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2.1 Introduction

\lavy lprobletms of image processing and image sequence analysis involve both
i1rea compullltational colul)lexity and the accommodation of noise and uncer-
I;lllt v t lrough the indirect observation of quantities of interest. In this chapter
w, ([lscril)e several aspects of an estimation theoretic apl)roach to such p)rob -

lIms. 'l'li vehlicle for our development is the estimation of the apl)arent velocity
li('ldl o( a sequence of imiiages. This apparent velocity field. known as the optical
ilHo. appears as a an important quantity in both the qualitative and quantitative
;Iil Isis of imlage sequences. For example. knowledge of the optical flow is used
i I I II (letect ion of object boundaries and the segmentation of visual scenes [1. 2].
O he (lfrivatioln of 3-D motion and structure [3. 4], and the compression of iimag;e

.I(ptcll(es for efficient transmlission [5. 6].

\\e take aln estimation-theoretic perspective to the computation of optical



Row, using and extending the formulation of Rougee et al. [T. 81 in both the
temporal and spatial directions. In particular, we use model-based interpreta-
tions of tile various coumponents arising in the estimation theoretic setting to
allow us to develop novel extensions to existing approaclles. First, we consider
the imposition of a temporal coherence to the flow obtained by Inodeling tile
evolution of tile vector optical flow process with a linear state equation and then
applyilng a recursive Kalllla filter to the observations obtailted from the imla.ge
seqluence. The classical (Ilorn and Schunk [9]) formulation of the optical flow
estimation problem contains no such formal requirement of temporal coherence.
The inclusion of such a constrait a.llows tile relilable andl robust estiatioll of'
optical flow under conditions dilficult for tile classical approach. For example. ill
situations where a single image pair contains insufficient information to recover
the flow field (le to the"a.pertilre problem." the integration of obsprv ations over
a longer time frallme can yield reasonable results.

Applications of IKalman filtering to various formula.tions of optical flow esti-
ination [10. 11! as wvell as to other low-level reconstruction prob)lelts in colill)it a-

tional vision i L21 have been proposed. In these previous apl)roaclhes. however. tlhe
apparently colllputationlalv dlaunting task of implementing the lialmna.it filteril;n
eq(uations. and ill articular the error covariance equationls. on eveii mo(lera.telv-
sized iimages resulted in the use of drastically sitluplified anUd sulboltinal filter
specifications. Sp)ecifically. tile uncertainty in the dynamic nmodel for the time-
*varying unknown field. and hence the uncertainty in the estimate itself. is not
formally represented or properly propagated in these approaches. 1ln an exact
iml)emlenta.tion of a Nalmlan filter. such uncertainty. as capturedl in thle esti-
mation error covariance Imatrix. is propagated along with the ostimiate itspif
[13. 14. 15] aind allows for the optimlal fusing of the current estillmate witlh new
observations. The filtering algorithm presented in this paper emplloys, a. more
systematic andl rational approximation of the IKa.lhan filter than those p)revi-
ously reported. This al)lproxila.tion is based on the prol)agatioti of al)l)roxilluate
local m1iodels of the estimation error covariance. These results I)rovi(lh. to oltr

knowledge. thle first implementation of thle coyrnplete IKaliman filterin i Q.(flat.iolls

for space-timle plrollems of this scale. and thle only example of successfull . ne(,ar
optimal. propagation of covariance umatrices of this size. Tile ima.tlhenmatical de-
tails of our approximation techniques can ble found in [16] in tile Iuore general
context of low-level visual reconstruction.

Second. we use the observation that both the single and mnulti-fraime problellls
can be formulated as spatial estimation problems. wherein sets of observations
are fusedl with prior spatia.l field models. to mlotivate the uisp of a 'Pcvlitly (level-
oped class of multiscale statistical models in their solution. What iniakes t hese
multiscale field models especially interesting is 1) that there exist extremlely ef-
ficient. imultigrid-type estimation algorithms based on tlhemn and 2) thllat a. large
number of degrees of freedom exist in their specification. allowing themll to ap-

proxinla.te a. wide range of different flows. including. as least cloucepttlally. any
.Markov Random Field based flow. Together. these qualities imply that the uti-
lizatioin of such miultiscale spatial models for spa.tial estimation prol)llstlls. anl
in particular for the optical flow lproblemn. provides a. flexible Yct (x.lI'tr((l!/ ,f-



licillt. Pstimla.tion framework. Preliminary examples of our results are provided
sdhowing factors of LO-100 compultational improvnment over conventinnall tueth-
,,,s. F'inallv. such Illodels provide inultiscale representations of the flow fieldl
anld. thlough we have not used it here. also provide tile possiblility of optimlal
i t.c(gra.tion of mulltiscale measurenments.

lI thllis chapter we focus on a particular image processing problem. nlalmely
tlie c(oluptitation of optical flow. IHowever. the mo(lel-based approaches used
1o, re itlore generally applicable to thle wide ran.ge of space-time estima.tion
,roblells arising in imnage sequence processing.

2.2 Optical Flow Estimation

2.2.1 Single-Framie Formulation

I'l1, 2-1) vector field of the aplparelt motion of brightoness pa.tternis in a.n iliage
is , ,lerrtedl to as the optical flow {9]. One coninonly used way to obtaint inforina-
iol al)olit tile optical flow field .1 -l. .t) -[dtl/dt. (..,/dtl Ir t at a iven Iponiit

ill slpace {-1. z2 ) and timle t was presente(l by Hlorn and Schunck in [9]. This
;alproaclh is based on the assluuption that changes in scene brightnless inll tle
i,,;aee s,(l,,etnce are dlue only to motion. This assumption leadls to the so called
IrTiqhtfr.(.s con.0tntint equation 9J]:

0) = - E(. :2..t)= -E(:l. z2.t) + E(z 1.z 2, t) .r(zl.z 2 ,t) (2.1)

wlr,,'e r (ez. z 2, t) is the imllage inltensity as a filnction of timlle antld space a1ll(l
? F = [OiE/i):,. dE/z.2], is tile gradienlt of thle image intensity.

rtlle I)rightness constrainlt equation (2.1) (toes not completely specify the flow
livl(l sincce it i)rovides only one linear constraint for the two unknown conlmpolnetts
,f .( -. 2. .t) at each point. This is tIsuall' referred to as the aperture plroblent
i!)]. ()Oe way to obtain a unlique solution is to reguilarice the problem by implosile
;lt ;aItitional s.soothbness colnstmrlrt. Specifically. one forimulates the ftllowvi tw

, Ilt iliza t ioll )roblelt [)9]

ir gnE( f/. z2,t)+ VE(z 1 z2, -t).;.'
2 + V";i'2 Ctldz (2.2)

'l'h smloothness constraint is captured by the second term which penalizes large
,radlietits in the optical flow and is necessary to make tile formulation tathlle-
Iia.t i (';allv well-p)osedl [17]. This terin also represents our p)rior boelief about. tlle

flo"w field. imlplying that the computed flow should vary smoothlly over space.
S.1cli .slpatil 'Oh('rence of the flow vectors reflects the smlootlhness and(d stiffiless
of tile object surface in the scene [19]. The constant /(:1.-:2. t) allows one to
l1radeoff b)ptween tlie relative inmportance in the cost function of the brightness
ai,(1 smoothness constraint ternls.

