monodisperse Spheres

A homogeneous and monodisperse suspension of non-colloidal spheres in a viscous

Newtonian liquid has several well-known macroscopic theological properties: a viscosity that

varies with bulk particle concentration, normal stress differences in steady shear flow that are linear

in shear rate and also vary with bulk particle concentration, viscoelasticity, and apparent slip along

solid surfaces.

Ever since Einstein's landmark publication (1906), researchers have tried to relate the

viscosity of a suspension to the viscosity of the suspending liquid and the particle concentration.

For suspensions of spheres, all models and measurements have reduced to the idea that the

viscosity of the suspension is independent of shear rate and is enhanced over the viscosity of the

suspending liquid by a factor that increases with particle volume fraction. (Frankel and Acrivos,

1967; Batchelor, 1970) The classic work of Krieger (1972) contains the standard empirical

observations of the relative viscosity of concentrated suspensions. In this work, Krieger found that

the suspension viscosity was not shear rate-dependent; the viscosity enhancement factor, or

"relative viscosity," increased with particle volume fraction as

= ( ) = n(1 - if (2.1)

where Omax is the particle volume fraction at which the suspension viscosity becomes infinite.
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Gadala-Maria (1979) measured nonzero normal stress differences in concentrated

suspensions by using parallel-plate rheometry. Gadala-Maria found that the difference between the

normal stress differences (N1 - N2) was positive and scaled approximately linearly with the shear

rate in steady shear flow. The difference (N1 - N2) also increased with particle volume fraction, at

fixed shear rate, for particle volume fractions of 30% to 50%, but Gadala-Maria did not quantify

the dependence. Gadala-Maria's results concurred with those of Bagnold (1954), an early and

innovative suspension experimentalist, who measured a gradient direction normal stress that scaled

linearly with the shear rate in steady shear flow of viscous suspensions. Bagnold (1954), Leighton

(1993) and Phan-Thien (1995) attributed the existence of normal stress differences to anisotropic

local microstructure.

The constitutive model of Phan-Thien (1995) allows the average local suspension

microstructure to be anisotropic and contains an expression for the stress tensor in terms of the

average microstructure. In addition, the evolution of the average microstructure is coupled to the

flow kinematics. Although this model assumes the suspension is homogeneous and does not

account for particle migration, it predicts nonzero normal stress differences, in agreement with

observations. Furthermore, the model is able to approximate qualitatively the experimental results

of Gadala-Maria (1979) in steady shear flow, in that the difference between the predicted normal

stress differences (N1 - N2) is positive, scales approximately linearly with the shear rate, and

increases with particle volume fraction.

Viscoelastic behavior of a non-colloidal suspension was observed by Rigord et al. (1996)

for 20% to 40% particle volume fraction suspensions in an oscillating pressure-driven flow

through capillary tubes. The authors found thinning with increasing oscillation frequency in the

viscous part of the complex viscosity, first appearing at 20% particle volume fraction and

becoming quite noticeable at 40% particle volume fraction. Gondret et al. (1996) found similar

thinning of the viscous response in 35% to 55% particle volume fraction suspensions sheared in

parallel plate and cone and plate rheometers. In addition, Rigord et al. found that the 40%

concentrated suspension had a nonzero storage modulus, indicating viscoelastic behavior, but they
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did not quantify the dependence of the storage modulus on particle volume fraction.

These data agree with the simulation results of Toivakka et al. (1995) for a rectangular

monolayer sheared between planes, where the storage modulus was found to be larger than the

loss modulus at moderate oscillation frequencies and small strains. Toivakka et al. claim that the

cause of this viscoelastic behavior is energy storage in the suspension microstructure as the

suspension is compressed and then decompressed, due to the imposed "hard sphere" repulsive

force between any two particles at contact.

Energy storage in the suspension microstructure is a reasonable concept for small strains

(strain < 1 unit), since energy could be stored in the compression of lubrication layers of fluid

between neighboring particles. However, once particles in the suspension collide and pass each

other in the flow, the stored energy is released and the suspension acts as a purely viscous material

for further shearing in the same direction. If the direction of shearing is reversed, the suspension

stores energy again at small strains until particle collisions mix the microstructure in the new

direction. (Gadala-Maria and Acrivos, 1980). Hence, it is not surprising that viscoelasticity is

observed in small-amplitude oscillatory shear flows and start-up of steady shear flows.

Apparent wall slip, defined as a relative velocity between the wall of a flow and the flowing

material at the wall, is a phenomenon frequently observed in flowing suspensions of non-colloidal

particles. The usual explanation for apparent wall slip is that spherical particles cannot pack as

efficiently by a solid surface as in the bulk, and accordingly a lower effective particle volume

fraction exists near the surface, which leads to a low resistance layer near the surface (Yilmazer and

Kalyon, 1989; Jana et al., 1995). Wall slip is an observable phenomenon in standard rheometry

and typically causes unexpectedly low viscosity readings and viscosity readings that are extremely

sensitive to the roughness of the solid shearing surfaces. Kalyon and co-workers have used

parallel plate and capillary rheometry to study wall slip extensively in highly loaded suspensions of

many types. Yilmazer and Kalyon (1989) found that the apparent slip velocity in parallel plate and

capillary rheometer flows was proportional to the wall shear stress. They were able to extract the

apparent slip velocity by varying the gap widths and capillary diameters in the two rheometers.

33



Yoshimura and Prud'homme (1988) also used similar rheometry methods of studying wall slip.

Aral and Kalyon (1994) used a flow visualization technique to observe wall slip, and showed that

varying the roughness of the parallel plate surfaces alone could cause slip, no slip, or sample

fracture.

Jana et al. (1995) applied laser Doppler velocimetry, a pointwise measurement method with

fine spatial and temporal resolution, to the problem of apparent wall slip in Couette flow between

rotating concentric cylinders. The authors measured the suspension velocity profile across the gap

between the cylinders and extracted slip coefficients from the data by using the diffusive flux

model to estimate the concentration profile and assuming a Navier slip law at the inner and outer

cylinder walls. Jana et al. found that the slip coefficients scale with particle volume fraction as the

relative viscosity function divided by 8.

An often-debated issue regarding apparent wall slip is whether the slipping occurs between

the particles and the wall, or between neighboring layers of particles near the wall. Krishnan

(1994) observed both phenomena occurring in a 50% concentrated suspension in rectilinear shear

flow by video image analysis, another technique with high spatial resolution. According to

Krishnan, the first particle layer adjacent to the wall was packed more efficiently than in the bulk,

and the majority of the slipping took place between the first and second particle layers adjacent to

the wall. These results challenge the traditional view of apparent wall slip and indicate that it is a

more complex phenomenon than previously thought.

2.2 Fine Scale Effects in a Concentrated Suspension of

Monodisperse Spheres

Since a concentrated suspension is characterized by a microstructure, meaning the

instantaneous positions and velocities of all the particles, there are also fine scale properties of this

microstructure that are not apparent from making macroscopic theological measurements. Among

the fine scale properties that have been quantified are the self-diffusivity of particles and the pair

distribution function. Video imaging is the standard method used for visualizing and characterizing
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the microstructure.

The self-diffusivity relates to the random displacements a particle experiences about its

mean motion in a homogeneous flow due to interactions with its neighbors. Although the

displacements have a mean of zero, they have a nonzero variance. The self-diffusivity is defined as

the amount of displacement (variance) experienced during a typical flow time scale.

Eckstein et al. (1977) and Leighton and Acrivos (1987a) measured the self-diffusivity in

narrow-gap Couette flow and found that it scales with the product of the average shear rate and the

square of the particle radius, as expected from dimensional analysis. Comparison of these studies

with the more recent work of Phan and Leighton (1993) and Breedveld et al. (1999) reveals

agreement among the experimental studies except for Eckstein et al. (1977) on the variation of the

self-diffusion coefficient with particle volume fraction. The most recent work, Breedveld et al.

(1999), indicates that the self-diffusivity in steady, narrow-gap Couette flow is anisotropic, since

the component in the gradient direction is larger than that in the neutral direction. This result is

supported by the simulation results of Phung (1996) and the theoretical work of Morris and Brady

(1996). Also, Breedveld et al. (1999) found that neither of these self-diffusion components

increases monotonically with particle volume fraction. Both components peak around 40% particle

volume fraction and either decrease or plateau at higher concentrations.

In addition, Parsi and Gadala-Maria (1987) and Leighton and Rampall (1993) found that

the pair orientation distribution function in concentrated suspensions is anisotropic in steady,

rectilinear shear flow, namely that it is enhanced in the compression direction of the flow and

reduced in the extension direction. The two groups studied suspensions with particle volume

fractions of 40% and 45%, respectively. The pair distribution function is the key to understanding

many of the macroscopic properties described above, because it weights the likelihood of each

particle pair configuration when the averaged properties are calculated. An orientation pair

distribution function enhanced in the compression direction of shear flow and reduced in the

extension direction was suggested by Bagnold (1954), according to the reasoning that particles

tend to slow down as they collide, and the mean shearing motion tends to cause collisions along
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the flow compression direction. As a result, on average, particle pairs statistically spend more time

aligned in the flow compression direction.

The properties mentioned above which were observed in homogeneous suspensions also

affect how an inhomogeneous suspension behaves. Any accurate particle migration model must

contain these proper.ies, or at least reduce to the observed homogeneous case in the absence of

migration.

2.3 Direct simulations: Stokesian Dynamics and Related Methods

As mentioned in Chapter 1, Stokesian Dynamics (Brady and Bossis, 1988) is the fluid

mechanical equivalent of molecular dynamics for solving the averaged behavior of a collection of

particles whose motion is described in the manner above. Stokesian Dynamics simulations are

especially useful in predicting the macroscopic consequences of microscopic effects, in visualizing

the predicted suspension microstructure and separating the contributions of multiple effects, such

as hydrodynamic and Brownian forces, to the total stress, as in the work of Phung (1996).

However, due to the long range interactions which result from the Stokes equations,

Stokesian Dynamics simulations become unwieldy for even moderate numbers of particles in a

periodic domain. This leads to the use of unrealistic geometries and too few particles in the

simulations. Nott and Brady (1994) found that for 50 particles in a periodic cell, three-dimensional

simulations were too computationally expensive to perform, and consequently restricted the

motions of the simulated particles to a monolayer of two-dimensional disks. Phung (1996)

extended Stokesian Dynamics to three dimensions for Brownian suspensions, but still used a small

number of particles in the periodic cell (between 27 and 81 for a three-dimensional periodic cell),

and did not reach a high enough ratio of viscous, hydrodynamic forces to Brownian effects to be

able to compare the results with the experiments described above.

More recent simulation studies have utilized systems with larger numbers of particles by

neglecting far-field hydrodynamic interactions and focusing on pairwise lubrication interactions.

According to Silbert, Melrose and Ball (1999), at least 50 particles are needed to eliminate system
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size effects in a 3-D simulation. The authors use 200 or 700 particles in their recent simulations,

almost a factor of 10 larger than the number Phung used. Ball and Melrose (1995) were able to

study a three-dimensional, concentrated system of 3500 particles by eliminating all but the

dominant binary squeeze flow interactions. Although this system size is much more realistic than

the original cells of 27 or 50 particles, even so, the system is only nine particle diameters wide,

significantly smaller than the 16 particle diameters width at which Hampton et al. (1997)

experimentally observed finite size particle effects in circular tube flow. In simulations of

suspensions with more complex particle interactions, such as colloidal suspensions (Dratler et al.,

1997; Bilodeau and Bousfield, 1998), or suspensions of rough, non-colloidal particles (Haan and

Steif, 1998), it is still standard practice to approximate the suspension as a monolayer in order to

reduce computation load. Overall, the large number of particles needed to approximate a real

system creates a heavy computational burden, especially for a three-dimensional simulation.

Ball and Melrose (1995) found, like Nott and Brady (1994) and Phung (1996), that the

binary lubrication interactions between the particles are singular and very sensitive to the contact

conditions between particles. Purely hydrodynamically interacting particles stick together and form

clusters, but particles which experience a slight repulsive force when they collide do not cluster. It

is not clear which version of the contact conditions provides a more accurate picture of real particle

interactions, but the simulation results are very sensitive to the chosen conditions. In simulating the

limit of a purely hydrodynamically interacting suspension, the particles form a cluster that spans

the entire system and the simulations do not reach a steady state. It is this singularity which

prevents the simulations from reaching farther into the hydrodynamic regime, to allow comparison

with the experiments discussed earlier.

Although Stokesian Dynamics and related simulation methods provide information about

microstructure and the macroscopic consequences of microscopic effects, the description of

process flows using these simulations is impractical. As in other areas of non-Newtonian fluid

mechanics (Bird et al., 1987), constitutive equations and conservation laws are needed that

describe the average properties of the fluid during flow: this is the domain of constitutive
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modeling.

2.4 Constitutive Modeling

As mentioned in Chapter 1, the two main types of constitutive models for particle migration

in concentrated suspensions are phenomenological models, such as that of Leighton and Acrivos

(1987b) and Phillips et al. (1992), and granular flow-based models, such as those of McTigue and

Jenkins (1992) and Nott and Brady (1994). A more detailed presentation of the models is given

here.

2.4.1 Diffusive Flux Model

Concepts of the diffusive flux model of Leighton and Acrivos (1987b) are outlined below,

followed by presentation of the equations of the model of Phillips et al. (1992). A comparison of

the model with experimental data is then given.

2.4.1.1 Rationale for Diffusive Fluxes

First we discuss the phenomenological explanation by Leighton and Acrivos (1987b) of

shear-induced particle migration, that is, formation of non-uniform particle concentration profiles

in response to non-uniform shear rates in a flow. We then present the constitutive equation of

Phillips et al. (1992), which places Leighton and Acrivos' explanation in a model for suspension

flow. These models treat a suspension as a collection of discrete particles moving in an

incompressible continuum fluid and contain no information about interactions between the particles

and the fluid, since in the highly concentrated regime under consideration the only significant

interactions in the material are assumed to be binary particle interactions. Leighton and Acrivos

propose a mechanism for particle migration in a shear flow, representing migration as a balance

between competing particle fluxes that arise in response to gradients in macroscopic quantities in

the flow system.

According to Leighton and Acrivos, diffusive particle fluxes arise in shear flows in
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response to gradients in inter-particle collision frequency and to gradients in viscosity within the

flow system. These fluxes appear because the gradients in collision frequency and gradients in

viscosity cause any two particles to respond asymmetrically to a binary collision. The particle on

the side with higher collision frequency or higher viscosity is hindered in recoil from the collision

since it tends to interact with more particles or experience more drag from the surrounding

continuum compared to the other particle. Therefore, the resultant of the final velocities of the two

particles shows a net drift in the direction of lower collision frequency or higher viscosity.

(Leighton and Acrivos, 1987b)

Whereas collision frequency is a function of shear rate, a measure of the relative velocity of

particles on neighboring shearing surfaces, and particle concentration, viscosity depends on

particle concentration only. As a result, gradients in particle concentration and shear rate drive

particle diffusion, often in opposite directions, so that a steady state is reached when the collisional

and viscosity driven fluxes balance.

Leighton and Acrivos derive the scaling for the particle flux in response to a gradient in

suspension viscosity, since they expect this flux to dominate their experimental results. Previous

experimental results of Leighton and Acrivos (1987a) show that the diffusion coefficient for shear-

induced migration is proportional to the product of the shear rate and the particle radius squared.

The researchers relate this result to the dynamics of particle interactions in a unidirectional shear

flow by estimating that for each collision a diffusing particle moves a characteristic distance normal

to the flow direction of a, the particle radius. Furthermore, the frequency of binary interactions a

test particle experiences scales as the product of the local shear rate and the local particle

concentration, since the particle concentration represents the probability of encountering a single

particle and the local shear rate indicates the relative velocity per unit separation between

neighboring shearing surfaces. They further estimate that the number of particles is proportional to

the local particle concentration and that the fractional change in viscosity over the interaction length

scale, the particle radius a, is roughly given by the product of the particle radius a and the local

viscosity gradient, divided by the magnitude of the local viscosity. These scaling arguments result
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in the following form for the flux of particles due to a gradient in suspension viscosity in the flow:

= -K ? 2 (2.2)

Since the viscosity is a function of particle concentration only, its gradient can be expanded as the

product of the derivative of the viscosity with respect to particle concentration and the particle

concentration gradient.

2.4.1.2 Equations of the Model of Phillips et al. (1992)

The Phillips model (Phillips et al., 1992) incorporates the ideas of Leighton and Acrivos

regarding the mechanism for shear-induced particle migration into a simple model for suspension

flow and shear-induced migration. The model for a suspension of spheres in an incompressible

Newtonian fluid consists of a mass conservation equation for the mean suspension, which is

treated as an incompressible continuum,

V. =0 (2.3)

the momentum equation, in which inertial terms are neglected,

0_= -p+ v. (2.4)

and a Newtonian constitutive equation

= if s(Ct) (2.5)

In he stress tensor equation, the suspension viscosity f i s(o) is a function empirically obtained

by Krieger (1972) of fluid phase viscosity and particle concentration, which equals the fluid phase

viscosity in the limit of infinite dilution and becomes infinite near the limit of maximum hexagonal

close-packing, at 4m = 0.68.

S(O) ( ,,,,,)1 (2.6)

The mean total pressure in the suspension is p, the mean suspension continuum velocity is u, and

1 is the mean suspension rate-of-strain tensor. The only nonzero components of the rate-of-strain

tensor for steady, fully-developed, unidirectional shear flow (ul = ul(x2) ; U2 = u3 = O0) describe

the gradient in mean suspension velocity perpendicular to the flow direction:
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12= 21 = 5' 2 (2.7)

The equations (2.3-2.6) of the model are solved for three unknown variables, u, p, and 4. As a

result, the model requires an additional equation, a diffusion equation for the particle concentration:

Dt = a 2 K E.(2?y + ? )+ a2KnV.(?2 dn V ) (2.8)

Equation (2.8) states that the rate of change of particle concentration seen by an observer moving

with the mean suspension flow is due to the diffusion of particles in response to gradients in two

quantities. The second term on the right side of the equation is the Leighton and Acrivos (1987b)

expression for the particle flux in response to viscosity gradients, whereas the first term on the

right side represents the particle flux in response to gradients in inter-particle collision frequency.

Phillips et al. (1992) derive the scaling of the first term by using the approach of Leighton and

Acrivos (1987b).

In a unidirectional shear flow, Phillips et al. (1992) estimate that the frequency of binary

collisions a test particle experiences scales as the product of the local shear rate and the local

particle concentration, since the particle concentration represents the probability of encountering a

single particle and the local shear rate indicates the relative velocity per unit separation between

neighboring shearing surfaces. Hence, the change in collision frequency over the collision length

scale of the particle radius, a, is approximated by [a_ ( ?)] . They also estimate that the number

of particles is proportional to the local particle concentration, and that a diffusing particle moves a

characteristic distance normal to the flow direction of a, the particle radius, as the result of a

collision. The expression for the particle flux in response to gradients in inter-particle collision

frequency is the product of all these factors and is given by

- = - K a 2 Y ( ?) (2.9)

The two coefficients K c and K n arising in equations (2.2) and (2.9) are proportionality constants of

order unity which Phillips et al. (1992) find by matching the analytical predictions of the model

with experimental measurements of particle concentration profiles from steady state and transient

shear flows. Since the scaling of the flux terms is intended to account for all the dimensional and
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concentration dependence of the terms, the phenomenological constants are intended to be

independent of the particle radius, the bulk particle concentration, and the average shear rate.

2.4.1.3 Comparison with Experimental Data

This model of shear-induced particle migration in a suspension seems to capture well the

phenomena that ai e observed experimentally in unidirectional shear flow. In the work of Phillips et

al. (1992), the predi'tions of the model were tested against measurements made by Abbott and

Graham using NMR imaging. First, the two empirical constants, K c and K n, in the

Phillips/Leighton/Acrivos model were fit to a set of concentration profiles measured by NMR

imaging for wide-gap Couette flow, for a suspension of 675 gm particles with bulk particle

volume fraction = 0.55. The values K c = 0.41 and K, = 0.62 were obtained, with the ratio Kc/

K n indicating the predicted difference between the steady state particle concentrations at the inner

and outer cylinder walls. Then the model was compared to NMR measurements for wide-gap

Couette flows of suspensions of particles of sizes 675 gm and 100 lm, and bulk particle volume

fractions of 0.45, 0.50, and 0.55, all fairly close to the maximum random particle volume fraction

of about 0.63. The model agrees very well with the transient and steady state experimental data,

even for the smaller particle size and for bulk concentrations different from the fitting

concentration.

However, it is necessary to consider other models because there are some effects observed

in suspension flow that are not captured by the model of Phillips et al. First, the Phillips/

Leighton/Acrivos model makes unrealistic predictions of particle concentration profiles for

pressure-driven flow in a rectangular channel or a circular tube for values of the ratio

K c / K n < 0.66. In these two rectilinear flows, due to the symmetry of the flow in the gradient

direction, the velocity gradient at the center line must equal zero. Since two of the fluxes in the

particle diffusion equation (2.8) are proportional to the local shear rate, these fluxes vanish at the

flow center line where the shear rate is zero. Accordingly, there is no resistance to the migration of

particles to the center line due to the third flux term in the equation. As a result of the extreme
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aggregation of particles at the exact center of the flow, a sharp cusp forms at the center line in the

concentration profiles predicted by the Phillips/Leighton/Acrivos model. This feature of the

concentration profile was not observed experimentally by Koh et al. (1994) and Lyon and Leal

(1998), who measured concentration profiles by using LDV in rectangular channel flow. These

studies found concentration profiles that were smoothly varying in the gradient direction and had a

slope of zero at the center line.

Phillips et al. (1992) attributed the discrepancy between the theoretical predictions and the

experimental measurements to the approximation that the collision frequency experienced by a

particle is proportional to the local shear rate at the center of the particle. Actual particles sitting at

the center line of a channel flow have finite size, and thus extend into regions of non-zero shear

rate, where collisions do occur. Thus, the approximate Phillips/Leighton/Acrivos expression for

the collision frequency neglects the finite size of the particles. The way to correct this omission is

to allow for non-local effects, meaning that the properties of the flow at a point are determined by

the properties of neighboring regions of the flow as well as at the point itself. One advantage of the

suspension temperature models of Jenkins and McTig'ue (1990) and Nott and Brady (1994) is that

such non-local effects arise naturally from fluctuation kinetic energy conservation in the form of a

pseudo-thermal energy flux.

A three-dimensional flow that exhibits phenomena that contradict the predictions of the

Phillips/Leighton/Acrivos model is torsional shear flow between parallel disks. In a paper reporting

NMR measurements of particle concentration profiles in torsional shear flow between parallel

disks, Chow et al. (1994) observed that particle migration does not occur even though shear rate

gradients in the radial, or neutral, direction are present. Since the Phillips/Leighton/Acrivos model

predicts particle migration in response to gradients in shear rate, the Phillips et al. (1992) model

would predict a diffusive flux of particles radially inward, toward the centers of the disks. This

disagreement between the Phillips/Leighton/Acrivos model predictions and experimental results for

parallel disk flow implies that there may be an additional mechanism for particle migration missing

from the model.
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Krishnan et al. (1996) presented further results from torsional shearing flow between

parallel disks. For a monodisperse suspension, these researchers also observed no particle

migration. However, for a bidisperse suspension, Krishnan et al. observed segregation of the two

sizes of particles, in the opposite configuration to what would have been predicted by the

Phillips/Leighton/Acrivos model. Smaller particles migrated radially inward, and larger particles

migrated radially outward. The data of Krishnan et al. imply that the steady state concentration

profile in the neutral direction of parallel disk flow is determined by a balance of diffusive fluxes

which depend differently on particle size, but which cancel exactly when the particles are identical.

These results cannot be explained by the Phillips/Leighton/Acrivos model, since it lacks fluxes

which scale differently in particle size, and suggest that particle migration occurs in the opposite

direction to that observed.

In addition, the model of Phillips et al. (1992) assumes a Newtonian form of the stress

tensor, which does not contain normal stress differences. This assumption contradicts the

observation of Gadala-Maria (1979) that nonzero normal stress differences exist in torsional

shearing flow of a concentrated suspension between parallel disks.

A final issue regarding the diffusive flux model is that it cannot be generalized easily to

flows with mixed kinematics, that is, where both shearing and elongation are present. A

generalized "shear rate" could be defined as a function of the second invariant of the rate-of-strain

tensor, ' - 2: ,' but it is not clear whether this definition is a meaningful measure of the

driving force for migration for non-shearing deformations.

2.4.2 The Suspension Temperature Statistical Mechanical Model: Jenkins and

McTigue

The statistical mechanical foundation of the Jenkins and McTigue model (1990) is outlined

below, and the equations of the model are presented. Subsequently, the Nott and Brady model

(1994) is introduced, and, finally, the comparison of the models with experimental data is

discussed.
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2.4.2.1 Statistical Mechanics Applied to Granular Flows

The most recent model of a concentrated suspension to come out of the studies of granular

flows, that of McTigue and Jenkins (1992), is based on the work of Jenkins and Savage (1983).

Jenkins and Savage write balance equations for locally conserved quantities which are rigorous

according to statistical mechanics. First, they choose a macroscopic property of the suspension,

such as average particle concentration, and then identify a dynamical quantity which when

ensemble averaged would produce the macroscopic property. Then, they write a time evolution

equation for the microscopic quantity which is exactly valid in a volume element V about the

position r. Finally, this equation is ensemble averaged to yield the time evolution equation of the

macroscopic property.

In order to calculate the transport coefficients which arise in these equations, Jenkins and

Savage (1983) select a form for the single-particle distribution function and the pair distribution

function. In principle, these two functions, which weight the averages used to compute

macroscopic quantities by giving the probabilities of all the possible positions and velocities of one

or two particles, respectively, can be found from equations governing their time evolution. In

practice, finding the distribution functions is difficult, because solving the equation for each order

distribution function requires knowledge of the form of the next order distribution function; the

complexity of the functions increases with the number of particles involved in the interaction.

For these equations to be solvable, the infinite series of distribution functions must be

truncated by the replacement of higher-order interaction terms with simpler, lower-order

approximations of these interactions. As a result of these approximations, the exact distribution

function giving the probabilities of the positions and velocities of any number of interacting

particles cannot be found. However, in the correct length scale and time scale regimes, the

simplifying approximations to higher order interactions often are justified. For example, the

Boltzmann equation, in which the pair distribution function is approximated as the product of the

single-particle distribution functions of two particles, reliably captures the behavior of dilute gases.
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The assumption made in this equation that the motion of the particles is generally uncorrelated is

reasonable for these gases.

Jenkins and Savage (1983) avoid the difficulties of solving for the single-particle and pair

distribution functions entirely and instead propose plausible forms for these functions. This is a

departure from the most rigorous treatment of averaging possible, which requires the solution of a

time evolution equation containing a minimum of assumptions. They use a local equilibrium

approximation for the single-particle distribution fiunction, where the velocities of particles are

distributed in a Maxwellian manner about the mean particle velocity at any point. This type of

approximation means that the granular material can be considered a continuum made up of tiny

elements, each containing a statistical number of particles for which averaged point properties

constant over each entire element may be defined.

For the pair distribution function, needed to calculate the averages of quantities transferred

through inter-particle collisions, Jenkins and Savage (1983) use a nearly local equilibrium

approximation, but one which incorporates the effects of anisotropy in the mean flow at the

microscopic level. The pair distribution function is written as the product of two single-particle

local equilibrium distribution functions, the equilibrium radial distribution function for rigid

spheres, which correlates the positions of the two particles in a dense gas, and a factor linear in the

relative mean velocity at the positions of the two particles, which describes the tendency of the

mean flow to move the two particles together or apart.

2.4.2.2 Jenkins and McTigue (1990): Suspension Flow

Jenkins and McTigue (1990b) first considered two-phase flow by turning to heuristic

arguments inspired by Haff (1983) to derive forms for the transport coefficients in the balance

equations. The experimental observations of particle migration mentioned in Chapter 1 lie in the

"viscous" regime, where viscous forces from the interstitial fluid dominate particle inertial forces

during inter-particle interactions. In this regime, the scalings of transport coefficients such as the

suspension viscosity are different from those in a granular flow. The difference lies in the
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continuous, incompressible liquid phase, which changes the interactions between the particles from

hard-sphere collisions to significantly more complicated interactions that involve the

hydrodynamics generated by the particles' relative motion.

Jenkins and McTigue (1990) followed the heuristic scalings with calculations of the

transport coefficients for the viscous regime by using the methods of Jenkins and Savage (1983).

However, they treated the suspension as a one-phase system and completely neglected the fluid

phase. Their resulting model consisted of conservation of mass, momentum, and fluctuation

kinetic energy equations for the particle phase, which had to be solved for the particle volume

fraction, average particle phase velocity, and suspension temperature.

The equations of Jenkins and McTigue (1990) are as follows:

conservation of mass,

_ ( _) = 0 (2.10)

conservation of momentum,

V r- n +flls)l = (2.11)

and conservation of fluctuation kinetic energy,

0 = [- n + f p() ]: - f a() a-2 T + lf V (K() V T) (2.12)

Here, is the particle concentration, u is the average particle phase velocity, T is the suspension

temperature, and ? is the average particle phase rate-of-strain tensor. In addition, 1 qs() is the

effective suspension viscosity, ilp() is the particle contribution to the suspension viscosity, cK()

is the pseudo-thermal conductivity, and a(¢) is the dissipation coefficient. These variables and

transport coefficients are defined precisely in Chapter 5.

In the momentum conservation equation, one of the forces which appears is the gradient of

a "particle pressure," (, T), or the isotropic stress. The "particle pressure" arises due to

fluctuations in particle velocity and is expressed in terms of the granular temperature and particle

concentration by an equation of state.

The terms on the right side of the fluctuation energy balance equation require identification.

The first term indicates the rate of shear working from the mean flow, which is a fluctuation energy
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source, and the second term gives the rate of dissipation of fluctuation energy into heat due to fluid

phase drag on the particles. The third term gives the fluctuation energy flux, and thus provides the

equation with a non-local character. The dissipation of fluctuation energy term gives the effect of

the fluid phase on the particle fluctuations and is proportional to the suspension temperature T.

As will be discussed later in chapter 5, the explicit absence of the fluid in the model is a

problem in pressure-driven flows, such as pressure-driven channel flow, where the fluid provides

the driving force for the particle motion. In response to this limitation, McTigue and Jenkins

modified the model to include pressure-driven flow in a later version (McTigue and Jenkins,

1992), where the pressure in the suspension became the sum of the original particle contribution (a

function of 1 and T) and the fluid phase pressure. A different limitation of the 1992 version is that,

due to the new fluid pressure variable, there are more unknowns than equations. The modified

model can only be solved in simple geometries where the form of the fluid pressure gradient is

known or can be assumed.

A final limitation of both the 1990 and 1992 versions of the Jenkins and McTigue model is

that the stress tensor has a Newtonian form and does not include normal stress differences. As

mentioned earlier regarding the diffusive flux model of Phillips et al. (1992), this form of the stress

tensor cannot account for the experimental observations of Gadala-Maria (1979) of nonzero normal

stress differences.

