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2.1 Introduction

Many problems of image processing and image sequence analysis invoive hoth
ereat computational complexity and the accominodation of noise and uncer-
tainty through the indirect observation of quantities of interest. In this chapter
we describe several aspects of an estimation theoretic approach to such prob-
loms. The vehicle for our development is the estimation of the apparent velocity
field of a sequence of images. This apparent velocity field. known as the optical
flow. appears as an important quantity in both the qualitative and quantitative
analysis of image sequences. For example. knowledge of the optical flow is used
in the detection of object houndaries and the segmentation of visual scenes [1. 2].
the derivation of 3-D motion and structure (3. 4], and the compression of image
~equences for efficient transmission [3. 6].

We take an estimation-theoretic perspective to the computation of optical
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flow. using and extending the formulation of Rougee et al. [7. 8] in both the
temporal and spatial directions. In particular. we use model-based interpreta-
tions of the various components arising in the estimation theoretic setting to
allow us to develop novel extensions to existing approaches. l'irst, we consider
the imposition of a temporal coherence to the flow obtained by modeling the
evolution of the vector optical flow process with a linear state equation and then
applying a recursive Kaliman filter 1o the observations obtained from the image
sequence. The classical (Ilorn and Schunk [9]) formulation of the optical flow
estimation problem contains no such formal requirement of temporal coherence.
The inclusion of such a constraint allows the reliable and robust cstimation of
optical flow under conditions difficult for the classical approach. l'or exawmple. in
situations where a single image pair contains insufficient information to recover
the flow field due ro the“aperture problem.™ the integration of ohservations over
a longer time (rame can yield reasonable results.

Applications of Kalman filtering to various formulations of optical flow esti-
mation [10. 11] as well as to other low-level reconstruction problems in computa-
tional vision {12] have heen proposed. In these previous approaches. however. the
apparently computationally daunting task of implementing the Kalman filtering
equations. aud in particular the error covariance equations. on even moderately-
sized images resulted in the use of drastically simplified and suboptimal filter
specifications. Specifically. the uncertainty in the dynamic model for the time-
varving unknown field. and hence the uncertainty in the estimate itself. is not
formally represented or properly propagated in these approaches. In an exact
implementation of a Isalman filter. such uncertainty. as captured in the esti-
mation error covariance matrix. is propagated along with the estimate itself
[13. 14. 15} and allows for the optimal fusing of the current estimate with new
observations. The filtering algorithm presented in this paper cmploys a more
systematic and rational approximation of the Kalman filter than those previ-
ously reported. This approximation is based on the propagation of approximate
local models of the estimation error covariance. These results provide. to our
knowledge. the first implementation of the romplete Kalman filtering cquations
for space-time problems of this scale. and the only example of successful. near
optimal. propagation of covariance matrices of this size. The mathematical de-
tails of our approximation techniques can be found in [L6] in the more general
context of low-level visual reconstruction.

Second. we use the observation that both the single and multi-frame problems
can be formulated as spatial estimation problems. wherein sets of observations
are fused with prior spatial field models. to motivate the use of a recently devel-
oped class of multiscale statistical models in their solution. What makes these
multiscale field models especially interesting is 1) that there exist extremely ef-
ficient. multigrid-type estimation algorithms based on them and 2) that a large
number of degrees of freedom exist in their specification. allowing them to ap-
proximate a wide range of different flows. including. as least conceptually. any
Markov Random Field based flow. Together. these qualities imply that the uti-
lization of such muitiscale spatial models for spatial estimation problems. and
in particular for the optical flow problem. provides a flexible vet crtremely of-
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ficient estimation framework. Preliminary examples of our resuits are provided
showing factors of 10-100 computational improvment over conventional meth-
ods. Pinally. such models provide multiscale representations of the low field
and. though we have not used it here. also provide the possiblility of optimal
integration of multiscale measurements.

[n this chapter we focus on a particular image processing problem. namely
the computation of optical flow. Ilowever. the model-based approaches used
here are more generally applicable to the wide range of space-time estimation
problems arising in image sequence processing.

2.2 Optical Flow Estimation

2.2.1 Single-Frame Formulation

The 2-D vector field of the apparent motion of brightness patterns in an image
is referred to as the optical flow {9]. One commonly used way to obtain informa-
tion about the optical flow field r(zy.z,.t) = [dz/dt. ll:g/(lf]r at a given point
in space (21.3,) and time t was presented by Horn and Schunck in {9]. This
approach is based on the assumption that changes in scene brightness in the

image sequence are due only to motion. This assumption leads to the so called
hrightness constraint equation {9):

0= LI—E(:{. o) = iE(:.. 2o+ VN E(zp. 2.8 stz 220 1) (2.1)
dt Jt
where F(z1.2,t) is the image intensity as a function of time and space and
VE =[0E[0dz. OE[0z,), is the gradient of the image intensity.

‘The brightness constraint equation (2.1) does not completely specify the flow
field since it provides only one linear constraint for the two unknown components
of r(=y.z,.1) at each point. This is usually referred to as the aperture problem
[1]. One way to obtain a unique solution is to requiarize the problem by imposing

an additional smoothness constramt. Specificallv. one formulates the followine
aptimization problem [9]:

argmin // v HU%-E(:I. S0 )+ Y E(z, 22, t) - 2|2 + ||Vl d2yd=, (2.2)

r{zp.3.t)

The smoothness constraint is captured by the second term which penalizes large
eradients in the optical flow and is necessary to make the formulation mathe-
matically well-posed [17]. This term also represents our prior helief about the
Mow field. implving that the computed flow should vary smoothly over space.
Such spatial coherence of the flow vectors reflects the smoothness and stiffness
of the object surface in the scene [18]. The constant v(z;.z,.t) allows one to
tradeofl hetween the relative importance in the cost function of the brightness
and smoothness constraint terms.

Before proceeding let us analvze the smoothness constraint in more detail.
Note that the penalty associated with the smoothness constraint term in (2.2)
is equal to the integral of the squared norm of the field gradient over the imaee



VA VA VANV VAVEAN

Figure 2.1: Depiction of three fields which are equally favored by the sinoothness
constraint. illustrating how this penalty provides a fractal prior model for the
optical flow.

plane. In a one-dimensional context. such a constraint would penalize each of
the (one-dimensional) fields in Figure 2.1 equally. Iutuitively. the smoothness
constraint has a fractal nature. and in fact this can be demonstrated in a much
more precise sense, as we show in Section 2.3.1.