3elore p)roceeding let us analyze thle snloothness constraint in lliore dletail.
Note tllat tile penalty associated with the smoothness constraint terim in (2.'2)
is ,(qual to ilhe initegral of the squared norm of the field gradient over the irmage
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Figure 2. .1: Depict ion of thLree fields which are equally favored ,v t le sitoothnliess
constraint. illustrating htow tills penalty provi(les a fractal )prior mnodel tr llie
optical flow.

plane. Inl a ole-dimlensional context. such a. constraint wouldl penalize eacll of
the (one-diniensiotnal) fields in Figure 2.1 eq<lta. ly. iitt.fiivel,. 1lhe stitool.llllesi
constraint hlas a fractal nature. and in fact tils caln be demlolnstrated in a Iinuchl
more precise sense, as we show in Section 2.3.1.

2.2.2 Multi-Frame Formulation

The forltmulation (2.2) processes the data (i.e. t lie gradielts of the imiage irtell-
sitv) a framle at a tinme. yielding flow estimates indepenldenltly over timle. Ilihe
imposition of telllporal co/hercntce [19] to tlhe flow field cal be coInsidere(d il iad-
dition to thle spa.tial coherence enforced by (2.2) in order to utilize mIlore datla
for each flow vector estimate. Temporal coherence imposes an inertia condition
on the flow field. favoring gradual changes in the optica.l flow vectors over tillle.
Temporal coherence models of optical flow are applicable to a. wide rane;e oft
motions in natural scenes. as most movements d(ispIlav inertia of soice type. To
obtain such a muilti-fra1me formulation of the optical flow computation plrobl111
we use a. simple tenlporal extension of (2.2) [20. 12]. Ill )articula.r. wve find t he
flow field .:i( z-, z 2 , r) whllich is the solution to the following pr1ol)lemll at tile t = 

argmin -t + r7E( 1.- 2.t). t + I17I'1 2 + ,) It. (2.3)
'(z .- 2 .t ) 0 . t Of

The miulti-franie formulation (2.:3) is obtained from thie single-frame formlulat ion
(2.2) )v tile ad(lition of a. qua.dratic term involvinez tlie first or(ler tPiiilorali



flrivative. Note that tile full solution to tlhe optimization problem (2.3) lealds
t() ;. (recinsl.riicteCd space-l ime fielld .( z. 2, t ) in whllich th reconstruction at. an '
ltimle takes advantage of all available constraints over the entire time interval
I) < t < r. We are onlv interested in tile value of the solution to (2.:3) at thle
ctirrentt time t = r, corresponding to the best causal or filtered estimate of t.he
flow ieltd. Filtered estimates are desirable in applications where the optical flow
Ilieds to be calculated as soon as each frame in the image sequence becollles
:;vailal)le: however. obtaining such estimates corresponds to solving a. different
:1-1) ol)timization problem for each r as r increases. Such a. solution clearly
restilts in a greatly increased computational burden over what is required for
lie single-fraime solution of ('2.2). making direct solution of thle optimization
I)'olleltt (2.:3) prohfibitive.

2.3 Discretization and Probabilistic Interpretation

hi, thie first part of thiis section we present a discrete forlmulation of the sinele-
r't;,,,w )lpical flow plroblen. Ill thlis coniltext we develop two model-ba.e(cd inter-

I)rf'latious of tlhe silgle-fralnle probleni wilich will I)e central to tilhe results of
S-c(ltions 2.1 and 2.5. In particular. we illustrate 1) hlow the smoothness con-
,I rain (can be initerpreted( as a prior probabilistic spatial Ilmodel for the flow field
;11(1 2) llow tIhe inverse of the covariance of the field estimate may b)e naturally
iltlltrjr('t(i as another spatial mlodel. this time for tile posterior estimation error
,f tI 1I field. The secondl plart of thle section shows how we nay mo(lel t he temilo-
ral c(ohllrence constraint of (2.3) by a discrete dynamic equation. which lla-y t lelln
b,, coil)led with a set of observation eiquations obtained firom the single-fralie
case to yield a-n equivalent state estimation problem.

2.3.1 Single-Fralme Case

I, I)ractice. I)rightness miieasureients are only available over a discrete cot of
Iillts in space alid tiitle. Thus. the temporal and spatial derivative termis Iimst

If' :lpi)roxinllated with finite (lifferences. and the optical flow is only vstillat.ed oil
; (lisc'rete sl)ace-tilmie grid. There are a number of important issues which arise
dhir to the discretization which we do not discuss here: we refer thie reader to

[211 for a detailed treatment. We will assunle here that we have normalized the
sl)ac-lit ie coordinates so that tile optical flow is to be estimate(l on the set of
itt,,eers (:-.z2) E {(i.j)li.j e { 1..-.' 2 A1}}. whlere ,1 is also an integer, so thle
tl al iiiiinmer of imiage ploints is N, 4'-1. The assultilption t hat I he gri(l is squlare
:l1t I 1ha tile 11nultllber of rows is equal to a power of two Imakes the (lv'elop)llelil
,()' S,;ctiol '2.5 easier. but is not essential. Now at grid point (i.j) at tilmle 1

let. ,Is (iefine y(i.j) - (-OE(i. j, t)/Ot) to be the imeasure(l tempuloral blriglhtless
dlerivative. .( i. j) to be the d(esired optical flow vector. and C'(i. j) = VE(i. J. t)
1,) Ibe the s)a.tia.l gra-dient of the imlage brightness (also measured). Then we
ia; write t he brightness constraint (2.1) at the point ( i. j ) at timne t as:

yti.J) = C'(i.j)e(i.j) (2.4)



The brightness constraints (2.4) at all grid points can now be grouped into
one large set of linear equations to concisely capture the optical flow information
contained in the image sequence. Let x( t) be a vector containing the optic< 'ow
values :( i, j) at all tile grid points at time t (using, say. a lexicogra.)phic or(c ;ig)
and y(t) be the associated vector of the samples y(i,j). Similarly. let C0 1ulid
W(t) be block diagonal matrices whose diagonal elements are the sam.ples i.j)
and ,v(i,j), respectively, taken in tile same order at time t. A discrete rsion
of the single-frame formulation (2.2) is then given by:

xsc,((t) =argmin {IIY(t)- C(t)x(t)ll w(,) + IISx(t)11 } (2.5)
X(t)

where Jlxllv dlenotes the weighted norm xTWx. I represents the identity ma-
trix. and S is tile imatrix first-order spatial difference operator. Note thlat thle
discrete nature of the problenl alluded to a.bove implies that we liulist actiua.ll
approximate the samples -OE(i.j, t)/Ot and VE(i.j, t). and thus C and( y by
finite differences. Trle spatially varying entries of W can actually be used to
reflect outr conlidence ill these approximations. \We refer the reader to [21] for
further details.

Spatial Models

An estinmation-ttheoretic formulation of the optimization plrol)leml in (2.,5) ca
now b)e developed. and we will use it. to show tlha.t the .ntnti.sticilly ouptiiimal es-
timate of the optical flow. given a. particular set of mea-surements. is i(lentical
to tile smoothness constraint solution given in (2.5). Specifically. solving tle
quadratic niniminization problenl (2.5) is equivalent to solving a ltnaxinlu n like-
lihood (NIL) estimiatioll )roblenl [15] for x(t) with the following obs.~rration,
equations:

y(t) = C(t)x(t)+rl(t) rt(t), (O.W-1(t)) (2.6)

0 = Sx(t)+ r 2(t) r 2 (t) , ( ) (O2.7)

where we have used the notation x - (m. H) to denote a. Gaussian ranlloltl vector
x whose mean and covariance are m and H. respectively. so r(t) - [rl(t). r2(t)]r
is a zero-mean Gaussian random noise process. Thus. the maxiimumti likelihood
prol)lenl forlmulation results in the same solution a.s the smoothness constraint
formulation when S is used to define an additiona.l set of noisy measurements.