2.4.2.3 The Nott and Brady Model (1994): Statistical - Phenomenological

Hybrid

Nott and Brady (1994) incorporate the ideas of Jenkins and McTigue (1990) of suspension

temperature and a fluctuation energy balance into a two-phase model. It contains two mass

conservation and two momentum conservation equations, one of each for the mean suspension

continuum, and one of each for the particle phase only. Due to the presence of the two additional

mean suspension equations, the Nott and Brady model is fully specified.

Nott and Brady's model contains the idea, inspired by Jenkins and McTigue, that
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suspension temperature, rather than shear rate, is the important quantity determining particle

migration. Temperature directs migration implicitly, through the presence of the fluctuation energy

conservation equation and the "particle pressure" gradient which appears in the particle phase

momentum equation and depends on temperature and particle concentration. Nott and Brady also

use the viscous scalings of Jenkins and McTigue (1990) for transport coefficients which appear in

the conservation equations, since they concentrate on flows at low Reynolds number, calculated

using the particle radius as a characteristic length scale.

However, the Nott and Brady model is much less microscopically rigorous than Jenkins

and McTigue's kinetic theory model. The coefficients in the conservation equations contain

dimensionless functions of particle concentration which Nott and Brady find phenomenologically

rather than derive microscopically. The use of these phenomenological transport coefficients

distinguishes the Nott and Brady model from the statistical constitutive model of Jenkins and

McTigue (1990) and causes the Nott and Brady model to bear some resemblance to the

Phillips/Leighton/ Acrivos phenomenological diffusive flux model.

Although Nott and Brady allow for the presence of normal stress differences in the stress

tensor constitutive equation, they do not provide a constitutive relation describing the normal

stresses. This incompleteness does not allow the predictions of the model to be compared to the

observations of Gadala-Maria (1979) of normal stress differences in parallel-plates torsional flow.

2.4.2.4 Comparison with Experimental Data

We focus on these "temperature" models because we believe they are promising for

studying complex flows, where both shearing and elongation are present. In these flows, the

question of how to define the "shear rate" is a challenge for the phenomenological models, but the

"temperature" models may be able to avoid this problem by not defining the suspension

temperature explicitly in terms of any deformation rate quantity.

Although the kinetic energy of particle velocity fluctuations due to inter-particle collisions is

presented as a particle migration mechanism in the McTigue and Jenkins and Nott and Brady
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models, a complete set of measurements of the properties of the these velocity fluctuations in a

simple, homogeneous flow does not exist, but is necessary to ensure that the models incorporate a

realistic migration mechanism.

To date, only the Nott and Brady model has been compared with experimental data in a

single flow geometry. The data of Lyon and Leal (1998), which include measurements of the

suspension temperature, were obtained for the same geometry as the only published solution (Nott

and Brady, 1994) for the model, which was pressure-driven flow in a rectangular channel. In

addition, in their original paper, Nott and Brady compared their model predictions with Stokesian

Dynamics simulations, again for pressure-driven channel flow. Lyon and Leal (1998) found

reasonable but not quantitative agreement between their data and the Nott and Brady model.

Clearly, further experimental tests of the temperature models in different flow geometries would

provide necessary information about their accuracy in predicting particle migration.

2.5 Experimental Techniques Used for Concentrated Non-Colloidal

Suspensions

Each of the principal measurement techniques applied to concentrated suspension flows is

optimally suited to measuring a specific quantity of interest. Nuclear Magnetic Resonance (NMR)

imaging gives the best information about particle concentration profiles, since it can distinguish

between the fluid and solid phases, even in optically opaque suspensions. NMR also provides

simultaneous velocity profiles. NMR imaging has-been utilized for measuring concentration and

velocity profiles in many flow geometries, including circular pipe flow (Sinton and Chow, 1991;

Altobelli et al., 1991; Arola et al., 1999; Hampton et al., 1997), wide-gap Couette flow (Abbott et

al., 1991; Graham et al., 1991; Tetlow et al., 1998), narrow-gap Couette flow (Chow et al.,

1994), parallel plates torsional flow (Chow et al., 1994), piston-driven contraction- expansion

flow (Altobelli et al., 1997), single screw extruder flow (Corbett et al., 1995) and suspension

settling (Abbott et al., 1993; Bobroff and Phillips, 1998)

The best method for visualizing particle microstructure geometry and quantifying statistics
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of particle interactions is video image analysis applied to a refractive index-matched suspension.

Leighton and Rampall (1993) applied this method to measure the pair distribution function of

particles in steady homogeneous shear flow. Breedveld et al. (1999) quantified the self-diffusion

coefficients of particles and fluid tracers in the gradient and neutral directions of a narrow-gap

Couette flow. Nicolai et al. (1995) used the technique to measure mean and fluctuating velocities of

settling particles. In addition, video image analysis is uniquely suited to measuring properties of

bidisperse suspensions, since it can easily distinguish the two particle sizes if they only have

different colors. In the work of Krishnan et al. (1996) in parallel-plate flow and Lyon and Leal

(1998b) in channel flow, colored tracer particles of different sizes were used to visualize and

quantify particle size separation due to migration.

Finally, the technique best suited to accurate measurements of the mean and fluctuating

velocity is laser Doppler velocimetry (LDV), also applied to a refractive index-matched suspension,

due to its fine spatial and temporal resolution. Since LDV is a pointwise measurement method, it

yields the most precise velocity observations at particular positions, but does not record snapshots

of whole regions of the flow as do NMR and video imaging. Koh et al. (1994) applied the

technique to flow in a rectangular channel, and adapted the method to record simultaneous

concentration and mean velocity profiles. Lyon and Leal (1998) extended the technique for the

same geometry to higher concentrations and measured particle velocity fluctuations as well. As

mentioned above, Jana et al. utilized LDV in measuring apparent wall slip coefficients in the

cylindrical Couette geometry. Kapoor and Acrivos (1994) measured the particle velocity profile

and apparent wall slip coefficient in the highly concentrated sedimentation layer of an inclined

settling flow.

2.6 Recent Experiments Involving LDV, Concentrated, Non-

Colloidal Suspensions, and Particle Velocity Fluctuations

A subset of the LDV measurements of concentrated suspensions were focused on particle

velocity fluctuations. Three recent and important contributions to the literature include those of
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Averbakh et al. (1997), Lyon and Leal (1998), and Tripathi (1998).

Averbakh et al. (1997) were the first authors to publish LDV measurements of particle

velocity fluctuations in a concentrated suspension. The authors studied pressure-driven flow in a

rectangular duct and measured the velocity fluctuations in the flow and gradient directions on the

duct center line. Both the flow and gradient components increased linearly with the maximum

mean velocity. The authors were the first to realize that the velocity fluctuations they measured

could have contributions from effects other than particle collisions, such as particle rotation and

LDV system noise, but they did not attempt to separate these factors. However, their recognition of

the necessity of separating the collisional fluctuations from other factors influenced all subsequent

LDV measurements of particle velocity fluctuations in concentrated suspensions. Averbakh et al.

also measured the drift velocities of migrating particles in the gradient direction of the duct flow

and found that the diffusive flux models of Leighton and Acrivos (1987b) and Philllips et al.

(1992) qualitatively predicted the observed profiles (Shauly et al., 1997).

The work of Lyon and Leal (1998) concerned pressure-driven flow in a rectangular

channel. The authors measured the steady-state profile of collisional velocity fluctuations in the

flow direction and found reasonable agreement between their data and the suspension temperature

models of McTigue and Jenkins (1992), Nott and Brady (1994), and Morris and Brady (1998).

Lyon and Leal also extended the measurements of Koh et al. (1994) to high concentrations (from

30% to 50% particle volume fraction) by measuring the particle volume fraction and mean velocity

profiles as well.

In a contemporary study, Tripathi (1998) investigated narrow-gap Couette flow between

differentially rotating concentric cylinders. He measured collisional velocity fluctuations in three

directions at steady-state on the flow center line. Tripathi found that the velocity fluctuations were

anisotropic, since the neutral direction component was the largest, followed by the gradient

component, and the velocity fluctuations in the flow direction were negligible. Tripathi also

observed that the velocity fluctuations in the gradient and neutral directions scaled with the average

shear rate squared, which supports the assumptions of the constitutive models presented earlier.
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2.7 Objectives of This Study

The main goal of this work is to determine experimentally the properties of particle velocity

fluctuations originating from inter-particle collisions in a flowing concentrated suspension.

Specifically, we wish to characterize the dependence of the particle velocity fluctuations on particle

volume fraction, shear rate, and position. We aim to accumulate a consistent set of experimental

data of collisional particle velocity fluctuations that is sufficient for evaluating the assumptions and

resulting predictions of particle migration models. One particular question we wish to answer is

whether the collisional particle velocity fluctuations are isotropic, meaning that components

measured in all directions are equal. Consequently, this research has a different focus from that of

the studies of Lyon and Leal and Tripathi. Our approach is to make quantitative LDV

measurements in a homogeneous shear flow in order to eliminate particle migration effects, and to

utilize qualitative video imaging of particle trajectories to aid in interpreting the LDV data.

A secondary goal is to assess the implications the data have for suspension models and

simulations. This purpose involves the determination of whether the models contain the correct

assumption that the suspension temperature is isotropic and hence can be represented by a scalar,

whether the models contain the correct scaling of the temperature in particle volume fraction and

shear rate, and whether the models accurately predict the observed shear rate and suspension

temperature profiles.
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Chapter 3

Experimental Method

This chapter describes the experimental system and measurement method. There were two

main experimental challenges we faced in adapting the laser Doppler velocimetry (LDV) technique

to measuring velocity fluctuations in a concentrated suspension. First, the use of LDV requires the

material to be transparent, which compelled us to match the refractive index of the fluid to that of

the particles, while also ensuring that the particles were neutrally buoyant in the fluid. In addition,

the Couette flow cell design was intricate because the Couette had to meet many constraints. This

chapter contains a description of how these two challenges were met, following a discussion of the

basic principles of the LDV method, and concludes with a description of our measurement and data

reduction procedures.

3.1 Laser Doppler Velocimetry

Laser Doppler velocimetry is an effective method for measuring particle velocity

fluctuations in a flowing concentrated suspension because it is non-invasive; that is, it does not

change the flow being measured, and possesses the fine spatial and temporal resolution required

for resolving velocity fluctuations. This is not surprising, since LDV was originally developed for

measuring turbulent flows, in which some of the important quantities, such as the Reynolds stress,

are defined in terms of velocity fluctuations.

3.1.1 Basic principles

Drain (1980) provides a clear and thorough explanation of the basic principles of LDV,

which are summarized here. Alternative classic references include Durst et al. (1981) and Adrian

(in Goldstein (ed.), 1996). When a wave, such as a sound wave, is transmitted from a source to a

receiver, relative motion between the source and the receiver may cause a change or apparent
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change in the frequency of the wave. This real or perceived frequency change is defined as the

"Doppler shift," and it occurs because the spacing between consecutive wavefronts shrinks or

expands, depending on the direction of relative motion. For low relative speeds v compared to the

speed of light c, whether the source or the observer moves (while the other remains stationary) the

change in the frequency v is given as
V v cosO

Av= c (3.1)

where 0 is the angle between the direction of the line connecting the source and observer and the

direction of relative motion. For light waves, a more complicated relativistic formula applies, but at

relative velocities between the source and the observer that are low compared to the speed of light,

the relativistic Doppler shift reduces to this non-relativistic limit.

In LDV experiments, a stationary source emits light which is scattered by a moving object

to a stationary detector. This is called a "double Doppler shift" because the moving object receives

incident light at a different frequency from the source emission and then the detector receives

scattered light from the object at a different frequency from the object's scattering frequency (in its

reference frame). For velocities small compared to the speed of light, the expression for the total

difference between the frequency the detector receives and the frequency the source emits can be

expanded to first order in v/c as
v v

A V = Vdetector- Vsource = (cos0 + cos0 2 ) (3.2)

where 01 is the angle between the line connecting the source and object and the object's direction

of motion and 02 is the angle between the line connecting the object and detector and the object's

direction of motion.

In the differential Doppler technique, which is employed in this system, there are two

sources emitting light of the same frequency which are oriented at different angles, 01 and 01', to

the object's direction of motion. Typically, the sources are two stationary incident laser beams

which cross and the moving object scatters light from both beams as it crosses the intersection

point. The scattered light is observed by the detector from another direction, which forms angle 02

with the object's direction of motion. Accordingly, the expressions for the double Doppler shift of
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each beam become

A V = Vdetector - Vsource C (OSOI + COS0 2)

A V -Vdetector- Vsource = cos+cos) (3.4)

At the detector, a phenomenon called "optical mixing" occurs. The two scattered light

beams interfere with each other, meaning that the time-dependent electromagnetic fields, which are

waveforms, add together, by the superposition principle. Accordingly,

Etot = E + E' = E cos (2nvt + ) )+ E cos (2rv't + ') (3.5)

Since the detector is a "square-law" device, its output i(t) is proportional to the intensity of

the combined light waves, which is proportional to the square of the total electric field.

i(t) = (E + E )2 = [Eo cos (2nvt + ) + E0 cos (2/v't + ' )] 2 (3.6)

Expanding the terms on the right side of equation (3.6) yields,

i(t) = E0
2 cos2 (2rvt + ) + Eo2 cos2 (2rv't + ' ) + 2 EO E' cos (2rvt + 4) cos (2v't + ' )

(3.7)
Applying a trigonometric identity to the third term, cosA cosB = [cos (A-B) + cos (A+B)]

yields

i(t) = E 0
2 cos 2 (2n-vt + ¢) + E0

2 cos 2 (2nv't + )')
(3.8)

+ Eo Eo [cos (2r(v-v')t + (')) + cos (24(v+v')t + (,+('))]

Because the detector cannot respond fast enough to capture the oscillations of the light

waves, on the order of 1015 per second, it averages the signals on a time scale long compared to

the period of oscillation (Benefi and Barrett, 1976). The only term that is not averaged is the part of

the last term with frequency (v-v'), since typically the frequency difference (v-v') is orders of

magnitude lower, only in the kHz-MHz range, which the detector can easily resolve. The time

dependent factors of the first two terms each average to 1/2, and the part of the last term with

frequency (v+v) has a mean value of zero, so it vanishes, resulting in the output signal

i(t) = Eo2 + E0
2) + Eo Eocos (2rt(v-v')t + (-')) (3.9)

The first two terms are constant in time, and the only time-varying term involves the frequency

difference (v-v') . By substituting the expressions for Vdetecto, and V'detectoi from above, the time
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varying signal at the detector from the two scattered beams has frequency

fDoppler = VdetectorVdetetor = V-\ V = CV (coSe -cos) (3.10)

Since the two beams are generated by a single source, the phase angles and 0' are identical and

the difference vanishes from i(t).
Then, by a similar trigonometric identity, cosA - cosB = 2 sin (B-A) sin (A+B)

and the resulting expression for the detected frequency is

fDoppler = 2 sin ac cos ] , (3.11)

where a = (o - 0) and 1 = (; + 01 )

More physically, a is half the intersection angle of the two incident beams, f3 is the angle the

object's velocity forms with the normal to the bisector of the two beams, and X is the wavelength

of the incident light. The crucial feature to note here is that the observed Doppler frequency has no

dependence on the angle 02 of the detector. This means there is no constraint on the positioning or

aperture size of the detector.

An alternate picture of the differential Doppler technique is the "fringe model," which is

valid only at low particle densities and small particle sizes, but is easier to visualize. In this picture,

instead of considering the interference of the scattered light from the two beams at the detector, we

look at interference of the two incident beams in the region where they cross.

The two incident beams are plane waves where they intersect, and accordingly form

alternating bright and dark planes of constructive and destructive interference called "fringes"

where they cross, as shown in figure 3.1. The spacing of these fringes is found to be

s=2sin ' (3.12)

where, as in figure 3.1, a is half the intersection angle of the two beams and X is the wavelength

of the incident light. A particle moving perpendicular to the fringe planes moves through alternating

bright and dark regions, and scatters light with the frequency of its velocity divided by the fringe

spacing, or more precisely
fDoppler= 2 v cos 3 sin a (3.13)

where p is the angle between the particle's velocity and the normal of the fringe planes. Here
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Figure 3.1 Particle crossing "fringe" planes of two intersecting beams

Figure 3.2 "Burst" Doppler signal: oscillates at Doppler frequency,
amplitude modulated by Gaussian beam intensity profile

58



again, the observed Doppler frequency is independent of the direction of detection.

The fringe region where the beams intersect is called the "measuring volume" and is

bounded by points where the light intensity is l/e2 of the maximum intensity. For beams with a
2 r0Gaussian intensity profile, the measuring volume is an ellipsoid with axes 2 ro, sin a ,and

os a, where r0 is the beam radius measured from the beam center to the l/e2 intensity points.

The scattered light signal obtained from a particle moving perpendicular to the fringe planes

is called a "burst" and a representative sketch appears in figure 3.2. The signal amplitude is

modulated by the Gaussian intensity profile of the intersection region, and the frequency is the

Doppler frequency.

3.1.2 Dantec Fiberflow LDV System

The basic components of the Dantec Fiberflow system used here are the laser, beamsplitter

and frequency shifter, fiber optic probe, photomultiplier, spectrum analyzer and computer, shown

in a schematic diagram in figure 3.3. The light source is an Argon ion laser (Ion Laser Technology,

Model 5500A-00, air-cooled, 300mW) which emits three main wavelengths, 514.5 nm (green),

488 nm (blue) and 476.5 nm (violet). The beam is directed into a series of optics where an acoustic

Bragg cell splits the beam and shifts the frequency of one of the resultant beams. The 40 MHz

frequency shift allows the LDV system to differentiate between velocity direction, by causing

positive and negative velocities of the same magnitude to have different Doppler frequencies. The

beams are separated into the three different wavelengths, and guided through a fiber optic cable to

the fiber optic probe.

The probe greatly simplifies the apparatus, because it is a mobile, self-aligned unit. The

probe is held in two rotating mounts attached to a set of translation stages, which allow control of

three positions and two angles of the beams. Upon exiting the probe, the two parallel beams pass

through an 80 mm focusing lens, which directs them to intersect at the focal point at a half-angle of

13.71° (0.239 rad), slightly'larger than the specification value of 13.36 ° (0.233 rad). The probe

also contains a photodetector which collects the light scattered backward and passes it back through
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the fiber optic cable to the photomultiplier.

According to Mie scattering theory, explained in Durst et al. (1981) and Drain (1980),

particles scatter the greatest light intensity in the forward direction, that is, the direction of the

incident beam. However, oblique backscattering at certain angles provides enough light intensity

for a reasonable signal and is the easiest arrangement in the Couette geometry studied here, where

the inner cylinder blocks forward scattering for most points in the flow. The arrangement in this

study is oblique backscattering with the probe directing the beams perpendicular to the cylinder

axis, through the outer cylinder wall.

The photomultiplier converts the scattered light signal to a voltage signal, amplifies the

signal according to the user-selected gain and high voltage parameters, and feeds the voltage signal

to the Burst Spectrum Analyzer (Dantec, Model 57N 10), which filters each signal, takes the

discrete Fourier transform, fits the peak frequency, and identifies that as the Doppler frequency.

The computer (PC 486) acts as a post-processor (via IEEE 488 interface) by calculating the

velocity from the fitted frequency and displaying a velocity distribution, typically containing the

calculated velocities from at least 1000 Doppler burst signals.

3.1.3 Operation of the Burst Spectrum Analyzer (BSA)

The spectrum analyzer plays a very important role in the LDV system since it processes the

Doppler signals extremely rapidly and uses superior fitting techniques that enable it to extract even

faint signals from noise. The BSA has several main functions, including taking the discrete Fourier

transform of the time-varying frequency signals, fitting the frequency spectrum, validating the

spectrum, and timing the arrival and transit times of each signal. The superior fitting techniques

include zooming in on the optimal frequency range, using the whole frequency spectrum in the fit,

and zero filling.

The BSA calculates the discrete Fourier transform of a Doppler signal, or burst, as follows
N-1

fk = Xn e-i2nk/N where fk is the value of the transform at the kth frequency value, and N is

the number of samples in time of function x(t). Once the frequency spectrum is complete, the BSA
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fits the spectrum with a sinc function

sin ( (f-f0) T) - sin(n (f-fo) T) (3.14)
7c (f-f0 ) T

centered about the frequency f0 where the global maximum of the spectrum is located. The sinc

function is the frequency spectrum for a sinusoid of frequency fo sampled for only a limited

"window" of time, T. Finally, the BSA validates the spectrum by comparing the heights of the two

largest local maxima. If the ratio between their heights is greater than 4, the spectrum is accepted.

Otherwise, it is rejected. The determining value of 4 was chosen empirically as a compromise

between data quality and rate (Burst Spectrum Analyzer User's Guide). The validation process is

designed to reject spectra where two or more particles with different velocities pass through the

measuring volume at the same time.

Meanwhile, the BSA uses the time-varying burst signal to determine when to start

sampling. When two filtered measures of the signal amplitude, the pedestal and envelope, shown

in figure 3.4, exceed a threshold voltage value of 50mV, the BSA starts sampling and starts the

timer. There are two further threshold values that the pedestal and envelope could surpass, and

then the BSA would restart the timer and the sampling. The idea is to sample only from the center

of the burst signal, where the signal amplitude is the largest (Burst Spectrum Analyzer User's

Guide, 1993).

In the first step of taking the discrete Fourier transform, the resolution of the transform is

limited by the sampling frequency. By the Nyquist criterion, the sampling frequency must be at

least twice the upper frequency in the signal in order to get an accurate representation. This is a

difficult constraint to meet since the frequency range of the BSA is limited to 80 MHz. The way the

BSA gets around this constraint is by shifting the frequency spectrum so that the center frequency,

which the user selects, is shifted to zero. Then, the maximum frequency is only half the selected

bandwidth, and the BSA's programmed sampling rate of 1.5 times the bandwidth is more than

sufficient (Burst Spectrum Analyzer User's Guide, 1993).

In the second step of fitting the spectrum, the BSA has two advantages over a counter

processor. First, all the data in the spectrum is utilized in the fit, instead of only the data near the
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Figure 3.4 Filtering of the Doppler signal by the Burst Spectrum Analyzer into
the envelope and pedestal (reproduced from Burst Spectrum Analyzer
User's Guide, 1993).
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zero crossings. Also, the BSA uses "zero-filling" to add an equal number of zeroes to the signal

samples to aid in interpolation. This method does not affect the spectrum but doubles the number

of frequency samples and accordingly improves the frequency spectrum fit (Burst Spectrum

Analyzer User's Guide, 1993).

3.1.4 Assessment of the LDV System for Suspension Studies

The Dantec Fiberflow system we use has fine spatial resolution, with measuring volume

dimensions of 168 x 35 x 35 pm 3 in ar. Also, the system has fine temporal resolution, with data

acquisition times ranging from 1.7 x 10-7 to 0.044 s, compared with an estimated collision interval

of 0.2 s, for a suspension with 4=0.5 and 1y=0 s - . The fine temporal resolution made the LDV

method look especially favorable at the beginning of this project, when the best time resolution

available from alternative methods was 1/30 s for Digital Particle Imaging Velocimetry and 0.1 s

for Nuclear Magnetic Resonance Imaging. Due to the advent of high speed cameras and stronger

magnets these methods have increased in speed to resolution times of 2 x 10-4 - 2 x 10-3 (Kodak

High Speed Camera Catalog, 1996) and 3 x 10-3 s (Iwamiya et al., 1994), respectively, to become

competitive with LDV, but the errors involved in extracting fluctuating velocities from the recorded

images are still large, and LDV still remains the measurement method that is best-suited to

measuring fluctuations.

The LDV system utilizes one wavelength of light emitted from the Argon ion laser, the

green beam with wavelength 514.5 nm. This allows us to measure one velocity component at a

time. In order to measure multiple velocity components simultaneously, we would have to use

different wavelengths for the different components in order to separate the signals, and a separate

spectrum analyzer for each component.

A major limitation of the LDV method is that it requires the flow medium to be transparent.

Otherwise, the scattered light signals are often attenuated until they vanish on the way back to the

photodetector; in some cases, the incident beams cannot even penetrate into the flow far enough to

intersect. This means that for a concentrated suspension, we must match the refractive index of the
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fluid to that of the particles, so that the incident beams pass through particles and fluid as if they are

a single uniform medium, and the particles are "invisible." Since refractive index is a function of

the wavelength of the incident light, the matching of the two phases should be done at the LDV

wavelength. Also, since the refractive index of the fluid is a function of temperature, but the

particle refractive index is not, the temperature of the system should be maintained near the

refractive index matching temperature. Any mismatch in the refractive indices of the two phases

causes attenuation of the LDV signal.

3.2 Materials

3.2.1 Particle and Fluid Description

The particles we selected were Lucite 47G, a copolymer of poly (methyl methacrylate

(95%) - ethyl acrylate (5%)), manufactured by ICI Corp. In order to insure as monodisperse a

suspension as possible, we used only the particles in the size range 180 to 212 gm diameter. We

separated these particles from the others by dry-sieving the particles by hand three times through

brass sieves (VWR) for each batch, with only the particles landing on the 80 mesh sieve (180-212

gn diameter) in the final round accepted. Nominally, these particles have average diameter 196 +

16 gm. We chose particles in this size range for two reasons. First, these particles had the greatest

clarity in the optical micrographs we took of various size ranges. They were also the particles

closest in size to the spatial resolution of our LDV system, but that still were found in relative

abundance in the Lucite 47G size distribution. The particles come from a single lot of Lucite 47G.

The particle density and refractive index were matched by a fluid mixture with mass

fractions of 50.45% Triton X-100 (alkyl aryl polyether alcohol) (J.T. Baker), 27.9% 1,6

Dibromohexane (Aldrich), and 21.65% UCON lubricant 75-H-90,000 (polyalkylene glycol)

(Union Carbide). Each of these components provides a different salient feature of the mixture.

Triton X-100 has high refractive index, 1,6, Dibromohexane has high density, and UCON 75-H-

90,000 has high viscosity. The mixture density is 1.183 + 0.001 g/cm 3, the refractive index at 589
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nm and 220 C is 1.4880 ± 0.0007, and the viscosity at 220 C is 0.84 Pa s.

The fluid mixture is based on a recipe suggested and subsequently fully characterized by

Michael Lyon (1997; Lyon and Leal, 1998), adapted to match our specific particles. The mixture

must have at least three components in order to allow the density and refractive index to be tuned

independently. A small amount of Tinuvin 328 antioxidant was added to the mixture to prevent the

Dibromohexane from degrading. (Abbott et al., 1991)

3.2.2 Density Matching Procedure

The most difficult part of matching the fluid and particle densities was measuring the

particle density. We did not have a density gradient column available, so our matching method

consisted of mixing many different fluids with a range of densities close to the Lucite 47G

specification and observing the time it took for the particles to rise or sink. The mixtures where the

particles remained suspended the longest bracketed the particle density. The densities of the fluid

mixtures were known to be the average of the components' densities weighted by the volume

fractions of the components in the mixture. The final density of the matching mixture was 1.183 +

0.001 g/cm3, where the uncertainty comes from the uncertainty in distinguishing between the

suitability of different mixtures that are close to the particle density (and the uncertainty in the

specified density of Triton X-100). We erred on the side of the particles sinking in the fluid,

because it had been observed that they could be resuspended by shearing the suspension, which is

not necessarily true for particles floating at a free surface. (Gadala-Maria and Acrivos, 1979;

Leighton and Acrivos, 1986; Krishnan, 1994)

Before utilizing this method of measuring the particle density, we also attempted two other

methods, but they were less accurate. We measured the liquid volume displaced by a known mass

of particles, where measuring the exact change in volume was the limiting factor. Also, we timed

the settling of individual particles in a long and wide tube of water, where the uncertainty in the

exact size of each individual particle and the small number of reproducible trials compared to the

number required for meaningful statistics caused the most inaccuracy.
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3.2.3 Refractive Index Matching Procedure

We matched the particle and fluid refractive indices in a two step process. First, we

measured the particle refractive index, and then found a fluid mixture with the same refractive

index at the average lab temperature. Finding the fluid mixture with the desired refractive index

was not as straightforward as in the case of the density. According to an index-matching technician

at Cargille Optical Liquids Labs, the refractive index of a liquid mixture is the volume fraction

weighted average of the refractive indices of the components, if the components are nonpolar. If

any of the components is polar, the refractive index will be a nonlinear function of the

composition. In this case, only 1,6 Dibromohexane was definitely nonpolar. We measured the

refractive indices of the components as a function of temperature using a temperature-controlled

Abbe refractometer (model 10450), and then used the volume fraction weighted average as an

initial guess for the mixture refractive index. We mixed several fluids with the same, desired

density, and refractive indices in a narrow range about the volume fraction average value. We

measured the refractive indices of these various mixtures, and revised the composition until we

found a mixture that matched the measured particle refractive index at the average lab temperature

of 22 + 2 C.

We measured the particle refractive index by making use of the temperature sensitivity of

the fluid refractive index, using a technique very similar to that of Koh (1991), Koh et al. (1994),

Kapoor (1994), and Lyon and Leal (1998). We placed a 2% particle volume fraction suspension of

the sieved Lucite 47G particles in one of the test liquids with refractive index close to the particle

specification value in a water-jacketed cylindrical glass cuvette with 50 mm path length (Starna

Cells Inc.). We split a laser beam using a 50/50 plate beamsplitter (Melles Griot), directed one of

the resulting beams through the cuvette and measured the transmitted light intensity that passed

through the cuvette and through a 5 mm diameter pinhole to a photodetector placed behind the

cuvette. The incident laser beam power was monitored simultaneously by a second photodetector,

which was placed in the path of the other resulting beam. The photodetectors (Newport, model

815/818 SL) were connected through an A to D board to a Mac Quadra 800 computer, and the
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output voltages were read at set intervals by a LabVIEW program written by David Lee, and

converted back to power measurements by a calibration of output voltage vs. power reading

performed earlier. A schematic view of this apparatus appears in figure 3.5. We controlled the

temperature in the cuvette by connecting the jacket to a temperature-controlled water bath

(controller-VWR; cooler-Neslab). When we varied the cuvette temperature, the fluid refractive

index changed, but the particle refractive index remained the same. We identified the best refractive

index match with the temperature at which the suspension transmitted the most light intensity,

relative to the current incident beam power. Then, we measured the refractive index of the test fluid

at that optimal temperature to get the value of the particle refractive index.

Since refractive index is a function of the wavelength of the incident light, we used one of

the beams from the LDV system as the incident beam (514.5 nm) to ensure we measured the

relevant matching refractive index for our specific system. The Abbe refractometer could only

measure the refractive index of the liquids at the wavelength of the sodium D line, or 589 nm, but

we expected that two liquids that had the same refractive index at 589 nm would have nearly

identical refractive indices at 514.5 nm, based on the data in the Cargille Specialty Optical Liquids

catalog. Therefore, if the test liquid and the average lab temperature liquid have the same refractive

index at 589 nm, in the Abbe refractometer, we expect them to have nearly identical refractive

indices at 514.5 nm, in the LDV system.