2.2.2 Multi-Frame Formulation

The formulation 12.2) processes the data (i.e. the gradients of the image inten-
sitv) a frame ar a time. vielding flow estimates independently over time. The
imposition of temporal coherence [19] to the flow field can be considered in ad-
dition to the spatial coherence enforced by (2.2) in order to utilize more data
for each flow vector estimate. Temporal coherence imposes an inertia condition
on the flow field. favoring gradual changes in the optical flow vectors over time.
Temporal coherence models of optical flow are applicable to a wide range of
motions in natural scenes. as most movements display inertia of some type. To
obtain such a multi-frame formulation of the optical flow computation problem
we use a simple temporal extension of (2.2) [20. 12]. In particular. we find the
flow field #(=,. z,. 7) which is the solution to the following problem at time f = 7

. /"'// HOFE
argnin 1 ‘ —
r(z3.2,.4) J0 D d

T + VE(z oz t) -
The multi-frame formulation (2.3) is obtained from the single-frame formulation
(2.2) bv the addition of a quadratic term involving the first order temporal

2
dsdt. (2.3)
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derivative. Note that the full solution to the optimization problem (2.3) leads
toa reconstracted space-time field T( 3. 29, t) in which the reconstruction at any
time takes advantage of all available constraints over the entire time interval
) <t < 7. We are only interested in the value of the solution to (2.3) at the
current time t = 7, corresponding to the hest causal or filtered estimate of the
flow field. Filtered estimates are desirable in applications where the optical low
necds to be calculated as soon as each frame in the image sequence becomes
available: however, obtaining such estimnates corresponds to solving a different
3-1) optimization problem for each r as r increases. Such a solution clearly
results in a greatlv increased computational burden over what is required for

the single-frame solution of (2.2). making direct solution of the optimization
problem (2.3) prohibitive.

2.3 Discretization and Probabilistic Interpretation

In the first part of this section we present a discrete formulation of the single-
frame optical flow problem. [un this context we develop two model-based inter-
pretations of the single-frame problem which will be central to the resuits of
Sections 2.1 and 2.5. In particular. we illustrate 1) how the smoothness con-
~traint can be interpreted as a prior probabilistic spatial model for the flow field
and 2) how the inverse of the covariance of the field estimate may be naturally
interpreted as another spatial model. this time for the posterior estimation crror
of the field. The second part of the section shows how we may model the tempo-
ral coherence constraint of (2.3) by a discrete dynamic equation. which may then
he conpled with a set of observation equations obtained from the single-frame
case to vield an equivalent state estimation problem.

2.3.1 Single-Frame Case

In practice. brightness measurements are only available over a discrete set of
points in space and time. Thus. the temporal and spatial derivative terms must
he approximated with finite differences. and the optical flow is only estimated on
a discrete space-time grid. There are a number of important issues which arise
due to the discretization which we do not discuss here: we refer the reader to
[21] for a detailed treatment. Ve will assume here that we have normalized the
space-time coordinates so that the optical flow is to he estimated on the set of
imtegoers (z3.2,) € {(i.j)]i.j € {L.---.2M}}, where M is also an integer, so the
total nnmber of image points is N = 4. The assumption that the grid is square
and that the number of rows is equal to a power of two makes the development
of Section 2.5 easier. but is not essential. Now at grid point (/. j) at time f
let ns define y(i.j) = (=JE(i.j,t)/0t) to be the measured temporal brightness
derivative. (i, j) to be the desired optical flow vector. and C'(/.j) = Y E(i.j.1)
to be the spatial gradient of the image brightness (also measured). Then we
may write the brightness constraint (2.1) at the point (/. j) at time { as:

ylieg) = Clicg)eting) 12.4)



The brightness constraints (2.4) at all grid points can now be grouped into
one large set of linear equations to concisely capture the optical flow information
contained in the image sequence. Let x(t) be a vector containing the opticz 'ow
values w(i, ) at all the grid points at time ¢ (using, say. a lexicographic oré¢  ag)
and y(t) be the associated vector of the samples y(7, j). Similarly. let C{  nd
W(t) be block diagonal matrices whose diagonal elements are the samples 1, J)
and w(!,j), respectively, taken in the same order at time t. A discrete rsion
of the single-frame formulation (2.2) is then given by:

Xsc(t) =argmin {Hy(t) - C(t)x(t)"%v(,) + HSx(t)H%} (2.5)
X(t)

where ||x]|3y denotes the weighted norm x7Wx. I represents the identity ma-
trix. and S is the matrix first-order spatial difference operator. Note that the
discrete nature of the problem alluded to above implies that we must actually
approximate the samples ~JE(i.j,t)/0t and Y E(i.j, t). and thus C and y bv
finite differences. The spatially varving entries of W can actually be used to
reflect our conlidence in these approximations. We refer the reader to [21] for
further details.

Spatial Models

An estimation-theoretic formulation of the optimization problem in (2.5) can
now be developed. and we will use it to show that the statistically optimal cs-
timate of the optical flow. given a particular set of measurements. is identical
to the smoothuess constraint solution given in (2.5). Specifically. solving the
quadratic minimization problem (2.5) is equivalent to solving a maximum like-
lihood (ML) estimation problem [15] for x(¢) with the following observation
equations:

y(t)
0

[

-

.6)

)

Cltyx(t)+ru(t)  ri(t)~ (0.W'(1) ) (
SX(t)+r2(f) ra(t) ~(0.1) (-

N~
-1

where we have used the notation x ~ (m.H) to denote a Gaussian random vector
x whose mean and covariance are m and H. respectively. so r(t) = [r1(). ro )] T
is a zero-mean Gaussian random noise process. Thus. the maximum likelihood
problem formulation results in the same solution as the smoothuess constraint
formulation when S is used to define an additional set of noisy measurements.

