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Abstract

In this thesis we use gravitational lensing statistics to constrain the QSO luminosity function at
a variety of redshifts. We present a theoretical discussion of gravitational lensing statistics and
illustrate how high resolution QSO imagery can be used to constrain the QSO luminosity function.
We then discuss the selection and observation of the 1073 QSO exposures in our sample. The sample
covers a redshift range of 0.7<z<5.5 and may include up to 10 multiply imaged QSOs. We discuss
the QSO analysis pipeline developed to compute the gravitational lensing probabilities of each QSO
and then present the constraints on the QSO luminosity function and compare them to results in
the literature. Our results confirm the suspected fall off in the high-end QSO luminosity function
slope at high redshift and agree with modern literature results. We conclude with a brief discussion
of improvements that can be made to our analysis process.

Thesis Supervisor: Scott Burles
Title: Assistant Professor
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Chapter 1

Introduction and Structure

This thesis represents the culmination of two and a half years of research under the guidance of

Professor Scott Burles in the MIT Physics department. In it, we shall detail a holistic approach to the

problem of constraining high redshift QSO statistics using gravitational lensing probabilities. Our

approach incorporates several interrelated theoretical, observational, and computational elements

and we shall not attempt to describe them in this brief introduction. Rather, we shall motivate and

connect the different elements together throughout the thesis.

We will, instead, present a quick overview of the thesis' structure:

Chapter 2 presents a brief history of QSOs, describes the QSO Luminosity Function, and offers

motivation for the thesis' ultimate goal: constraining the QSO Luminosity Function.

Chapter 3 describes gravitational lensing theoretically. In it we present the Singular Isothermal

Sphere (SIS) gravitational lens model and derive the distribution for the gravitational lens popu-

lation. We then present derivations of the lensing probability equations and describe the means

by which high resolution QSO imagery can be used to compute the lensing probabilities. We end

the chapter by describing how the lensing probability equations can be used to constrain the QSO

Luminosity Function.

Chapter 4 describes the selection criteria used to select the 1073 QSOs in our high resolution

QSO sample. It also discusses the instrumentation used to obtain the imagery.

Chapter 5 describes the QSO analysis pipeline. It motivates and presents the 2 statistic

and describes, in detail, the fitting procedure used to compare objects within exposures to identify

lensed QSOs. It then describes the simulation techniques used to quantify the empirical lensing

probabilities and the limitations of our technique's lens detection capabilities.

Chapter 6 concludes by presenting the results of the analysis process. It includes a presen-

tation of the identified lensed QSOs in our sample, and the resulting QSO Luminosity Function

constraints. The chapter ends with a discussion of the limitations of our approach and offers po-

tential improvements to the theoretical and computational techniques we have used.

The thesis also contains three appendices. The first of these presents an analytical fit to the

lens distribution derived in chapter 3. The second describes an alternate normalization of one of

the theoretical probabilities derived in chapter 3. The motivation for this renormalization will be

13



explained in that chapter. The third appendix presents some screenshots and a brief description of

the Coordinator and the Analyzer, two software packages written to organize and analyze the QSO

sample.
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Chapter 2

QSOs

2.1 A Brief History

The 1940s and 50s saw a boom in radio astronomy. With the development of new technologies

and, more importantly, the growing academic interest in radio astronomy, the number of known

radio-loud objects in the universe began to grow rapidly. The new radio observations were carried

out hand in hand with complimentary optical follow ups of the radio-loud objects; more often than

not, the radio sources were identified optically as galaxies.

In 1960, however, things changed when Thomas Mathews and Allan Sandage went in search for

an optical counterpart to radio source 3C48, an uncharacteristically small radio source, less than

an arc-second in diameter [Thorne]. Using the 5-meter Palomar optical telescope, Sandage was

surprised to find a single, star-like, blue point at the radio source's coordinates. Sandage recalls, "I

took a spectrum the next night and it was the weirdest spectrum I'd ever seen." [Thorne]

It would only be a few months before the Dutch astronomer Maarten Schmidt would recognize

the heavily redshifted Hydrogen Balmer lines in the spectra of these newly-christened Quasi Stellar

Radio Sources (quasars). According to Hubble's law these objects, which appear to be moving

away from the Earth at relativistic speeds, must be extremely far away and, by virtue of the fact that

they can be observed today, must be exceedingly bright. In fact, quasars can be up to 105 times more

luminous than normal galaxies [Carroll]. While there is no direct evidence, most astrophysicists are

convinced that these objects must be driven by large black holes in their cores; quasars are probably

extreme examples of Active Galactic Nuclei (AGNs).