In order to ensure our temperature measurements were accurate, we placed a thermometer

in the water bath and checked that it agreed with the readings of a thermocouple (Omega, J-type)

placed in the cuvette. From comparing the bath thermometer and cuvette thermocouple readings,

we found it was necessary to wait 15 minutes for the cuvette to come to thermal equilibrium with

the bath at each new temperature set by the bath controller and spaced our light intensity

measurements accordingly.

We made measurements with three test fluids and used fresh particles each time. The

results are shown in figure 3.6. We observed some variation in the optimal match refractive index

among the three samples. We took the mean of the three values to be the measured particle

68



refractive index and the standard deviation as the uncertainty, yielding a final value of 1.4880 +

0.0007.

After completing this detailed process, in an ideal situation, we would be able to control the

lab temperature in order that the refractive index match might be maintained. Unfortunately, the

temperature in our lab does vary, but almost always keeps the fluid refractive index within the

uncertainty range of the particle refractive index. Thermally isolating the flow cell is impractical due

to the presence of the large aluminum inner cylinder which conducts heat efficiently and maintains

the suspension at the current room temperature. We decided that it is sufficient to monitor the

temperature in the fluid surrounding the concentric cylinders to indicate the current fluid refractive

index.

3.2.4 Scattering Sites are Bubbles in Particles

With such an emphasis on refractive index matching in our system, an important question

arises. How does LDV, which relies on scattering, collect any signals at all? If the refractive

indices of the fluid and particles are perfectly matched, there is no scattering, since the light passes

through both phases as if they are a single medium. The answer appears in the optical micrograph

of the particles at 200x magnification in figure 3.7. The particles actually contain many tiny

bubbles of monomer, trapped at the time of polymerization of the particles, which are in the size

range 1 to 5 gm, about the right size for LDV scattering particles. These bubbles have a

significantly different refractive index from the fluid and the bulk of the particles, and therefore are

quite effective scatterers which provide the signals for LDV measurements. We made a rough

visual estimate from optical micrographs that each particle contains about 125 scattering sites on

average, which turned out to be an overestimate, and accordingly indicates an upper bound.
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Figure 3.6 Plot of data sets from three refractive index matching runs,
each with a different suspending liquid in the 2% concentrated test
suspension. The average particle refractive index, computed from
the average of the peak values, was 1.4880 + 0.0007.
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Figure 3.7 Optical micrographs of Lucite 47G particles, 180-212 gm
diameter, revealing bubbles of monomer inside the particles which
act as scattering sites.

a) 100x magnification; b) 200x magnification.
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3.3 Couette Flow Cell Design

The Couette cell is a device for generating simple shearing flow between concentric

cylinders. The basic features of the design were modeled on an existing flow cell borrowed from

Professor Howard Stone, in the Division of Engineering and Applied Sciences at Harvard

University, which was built by Professor Sameer Madanshetty, Department of Mechanical and

Aerospace Engineering Department, Boston University (Madanshetty et al., 1996), and used

temporarily in our lab for some preliminary LDV experiments. Our design is shown in side view in

figure 3.3(a) and in top view in figure 3.8(b).

The main common elements of the design are that the inner cylinder (1) is rotated by a

motor (9) placed above the cylinder and connected to the cylinder by a shaft and coupling (10), and

the outer cylinder (2) is stationary and transparent and acts as a window for a camera, or LDV. The

top of the flow is open, which allows easy replacement of the suspension sample.

3.3.1 Dimensions

The main size constraints on the flow included making the gap wide enough to accomodate

enough particles across so that the suspension properties would be independent of the gap width to

particle diameter ratio, making the gap width to inner cylinder radius as small as possible to make

the shear stress as uniform across the gap as possible, making the flow tall enough that vertical end

effects would be negligible near the middle of the flow, and making the center to outer box wall

perpendicular distance small enough that the incident LDV beams could intersect as far inside the

flow as the cylinders' center, required for measuring the radial velocity fluctuations.

The key dimensions of the flow cell are as follows. The inner cylinder radius is 5.715 cm

(2.25 in.), and cone angle at the bottom is about 6.4 °. The outer cylinder inner radius is 6.31 cm,

resulting in a gap width of 0.595 cm, which is 10.4% of the inner cylinder radius and about 30

particle diameters wide. This gap to inner cylinder radius ratio produces a nearly homogeneous

shear flow with about 20% variation in the shear stress from the inner to the outer cylinder wall.

The gap width of 30 particle diameters is above the minimum gap to diameter ratio of around 16-18

73



particle diameters (Koh et al., 1994; Hampton et al., 1997) at which the suspension flow can be

considered a continuum. The average outer cylinder outer radius is 6.636 cm. The working height

of the flow ranges from 19.6 to 19.8 cm, about 33 gap widths, which is tall enough that the flow

near the midplane will be two-dimensional (Koh, 1991). The outer wall of the box (3) containing

refractive index matching fluid is a minimum distance of 8.55 cm from the center of the inner

cylinder. Typically, the annular gap is filled with about 530 ml of suspension and the box is filled

slightly over halfway with 1100 ml matching fluid.

The dimensions of the flow cell resulted in the following values for several relevant

dimensionles groups. The particle Reynolds number, given by
Rep a2

Rep- f (1.4x 10-5 s)? , (3.15)

where ranges from about 0.8 to 15 s-l, is small enough that the particles' inertia may be

neglected. The Brownian Peclet number, given by
6 7 tflf a3- 3.1

PeB = kT -(3.8 x 109 s) (3.16)

has a very large value, which indicates unambiguously that Brownian and colloidal forces are

negligible in this flow. The overall flow Reynolds number,
Re = P U (Router - Rinner)Re= ---- ·i~---- , (3.17)

ranges from a minimum of 0.009 for a 50% concentrated suspension at 2 rpm to a maximum of

0.725 for a 2% suspension at 15 rpm. The Taylor number, which indicates when a Couette inertial

instability will occur, is given by

Ta = 2 (Ver(uter-Rir )P) (Ruter-Rinner) ' (5.38 x 10'4)(rpm speed)2 (3.18)
TI ginne r

for the pure suspending liquid. For the maximum rotation speed of 15 rpm, Ta is approximately

0.12, which is much less than the critical value of 3416 for the first onset of unstable flow

(Kundu, 1990). Consequently, the flow was never susceptible to the Couette inertial instability

during any of these experiments.
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3.3.2 Parts and Materials

The parts of the apparatus that were purchased complete were the motor and controller (9)

(Motomatic II Servo Amplifier with E286 matching gearmotor, with 50:1 gear reduction, Electro-

Craft/Rockwell Automation),the ball bearing (5) (Hoover-NSK), and the photoelectric switches

(14) (Idec Corp.). The motor was rated with maximum speed 100 rpm and maximum torque 55 lb-

in. The MIT Central Machine Shop built all the metal parts, which were made of aluminum,

including the inner cylinder (1), coupling connecting the shaft to the motor (10), base plate (7),

lower base plate (12), motor support arm (8), upper ball bearing support frame (4), chopper wheel

on shaft (13), and tilt table. The inner cylinder was black anodized to reduce reflections of the

incident and scattered laser light. The teflon bearing (6) supporting the bottom of the rotating inner

cylinder was machined by Dan-Kar Corporation, and all the other plastic parts, including the Lucite

outer cylinder and the Lucite box, were built by Altec Plastics.

3.3.3 Important Design Features

The goal in designing the new Couette cell was to insure that the flow would be as spatially

homogeneous as possible, in order to mimic a theoretical homogeneous shear flow, and that the

mean flow velocity would not fluctuate in time once the flow reached a steady state, so that the

observed velocity fluctuations would only come from inter-particle collisions. There are four

important design features that made the Couette cell able to create as homogeneous and steady a

flow as possible and to handle the suspension materials: fixed alignment of the inner cylinder and

motor, concentricity of the cylinders, inner cylinder conical bottom, and proper sealing of the outer

cylinder and box.

First, the inner cylinder is fixed at both ends, held at the top by the ball bearing, and at the

bottom by the teflon bearing; the axis of the cylinder is very accurately aligned with the motor shaft

axis by means of the coupling. Whereas the inner cylincd.r sits in the lower teflon bearing, the

upper ball bearing is pressed on to the inner cylinder shaft and also into the bearing support frame,

which is connected to the base plate. The arms of the bearing support frame are connected with
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pins as well as screws to prevent them from acting like hinges, lending the frame extra resistance to

bending. The precise and rigid alignment of the inner cylinder and the motor limits runout, or

horizontal displacement during rotation, of the inner cylinder to only 38 gm, or 0.6% of the gap

width. When the annular gap is filled with suspension, runout can also lead to fluctuations in the

suspension surface height, as one side of the gap becomes slightly narrower and the other side

becomes slightly wider. For a 50% concentrated suspension at 15 rpm, the surface height variation

over a revolution was about mm and at 10 rpm and lower speeds was 0.5 mm or less, basically

undetectable, over a rest surface height of 19.6 cm, a fractional change of about 0.5% or less.

Because these horizontal and vertical fluctuations due to inner cylinder displacement are negligible,

we can claim that the inner cylinder is driving the flow in a steady and axisymmetric manner, and

does not create mean flow fluctuations. This is important because it would be undesirable for mean

flow velocity fluctuations to inflate the velocity fluctuations measured at a point in the flow.

Another feature is intended to make the flow as spatially homogeneous as possible. The

inner radius of the outer cylinder is made concentric with the inner cylinder axis, according to the

groove for the cylinder bottom cut into the base plate. This may seem like a trivial point, but

actually the outer cylinder was cut from a single piece of Lucite tubing, in which the extrusion

process often causes the inner and outer surfaces to be two cylinders which are not concentric. The

variation in tube wall thickness around the tube circumference is visible to the eye. So, making the

average radius or the outer radius concentric with the inner cylinder will yield an eccentric flow,

which is undesirable in this case. The top of the outer cylinder is free to move and is aligned with

the bottom by a set of adjustable viton rubber shims placed between the box inner wall and the

outer wall of the outer cylinder. Even if the outer and inner cylinders are not perfectly concentric,

that is a steady flow feature in the laboratory reference frame, not a fluctuation, and does not affect

our fluctuation measurements. In our original measurements, the outer cylinder radius varied at

most by + 2% of the gap size (when the outer cylinder average radius was made concentric with

the inner cylinder axis). After a later modification to improve the concentricity by shifting the outer

cylinder groove, the variation in radius was even less, estimated at maximum + 1% of the gap size.
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In the worst case scenario, for the 50% concentrated suspension, we observed a steady surface

height displacement from the rest height of 19.6 cm of 2, 4.5, and 6 mm for rotation speeds of 5,

10, and 15 rpm, respectively. That represents a fixed surface height displacement of only 1-3% of

the rest height. For lower concentrations, we observed even less displacement.

An additional feature intended to make the flow as spatially homogeneous as possible is

the conical bottom of the inner cylinder, modeled after the Couette design of Quinzani (1991). This

is designed to make the shear rate more uniform throughout the flow. If the cylinder were straight

along its entire length, the shear rate would be higher than average near the bottom of the flow,

since there is an extra velocity gradient in the vertical direction due to the base of the flow cell, and

the shear rate would be lower than average at the top, where the free surface lies. This shear rate

gradient could produce an nonuniform particle concentration profile in the vertical direction, which

we wish to avoid. For example, in the experiments of Leighton and Acrivos (1987b) and Chow et

al. (1994), particles in narrow-gap Couette flow were observed to migrate axially into a stagnant

region below the shearing apparatus and greatly enhance the local concentration there.

Consequently, the bottom of the inner cylinder is machined into a conical shape, so that the bottom

of the flow resembles a truncated cone and plate flow. The cone angle is chosen so that the average

shear rate in the annular gap above equals the average cone and plate shear rate in the cone gap

below. The cone and plate flow is truncated in order to avoid particles lodging in the narrowest part

of the cone, so that the narrowest part of the cone is at least 1 mm, or 5 particle diameters, tall, at a

radius of 1.27 cm. This results in a slightly lower shear rate in the cone and plate compared with

the annular gap above, but the difference is at most about 7% of the average shear rate.

Finally, the method of sealing the flow cell was adapted to accomodate the unusual organic

solvents in the refractive index matching fluid. 1,6 dibromohexane swells and weakens methyl

chloride and silicone glue, which are the standard sealants for joining plexiglass parts or plexiglass

and metal parts, respectively. In contrast, viton, a fluoropolymer, resists halogenated

hydrocarbons like 1,6 Dibromohexane. Accordingly, the Lucite outer cylinder and box are sealed

on the sides and bottom with viton o-rings and gaskets (11) (Greene Rubber Co.) .
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One extra feature to note is that the design is modular, with the intent that multiple

geometries can be studied without rebuilding the entire apparatus. Future experiments with wide

gap Couette flow, eccentric cylinders, or Couette flow with an obstruction would require only a

new or modified baseplate, new outer cylinder, and possibly a new box.

3.3.4 Alignment of the Couette Device

The whole Couette device is attached to the lower baseplate, which is clamped to the tilt

table below. The tilt table allows the Couette flow cell to be leveled with respect to the optical table

(Newport, model RP Reliance) it is secured to and can be used to adjust the height of the flow. The

tilt table has a kinematic design, with three adjustable legs, and two extra legs to prevent toppling

that retract during alignment. The tilt table may be the least rigid part of the apparatus, and may

allow for undesired vibration of the entire Couette device as a rigid body. However, if there are

vibrations, they should be consistent between suspension experiments, since the Couette cell

remained tightly clamped in a fixed position on the tilt table, for nearly all the experiments

presented here, and the tilt table legs remained locked in one position.

After the Couette device was assembled and the base plate leveled with respect to the optical

table using the mobile tilt table and a spirit level indicator, the Couette cell and LDV probe were

aligned. The idea was to align the probe and inner cylinder once while the flow device was empty,

or only filled with a Newtonian fluid, and then subsequently to align the two cylinders each time

the system was refilled with a new suspension. We assumed that the box and inner cylinder axes

were parallel, since they both fit into carefully machined grooves in the base plate, and the box was

tightly bolted to the plate. We aligned the probe with the box by taping a flat mirror firmly on the

outer box wall, shining the LDV beams on to the mirror so that they met exactly on the mirror

surface, and checking that each reflected beam overlapped with the other incident beam, which we

determined by comparing the incident and reflected dots on a translucent surface. The probe could

be rotated about its own axis (angle ) to direct the two incident beams in a horizontal or a vertical

plane. When there was a discrepancy between the incident and reflected beams in the vertical plane,
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we were able to make very fine adjustments by tilting the probe (angle 0) until the beams

overlapped. The probe orientation in the horizontal plane was fixed, so we had to rotate the Couette

cell and clamp it in a new position on the tilt table to align the incident and reflected beams.

Next, the edges of the inner cylinder were located by shining the beams in a vertical plane

toward the inner cylinder when the annular gap was empty or filled with a dilute suspension. A

piece of white paper was taped on the back wall of the box so that the spots created by the two

beams passing through the device were clearly visible. The beams were translated from one edge to

the other until the positions where the spots were equally bright on each side were found. Then,

the midpoint between these positions was defined as the center of the inner cylinder.

Subsequently, the probe was moved to the center line and the beams were directed in a

horizontal plane. The inner cylinder wall was located by moving the beams inward and outward

until the far and near ends of the intersection volume were observed to touch the inner cylinder

wall. The midpoint between these two recorded positions was identified as the middle of the

intersection volume touching the inner cylinder wall.

Finally, we checked the alignment of angle . The beams were moved to the center line

and directed in an appvximately horizontal plane. We measured the tangential velocity while

slightly varying the angle about the approximate horizontal value. We identified the proper angle,

in which the beams were directed in a horizontal plane relative to the flow, with the maximum

mean velocity value we measured. Once these alignment steps were completed, the Couette device

remained clamped to the tilt table in fixed position and the LDV probe angles were never reset.

3.3.5 Measuring the Inner Cylinder Rotation Rate

We time the rotation rate of the inner cylinder independently for each run. A chopper wheel

with four blades made of black delrin (13) is fixed on the shaft of the inner cylinder. A pair of

photoelectric switches (14) (Idec Corp.) is fixed at one radial position so that the chopper wheel

blades pass between them. One photoelectric switch sends out a beam, and the other receives it.

When the unobstructed beam strikes the receiver, it produces a constant positive DC voltage. When

81



the beam is obstructed, the receiver produces zero voltage. Consequently, when the blades chop

the beam, the receiver signal looks like a series of step functions.

The photoelectric switches are connected to our Mac Quadra 800 computer through an A/D

board (National Instruments) where the original analog voltage signal is digitized and read by

LabVIEW (version 3.0). A LabVIEW program written by David Lee uses the step function signal

to time the period of one full revolution. The first step change in voltage zeroes the timer. The next

step change in voltage triggers the timer to start, and then the timer runs for eight more step

changes, and finally displays the total time recorded for all four blades to pass the beam. A driver

program also written by David Lee runs the timer program for a selected time interval and records

the timed period of each revolution in a text file.

Because the inner cylinder rotation speed is measured with a method completely

independent of LDV, the inner cylinder can be used to test the accuracy of LDV (i.e. how different

is the mean LDV velocity we measure from the true velocity?). Since the rotation period and inner

cylinder radius are known accurately, the velocity at the surface of the inner cylinder is known

precisely, and can be compared with the mean LDV velocity we measure. We tested a range of

speeds (0.3 to 60 rpm/ 0.16 to 36.6 cm/s) without fluid and (0.7 to 10 rpm/ 0.42 to 6 cm/s) with

fluid in the Couette gap, and found that LDV has an overall accuracy of + 2.5%. This is typical for

LDV (Genieser, 1997; Liu, 1997).

3.4 Measurement Procedures

3.4.1 Suspension Loading Procedure

First, the three component fluid with mass fractions specified above was thoroughly

mixed, and the particles were sieved. Since the fluid and particles have almost identical densities,

particle mass fraction and particle volume fraction of the suspension are the same, so the desired

particle volume fraction was attained for each suspension by putting together fluid and particles in

corresponding mass fractions. The fluid and particles were vigorously stirred by hand and
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degassed in a vacuum oven (VWR) for up to 4 hours, with the very viscous concentrated

suspensions requiring the most time to degas. It was important to get the bubbles out of the

suspension so that they did not affect the suspension rheology and so that the LDV did not mistake

scattering coming from tiny bubbles in the fluid for scattering coming from suspended particles.

The suspension was poured down the walls of the cylinders into the gap, in a further attempt to

avoid bubble formation, and a bleed valve screw underneath the lower teflon bearing prevented air

from being trapped during pouring or from being drawn into the flow during rotation.

After the suspension was poured into the annular gap of the Couette cell, the outer cylinder

was realigned with the inner cylinder to produce minimum suspension surface height variations

around the cylinder. Whereas the bottom of the outer cylinder was fixed in a groove and sealed

with an o-ring, the top was free to move. We fixed the position of the top of the outer cylinder by

fitting shims in between the outer wall of the outer cylinder and the inner wall of the box.

3.4.2 Steady State Measurements

All the measurements presented here were made when the velocity and particle

concentration profiles had reached steady state. Nott and Brady (1994) estimate the time required

for the coupled particle concentration and velocity profiles to reach steady state as follows,

tss ()4 d() Yavg a /avg (3.19)

where H is the gap width, ?avg is the average suspension shear rate in the gap, and d() indicates

the dependence of the particle self-diffusivity on particle volume fraction. Based on the

experimental results of Leighton and Acrivos (1987a), Phung (1993) and Phan and Leighton

(1994), Nott and Brady approximate the value of 12 d() as 1 for concentrated suspensions. For

the dimensions of our flow, the time to reach steady state was approximately 18 minutes for a

30%, 40% or 50% concentrated suspension at 10 rpm. We always ran the Couette device at the

speed of interest for at least 50 minutes before starting the velocity measurements, usually starting

with the high speeds (5-15 rpm). The velocity fluctuation measurements typically lasted 16 minutes

each, with some series of measurements lasting several hours. A useful feature of non-colloidal
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suspensions is that since Brownian motion is absent, once the flow is stopped, the particles are

"frozen" in place, and remain distributed in the steady state arrangement. The only phenomenon

that can disturb this arrangement is settling of the particles.

Because the particles are slightly negatively buoyant in the fluid, we observed slight settling

overnight. To resuspend the particles, we ran the Couette flow at 10 rpm for an hour before almost

every series of measurements, and ran the Couette at 10 rpm or higher speeds for several hours on

days when experiments were not performed (Gadala-Maria and Acrivos, 1979; Leighton and

Acrivos, 1986; Krishnan, 1994). During the course of an experiment, the shearing flow

counteracted settling, and no detectable negative mean vertical velocity was observed at any point.

The reason steady state measurements are attractive is that they are the most easily

reproducible. In Chapter 4, we verify reproducibility of these measurements. In a concentrated

non-colloidal suspension, the initial condition of a homogeneous mixture of fluid and particles is

needed for well-defined transient experiments, but is extremely difficult to duplicate, for several

reasons. First, once the steady state concentration profile has formed, it remains, which means that

starting from a homogenous suspension again involves removing the suspension, mixing,

degassing, and pouring it into the Couette again. Also, there is no opportunity for realignment of

the outer cylinder, since that involves shearing as well, so the flow may not be exactly the same.

Finally, during pouring, some particle migration occurs, which may be different from run to run,

and has been observed to result in an initially non uniform concentration profile (Chow et al.,

1994). For all these reasons, steady-state measurements are more reliable than transient

measurements.

3.4.3 Measurement of Three Velocity Components

We measure the mean and fluctuating velocities in two locations in the flow, as shown in

figure 3.9. We measure the tangential and vertical velocity at the place closest to the probe, labeled

00, and scan across the gap forward and backward. We measure the radial and vertical velocity at a

location on the side of the flow, labeled 900, and we scan across the gap left to right. The whole
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flow is enclosed in a square Lucite box, filled with a fluid that matches the refractive index of the

Lucite walls so that velocities can be measured at points off of the 0 ° axis.

The refractive index matching fluid was a mixture of Triton X- 100 and 1,6 dibromohexane,

since those components were already known to match PMMA closely, and were compatible with

the suspending fluid in case any leaks occurred. The walls of the box and outer cylinder actually

have a slightly different refractive index from the particles, even though the materials are nominally

the same. This is likely due to orientation of the PMMA molecules during extrusion of the Lucite

tubing and sheets or slight differences in composition. The proper refractive index for the box fluid

was found through a less exact method than that used for the suspending fluid. The method

involved tuning a test fluid by adding small amounts of dibromohexane in order to make a piece of

Lucite sitting in the fluid appear the least visible to the eye in ambient daylight. The composition of

the optimal test fluid consisted of mass fractions: 97.4% Triton X-100 and 2.6% 1,6

dibromohexane. Later, the refractive index of the mixture was measured and found to be 1.491 at

the average laboratory temperature of 22 ° C.

Another important point is that the beams become attenuated as they pass through the

suspension, due to scattering by imperfections in the particles, some of which are on the order of

the particle size. This limits the region of points we can access in the 90 ° position, since the beams

must pass through a much longer path through the suspension there than at the 0 ° position. The

most accessible 90° points are on the outer edge. All the measurements, aside from a few vertical

scans, were taken at a height of 9.5 cm above the base plate surface, about 0.5 cm below the

midpoint of the suspension height.

3.4.4 Verification that the Number of Bursts Collected is Statistically Significant

In order to check that we were collecting a statistically significant number of bursts for

calculating the mean and standard deviation of the velocity distribution, we repeated measurements

of the same point in a 50% concentrated suspension, collecting varying numbers of bursts. Since
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the 50% concentrated suspension has the most frequent collisions at a given shear rate, it has the

largest amount of random motion, and is therefore the suspension for which the statistics question

is the most relevant. We measured the tangential velocity at the 0 ° location and in the center of the

gap, where we could collect arbitrary numbers of bursts in a reasonable amount of time. We made

three measurements collecting 5000 bursts each, and used this as an ideal value of the mean and

standard deviation. We found, from the data shown in figure 3.10, that the mean velocity

approached the ideal value for runs where at least 1000 bursts were collected, and that the standard

deviation approached the ideal value for runs where at least 1000 bursts were collected, but was

much closer where 3000 bursts were collected.

For all the 30%-50% concentrated suspension runs, we tried to collect as many bursts as

possible in the measuring time limit of 1000 seconds. When there were runs with fewer than 1000

bursts collected, we grouped all the data from several of these runs and found the mean and

standard deviation of this combined distribution. The combined distribution almost always had at

least 1000 bursts. We added an extra term to the uncertainty in the average standard deviation,

which was the standard deviation of the set of standard deviations from the original runs. This

procedure typically applied to the radial velocity, where we often measured very few signals during

each run. When there were multiple runs at the same speed and location with more than 1000

bursts each, we considered each an independent run, and averaged the set of mean and standard

deviation values only. In this case we did not give the runs with more points greater weight in the

average, because we considered them all equally valid. This procedure typically applied to the

vertical and tangential velocities.

3.4.5 Handling Irregularities in the LDV Velocity Distributions

Some of the velocity distributions we collected contained outliers, single points or groups

of points that were far from the main Gaussian-like peak in the histogram, shown schematically in

figure 3.11. We believe these outliers are spurious signals, since many of them indicate highly

improbable velocities that correspond to the limits of the LDV frequency bandwidth, which
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Figure 3.10 Repeated measurements in a 50% concentrated suspension at

the 0 ° location, r/Ro = 0.954, average shear rate = 10 s-1.
The solid circles represent repeated measurements with varying
numbers of bursts collected. The hollow circles represent a
measurement from another day where 5000 bursts were collected.
a) Mean tangential velocity plotted against number of bursts
b) (Tangential velocity fluctuation) 2 plotted against number of bursts
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Figure 3.11 Sketch of irregularities found in LDV velocity distributions
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nothing to do with the flow we are measuring. The rule that we applied consistently to all the data

files was that we removed any velocity points that were separated from the majority of the

distribution by a gap in velocity of 1 mm/s or more. We chose 1 mm/s as the cutoff interval

because it was greater than or equal to almost all of the standard deviation values we measured.

Effectively, we were removing points that were separated from the edge of the main curve by at

least one standard deviation.

In the dilute 2% suspension, some of the velocity distributions measured at the 90° location

had long tails on one side of the histogram. Not all the points in the tails were outliers, because

they were not separated from the rest of the peak by as much as 1 mm/s. We also believed that the

tails were spurious data, because they were clearly associated with noisy LDV signals, usually at

points that were close to the outer edge of the flow, where the highly amplified BSA parameters we

were using were not optimal. This was especially a problem for radial velocities of points at the

+90 ° location in the flow. Here, our goal was to make the distributions as symmetrical as possible.

We only removed points from the tail that were farther away from the mean than the farthest points

on the other side of the peak, and that were separated from the main peak by a significant gap (-0.3

mm/s) in velocity between points in the tail.

The final irregularity we encountered in the velocity distributions was the presence of zero

peaks in the tangential velocity data we collected from the 30%, 40% and 50% concentrated

suspensions. Each velocity distibution contained a peak about zero, and about a nonzero value,

yielding a bimodal velocity distribution. We suspect the zero peaks are detected because the

measuring volume is touching the outer cylinder wall, or a layer of particles or fluid immediately

adjacent to it. A further discussion of the source of the zero peaks continues in section 3.5.3.7.

In order to separate the zero and nonzero peaks, which often overlapped, we binned the

data into the smoothest histogram attainable and fit each resulting bimodal distribution with the sum

of two Gaussian curves, where the means, standard deviations, and peak heights were adjustable

parameters. The fitting routine was a least-squares fit in Kaleidagraph 3.0 on the Mac Quadra 800.

First, we made an initial guess of the mean and standard deviation values and found the best fit
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peak heights. Then, we optimized all the parameters together starting from the initial guess. We

identified the mean and standard deviation of the nonzero velocity peak as the correct values

associated with that run. We also incorporated the error in the double Gaussian fit into the

uncertainty estimate for runs with zero peaks.

3.5 Data Reduction Method

3.5.1 Shear Rate

We calculate the shear rate as a function of radial position for the 30%, 40%, and 50%

concentrated suspensions in three steps. First, we measure the mean tangential velocity profile with

20-30 points across the gap. Then, we divide the flow in half into an inner and outer region, and

define a third, middle region that overlaps with about half of each of the inner and outer regions.

We find a quadratic fit of the mean velocity profile u(r) = A + B r + C r2 in each of the regions,

with typical R 2 values ranging from 0.995 to 0.9998. We differentiate the fits in r, and then use

the relation: I? = J r d rj | = A - C r to calculate the shear rate profile in each region. We

join the three shear rate profiles at the points where they intersect with each other into a single

piecewise continuous profile that covers the whole gap.

For the seeded Newtonian liquid, dilute 2% concentrated suspension and semi-dilute 10%

concentrated suspension, the most accurate fits of the velocity profile (based on R2 values) that we

could find actually were global fits involving all the points across the entire gap together. In these

cases, we followed the same steps as above, except that we did not divide the flow into regions.

3.5.2 Concentration

We estimate the relative particle concentration profile from the calculated shear rate profile.
Mathematically, the shear stress must decrease as across the gap, according to the tangential

component of the momentum equation. The ratio of the local shear stress to the local shear rate

yields a profile of the local suspension viscosity. If we assume that the Krieger viscosity function
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(Krieger, 1972), given as

= (1 - n)I1_ (3.20)

describes the relation between the particle concentration and the suspension viscosity, then from

the local viscosity profile we can calculate a local concentration profile. This is only a relative

concentration profile, however, because we don't measure the absolute magnitude of the stress.

We normalize the relative concentration profile so that the average concentration is the bulk

concentration.

We can compare the results from this method to the method of Lyon and Leal (1998) of

measuring concentration by timing the separation between adjacent LDV bursts. They estimate the

average separation between consecutive particles crossing the measuring volume as the average

product of the time between the consecutive particles crossing the measuring volume and the

velocity of the latter particle.

N(r) i= 2 itbd, = Vp(r)tbd(r) (3.21)

Since the average particle volume fraction ¢(r) at point x is inversely proportional to the local

average particle separation distance,
kr) = k (3.22)

Vp(r) tbd(r)

The value of k is found by normalization of the concentration profile so that the total volume flux

of particles matches the known value. In our case, we normalize by setting the average value of

+(x) to the bulk particle volume fraction value.

rRouter

(bulk (Router 2 Rinner) 2 r dr (3.23)
i (outer 2 -inn) JRirule

We find that their method does not agree with the stress-shear rate method mentioned above. The

discrepancy lies in the interpretation of the time between bursts. We find this depends strongly on

the choice of LDV parameters. Since we only use one set of parameters when measuring the

tangential velocity profile, it is an optimal setting for some radii but not others. For example, in a

run with a 50% concentrated suspension, the data rate near the inner cylinder wall was low,
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because the beams had to pass through a lot of scattering material. The data rate in the middle of the

gap was higher, with the amplification being just right for those bursts. For points near the edge,

the bursts were over-amplified, leading to some of the noisy ones being rejected and causing the

data rate to be lower. If we use the LDV timing method to measure the concentration here, we find

it is highest in the center and lower at the walls. This contradicts the NMR measurements of Abbott

(1991) and Graham (1991), so we believe it is incorrect.