By formulating the problem in this estimation-theoretic framework. we can
use (2.7) to interpret the smoothness constraint as a prior probabilistic spatial
model for the flow field. Specificallv. we can rewrite (2.7) as:

Sx(t) = —raft) (2.8)

Recalling that S is an approximation to the gradient operator. we see that (2.8)
is nothing more than a spatial difference equation model for x(t) driven by
the spatial white noise field ry(t). In particular. this prior model represeunts
the optical flow field as composed of independent. two-dimensional Brownian




motions! {7, 8]. Then. the statistically optimnal estimate of the flow field. given
the measurements (2.6) and the Brownian motion prior model, is the same as
the optical flow estimate given by (2.5). The estimation-theoretic interpretation
simply allows us to interpret the smoothness constraint as a Brownian motion
model. In one-dimension, Brownian motion is a statistically self-similar. fractal
process with a 1/ f2 generalized spectrum [22). and for this reason the smoothness
coustraint is often referred to as a “fractal prior” [12]. We wiil return to this
interpretation in Section 2.5 where we discuss a muitiscale modeling approach
fo the single frame problem. In particular. we will replace the prior model (2.8)
by a similar but multiscale prior model, which leads to dramatic computational
savings.

Next, let us consider another model based interpretation of the single-frame
problem (2.5) that will be useful in treating the multi-frame problem. The ML
estimate for the optical flow. x(t), based on the measurements (2.6).(2.7) is
obtained as the solution of the following inverse problem:

(CT(r)W(r)C(n+ sTs) x(t) = CT(HW(t)y(1) (2.9)

The equations in (2.9) represent a discrete version of the coupled Poisson equa-
tions of the Horn and Schunck formulation. The matrix operator

L(t) = (CT(t)W(t)C(t) + STS) (2.10)

on the left hand side of (2.9) has a sparse. nearest neighbor (a nested block
tri-diagonal) structure [23]. whose sparseness enables us to use efficient iterative
procedures. such as multigrid methods [24]. in the solution of (2.9). Also. this
sparse matrix corresponds to the information matriz (the inverse of the covari-
ance matrix) associated with the posterior estimation error d(f) = x(t) — x(t).
In particular L(f) can naturally be considered to specifv an implicit Markov
Random Field model for the estimation error process d(?) of the following form:

L)y d(t) = ((t). C(t)y ~ ( 0.L(t)) (2.11)

1he nearest neighbor structure of L(#) in (2.11) or (2.9) reflects a corresponding
local structure to the statistical niodel for the estimated field error covariance.
\We will use this observation in Section 2.4 to develop tractable vet near optimal
liltering algorithms.

2.3.2 Multi-Frame Case

Now we consider the multi-frame extension of the single-frame formulation given
in (2.6).(2.7). The continnons optimization problem (2.3) can be considered to
he an optimal smoothing problem hased on the following temporal. linear Gauss-
Markov dynawmic system for x(t) [16]:

‘.C"'J'(tx.:g.t):q(t) {2.12)
ot

"Aore precisely. to avoid biasing the optical flow estimates towards zero. we only assume
that the qradientsof the optical flow field components are equal to the gradientsof the Brownian
motion processes. This avoids placing a constraint on the DC (i.e. average) value of the optical
dow and focnses nnly on fmposing a yreferrnce for smoothness in the flow.

At 2 &~



where q(t) is a Gaussian white noise process of zero mean and intensity p~!. For
such an optimal smoothing problem. two-filter methods (i.e. obtained by running
a KKalman filter in each of the causal and anti-causal directions) are applicable
[7]. In general we wish to compute only the most recent estimate X(zy.z2.7)
from (2.3) for each 7 > 0. Such an estimate can be obtained by a single causal
Kalman filter. Specifically. a discrete version of this multi-frame problem can bhe
formulated as a state estimation problem for the dynamic system whose dynamic
equation is

x(t) = x(t = ) +q(t), a(t)~ (0.p7'1) (2.13)

coupled with the observations given by (2.6).(2.7). The process noise q(t) is un-
correlated over time and captures the uncertainty in the dvnamic model (2.13).
This Gauss-Markov dynamic model. a discrete version of (2.12). indicates that
the optical ow evolves in time as the accumulation of a random perturbation
at each time frame. While we will be concerned with temporai dvnamics of
the form (2.13). naturally more complicated dvnamic models. corresponding to
different temporal coherence terms in (2.3). could be used.

2.4 Sequential Multi-Frame Estimation

In this section we consider state estiination for the dynamic system represented
by (2.13).(2.6),(2.7). Conceptually. we may use well-developed optimal sequen-
tial estimation algorithms, such as the Kalman filter and its variants. {or solution
of this multi-frame optical flow estimation problem. One such algorithm. that
will prove convenient for us. is the following implementation of the information
form [13. 15] of the Kalman filter [16]:

e prediction stage

— NN —1
Lit) = /)I—,r(L(t—lH-pI) (2.11)
X(t) = x(t-1) (2.15)
Z(t) = L(HR() (2.16)
e update stage
Lty = T+ CT(hw(t)C(t)+STs (2.17)
zZ(t) = Z(t)+ CT(H)yW(t)y(t) (2.18)
L()x(t) = z(t) (2.19)

where X(t) is the one-step predicted estimate and %X{{) is the updated esiimate
using the new data available at time ¢. Also. L(¢) and L(t) denote the predicted
and updated information matrices. respectivelv. Note that the updated estimate
x(t) in (2.19) is specified implicitlv. as for the single-frame case (2.9).
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2.4.1 Suboptimal Kalman filtering

The number of pixels. V. in a frame of a tvpical image sequence is on the order
of 104 to 108, Such a large number of points makes direct implementation of the
optimal information Kalman filter (2.14)-(2.19) impractical as the associated
information matrices L(#) and L(t) of the optimal filter will have on the order
of 10% to 10'2 elements. The storage and manipulation of such large matrices
is clearly prohibitive. necessitating the use of a suboptimal method. The sub-
optimal filtering algorithm presented below employs a systematic and rational
approximation of Kalman filter. which is based on the propagation of approxi-
mate local models of the estimation error covariance. as discussed in connection
with (2.11).