By formulating tile problem in this estilmlation-theoretic framework. we call
use (2.7) to interpret the smoothness constraint as a. prior 1prol)al)ilistic spaitial
model for the flow fiel(l. Specifically. we call rewrite (2.7) as:

Sx(t) = -r 2(t) (2.8)

Recalling that S is an approximation to tile gradient operator. we see tihat (2.,8)
is nothing more thlan a. spatial (lifference e(luation model for x(t) driven b)
the spatial white noise field r 2 (t). In particula.r. this prior Ino(lel rel)resellts
the optical flow field as composed of independent. two-dimensional Browalian



i,,otions z [7, 8]. Then. the statistically optimal estimate of the flow field. given
t lie mleaslrenmellts (2.6) and the Brownia. l motion prior model. is the same as
I 1he optl.ical Ilow estimate givenl by (2.5). The estimation-tlheoretic interpretation
siImply allows us to interpret the smoothness constraint as a Brownian motion
ilodel. In one-dinension, Brownian motion is a statistically self-similar. fractal
Irocess with a. l/f2 generalized spectrum [221. and for this reason the smoothness
constraint is often referred to as a 'fractal prior" [12]. W\e will return to this
ilterpreta.tion in Section 2.5 where we discuss a multiscale modeling approach
It, I le sinlgle frame problem. In particular. we will replace the prior ntodel (2.8)
Iv sinilar but nIlultiscale prior llo(lel, which leads to dralnatic computational

; vilLgs.

Next, let. uts consider anlother model blased interpretation of the single-franle
problell (2.5) that will be useful in treating the multi-framle problem. The IML
,stiimate for the optical flow. x(t), based on the measurements (2.6).(2.7) is
,),tained as the solution of the following inverse problem:

(CT(t)W(t)C(tl + STS) i(t) = CT(t)W(t)y(t) (2.9)

I'ln, ,ulitations in (2.9) represetit a discrete version of tile coupled Poisson equta-
I i,,is of t lie Hlorn a-nd Schutick fortllulation. The mratrix operator

L(t) = I Cr(t)W(t)C(t)+ rs) (2.10)

1, I e left hand side of (2.9) hlas a sparse. nearest neighbor (a. nested block
t ri-dliagonlal) structure [23]. whlose sparseness enables us to use efficient iterative
pIrwf(llires. sltch as lmultigrid imethods [241. in the solution of (2.9). Also. this
sl'prs' ilmatrix corresponlds to the information tnatrix (the inverse of the covari-
;Inco( tllatrix) associated with the posterior estimation error d(t) _ x(t)- x(t).
I1 particula.r L(t) can naturally be considered to specify an implicit Markov
l;indiolli Field model for the estimation error process d(t) of the following forml:

L(t)d(t)=d(t). (t) -,( O.L(t)) (2.11)

I'll, Iwarest neighbor structure of LIt ) in ( 2.11) or (2.9) reflects a correspondlilng
I,,. sI ructure to the statistical mIo(lel for the estimated field error covariance.
\\V will use tlhis ol)servation in Section 2.4 to develop tractable Yet near optinal
lillvering algorithms.

2.3.2 Multi-Frame Case

No\,- wo consider the mnulti-frame extension of the single-frame formulation given
iii ( 2.6i),(2.7). The continuous optimization problem (2.3) can Ibe conLsidered to
I, 1 :i ,,ptirinl slmoothintg probleml )ased on the following temploral. linear Gaiuss-

.\larkov dlynatmic system for x(t) [161:

t.r(z. z 2 . t) = q(t) (2.12)

MNlore precisely. to avoid biasing the optical flow estimates towards zero. we only assulme
that. tihe qradifiet.'of the optical flow field components are equal to thle qrndient.of the Brownian
miot ion processes. This avoids placine a constraint on the DC (i.e. average} %value of thle optical
,1,,. :I111 focise r oi il posiilm a lpferr-p for smoothness in the flow.



where q(t) is a Gaussian white noise process of zero mlea.n and intensity p-. For
such anl optima.l smoothing problem. two-filter methods (i.e. ol)t.a.ined by rulnning
a Kallall filter in each of the causal and anti-causal directions) a.re applicable
[7]. In general we wish to compute only the most recent estimate x( t. z-2. r)
from (2.3) for each r > 0. Such an estimate can be obtained byl a. single caulsa.l
Kalmnan filter. Specifica.llv. a discrete version of this mlulti-fra-me problem can be
formulated as a state estimation problem for the dynamic system whose dynlamic
equation is

x(t) = x(t- 1) + q(t), q(t) (O.p-11) (2.1:3)

coupled with the observations given by (2.6),(2.7). The process noise q(t) is lln-
correlated over time and captures thle uncertainty in the (lynamic model (2.13).
This Gauss-Markov dynamic model. a discrete version of (2.12). indicates that
the optical flow evolves in time as the accumulationl of a. ra.ndoml perturb)a.tiol
at each time framne. While we will be concerned with temporal dylnam.lics of
the formll 2.13). lnaturally more conmplicated dynamic mlodels. corresponlrlilng to
different temporal coherence terms in (2.3). could be used.

2.4 Sequential Multi-Frame Estimation

In this section we consider state estimation for the dynamic system represente(l
by (2. 13).( 2.6),(2.7). Conceptually, we mIa.y use well-developed optimal sequeln-
tial estimation algorithms, slch a.s tile alna.lln filter and<l its variants. for solut.ionl
of this lllllti-frale optical flow estimation l)robleml. One suich algoritlhm. tl hat.
will prove convenient for us. is the following implementation of the infornration.
form [13. 151 of the Kalman filter [16]:

*· prediction stage

L(t) = p/I-p (L(t- 1) +/) (2.1l)

x(t) = (t- 1) (21)
z(t) = L(t)x(t) (2.1 6)

* u)date stage

(t) = L() + CT(t)W(t)C() + sTs (.17)

z(t) = X(t) + CT(t)W(t)y(t) (2.1S)

L(t)(t) = z(t) (2.19)

where X(t) is the one-step plredicted estimate amnd X(t) is the updated esfitlmate
using the new data. available at time t. Also. L(t) and L(t) denote the predicte(l
and ulpdated information matrices. respectively. Note that. the updated estilmate
x(t) iii (2.19) is specified implicitly, as for the sinale-fra-me case ('2.9).



2.4.1 Suboptimal Kalman filtering

frli( nlmbler of pixels. N. in a. frame of a typical imnage sequence is on the ord(er
(,f 1() to 10' . Such a large number of points ilakes (lirect. implementaltion of thle
,,trimaul information Kalman filter (2.14)-(2.19) impractical as the associated
iloi,'tl;.atioll matrices L(t) and L(t) of the optimal filter will have on the order
,)f I(A to 1012 elements. The storage and manipulation of such large matrices
is clearly prohibitive. necessitating the ruse of a suboptimal metllod. The sub-
,Ipitulal filtering algorithm presented below employs a systematic and rational

ll)pproximllation of Kalmnan filter. which is based on the propagation of approxi-
ia,a local mzodl.s of the estimation error covariance. as dliscussed in connection
wi.lh (2.11).

ro (levelop our sub-optimal filter. consider the set of equations (2.14)-(2.19).
I'irst collsid(er the update stage of the Kalman filter. If L(t) possesses a. sparse
;11n Iallnde(l llearest neighbor structure. as was true for the single-frame prob)-
Iv,'n. I lien (2.17) will preserve this structure in L(t) since. as we pointed out il
(c,I,.Ictiol with (2.9). CT(t)W(t)C(t) + STS also possesses tills structure. nl
partliclilar. if tills is thle case. thein t2.19) tllav still ble solved( efficienttly for tlHe

Ill)(iatll estimat.e x(t). and ill fact. this step would have f*actly the same coii-
Il;tatioulal coplll)lexity as ill the single-frame case. Thus. we (lesire to preserve
s(i11 ;a sparse and band.lled structure il L(t ).