In constrast, Koh et al. (1994) and Lyon and Leal (1998) were satisfied with the

concentration profile predictions of this method for channel flow. We believe that the difference in

flow geometries caused us to have different evaluations of the method. Their channel gap widths

were 1.0 and 1.7 mm (11 to 24 particle diameters wide), compared with our 6.31 mm (30 particle

diameters wide), so for their flow the same LDV parameters may have been optimal all the way

across the gap, and the time intervals between adjacent bursts they measured truly reflected the

spacing between adjacent particles.

3.5.3 Particle Velocity Fluctuations

The velocity fluctuation we measure, which is the standard deviation of the measured

velocity distribution, includes contributions from particle rotation, LDV noise, and equipment

vibration in addition to the suspension temperature, which is the velocity fluctuation caused by

inter-particle collisions. Particle rotation results from the vorticity in the flow and contributes to the

velocity fluctuation due to the presence of off-center scattering sites within the particles. The LDV

noise contribution comes from two sources. The first is noise in the photomultiplier, which is

affected by the user-selected signal amplification and bandwidth parameters. The second source of

LDV noise is gradients in the mean velocity within the finite-sized measuring volume. This source

is most significant for the tangential velocity. The equipment vibration contribution appears

because the Couette apparatus is not completely rigid and moves slightly horizontally and vertically

as the motor turns. Hence, we must distinguish the collisional velocity fluctuations (the suspension

temperature) from the other terms.
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3.5.3.1 Fluctuations Arising from Mean Particle Rotation

The mean particle rotation contribution has the same shear rate scaling as the collision

contribution, so we cannot eliminate it by a choice of the shear rate regime. However, we believe

that particle rotation is a weak function of particle concentration, because its origin is the vorticity

of the flow.

We estimate the rotational contribution to the velocity fluctuation by assuming that

scattering sites are distributed uniformly throughout a particle which is rotating with the mean flow

vorticity, with angular velocity o = 1/2 ? . The density of scattering sites is n per unit volume, in a

particle of radius a.
(v 2) k _ rot _ .o)2 (3.24)

(V2)ot = 1V n dV(, be) (3.25)

Expanding the velocity and unit vector in the spherical coordinates of the particle yields

(v0,ot -A dV [ (co r sinG 5,) (sing sinDO br + cos sinO 5 + cosD Lo) ]2

(3.26)

where the polar axis is aligned along the cylinder axis (z). Since the unit vectors are orthogonal,

only one term survives.

(v 2)rot = r2 sinE dr dG dO [o r sing cos i ]2 (3.27)

2 a C: 20
(V )rot = 4/33r a3 r 4 dr J sin30 dO j cos20 dO (3.28)

After integration, this expression yields

(V, 2)rot = 1 a 2 o2 40 a2 y2 = (v2 )rot (3.29)

This result is an order of magnitude smaller than the collisional fluctuations we expect, which

should be O ( a2 ,2 ) . Lyon and Leal (1998) arrived at the same conclusion, and subsequently

concluded that fluctuations due to mean rotation were insignificant. The mean vorticity does not
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cause a rotational contribution to the total fluctuating velocity in the z direction, and the particles do

not rotate significantly on average about the flow and gradient axes, so we estimate that there is no

rotational contribution to the total velocity fluctuation in the z direction.

3.5.3.2 Particle Rotational Fluctuations are Negligible

We neglect the contribution from rotational fluctuations, because it is over an order of

magnitude smaller than the mean rotation contribution. Rotational fluctuations come from

neighboring paz';cles exchanging angular momentum when they collide. In this nearly

homogeneous shear flow, the local vorticity is proportional to the local shear rate, which is slowly

varying over the gap, so neighboring particles have nearly identical vorticity and therefore hardly

exchange any angular momentum when they collide, accordingly causing the rotational fluctuations

to be negligible.

We estimate the size of the contribution of rotational fluctuations to the measured total

velocity fluctuation based on the expression for the mean rotation contribution above.

((v 2 )rot ) '= a2 (A o ) (3.30)

Then, the ratio between rotational fluctuations and the mean rotation contribution becomes,

((v02 )rot) a2 (A co) A Co(3.31)

(ve 2).t - j1 a2002 Co
1-0

Substituting for co yields,

12)'t1 a(V?)~
A(2 2 1 2 ( ) (3.32)

(v2)t 1'

Nondimensionalizing the shear rate gradient results in (V Y) - j (V* ) , where H is the gap

half-width and Q is the angular velocity of the rotating inner cylinder. Then, substitution into

equation (3.32) yields

((v 2 )rot ) 2. (v3) (V )a (VV2)t a)2a 2 a (3.33)
<V0) >rotH 
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Because (V ) is an O(1) factor, the ratio scales with 2 (a/H), which equals 2(1/30) = 1/15 for

our flow. Accordingly, we have shown that the rotational fluctuation contribution is an order of

magnitude smaller than the mean rotation contribution to velocity fluctuations, and is therefore

negligible.

3.5.3.3 Fluctuations Arising from LDV Noise

The LDV noise contribution comes from two main sources. The first is noise in the

photomultiplier, which is affected by the user-selected signal parameters, especially the signal

amplification and bandwidth. The main cause of this is shot noise, which occurs because electrons

are emitted discretely from the photoelectric plates in a process that follows Poisson statistics,

rather than a one-to-one correspondence between the number of photons hitting the photocathode

and the number of electrons emitted that get attracted to the next photoelectrode (Fingerson et al.,

1993).

The second source of LDV noise is gradients in the mean velocity within the measuring

volume, since it has a finite size (Drain, 1980). This source is most significant when we measure

the tangential velocity. In that case, the long axis of the measuring volume points in the direction of

the velocity gradient.

Because the velocity gradient is nearly constant over a small region of the flow such as the

LDV measuring volume, we can estimate the mean velocity gradient contribution to the fluctuating

velocity in the tangential velocity as
v'd = al (3.34)

In the other directions, the mean velocity gradients are zero, so we do not expect contributions in

those directions. However, we must measure L/2 empirically, because the spectrum analyzer has a

threshold voltage of 50 mV below which it will reject signals. Only if the voltage threshold is set to

zero would the measuring volume have the expected optical size. (Lyon and Leal, 1998)

We approximated the size of L/2 in the concentrated suspensions from the data shown in
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Figure 3.12 Baseline measurement for the tangential velocity fluctuation from a
2% concentrated suspension. Beams pass through a 3mm path length cuvette filled
with 30%, 40% or 50% concentrated suspension. The suspension-filled cuvette
was intended to produce the same large measuring volume size in the dilute
suspension as in the actual concentrated suspensions. The observed velocity
fluctuation was measured at four different rotation speeds and plotted against
local shear rate. The linear curve fits shown on the plot for the three
concentrations are average fits including velocity fluctuations measured at four
radial positions. The slope of each line approximately equals the effective
measuring volume half-length for that concentration, in centimeters.
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figure 3.12. The data points indicate tangential velocity fluctuations measured in a dilute 2%

particle volume fraction suspension. In each measurement, the LDV beams passed through a 3 mm

path length cuvette filled with a concentrated suspension. Each plotted symbol corresponds to a

different particle volume fraction suspension in the cuvette. The function of the cuvette was to

scatter the beams so that the resulting measuring volume was the same size as in the actual

concentrated suspensions. Since the flowing suspension was dilute, the only source of the

measured velocity fluctuations was LDV noise, not inter-particle collisions. If we assume that the

contribution from LDV shot noise and equipment vibration is relatively constant in shear rate, then

the increase in the fluctuation with shear rate is due to the velocity gradient contribution. When we

match the curves of the velocity fluctuation plotted against the local shear rate by using a linear

least-squares fit, the slope of the line yields L/2. L/2 ranges from 290 to 330 gm for the 30%

concentrated suspension, from 170 to 230 gm for the 40% concentrated suspension, and from 190

to 220 jgm for the 50% concentrated suspension, depending on the radial position. These values

represent a significant enhancement over the value of L/2 - 120 gim measured in the same way in

the 2% particle volume fraction suspension alone, which actually matches the expected optical size

in the fluid.

3.5.3.4 Fluctuations Arising from Couette Apparatus Vibrations

The Couette apparatus vibrations were measured by pointing the LDV beams at an optical

glass cuvette which was taped on the outer wall of the box and filled with additional suspension,

while the motor rotated at various speeds. We found that the velocity fluctuation contribution from

the equipment vibration was insensitive to rotation rate between 5 and 15 rpm, and also to the

concentration of the suspension in the Couette flow. Fluctuation values from 2% and 50% particle

volume fraction suspensions are indistinguishable, when the cuvette was filled with 50% particle

volume fraction suspension both times and nearly identical LDV parameters were selected.
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3.5.3.5 Separating Dilute and Concentrated Suspension Effects

We measured velocity fluctuations in a dilute suspension at a given shear rate, to give a

baseline for the LDV noise, particle rotation, and Couette vibration contributions. Then, we varied

the particle concentration at constant shear rate. The suspension temperature is the most sensitive

function of particle concentration, so it changes the most when the concentration changes.

We use a dilute suspension of 2% particle volume fraction. This volume fraction lies in the

linear Einstein regime, according to Acrivos (1993), so that the particles do not interact and

therefore have a minimal effect on the suspension rheology (the viscosity increases by 5% over the

pure fluid value) but still provide a suitable number of LDV signals in a reasonable amount of

measurement time.

When we plot measured velocity fluctuation against particle volume fraction, we expect to

see a fairly constant velocity fluctuation at low concentrations, and then to see an increase at higher

concentrations where the inter-particle collisions become significant, as shown in figure 3.13. We

can write the measured particle velocity as the sum of the mean and the various fluctuations.

masured = (V + Vcollisions + Vrot + VLDV + Vvib) (3.35)

Since the fluctuations come from different sources, it is reasonable to assume they are independent,

and then the total variance is just the sum of the squares of each fluctuation.

(VmeasurJ) = T + (Vrot) + (VLDV2) + (V ib2) (3.36)

So, by subtracting the dilute concentration baseline from the concentrated velocity fluctuation, we

can get a reasonable measure of the size of the suspension temperature.

To test for anisotropy in the suspension temperature, we are measuring the tangential,

radial, and vertical velocity fluctuations independently, figuring out the amount of each that is due

to inter-particle collisions, and then comparing the relative sizes of these terms.

3.5.3.6 Measurement of the Three Fluctuation Components

We found that the LDV parameters, the path length the beams travelled inside the

suspension, and laser beam power affected the observed values of the LDV noise, so we hold
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these factors constant for every measurement, in order to compare the runs on an equal basis.

In order to be able to compare accurately all three velocity fluctuation components, we use a

single set of LDV amplification and bandwidth parameters and cause the beams to pass through

approximately equal path lengths of the suspension. For points on the same radius, but different

tangential angles around the flow, this is accomplished by placing additional suspension in front of

the shorter beam paths.

We chose the set of parameters we used to accommodate the most concentrated suspension.

We received the optimal signals in the 50% concentrated suspension with these parameters for

points at the 90 ° location. We used a value of 50 dB for the gain and 1232 V for the high voltage.

For lower values of the amplification parameters, we collected fewer than 100 bursts over an

interval of 1000 seconds, which is an unacceptably low data rate. For higher values of the

amplification parameters, there was no improvement in the signal, and only more noise was added.

We always collected the maximum number of samples (64), since points we tried recording with

fewer samples always gave us unrealistically large standard deviations. We kept the same large

frequency bandwidth (139.1 mm/s) all the time, which meant that we only sampled each burst for a

short time interval of 341.3 s. This allowed many bursts to be validated, because they only had to

have a clear signal with one dominant frequency over a short time interval, but it may have led to

some of the bursts at low rotation speeds being counted more than once.

The additional suspension placed in the beam path was contained in an optical glass cuvette

which was taped on the outer wall of the box. The longest beam paths were always found for

points at the 90° position, so the cuvette was placed in the beam paths at the 0° position. For the

tangential velocity measurements, always made at the 0° position, a large contribution to the

velocity fluctuation comes from mean velocity gradients within the measuring volume, and so the

size of the measuring volume must be kept constant when comparing the concentrated suspension

and the dilute suspension baseline. For that reason, for each concentrated suspension and for the

corresponding 2% concentrated suspension baseline, the beams measuring the tangential velocity

passed through a cuvette filled with the concentrated suspension, so that the measuring volume size
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Figure 3.13 Expected trend of the variation of the measured particle velocity
fluctuation with particle volume fraction, at constant shear rate. This schematic
plot demonstrates how the collisional velocity fluctuation (T), a concentrated
suspension effect, can be separated from dilute suspension effects.
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in the flow would be very similar in both cases, since the cuvette accounts for the majority of the

beam path inside the suspension.

3.5.3.7 Zero Peaks in Tangential Velocity Measurements

We encountered the presence of zero peaks in the tangential velocity distributions we

collected from the 30%, 40% and 50% concentrated suspensions when an extra suspension-filled

3mm path length cuvette was placed in the beam path. We suspect the zero peaks are detected

because the measuring volume is touching the outer cylinder wall, or a layer of particles or fluid

immediately adjacent to it.

We believe we observe these zero peaks in the concentrated suspensions and not in the 2%

concentrated suspension for two reasons. First, in the concentrated suspensions, there is a high

concentration of particles slowly rolling and sliding along the wall, whereas in the 2% suspension,

this slow region tends to have sparser signals because the particles remain uniformly distributed

and the fluid does not slip at the walls. Alternatively, the zero peak could result from equipment

vibration, which we have observed in another way. In the 30%, 40% and 50% concentrated

suspensions, there is a high concentration of particles near the outer cylinder wall, and the

suspensions are almost continually scattering the light, especially at low rotation speeds. If there is

any pause in the velocity signals from the particles in the center of the measuring volume, the probe

picks up the low frequency vibration of the Couette cell from the nearly stationary scatterers.

These signals coming from a distance from the center of the measuring volumes are visible

to LDV because the measuring volume size is enhanced by scattering of the incident beams inside

the 3mm path length cuvette filled with 30%, 40% or 50% concentrated suspension, with the

measuring volume length being as large as 660, 460 or 440 jgm, respectively, compared with the

theoretical length of the measuring volume in the fluid of 250 gim. As mentioned earlier, the

theoretical figure of 250 gim agrees with the effective measuring volume length extracted from

measurements of the tangential velocity fluctuation in a 2% concentrated suspension with the

beams passing through a 2mm pathlength cuvette.
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3.5.3.8 Minimizing Wall Effects

We tried to eliminate wall effects by measuring points at the most interior radii that the

beam attenuation at the 90" location would allow. We wish to avoid wall effects for two reasons.

First, when we look at the suspension on a very small length scale close to a wall, we cannot call it

a continuum any more, and comparisons of data to continuum models are invalid. Also, the LDV

signals we collect near walls are noisier than those from the flow interior. The vertical fluctuating

velocity values we measure vary noticeably with fine changes in position and are less consistent

between repeated runs and in general are higher than fluctuating velocities in the bulk, due to a

larger LDV shot noise contribution. This can be seen from the results in figure 3.14. We believe

the higher and noisier values are an LDV effect, because we see the same trend in the (vz2 ) profile

for the 2% concentrated suspension. We did not see this jump in v' near the wall for the radial

velocity fluctuation component, presumably because one of the beams hardly passes through the

flow and therefore produces signals of approximately the same light intensity, so the LDV noise

contribution is relatively constant.

For the 50% concentrated suspension, the most concentrated one we measured, and

therefore the ore, for which the wall effects pose the most serious issue, we believe we were able to

reach far enough into the flow to escape wall effects. The average measurements between three

neighboring interior radial positions were nearly identical, and we could see where the jumps in

(vz2 ) began at higher radii. The most interior positions were 4-5 particle diameters away from the

wall, out of 30 particle diameters filling the whole gap width. For the lower concentrations studied,

more interior positions were accessible, up to about 6.5 particle diameters for the 30% concentrated

suspension and 7.5 particle diameters for the 10% concentrated suspension.

3.5.3.9 Uncertainty in the Suspension Temperature

In estimating the precision of our velocity fluctuation measurements, we found that the

uncertainty in the velocity fluctuation could be expressed as the sum of two terms. The first term

represented the uncertainty due to factors which changed within a run, but not on average from run
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Figure 3.14 Measured vertical velocity fluctuation plotted against dimensionless
radial position. These data demonstrate the wall effects on the measured vertical
velocity fluctuation at bulk particle concentrations of 0 = 0.02, 0.1, 0.3 and 0.5,
and an average shear rate = 10 s-1 (10 rpm).
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to run, and the second term represented factors which changed between runs. The first term was

the "standard deviation of the standard deviation," meaning, the uncertainty in the velocity

fluctuation due to the uncertainty in each individual velocity measurement from which it was

calculated, and is given by

A (v',)= A, (3.37)

where N is the number of values in the distribution. The uncertainty of each individual

measurement was a combination of the following effects: fluctuations in the inner cylinder rotation

speed, particle rotational fluctuations, LDV photomultiplier shot noise variation, and incident beam

intersection angle fluctuations, in addition to the varying particle collisions we were trying to

measure. We expect these factors on average not to change from run to run--only within a run. In

the velocity distributions we measured, the number of bursts in the distribution ranged from about

1000 to 5000, leading to A v' l values of 0.014 v' to 0.032 v', and accordingly to A (v'2) values

of 0.028 v'2 to 0.064 v'2 .

The second term estimates the effect of laser power fluctuations and imperfect

reproducibility of probe positioning with the LDV traverse. We estimated the effects of these

factors by taking repeated measurements in the seeded Newtonian suspending liquid, in order to

eliminate the effects of particle interactions. In one case, we reinitialized the traverse between each

repetition, and in the other case simply repeated the same measurement several times without

changing anything. Taking the larger of the two uncertainties to be the uncertainty due to laser

power fluctuations and imperfect reproducibility of probe positioning yielded

A (v' 2) = + 5.2% (vr
2 )avg in the radial direction and + 9.1% (vz

2)avg in the vertical direction, at the

90° location. Our corresponding measurements in the tangential direction were not made with an

equal pathlength of fluid and the same LDV parameters, and so we believe they are not relevant to

the uncertainties we encountered in our subsequent cuvette measurements. Instead, we apply the

vertical velocity uncertainty to the tangential direction as well, since the vertical and tangential (with

cuvette) signals look the most alike.

For the concentrated suspensions, varying particle interactions add to the uncertainty in
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each measurement, but the only way for us to quantify this total uncertainty is to repeat

measurements in the concentrated suspensions several times. For measurements that we repeated,

we used the scatter in the multiple repetitions to represent the uncertainty in the average

measurement. However, it was impractical for us to repeat every measurement multiple times, so

we used the percent error we found in the Newtonian liquid as the between-runs uncertainty for

measurements at all concentrations that were not repeated.

We also found that LDV measured the mean velocity to an accuracy of + 2.5%, which we

measured by comparing LDV readings of the velocity of the rotating inner cylinder (with and

without the seeded suspending liquid in the gap) with the inner cylinder rotation speed

independently measured by the chopper wheel, photoelectric switches, and LabVIEW timer

program.

The overall error bar is the root mean square sum of the two precision terms.

A (v,2 ) = [A(v'l)] 2+[/(v'2)] (3.38)

3.6 Testing the Limits of the Measurements

In addition to the procedures detailed above, there were several other measurement

techniques we tried which eventually turned out to be unsuccessful, including high laser power

measurements, tilted probe measurements, and measuring the covariance (v0 v) .

For several months during the experiments, the laser was able to run at higher power than

before (up to 450 mW). We thought that this extra power would allow us to access points farther

into the interior of the flow for concentrated suspensions, but it turned out that for the 50%

concentrated suspension it only allowed us to make measurements an extra 0.1 mm into the flow,

which was not a significant change. Accordingly, we kept the laser power fixed at 300 mW.

Also, when we measured the tangential velocity fluctuation, the long axis of the measuring

volume pointed in the direction of the velocity gradient, causing a large contribution to the velocity

fluctuation from mean velocity gradients within the measuring volume. We wanted to keep this

contribution as small as possible. The method we tried for doing this was tilting the LDV probe in
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the x-z plane, so that the profile width of the measuring volume in the velocity gradient direction

would be smaller. Unfortunately, we were unable to tilt the probe enough to distinguish the tilted

fluctuation values from the original normal values we measured. The limiting factor was how far

our traverse could travel in the vertical direction compared with the height of the Couette cell

platform. In addition, the data rate and quality decreased dramatically as the tilt angle increased.

Finally, since we are evaluating the description of the suspension temperature as a second

order symmetric tensor, we should be able to measure 6 independent components, namely, three

diagonal and three off-diagonal, in the shear flow coordinate system. We present results only for

the three diagonal components. Also, we expect two of the off-diagonal terms, (v v;) and (v 0 v),

to be zero, because we do not see a correlation of the particle's z velocity fluctuation with anything

else. A faster-moving particle could be above or below a slower- moving particle when they

collide. So, in general, for every positive correlation v (vD , there is a corresponding anti-

correlation v0 (- v) , and on average the covariance (v 0 v) is zero. The last component, (v0 vr),

could be nonzero, because we would expect that particle collisions involve moving to the side and

slowing down or speeding up, and that these two changes are related because smaller radii

correspond to higher average speeds.

Unfortunately, the (v 0 v) component is very difficult to measure in our current apparatus,

because with a single wavelength beam, we can measure only one velocity component at a time.

However, we can extract (v0 vr) from oblique measurements of the horizontal velocity. The best

way to measure (v0 v) by this indirect method would be from above or below, but we have a free

surface at the top, no window on the bottom, and the flow is too tall to allow the beams to pass

from above into the middle region where end effects are negligible. Hence, measuring from above

or below is not possible. Measuring (v0 v) from the side involves comparing three fluctuation

measurements, all with different path lengths that the beam must pass through in the suspension

and different effective measuring volume sizes, with corresponding baselines in the 2%

concentrated suspension. Accounting for all these factors is beyond the scope of this project.

In addition, we want to relate our measurements of an anisotropic temperature to model
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predictions of how the anisotropy affects the macroscopic flow properties, and in the model we are

starting with, the temperature tensor is diagonal, in the flow, gradient, and neutral direction

coordinate system, for simplicity. In that case, the temperature components (TiN, TI, Tzz) are the

eigenvalues and are invariants of the tensor. If we include off-diagonal terms, the invariants

become more complicated. For all these reasons, it was not feasible for us to measure (v, v) , the

last possible nonzero component of the suspension temperature tensor.

3.7 Video Imaging Apparatus and Procedures

Qualitative flow visualization was performed with video imaging, on 2%, 30%, 40% and

50% concentrated suspensions. We recorded the videos using a CCD camera (Cohu, model 4915),

with a 55 mm length barrel attached for magnification, and a Panasonic VHS VCR. The camera

was focused on the 0° location in the flow, at a height of about 6.5 cm from the base of the flow,

and the lens was approximately 6.2 cm from the box outer wall. The camera was aligned

perpendicular to the flow in the vertical direction, but was tilted in the horizontal direction at an

angle of no more than 10°. The field of view was 5.75 mm x 4.25 mm and the depth of field was

1.6 mm. We used ambient lighting to illuminate the bubbles of monomer inside the particles,

which appeared as white dots against the black background of the inner cylinder. The viewer sees

particles crossing the field of view from left to right at different speeds, since several shearing

surfaces are in focus. A schematic view is shown in figure 3.15.

We were able to collect, store and manipulate images from the video tape using the Mac

program NIH Image 1.55 on a Mac Quadra 800 connected to an LG-3 frame grabber board (Scion

Corp.). We used this capability to take snapshots of pairs of particles before, after, and during a

collision, and to track individual particle trajectories by averaging sequential frames.

In summary, this chapter contains a complete description of the experimental method

employed in this work, from the basic principles of LDV to the data reduction method. In addition,

the last section contains a description of the video imaging apparatus, which was utilized to aid in

interpreting the LDV measurements. The next chapter consists of a presentation of qualitative
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results obtained from video imaging and quantitative velocity fluctuation measurements obtained

from LDV.
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Figure 3.15 Schematic view of video imaging apparatus
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Chapter 4

Data

The first part of this chapter describes qualitatively the particle trajectories obtained from

video imaging of the Couette flow. The second section describes laser Doppler velocimetry (LDV)

experiments we performed to verify that the Couette cell we built was creating the intended nearly

homogeneous steady shear flow. The third section describes our physical observations obtained

using LDV of the macroscopic quantities of interest, including the mean velocity, shear rate and

particle concentration, and particle velocity fluctuations resulting from inter-particle collisions.

4.1 Particle Trajectories from Video Imaging

Qualitative flow visualization by video imaging provides a convenient introduction to the

quantitative LDV data presented in the rest of this chapter. Before following the painstaking

measurement method and data analysis procedures described in sections 3.4 and 3.5, we may want

to know the answers to some basic questions, such as whether we actually can see particle velocity

fluctuations and what an inter-particle interaction looks like. It is difficult to answer these two

questions by using LDV, because it is a pointwise, Eulerian measurement method (i.e. fixed in the

laboratory reference frame). Although our video imaging apparatus, described in section 3.7, is not

as precise as LDV for quantitative measurements, it is well suited to answering these qualitative

questions.

We recorded several video tapes of flowing 2%, 10%, 30%, 40%, and 50% concentrated

suspensions at average shear rates ranging from 1 s- l (1 rpm) to 15 s ' l (15 rpm). As described in

section 3.7, the camera's field of view was a tangential-vertical plane at the 0 ° location. Particle

trajectories in the tangential (flow) and vertical (neutral) directions were visible to the camera.

Figure 4.1 compares the trajectories of particles in a dilute 2% particle volume fraction

suspension with that of a particle in a concentrated 50% particle volume fraction suspension. Both
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the trajectory images were produced by averaging the pixel intensity values from frames equally

spaced in time. The average shear rate in both flows was 5 s-l. It is clear that the dilute suspension

trajectories are straight lines and that the spacing between successive particle images is equal for

every time interval, indicating that the particles move in straight paths at constant speed. In

contrast, the particle in the concentrated suspension traces a bumpy path, and the successive

particle images are not evenly spaced, even though the images were evenly spaced in time. This

image indicates that the particle in the concentrated suspension demonstrates velocity fluctuations in

the flow direction and the neutral (vertical) direction. (Motion in the radial direction is not visible in

these images.) Consequently, particle velocity fluctuations are indeed visible to the camera in the

concentrated suspension that are not observed in the dilute suspension at identical flow conditions.

In the 50% concentrated suspension, the video tape displays especially large fluctuations in the

flow direction.

In the 50% concentrated suspension, pairwise particle interactions are clearly visible to the

camera. Two examples are displayed as sets of snapshots in figures 4.2 and 4.3. In figure 4.2,

two particles at the same vertical position are interacting, in an "in-plane" collision. The particles

approach each other, stick together, rotate as a doublet in the same vertical plane, and then

separate. In figure 4.3, another type of collision is captured. Two particles at different vertical

positions interact, in an "out-of-plane" collision. The particles approach each other, stick together,

rotate as a doublet about an axis that is oblique to the horizontal plane, and then separate. The

velocity fluctuations we detect as a bumpy trajectory can be considered a rapid series of very brief

collisions of the types shown in these figures. It appears in the video recordings of the 50%

concentrated suspension at various shear rates that in-plane collisions may be more likely at low

shear rates and out-of-plane collisions at high shear rates, but this has not been quantified with

statistics.
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a)

q = 0.02 dilute suspension, average shear rate = 5 s-1

I_ 

D)

0 = 0.5 concentrated suspension, average shear rate = 5 s-1

Figure 4.1 Video images of particle trajectories in a dilute 0.02 particle volume
fraction suspension (a) and in a concentrated 0.5 particle volume fraction
suspension (b). Both the trajectory images were produced by averaging the pixel
intensity values from frames equally spaced in time, and the average shear rate in
both flows was 5 s-1.
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4.2 LDV Experiments: Validation of Couette Flow

4.2.1 Validation of Couette Flow with Seeded Newtonian Fluid

Before making measurements in concentrated suspensions in the Couette flow cell

(described in section 3.3) we filled the flow cell with a pure Newtonian fluid and tested the flow to

ensure that it produced the correct behavior. The Newtonian fluid was the suspending liquid

described in section 3.2 seeded with tiny silicon carbide seeding particles (TSI Inc.), of average

diameter 0.75 gm, and at a volume fraction of 9 x 10-7 . Since the seeding particles occupied such

a minute fraction of the flow, their presence did not disturb the flow from that of a pure liquid.

Their only impact was to act as scattering sites for LDV.

First, we determined that the mean tangential velocity profile we measured was

reproducible and matched the theoretical prediction for any Newtonian fluid (Kundu, 1990)

u·ewtoni_ - Ri-kr (4.1)UNewt°nian = 1 - k 2 - r k Roo

where k R and Ri and Ro are the inner and outer cylinder radii, respectively, and f2i is the
RO

inner cylinder angular frequency of rotation. In figure 4.4, two measured mean velocity profiles

are shown to agree with each other and with the theoretical profile within experimental error, which

is indicated by the standard deviation of the velocity distribution obtained at each point.

Next, we verified that vertical end effects and secondary flows are negligible near the

vertical (axial) midplane of the flow. First, we established that the mean and fluctuating velocities

observed in the vertical direction are independent of vertical position. In figure 4.5, it is

demonstrated that the mean vertical velocity, measured at a constant radial position in the middle of

the Couette gap, does not change with vertical position within the uncertainty of the measurements,

again given by the standard deviation of each velocity distribution. While the fluctuating velocities

at varying vertical positions show some scatter, there is no recognizable trend.

Also, we confirmed that the mean and fluctuating vertical velocities, measured at a fixed
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radial position, are independent of azimuthal position around the flow (see figure 4.6). In addition,

we found that the mean vertical velocity is zero at all azimuthal positions, within experimental

error.

Finally, we verified that the mean vertical and radial velocity profiles, measured at the 00

and 90° locations, respectively, are zero compared with the experimental uncertainty (standard

deviation) of the measurements. The negligible mean velocities are shown in figure 4.7

The results of these tests confirm that the flow cell we built does produce the desired

Couette flow betwen concentric cylinders. The resulting flow of a Newtonian fluid can be

described as one-dimensional, where there is variation in the velocity and pressure fields (aside

from the hydrostatic pressure) only in the radial direction.

4.2.2 2% Concentration Suspension

The next test involved comparing measurements from the 2% concentrated suspension of

large Lucite 47G particles with those from the seeded Newtonian liquid to verify that the 2%

concentrated suspension also exhibited Newtonian behavior. This was a requirement for using the

2% concentrated suspension as a suitable baseline for the concentrated suspensions.

First, we established that the mean tangential velocity profile for the 2% concentrated

suspension is identical to the measured Newtonian mean tangential velocity profile, within

experimental uncertainty, as shown in figure 4.8. Also, in figure 4.9, it is apparent that the mean

vertical velocity, measured at the + 90° positions, is zero at all points measured across the gap,

compared with experimental error. According to these plots, the 2% concentrated suspension acts

as a Newtonian fluid that does not experience secondary flows or end effects.