To develop our sub-optimal filter. consider the set of equations (2.14)-(2.19).
First consider the update stage of the Kalman filter. If L(t) possesses a sparse
and banded nearest neighbor structure. as was true for the single-frame prob-
lem. then (2.17) will preserve this structure in L(t) since. as we pointed out in
connection with (2.9). CT(1)W(t)C(t) + STS also possesses this structure. In
particnlar. if this is the case. then (2.19) may still be solved efficiently for the
npdated estimate %(t). and in fact this step would have eractly the same com-
putational complexity as in the single-frame case. Thus. we desire to preserve
such a sparse and banded structure in T(f).

Now consider the prediction stage. Unfortunately. even if Lt — ) in (2.11)
ix initially sparse and banded. the predicted information matrix T(¢) will not be
due to the matrix inverse on the right hand side of this equation. In addition.
finding the inverse of this matrix is a prohibitively complex procedure. WWhat
we desire in the present framework. then. is a sparse and banded approximation
to Lf) that may be efficientlv computed.

As detailed in [16. 21]. such an approximation may indeed be obtained by
expanding the matrix inverse on the right hand of (2.14) in a series as follows:

Lty = pl=p3" ' =7 lAQ- o laQ-tAQ-~ — o) (2200

where 0 is a block diagonal matrix whose 2 x 2 diagonal blocks are identirAal to
the corresponding diagonal blocks of the matrix L(t = 1)+ pl while X = L(t —
)4+ pl - is given by the remaining off-diagonal part of L(t-1)+pl. Note that
(2-' is block diagonal. The series (2.20) may now be truncated to any desired
number of terms to obtain an approximation to the exact expression of the
desired level of accuracy. The more terms are kept. the less sparse and banded
the approximation will become. Thus. there is a tradeoff between accuracy and
computational efficiency. Our experience has shown that retaining only the first
two ferms vields excellent results. In particular. we obtain our near-optimal
filter by replacing the optimal prediction step (2.14) by the following two-ferm
approximation:

Tit) = pl-p40-t-0-taQ-h (2.21)

Unlike (2.11). the suboptimal prediction step (2.21) does indeed preserve the

desired nearest neighbor structure in the (approximated) information matrix
Tin.

.-
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It can be verified straightforwardly that propagating the information matrix
in the approximate filter asin (2.17) and (2.21) costs only O(V) flaps per frame
and has a local. modular computational structure suitable for par: el hmple-
mentation. Throughout the filtering procedure. the approximated  >rmation
matrices maintain the nearest neighbor structure and have only O(  non-zero
elements. Thus. the approximate filter has significant computatior and stor-
age advantages over the optimal Kalman filter. which normally re ires Q(N?)
storage elements and O(N3) flops per frame of data.

A useful way to understand our approximation is provided by @i examination
of the update stage of the Kalman filter. In this part of the filter we are fusing the
information from the previous prediction stage. as captured by L(¢) and Z(¢) (or
equivalently X(t)), with the new observation. In particular. L(¢) can naturallv
he thought of as specifving a prior model for the error e(t) = x(?) — X(t) in the
current estimate of the following form:

T(t)e(t) = (1), g‘(t)~(0‘f(t)) (2.22)

which is just the counterpart of (2.11) for the dyvnamic problem. This model
is then combined with the new observation to produce the best estimate e(t)
of this error. The updated estimate X(t) in (2.19) is then eqnal to X(t) + &(1).
The update stage is thus just a static spatial estimation problem. where (2,22
represents a prior model just hefore the inclusion of new data. That is. hy
writing the observation equations (2.6).(2.7) concisely as g(t) = H(#)x(t) + r(t).
where g(t) = [y(t)7. 0T)T. H(t) = [C(t)T. S(HT]T. and r = [r]. r1]T. the
estimmate e(f) can be obtained by solving the following static spatial estimation

problem:
0 _| Lo ~(t) .
[ glt) — H{t)x(t) ] - [ H(t) }e(t)+ [ r{t) } . (2.23)

which is statisticallv equivalent to obtaining the updated estimate X(1) of the
unknown x(t) given the prediction X(f) and observation g({). Since the implicit
model is specified by L(t). our approximation of this matrix by a sparse matrix of
the given nearest neighbor structure in {2.21) corresponds naturally to the spec-
ification of an approximate. reduced-order model for the spatial error process.
In particular. this approximation may be viewed as the imposition of a Markov
Random Field structure of fixed spatial extent on the flow field estimation-error

[16]. Our approximation thus has a rational basis in estimation-theoretic con-
siderations.

2.4.2 Numerical Experiments

We demonstrate the beneficial effects of the temporal coherence constraint. for-
mulated as the dvnamic model (2.13). and the efficacy of our near-optimal filter
for optical fiow estimation by numerical example in this section. Recall that. for
images of realistic dimension. such as we cousider here. exact implementation
of the optimal Kalman filtering equations is impossible and thus we apply the
temporal coherence constraint (2.13) via our suboptimal filter of Section 2.1.1.
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\ detailed comparison of the suboptimal and true optimal filters demoustrating
the near-aptimality of our approximation can bhe found in [16]. llere. a svun-
thetic image sequence of a moving brightness pattern is processed by various
multi-[rame and single-fraine optical flow estimation methods. and the improve-
ments gained by using the particular temporal coherence constraint (2.13). as
implemented by the filter we presented in Section 2.4.1. are compared to the
couventional methods. Specifically. the following two methods are considered:

e SF (Single Frame)
This method is a discrete version of the single-frame computational ap-
proach proposed by Horn aud Schunck [9]. Each frame of optical flow is
computed independently. i.e.. without any provision for temporal integra-
tion of data. by solving the inversion problem (2.9) for x(17).

e TCS (Temporal C'oherence. Suboptimally computed)
T'his method is the suboptimal but computationally eflicient version of the
optimal Kalman filter: as described in Section 2..L.1. the prediction step
(2.11) of the IKalman filter is approximated as (2.21).

Variants of these methods arise in different computational environments. Specif-
icallv. the inversion steps (2.9) for SF and (2.19) for TCS can be implemented

by one of the following computational procedures. leading to variations in the
algorithms above:

e ic (iterative inversion. iterations to convergence)
In practice. the inversion problems are solved iteratively. \We use Gauss-
Seidel iterations in the experiments here. Needless to say. this iterative
solution will converge to the true solution in the limit.

e is (iterative inversion. single iteration)
In time sequential processing. it is natural to initialize the iterative in-
version at time ¢ with the estimate obtained at time t — L. providing a
reasonably good estimate for time t even before the first iteration. By
slightly “updating™ this initial guess with a single (or a small number ot}

Ciauss-Seidel iteration(s) at the present time. a fairly accurate estimate of

the flow field can emerge after continuing the process over several time
(rames [9]. although such estimates are suboptimal in the statistical sense.