Now colsid(er the prediction stage. Unfortunately. even if L(t - 1) in (2.1 1)

is ililii;lly sparse a(l Ia.lnded. t le predicted inforlmation mtlatrix L(t) will not. Ie

1i,, to t thle mIatrix inverse on the right hand( side of this equation. In additiol.
Ii(ling I lle inverse of this Imat-rix is a prohibitively complex procedure. What

w -f, (sire ill thle ptresellt framlework. thel. is a sparse and banded ipprloa'it(tionl

t,) L( I) t ilat. iiav be efficiently comlpute(d.
.\s (letailed in [16. 211. such an approximation mlay indeedl l)e obtained b1y

,xpal;l ing; the Iatrix inverse on the right hand of (2.14) in a series as follows:

L(t) = pi- /)2(Q-l - Q'-l.XAQ' - l Q+ 1i-t.X I\-X - .... ) (2.20)

,, ·.. ( is a block dliagonal iia trix whlose 2 x 2 diagonal blocks are idleIltical t

I lii, (c rrspollding diagonal blocks of the matrix L( t - 1) + pi vllile .= L( t -

I ) +P1- is given by the remaining off-diagonal part of L( t- 1) + . Note tlhat
`-w is bllock diagonal. The series (2.20) may now be truncated to any desired

nulmlblorr of terms to obtain an approximation to the exact expression of the

dlsired level of accuracy. The mlore terms are kept. the less sparse and banded
, al)lpproxinlatiio ln will become. Thus. there is a tradeoff between accuracy andll

('mil)1,1 atioinal lfficiency. Our experience has shown that retailing only the first
tI x I('I'Ills ields excellent results. In particular. we ol)tain our near-optillal

lilter by replacing the optimal p)red(iction step (2.1.1) by the following two-tPIlnl

P; ll)'Xit iI at ion:

L(t) = pI - p L(f-t1 - f- - t ) (2.21)

Ul'lik, (2.11). the suboptimal pred(iction step (2.21) does indeed preserve the

,lsirlt Ilearest neighbor structure in the (approximlated) information matrix
L(tl.



It can be verified straightforwardly that propagating the informlatioin mla.trix
in the a ppl)roxcimlate filter as in (2.17) and (2.21) costs only O(N) flops pe.r frame
and has a. local, modular computational structure suitable for par: el imple-
nentation. Througlhout the filtering procedure. the approximated jrmation
matrices maintain tile nearest neighbor structure and have only 0( non-zero
elements. Thus, lthe approximate filter has significant computltatioI' and stor-
age advantages over the optimal Kalman filter. which normally r ailres O(\ N 2)

storage elements and O(N 3) flops per frame of data.
A useful way to understand our approximation is provided )by a a examina.tion

of the update stage of the Kalhllan filter. ill tills part of the filter we are fusing the
information froml the previous prediction stage. as captured by L( t) and ( t) (or
equivalently x(t)), with the new observation. In particular. L(t) can naturally
he thought of as specifying a prior imodel for the error e(t) -x(t) - x(t) iln tlhe
current estimate of the following form:

L(t) e(t) = <(t), (M(t) (O.L(t) ) (2.22)

which is jiist tlie counlterpart of (2.11) for the dlvynaic )prob)lelii. Fhis ino(lel
is tlen comibined with the new o)bservation to pro(luce the b)est estilllate 6(t)
of this error. The ii(ldated estimate x(t) in (2.19) is tlhen e(lqual to R(t) + &(t).
Tlhe update stage is thus just a. static spatial estimation prollem,. where ('2.2'2)
represents a prior model just b)efore the inclusion of new data. 'la.t is. by
writing thle observation equations (2.6().( 2.7) concisely as g(t) = H(t)x(t) + rtt).
where g(t) = [y(t)T. oT]T . H(t) - [C(t) rT S(t)T]T. and r = [r- . rT]T. the
estimllate e(t) can be obtained by solving the following static sli)a.til esti.ia.t.ioii
problem:

g( t) - H( t ) t ) (t) H( t) |( r( t ) (223)

wvhich is statistically equivalent to obltaining the updlated( estimliate (c(t) of tlle
unknown x(t) giveni the prediction x(t ) and observation g(l). Silce t lie implicit
mno(lel is specified 1b L( t). our a-pproximaation of this imatlrix by a sparse Illa.trix of
the given Ilearest neighbor structure in (2.21) corresplollds naturally to the sl)ec-
ification of an approximate. reduced-order mlodel for tile spatial error process.
In )articular. this approximation mnay be viewed as the imposition of a. Mlarkov
Randomn Field structure of fixed spatial extent on the flow field estimlation-error
[16]. Our appro.ximation thus has a. rational basis in estimation-theoretic con-
siiderations.

2.4.2 Numerical Experiments

W\e demonstrate the beneficial effects of the temploral coherence constraintt. for-
mlulated as the dynamic model (2.1:3). and the efficacy of our near-el)tiulal filter
for optical fiow estimation by numerical examp)le in t llis sect ion. RIecall that. for
images of realistic dimension. such as we consider lhere. exact implelmenetation
of the optimal Kalmlan filtering equations is impossible and thul.s *we a)ply the
temnloral coherence constraint (2.13) via, our suboptimal filter of' Section '2. 1. L



.\ (letaile(l comparison of the suboptimal and true optimal filters demonstra.ting
I lie Iiear-loptimality of otr approxinlation can he fotln in [161. lHere. a. syn-
I lietic imlage sequence of a moving brightness pattern is processed by various
iltti-fralme and single-framne optical flow estimation methods. and the improve-
Ilellts gaitied by using tile particular temporal coherence constraint (2.13). as
iipk'lenented I)y the filter we presented in Section 2.4.1. are compared to the
couventional methods. Specifically. tile following two methods are considered:

* SF (Single Frame)
This method is a (liscrete version of the single-frame computational a)-
)proach proposed by Horn and Schunck [9]. Each frame of optical flow is

conlputte(d independently. i.e.. without any provision for temporal integra-
lioei of data.. by solving the inversion pro'blein (2.9) for x(t).

* TCS (Tenmporal Coherence. Suboptimally colnputedl)
'Th'llis Ie hod is tile subioptillna. blit compulta.tionallv efficient version of tile
oltinma<l Kalnman filter: as described in Section 2.4.1. the predictioi step
('2.1 ) of the Kalman filter is a)proximated as (2.21).

\';Vrinits of these methods arise ill different conutputationlai environments. SSpecif-
icall. I lle inversion steps (2.9) for SF and (2.19) for TCS can be ipl)leiimented
i.v o,(M of the following computational procedures. leading to variations in thle
.;Igorit hmlls a.bove:

· ic (iterative inlversion. iterations to convergence)
1It pIractice. the inversion problems are solved iteratively. \\e use C:auss-
Sid(el iterations in thle experiments here. Needless to say. this iterative
solution will converge to tile true solution in tile limit.

* is (iterative inversion. single iteration)
Int tiiile seque(ltital processing. it is na.tura.l to initialize thile iterative ii-
vpersion at time t with t he estimate obtained at time t - 1. provi(ine a
rasoltablv g ood estimate for tilme t even before the lirst iteration. 13v
slighttlv 'itpdalting" this initial guess with a single tor a. small nui lber of )
.;alss-Seidel iteration(s) at tile present time. a. fairly accurate estimate ,,f

the flow field can emerge after continuing the process over several timle
[ralmes [9]. although such estimates are suboptimlal in the statistical sense.