Optical astronomers quickly began actively searching for quasars and it was soon discovered

that only about 10% [Carroll] of the spectroscopically confirmed quasars they found were radio-

loud. Thus, "quasar" is a misnomer and these point-like high redshift objects are now referred to as

Quasi-Stellar Objects or QSOs. Recent surveys, such as the Sloan Digital Sky Survey (SDSS),

have led to an exponential growth in the number of known QSOs. According to [Carroll] there were

about 5000 QSOs known in 1996. Today, SDSS alone reports 32,241 QSOs with redshift < 2.3 and

3,791 QSOs with redshift > 2.3 [SDSS]!
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2.2 The QSO Luminosity Function

The fact that QSOs are extremely far away and extremely bright makes them excellent probes
of the early universe: By understanding the distribution of QSOs we can test the assumption of
isotropy and homogeneity in the universe, attempt to understand the underlying physics behind
the evolution of QSOs with redshift, and constrain the black hole accretion models that attempt to

describe QSOs [Pei].

The most commonly used QSO distribution is the QSO Luminosity Function (QSO LF).
We define the QSO LF, (L, z) dL, as the number density (per comoving volume) of QSOs at
redshift z with luminosity L < lqso < L + dL. The commonly accepted empirical model for the

QSO LF at z < 2.2 is a double power law shaped LF [Boyle et. al.]

'h(z) T ' () 21
( L )10 + ( L )h (2.1)

Here, 0 (z) is a redshift dependent overall normalization that has units of number density (per
comoving volume) per luminosity and L, (z) is referred to as the break luminosity; it parameterizes
the kink observed in the QSO distributions and also depends on redshift (see figure 2 in [Pei]). I
and Oh are, respectively, the low end (below the kink, towards low luminosities) and high end (above
the kink, towards high luminosities) slopes of the QSO LF with f < ph. These parameters may
also depend on redshift, though a quick look through the literature [Comerford et. al.], indicates
that most authors ignore such dependences, even at high redshifts. The literature also points to a
fair degree of disagreement regarding the evolution of Lwith redshift [Comerford et. al.].

The QSO parameters are generally obtained by fitting equation 2.1 to an observed QSO distribu-
tion. We shall take a different approach; our goal, in this thesis, is to constrain the L, and Oh QSO
LF parameters at a variety of redshifts using gravitational lensing statistics. We will compare our
constraints with the best-fit estimates of [Pei], [Madau et. al.], and [Wyithe and Loeb] as tabulated

by [Comerford et. al.]. Figure 2-1 presents two representative normalized QSO LFs.

2.3 Cosmology

Perhaps it is now appropriate to discuss the assumptions regarding cosmology that will be made
throughout this thesis. Some authors (notably [Mitchell]) have used QSO gravitational lensing
statistics to constrain cosmology. While this is certainly an excellent use of QSO lensing statistics
that offers independent verification of the values of cosmological parameters, the accurate results of
WMAP set far stronger and more robust limits on cosmology. Thus, in this thesis, we will assume
the most recent cosmological parameters, as observed by WMAP [Bennett et. al.] (see table 2.1)
and will choose to concentrate our use of gravitational lensing statistics to better constrain the QSO
LF.
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.1

Figure 2-1: The QSO Luminosity Function for h =

blue). Al = 1.64 for both QSO LFs.

Parameter

5.5, L, = 1010 (top, red) and 3h = 3.4, L,, = 1084 (bottom,

Value Assumed Value
Q- Total density
QA- Dark energy density
Ql- Matter density
Qk- Curvature (effective) density
h - Hubble constant
as - Fluctuation amplitude in 8h- 1 Mpc Spheres

1.02 i 0.02
0.73 ± 0.04
0.27 ± 0.04
0

0.71 (+0.04,-0.03)
0.84 ± 0.04

Table 2.1: Relevant WMAP Cosmological Parameters, the "Assumed Value" column presents the parameter values

adopted throughout this thesis.
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Chapter 3

Gravitational Lensing

3.1 Gravitational Lensing and QSOs

That gravity should affect the trajectories of photons is not a new idea. As early as 1783, by

treating "corpuscles" of light as particles with velocity c, John Michell showed using Newton's

theory of gravitation that a star could conceivably be sufficiently compact that no light corpuscles

could escape to infinity. It would be impossible for observers to see such a "dark star" [Thorne].