In this section. each computational method is made explicit by the nawme of its
main algorithm suffixed by the name of the variation. e.g.. TCS-ic. SF-is. etc.
Also. in cach experiment. the initial frame of optical llow estimate is computed
identically by the SF-ic method for every participating computational method
in order to highlight the differences in the temporal effects of each method.
The method SF-is deserves special attention. This method is the approach
to multi-frame optical flow estimation suggested by Horn and Schunck in [9]. It
performs ouly one Gauss-Seidel iteration for the inverse problem (2.9) at each /
but uses the estimate from the previous frame. X(t — 1). to initialize the current
iteration. Unlike the SF-ic method. therefore. this method does have <ome
provizion for propagating the estimates temporally. Note that if. instead of only
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a single (auss-Seidel step, the iterations are allowed to converge for each frame
of data. the resulting flow estimates would have lost all information from the
previous frame and become exactly the same as the SF-ic estimates. Although
the SF-is method is ad hoc in terms of its temporal integration of data. its ease
in implementation is appealing from a practical point of view.

One of the advantages of using a temporal coherence constraint in optical
flow estimation is the improvement in the estimates due to the reduced effect of
measurement noise through the averaging of the noisy data over time. Another.
less obvious advantage. is the temporal accumulation of complementary infor-
mation regarding the flow vectors. Reconstruction of optical flow using only
spatial data integration (i.e.. the SF-is method) cannot be performed correctly
when a complete set of the information necessary to estimate the flow vectors is
not contained in each data frame. Specifically. since diversity in the orientations
of the measured spatial gradients is necessary to resolve the aperture problem.
optical llow computation methods emploving only a spatial coherence constraint
will have difficulties dealing with cases where all the spatial gradients happen
to he oriented in nearlv the same direction (including the cases where most of
the spatial gradient vectors have small magnitudes). \ddition of a temporal
coherence coustraint can often relieve such difficuities by allowing the use of
information from adjacent image frames. The example we give helow demon-
strates both the fact that the temporal constraint is instrumental in correctly
estimating the flow in such cases and that it aids in noise suppression.

Stagnation Flow Experiment

In this experiment we consider estimation of the motion of a non-rigid hody nsing
the SF-ic and TCS-ic methods as well as the SF-is and TCS-is methods.

L. The image sequence.

Figure 2.2 shows a flow pattern whose velocity vector at point (. :,)
is given by (asy.—nsy) for n = 0.1. where the coordinate origin is at
the midpoint of the bottom edge of the figure. This tvpe of flow ifor
an arbitrary constaut n) is useful for a local characterization ol stagnation
flow (25].1i.e.. the flow of fluid obstructed perpendicularly by a solid ob ject,
A sequence of G4 x 48 images are synthesized based on such a velocity field.
Figure 2.3 presents four images from the sequence. Note that the direction
of the predominant contrasts in each image changes from mostly vertical in
the early frames to mostly horizontal in later frames. implyving that some
tvpe of temporal coherence constraint is necessary for correct estimation
of the flow from this image sequence. Ve have corrupted the images hy
adding an independent Gaussian noise with a variance of 9 to cach pixel
and then requantizing the resulting pixel values to 256 grey levels.

2. The flow estimates and estimation crrors,
A 9 %X 9 unit uniform stencil is used to spatially smooth the images he-
fore brightness gradients are computed. The computational parameters
p = 400 and ~ = 40 have been used. Figure 2.1 shows frame IR of the
estimated flow vectors computed by the SF-ic and TCS-ic methods. The
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Figure 2.2: The true flow in the Stagnation Flow experiment. Every other flow

veetor along each axes is shown with a magnification factor of 4 for clarity.

Fignre 2.3: The Stagnation Flow image sequence. Frames 0 and 7 (top row) as

well as 14 and 2! (bottom row) are shown.
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Figure 2.4: The optical flow estimates for frame 18 of the Stagnation Flow

sequence by the SF-ic and TCS-ic methods.



SF-ic method. without any provision for temporal data integration. has
completely failed to reconstruct the flow field. while the TCS-ic method
has performed a reasonable reproduction of the flow in Figure 2.2. The
flows computed by the SF-is and TCS-is are shown on Figure 2.3. which
also displays the importance of temporal coherence in reconstruction.
Figure 2.6 displays the percent average estimation error for each ¢.

I%(t) = x(t)])?
————— X
x|

where x(?) is the true flow and X(¢) is the estimated flow. for the four meth-
ods. These errors are consistent with our previous observations. Again.
superior performance of the TCS-tvpe methods over the SF-type methods
is displayved rather dramatically by the error curves.

100. (2.24)

2.5 Multiscale Model-Based Estimation

One of the major computational hottlenecks of the Kalman filtering aleorithm
ol Section 2.4 is the spatial estimation problem represented by (2.19). In Scc-
tion 2.1.1 we were able to transforu this step of the multi-frame problem back
to the level of complexity of the single-frame Horn and Schunk formulation as
a result of our reduced-order approximation to the field model (2.21). which
resulted in a sparse and banded structure of the matrix L(t). While such an
approximation succeeds in making the multi-frame problem tractable while pre-
serving near optimality of the resulting estimates and indeed represents. to onr
knowledge, the first implementation of the complete Kalman filtering equations
to problems of this scale. the resulting inverse problem still leads to computa-
tionally intensive algorithms. Specifically. the associated set of equations (2.19).
while sparse. is extremely large. corresponding to discrete versions of elliptic
partial differential equations [9]. The standard approaches to solving such large
~ots of linear equations. such as the Gauss-Seidel [9. 26]. multigrid [24]. and suc-
coessive over-relaxation (SOR) [27] algorithms. are iterative. requiring increasing
numbers of iterations (and thus increasing per pixel computational load) as the
Hnage size grows.