1,i 1 tis section. each computational llethod is mlade expllicit I)y tlhe lallle of its
,,aiul algorithm suffixed )by the name of the variation. e.g.. TCS-ic. SF-is. etc.
.\lso. ill each experiment. the initial frame of optical flow estimate is cotllipt)led
i(lt ic';,ll.v 1)b lie SF-ic mliethod for every participating colmputational miet hoti
in, or(lr to highlight the differences in tile temporal effects of each met hod.

'rle mlethod SF-is deserves special attention. This method is the approach
t, Iltllli-frame optical flow estimation suggested by Horn and Schunck in [9]. It

iort'orins otly one Gauss-Seidel iteration for the inverse probleml (2.9) at eacih t
liml lisps the estimlate froim the previous frame. x( t - I). to initialize the culrrnit

i tratiout. Unlike tlhe SF-ic method. therefore. this method dor.s hlave some

;,, vi -;l for lIrop)agating the esi..atps temporally. Note !that if. ilsta nl t, olv



a. single Gauss-Seidel step, the iterations are allowed to converge for each frame
of data. the resulting flow est.illates would lha.vo lost all ilformation froml tlie
previous framle and become exactly the same as the SF-ic estimua.tes. Altholghl
t he SF-is nlethod is ad hoc in terms of its temporal integration of data., its ease
in implementation is appealing from a practical point of view.

One of the advantages of using a. temporal coherence constraint in optical
flow estimation is the improvement il the estimates due to the reduced effect of
measurement noise through tile averaging of the noisy da.ta over timle. Another.
less obvious advantage. is tihe temlporal accumulation of comlllemlentary inlfor-
ination regarding tile flow vectors. Reconstruction of optical flow lusing only
spatial data integration (i.e., the SF-is mlethod) cannot b)e performned correctly
when a complete set of the information necessary to est.ilate the flow vectors is
not contained in each data. frame. Specifically. since (liversity in the orientations
of the mleasured spatial gradients is necessary to resolve tile aperture problen.
optical Ilow colllputation methods elmploying only a. spatial coherence const raint
will have lifficulties (lealing with cases where all tile spatial gradient-s happe!)
to he oriented in nlearlv tlie same direction (including the cases where liost (-ol
tile sl)atial gradient vectors hlave small magnitudes). .\ddlition of a ltell)oral
coherenlce coinstraint canl often relieve such (ifficulties I) allowilg I lie isp (,'
infornation from ad iacelnt imnage frames. The example wve give below (lenlioll-
strates blotlh thle fact that the temporal constraint is instrumental in correctly
estimlatilg the flow ill such cases and that it aids ill noise sillppression.

Stagnation Flow Experiment

In tlis experinment we consider estimation of tile tiotion of a ioum- rigid body lisillg
tlhe SF-ic and TCS-ic methods as well as the SF-is alnd TCS-is Illet ihods.

1. The image sequenlce.
Figure 2.2 shows a flow pattern whose velocity vector at poilit ( -. )

is givien b' (osx. -a.se2 ) for n = 0.1. where tile coordlillate orifgin is ;It
the midpoint of the bottom edge of the figure. This tIl e of flokw 1tr
all arbit rarv constant n ) is useful for a local cliharactorizatioll of Staql)(It,,l)
flowtt [25]. i.e.. t lie flow of fluid obstructed plerpendicula rly b a solid obljc't,.
A sequence of 64 x 48 images are synthesized based on such a. velocity fielld.
Figure 2.3 I)resents four images from the sequence. Note t hat t ie direct ion
of the predoiminant contrasts in each image changes from mostly vertical in
the early frames to mostly horizontal in later frames. ilmplying that solme
type of temporal coherence constraint is necessary for correct estimation
of the flow froim tills image sequence. We have corlupted tlle illageos Ib,
a(lding all independent Gaussian noise withl a va;riaice ,r !) to each1 pixel
and then requantizing the resulting pixel values to 256 grey levels.

2. The flow estimates (trmd estimation;, r''or's.
A 9 x 9 unit uniform stencil is uised to spatially smooth tle imalgaes b1,-
fore brightness gradients are colmputed(. 'The computational paraiiletors
p = 400 and v/ = 40 have been used. Figure 2.1 shows fraime 18 of the
estimated flow vectors computed tby the SF-ic and TCS-ic imethods. The1
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SF-ic Illethod. without any provision for temporal data integration. has
comipletelv failed to reconstrnict tile flow field. while tihe TCS-ic Inethod
has performed a reasonable reproduction of the flow in Figure 2.2. T'he
flows computel by tile SF-is and TCS-is are shown on Figure 2.5. which
also displays the imlportance of temporal coherence in reconstruction.
Figure 2.6 displays the percent average estimation error for each t.

Ili(t) - x(t)jx 100 (2.24)
Ix(t)11 x

where x(t) is thlle true flow and R( t) is the estimated flow. for the four let li-
ods. These errors are consistent with our previous observations. Againl.
supetrior performlance of the TCS-tvpe imethods over the SF-type Ilmethods
is lisplayed rather draiimatically by the error curves.

2.5 Multiscale Model-Based Estimation

()hte ,f tile major computatioiial bottlenecks of the lahnuan filtering alaorit hlm
' Sclt ionl 2.4 is the spatial estimation proilelm represented iy (2.19). 11I Sec-
t i,, 2. 1.1 we were able to transforim tllis step of the imulti-framle problem back
I,, I ll lcel of conlplexity of the single-frame HIorn and Schunk formulation as
:i r'.mlll. of our redluced-ordier approximation to the field model (2.21). which
,'.n1lltedl in a. sparse and bande(l structure of the imatrix L(t). \\While suich all
;,pplroximniatiot succeeds in mIlaking the Imulti-framlie problem tractable while pre-
srlving llear olptiinlality of tile resulting estinlates and indeed represents. to olr
klliowlcfge. the first implementation of the cornplete Kalnman filtering equationls
to Iprobllems of this scale. the resulting inverse problem still lea.ds to comlplita-
I ioa ;liv intensive algorithms. Specifically. the associated set of equations (2.19).

hllil, sla.rse. is extremely large. corresponding to discrete versions of elliptic
,;,rt ial lifferentia.l equations [9]. l'The standard al)lroaches to solving such large
.,ts ,)f litnear equations. such as the Gaauss-Seidel [9. 261. miultigridt [24]. and siic-

o.siv, over-relaxation (SO1 ) [27j algorithllms. are iterative. requiring ilLcreasill
Illlll rs of iterations (an(d thus increasing per pixel computa.tiona.l load) as tihe
illage size grows.

Inl this section we examine a. novel approach to such large. collnptationally
illtmmlsive spatial estimation plroblems wherein we combine a. mlltltiscale prior
md,,dl of the field with a. set of field observations. Recall from Section 2.4. L
t hait. w may view the update step of the optimal Kalmnan filter as suchl a. static
spll iail estillation irollemn wherein a. prior spa.tial fieldi miod (2.22) is coin iined
witll a set of observations g(t). Thle use of a Imultiscale Illodeling lparadimi
lvIadls to extremlely efficient estimation algorithms which hold the promise of
(lhYiIniticrally red ucing the computation required to solve such l)rob)lelms. For

,xatmple. the resulting multiscale algorithm is not iterative antL in fact requtires
;i !ixed numllber of floa.ting point ol)erations per pixel iindtepde1dt of imnay sifz.
l'lis. the computational savings associated %with thle new approach actutally
ilcreases as the imnage size grows. For simlplicity and to illustrate the isslues
iivolve(l we will focus only on the single-fra-me case here. For clarity we will
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Iigiir- 2.(: The estimation errors bv the TCS-ic (solid-line). SF-ic (dlashed-
lint,). SF-is (dotted-line). and TCS-is (dash-dot lirne) niethlods for the Stagna-
I ioI, H'low experiment.