Today we have Einstein's formulation of the General Theory of Relativity to guide our calculations

and, while the modern day black hole is fundamentally different from Michell's "dark star," the

essential idea behind both phenomena is the same: gravity bends light.

In 1919 the English physicist Sir Oliver Lodge proposed that light could be focused by massive

bodies in a manner similar to the focusing effects of optical lenses. This phenomenon is called

gravitational lensing, and the massive body that causes light to bend is called a gravitational

lens. While all massive bodies can act as gravitational lenses, Fritz Zwicky proposed in 1937 that

the majority of observable gravitational lenses would be galaxies [Carroll].

In order to observe a lensing event it is necessary to place the lens between a light source and

the observer (in our case, the Earth); as QSOs are both far away and bright, one would expect

the chances of observing a QSO lensed by a galaxy to exceed the chances of observing other lensed

objects. For this reason, QSOs have become popular targets in the search for gravitational lensing

phenomena.

In the next few sections in this chapter we will discuss the population of gravitational lenses that

are most likely to ]lens QSOs. We will describe the distribution of these gravitational lenses and use

these distributions, along with the QSO LF, to compute lensing probabilities. We will then show

how the resulting probabilities can be applied to observational data to set constraints on the QSO

LF. To proceed, however, we will first need to understand the conditions under which gravitational

lensing occurs, and choose an analytical model to describe the lensing phenomenon quantitatively.
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Figure 3-1: The definition of Angular-Diameter distance, D.

3.2 The Gravitational Lensing Setup

We will be studying systems involving cosmological distances but there are several different distance

measures in cosmology [Hogg]. In geometries relevant to gravitational lensing systems, however, the

most useful distance measure is the angular-diameter distance: Given two objects at the same

redshift 2 separated by a small angle 0 on the sky as seen by an observer at z, we define the

angular-diameter distance between the observer and the objects to be D such that

x D (3.1)

where x is the physical separation between the two objects (see figure 3-1). To compute the angular-

diameter distance between two objects at redshifts zand 2 > Z1 we use

D = DM (2) - DM () (3.2)D = (3.2)
1 +Z2

where DM (z) is the comoving distance given by

Z dz'
DM (z) = DH E(z') (3.3)

with E (z) given by

E (z) = V/QM (1 + z) + A (3.4)

and DH = 3000h--lMpc is the Hubble distance. These equations are taken from [Hogg] and have

been simplified by assuming that Qk = 0.

Now, consider the setup in figure 3-2. The distances Dl, D, and Dis are the angular-diameter

distances between the observer and the lens, the observer and the source, and the lens and the
source respectively. The lensing equation [Narayan and Bartelmann], in terms of the parameters in

figure 3-2, is simply

- a () . (3.5)

To compute a we need the surface-mass distribution E of the lens (assumed to be thin and well

20
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Figure 3-2: A typical gravitational lensing setup.

localized at a single redshift). If we assume a circularly symmetric mass distribution Z (r) then it

can be shown that; (see [Narayan and Bartelmann])

D1 4 I

= [ 20 j2D1 E (r) rdr. (3.6)
DID c6

The integral is simply the lens mass enclosed by a circle of radius DIO. To proceed we'll need to

select an appropriate surface-mass distribution; the most commonly used distribution is the SIS

model which we discuss next.

3.3 The SIS Model

Gravitational lenses bend light gravitationally, not optically. While the refractive properties of an

optical lens depend on the material and geometry of the lens, the refractive properties of gravi-

tational lenses depend on the distribution of mass in the lens plane. In statistical applications of

lensing the most commonly used mass distribution is the Singularly Isothermal Sphere mass

profile (SIS) as it yields simple, analytical, expressions that can be easily incorporated into prob-

ability computations while offering a good approximation to actual mass distributions observed in

galaxies.

The SIS model is not parameterized in terms of the total galactic mass, as one might expect.