In addition, we confirmed that, for the 2% concentrated suspension, the mean normalized

tangential velocity profile measured is independent of the inner cylinder rotation speed. This can be

seen in figure 4.10, where the points measured in a flow where the inner cylinder rotated at 5 rpm

overlap with the velocity profile measured at 10 rpm, where the mean velocities were normalized.
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Figure 4.4 Two measurements of the mean tangential velocity profile for the
Newtonian suspending liquid seeded with silicon carbide 0.75 gm diameter
seeding particles, at an average shear rate = 10 s-1 (10 rpm). The measured
results are compared with the theoretical velocity profile for a Newtonian fluid.
As mentioned in Chapter 3, the inner and outer cylinder radii are given as
Ri = 5.715 cm, and Ro = 6.31 cm.
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Figure 4.5 Mean vertical velocity measured at the 0 ° location as a function of
vertical (axial) position, an average shear rate = 10 s-l (10 rpm), and constant
radius r / Ro = 0.954. Results are for the Newtonian suspending liquid seeded
with 0.75 ,um diameter silicon carbide particles.
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Figure 4.6 Mean (a) and fluctuating (b) vertical velocity in the Newtorfian
suspending liquid seeded with 0.75 gm diameter silicon carbide particles, at an
average shear rate = 10 s-l (10 rpm), at constant radius r / Ro = 0.987, measured
at different azimuthal positions around the flow (corresponding to different
depths the beams cross in the suspending liquid).
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Figure 4.7 Mean velocities measured in Newtonian suspending liquid seeded
with 0.75 gm silicon carbide particles, average shear rate = 10 s-1 (10 rpm).

a) Mean vertical velocity measured profile at the 0 ° location, height = -24 mm,
constant LDV parameters
b) Mean radial velocity measured at the 90° location, constant LDV parameters,
two independent runs.
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Figure 4.8 Mean tangential velocity profile for the 2% concentrated suspension
of Lucite 47G particles compared with the Newtonian suspending liquid seeded
with silicon carbide particles and measured twice. Constant LDV parameters are
used within each series of runs; the average shear rate = 10 s-1 (10 rpm).
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Figure 4.9 Mean vertical (a) and radial (b) velocity profiles measured at the
+ 900 locations in a 2% concentrated suspension of Lucite 47G particles in the
suspending liquid, at an average shear rate = 10 s-1 (10 rpm). The error bars
have the value of the standard deviation of the measured velocity distribution at
each point.
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Finally, in figure 4. 1, we validate the method of equalizing measurement conditions by

placing a suspension-filled cuvette in front of the flow at the 0 ° location. We compare

measurements made at the + 90° locations in the 2% concentrated suspension with measurements

made at the 0° position, with a cuvette filled with the same 2% concentrated suspension attached to

the outer wall of the enclosing box. In figure 4.11, the vertical velocity fluctuation, measured with

different path length cuvettes, matches with that obtained at the 90° position when the path length

the beams travel in the suspension is nearly equal in both locations. Accordingly, this test supports

the use of the cuvette equalizing method.

4.2.3 One-Dimensional Flow for Concentrated Suspensions

The last test involved verifying that the concentrated suspensions also produced

unidirectional shear flow when placed in the Couette device. First, we checked that the mean

tangential velocity profile is reproducible for the 50% concentrated suspension, the most

concentrated susension we studied. In figure 4.12, three measurements of the mean tangential

velocity profile that were widely separated in time are displayed. The fact that the points overlap

almost exactly indicated that the flow is extremely reproducible, even over intervals as long as a

year and a half.

Also, we confirmed that the flow is one-dimensional in the 50% concentrated suspension.

In figure 4.13, it is clear that the mean vertical and radial velocities, measured at the + 90 °

locations, are zero compared with experimental uncertainty. We also confirmed that the 40% and

30% concentrated suspensions yielded one-dimensional flows, as shown in figures 4.14 and 4.15,

respectively.

A final verification of one-dimensional flow for the 50% concentrated suspension is that no

variation is observed in the mean vertical velocity with varying vertical (axial) position, near the

midplane of the flow. This is shown in figure 4.16. Overall, the results of the last test establish that

the concentrated suspensions produced reproducible unidirectional shear flow in the Couette flow

cell.
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Figure 4.11 Vertical velocity fluctuation measured at 90° and -90 ° locations, and
at 0 ° location with varying path length cuvettes, average shear rate = 10 s-1 (10
rpm), constant LDV parameters.
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Figure 4.12 Three measurements of the mean tangential velocity profile at the 0 °

location in a 50% concentrated suspension, average shear rate = 10 s-1 (10 rpm).
These results demonstrate the reproducibility of the measurements, even after
long intervals.
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rpm).
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position r/Ro = 0.964, constant LDV parameters.
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4.3 Physical Observations of the Mean and Fluctuating Velocity

from LDV

This section contains a discussion of the physical observations made in our LDV

experiments on suspensions. We display the set of experiments performed in table 4.1. We

measured the mean velocity and three fluctuating velocity components for three suspensions of

30%, 40% and 50% particle volume fraction. For the 10% concentrated suspension, all the same

measurements were made except the tangential fluctuating velocity component. For all the

measurements in the concentrated suspensions, measurements from the 2% particle volume

fraction suspension were used as a baseline.

4.3.1 M.an Velocity Profile: Calculations of the Shear Rate and Concentration

Profiles

First, we present the measurements of mean quantities and follow that with a discussion of

velocity fluctuation measurements. This section contains a series of physical observations of the

mean velocity profile and resulting calculations of the shear rate and concentration profiles.

We recorded the mean tangential velocity profiles for each suspension at the 0° location. For almost

all the runs (except the 10% concentrated suspension) we used a constant set of LDV parameters

for measuring all the points across the Couette gap, in order to provide uniformity of measuring

conditions for all the points. The mean tangential velocity profiles for 10%, 30%, 40% and 50%

concentrated suspensions are displayed in figures 4.17-4.20, respectively. A comparison of the

mean tangential velocity profiles from 30%, 40% and 50% concentrated suspensions is presented

in figure 4.21.

The shear rate and particle concentration profiles were calculated from the mean velocity

profile according to the methods described in section 3.5.1 and 3.5.2, respectively. A comparison

of shear rate profiles from the Newtonian suspending liquid and 2%, 10%, 30%, 40% and 50%

concentrated suspensions is presented in figure 4.22. In this plot, the dilute suspensions match the

Newtonian shear rate profiles, whereas, for the concentrated suspensions, the shear rate profiles
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Figure 4.17 Mean tangential velocity profile for the 10% concentrated suspension
compared with Newtonian theory at an average shear rate = 10 s-l (10 rpm).

134

t'



o

5
cP)

o 4

c 3
0
c

C 2

Na 1co

R
0.9 0.92 0.94 0.96 0.98 1

r/R

Figure 4.18 Mean tangential velocity profile for the 30% concentrated suspension
compared with Newtonian theory at an average shear rate = 10 s-l (10 rpm).
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Figure 4.19 Mean tangential velocity profile for the 40% concentrated suspension
compared with Newtonian theory at an average shear rate = 10 s-1 (10 rpm).
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Figure 4.20 Mean tangential velocity profile for the 50% concentrated suspension
compared with Newtonian theory at an average shear rate = 10 s-l (10 rpm).
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Figure 4.21 Comparison of the mean tangential velocity profiles for 30%, 40%
and 50% concentrated suspensions with Newtonian theory, at an average shear
rate = 10 s-1 (10 rpm).

138



I _1;3

14

13

17W 121-1

ce 1 1

C1W 10

9

8

q1

I I I I I I I I I I I I I I 

0= 0

- 0
0:-.%

_ %i°0

Q + }iv 

Ba f 
19 41 141 -

0

. . I . . . I . . . I . .

0.9 0.92 0.94 0.96 0.98 1

r R
0

Figure 4.22 Shear rate profiles calculated from global (Newtonian and 2%,10%
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suspensions) fits of tangential velocity profile, average shear rate = 10 s-l (10
rpm).
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Figure 4.23 Concentration profiles for 10, 30, 40, 50% concentrated suspensions,
calculated from shear rate profiles (figure 4.22) and Krieger relative viscosity
function.
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become increasingly curved and cover a wider range of values, with the 50% concentrated

suspension profile deviating the most from the Newtonian profile.

The particle concentration profiles calculated from these shear rate profiles are displayed in

figure 4.23. As described earlier in section 3.5.2, the local suspension viscosity is obtained from
the ratio of the shear stress, which decreases as across the gap, and the local shear rate. If we

assume that the Krieger viscosity function (Krieger, 1972), given as

T1()= (i - ~)~2 (4.2)

describes the relation between the particle concentration and the suspension viscosity, we can

invert the function to calculate a local concentration profile from the local viscosity profile. This

procedure yields only a relative concentration profile, however, because we do not measure the

absolute magnitude of the stress. We normalize the relative concentration profile so that the average

concentration is the bulk concentration.

For all the concentrations observed, a similar shape is evident in the profiles, with the

lowest concentration lying near the inner cylinder wall and the highest near the outer cylinder wall.

Although the slope of these concentration profiles is slight, at the higher concentrations the

variation can have a large impact because the viscosity is a strong function of the concentration.

4.3.2 Particle Velocity Fluctuations

This section contains a report of physical observations of the particle velocity fluctuations

caused by inter-particle collisions. We measured three components of the velocity fluctuations, in

the tangential (flow, or 1), radial (gradient, or 2) and vertical (neutral, or 3) directions. Following

the measurement and data reduction procedures described in sections 3.4 and 3.5, we identified the

measured velocity fluctuation at a point with the standard deviation of the observed velocity

distribution. To find the part of the total velocity fluctuation arising only from inter-particle

collisions, we subtract off the dilute (2%) suspension baseline. We focus on four features of the

physical observations: the relative sizes of the three fluctuation components at a given shear rate
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and rotation speed, and then the dependence of each collisional velocity fluctuation component on

particle volume fraction, radial position, and shear rate.

4.3.2.1 Velocity Fluctuation Components at Fixed Rotation Speed

The differences in the size of the three velocity fluctuation components are illustrated in

figures 4.24-4.26. All the components were measured at a constant rotation speed of 10 rpm

(average shear rate = 10 s-l), and plotted against the local shear rate at each point for each

suspension. The radial and vertical velocity fluctuation components were measured at the + 90°

locations, and the tangential component was measured at the 0° location, with an extra suspension-

filled cuvette placed in the beam path. Each symbol shape represents a different bulk concentration,

and the points marked by + and x indicate the dilute 2% particle volume fraction suspension

baseline.

In comparing the collisional velocity fluctuation components derived from these three

graphs, it is clear that the tangential component is overwhelmingly the largest at every

concentration, followed by the vertical and then the radial components. It is also apparent from

these plots that the three components each vary differently with particle concentration.

4.3.2.2 Dependence of Velocity Fluctuation Components on Radial Position

A different presentation of the velocity fluctuation components shown in figures 4.24-4.26

in section 4.3.2.1 is a set of plots of the velocity fluctuations from each concentration against radial

position. This yields the figures 4.27-4.29, for the same constant rotation rate of 10 rpm (average

shear rate = 10 s-1 ). It is immediately apparent from these plots that most of our data comes from

the region near the outer cylinder wall, since the region of the flow we can measure at the + 90 °

positions is limited by the beam attenuation resulting from the bubbles inside the particles.

For most of these velocity fluctuation profiles, within experimental uncertainty, there is

little or no variation with radial position over the accessible measurement region. In the accessible

region, the most interior points for the concentrated suspensions were located about seven particle
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Figure 4.24 Tangential velocity fluctuation measured at the 0 ° location for the
30%, 40% and 50% concentrated suspensions compared with the 2% concentrated
suspension baseline, plotted against local shear rate. The average shear rate = 10
s-1 (10 rpm), and the LDV beams pass through a suspension-filled 3 mm path
length cuvette.
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Figure 4.25 Radial velocity fluctuation, for various particle volume fractions
(4 = 0.02, 0.1, 0.3, 0.4 and 0.5), measured at the + 900 locations, plotted against
local shear rate. Constant average shear rate = 10 s- (10 rpm).
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Figure 4.26 Vertical velocity fluctuation, for various particle volume fractions
(4 = 0.02, 0.1, 0.3, 0.4 and 0.5), measured at the + 900 locations, plotted against
local shear rate. Constant average shear rate = 10 s-l (10 rpm).
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Figure 4.27 Tangential velocity fluctuation for the 30%, 40% and 50%
concentrated suspensions compared with the 2% concentrated suspension baseline,
plotted against dimensionless radial position. The average shear rate = 10 s-1 (10
rpm), and the LDV beams pass through a suspension-filled 3 mm path length
cuvette.
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Figure 4.28 Radial velocity fluctuation, for various particle volume fractions
(2%, 10%, 30%, 40% and 50% concentrated suspensions), measured at the + 90°

locations, plotted against dimensionless radial position. Constant average shear
rate = 10 s-1 (10 rpm).
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Figure 4.29 Vertical velocity fluctuation, for various particle volume fractions
(2%, 10%, 30%, 40% and 50% concentrated suspensions), measured at the + 90 °

locations, plotted against dimensionless radial position. Constant average shear
rate = 10 s-1 (10 rpm).
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diameters away from the outer cylinder wall, out of 30 particle diameters in total across the Couette

gap. We believe these points are in the bulk flow, where wall effects are insignificant. Because we

observed little variation between measurements at these interior points and at the other points, we

are convinced our measurements are representative of the bulk flow and are not taken only from a

wall boundary layer.

The exception to this argument is the vertical velocity fluctuation component, where a large

high tail, due to LDV noise, in the 50% particle volume fraction profile is noticeable at the outer

cylinder wall. As discussed in section 3.5, there is a radial position (r/Ro = 0.99) in the vertical

component plot where the LDV noise becomes quite large. Since we only report measurements

from radial positions beyond this noise region, we believe these observations are representative of

the bulk flow.

4.3.2.3 Dependence of Collisional Velocity Fluctuation Components on {,

Particle Volume Fraction

In figures 4.30-4.32 we present the dependence of the collisional velocity fluctuation

components on particle volume fraction, at constant rotation speed of 10 rpm (average shear rate =

10 s'i) and constant local shear rate of 8.7 s-1. We plot the average value of the collisional velocity

fluctuation measured at each concentration against the local concentration that corresponds to a

local shear rate of 8.7 s ' l at the 10 rpm rotation speed.

Indeed, as indicated in section 4.3.2.1, each component behaves in a distinct manner. The

radial component (figure 4.31) hardly varies with particle concentration. It appears to increase

slightly and then plateau. The tangential component (figure 4.30) monotonically decreases between

concentrations of 30% and 50%. The vertical component (figure 4.32) increases from 10% to 40%

particle volume fraction, and then decreases at higher concentration.
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Figure 4.30 Tangential collisional velocity fluctuation, for various particle
volume fractions (30%, 40% and 50% concentrated suspensions), measured at the
0 ° location, with the LDV beams passing through a suspension-filled 3 mm path
length cuvette, at a constant local shear rate of 8.7 s-1 and constant average shear
rate of 10 s- (10 rpm).
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Figure 4.31 Radial collisional velocity fluctuation, for various particle volume
fractions (10%, 30%, 40% and 50% concentrated suspensions), measured at the +
900 locations, at a constant local shear rate of 8.7 s-l and constant average shear
rate of 10 s-l1 (10 rpm).
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Figure 4.32 Vertical collisional velocity fluctuation, for various particle volume
fractions (10%, 30%, 40% and 50% concentrated suspensions), measured at the +
90 ° locations, at a constant local shear rate of 8.7 s-l and constant average shear
rate of 10 s-l (10 rpm).
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4.3.2.4 Dependence of Collisional Velocity Fluctuation Components on Shear

Rate

Finally, we present the variation of each of the collisional velocity fluctuation components

with shear rate, shown in figures 4.33-4.35. These data were obtained by measuring the collisional

velocity fluctuation components at a small number of adjacent radial positions and varying the local

shear rate by changing the inner cylinder rotation speed. The maximum range of average shear

rates was 1 to 12 s- 1, for the 40% concentrated suspension. For each of the components, at most

of the shear rates, the difference between the measurements at different positions is insignificant

compared with the difference between measurements at different rotation speeds.

It is apparent from these figures that the three collisional velocity fluctuation components

each vary differently with shear rate. The tangential component appears to scale quadratically with

shear rate for the 30% and 40% concentrations. If we fit the curves with a least-squares quadratic

fit in Kaleidagraph, we find

T,( 4 = 0.3 ) = 40 a 2 2 (4.3)

T( = 0.4) = 27.5 a 2 2 (4.4)

The 50% concentrated suspension varies more slowly with shear rate, and has a close to quadratic

dependence as well, but it has a more complicated shape. The curve appears to rise, plateau, and

then rise sharply again. If we neglect the details of this shape and fit the 50% concentrated

suspension curve with a quadratic as well, we find

T 1 ( = 0.5 ) = 17.3 a2 2 (4.5)

Individual plots of the tangential component for each concentration appear in figures 4.36-4.38.

Another point we notice is that all the curves on the tangential and vertical component plots

approach zero at zero shear rate, as expected. This supports our assertion that we subtracted off the

proper amount of non-collisional fluctuations.

The vertical component has a complex variation with shear rate, for the 30%, 40%, and
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Figure 4.33 Tangential collisional velocity fluctuation for the 30%, 40% and 50%
concentrated suspensions, plotted against local shear rate. The LDV beams passed
through a suspension-filled 3 mm path length cuvette. These data were obtained at
a small number of adjacent radial positions while the local shear rate was varied
by changing the inner cylinder rotation speed.
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Figure 4.34 Radial collisional velocity fluctuation for the 30%, 40% and 50%
concentrated suspensions, measured at the + 90 ° locations, plotted against local
shear rate. These data were obtained at a small number of adjacent radial
positions while the local shear rate was varied by changing the inner cylinder
rotation speed.
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Figure 4.35 Vertical collisional velocity fluctuation for the 30%, 40% and 50%
concentrated suspensions, measured at the + 90 ° locations, plotted against local
shear rate. These data were obtained at two adjacent radial positions (r/Ro =
0.986 and 0.987) while the local shear rate was varied by changing the inner
cylinder rotation speed.
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50% concentrated suspensions. It increases sharply at low shear rates, then plateaus and rises

again slowly, in a shape similar to a quadratic. Averaging over the complex shape makes the

curves appear to have a linear or square root dependence on the shear rate, depending on the bulk

concentration value. Meanwhile, the radial component hardly changes with shear rate, and indeed

slightly decreases at higher shear rates, at around the rates where the vertical component increases.

The only concentration for which we were able to measure the radial component at a very low

shear rate was the 30% concentrated suspension. This component does not appear to approach zero

at zero shear rate, contrary to expectations. This could indicate that there is another source of noise

mixing with the radial component that we did not account for, or that the radial component is small

enough to be considered "zero" at all shear rates.

In summary, this chapter contains a discussion of the experimental results obtained from

qualitative video image analysis and quantitative LDV measurements of the narrow gap Couette

flow described in Chapter 3. The major observations we made based on video image analysis were

that particle velocity fluctuations originating from inter-particle collisions are visible in a

concentrated 50% particle volume fraction suspension but not in a dilute 2% particle volume

fraction suspension, and that collision dynamics often closely involve the neutral direction. The

principal observations we made based on the quantitative LDV data were that the collisional particle

velocity fluctuations are anisotropic, for all concentrations studied, and that each velocity

fluctuation component varies only slightly with radial position, over the region of accessible

positions. Furthermore, each collisional particle velocity fluctuation component has a distinct

scaling in particle volume fraction and shear rate. In the next chapter, a comparison of the

predictions of several particle migration models is presented, and Chapter 6 contains a comparison

of the predictions of the models with the data described here, and subsequent evaluation of the

models.
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Figure 4.36 Tangential collisional velocity fluctuation for the 30% concentrated
suspension, plotted against local shear rate. The LDV beams passed through a
suspension-filled 3 mm path length cuvette. These data were obtained at a small
number of adjacent radial positions while the local shear rate was varied by
changing the inner cylinder rotation speed.
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Figure 4.37 Tangential collisional velocity fluctuation for the 40% concentrated
suspension, plotted against local shear rate. The LDV beams passed through a
suspension-filled 3 mm path length cuvette. These data were obtained at a small
number of adjacent radial positions while the local shear rate was varied by
changing the inner cylinder rotation speed.
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Figure 4.38 Tangential collisional velocity fluctuation for the 50% concentrated
suspension, plotted against local shear rate. The LDV beams passed through a
suspension-filled 3 mm path length cuvette. These data were obtained at a small
number of adjacent radial positions while the local shear rate was varied by
changing the inner cylinder rotation speed.
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Chapter 5

Modeling

5.1 Catalog of Models: Similarities and Differences

The focus of this chapter is the application of existing suspension particle migration models

to Couette flow between rotating concentric cylinders. Here, we consider the Jenkins and McTigue

(1990), Nott and Brady (1994), Morris and Brady (1998), Phillips (1992), and Buyevich (1996)

models. The first three models are all variations of the McTigue & Jenkins temperature model. The

Phillips model is a phenomenological shear rate model, and the Buyevich model lies in between. In

table 5.1, the correspondence of the models' nomenclature is presented.

The models are alike in that they all assume incompressibility, and a Newtonian stress

tensor equation, with equations of state for the pressure and viscosity. The models differ from each

other in that the equation of state for each stress tensor has a different dependence on particle

concentration and suspension temperature. The models also have different auxiliary equations,

either a diffusive flux balance, or a fluctuation kinetic energy balance.

We solve the equations of each model for steady shear flow in the Couette geometry (shear

flow between rotating concentric cylinders) in order to compare model predictions with our

experimental results. In this idealized flow, as in the experiment, the flow is directed in the

tangential direction, the velocity gradient lies in the radial direction, and the neutral direction is the

vertical direction. We solve the equations of mass and momentum conservation and an auxiliary

equation (conservation of fluctuation kinetic energy or particle diffusion) for the spatial variation of

several field variables: the particle volume fraction, the mean velocity, the scalar suspension

temperature, and the pressure. We assume that at steady state these variables do not vary in the

tangential direction, because the flow is axisymmetric, or in the vertical direction, because near the

mid-plane of the Couette flow, the cylinders appear to be infinitely long. These assumptions are

borne out by experimental data, as shown in section 4.2. Hence, the variables are considered only
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Model Phillips Nott & Buyevich Morris & Jenkins & This
(1992) Brady (1996) Brady McTigue Work

(1994) (1998) (1990)

Mean velocity _v <£> f (fluid) <u> v

Mean - <U>p Tp <> v Up
velocity,
particle phase
Fluctuating
velocity of an - w u' ' v
individual
particle
total stress [-P 6 + 
(pressure [-p 6+ i ] > <>p (fluid), <>, <, >p(pressure t
tensor) I <E>p

(particles)
particle
pressure IH P

rate of strain
tensor 2<e> Ep 2<e> 2D

particle
volume v 
fraction 1 ' ) V

relative
viscosity M(Os) 
function [r(4) 'ls()))v) )

particle
pressure - P( (G(O) PP P(v) P()

+GE(O1)-)

function
relating 2 |() |Mv) | )
T to a2 9 2 p(o) 02 X2() () M(()

in ~ Note:
homogeneous definedin
shear flow eq. (5.24)e.(5.24)

Table 5.1 Correspondence of the models' nomenclature.
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to vary in the radial direction, causing the problem to be classified as one-dimensional.

5.2 The Diffusive Flux Model: Phillips et al. (1992)

Phillips et al. (1992) solve the Couette problem for their model. We use an analytical

solution given in their paper for steady state Couette flow between concentric cylinders with the

value of a single coefficient fit from NMR measurements of steady state particle concentration

profiles in wide gap Couette flow.

The suspension is treated as a single-phase continuum whose local viscosity depends on

the local particle volume fraction. There are three field variables: the particle volume fraction 0, the

mean suspension velocity u, and the mean suspension pressure p.

5.2.1 General Form of the Equations

The equations of the diffusive flux model for a creeping flow are:

conservation of mass (incompressibility)

_.- =O (5.1)

conservation of momentum

v_- = Q (5.2)

with the additional constitutive relation for the stress tensor,

= - p + nf ns(¢) Y (5.3)

where is the rate-of-strain tensor, given by

-(V + (Vu)') (5.4)

ilf is the pure fluid viscosity, and llj(O) is the relative viscosity correlation, such as the Krieger

function (Krieger, 1972), given as

(-) = 1_ (5.5)

where Om is the maximum packing fraction, given as 0.68 by Phillips et al.,

and finally the auxiliary particle diffusion equation,
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Do = a2Kc .(02y,+0? )+a2Kn(,,2,d' ! (5.6)
D5 KP(2l~P* 1~9(( t dr n ) (5.6)

where Kc and K are phenomenological constants that account for the flux of particles due to

concentration and viscosity nonhomogeneities, respectively. These constants are found by fitting

the model predictions to NMR data.

5.2.2 One-Dimensional, Steady Flow

For a one-dimensional, steady Couette flow, in cylindrical coordinates, the diffusive flux

equations take the following form.

For overall mass conservation, we find

r d(rur ) = (5.7)r j-(5.7)

Integration yields
constant (5.8)

Ur r

At the outer cylinder wall, ur = 0, because the mean suspension cannot flow into or out of the

stationary wall. As a result, the constant is zero, and ur = 0 everywhere in the flow.

Turning to the mean suspension momentum equation in the tangential direction we have

= ~- r J{ r 2 0 (o0 + 1 o} + (59 + r

Replacing the stress components by means of the constitutive equation (5.3) yields,

0 a 2 r 2 uo U a- f ' r r ) ] + e { -P + qf ns(0) ( + ) }
aoai nf 11' '(0 &u Uz u U0 1 r- X0

r d + r

(5.10)

Eliminating terms which contain derivatives with respect to 0 or z or factors of Ur, or are

antisymmetric in the stress, we reduce the equation to

= - i {r2 [ f S()( U - rU)]} (5.11)

Integration results in
constant - Ii ( )(u ) us = rl s()r (UT ) (5.12)
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Given the boundary conditions ue(Ri) = Ri LI and u0(Ro) = 0, the constant of integration can be

evaluated to yield

= = r a N = (5.13)

Finally, integration yields the tangential velocity

Ue =[UeuY r , 1- (5.14)

The pressure distribution is found from the mean suspension momentum equation in the

radial direction,

(5.15)

Expanding the stress components yields,

O= r r[-p+%f aTUs( r r ]}

+ ~7z -a-r- _j T
1 r1

-Y [-P+ f1s) ( r

le 1
r r
a U

Ur

Urr )]

(5.16)

Again, eliminating terms which contain derivatives with respect to 0 or z or factors of ur,

we reduce the equation to

= a -rp}+ P

Expanding the derivative term leads to
dp = 0
dr

(5.17)

(5.18)

Hence the pressure is independent of position, apart from a hydrostatic head, in this flow.
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Next, we focus on the particle diffusion equation. For a one-dimensional shear flow, at

steady state, the particle diffusion equation reduces to

-y _ _ w) (5.19)

Where 4w and ?w' are the values of the concentration and shear rate at the flow boundary, or wall.

Substituting in the shear rate expression above and the Krieger viscosity function yields

* r ( - w/m )L82 ( I - K / K ) (5.20)
Oww- Ri 1-l0/0,m

Note that at steady state only the ratio of flux coefficients Kln / Kc appears.

5.2.3 Analytical Solution
K¢For the value c = 0.66, which provided the best fit to the experimental steady state

particle concentration profiles presented in Phillips et al. (1992), an analytical solution is possible,

where
r2

~= (5.21)¢ Om (r2 + a Ri2)

and a . The integral of the concentration equation gives an expression for the average

concentration
2 _ (Ro 2 0Ri 2 I o2a + )

R= 0 -R. 2 - R ( 2 2 R i2(l + (5.22)

The concentration profile is solved by choosing a value for qw and evaluating the equation for .

When the proper value of 0w is found, it is substituted into the equation for ¢(r). The velocity

profile is found by substituting ¢(r) into equation (5.14) above.

The Phillips diffusive flux model does not explicitly contain the suspension temperature T

as an unknown. However, following the scaling argument used by Phillips et al. (1992) in

deriving the particle diffusion equation, we can calculate T from the predicted concentration and

shear rate profiles. We estimate that the fluctuating velocity v' is proportional to the mean free path

between inter-particle collisions multiplied by the inter-particle collision frequency.

v'- (mean free path) (collision frequency) - (a) (O ) (5.23)
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T - (v') 2 2 a 2 (5.24)

This result gives the dependence of temperature in the Phillips model on particle size,

concentration, and shear rate.

5.3 Suspension Temperature Models: Solving the Equations of the

Nott and Brady Model (1994)

The Nott and Brady model (1994) treats the suspension as a two-phase fluid. The model

contains two mass conservation and two momentum conservation equations, one of each for the

mean suspension continuum, and one of each for the particle phase only. These equations are

obtained by ensemble averaging the mass and momentum conservation equations that apply at any

material point, over all the suspension material or only over the particles. We solve for five field

variables: the particle volume fraction 4, the mean suspension velocity u, the mean particle phase

velocity Up, the scalar suspension temperature T, and the fluid phase pressure pf. In addition, the

Nott and Brady model contains a different auxiliary equation from the Phillips model, replacing the

particle diffusion equation with a conservation of fluctuation kinetic energy equation.

5.3.1 General Form of the Equations

In general, the five conservation equations are given as:

conservation of mass for the particle phase,

+ V (o p)=O (5.25)

conservation of momentum for the particle phase,
Dpup (5.26)

PP ¢ Dt = bp + E + V- *p (5.26)

conservation of fluctuation kinetic energy,
D (1/2 (p _2)'

C(W Dt = () O1 u) + p -p a() a- 2 T -. q (5.27)

conservation of mass for the mean suspension (incompressibility),

V. u1=0 (5.28)
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and conservation of momentum for the mean suspension,
Dp = b + v p:D (pia) =2Y (5.29)Dt

In the momentum equations, : and are the stress tensors, averaged over the mean

suspension and the particle phase, respectively, b represents an external force, such as gravity, and

Ep is the internal force between the fluid and particle phases. In the fluctuation kinetic energy

conservation equation, the right side reflects the competition among several factors, including the

rate of working of a fluctuating external force, the rate of energy dissipation from the mean flow as

a source of fluctuation energy, the rate of fluctuation energy dissipation into heat as a sink due to

the friction between the particle and fluid phases, and the spatial conduction of fluctuation kinetic

energy. In this equation, q is the fluctuation kinetic energy flux, a(O), P(O) and c(o) are

unspecified functions of particle volume fraction, and the angle brackets signify an ensemble (or

equivalent volume and time) average.

5.3.2 Steady Flow

Following the development given in Nott and Brady (1994), we simplify the equations for

our problem. At steady state, all the explicit time derivatives are zero. In addition, our flow takes

place at low Reynolds number, so we can neglect the inertia terms compared with viscous terms in

the momentum equations. Also, there are no external forces b acting on the particles or fluid.