1i,,p Ihle tillle ind(ex t froIm the notation for the rest of this section. with the
,ldeIrstadlllitng that all quantities are taken at this point in timle.

liecall. we argned in Section 2.3.1 that the single-franle optical flow esti-
,ill,.s corre)slp)oding to (2..5) coulld e viewed as arising froim the comlbinatiomn of
I I. I,'ior, statistical spatial model (2.8), corresponding to the smoothness con-
-l r;i'iltl. al(l I lle ol)serva.tions (2.6). Now. there is nothing special albout the prior
,iIodlh (2.8) associated with the smoothness constraint. Thus we are lead to the
il;ea of using a. different class of prior mnoldels, capabable of capturing a. wide
rai;le of phenomenon. and in particular of yielding behavior which is similar
i, lllature to thlat corresponding to the smoothness constraint. but whichl lead
to collltationa.lly more attractive problem formulations. Tlla.t is. we wa.nt to
c lilag" I Ile silloot hness constraint terni xTSTSx in (2.5) to somet hinig similar.
s;v. xrAx ; x:'STSx (where A is a. symnletric positive semi-definite Ilatrix)
slchl that the resulting optimization prob)leln is easy to solve. If we factor A
;,s A = STS tlhen we can interpret the new constraint as a prior l)rolbal)ilistic
i,,odvi just as we did with the smoothness constraint. In addition. there is a
prcise interpretation of what we have done as a Bayesian estimation problelm.
SIcifiiically. if A is invertible. then the use of this new constraint in place of lie
Illotltlness constraint is equivalent to modeling the flow field proba.ili.stically

;is x - 0. A1- ). since in this case the Bayes' least squares estimate of the flow



field x. given thlis prior model and the measurements in ( 2.6) is provided byv:

XBLSE = a rgmin ( y-- Cx)TW(y- Cx) + xTAx (2.'25)

The normal equations corresponding to (2.25) are given by:

(CTWC + A)xBLSE = CTWy (2.2()

C'omparison of t le problem formulations (2.5) a.nd (2.25). or of th morma.l equa-
tions (2.9) aind (2.26). makes it apparent how the two jprobleml f ltiations are
related. The choice of the new prior model corresponding to A is fiOW clearly at
the hleart of thle problem. We introduce our class of new models next.

2.5.1 A Class of Multiscale Models

The models wev utilize to replace thle smoothness constraint. prior iinoui~ w -lre
recently inltrod(lced in [28. 29. 2 30. 311. Thlese models represent. thle flow fieli
at multiple ;cales. i.e. for a set of scales mI = 0 ...... I. with im = 0 be,,intg
t.he coarsest scale and ni = ,1I the finest scale. we define a. set otf optical flow
fields indexed b)Y scale and space. namely ·, ,(i.j). At tile m1-t h scale. tle fiell
consists of 4

"' flow vectors. as illustrated in Figure 2.7. capturing features of
the optical flow field discernible at that scale (i.e. liner-resolution features of t lle
field appear onlyv inl filler-scale representations). Thus. the coarsest version of
the flow field consists of just a single vector. corresponding to the average valiue
of the optical flow over the entire spa.tial domain of interest. aind stccessivelv
filler versioins consist of a. geometrically increasing iulmbller of vectors. .\t the
finest level. the flow field is represented on a. grid withl the samlle resolution as
thle iimage b)rightness da-ta.. In particular. .X( i. j) correspond(s to tlie optical
flow vector :r(i.j) in (2.4).

Ablstractlv. we are representing tlie flow field on the qitadtrlcr .st7ctrltr illits-
trate(l in Fig;ure 2.8. Pvrainidal data structures such as thle quat.tree nattrally
arise ill image processing algorithms which have a. imiltiscale componll ent. or in-
sta.nlce. successive filtering and (lecilmation opleratiolis lead to imla.'es (tlelitie(l on
such a. hierarchy of grids in the Laplacian pyramid coding algoritlnhm of Bulrt andl
Adelson [32] and in the closely related wavelet transform decomposition of inl-
ages [33]. Also. the mlultigrid approaches to low level vision plroblellis discussed
b)v Terzopoulos [2-14] involve relaxation on a. similar sequtence of gri(ls.

The model we introduce in this section describes in a probalbilistic mllanner
how the optical flow field ;r(i.j) = x.rf(i.j) is constricteld 1, a(ldling (ectail
from one scale to tlie next. .Jttst as the smootlhness constraint prior mllodel (2.S)
describes prolabilistic constraints ,among values of the opltical flow at. clifferent.
spatia.l locations. our multiscale mlodel describes such const ainlts a mong va;lues
at different scales. That is. our model describes the prolhabili.stic evoluition of
.r1,n(i. j) as the scale i77 evolves from coarse to fine. For notational convellience in
describing such models. we denote nodes on the qltiadtree withl a sinigle abstract
index .s which is associated with the 3-tuple (. 1. i.j) where. again. /) is the scale

1nd (i..! is a .pi)atial location in t ce irid at tce m-tll scale. T! is :lso ( Isefuilt 
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Figtire 2.7: Tile structure of a multiscale optical flow field is depicted. Tile
(,III)llIIents of the field are denoted .,(i. j) where 11 refers to the scale an(l tlhe

Ipa;ir (i.j) denotes a particular grid location at a given scale. At the coarsest
sce;li. there is a. single flow vector and. more generally. at the m-t.h scale there
;1 r' i)"' v*ectors.

dl(line a1 tlupward shift operator . Ill particlllar. the parelt of 1o(le .5 is ellote(l
.,' (see Figure 2.8). We note thlat the operator I is not one-to-one: it is inl fact
folrm'-lt-onle since each node will have four "offspring" at the next scale. Flor
insta;lnce, if s corresponds to any of the nodes in the uplper left (ltia.dranlt of tlle
s-c(Id level grid (see Figure 2.7). i.e. nodes (2. 1. 1). (2.2. 1). (2. 1.2) or (2.2.2 ).
Ithel .s, corresponds to their parent on the first level. namely node ( 1. I).

\\We are now in a. position to define the class of milultiscale models which
fls(crilb, tlie evolution of a miultiscale stochastic processes indexed i)v tiodes
(,n tI (l qladtree. Specifically. a stochastic quadtree process .r(.s) is (lescri)e(l
r'cu'lrsively by:

.r(s) = .I(s)x;(s) + B(s)wtls) (2.27)

IIIIl(,r t le following assumptions:

.ro - (0. Po) (2.2S)

It(s) - (0.1) (2.29)

T'I'lr voctors .r(s) and tr(s) are referred to as the state and d(rivin noise terils.
''l'h sl;ate variable .r) at the root node of the tree provi(les an initial condition

fi)r the recursion. The driving loise is white in both space and scale. anld is
Ilcorrelated with the initial condition. Interpreting each level as a. representa.-
I ion of a. two-dimensional field. we see that (2.27) describes the evolution of tlhe
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l"igure 2.,: Qutadtlree structure on whlichl the Inultiscale processes are deflinled.

The abstract ildex.C s refers to a node in thle quadltree: .$5 refers to t.le parenlt of

lnode . .

process froiti coarse to fine scales. The terll A.-(s).xr(a ) represenlts ilitelrpolation

tlownl to tlie tlext level. and LB(s ,)((.·s) represents higher resoilti iou detail added

as the process evolves from one scale to the next. In tihe applicationL of intereqst

here. x(.5) = .x,( i. j), where .. = (in. i. j). and thus .. B E .h2Rx 2 . Such a lmodel

corresponds in essence to a. first-order recursion in scale for optical flow.