Rather, since most of the mass in galactic halos is due to dark matter, which astronomers cannot

observe directly, it is more convenient to use a, the velocity dispersion. By definition, a is the one

dimensional velocity dispersion of the stars in the galactic halo and, since the stars are influenced

'[Li and Ostriker] disagree with this statement, they claim an NFW profile (first described by Navarro, Frenk &
White) yields better fits to CDM simulation results.
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gravitationally by both luminous and dark matter, a is a measure of the total mass density profile

of the galaxy.

The SIS model treats the mass components in the galactic halo like ideal gas particles under

the influence of their own spherically symmetric gravitational potential. A simple thermodynamic

derivation, relating temperature to a, (see [Narayan and Bartelmann]) then yields the SIS surface-

mass density
02i

Z (r) = 2G 1 (3.7)2Gr

This mass distribution, when coupled with equation 3.6, yields

0
'2 D1 8sa = 4r 2 D -E (3.8)OE

where E is the Einstein radius of the lens. Note that OE is independent of : but does depend

on the distances (and therefore redshifts) of the lens and source. The lensing equation yields two

solutions for 0, the observed position of the source, if : < OE (see [Narayan and Bartelmann])

O+ = ±OE- (3.9)

In this regime the source is said to be strongly lensed: the lens both magnifies the source and pro-

duces multiple images. We can compute the separation AO and magnification ,± [Narayan and Bartelmann]

of these two images to find

AO = + -_ = 20E (3.10)
O+ OE1+ = -=1 (3.11)

If > SE then we only observe one image at a position 6+ with magnification p+ and the source

is said to be weakly lensed. Weak lensing is very hard to identify in observational data.

Combining these results we can compute the total magnification of the source

{ X-A_ P 2oE for/ < E(~ (/3) = + for-3•6- (3.12)
1 +~ OE for/> OE

The separation AO (a) and magnification (,, 0a) are the only two results we will need from the SIS

model.

3.4 The Lens Population

We now have a gravitational lens model, the SIS model, determined completely by the redshifts of

the source and lens and the velocity dispersion of the lens. The next step towards computing lensing

probabilities involves understanding the distribution of the lens population. Ideally, we would like
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to have at our disposal a lens distribution, 0, of the form

n (a', z) = (', z) da (3.13)

where n is the number of lenses per comoving volume with velocity dispersion a' - d < a < a' + 

at redshift z for vanishingly small da.

A wide variety of objects might contribute to the lens distribution and examples vary from the

extreme, such as cosmic string loops [A de Laix et. al.], to the ordinary late-type and early-type

galaxies. In our discussion we shall follow [Mitchell] and focus on the dominant contributions made

by early-type galaxies.

Most lensing statistics studies compute the lens distribution using an empirically determined

early-type galaxy luminosity function combined with the Faber-Jackson relationship, which relates

luminosity to the velocity dispersion . [Wyithe] points out, however, that this approach is un-

reliable as it ignores the intrinsic scatter in the Faber-Jackson relationship. Also, this approach

generally ignores the evolution of the lensing population with redshift. We will present an alterna-

tive technique for obtaining 0, based on [Mitchell], in the remainder of this section.

3.4.1 An Empirically Determined Local Lens Distribution

Recently, [Sheth et. al.] fit a modified version of the Press-Schechter ([PS]) mass function of dark

matter haloes (first presented in [Sheth and Tormen]) to SDSS velocity dispersion data. They

obtained an empirical fit to the distribution of among 30,000 local (z 0) early-type galaxies

given analytically by

01 a 01 1/ du
ST() dci=q ( ) [*exp - ] (3.14)

or* a* F (a//3)ci

with

0* = (1.4 ± 0.1) x 10- 3 Mpc - 1

a* = 88.8 ± 17.7km/sec

a = 6.5 i± 1.0

,/ = 1.93 ± 0.22

The Sheth-Tormen distribution is only valid at z = 0 and one would expect that (, z) should

evolve with redshift. This is due to the fact that dark matter haloes merge, and that the velocity

dispersion of the resulting halo generally exceeds the velocity dispersions of either constituent halo.

Thus, we would expect the number of high haloes to decrease with redshift.

There is little empirical data describing the evolution of kST () with redshift. Several authors

(e.g. [Wyithe]) assume a simple independent redshift evolution of the lens distribution; [Mitchell],

however, makes use of N-body galaxy formation simulations to produce a fully a-dependent redshift
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evolution. We shall do the same.