Incorporating these restrictions leads to:

conservation of mass for the particle phase,

V- ( up) = (5.30)

conservation of momentum for the particle phase,

E4+' p = Q (5.31)

conservation of fluctuation kinetic energy,

p': - rl () a 2 T -V q = 0 (5.32)

conservation of mass for the mean suspension (incompressibility),

V. u = O (5.33)
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and conservation of momentum for the mean suspension,

V. = (5.34)

We note that the last two equations are identical to the conservation equations in the Phillips model,

so we calculate the same mean suspension velocity and stress profiles as for the Phillips model,

subject to the variation in the particle concentration profile.

Now, we write out the constitutive relations Nott and Brady define for the internal force,

fluctuation kinetic energy flux, particle stress tensor, and mean suspension stress tensor.

The internal force is written as

= -6 lf n f() -l (up-u) (5.35)

where n is the local number density of particles and f(O) is the hindered settling function. The

expression for the fluctuation kinetic energy flux is

4 =- lf o))Y T (5.36)

The particle phase contribution to the stress tensor is written as

Mp = - +If 11p(O)f + f X (5.37)

where n is the particle contribution to the pressure, which is given by

1 = Nto + ( a p(4) T"2 (5.38)

and y is the rate-of-strain tensor, defined as

= (Vu + (V) t ) (5.39)

The expression for the mean suspension stress tensor is

I = - p 6 + nf s( ) + f (5.40)

where p is the total pressure in the suspension and is given by

p = f+ C (5.41)

and X is the normal stress difference tensor. Since Nott and Brady do not define its constitutive

relation explicitly, we omit it from the following analysis.

In addition, ls(o) is the relative viscosity correlation, such as the Krieger function, given

above for the Phillips model. In terms of lns, the effective particle contribution to the viscosity is

defined as
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lp( ) - -1 (5.42)

In the set of constitutive equations, K()), p(4), a() are all functions of ) that must be defined.

Substituting these relations into the conservation equations yields the following set of

equations:

conservation of mass for the particle phase,

V ( Up) 0 (5.43)

conservation of momentum for the particle phase,

Q = 9 rf a 2f() (up- u) + v p [- + lf lp() ] (5.44)

conservation of fluctuation kinetic energy,

0 = [- 7c + f p() )]: I - lf a(¢) a- 2 T + f V. (K() T) (5.45)

conservation of mass for the mean suspension (incompressibility),

V u = 0 (5.46)

and conservation of momentum for the mean suspension,

_ (pf + ) 8 + lf ns() = Q (5.47)

5.3.3 One-Dimensional, Steady Flow

Now, we express these equations in cylindrical coordinates and apply them to a one-

dimensional steady state flow, in which the field variables 4, u, up, T, and pf do not depend on

coordinates 0 and z and only depend on r. As discussed at the beginning of the chapter, in Couette

flow between concentric cylinders, the relevant problem, there is no dependence on 0 because the

flow is axisymmetric. Also, there is no z dependence if the flow is tall enough so that end effects

are negligible.

Starting with the mass conservation equations, for the particle phase, we find

r dr (rUp) = 0 (5.48)

Integration of the equation results in
Up ) = constant (5.49)

At the outer cylinder wall, upr = O0, because the particles cannot flow into or out of the stationary
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wall. As a result, the integration constant is zero, and Upr = 0 everywhere in the flow.

For mass conservation of the mean suspension, we find

d ( ru) = 0 (5.50)

This equation and the corresponding boundary conditions are identical to equation (5.7), and we

find ur = 0 everywhere in the flow.

The mean suspension momentum equation in the tangential direction is written as

= ( r2 I: ) + (1,O) + (OZ) + r (.1)0 = i~fr2~X~ia{s}+a{Z}+ (5.51)

This equation and the mean stress constitutive equation are identical to the equations (5.3 and 5.9)

solved above in the Phillips paper for the shear rate. Following the same procedure, the solution is,

given u(Ri) = Ri Q and u(Ro) = 0,

(5.52)? = ?r =r d () =

and, integration yields,

Ue = [u] - Q = Q 1-

These are identical to equations (5.13) and (5.14), respectively.

For the mean suspension momentum equation in the radial direction, we obtain

o0=D r r (5.54)

This equation and the mean stress constitutive equation are identical to the equations (5.3 and 5.15)

solved for the Phillips model for the total mean suspension pressure. Following the same

procedure, the solution is
dp
dp = (5.55)dr

Hence the pressure is independent of position, apart from a hydrostatic head, in this flow.
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The particle phase momentum equations are very similar to the mean suspension momentum

equations. In the tangential direction, we find,

0 = 9 f a-2 f()-l (Up" - u0) + 1 E { r2 E'p } + r <z + rp

(5.56)

Expanding the stress components yields,

O 9 If a2 f()- (Upo - Uo) + r (r2 [ qtlf lp()( I U r u O )

+1 a f Uo Ur19 U auz a U ir ur - mre+Tr id P+fnP ( + i+ r1pt4 +) r + \1f (T + J+ r

(5.57)

Again, eliminating terms with derivatives or velocity components that vanish results in,

= 9 1 f a2 f()-l (up - u)2 E r2 [ fnp(O)(I - UB) ] (5.58)
2 [" ;

Substituting for the shear rate ( -u r from the mean suspension tangential momentum

equation (5.52), we find

0= 9 fa-2 f()- (up-u)+ - 2 1 d (5.59)))

1 dr

i f

This equation determines up once the other unknowns are solved. Since upe is uncoupled from the

rest of the problem, we can return to this equation at the end. By comparing this equation to

equations (5.51-5.53) above, it is apparent that for both the mean suspension and the particle

phase, the tangential momentum conservation equation sets the velocity profile.

For the particle phase momentum equation in the radial direction, we find,

= lf a-2 f()-' (Upr- Ur) + 1 r orp + p + zrp } r

(5.60)

From the mass conservation equations above (5.48 and 5.50), we found that both upr and ur are

zero. Therefore, the first term vanishes. Expanding the stress components yields,
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= Ir { [ + f iP() Ur + { fP() ( +. a r ) }
+ (I ( 7+)f Uz +Ur I X [- fnP(O) a+ r )]

(5.61)

Eliminating the terms with derivatives or velocity components that vanish, in the manner of the

mean suspension radial momentum equation above (5.54), we find,

0 = r (-rc}+Jt (5.62)

In analogy to equation 5.17, this leads to

dr = 0 (5.63)dr

Hence the particle contribution to the pressure is independent of position in this flow.

This equation sets a relation between 0 and T, through the constitutive equation for rt(O,T).

Also, comparing equations (5.55) and (5.63), and recalling the definition p = pf + IC, we

find it follows that

pf = constant (5.64)

In summary, for the mean suspension and for the individual particle and fluid phases, the radial

momentum conservation equations set the pressure across the gap.

Turning to the fluctuation kinetic energy conservation equation,

O = [- S + qnf Tp(q) ~]: ~ - if a() a-2 T + T1f V (K() T) (5.65)

expanding the rate of strain tensor terms yields first

0 = - x tr () + l f np(() : e - f (b) a-2 T + lf .* (C() T) (5.66)

and further yields

0 = U + +U+-~
°(r + r a1o r + Uz)

!+a U ,2 I a U +Ur2+(za U1 2 

- lf a(O) a- 2 T + Of . (K(f ) T)

(5.67)
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Eliminating the terms with derivatives or velocity components that vanish,

= n f (5.68)
Substituting into the first term from the mean suspension tangential momentum equation (5.5268)

Substituting into the first term from the mean suspension tangential momentum equation (5.52),

o = fnp(, - f a(~) a2 T + q f. V (ic() _ T)

(5.69)

5.3.4 Combining the Equations

Now, we combine the constitutive equation for ;t (5.38) with the fluctuation kinetic energy

conservation equation (5.69) to solve for 4 and T. The constitutive equation is given by

i = o + l a - p() T "2 (5.70)

Since it0 is an arbitrary constant, we set it to zero.

Before combining the two equations, we rewrite them in nondimensional form. The

characteristic scalings we use for this include

r = R ? (5.71)

u = R o T~Oe (5.72)

?= f2 / (5.73)

T = a2~ T = a2 i 2 (5.74)

= Tfl( PI p(o) T /2 , where PI is an unknown constant. (5.75)

V IV (5.76)
RO

where - is used to denote a dimensionless quantity. In addition,

Ri ~~~~~~~~~~~~~k (5.77)
RO

Nondimensionalizing the constitutive equation for 7r first results in

P() 12 = Pi, (5.78)

which can be rearranged as
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Pi2
[p(i)]2 (5.79)

Nondimensionalizing the fluctuation kinetic energy equation yields

1 d (n )2 - a) +2 ( I k )2 2 (4 )A)

(5.80)
where E£ is the ratio between the particle diameter and gap width. Since for our

flow, 2 = . Also, k = 0.906 for our flow geometry, resulting in (1 - k)2 = 0.009.

Consequently, the last term in the fluctuation energy equation is negligible compared to the other

two O(1) terms in the bulk of the flow, where (Ro - Ri) is the appropriate length scale for the

spatial derivatives. Only in a boundary layer about 1 or 2 particle diameters away from either wall,

where the gap width is rescaled, would the three terms be of comparable size. We are not

concerned with this region because our LDV data this close to the outer cylinder wall are not

reliable. In the bulk of the flow, which is where our better quality measurements are, the

conduction term in the energy equation is insignificant.

Accordingly, the fluctuation energy equation reduces to

= p(,) 2 (¢)r 2 - a((5.81)I, '(~~~~) y2 I-5.8]

Substituting for T from the particle pressure constitutive equation results in
- I

a(4) P = nP(,)PW~ I(1S20) ?4) (5.82)

Rearranging the equation yields
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4 1 1P) PW() ('5 R)

Combining the two constants Pi and the definite integral into one unknown constant Pl' results in,

4r_ 1 p() p2() (5.84)

where = Pi() 3 dT

We can solve this equation implicitly for ¢() . We guess the value of 0 at the inner cylinder

wall and find the value of the unknown constant Pi (defined as the value of the constant particle

pressure) that gives us '( 4>guess) = k . We then calculate (4) for points across the Couette gap.

We find the average concentration by integrating over these points. We check that this average

concentration matches the desired value. If not, we iterate by changing tguess and repeating the

process.

Once the concentration profile ¢(?) is established, and the corresponding value of pi

known, we solve for the suspension temperature

T = a2 2 P 2 (5.85)

and mean suspension velocity profile

1- (5.86)

Returning to the equation for the particle phase average tangential velocity (5.59), written now in

nondimensional form,
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= 2 -2 (-k)-2 f(,)- (pe - ia) +2= a E al 5() J (5.87)
n) ~ )1S

we see that in order for the two terms to balance, (Uip - Go) must scale with £2 (1 - k)2 , which is

negligible for our flow. Accordingly, we consider ue to be the mean velocity for the mean

suspension and the particle and fluid phases individually.

An important feature of this solution is that all the variables are linked to the particle

concentration profile, which in the bulk of the flow is fully determined by the functions l(),

i qp(), p() and c4() . Of these functions, only ls({) has been determined empirically. The others

are arbitrarily chosen by Nott and Brady (1994). For inhomogeneous flow problems where

conduction of fluctuation kinetic energy is a significant effect, (4) is an additional unknown

function of 4.

5.4 Suspension Temperature Models: The Morris and Brady Model

The Morris and Brady (1998) model is identical to the Nott and Brady (1994) model, but

with different functions of particle volume fraction, Tls() , Tip(q), p() and ca() , as the coefficients

in the equations. Although the solution to the steady Couette problem in the bulk of the flow is

given by equations (5.84-5.87), the choices of these coefficient functions make a significant

difference in the models' predictions of the shear rate and suspension temperature profiles, and the

agreement of the profiles with experimental data. The Morris and Brady and Nott and Brady

models also have different boundary conditions for the suspension temperature T at the inner and

outer cylinder walls, but since we make an approximation that turns the differential equation

involving the suspension temperature into an algebraic equation, these boundary conditions do not

enter the problem.
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5.5 Suspension Temperature Models: The Jenkins and McTigue

Model

The McTigue and Jenkins (1990,1992) model is the original temperature model on which

the others are based. It was the first model of this type of suspension to contain a fluctuation

kinetic energy conservation equation, in addition to the same mass and momentum conservation

equations found in the Nott and Brady model (1994). For the steady Couette flow problem, the

solution of Jenkins and McTigue's model in the bulk of the flow is also given by equations (5.84-

5.87). Here also, Jenkins and McTigue choose different functions of particle volume fraction,

r1 s() , p(4) and a(4) , as the coefficients in the equations. Another important difference between

this model and the Nott and Brady (1994) model is that the Jenkins and McTigue model considers

the suspension to consist of a single phase, the particle phase, as a result of the model's origins in

the granular flow literature. The suspension is treated as a dense gas of solid spheres, where the

interaction force between a pair of particles arises from the fluid squeezed between them. The three

field variables of interest are the particle volume fraction 4, the mean suspension velocity u, and the

scalar suspension temperature T.

In the 1990 version of the model, the fluid viscosity is the only fluid property that explicitly

enters the equations through these particle-particle interactions. This version of the model makes

sense for boundary-driven shear flows like shearing between concentric cylinders, but does not

explain how the particles are in motion at all for flows like pressure-driven channel flow, where the

fluid provides the driving force. McTigue and Jenkins modified the model to include pressure-

driven flow in the subsequent 1992 version, where the pressure in the suspension is now the sum

of the original particle contribution (a function of 4 and T) and the fluid phase pressure. One

difficulty in the 1992 version is that, due to the new fluid pressure variable, there are more

unknowns than equations, and so it can only be solved in simple geometries where the form of the

fluid pressure gradient is known or can be assumed. For the problem considered here, a boundary-

driven shear flow, we use the earlier 1990 version of the model, which is strictly a one-phase

model and completely specified.
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5.6 The Buyevich Model: Phenomenological Temperature Model

The Buyevich model is very similar to the temperature models described above, except that

it has a different auxiliary equation. Like the Nott and Brady model (1994), the Buyevich model is

a two phase model, but the Buyevich equations characterize the particle and fluid phases

separately, instead of the particle phase and mean suspension. The equations contain five field

variables: the particle volume fraction 0, the mean particle phase velocity up, the mean fluid phase

velocity uf, the scalar suspension temperature T, and the fluid phase pressure pf. In the Buyevich

model auxiliary equation, the suspension temperature is related to the shear rate and particle

concentration by a constitutive equation instead of a conservation equation. For a non-colloidal

suspension, Buyevich's constitutive equation has exactly the same form as the simplified

fluctuation kinetic energy conservation equation we generated from the Nott and Brady model,

namely

T - function () a 2 2 (5.88)

A new and unique feature of Buyevich's model is that it allows the suspension temperature

to be an anisotropic tensor and a quadratic function of the rate-of-strain tensor, instead of only the

scalar shear rate. We discuss this new feature in more detail in section 6.2.5 and chapter 7.

However, in the Couette flow problem we solve here, the anisotropy of the suspension

temperature has a minimal impact on the coupled velocity and concentration profiles, and the

profile of the sum of the temperature components, so for the most part the Buyevich model predicts

similar behavior to the other temperature models.

Buyevich writes the suspension temperature tensor as the sum of two tensors that are

quadratic in the rate of strain tensor,

T = A(-: )6 + C[. .] (5.89)

where A and C are dimensionless constants. For unidirectional shear flow, this results in a

diagonal tensor where T (v'z v'z) is smaller than the other two identical elements

Trr (v'r V'r) and Too -(v' o v') .
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5.7 Summary

In the steady-state, one-dimensional Couette flow problem, where external forces are

absent, all the models yield the same conclusions from the momentum equation. From the

component of the momentum equation in the flow direction, they all predict the same velocity

profile, given the same concentration profile. From the momentum equation component in the

radial direction, they all predict the pressure is constant across the gap, even though they have

different constitutive relations for the pressure. For each model, the velocity specified by the

tangential momentum equation component could belong to either of the two phases or to the overall

suspension. However, we showed earlier, in the process of solving the Nott and Brady model

(equation 5.87), that the particle phase and mean suspension velocities only differ by a negligible

amount, O(£2 ), so that for this particular problem we are not concerned with velocity differences

between the two phases. We consider the velocity profile which satisfies this equation to be the

mean velocity of the whole suspension and of each of the individual phases. For this simple

problem, the subtleties of how the models divide the flow into phases and how exactly the volume

averages are taken are invisible. Consequently, what we are really testing when we compare the

models in Couette flow is the coupling between the concentration and temperature profiles, through

the constitutive relation for the particle contribution to the pressure and the auxiliary equation.

In addition, for a homogeneous shear flow, all the models' expressions for the suspension

temperature reduce to the form

T - function () a2 (5.90)

where the function of concentration is different for each model. In figure 5.1 we display a plot

comparing the variation of the suspension temperature with particle concentration in a

homogeneous shear flow for each model. For the Jenkins and McTigue model, the temperature is

nearly independent of concentration. The Nott and Brady and Morris and Brady models give a

linear dependence of the temperature on concentration. The Phillips model scaling yields a

quadratic dependence of the temperature on concentration. For the Buyevich model, the suspension

temperature is a quadratic function of the concentration, multiplied by the Enskog factor for a dense
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system. Even this one difference, in the functional dependence on concentration, has a substantial

impact on the model predictions for macroscopic properties such as the shear rate profile.

In chapter 6, we present plots of model predictions of shear rate, particle volume fraction,

and suspension temperature profiles compared with each other and with experimental data at

different bulk particle concentrations. Table 5.2 contains a list of the actual coefficients that are

functions of particle concentration used in computing the predictions of each model.

When the models' shear rate profile predictions were compared to data, all the models'

results were multiplied by the apparent wall slip correction factor of Jana et al. (1995). For each

bulk concentration, all the shear rates across the gap were multiplied by a factor

?with slip = [l-( Ri Ro (5.91)

where the values of and for a 50% concentrated suspension were those reported in

Jana et al. (1995) and normalized for each additional bulk concentration used here. The slip factor

effectively reduces all the shear rates across the gap, in order to capture the reduced amount of

shearing the bulk suspension experiences due to the enhanced shearing in thin, low viscosity layers

by the boundaries.

We utilized this apparent wall slip correction factor for two reasons. First, we measured

nonzero tangential velocities of approximately 0.2 to 0.3 cm/s at the outer cylinder wall by using

LDV, for the 30%, 40%, and 50% concentrated suspensions, at an average shear rate of 10 s - l (10

rpm). This observed slip velocity agrees closely with the value 0.22 cm/s Jana et al. (1995) obtain

for the flow of a 50% concentrated suspension under similar conditions, in a nearly identical flow

geometry. Since the slip correction factor was extracted from measurements of a flow extremely

similar to ours, we believe it should yield an accurate correction to our flow.

In addition, when we initially compared the models' predicted shear rate profiles to the

observed profiles, all the models' profiles were displaced upward from the observed profiles by an

apparently fixed amount for each bulk particle concentration. The displacement increased with

particle volume fraction. Once we multiplied the models' profiles by the factor in equation (5.91),

all the models' shear rate profiles intersected with the observed profile approximately at the
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observed average shear rate. The apparent wall slip correction model of Jana et al. (1995) gave a

reasonable explanation for the initial discrepancies. Due to this agreement between the apparent

wall slip correction to the models and our observations, we conclude that apparent wall slip should

be included in order to obtain a realistic representation of the experimental system.
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Figure 5.1 Comparison of the variation of the suspension temperature with
particle concentration in a homogeneous shear flow for the suspension models
considered in this thesis.
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Model Coefficients that are Functions of Particle Volume Fraction

Phillips et al. (1992) 1 ) = -182 ; Om = 0.68

K = 0.66
Kn

Nott and Brady (1994) lls() = 1 - .8 ; lp() -rls)- 1

p(¢) = ½ rTlp()) ; a() = 0.19 ; 4m = 0.68

Morris and Brady (1998) n s(¢) (1 - ; rp(O) S()- 1

p(¢) = rlp() ; a(0) = 0.815 'q) ; m = 0.68

Jenkins and McTigue (1990) s(v) = ((1 -v) l2___ 7 ( )))
12v(2-v) 4'2s(v)l-k2s(v)

~2(v) =1 In 2 g(v) 6= a(v)= .6v l(v)+ 6 v a 2(v)

p(v) = - v (a(v) + a2 (v)) ; (v)= 3 v 6 (x1 (v) + 5 a 2 (v))

Buyevich (1996) M(¢) = (1 -) ; G( =)

| ) I (lp) ) ; .m = 0.65

X() = G)- 4 -4¢0 + -4¢

Table 5.2 Model coefficients that are functions of particle volume fraction.
These are used in computing model predictions to compare with experimental
data in Chapter 6.
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Chapter 6

Discussion

The implications of the physical observations described in Chapter 4 on suspension models

are discussed here. We compare directly model predictions of Couette flow between rotating

concentric cylinders to LDV measurements of the real experimental system. First, we consider

macroscopic properties, including the shear rate and particle volume fraction profiles, and then

focus on the collisional particle velocity fluctuations, otherwise known as the suspension

temperature. We compare the model predictions and the collisional fluctuation data in several ways,

including the relative sizes of the collisional fluctuation components, the profiles of the fluctuation

components across the Couette gap, the dependence of the fluctuation components on particle

volume fraction, and the dependence of the fluctuation components on shear rate. As in Chapter 5,

we have chosen the Phillips (1992), McTigue and Jenkins (1992), Nott and Brady (1994), Morris

and Brady (1998), and Buyevich (1996) models for comparison with the data. The model

predictions evaluated here are derived in sections 5.2-5.4.

6.1 Macroscopic properties

6.1.1 Comparison Between Observed Shear Rate Profiles and Model Predictions

The macroscopic property that provides the most direct comparison between experimental

data and model predictions was the shear rate profile. Because the flow geometry is simple, the

models predict the same shear rate profile, although subject to variation through the particle

concentration profile. Meanwhile, we could extract the shear rate profile from the well-

reproducible LDV mean tangential velocity data without introducing a large amount of error into the

calculation, as described in section 3.5.1. The shear rate profile comparison is accordingly a

meaningful test of each model's chosen functions of concentration, which couple together the

185



concentration, shear rate, and suspension temperature profiles.

The shear rate profile comparisons are shown in figures 6.1-6.3, for three concentrated

suspensions of 30%, 40% and 50% particle volume fraction, and an average shear rate of 10 s-l

(10 rpm). In each plot, the lines represent the model predictions and the points indicate the data

calculated from the velocity profiles displayed in figures 4.18-4.20. The plot for the 30%

concentrated suspension includes a second set of data, which is a local 5-point fit of an earlier

measurement of the 30% concentrated suspension velocity profile. All the model predictions were

multiplied by the apparent wall slip correction factor of Jana et al. (1995).

It is apparent in each of the three graphs that the Phillips, Nott & Brady, and Buyevich

models capture qualitatively the approximate range and average slope of the shear rate profiles.

However, none of the models captures the slightly curved shape of the three-region-fit shear rate

profiles. This is especially noticeable for the 50% concentrated suspension, which has the largest

slope and the most curvature in the shear rate profile. It is also noticeable that the model predictions

diverge from each other increasingly with particle concentration, since the differences in their

coefficients which are functions of concentration become significant there.

Since the Jenkins and McTigue model is the most rigorously derived model, we expect it to

match the data at least as well as the other, more phenomenological models. Contrary to these

expectations, the shear rate profiles predicted by Jenkins and McTigue match worst with the data.

This mismatch can be attributed to one of the approximations that Jenkins and McTigue make. The

authors relate the average inter-particle spacing to the local particle volume fraction by a function

based on the Carnahan-Starling approximation of the pair radial distribution function. Although the

Carnahan-Starling approximation has been traditionally applied to dense gas systems, it is not valid

in the highly concentrated regime of interest here because it does not become singular in the limit of

maximum packing (Buyevich, 1996). Consequently, the Jenkins and McTigue model significantly

underpredicts the relative suspension viscosity compared to the experimentally observed Krieger

(1972) function that all the other models use. If the inter-particle spacing in the Jenkins and

McTigue model were adjusted so that the predicted relative viscosity matched the Krieger
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correlation, then it is likely that the predictions of the model would be quite similar to those of the

other models.

6.1.2 Comparison Between Corresponding Concentration Profiles and Model

Predictions

If we analyze the data one step further, as described in section 3.5.2, we can calculate the

particle concentration profiles from the shear rate profiles in the figures. In figures 6.4-6.6, the

model predictions and reduced data from the shear rate profiles in figures 6.1-6.3 are presented

together, for the 30%, 40% and 50% concentrated suspensions. It has been well-documented

experimentally, for a non colloidal suspension with a viscous Newtonian suspending liquid

(Abbott at al., 1991; Hampton et al., 1997; Lyon and Leal, 1998), that the steady state

concentration profile is not a function of the rate at which the flow is driven, such as the volume

flow rate in pipe flow or the inner cylinder rotation speed in Couette flow. Even though we use the

same data here as above, gathered from the 10 rpm experiment, the concentration profiles shown in

the plots would be the same at any rotation speed once the flow reached steady state. In figure 6.4,

the model predictions for the 30% concentrated suspension concentration profile match both sets of

data well.

Although the three-region-fit profile is slightly curved, almost all the models capture the

average slope. As the concentration increases to 40% and 50% in figures 6.5 and 6.6, the model

predictions scatter and agree poorly with the data, especially in the case to the 50% concentrated

suspension profile, which has the most curvature, like the shear rate profile. Among the models, as

before, the Phillips, Nott & Brady, and Buyevich models best capture the approximate size and

slope of the shear rate profiles. Overall, the trend we observe is that the models tend to capture the

behavior of moderately concentrated suspensions like the 30% concentrated suspension better than

that of highly concentrated suspensions like the 50% concentrated suspension.
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Figure 6.1 Comparison between model predictions and experimental
measurements of the shear rate profile across the Couette gap, 30% particle
concentration, average shear rate = 10s-1 (10 rpm). All the model predictions
were multiplied by the wall slip correction factor of Jana et al. (1995). Note
that the local fit and 3 region fit were calculated from two separate experiments.
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Figure 6.2 Comparison between model predictions and experimental
measurements of the shear rate profile across the Couette gap, 40% particle
concentration, average shear rate = 10s-1 (10 rpm). All the model predictions
were multiplied by the wall slip correction factor of Jana et al. (1995).
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Figure 6.3 Comparison between model predictions and experimental
measurements of the shear rate profile across the Couette gap, 50% particle
concentration, average shear rate = 10s-1 (10 rpm). All the model predictions
were multiplied by the wall slip correction factor of Jana et al. (1995).
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Figure 6.4 Comparison between model predictions and experimental
measurements of the particle volume fraction profile across the Couette gap, 30%
particle concentration, calculated from data with average shear rate = 10s-1 (10
rpm).
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Figure 6.5 Comparison between model predictions and experimental
measurements of the particle volume fraction profile across the Couette gap, 40%
particle concentration, calculated from data with average shear rate = 10s-1 (10
rpm).
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Figure 6.6 Comparison between model predictions and experimental
measurements of the particle volume fraction profile across the Couette gap, 50%
particle concentration, calculated from data with average shear rate = lOs-1 (10
rpm).
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6.2 Comparison Between Observed Suspension Temperature and

Model Predictions

This section contains an assessment of the models' assumptions and predictions of

collisional particle velocity fluctuations, otherwise known as the suspension temperature. We

extract the collisional velocity fluctuations from the LDV data by following the method outlined in

section 3.5. We subtract the dilute 2% particle volume fraction baseline from the measured velocity

variance to separate the collisional velocity fluctuations from other contributions, including particle

rotation, LDV noise, and equipment vibration. As mentioned above, we compare several aspects of

the models and data, beginning with the relative sizes of the collisional velocity fluctuation

components.

6.2.1 Observed Suspension Temperature is Anisotropic

One of the original objectives in this research was to determine experimentally whether the

suspension temperature is anisotropic, since the McTigue and Jenkins, Nott and Brady, and Morris

and Brady models all assume that the suspension temperature is isotropic. It is demonstrated

clearly in figures 4.24-4.26 that the suspension temperature components at an average shear rate of

10 s- (10 rpm) all have different magnitudes, for each of the 30%, 40% and 50% concentrated

suspensions that we measured. The tangential (flow) component is overwhelmingly the largest at

every concentration, followed by the vertical (neutral) and then the radial (gradient) components.

The ratio between the average tangential and vertical components in these plots, which is easier to

see in figures 4.30-4.32, is as large as 120 for the 30% concentrated suspension, and decreases to

about 50 for the 40% and 50% concentrated suspensions. The ratio between the vertical and radial

components lies in the range of 3 to 4, even for the 10% concentrated suspension, except near 40%

concentration, where the ratio peaks at 8. These ratios are significant factors that show that the

suspension temperature is extremely anisotropic; the degree of anisotropy is largest near 30%

particle volume fraction.

At lower shear rates, the suspension temperature is less anisotropic, and the anisotropy

194



varies little with concentration. However, even at an average shear rate of 2 s- , one of the lowest

rotation speeds we measured, the ratio between the tangential and vertical components was still

about 7, and the ratio between the vertical and radial components was about two, for all the

concentrations. This set of data indicates that the models' concept of a scalar, isotropic suspension

temperature does not exist in this real system.

If we compare either of the anisotropy ratios as a function of concentration with the data of

Nicolai et al. (1995), who studied particle velocity fluctuations in settling suspensions, we find that

their measured ratio of the vertical to horizontal fluctuations peaked at two at a particle

concentration of about 10% and decreased at higher concentrations. We observe a different trend in

the steady shear flow, where the anisotropy peaks around 30-40% concentration and is in general

larger than two.

6.2.2 Comparison of Predicted and Measured Profiles of the Sum of the

Suspension Temperature Components

The models only make predictions of the behavior of the scalar suspension temperature,

defined as the sum of the suspension temperature components we measured. We derived the model

predictions of how the scalar suspension temperature varies across the Couette gap in sections 5.2-

5.4. Since we only were able to access the outer region of the gap with LDV, we cannot compare

the entire measured and predicted profiles. However, we can test whether the models are in the

right range of values at all for the positions that we were able to measure. It turns out that this is an

important question, because the model predictions span a wide range.

Here, we compare model predictions of the scalar suspension temperature profile with

comparable measured quantities, at an average shear rate of 10s-1 (10 rpm). Since the tangential

component is much larger than the others (at least by a factor of 50) at this average shear rate, we

use the tangential (flow) component to represent the sum of the three components. The

correspondence of the models and data is shown in figures 6.7-6.9, for the 30%, 40%, and 50%

concentrated suspensions, respectively. It is apparent in these figures that most of the models
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Figure 6.7 Comparison between model predictions of the scalar suspension
temperature profile and experimental measurements of the tangential (flow, or 1
direction) suspension temperature component profile across the Couette gap, 30%

particle concentration, average shear rate = 10s-1 (10 rpm).
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Figure 6.8 Comparison between model predictions of the scalar suspension
temperature profile and experimental measurements of the tangential (flow, or 1
direction) suspension temperature component profile across the Couette gap, 40%
particle concentration, average shear rate = 10s-1 (10 rpm).
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Figure 6.9 Comparison between model predictions of the scalar suspension
temperature profile and experimental measurements of the tangential (flow, or 1
direction) suspension temperature component profile across the Couette gap, 50%
particle concentration, average shear rate = 10s-1 (10 rpm).
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underpredict the sum of the temperature components by a large factor. The model which

approaches the data the most closely is the Buyevich model, which overpredicts the 50%

concentrated suspension data but underpredicts the 30% and 40% concentrated suspension data.