.leasuremlets of the finest level optica-l flow field are available fr1onl t he,

brightness conlstraint. In plarticular. at the grid point (i. j) at t lie finiest level .

wve hlave a measurellent equation correspondling to thlat inl 2. H):

y( i. j) = C( i.j) x.t1( i. j) + t( i.j) l (i.j) ( O. v- ( i.j) ) .)

where '( i. i ) E .}1 x2 is the spatial brightness gradient at location ( i. j )al(l tlle

white Gaaussian observation noise is assumed to ble independllent of the inlitial

condition .x,j and the driving noise tl(.s) in (2.27)-(2.29). Of course. wve cani

group the state variables .r(.s) at the finest level illto a vector x:1f as well as t lie

corresponlllillg measurements iq(.s) anud spatial rad(ient trInils ('(.) il tile saio

wav as we (lid to get (2.6):

y = C x.r +v v ( O. W-') (2.3 )

We now have exactly the franlework wvhich led to the statemllent of ('2.'25 

as an alternative to the smoothness constraint formulation (2.5). In lparticiliar.

thle :!:nodelitnr ',.p .io!< ('2.27, - , ' i;pldicato thlat at tlie fi, ' !eoVel o{f th,{,,



luatllree. tile flow field vectors will be a set of jointly Gaussian random variables
xr -. (0. A-'), where A-' is implicitly given by the parameters in (2.27)-( 2.29).
'Ille Bayes' least squares estimate of xM given the measurements in (2.31) and

lie prior model (2.27)-(2.29) is then given by:

xA = argmin (y - CxA) TW(y - CxMg) + x.rAxAr (2.32)
XArXAf

'The Unultiscale modeling framework thus provides an alternative to the smooth-
1iss constraint formulation of (2.5).

Wha.t remains to be (lone is to specify a model within this class that has
lha. racterist.ics similar to those of thle smoothness constraint prior mIlodel. In

l)articular. for our nIultiscale mnodel based on (2.27)-(2.29) to approximate the
stmtootlhness constraint prior we woukl like to choose our mlodel parameters so
thl;at we have STS z A.. The observation in Section 2.3.1 that the prior model
(2.,) illlie(l by the operator S in (2.5) corresponds to a Brownian motion
· f'ractal irior" suggests one approach to choosing the model parameters. In )ar-
I ic'ltar. lie one-dimensionalll Brownial Ilmotion hlas a 1/f 2 generalizetl spectrum
[22). It lhas I)een (demonstrate(l tiat suchl processes are well approximate(l 1b)
iillliscall illodels such as ours in one dimension if geometrically decreasing pl)ow-
,rs of noise are added at each level in of the process (30. :3.1. In lparticular. this
illotivatos the choice of B(.q) = b4-l""L3)f in (2.27). where b and pt are sca-lar con-
slantls. 'T'he constant b d(irectly controls the overall noise power in the process.
.\lso. as disciussed in (:34]. thle choice of it controls the power law dependence of
I lie aeleralized spectrum of the process at the finest resolution a.s well as thlle
fractal (limension of its sample plaths. Specifically. this spectrum has a l/f2" -

lepl,,ilenice. Thus. thle choice of It = I would correspond to a. Browniall-like
frac;tal process. T'o achieve greater flexibility in both the imodeling and estimlla-
liio. we allow it to be a lparamlleter that can be varied. In addition. recall that.
ii, the smoothness constraint formulation. SrS was not invertible because of tlhe
ii,,1licit assumptionu of infinite p)rior variance on the DC(: value of the ol)tical flow
lilld. lni our multiscale regularization context. this woould correspond to settlilli
I1( iiti;l covariance P0 equal to inifinity in (2.2,8). 'This call e (ldone withlout
dillicliltv in the estimation algorithms described next. but we have found that it
is gllorally sufficient to simply choose PO to be a large multiple of the identity.

We have now specified a class of models which will allow us to approximate
I lh' stmoot htness constraint prior mondel. The simple multiscale structure of these
,ilod(Pls leads to very efficient algorithms for computing the optimal estimate of
I hl' slate given a set of measurements. One of these algorithms. which we refer
,,, as I le hNl.tiscale Regulariza.tion (rMlR) algorithm. wa.s (devlopidl ill [2,9. 29.

;:(. 3.5] for olie-dimelnsionlal signals. and its extension to inlages is (lescrilbe(l ill

The NIR algorithm computes the Bayes least squares estimate of the State
vc(-tors (2.27) given the measurements (2.30) in two steps. The first step is
;u upward'l or finc.to.-coarse sweep onl the quladtree. which propagates thle mllma-
slri'viellnt information in parallel. level by level. front the fine scale inodes tip to

lie root. ilode. This step produces the best estimate at each nLode given all thle
;dta. inl the sulbtree under that node. At the top of the tree. one obtains the



smnoothed estimate of tile root node. that is. the estimate of this node based
on all of the (lata.. The smoot.hed estimatine and associated error cov'ariance at.
tile root node then provide initialization for the next step. Thl'lis second step is
a. dlownul ard or coarse-to-fine sweep which propagates the global tlea -irenient
informlation now at. the root lotde back dlown. and throughoutt the ,e. Tlle
resilt at. each node is tile lea.st squares estimate .'S(.s) of the sta. te 1)based
on a.ll of the da.ta. The resulting estimates a.t the finest level of tI! qluandtree
provide the solution to (2.32). The resulting algorithm is just a. gene? iiza.tion of
the Raucch-Tung-Striehel smoothing algorithm [37] in scale. 'rThe ails of tihe
upward and downward sweeps are discussed in greater detail in [30. 35. 36].

2.5.2 Numerical Experiments

llere we demonstrate the substantial computational benfit that call be achieved
through tile iuse of our multiscale modeling pardigli. 'ro specify tile MlH. algo-
ritlllh conitpletely we nleed to choose the parameters of the Illodel. We utilize t le
following plara.lleterization:

r(.s) = .r( ) 4+ (b4-4 "' (' )'(.s) (2.33)
Y(s) = '(.s )( s ) + c(.s) (2.)

w(.s) , (0. [) (2.35)

,( .s ) , ( 0. v- ( .q ) ) ( 2.365 )

.XO I (O.pI) (2.:7)

From (2.33) and (2.3.5) we see that the two complonents of thle optical flow field
a.re nod(eled as ini(lepenlideit sets of random varia.l)les. aiild that v(acli will hav;,
a fractal-like characteristic due to tile choice of the driving noise gain B1(.q) (as
discussed in the plrevious section ). We view tL and b as free Imodel lpa.ra.lilellrs
which can be varied to control the degree and type of regularization in mucllhl t lhe
samne wav that the p)ara.meter v in the smoothness constraint formuilation i 2.2)
is used to tradeoff between the data dependent and regularization ternms in tihe
optimiizationl fItuctional.