3.4.2 Simulated Redshift Dependence

Our approach will be to use N-body simulation results to compute the ratio

OR (, Z) =- N (, Z) (3.15)
ON'(o, 0)

where, N is the lens distribution computed by the simulations; in this equation N stands for N-

body simulation while R stands for ratio. We will then combine this theoretical result with Sheth's

[Sheth et. al.] empirical ST (, z = 0) lens distribution by defining

( (a,z) 'ST (a) OR (a, z). (3.16)

The N-body simulations used to compute R (,z) were performed by [Jenkins]. Professor

Jenkins has graciously provided us with software that returns the computer simulation results for

different cosmological models. The software takes several input parameters which we briefly describe

now.

The first set of parameters specify the simulated universe's cosmology; we set Qm = 0.3

and QA = 0.7. The software also requires a power spectrum. The power spectrum describes

the initial distribution of perturbations in the universe; these perturbations eventually collapse

into galaxies. Following [Li and Ostriker] we use the analytical power spectrum fit proposed by

[Eisenstein and Hu], normalized by WMAP's value of the normalization constant: as = 0.84 (see

table 2.1).

Professor Jenkin's software returns the number density (per comoving volume) of galaxies at a

given redshift as a function of M, the mass of the galaxy haloes: N (M, z). To proceed we must first

convert this to a function of a. [Mitchell] outlines the procedure that must be followed to relate a to

M; it requires taking into account the fact that o (M) relies on the formation redshift of the halo (zf,

the epoch when the halo collapsed). The formation redshift is discussed in [Lacey and Cole] where

the authors obtain (essentially) the probability distribution of zf as a function of z and M. [Mitchell]

simplifies the distribution by setting f to be the mean (zf) obtained from the [Lacey and Cole]

distribution. [Mitchell] checks, and ensures, that ignoring the dispersion in the zf distribution does

not significantly affect R (a, z). Thus, we can speak of a function f (M, z) which allows us to

define a (M, zf). All the relevant equations are available in [Mitchell], we simply present the results

of this computation in figure 3-3.

We can now rescale the N (M, z) distribution to find

'N (a (M, z), z) = N (M, Z) d (3.17)

Professor Jenkin's software returns N at discrete values of M and z. Equation 3.15 then gives
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Figure 3-3: Left: A plot of zf vs z for M E [109, 1010, 1011, 1012, l013, 1, 1015] M® (top to bottom). The thick

black line is zf = z. Right: A plot of a vs M for z E [0,1, 2, 3, 4, 5, 6] (bottom to top).

us OR ( (M, z), z) at corresponding discrete values of a. We will soon see, however, that we need

to be capable of integrating over OR quickly. To achieve this we have put together a series of fitting

functions, fit, that match the R (a, z) distribution well (see figure 3-4). We present the form
of the fitting functions, with the fitting parameter values, in appendix A. The fits are valid for

20 < a < 700 and 0 < z < 6.

The relative deviations between the fit and the data are presented in figure 3-4. The high

deviation in the far right quadrant is due to the fact that R is very close to zero in that region

and even the slightest fit error is largely magnified. However, since R is so close to zero in that

quadrant, the contributions of the errors will be quite insignificant when we ultimately use R in

lensing probability computations.

Figure 3-5 presents the final distribution as obtained by combining R with ST (equation

3.16). Figure 3-6 is a two-dimensional presentation of 0 for 0 < z < 6; note the marked drop in the

number of high a lenses with increasing z.

3.5 Multiple Imaging Cross Section

We have presented the SIS lens model and have obtained the redshift dependent lens distribution

we were after. It is now time to combine both results to obtain multiple imaging cross sections.

These cross sections are to be interpreted as the geometric probability that a point source at some

redshift z is multiply imaged by a foreground lens. To be precise, we seek a function d (zs, z, a)
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Figure 3-4: Left: ¢R- the points are from the data generated by the simulation software, the contour lines are on

the fitted mesh. Note that the visible points are slightly above the mesh, and that there are points slightly below the
mesh that can't be seen. Right: The relative error (fit - NR) /'kR

Figure 3-5: ¢ (number density per comoving volume (Mpc3 ) per a interval) as defined in equation 3.16.
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Figure 3-6: (number density per comoving volume (Mpc3 ) per a interval) presented in two dimensions. Left:

0 < z < 2 bottom to top. Right: 2 < z < 6 top to bottom.

such that
dT (Z, z', ') dzdo (3.18)

is the probability that a source at redshift z is multiply imaged by lenses living in the phase space:

z'-dz < z < z' + and a' _ d- < < + . We can then define

() j d (s, z, a) dadz (3.19)
J0 J0

to be the geometric probability that a source at redshift Zs is multiply imaged. We use the term

geometric probability to emphasize the fact that the probability does not depend on any properties

of the source other than its position (i.e. redshift), we will see later that we can define true a priori

lensing likelihoods that take into account the luminosity of QSO sources.