In this section we examine a novel approach to such large, computationally
intensive spatial estimation problems wherein we combine a multiscalc prior
model of the field with a set of field observations. Recall from Section 2.1.1
that we may view the update step of the optimal Kalman filter as such a static
spatial estimation problem whercin a prior spatial field model (2.22) is combined
with a set of observations g(f). The use of a multiscale modeling paradigiu
leads to extremely efficient estimation algorithms which hold the promise of
dramatically reducing the computation required to solve such problems. Tor
example. the resulting multiscale algorithm is not iterative and in fact requires
a fixed number of floating point operations per pixel independent of image sizc.
Thus. the computational savings associated with the new approach actually
increases as the image size grows. For simplicity and to illustrate the issues
involved we will focus only on the single-frame case here. For clarity we will
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Figure 2.5: The optical flow estimates for the frame L8 of the Stagnation Flow

sequence by the SF-is method and TCS-is method.
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Iignre 2.6: The estimation errors by the TCS-ic (solid-line). SF-ic (dashed-

line). SF-is (dotted-line). and TCS-is (dash-dot line) methods for the Stagna-
tion Ilow experiment.

drop the time index t from the notation for the rest of this section. with the
nmnderstanding that all quantities are taken at this point in time.

Recail. we argued in Section 2.3.1 that the single-frame optical flow esti-
mates corresponding to (2.5) could be viewed as arising from the combination of
the prior statistical spatial model (2.8), corresponding to the smoothness con-
straint. and the observations (2.6). Now. there is nothing special about the prior
model (2.8) associated with the smoothness constraint. Thus we are lead to the
idea of using a different class of prior models, capabable of capturing a wide
range of phenomenon. and in particular of vielding behavior which is similar
in nature to that corresponding to the smoothness constraint. but which lead
to computationallv more attractive problem formulations. That is. we want to
change the smoot hness constraint term x7STSx in (2.3) to something similar.
sav. XxTAx = xTSTSx (where A is a symmetric positive semi-definite matrix)
such that the resulting optimization problem is easy to solve. If we factor A
as A = STS then we can interpret the new constraint as a prior probabilistic
model just as we did with the smoothness constraint. In addition. there is a
precise interpretation of what we have done as a Bayesian estimation problem.
Specifically. if A is invertible. then the use of this new constraint in place of the
<moothness constraint is equivalent to modeling the flow field probabilistically
as X ~ (0. A~Y). since in this case the Baves' least squares estimate of the flow




field x. given this prior model and the measurements in (2.6) is provided by:
XBLSE = argmin {(y - Cx)TW(y - Cx) + xTAx} (2.25)
X

The normal equations corresponding to (2.25) are given by:
(CTWC + A)xgrsg = CTWy (2.26)

(‘omparison of the problem formulations (2.5) and (2.25). or of th :ormal equa-
tions (2.9) and (2.26). makes it apparent how the two problem { 1uiations are
related. The choice of the new prior model corresponding to A is .iow clearly at
the heart of the problem. We introduce our class of new models next.

2.5.1 A Class of Multiscale Models

The models we utilize to replace the smoothness constraint prior mod were
recently introduced in [28. 29. 30. 31]. These models represent the flow field
at multiple <scales. i.e. for a set of scales m = 0...... V. with m = 0 being
the coarsest scale and m = M the finest scale. we define a set of optical flow
fields indexed by scale and space. namely rp,(i.7). At the m-th scale. the field
cousists of 4™ flow vectors. as illustrated in Figure 2.7. capturing features of
the optical flow field discernible at that scale (i.e. finer-resolution features of the
field appear only in finer-scale representations). Thus. the coarsest version of
the flow field cousists of just a single vector. corresponding to the average value
of the optical flow over the entire spatial domain of interest. and successively
finer versions consist of a geometrically increasing number of vectors. A\t the
finest level. the flow field is represented on a grid with the same resolution as
the image brightness data. In particular. ca(7.j) corresponds to the optical
flow vector w(i.j) in (2.4).

Abstractly. we are representing the flow field on the quadtrce structure illus-
trated in Figure 2.8, Pyramidal data structures such as the quadtree naturally
arise in image processing algorithms which have a multiscale component. For in-
stance. successive filtering and decimation operations lead to images defined on
such a hierarchy of grids in the Laplacian pyramid coding algorithm of Burt and

Adelson (32] and in the closely related wavelet transform decomposition of im-

ages [33]. Also. the multigrid approaches to low level vision problems discussed
by Terzopoulos [24] involve relaxation on a similar sequence of grids.

The model we introduce in this section describes in a probabilistic manner
how the optical flow field w(i.j) = war(i.j) is constructed by adding detail
from one scale to the next. Just as the smoothness constraint prior model {2.8)
describes probabilistic constraints among values of the optical flow at different
spatial locations. our multiscale model describes such constraints among values
at different scales. That is. our model describes the probabilistic evolution of
Tm(i.J) as the scale m evolves from coarse to fine. For notational convenience in
describing such models. we denote nodes on the quadtree with a single abstract
index s which is associated with the 3-tuple (m.:. ) where. again. m is the scale
and (7.} is a ~patial location in the erid at the m-rh scaie. Tt is also useful 1o
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Figure 2.7: The structure of a multiscale optical flow field is depicted. The
components of the field are denoted x,,(i.j) where m refers to the scale and the
pair (i.j) denotes a particular grid location at a given scale. At the coarsest

seale, there is a single flow vector and. more generally. at the m-th scale there
are | vectors.

define an uprward shift operator 5. In particular. the parent of node s is denoted
%y {see Figure 2.8). We note that the operator § is not one-to-oune: it is in fact
four-to-one since each node will have four “offspring™ at the next scale. lor
instance, if & corresponds to any of the nodes in the upper left quadrant of the
second level grid (see Figure 2.7).i.e. nodes (2.1.1).(2.2.1).(2.1.2) or (2.2.2).
then s34 corresponds to their parent on the first level. namely node (1. 1.1).