As discussed previously. the mieasuremients y(.s) and IleaSIi'remLent Illatrix
C'() comle directly froml the imllage temporal and spa.tia.l gra(lients. which are
available at tile finest level of tile quadtree. In tile experiments describe(l be-
low. we use a. siimple two.image (lifference to approxilat.e tlle temlporal gra(li-
ent. The spatial gradient is computed by smoothing the image with a. 3 x :3
GCaussian kernel followed by a. central difference applroximlation. The additive
noise variance is given by v,-l(s). Xve have found emlpirically t hat the choice

~-l('1.) = max(ljC(.s)ll12. 10) works well. This clhoice effectivel Iy)enalizes large
spatial gradients. whllich are likely points of occlusion where t le lrightntess con-
straint equation will not hold [38]. Tile p)aratnieter 1) in tile prior covariance of
the root node was set to p1 = 100. The d(istrihtttioll (2.37) on the root lio(lec
effectivelv savs that we are modeling the optical flow field co )ponentllt as as zeo
mIean random p)rocesses. The prior covariance reflects our confidlence in this
assump tion. Since we (tdo not believe that (Itn?l prior asslmp!tioll on t IIe mIeall of
olptical flo.w fe!l lponlets can bCall jstifiedi. v ,- ? ct /he )ara11ilter'l' 1) slcil tihalt



Figure 2.9: First htamle of "Yosemlite sequence.

Il te illlmpliel sta-ndard deviation is ltuch larger than the sizes of the flow fields
w, sxpl)ect to see.

\\e compare our approach compnutationallv and visually to the tile Gaulss-
Sidll (G.;S) and successive over-r eilaxation (SOR ) algorithlls. which (anl e llsedi
to cinllmpute the solution of t he smoothness constraint formulation given hv ( 2.5).
SI.;raightforward analysis shows that the CS anld SOR algorithnms relquire 14 aind
IS Iloati.ig point operatiolns Iflops) per plixel per iteration respectively. The
m tiimlter of iterations reliquired for convergence of the iterative altu.orithlts g-ro ws
witi imlau;e size [271. For reasonable size inmages (say. 512 x 512). SOR may
,e'llir( onl lile order of Ilhndreds of iterations to converge. so tihat thie total

(,11,litat ion l)er pixel call i)e out ilie order of 103 - 10' flops. ()O t he other ha tl.

tlIl, NIR algoritlhni re(luires 76 tlops per pi.xel. Note tllhat the N1R algoritlhnn is
,,dl iterative. Thus. the complutational gain associated with the MR algoritlhm
'alI lib on the order of one to two orders of magnitude. Details may be found in

Yosemite Sequence Experiment

I'llis ,oxample is a. synthetic 256 x 2.56 image sequence which simulates thle view
,,blai ited by ilying t hrough the Yosemite Valley-. The first image in t he i se(luence
is slhown in Figutre 2.9 alone. with t he actual flow field in Fioure 2.10. The flow

(oil)Uttled via, the MIR ailoritllll is shlowll inl Figure 2.11 anid tile stlloothllless
,oest raint solttion is shown in Figure 2.12. The smoothness constraint flow

''hluis sequence was synthlesized Vby Lln tuamn of SRI Inlternationai.
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Figure '2.il .1: R algorithlll flow eotilatls: b = 10. I= 2.5.
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i'iigir 2. 12: SOR aligorithll flow estimates: R = .5002. 250 iterations. The SO01
;a lJrit II ll requTired a factor of 60 mIore computation in this example.

sl i llltles required 250 SOR iterations in this example. representing a factor of 60
t1iir1 corol)Ittation than t.le MR estimnates. Note the sublstarntial increase over the
lr' im)ts example ill the niumber of iterations required for the SOIl algoritlllll to

cnmierge. The number of iterations required for convergence depends on several
thlinlgs. ilcluding the parameter iv, the image gradient characteristics and the
iliane size. Theoretical analysis in [27] shows that the SOR algorithm requires
,,II I lhe order of n iterations for aln n x n image. Thus. we expect substantliall
,(Il,' crl)llta-tioLlal savings as the ilnage size increases.

\ root Inean slquare (rnls} error comparison of the algorithmls is shown ill
ligire 2.1:3. As expected. the SOIl algorithm is significantly faster tha.l t le
(8; algorithtn (they will converge to the same result since they are solving the
;a111 lpartial differential equation). The rmls error in the MR flow estimlates is
(iepicted as a. straight line. since the algorithm is not iterative. Neither of the
,stiilnates coincides with the actual optical flow. but they do have comparable
Illis error as in the Irevious example. In addition. the figure illustrates the
crtipl)lt ationllal adlvaintage of the -MR algorithm. In particular. the SOR aligorit hmn
is still red(cing the lillS error ill it.s flow estimates after 3:00 iterations. at which

oinlt t lie NIR alzoritlhm requires a factor of 300/4.2 = 71.4 less compntation.

'l'lis i mage sequence contains a problem often encountered in real imllages: re-
iOIlIs .f constant intensity. The L)roileln is that thle lack of gradient information

ill thiat region impllies tlhat the optical flow is not well defined. The smloothness
cllst a;illt and Imultiscale prior niodels provide a mieans of interpolatin out into
I l "ies riioins. The result of this is apparent in the top portion of Figures '2.11
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Figure 2.13: Rms Error Comparison of MR. SOR and Causs-Seidel (CGS) algo-
rithm flow estimates for the Yosemite sequence.



;11(il 2.12. .\ll advantage of the .'[R fornulation is that t accomllli shes this
,sxtrapoilt.ioI at an a ppropriately coarser. and lielice colilpulta.tionally simpleir.

Note lile thle ilR and S(' flow estimates a.re not identical due to differelces
iii I hle prior models. If there is particular interest il obt.aining tile S(' solittion.
1 li, (llsltioio arises of using tile MIR solution as an initial guess for tihe iterative
aligorithills which compute the SC solution. Note that. the difference l)etw.een the

;'and l\I! llow estimlates is associated withl the nou-smloothl. high frequency
;l,pc{'ts of the MNII. flow at. block edges. It is p)reciseiy these high freflquency
(,,llolm ietils tlhat a.re (quickly rellioved by SOR or cS algorit.l ns computingI lile
tile siloothliess constraint solution and suggests that the N11R alegorithm wonldl
provi(ldc alti excellent prc-'-coditio ontr for tile iterative algoritlhlms.

2.6 Conclusions

\\V' Ih;.ve takm en a estinmation-t heoretic perspective to imtiage seqluence processinii
,isiliz~ as ouir v hilicle h lie colipitltationl of optical flow. ()Our reullts Illaee tuse oft 1 lie

i li rprl a;t ioii of variouls colllmpoeients of st andard forinulat ions of t hiis protlleiii
;is sltistlirfl mrod(lIs. FIirst we p)reselited a near-opt)ililal ialiahan liltert lor It le

*I lillmatollu of optical flow Illlder a tPetn)oral collereince collstra.il allid hased oit
I It, propagatiotn of approximate local models of the estimation error covarianice.
I'llis lilter provides. to our knowietdge. the first implementatiotn of the romiph t

i;llaalla filterin eliquationls for space-time prol)lemls of this scale. and the only!
,;xamilllp (of successful. nlea.r optimal. propagation of covariance matrices of t his

Next we usepd tile observationl tihat both the single anld mlulti-framtie problemlls
(";a bI, forimulal ,d as spatial estimatio p)roblemlls. wherein sets of observationls
;i'r fisedl with )rior spatial field models. to motivate tile rise of a. recently (de-
vlffpl class of im,/itisco/r statistical Imodels in t heir soltition. The algorithIns
:1risit h from Ithis (class of toitdels allows dramatic sl)peedups iI coilinputatioialt

pvc-,,I. I'm1,i' itll)licits' (' c('lcenlitrated on tile single frame casp. t llotlli p c(oil l

;Ils, I,,,, ilfor I Ie sta-tic spatial estimation p)roblein occu ring in thle miult i-flraile sil-

;1 i,.l.. A p)articularly interesting aind openi (luestion is htow to directly propagate
11( (' tIlhe mlultiscale models used in Section 2.5 in timie.
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