The SIS model tells us that the multiple imaging cross section of a lens at redshift z, with

velocity dispersion a, and lensing a source at redshift zs is given by

A(a,z,z) = r(DIOE)2 = 16r3 () 4 (D s)2 (3.20)
Ds

Now, (, z) da is the comoving number density of lenses with multiple imaging cross sections

A (a, z, zs) in a dispersion velocity interval da. According to [Hogg] the incremental probability that
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Figure 3-7: dT vs (km/sec) and z for (clockwise from topleft) z E [1, 2, 3, 4, 5, 6].

a line of sight will intersect one of these objects at redshift z in a redshift interval dz is

( + Z 2dr(zSz, ) dudz = (u, z) A (,zz) DH (E(z) dadz (3.21)

(refer to section 3.2 for the definitions of DHand E (z)). This is precisely the expression we are

looking for.

Figure 3-7 presents six plots for dr at source redshifts z [1, 2, 3, 4, 5, 6]. Note the behavior at

large z where there is little contribution to the multiple imaging cross section beyond z 3.5, this

is due primarily to the lensing geometry encapsulated in the D (z, z,) term, but is accentuated by

the redshift evolution of the lens population.

Figure 3-8 presents two plots of (z,). The blue (top) curve is (z,) as defined in equation 3.19,

complete with the simulated redshift evolution. The red (bottom) curve ignores redshift evolution

completely. Interestingly, the redshift evolved lens population has a higher multiple imaging cross

section. This can be understood by noting the formation of a peak in the lens distribution at z 2

in figure 3-5 which amplifies the multiple imaging cross section contribution by lenses at z 2. The

effects of the peak are manifested in the steep slope of r (z,) at z 2.

We now perform one more refinement to our analysis and present the multiple imaging cross
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Figure 3-8: T (zs) as a function of z. The blue (top) curve takes into account the simulated redshift evolution.

The red (bottom) curve does not.

section, d, as a function of the image separation AO instead of a. To do this we invert equation

3.10 to find

(AO, Z, Zs) = . DsAO (3.22)

We then insert this expression into d (a, z, zs) and rescale the distribution by d#A (which we can

compute analytically) to find:

duAO h,z,zsdT(L/.6,zvzs) dT(af(t6,ZZ 5),'ZZ) daO as~z~zs(3.23)

We can now use equation 3.23 to define P (AO, zs) (as in [Barkana and Loeb]), the (cumulative)

probability that a lensed source at redshift Zs has an image separation > AO

roof rzP (AO, zs) = Jj dr (Ao', z, z5) dzdA'. (3.24)

We can also define the differential probability

dP _

dO - dr (A', z, z,) dz. (3.25)

Figure 3-9 is a plot of dr (0, z, z,) for z E [1, 3, 6] and figure 3-10 is a plot of P (0) , Zs for

Zs E [1,3,6].
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3.6 Lensing Likelihoods

We can now determine the probability that a QSO, with luminosity Lqso, is multiply imaged. This
will involve taking into account the information provided by the QSO LF to weight the probability
that the QSO is magnified by a factor M. For brevity, we shall refer to multiply imaged QSOs as

mQSOs.

3.6.1 The Magnification Probability Distribution

To begin we will need to determine the magnification probability distribution for a given SIS

lens. We first rewrite equation 3.12 in terms of p

forip>2
/. - (3.26)
OE for 1 + < <26)

Now, is an angle on the sky defined such that = 0 at the center of the lens (see figure 3-2) and

the probability distribution of is given by

dP 1 1d = - 27rsin/o = I sin. (3.27)
do3 4w 2

But using equation 3.26 we can compute the corresponding magnification probabilities as dlP =

|dP |
d dj

du = Esin 2E for > 2
dA A 2 A ~~~~~~~~~~~~~~(3.28)

dPU - )2 sin (i) for 1 + < < 2 (3.28)dA 2(1,- iL_ ~~~~7r

Here d- and represent the multiple imaging and single imaging magnification probability
distributions respectively. Plots of these distributions are presented in figure 3-11.