All the other models predict suspension temperatures on the same order as the other two,

much smaller, suspension temperature components. Another comparison we can make is between

the model predictions of the scalar suspension temperature and the observed sum of the vertical

(neutral) and radial (gradient) components, and this is displayed in figures 6.10-6.12 for the 30%,

40% and 50% concentrated suspensions. In each of these plots, the Morris and Brady model

matches extremely well with the data, with the Phillips model the next closest curve. The good

agreement between these measured components and the model predictions suggests that the models

contain an assumption about the particle interactions in the suspension that applies to the gradient

and neutral directions, but not to the flow direction.

6.2.3 Comparison of Predicted and Measured Variation of the Sum of the

Suspension Temperature Components with Particle Volume Fraction

A feature of our physical observations which challenges the assumptions of all the models

is the variation of the tangential, radial and vertical suspension temperature components with

particle volume fraction. We observe that these components increase in size from low

concentrations to about 30-40% concentration, and then decrease at 50% concentration, as

demonstrated in figures 4.30-4.32. In contrast, all the models predict that the suspension

temperature increases monotonically with concentration, as illustrated in figure 5.1.

This disagreement is illustrated in figure 6.13, where the observed variation of the

tangential component (representing the sum of the three components) in concentration is compared

to the models' predictions of the dependence of the scalar suspension temperature on

concentration. Although the Buyevich model prediction covers the same range of values as the

observed tangential component, for concentrations of 30%-50%, the Buyevich curve

monotonically increases while the observed trend monotonically decreases.
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Figure 6.10 Comparison between model predictions of the scalar suspension
temperature profile and experimental measurements of the sum of the radial
(gradient, or 2 direction) and vertical (neutral, or 3 direction) suspension
temperature components profile across the Couette gap, 30% particle
concentration, average shear rate = 10s-1 (10 rpm).
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Figure 6.11 Comparison between model predictions of the scalar suspension
temperature profile and experimental measurements of the sum of the radial
(gradient, or 2 direction) and vertical (neutral, or 3 direction) suspension
temperature components profile across the Couette gap, 40% particle
concentration, average shear rate = lOs-1 (10 rpm).
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Figure 6.12 Comparison between model predictions of the scalar suspension
temperature profile and experimental measurements of the sum of the radial
(gradient, or 2 direction) and vertical (neutral, or 3 direction) suspension
temperature components profile across the Couette gap, 50% particle
concentration, average shear rate = Os-1 (10 rpm).

202



T / 1,

(a

30

25

20

15

10

5

i

0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 6.13 Comparison between the dependence on particle volume fraction of
model predictions of the scalar suspension temperature and experimental
measurements of the tangential (flow, or 1 direction) suspension temperature
component, average shear rate = 10 s-l (10 rpm), local shear rate = 8.7 s-1. Both
the model predictions and the data are made dimensionless by the particle radius
squared multiplied by the average shear rate squared.
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Figure 6.14 Comparison between the dependence on particle volume fraction of
model predictions of the scalar suspension temperature and experimental
measurements of the sum of the radial (gradient, or 2 direction) and vertical
(neutral, or 3 direction) suspension temperature components, average shear rate
= 10 s-1 (10 rpm), local shear rate = 8.7 s-l. Both the model predictions and the
data are made dimensionless by the particle radius squared multiplied by the
average shear rate squared.
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The comparison between the model predictions and the sum of the smaller two suspension

temperature components is presented is figure 6.14. Although the Phillips and Morris and Brady

model predictions lie close to the sum of the radial and vertical components, these models do not

capture the increasing and decreasing behavior of the observed components.

The shape of the curves of the variation of the tangential, radial and vertical suspension

temperature components with particle volume fraction in figures 4.30-4.32 may seem

counterintuitive, but can be explained using a scaling argument in the manner of Phillips et al.

(1992). The fluctuating velocity in each direction can be approximated by the ratio between the

mean free path and the time interval between collisions. According to Jenkins and McTigue (1990)

and Frankel and Acrivos (1967), the mean free path can be estimated by the average particle

spacing, a function of the bulk concentration. According to Frankel and Acrivos (1967), the

average particle spacing is approximated by
spacing

a (6.1)

where a is the particle radius and ql() is the relative viscosity function, such as that of Krieger

(1972). According to Phillips et al. (1992), the time interval betwen collisions scales with 1

so the ratio becomes

v' mean free path a (6.2)
collision time interval 0) - a () 

The suspension temperature is defined as the square of the fluctuating velocity, and so it can be

approximated as

T _ (V)2 4 1 a2 f2 (6.3)

As the concentration increases, there is a competition between increasing collision frequency and

decreasing mean free path. At low to moderate concentrations, the viscosity function is slowly

varying and so the collision frequency effect dominates, causing the suspension temperature to

increase. However, at a higher concentration of about 45%, the viscosity curve suddenly starts to

increase rapidly, and the mean free path decreases at a much faster rate than the collision rate can

increase, and so the suspension temperature decreases at high concentrations. This behavior leads
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to a T() curve with a maximum at moderate concentrations, which is what we observe. A plot of

this curve is shown in figure 6.15.

In addition, a T() curve with this shape already exists in the literature. Nicolai et al. (1995)

observed in their settling experiments that a plot of the vertical (flow direction) fluctuating velocity

increased at low concentrations, had a maximum at j = 0.3, and decreased at higher

concentrations. This looks exactly like the shape of our curve for the tangential suspension

temperature component, as indicated in figure 6.16, and is similar to the shapes of the other two

components' curves.

6.2.4 Comparison of Predicted and Measured Scaling of the Suspension

Temperature Components in Shear Rate

The last main subject of our observations is the scaling in shear rate of the three suspension

temperature components. First of all, each component has a distinct variation with the shear rate, as

is apparent in figures 4.33-4.35. Also, not all the components scale quadratically in the shear rate,

as the models assume because of the definition of the suspension temperature. As discussed in

chapter 4, only the tangential component for the 30% and 40% concentrated suspensions exhibits

quadratic behavior. For the tangential component at these two concentrations, the models' assumed

scaling is correct. In contrast, the radial component is nearly constant in the shear rate, and the

vertical component displays a more complex scaling that is closer to a square root than a quadratic.

Also, the tangential temperature component for the 50% concentrated suspension appears to have a

scaling in between quadratic and the scaling of the vertical component. Figure 6.17 contains a

comparison of several fits of the vertical suspension temperature component data plotted against the

shear rate.

6.2.5 Comparison with the Anisotropic Buyevich Model

A unique feature of Buyevich's model is that it allows the suspension temperature to be an

anisotropic tensor and a quadratic function of the rate of strain tensor, not just of the scalar shear
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Figure 6.15 Plots of the estimated dependence of the suspension temperature on
particle volume fraction. In section 6.2.3, the suspension temperature is
approximated as the square of the product of the mean free path and the collision

frequency, which leads to the functional form: T (v') 2 i0 a2

The two curves shown only differ by the choice of the relative viscosity function,
either that of Krieger (1972) or Frankel and Acrivos (1967). Although both
curves contain values that are at least two orders of magnitude smaller than those
observed experimentally, the curves capture qualitatively the dependence of the
suspension temperature components on particle volume fraction.
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average shear rate = 10 s- 1 (10 rpm), local shear rate = 8.7 s- 1.
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Figure 6.17 Vertical collisional velocity fluctuation (or suspension temperature
component) for the 30%, 40% and 50% concentrated suspensions, measured at
the + 90 ° locations, plotted against local shear rate. These data were obtained at
two adjacent radial positions (r/Ro = 0.986 and 0.987) while the local shear rate
was varied by changing the inner cylinder rotation speed. A least-squares power
law fit is drawn through one of the curves for the 30% concentrated suspension.
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rate. Although we compared the model predictions to observations of the sum of the suspension

temperature components above, a more detailed comparison is possible for this model, and that is

the focus of this section.

Buyevich writes the suspension temperature tensor as the sum of two tensors that are

quadratic in the rate of strain tensor,

T = A (: ') 6 + C[y.j] (6.4)

where A and C are dimensionless constants. For unidirectional shear flow in the concentric

cylinder geometry and coordinate axes along the flow, gradient, and neutral directions, this

expression results in a diagonal tensor where Tzz -= (v'z v') is smaller than the other two

identical elements Trr - (v'r v'r) and T - (v' 0 v'e) .

In Buyevich's model, Trr = Too . Our data strongly contradict this statement, because the

observed Too is greater than Trr by about two orders of magnitude. If we relax the constraint that

tensor T must be a quadratic function of the rate of strain tensor and specify merely that the tensor

T is a function of the rate of strain tensor only, then according to Aris (1962), T can be expressed

as

T = A (I, II, III) + B (I, II, III)j + C (I, II, II)[. T] (6.5)

where A, B, and C are scalar functions of the three invariants (I, II, E) of the rate of strain tensor.

For incompressible flow, I = tr = 0. For unidirectional shear flow, III = det = 0. The only

remaining invariant quantity is related to II, = (: . Accordingly, for the Couette flow

problem,

T = A(?) 8 + B(?) T + C(j?) [j. ] (6.6)

The additional term in this expansion is proportional to the rate of strain tensor, and hence does not

have any diagonal components in this coordinate system. Consequently, even without a constraint

on the functional dependence of T on the rate of strain tensor, there is still the contradiction

between the model predicting Tr, = Too and the data indicating Tr, • T .

The conclusion we draw is that T, the suspension temperature tensor, is not a function of

the rate of strain tensor only. It is beyond the scope of this research to find the complete set of
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tensors on which the suspension temperature tensor may depend. However, another deformation

tensor that the suspension temperature tensor T might depend on is the convected derivative of the

rate of strain tensor, denoted as Y(2) by Bird et al. (1987). For cylindrical Couette flow, the tensor

¥(2) has only one nonzero component in the flow coordinate system, namely Y(2) 8 , which

would allow the tensor components Tr and To to vary independently. Adding this tensor to the

expression for the suspension temperature tensor T would yield a relation like an ordered fluid

expansion, which relates the stress tensor to the rate of strain tensor in a nonlinear viscoelastic

material. The modified relation would be particularly similar to the Criminale-Ericksen-Filbey

(CEF) stress tensor constitutive equation (Bird et al., 1987).

In addition, an example of another tensor that T could depend on is the suspension

microstructure, specifically, the average pair orientation tensor, defined as (j a) by Phan-Thien

(1995), where u is the unit vector pointing along the line of centers of two particles. This tensor

has a similar definition to the structure tensor for liquid crystalline systems, where u represents the

orientation of each rodlike crystal (Doi, 1981).

It is reasonable to suppose that the suspension temperature tensor T is a function of such a

microstructure tensor. It is clear from figure 6.13 that the trace of T is a function of the particle

volume fraction. Examination of the arrangement of particles at a higher level of detail suggests that

an anisotropic arrangement of particles leads to an effectively anisotropic particle volume fraction,

depending on the direction of observation. Consequently, it would be appropriate for the

anisotropic suspension temperature tensor to depend on the anisotropic particle volume fraction,

represented by the microstructure tensor ( u) . This is analogous to the extension by Buyevich of

the quadratic dependence of the scalar temperature on the shear rate to the quadratic dependence of

the temperature tensor on the rate of strain tensor.

In chapter 7, we discuss the tensorial nature of the suspension temperature in more depth

and describe and evaluate our own attempts to derive an anisotropic suspension temperature model.
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6.3 Implications of Observations for Suspension Simulations

The physical observations we made of the collisional particle velocity fluctuations have

implications for suspension simulations as well as for continuum models. The two observations

with the greatest impact on simulations were the visualiztion by video imaging of particles

undergoing "out-of-plane" binary collisions, shown in figure 4.3, and the LDV measurements

indicating that the vertical fluctuating velocity component is larger than the radial component,

shown in figures 4.25 and 4.26. The two observations together lead us to conclude that the neutral

direction plays an important role in inter-particle interactions. This conclusion invalidates the idea

employed in the original Stokesian dynamics simulations (Nott and Brady, 1994) that a monolayer

is equivalent to an interior plane in a one-dimensional or two-dimensional flow. Our data indicates

that three-dimensional simulations with all the physical degrees of freedom are needed to recreate

the experimental environment.

6.4 Comparison with Other LDV Measurements of Particle Velocity

Fluctuations in Shear Flows

In figures 4.25 and 4.26, which illustrate the dependence of the radial and vertical velocity

fluctuations on local shear rate, at a fixed average shear rate of 10 s-1 (10 rpm), we compare our

data to that of Tripathi (1998), who also measured suspension temperature components in narrow

gap Couette flow. Tripathi made LDV measurements of particle velocity fluctuations in

suspensions of 20% to 40% average particle volume fraction over a shear rate range of 3 to 16 s-1

and followed the same data reduction procedures that we did. There is a significant overlap

between Tripathi's measurements and ours, in which the particle volume fraction varied from 10%

to 50% and the average shear rate ranged from 1 to 12 s - .

The two sets of data are similar in several ways for shear rates close to 10 s -1 . We

measured radial and vertical collisional velocity fluctuations of similar magnitude to Tripathi's data,

and Tripathi observed, as we did, that the vertical (neutral) fluctuation component was larger than

the radial (gradient) component, over the entire measured concentration and shear rate range.
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Tripathi also measured the tangential (flow) velocity fluctuation component, but he used different

conditions for these measurements, and the resulting observed velocity fluctuation component was

nearly negligible. Accordingly, the tangential component measurements are not directly comparable

to the data of this study. However, a final similarity is that Tripathi's plot of the dependence of the

sum of the suspension temperature components on particle volume fraction has a very similar

shape to the plot in figure 6.16 of the dependence of the sum of the two smaller suspension

temperature components on particle volume fraction. Both curves rise from low particle volume

fraction to a maximum at 40% particle volume fraction.

However, a discrepancy between Tripathi's observations and those presented here is that

Tripathi found relatively quadratic dependence in the shear rate for the radial and vertical collisional

velocity fluctuation components, which is different from what we observe. The source of the

discrepancy is no, easily detectable. We used Couette flows with very similar dimensions and very

similar LDV systems, but different size pa-ticles, different particle and fluid materials, and

measured at different places in the gap. Whereas our measurements were taken in the outer 25% of

the gap for the concentrated suspensions, Tripathi obtained all his observations along the flow

center line.

We also compare the tangential (flow direction) component of the collisional fluctuating

velocity measurements presented here to the measurements made by Lyon and Leal (1998) of the

collisional fluctuating velocity in the flow direction in channel flow.Since Lyon and Leal measured

only this component, it is our only basis of comparison. It appears that our measured collisional

velocity fluctuations were approximately an order of magnitude larger than Lyon and Leal 's.

However, it is difficult to compare the two flows, since the significant velocity fluctuations

in channel flow occur near the wall, where the LDV signals are typically the noisiest and the local

shear rate varies the most rapidly, so that the measurements are sensitive to small changes in

position. Although some of our measurements also lie close to the outer cylinder wall, narrow gap

Couette flow is designed to be nearly homogeneous in shear rate. We might expect that the

measured velocity fluctuations could be different in nearly homogeneous and very inhomogenous
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flows, especially if the inhomogeneity is significant on the length scale of the LDV measuring

volume.
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Chapter 7

Anisotropic Suspension Temperature Model

In sections 4.3.2.1 and 6.2.1, we found that the suspension temperature components in the

radial, tangential and vertical directions are unequal to each other. This means that the suspension

temperature is anisotropic. If the suspension temperature were isotropic, then the components

measured in any independent directions would be equal. More specifically, if tensor T is isotropic,

[n. T] = Tn for all n (7.1)

For an isotropic tensor, the choice of coordinate axes has no impact on the equality of the

components.

7.1 What is the Structure of the Suspension Temperature Tensor T ?

In considering an anisotropic suspension temperature tensor, the first question that arises is

what form the tensor has. If we define the suspension temperature tensor as

Tij - (Vi ' Vj? (7.2)

we have a symmetric 3x3 tensor, accordingly with six independent components. However, some

of these independent components may vanish in a specific flow field, such as unidirectional shear

flow.

In a simple homogeneous shear flow, with (x, y, z) replacing (0, r, z) respectively, if we

rotate the coordinate system by 180 ° about the vorticity axis, such that

x* = -x; y*= -y*; z* = z (7.3)

then

TxX* = ('x* v'x*) = ((-v'x) (- v' )) = (v' x v'x) = T x (7.4)

Similarly,

T y*y* = T yy and T x*y* = T xy, (7.5)

and T yx = T xy, because tensor T is defined to be symmetric. The coordinate z does not change at
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all under the rotation, so T ,,zz remains unchanged.

However, T x*z* does change under the rotation:

T,,, = (v'x* v'z) = ((- v'x) (v')) - (v' v'z) = -Tx z (7.6)

And similarly,

T y*z* = -T yz. (7.7)

However, the flow is invariant to rotations of 180" about the vorticity axis. This means that

any tensor that depends on the flow kinematics is identical before and after the rotation (Bird et al.,

1987). As a result,

T x*z* = T xz (7.8)

T y*z* = T yz

This leads to

T xz -T xz =0 (7.9)

Tyz= -T yz =0

Since the tensor T is defined to be symmetric, that means the T zx and T zy components are also

zero.

Since narrow gap Couette flow is locally a simple shear flow, the same symmetry argument

applies. Components Trz, Tzr, TOz, and Tz are zero. Therefore, the tensor T can contain at most

four independent components: the three diagonal components (Trr, To0 (, Tzz) and equal Tr0 and

T r components. The matrix representation of T is written in cylindrical coordinates as
Trr Tr 0

T = Tro To 0 (7.10)
0 0 Tzz

7.2 Dependence of Tensor T on the Rate of Strain Tensor:

Comparison with the Anisotropic Buyevich Model

As was discussed in more detail in Chapter 6, if we assume that the tensor T is a function

of the rate-of-strain tensor alone, then we can follow Aris (1962) in generalizing the quadratic form

suggested by Buyevich (1996); and we can write the suspension temperature tensor as:
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T = A (f: )8 + B84+ C [lf'] · (7.11)

Where A, B and C are functions of the three scalar invariants of T. Because of the form of the rate-

of-strain tensor and its square in unidirectional shear flow, this reasoning leads to

Tee = Trr. (7.12)

This result directly contradicts our observation that Toe and Trr are different by a factor of between

25 and 120 for the concentrated suspensions we measured, with Too being the largest and Trr the

smallest of the diagonal components. Consequently, our experimental observations do not support

the idea that the tensor T is a function of the rate-of-strain tensor alone. The example given in

Chapter 6 of another tensor that T could depend on was the suspension microstructure tensor,

specifically, the average pair orientation tensor, analogous to (u ) for liquid crystals (Phan-

Thien, 1995; Leighton and Rampall, 1993).

7.3 Relating the Experimental Measurements to the Invariants of

Tensor T

The invariants of the suspension temperature tensor T are the trace, the determinant, and

the second invariant, defined as

12 = tr[T:T] (7.13)

We can write three other quantities as functions of these three invariants only: T z z, which is one of

the eigenvalues, and the trace and determinant of the upper block of the T matrix involving r and 0

components only, given respectively as:

(Trr + To) ; (Trr To0- Tr, 2 ) (7.14)

Now, we only measured the diagonal components of tensor T in the laboratory reference

frame. We were not able to measure Tr because this is a covariance between two velocity

components, and we only measured one velocity component at a time. Even if we had the

capability of measuring two velocity components at once, the geometry of our system prohibits

measuring (v'r v'e). The only way to measure this quantity would be to shine the LDV beams from

the top or bottom of the flow, and the path length through the suspension to the center of the flow
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where end effects are minimized is far too long for any signals to pass through it, at least for the

concentrated suspensions of interest. As mentioned in Chapter 3, measurement of (v 0vr) from the

side of the flow is theoretically possible, but quite difficult in practice. Measuring (v vr) from the

side involves comparing three fluctuation measurements, all with different path lengths that the

beam must pass through in the suspension and different effective measuring volume sizes, with

corresponding baselines in the 2% concentrated suspension. Accounting for all these factors is

beyond the scope of this project.

We want to measure the invariants of the tensor, so that our observations are independent

of an arbitrarily chosen reference frame. We measure the invariant quantities Tz z, which is one of

the eigenvalues as noted previously, and the trace of T (sum of the diagonal components). We

know the trace of T must be positive because it irepireseni. he total kinetic energy contained in

velocity fluctuations in all directions, by definition a positive quantity. What about the determinant

of T? When we diagonalize T in the principal axis coordinate system, it will not contain any off-

diagonal terms which are covariances. It seems reasonable to associate each of the eigenvalues

which appear in the diagonal tensor with the kinetic energy of velocity fluctuations along one of the

principal axes. In that case, each of the eigenvalues should be positive, causing T to be a positive-

definite tensor (i.e. the determinant of T is positive).We can use this judgement to put bounds on

the value of the off-diagonal component Tr 0. We can also bound the impact of nonzero Tr 0 on the

eigenvector directions.

If the determinant of T is positive, then

detT = Tzz,(TrrTe-Tr 2 ) > 0 (7.15)

Since Tzz is known to be positive from our measurements, and is positive by definition, we find

Trr Too > T02 (7.16)

Tzz is one of the eigenvalues of T. We find the other two from the upper left block of tensor T

as follows,

2-(Trr+Toe) +(TrrTe-TrO2 ) = 0 (7.17)

Solving for X gives
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Trr+TOO + ,/(Trr+T 0 )2-4(TT -T ) (7.18)
x 2 (7.18)

Now, ITro ranges from 0, where = (Tr, T) , to / Trr T , where

X = ( (Trr + To o), 0 ) . If Tr, = 0, then the components we measured are the eigenvalues of the

suspension temperature tensor. The worst case is I Tr I = I Trr Too , and

X = ( (Trr + TO ) , 0 ) . Now, we find the corresponding worst-case eigenvectors.

In the worst case, the eigenvectors must satisfy the equation

T = i ; i=1,2 (7.19)

For Xl = (Trr + ToO) , the equation becomes

Tr T )( ) I (Trr +To) (vl) (7.20)

We set one of the eigenvector components to unity since we only need to solve for the ratio of the

two components. Using the equation for the radial component, we obtain

Trr+Trovl = Trr+ T0 (7.21)

which leads to

v1 = T = =+ Tee(7.22)
Te ±VTyrJrTeo - Trr

and = + (7.23)

which compares with (I) if xl = To o.

For X2 = 0,

(Tr Too ) (v2 = (0) () (7.24)

Using the equation for the radial component, we find

Trr+TrOV2 = 0
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which leads to

T, = -T = T: / (7.25)2=Te T00/ %

v2 = 4 (7.26)

which compares with ) if 2 = Tr r

From the experimental Couette flow data at the comparison average shear rate of 10 s1, we

find that T 0.1 (cm2/s 2), Trr - 0.0008 (cm2/s 2), and accordingly T - 120 , so that
T,,r

Te _ 11 and the eigenvectors become
Trr

v = +1 and v2 = TI
11

or, normalizing, vl = I + 1 and Y2 = (7.27)

The resulting principal axes are rotated only approximately 5° clockwise or counter clockwise from

the lab axes, in the worst-case situation. We believe this indicates that our choice of measurement

axes are nearly identical to the principal axes of the temperature tensor T. The corresponding

maximum difference between the value To we measured and the eigenvalue (Toe + Trr) is only

0.8%. Also, the value ofTr I is bounded by 0 < ITrol < 0.009 (cm2/s 2).

From the experimental Couette flow data, at the lowest average shear rate of 2 s- 1,

Tee, 0.02 (cm2/s 2), Trr - 0.0008 (cm2/s 2 ), and accordingly 5 and the
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normalized eigenvectors become
1 1

y = +5 and 2 = 1 (7.28)
0 0

The resulting principal axes are rotated only approximately 11 clockwise or counterclockwise from

the lab axes, in the worst-case situation. We believe this still indicates that our choice of

measurement axes are nearly identical to the principal axes of the temperature tensor T. The

corresponding maximum difference between the value Te we measured and the eigenvalue

(Toe + Tr) is only 4%. Also, the value oflTrel is bounded by 0 < IT,,re < 0.004 (cm 2/s 2 ).

7.4 Incorporating the Measured Anisotropy of the Suspension

Temperature into the Models' Constitutive Relations

Now that we have some knowledge of the form of the anisotropic suspension temperature

tensor, we attempt to apply it to the constitutive relations in the suspension models. In order to find

constitutive relations that depend on a tensor T and are not completely arbitrary, we return to the

statistical mechanics roots of the suspension temperature models. All the scalings and coefficients

which appear in the models of McTigue and Jenkins (1992), Nott and Brady (1994), and Morris

and Brady (1996) are based on those derived by Jenkins and Savage (1983) for a granular flow

and Jenkins and McTigue (1990) for a concentrated suspension.

We pursued this modeling for several reasons. First, we wanted to determine whether the

anisotropy of the suspension temperature has an impact on the macroscopic properties of the flow

that is consistent with other observations through the constitutive equation for the stress tensor.

Also, we felt that the existing conservation of fluctuation energy equation was missing a source

term for neutral and gradient direction velocity fluctuations at flow startup, and a more realistic

equation was needed, not only improved constitutive relations.
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7.4.1 Incorporating the Measured Suspension Temperature Anisotropy into the

Statistics for Calculating Averaged Properties

We modified the statistical mechanics model of Jenkins and McTigue (1990) to allow for an

anisotropic suspension temperature. In this model, all the macroscopic observable quantities at a

point in space are calculated as weighted averages of microscopic quantities, where the weighting

factor is the particle distribution function. The distribution function indicates the probability of a

particle, or multiple particles, being located at a certain point in space and having a certain velocity

at that point. We made a simple approximation, that the anisotropic temperature only affects the

single particle velocity distribution function. The anisotropic velocity fluctuations were not

incorporated into the pair (position) distibution function, which indicates the probability of a

selected particle finding a second particle at a given distance and direction. We left unchanged the

isotropic pair orientation distibution function that Jenkins and McTigue used in their calculations.

The most important constitutive relation linking the anisotropic suspension temperature to

other quantities is the stress tensor equation, since that is the only expression in the balance

equations for macroscopic variables that contains T. Accordingly, this is the first constitutive

relation we focus on, following the development of Jenkins and McTigue. We note that the model

of Phan-Thien (1995) is derived in a similar manner.

7.4.1.1 Jenkins and McTigue's Derivation of the Stress Tensor

Jenkins and McTigue (1990) define the stress tensor at a given position as the average force

transmitted through the fluid between two colliding particles, per unit area, multiplied by the unit

vector connecting the line of particle centers. The average is taken over all the possible initial

particle velocities and pair orientations, and expressed mathematically as

Xr) = (2 a) F k f(_2) (v,v 2, k)dkdv dv 2 (7.29)
J, vY1, Y2

where a is the particle radius, k is the unit vector along the line of particle centers and f(2) is the

pair distribution function.
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The force between particle 1, with its center located at rl and with velocity yl, and particle

2, located with its center at r2 with velocity y2, can be written as (Jeffery and Onishi, 1984a,b)

E = -3 r(2 a) TfA (v, - 2)- r(2 a)2 nfB .. (7.30)

where A and B are tensors that depend on the average local inter-particle separation distance, a

function of the average local particle volume fraction. fg is the mean angular velocity of rotation of

the particles due to the vorticity of the flow.

At contact, the two particles' centers are separated by a distance (2 a). Also, we separate

each particle's velocity into mean and fluctuating parts as

- - ul(ri) + v' i (7.31)

In order to write the expression for the force at a single position, we expand linearly the velocity of

particle 2 before contact as

v2 = 1 + (1 + s)(2 a) (k. V) + v' (7.32)

where s is the inter-particle spacing, u is the mean velocity at point rl, and v' is the difference in

the particles' fluctuating velocities, defined as v' - v' - v' 2 .

Substituting this expansion into the force expression, keeping only terms up to first order

in (a I V u D , and assuming the particles' angular velocities are equal to the fluid vorticity yields

E (rl, k)= r (2 a)llf [ al (2 a) (k' k)k + a 2 a(2a),. k + * (kv')k + a2 v'

(1) (2) (3) (4)

(7.33)

where we have numbered the four terms in order to facilitate the discussion below. The quantities

al and a2 are functions of the inter-particle spacing s, which in turn is a function of the local

particle volume fraction. These functions are given as (Jenkins and McTigue, 1990; Torquato et

al., 1990)

oc(s) = 1 3 ln () a2(s = 1 n ) ; (7.34)l( 2s 10 =2s) in 2 ;s

s(N) 12 (2- 

Next, we describe Jenkins and McTigue's approximation to the pair distribution function
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f(2). We write the pair distribution function as the product of the number of particles per unit

volume n(r), the isotropic pair orientational distribution function A(r, k), and the normalized single

particle distribution functions of each of the particles, as follows

f(2) = n(r) A(r, k) o'(, r) f)(v2, r + (2 a k)) (7.35)

where A(r, k) is defined as the average number of nearest neighbors per unit solid angle, or

A(, k) = A - 6 / 4c. The two single particle distributions are defined as Maxwellian functions by

Jenkins and McTigue, in the form

(o')i = exp( 2T, ; i = 1 or 2 (7.36)
(2 n T)2

Here, in the derivation of Jenkins and McTigue, the suspension temperature T is a scalar quantity.

In our modified derivation, in section 7.4.1.2, we will identify this scalar temperature with the

trace of the temperature tensor.

As with the velocity in the force expression, we expand the single particle distribution

function for particle 2 about the position r = rl. This is a standard procedure for correcting the

statistics of dense systems (Hirschfelder et al., 1954; Chapman and Cowling, 1970). Here, the

scalar suspension temperature T is the only function of position. Jenkins and McTigue's expansion

yields

f(2)(kV, 2) = n(r) A(r, k) 1+ 1 1-32a)(VT exp v 2 + v2[I1 + 2 ( J -3) (2 a) (k * V T)] exp 2 2)
(2 T) 3 2T T 2T

(7.37)

Substituting this expression along with the equation for the inter-particle force into the

definition of the stress above results in an integral that can be solved for the stress tensor. An

important simplification can be made immediately. Since the integral over k, the pair orientation

vector, is decoupled from the other integration, we consider it independently. Because the

distribution of k is isotropic, integrals of odd numbers of k's will vanish (Bird et al., 1987).

This means that all the terms in the integral that contain the second term in the pair distribution

function will vanish. Consequently, the pair distribution function effectively reduces to
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f(2)(rt k V, 2) = n() A(Tr, ) exp (v' +v 2
(2 T)3 2T

(7.38)

After integration, the stress tensor is divided into two parts:

= - I (, T) + s() ? (7.39)

The terms (1) and (2) in the force expression lead to the mean viscous deviatoric stress, rls(o) ?.