We are now in a position to define the class of multiscale models which
deseribe the evolution of a multiscale stochastic processes indexed by nodes

on the quadtree. Specifically. a stochastic quadtree process .r(s) is described
recursively by:

r(s) = .As)x(sT)+ Bls)wis) (2.27)

nnder the following assumptions:

o ~ (0.P) (2.2%)
w(s) ~ (0.1) (2.29)

The vectors r(s) and w{s) are referred to as the state and driving noise rerms.
The state variable .y at the root node of the tree provides an initial condition
for the recursion. The driving noise is white in both space and scale. and is
nucorrelated with the initial condition. Interpreting each level as a representa-
tion of a two-dimensional field. we see that (2.27) describes the evolution of the



Root node

m=1
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Figure 2.%: Quadtree structure on which the multiscale processes are defined.
The abstract index s refers to a node in the quadtree: s5 refers to the parent of
node a.

process from coarse to fine scales. The term A(s)r(s3) represents interpolation
down to the next level. and B(s)w(s) represents higher resolution detail added
as the process evolves from one scale to the next. In the application of interest
here. v(s) = wn(i. ), where s = (m.i.j). and thus 4. B € R2X2 Such a model
corresponds in essence to a first-order recursion in scale for optical flow.

Measurements of the finest level optical flow field are available from the
brightness coustraint. In particular. at the erid point (i.j)at the finest level 1.
we have a measurement equation corresponding to that in (2. 4):

ylioj) = Clicjyearlicj) + v(ij)  eticj)~ (007" )) ) (2.30)

where ("(i.j) € R'%2 is the spatial brightness gradient at location (/. j) and the
white Gaussian observation noise is assumed to be independent of the initial
condition v, and the driving noise w(s) in (2.27)-(2.29). Of course. we can
group the state variables r(s) at the finest level into a vector xas as well as the
corresponding measurements y(<) aud spatial gradienf terms ('(«) in the same
wayv as we did to get (2.6):

y=Cxy+v v~ (0.W) (2.31)

We now have exactly the framework which led to the statement of (2.25)
as an alternative to the smoothness constraint formulation (2.5}, In particular.

the modeling eanations 12.27)-i2.20) indicare that ar the fine« lovel of the

Plan
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quadtree, the flow field vectors will be a set of jointly Gaussian random variables
Xar ~ (0.A~!), where A-! is implicitly given by the parameters in (2.27)-(2.29).
The Bayes’ least squares estimate of xas given the measurements in (2.31) and
the prior model (2.27)-(2.29) is then given by:

Xar = arﬁmin (y — Cxar )TW(y - Cxar) + x},AxM (2.32)
A

The multiscale modeling framework thus provides an alternative to the smooth-

ness constraint formulation of (2.5).

What remains to be done is to specify a model within this class that has
characteristics similar to those of the smoothness constraint prior model. In
particular. for our multiscale imnodel based on (2.27)-(2.29) to approximate the
smoothness constraint prior we would like to choose our model parameters so
that we have STS =~ A. The observation in Section 2.3.1 that the prior model
(2.8) implied by the operator S in (2.5) corresponds to a Brownian motion
“fractal prior” suggests one approach to choosing the model parameters. In par-
ticular. the one-dimensional Brownian motion has a 1/ f? generalized spectrum
(22]. It has been demonstrated that such processes are well approximated by
multiscale models such as ours in one dimension if geometrically decreasing pow-
ers of noise are added at each level m of the process [30. 34]. In particular. this
motivates the choice of B(s) = b4=#")[ in (2.27), where b and pu are scalar con-
stants. The constant b directly controls the overall noise power in the process.
\lso. as discussed in [34]. the choice of i controls the power law dependence of
the generalized spectrum of the process at the finest resolution as well as the
fractal dimension of its sample paths. Specifically. this spectrum has a 1/f?#
dependence. Thus. the choice of 1 = | would correspond to a Brownian-like
fractal process. To achieve greater flexibility in both the modeling and estima-
tion, we allow p to be a parameter that can be varied. In addition. recall that
in the smoothness constraint formulation. STS was not invertible because of the
implicit assumption of infinite prior variance on the D(' value of the optical flow
field. In our multiscale regularization context. this would correspond to setting
the initial covariance Py equal to infinity in (2.28). This can be done withour
difficulty in the estimation algorithms described next. but we have found that it
is generally sufficient to simply choose Py to be a large multiple of the identity.

We have now specified a class of models which will allow us to approximate
the smoothness constraint prior model. The simple muitiscale structure of these
models leads to very efficient algorithins for computing the optimal estimate of
the state given a set of measurements. One of these algorithms. which we refer
to as the Multiscale Regularization (MR) algorithm. was developed in [2R, 29,
30. 35) for one-dimensional signals. and its extension to images is described in
[36].

The MR algorithm computes the Baves least squares estimate of the srate
vectors (2.27) given the measurements (2.30) in two steps. The first step is
an upward or fine-tn-coarse sweep on the quadtree. which propagates the mea-
surement information in parallel. level by level. from the fine scale nodes up to
the root node. This step produces the best estimnate at each node given all the
data in the subtree under that node. At the top of the tree. one obtains the
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smoothed estimate of the root node. that is. the estimate of this node based
on all of the data. The smoothed estimate and associated error covariance at.
the root node then provide initialization for the next step. This second step is
a downward or coarse-to-fine sweep which propagates the global mea-urement
information now at the root node back down. and throughout the e. Tle
resuit at each node is the least squares estimate #3(s) of the state ) hased
on all of the data. The resulting estimates at the finest level of tI: juadtree
provide the solution to (2.32). The resulting algorithm is just a gene' iization of
the Rauch-Tung-Striebel smoothing algorithmm [37] in seale. The « ails of the
upward and downward sweeps are discussed in greater derail in [30. 35. 36].

2.5.2 Numerical Experiments

llere we demonstrate the substantial computational beunfit that can he achieved
through the use of our muitiscale modeling pardigm. To specifv the MR. algo-
rithin completely we need to choose the parameters of the model. We utilize the
following parameterization:

r(2) = w(s) + (047N ) e(s) (2.33)
y(s) = (C'(s)a(s)+ v(s) (2.3-4)
w(s) ~ (0.1) (2.35)
v(8) ~ (0.v7Y(s)) (2.36)

ry9 ~ (0.pl) (2.37)

From (2.33) and (2.35) we see that the two components of the optical flow field
are modeled as independent sets of random variables. and that cach will have
a fractal-like characteristic due to the choice of the driving noise gain (<) (as
discussed in the previous section). We view p and b as free model parameters
which can be varied to control the degree and type of regularization in much the
same way that the parameter v in the smoothness constraint formulation (2.2
is used to tradeoff hetween the data dependent and reguiarization terms in the
optimization [unctional.