The terms (3) and (4) in the force expression lead to the particle contribution to the pressure. The

pressure is an isotropic contribution to the stress whose magnitude is given by

7(=, T) = 1f(a(()+ a,2 ()) T (7.40)
4'~ (2 a)

The particle pressure calculated here is the link between the suspension temperature and the

macroscopic properties. The deviatoric, that is, non-isotropic, stress results from the mean

deformation and does not involve velocity fluctuations at all. Accordingly, any change we make in

the velocity distribution function, to incorporate anisotropic velocity fluctuations, has no impact on

this part of the stress. Only the particle pressure would be affected by such a change.

An important question we wish to answer in modifying the velocity distribution function is

whether the resulting stress contribution will be anisotropic. Gadala-Maria (1979) observed normal

stress differences in parallel plate rheometry experiments. It is not known whether the anisotropic

suspension temperature contributes to these normal stress differences.

7.4.1.2 Modification of the Stress Tensor Derivation to Include Anisotropic

Temperature

We modified Jenkins and McTigue's single particle velocity distribution function by

incorporating the anisotropic suspension temperature in the following way. We replaced the

isotropic Maxwellian velocity distribution with an anisotropically weighted form, written as

f(')i 3 1 1 exp - ir V o v (7.41)
(2 1t)(TrrT 0Tz)22Trr 2TO 2T

This function has a similar form to the distribution function in the Bird-DeAguiar anisotropic drag

model for concentrated polymer solutions and melts. This latter model describes the relative ease
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for a long polymer molecule to move along its backbone as opposed to perpendicular to it (Bird et

al., 1987).

Expanding f) 2 linearly about position r = rl, forming the pair distribution function again

with the isotropic pair orientation distribution, and eliminating the terms odd in k that vanish

produces the following result for the pressure integral

( t T )() = 1(2 ); (2 q (Ri(¢) 2( ) (2 7t)3 (Trr To T,,)

(V V,2) ('2o + v,2 e) (V Z + V2
exp( (v'+v')(ITe2

2Trr 2To0 2Tz

(7.42)

Now, we change the variables of integration to Y'l and v'2. This is possible because the mean

velocity is only a function of r, which is not a variable of integration. Also, we transform the

fluctuating velocity variables into the center of mass reference frame of the pair of particles as

follows.
V = (v 1 +V 2) ; = VI2 - VI (7.43)

Accordingly, the pressure integral becomes

; ({, T) = (2 a)2 n f () A(, k) (aI() +2()
at 9 2 (2 )3 (T,,rrTeo Tzz)

--xp -', e , , T dk 2 dv dy_v|-k ep ( r T OO T z z 4Trr 4T00 4Tzz )

(7.44)

First, we attempt integration in k. If k and v' are independent, the integral will vanish,

since it will be odd in k. The only way for this integral to be nonzero is if we assume that all the

relative velocity fluctuations v' are in the direction of the line of centers k. We write this assumed

relation as a delta function within the pair distribution function A(r, k), given as A(r, _) =

A() (kVl
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= 2 (2a)2 7f n(t) A(r) (a(¢) + 
(2 l) a (Trr To Tzz)

(7.45)
r V z r Vz'k - P exp -T., 4 dk2d dv'

/I o(Lk-d) exp (- Tr Tee Tz - 4Trr 4 T9 4 T 

Also, we limit the range of v' to only half of space, since we assume that only the approach part of

the collision ( k v' < O 0 contributes to the particle pressure.

Next, we integrate in A, the average fluctuating velocity of the two particles. Isolating the

factors in the integrand that depend on _v results in

j exp T Tr T- )2d = 2 e( :i') d (7.46)

This is just a tensor version of a standard Gaussian integral, and the solution appears in

Bird et al. (1987),

2 e-(-:77) d_ = 2 /2 t(TrrTooTz)f (7.47)

The remaining integral is over v', the difference between the particles' flucutating

velocitites, and is given as
n(r) A ( 1 (4) + VP2 ()) ' .

(4, T) = (2 a)2 (1 if ) ) , e-( '' ) dv' (7.48)

This integral is difficult to solve, because it is odd in jvx', and is a tensor. Note that the integral

only has three nonzero, diagonal tensor components. The off-diagonal terms are odd in the

components of v', and vanish. We solve the integral by writing out each of the components,
5 n(r) A (,(~)+ o2()) v f ' 4r + v04~ + dv._ '

2 -t---, 4T T2 ' 27i i (, T) = (2 a)2 nt f )3 (T T) ) dv'
(2 it)3 (T,, Tee Tz V

(7.49)

where i = r, 0, z. We transform the integral into spherical coordinates, choosing the physical r axis

as the polar axis (since it corresponds to the smallest temperature component). We make several

assumptions based on the relative sizes of the suspension temperature components that make the

integration possible. The rest of the integration is carried out with the aid of comprehensive integral
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tables (Abramowitz and Stegun, 1965; Gradshteyn and Ryzbhk, 1965).

The pressure term was an isotropic tensor. Accordingly, it could be characterized by a

single scalar 7t. With anisotropic suspension temperature, the pressure loses isotropy. Therefore, it

must be described by an anisotropic tensor, which is symmetric according to the definition of the

pressure in equation (7.48). In the cylindrical coordinate system of the flow, the tensor is diagonal,

and its eigenvalues are given as

Irr (, T) = I 2 2) n f [ + z 3
2irC (2a) (Too T 3 2

(7.50)
T,where z - rr. Also,

= (0, T) = Cr (0, T) 1 4 z 7 7 231ltzz (~, T) =too(~, T)=lrr(~, T) ( l15 4 -z l+ 2 z+ 9 z2+ 4 z3+] )
51-z [ 1 2 + 2A3...

(7.51)

For a value of z = 1/3, typically observed in a 50% concentrated suspension, the expressions for

the stress components in (7.50) and (7.51) are well-approximated by
3

1 [1.16 6 T (7.50a)
rr(7)' T) O 272 (2a) Tf(al(Q) + a 2 ()) (TT

z e ( (, T)= 'Err(4, T) {1 4 z rr(,T) (7.51a)

The equal and opposite normal stress differences, N - (- 0e) - (-rrr > 0 and

N2 - (-lrr) - (-z z) < 0 , where the stresses are positive in tension, have signs that indicate an

extra compression in the gradient direction and agree with observations in the literature. Gadala-

Maria (1979) found in parallel plate rheometry experiments that (N 1 - N 2) > 0. Also, Phung

(1996) calculated in 3-D Stokesian Dynamics simulations for a Brownian suspension that at the

highest Peclet number computed, Pe = 105 , N1 > 0 and N 2 < 0. In addition, the normal stress

differences reduce to the expected scaling of proportionality to the shear rate, if we assume all the

suspension temperature components scale with the shear rate squared. Unfortunately, the normal

stress differences we derived have negligible size, being smaller than the shear stress by a factor of
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about 1000, when we use the observed values of Tii from the 50% concentrated suspension.

We also applied the anisotropic single particle velocity distribution function to the

fluctuation kinetic energy conservation equation. Although we write the anisotropic suspension

temperature as a tensor, the conserved quantity is the total kinetic energy contained in the velocity

fluctuations; and this scalar quantity is still the sum of the three diagonal components (or the trace

of T), as defined in the original models. Hence a scalar equation for its rate of change is

appropriate. We applied the anisotropic single particle velocity distribution function to the

constitutive relations in the fluctuation kinetic energy equation, including those for the fluctuation

energy flux and the dissipation. We found that because all the macroscopic terms we computed

depended on even functions of the fluctuating velocity, the new distribution function had no effect

on the constitutive relations.

7.4.2 Including Rotational Dynamics of Particle Interactions

Another step in forming an anisotropic model is understanding how the dynamics of

particle interactions affect the fluctuation kinetic energy conservation equation and cause the

suspension temperature components to have the relative sizes we observe. Buyevich (1996) uses a

simple geometric argument to estimate the paths of particles during a collision, which leads to an

estimate of the relative sizes of the temperature components. We take the next step by computing an

estimate of the magnitudes of the temperature components based on actual paths that particles take

during a collision in a dilute suspension, according to the results of Okagawa et al. (1973),

Brenner (1974), and Arp and Mason (1977a,b). We also utilize conservation of angular

momentum and semi-dilute collision dynamics to calculate an additional rate of working term in the

fluctuation energy conservation equation that acts as a source of neutral and gradient direction

fluctuations at flow startup.

The picture of a binary particle collision that Arp and Mason (1977b) describe is very

similar to the video image snapshots in figures 4.2 and 4.3. As the particles approach each other,

typically along the compression direction of the shear flow, they translate with the mean velocity
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associated with their streamlines and rotate about the neutral direction (z) axis with the mean
vorticity of the flow ( o = 12 ). The particles squeeze the fluid in the gap between them until the

gap becomes arbitrarily thin, but the particles do not recoil. By conservation of linear momentum,

the two joined particles act as one body translating at the average of their initial velocities.

In addition, angular momentum must be conserved during the collision because there are no

external torques acting on that time scale, According to the experimental data of Arp and Mason,

the two joined particles do not rotate relative to each other, and form a rigid doublet that rotates

about the contact point between the particles at a new angular velocity. Although angular

momentum is conserved, the moment of inertia has changed. We can calculate this instantaneous

doublet angular velocity by equating the initial and final angular momentum. Initially, the particles

each have angular momentum about the z axis from spinning at the mean flow vorticity. The

particles also have angular momentum about the z axis from their linear translational motion about

the center of mass of the pair. If the particles colliding were not in the same plane, they would also

have angular momentum about the r-axis from their linear translational motion about the center of

mass. When the particles form the rigid doublet, it instantly rotates at this new angular velocity.

However, the net velocity of each particle in the doublet is different from that of the surrounding

fluid. The suspending fluid exerts a torque on the doublet to make it rotate faster until each particle

moves with the surrounding fluid. Since the particles are assumed to be inertialess, the torque acts

instantly so that the doublet rotates at a constant, final angular velocity until it points along the

extension axis of the shear flow. Then, the suspending fluid drags on the particles and separates

them.

7.4.2.1 Estimate of the Relative Sizes of the Suspension Temperature

Components

In a dilute suspension, the rotating doublet follows the trajectory of Okagawa et al. (1973)

and Brenner (1974). We estimate the relative sizes of the suspension temperature components

based on the actual paths that particles take during a collision in a dilute suspension, according to
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the derived trajectories above and experimental results of Arp and Mason (1977b). We estimate the

velocity fluctuation in each direction with the product of the sphere radius (assuming uniform

density) and the difference between the initial and the maximum or minimum values in the

component of the angular velocity in that direction. We use the expressions of Okagawa et al.

(1973) for the components of the angular velocity of the doublet.

dOe (r D l) dq = 2 d (rD2 cos2 + sin 2 ), (7.52)
dt 4 (r2 + 1) sin 20 sin 2 ; dt (r2 + 1)

where tanE = tano os (7.53)
(rD2 cos 2 p + sin2(p) ½

and where reD is the equivalent spheroidal axis ratio of the doublet (Arp and Mason, 1977a). reD

approaches a value of 1.9817 in the limit of osculating spheres. The angles (0, p) describing the

doublet orientation are defined in figure 7.1. (00 , p0) are the angles at which the particles initially

contact each other.

Then, taking the components of these trajectories along the cylindrical coordinates of the

Couette device in the laboratory reference frame gives

,rot a [( a [in-( s)OJo] = a [(p=O)- p=q 2 4)
= a2 [(9q sinE sinp)q, 0 - (<o sinO sinp)p0 + (I sinO cosqp)=_ - (03 sine cosp),o]2

2rot = a2 [(. fi)min - ( . 3] 2 = a2 [Oz(j=O) Oz(Po)]2 = a 2 [( COSE) 0o - (O COSO)P ]2

(7.55)
0. rot = a2 [( _. 0)max- ( _ * )o]2 = a2 [((p=O)- =(P=o)]2 (7.56

= a 2 [(q sinE cosp)qo - (q sinE cos(p)p ]2

Here, the doublet angular velocity at different angles depends on the initial angles (Oo, Po) of

contact.

In order to form an overall estimate of the velocity fluctuations in each direction, we

substitute the expressions above for the rates of change of O and into the velocity fluctuation

expressions and average the expressions over all possible initial contact angles

00O = [0, iC]; = [- , 0] , assuming that all initial contact angles in the possible range are

equally likely. The choice of this constant probability distribution function is based on the
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a) Top view

I 

U

b) Side view

E
z

)rizontal

Figure 7.1 Definition of angles p and 0 describing the orientation of a particle
doublet in the reference frame of the center of mass of the two particles. The
mean velocity of the shear flow is indicated by u. The top view (a) and side view
(b) indicate the relation of p and O to the cylindrical coordinate axes of the
Couette device in the laboratory reference frame.
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observations of Leighton and Rampall (1993). These authors found that the probability of

observing a pair of particles at contact was roughly constant for azimuthal contact angles 0o in the

compression quadrant and a much smaller value for azimuthal angles in the extension quadrant.

Due to the kinematics of the unidirectional shear flow, it is aphysical for the particles to approach

each other in the extension direction; hence, the angles qo = [0, 1] in the extension quadrant are

not included in the calculation of the average velocity fluctuations. Consequently, we assume an

isotropic distribution of initial azimuthal contact angles in the compression quadrant

(Po = [- 2, 0] and we average only over these angles. In addition, since data regarding the

distribution of initial polar angles O0 does not exist, we assume an isotropic distribution of initial

polar angles. We were able to write analytical expressions for all the averages except the average

over angle 0o for v'2 rot, which was numerically integrated.

(Vr, r2 a2~ 2 sino d~o 
(rD2 + 1)2 

[(r2 cos2 p0o + sin2o0) sinO0 sino +- 4 sin(20) sinOo sin(2 ) cos (7.57)

a2, rD2_1) 2 2 2
(V'Z°ot) = 16 ( 2 )2 z sin2(200) cos2e0 sinGo dO ° sin2(2po) dgpo
(v' z rot) = a2 2 1(7(re+1) =o

(7.58)

(r D2 + i) 2a IT sinE0 dOo d(7o
=0 =-=

2 2 ~~- [rO c~~l g i siz~o, sne, eorpoj~(7.59)
rD2 C - (rD2 cos2 0 + sin2qgo) sinEO cos n]2

where the function C has the value C = tane0 [(2 cs 2p + sin2 q°)]

There is also a translational contribution to the estimated tangential velocity fluctuation, due to the

particles exchanging linear momentum in a collision.

v otrans = [ ( 2 _ yv)]2 = [1 (r 2 -r,) r)]2 = [a y sinOo cospo]2 (7.60).

233



(v ) = a 2 7 sin2 0sine0 d 0o cos 2p 0 d(p0 = . a22 (7.61)
=0 0 - 3

The resulting average values of the estimated velocity fluctuation components are

(V'2ro -- 0.065 a 2 2; (v' 2 'ot+.) S (0.154 + 1/3) a2 2 ; (v' 2 ) 0.0025 a 2 t2

(7.62)

One important feature of this estimate is that it predicts a nonzero velocity fluctuation in the

neutral (vertical) direction. The reason is that if two particles interact in an "out-of-plane" collision,

where they are not initially in the same vertical plane, the doublet they form will rotate about an

axis perpendicular to the long doublet axis. This rotation axis is oblique to the horizontal plane, so

the rotation about the axis involves some up-and-down vertical motion of the particles. This

vertical motion during the collision constitutes a vertical velocity fluctuation. If particles were only

imagined to interact with neighbors in their own planes, no vertical velocity fluctuations would be

predicted.

The velocity fluctuation components estimated in this way are all smaller than the

components we observe. Of the three components estimated, the tangential component is the

largest, followed by the radial component. The vertical component is much smaller than the others.

This agrees with our observation that the tangential component is the largest, but disagrees with

our observation that the radial component is the smallest. All the components of the fluctuating

velocity scale with a2 ?2, just as in the suspension temperature models.

There are several likely explanations for the discrepancy between the semi-dilute calculation

and the data from the concentrated suspensions. First, in a concentrated suspension, collisions are

more frequent and of shorter duration than in the semi-dilute case. Also, the distribution of initial

polar contact angles 0 may be anisotropic, leading to some initial particle pair orientations in the

compression quadrant being favored over others. Finally, the particles in the doublet may follow

different trajectories in the concentrated suspension.
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7.4.2.2 Rate of Suspending Fluid Working on a Doublet

When the suspending fluid exerts a torque on the rigid doublet, it is doing work on the

doublet to make it rotate faster. The rate of working is equal to the product of the torque and the

angular velocity. This is a change in the fluctuating (not the mean) kinetic energy of the particle

pair, and therefore should be included in the fluctuation energy conservation equation. The work

done by the suspending fluid to rotate the doublet is the source for particle velocity fluctuations in

the neutral and gradient directions at flow startup in the fluctuation energy conservation equation.

Without this contribution, there is no mechanism for fluctuations to arise in any direction other than

the flow direction. Recall that fluctuations in the flow direction are fed by viscous dissipation from

the mean flow.

Based on the conservation of angular momentum described above and the known flow

field, we estimate the average rate of work done on the doublet per unit volume as
W , 15 = 15 n 22 f (7.63)

vol f~ "'. ~ = ~ -2 (7.63)

Since this term represents a positive rate of change of the fluctuation kinetic energy, we add it to

the right side of the fluctuation energy equation. Just as in the section above, we may have

underestimated this term for a concentrated suspension, where the averaging statistics and particle

volume fraction dependence are likely to be different from those in this semi-dilute approximation.

7.4.3 Combining the Anisotropic Stress and Doublet Rate of Working with the

Nott and Brady Model

Once we have written new constitutive relations for the stress tensor and for the rate of the

suspending fluid working on a rotating doublet, we incorporate these expressions into the Nott and

Brady model. We then solve the Couette flow problem to determine how the predictions of the

model are altered. The main features distinguishing this new model from the original Nott and

Brady model are the replacement of the isotropic pressure tensor with an anisotropic, symmetric

tensor, and the addition of the contribution of the rate of working due to the suspending fluid

acting on a rotating doublet to the conservation of fluctuation kinetic energy equation. We chose to
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modify the Nott and Brady model because its predictions match neither the measured sum of the

suspension temperature components nor the sum of the two smaller temperature components. For

this model, it will be clear whether the modifications described here improve the accuracy of its

predictions.

First, we solve the radial momentum equation in the Nott and Brady model, including the

normal stress difference N 1. In chapter 5, equation (5.63) set the particle phase pressure

contribution constant across the gap. Here, the radi, component of the momentum equation has

another term added to it and is now written as
= (- rr)ler r (7.64)

Then,

IC= lO-rr 4 7 231 J r (7.65)
dr r _ [_ 2I 7 2 (7.65)9Z 49 r

d r 5 35 21

where z T r. We also identify the factor in curly braces as
T, 

I + Z + 7 2 + 20 3 +
F a {4 lz Z[7 7 231 (7.66)

If we assume z = constant, which is reasonable since z ranges only from approximately 1/8 to 1/2

in the suspension observations, then the solution is

lrr = P 2
r - F + Po (7.67)

Since P0o is an arbitrary constant, we set it to zero.

Also, from our anisotropic version of the Jenkins and McTigue (1990) model, given in

equation (7.50), we find that

irrr = L 6(lf Tr) 2 2 (2 [(l()+ 4 Z3 + (7.68)
Ir2 2 [c2a)c()+CEO))] (T T 2 5 3 21

In order to simplify this expression, we assume the suspension temperature components all have

the same dependence on radial position, that is

Tii - AiiT(r) (7.69)

where the Aii , for i = r,O,z (with no summation implied), are constants, and T contains the radial
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dependence of all the components. The Ai i actually depend on the particle volume fraction, but we

treat them as constant for a single concentration of ~ = 0.5.

Then, equating the two expressions above (7.67 and 7.68) for the radial normal stress

yields

2 2 (2 a)

3
Arr 1 T[1

(Ae9A.jz)
+ z2 Z+ 2 z2 + 4 35 35 21

where we have identified

p() = [ (aI(,) + 2(4))1

Defining a new dimensionless constant,
3

= _ 3 Artr
P3-2 2(A A

(Ae. AzJ ½
[1+ 2 + 9 2+ 5 35 21 (7.72)

setting

P2 = Tf RRoFp2

and then nondimensionalizing the equation (7.70) above results in

= p 2 -2 F

p32 [(O)]2

(7.73)

(7.74)

Turning to the reduced fluctuation energy equation (5.81) and adding the new doublet rate

of working term produces

1(n P() i A 0)
c44)

2() r4 (7.75)

Substituting for t from the modified radial momentum equation (7.74) leads to

P22 -2 F

p32 [p()]2 a(r)
1

1
r3 s(C)

xi j 1 i I
iJ

12{ 1 (7.76)

and rearranging the terms yields
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4 - 2 F. ={,2 ( P() + 7 0) [p(O)]2
Hr4-2F = i 2 nwdes [iones co(7.77)

Here we have defined a new dimensionless constant
_ _ ^ 2

Pi2 - IZ P3- (7.78)

Equation (7.77) gives the new expression for the dimensionless radius as a function of particle

volume fraction for the anisatropically modified Nott and Brady model. Below we use all the same

functions of particle volume fraction as before, in order to determine the impact of the normal

stress difference N 1 and the additional doublet rate of working term.

7.4.4 Comparison of the Anisotropically Modified Nott and Brady Model

Predictions with the Original Model Predictions and the Experimental Data

We compute the predictions of the anisotropically modified Nott and Brady model for shear

rate and scalar suspension temperature T profiles in narrow gap Couette flow, using the same

approximation in the fluctuation kinetic energy equation as in section 5.3.4. We find that the

original and modified models yield identical predictions for the shear rate, a macroscopic property.

For the sum of the suspension temperature components, the models give only slightly different

predictions. These comparisons are shown in figure 7.2. The original and modified Nott and

Brady models are also compared to the experimentally observed trace of the suspension

temperature components in figure 7.3.

Consequently, allowing the temperature to be anisotropic in the single particle distribution

function alone does not account for the discrepancies between the original model predictions and

our observations. It seems likely that an anisotropic pair orientation distribution function, which

has been measured in shear flow (Leighton and Rampall, 1993), plays a major role, with an

anisotropic temperature possibly feeding into it, such that the velocity fluctuation size in a given

direction affects the probability of encountering a neighbor at a given distance in that direction.
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Figure 7.2 Comparison of the anisotropically modified Nott and Brady model
predictions with those of the original Nott and Brady model (1994) for a 50%
particle volume fraction suspension at an average shear rate of 10 s-l (10 rpm).

a) Shear rate profile
b) Scalar suspension temperature profile
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Figure 7.3 Comparison of the anisotropically modified Nott and Brady model
predictions with those of the original Nott and Brady model (1994) and with
experimental measurements of the tangential (flow, or 1 direction) suspension
temperature component, for a 50% particle volume fraction suspension at an
average shear rate of 10 s-1 (10 rpm). The anisotropic modification shifts the
Nott and Brady prediction only slightly toward the observed values.
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Chapter 8

Conclusions

This thesis reports a set of physical observations of particle velocity fluctuations from inter-

particle collisions in a nearly homogeneous shear flow of a concentrated non-colloidal suspension.

We compared the relative sizes of the fluctuating velocity components and observed the variation of

each component with particle volume fraction, shear rate, and radial position. In addition, we

studied the implications of these observations for suspension temperature models. Finally, we

attempted to account for the discrepancies between the suspension temperature model predictions

and our observations by incorporating an anisotropic suspension temperature tensor into the

temperature models.

One of the objectives of this research was to determine experimentally whether the

suspension temperature is anisotropic, since the McTigue and Jenkins (1992), Nott and Brady

(1994), and Morris and Brady (1998) models all assume that the suspension temperature is

isotropic. It is demonstrated clearly in figures 4.24-4.29 that the suspension temperature

components at an average shear rate of 10 s-1 (10 rpm) all have different sizes, for the 30%, 40%

and 50% concentrated suspensions that we measured. The tangential (flow) component is

overwhelmingly the largest at every concentration, followed by the vertical (neutral) and then the

radial (gradient) components. The ratio between the average tangential and vertical components in

these plots ranges from about 50 to 120. The ratio between the average vertical and radial

components lies in the range of 3 to 8. These ratios are significant factors that cause the suspension

temperature to be extremely anisotropic. The maximum anisotropy occurs near 30% particle

volume fraction.

Furthermore, we find that the velocity fluctuation components increase in size from low

particle volume fraction to about 30-40% particle volume fraction, and then decrease at higher

concentrations, as demonstrated in figures 4.27-4.29. In contrast, all the suspension temperature
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models predict the suspension temperature to be monotonically increasing with concentration, as

illustrated in figure 5.1. A T() curve with the shape we observe already exists in the literature, in

the work of Nicolai et al. (1995) on settling suspensions. The authors attribute the decreasing

velocity fluctuations at high particle volume fractions to particle cluster formation. We offer a

different interpretation of the shape of the Ti({) plot in shear flow as the indication of a competition

between decreasing mean free path and increasing collision frequency, as particle volume fraction

increases.

Meanwhile, each fluctuating velocity component has a distinct variation with the shear rate,

as is apparent in figures 4.33-4.35. This means that not all the components scale quadratically in

the shear rate, as the temperature models assume because of the definition of the suspension

temperature. As discussed in chapter 4, only the tangential component for the 30% and 40%

concentrated suspensions exhibits quadratic behavior. For the tangential component at these two

concentrations, the models' assumed scaling is correct. In contrast, the measured radial component

is nearly independent of the shear rate, and the vertical component displays a more complex scaling

that is closer to a square root than a quadratic. Also, the tangential temperature component for the

50% concentrated suspension appears to have a scaling in between quadratic and the scaling of the

vertical component.

In comparing the measured profiles of the field variables to those predicted by the

suspension models, we began with macroscopic variables, such as the shear rate and particle

volume fraction, and then examined the sum of the suspension temperature components. It is

apparent in comparison graphs at three bulk particle volume fractions that the Phillips, Nott and

Brady, and Buyevich models capture qualitatively the approximate range and average slope of the

shear rate profiles. However, none of the models captures the slightly curved shape of the

experimental three-region-fit shear rate profiles. This is especially noticeable for the 50%

concentrated suspension, which has the largest slope and the most curvature in the shear rate

profile. It is also noticeable that the model predictions diverge from each other increasingly with

particle concentration, since the differences in their coefficients which are functions of
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concentration become significant there.

Turning to the particle volume fraction profile, almost all the models in figure 6.4 capture

the average slope of the experimental three-region-fit profile for a 30% concentrated suspension.

As the concentration increases to 40% and 50% in figures 6.5 and 6.6, the model predictions

separate and agree poorly with the data. This is true especially in the case of the 50% concentrated

suspension profile, which again has the most curvature. Among the models, as before, the

Phillips, Nott and Brady, and Buyevich models capture best the approximate size and slope of the

particle volume fraction profiles. Overall, the trend we observe is that the models tend to capture

the behavior of moderately concentrated suspensions like the 30% concentrated suspension better

than that of highly concentrated suspensions like the 50% concentrated suspension.

Finally, in comparing the predicted scalar suspension temperature profiles to the sum of the

measured velocity fluctuation components, it is apparent that most of the models underpredict the

sum of the temperature components by a large factor. The model which approaches the data the

most closely is the Buyevich model, which overpredicts the 50% concentrated suspension data but

underpredicts the 30% and 40% concentrated suspension data.

When the predicted scalar suspension temperature profiles are compared to the sum of only

the two smaller measured temperature components, the Morris and Brady model matches extremely

well with the data, with the Phillips model the next closest curve. The good agreement between

these measured components and the models suggests that the models contain an assumption about

the particle interactions in the suspension that applies to the gradient and neutral directions, but not

to the flow direction.

A different type of model that our measurements relate to is the suspension simulation. The

observation of both out-of-plane collisions in video imaging of the flow and significant vertical

velocity fluctuations in LDV measurements together lead us to conclude that the neutral direction

plays an important role in inter-particle interactions. This conclusion invalidates the idea employed

in the original Stokesian Dynamics simulations (Nott and Brady, 1994) and more recent

simulations (Dratler et al., 1997; Bilodeau and Bousfield, 1998) that a monolayer is equivalent to

243



an interior plane in a one-dimensional or two-dimensional flow. Our data indicate that three-

dimensional simulations with all the real degrees of freedom are needed to recreate the experimental

environment.

A final set of conclusions relate to our attempts to incorporate an anisotropic suspension

temperature tensor T into the suspension models. First, we established the most general form that

the tensor T could have and confirmed that, for a positive definite tensor T, the observed

suspension temperature components were nearly identical to the principal components of the

tensor.

In addition, because we found that the tangential and radial diagonal components of

suspension temperature tensor T are not equal, we concluded that Buyevich's assertion that T is

only a function of the rate of strain tensor is not possible. Another tensor that T could depend on is

the suspension microstructure, specifically, the average pair orientation tensor, defined as ( u)

by Phan-Thien (1995), where u is the unit vector pointing along the line of centers of two particles.

This tensor describes the tendency of pairs of particles to align preferentially in certain directions

relative to the flow, gradient, and neutral directions.

Finally, when we incorporated the anisotropic suspension temperature tensor and the

rotational dynamics of inter-particle collisions into the Nott and Brady model through the stress

tensor (Jenkins and McTigue, 1990) and the fluctuation energy equation, we found that the new

model cannot account for observed normal stress differences and relative sizes of the suspension

temperature components. We believe that a more complicated model formulated with an anisotropic

pair orientation distribution function would be much more capable of resolving these discrepancies.

The modification with the greatest apparent impact on the suspension temperature models is

a change in the choice of transport coefficients that are functions of ~, the particle volume fraction .

No single existing model has all the right functions so that its predictions match well with all the

data. Also, it appears that functions chosen for one flow geometry may not be able to be

generalized to other flow geometries.

For example, pressure-driven channel flow and Couette flow have quite similar kinematics,
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since they are both unidirectional shear flows. This similarity suggests that the suspension

temperature models should be able to capture the behavior of both of these flows with the same

transport coefficients. However, this was not true of the models we examined. For example, the

functions of the Nott and Brady model were originally optimized to fit pressure-driven channel

flow data. The resulting predicted suspension temperature profile here does not match the observed

sum of the temperature components (or the sum of the minor components) as well as the other

models' profiles. In addition, the Morris and Brady model, which also contains functions

optimized for channel flow, predicts a suspension temperature profile which matches the observed

sum of the minor temperature components very well, but predicts more inaccurate shear rate and

concentration profiles than three of the other models. The fact that these temperature models are not

able to capture the behavior of both the Couette and channel flows by using the same transport

coefficients implies that the structure of the models in incorrect.

The original promise of suspension temperature models was the potential they had to be

more general than the phenomenological shear rate models. This generality would be a great

advantage in the study of complex flows with elongation as well as shearing present. According to

our results, the models require at least experimental measurements of the transport coefficient

functions as phenomenological inputs. This challenges the models' claim of greater generality than

the phenomenological shear rate models. More likely, the suspension temperature models are

missing some important physics of inter-particle interactions that is related to the anisotropic

suspension temperature. In order to characterize these interactions by evaluating the transport

coefficient functions and validating or refuting different suspension models, it is necessary to

pursue further detailed measurements similar to the ones described in this study.
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