As discussed previously. the measurements y(s) and measurcment matrix
C’(s) come directly from the image temporal and spatial gradients. which are
available at the finest level of the quadtree. In the experiments described be-
low. we use a simple two-image difference to approximate the temporal gradi-
ent. The spatial gradient is computed by smoothing the image with a 3 x 3
Gaussian kernel followed by a central difference approximation. The additive
noise variance is given by v=1(z2). We have found empirically that the choice
v=1(s) = maz(||C'(s)||2. 10) works well. This choice effectively penalizes large
spatial gradients. which are likely points of occlusion where the hrightness con-
straint equation will not lold [38]. The parameter p in the prior covariance of
the root node was set to p = 100. The distribution (2.37) on the root node
effectively says that we are modeling the optical flow field components as zero
mean random processes. The prior covariance reflects our confidence in this
assumption. Since we do not believe that any prior assnmption on the mean of
optical flow field camponents can he jnstified. wo <ot the paramerer p such rhat




Figure 2.9: First frame of “Yosemite™ sequence.

the implied standard deviation is much larger than the sizes of the flow ficlds
we expect to see,

We compare our approach computationally and visually to the the Causs-
Seidel (GS) and successive over-relaxation (SOR) algorithius. which can be used
to compute the solution of the smoothness constraint formulation given hy (2.5).
Straightforward analvsis shows that the GS and SOR algorithms require 14 and
IR floating point operations (flops) per pixel per iteration respectively. The
number of iterations required for couvergence of the iterative algorithms grows
with image size [27]. Tor reasonable size images (sav. 512 x 512). SOR may
require on the order of hundreds of iterations to converge. so that the rotal
computation per pixel can be on the order of 103 - 10* flops. Ou the other hand.
the MR algorithm requires 76 llops per pixel. Note that the MR algorithm is
not iterative. Thus. the computational gain associated with the MR algorithm

can be on the order of one to two orders of magnitude. Details may be found in
[36].

Yosemite Sequence Experiment

This example is a svuthetic 256 x 256 image sequence which simulates the view
obtained by flving through the Yosemite Vallev=. The first immaee in the sequence
is shown in Figure 2.9 along with the actual flow field in Figure 2.10. The flow
computed via the MR algorithm is shown in Figure 2.11 and the smoothness
constraint solution is shown in Figure 2.12. The smoothness constraint flow

“This sequence was svnthesized bv Lvn Quam of SRI Internationai.
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Figure 2.10: Yosemite sequence true optical flow.
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Figure 2.11: MR algorithm flow estimates: b = 10,0 = 2.5.
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Fignre 2.12: SOR algorithm flow estimates: R = 5002, 250 iterations. The SOR
algorithm required a factor of 60 more computation in this example.

estimates required 250 SOR iterations in this example, representing a factor of 60
more computation than the MR estimates. Note the substantial increase over the
previous example in the number of iterations required for the SOR algorithm to
converge. The number of iterations required for convergence depends on several
things. including the parameter v, the image gradient characteristics and the
image size. Theoretical analysis in {27) shows that the SOR algorithm requires
on the order of n iterations for an n x n immage. Thus. we expect substantially
more computational savings as the image size increases.

\ root mean square (rms) error comparison of the algorithms is shown in
Fignre 2.13. As expected. the SOR algorithm is significantly faster than the
(iS5 algorithm (they will converge to the same result since thev are solving the
same partial differential equation). The rms error in the MR flow estimates is
depicted as a straight line. since the algorithin is not iterative. Neither of the
estimates coincides with the actual optical flow. but thev do have comparable
rms ervor as in the previous example. In addition. the figure illustrates the
compntational advantage of the MR algorithm. In particular. the SOR algorithin
i« still reducing the rs error in its flow estimates after 300 iterations. at which
point the MR algorithm requires a factor of 300/4.2 = 71.4 less computation.

This image sequence contains a problem often encountered in real images: re-
sions of constant intensity. The problem is that the lack of gradient information
in that region implies that the optical flow is not well defined. The smoothness
constraint and multiscale prior models provide a means of interpolating out into
these yegions. The result of this is apparent in the top portion of Figures 2.11
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Figure 2.13: Rms Error Comparison of MR. SOR and Gauss-Seidel (GS) algo-
rithm flow estimates for the Yosemite sequence.




and 2.12. An advautage of the MR formulation is that ir accomplishes this
oxtrapolation at an appropriately coarser. and hence computationally simpler.
scale.

Note the the MR and SC' flow estimates are not identical due to dilferences
in the prior models. If there is particular interest in obtaining the SC' solution.
the question arises of using the MR solution as an initial guess for the iterative
algorithms which compute the SC solution. Note that the difference between the
SC and MR flow estimates is associated with the non-smooth. high frequency
aspects of the MR flow at hlock edges. It is preciselv these high frequency
compouents that are quickly removed by SOR or S algorithms computing the
the smoothness constraint solution and suggests that the MR algorithm would
provide an excellent pre-conditioner for the iterative algorithms.

2.6 Conclusions

\We have taken an estimation-theoretic perspective to image sequence processing
nsing as our vehicle the computation of optical flow. Qur resuits made use of the
imerpretation of various components of standard formulations ot this problem
as statistieal modcls. First we presented a near-optimal KNalman filter for the
estimation of optical flow under a temporal colherence constraint and hased on
the propagation of approximate local models of the estimnation error covariance.
This filter provides. to our knowledge. the first implementation of the completc
Nahman filtering equations for space-time problems of this scale. and the only
example of successful. near optimal. propagation of covariance matrices ol this
size,

Next we used the observation that both the single and multi-frame problems
can be formulated as spatial estimation problems. wherein sets of aobservations
are fused with prior spatial field models. to motivate the use of a recently de-
veloped class of multiseale statistical models in their solution. The algorithms
arising from this class of models allows dramatic speedups in computational
~peed. For <simplicity we concentrated on the single [rame case. though we conld
also use for the static spatial estimation problem occuring in the multi-frame sit-
nation. .\ particularly interesting and open question is how to directly propagate
one of the multiscale models used in Section 2.5 in time.
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