Now, note that, the integral f2 d dp is the multiple imaging cross section of the lens and that

it evaluates to the appropriate value

f°OE. 20E d+ 1 132X2 sin = - cos (E) + (3.29)
A2 A - 2 2 4,7r

(assuming OE is small).

This result allows us to replace equation 3.20 with

A (, z, z) = rD 202 = 47rD2 E sin EdJ E 1 2Ds s
= 167r2D X 2 2 sin - 2 Ds (3.30)

where we have substituted using equation 3.8. We can now substitute equation 3.30 into the
where we have substituted E using equation 3.8. We can now substitute equation 3.30 into the
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.1

Figure 3-11: dP- for 0e 0.1 (red curve, top) and 0e 0.05 (blue curve, bottom)
di,

expression for r (zs) (equation 3.19) to obtain an integral expression for r of the form

(1 + z)2

(Zs) = / dT (z, z, a) ddz = DH q 5 (, z) A(a,z,z EZ) dadz
= o oE(z)

f~s/'O~fOO(1 +z)2 1 r2 DO ls [8 i ru2 Djl= 1672 DH 0Jo02 D2 (, Z) ( Z) 2 2 DIs sin [- 2 DI dpdudz (3.31)
E (z) [p C2 D, It c2 DJ

This allows us to define d, (zs, z, a, t) as a function of [

dT (a,z,z s,/I) = 16+r2D Dz I(z) ( z) 2 2 D_ sin 1. (3.32)1 r2 D q ( E (z) t_2 c2 D s [ c2 Ds

3.6.2 The QSO LF as a Weighting Function

We now seek to incorporate the QSO LF with the multiple imaging cross sections. If we consider
an mQSO with observed magnitude iqso, and naively compute its intrinsic luminosity 2 Lqso, then
the actual intrinsic luminosity of the QSO is Lqso where is the magnification due to gravitational
lensing.

Assuming our QSO LF describes the intrinsic distribution of QSO luminosities, we can describe
the relative likelihoods of observing a QSO at redshift z with different magnifications . All we
need to do is evaluate the luminosity function (equation 2.1) at XP (L_ 0 , zs) and the larger the
result, the more likely the QSO is magnified by . Note, however that the actual probability of
finding a QSO with intrinsic luminosity L within some AL interval is I (L, zs) AL, if we replace L

2 We will discuss how this is done in section 5.2.8.

32

.1

.le

.1e

1e-

2. 3. 4. 5. 6.7.8.9.

It

I Duo 1.



with L = Lgao we must replace L with some where ALqso is a constant independent of p.

This, then, allows us to write the magnification probability weight factor

p( Z s (3.33)

3.6.3 The Multiply Imaged Likelihood

We can use equation 3.33 to weight the multiple imaging cross section element, d, and define the

multiply imaged likelihood3

m (lqso°Zs) = j d (a, zz,) 4 (- so Z 'dLdadz. (3.34)

This is a rather complicated triple integral and is not easily separable because the sin 8 D

term in equation 3.32 combines all three integration variables in a nonlinear fashion. We can,

however, assume that S 7D_ _ 20 < E < 1 and write sin [ £- c- 87r D Equationp cT D,, j, -7 D, -~~~~~~~~c T D,
3.6.3 then separates to give

z co ~ + z) 2 b0o 8da d ,z s. dZLm (IqsoZs) JOO A (az z)( ) (a(z | (, z) ddz 4 (L s d~~qso, ~ Job E (z)J2' k. z8 du
00 8 ,~ ~~~~¥I Lqso 

T (Zs) j- 4 4 (Pi 8s) d. (3.35)

We can reinterpret this result to shed light on the physics of the small angle approximation.

Consider a single lens with multiple imaging cross section (Zs) = . The Einstein radius47r 4
of this lens is

0 E- 2 T(z ) (3.36)

and figure 3-8 assures us that E << for all Zs < 6. The multiply imaged likelihood due to the lens

is then given by

fd (Lq_ 1 f20 2i 
2rn (Lqso, Zs) =J d m poZ ,zs IdlL J E /4 zs)d

= (Zs) -jO4 ( Lqs, zs) d. (3.37)

This is precisely the result obtained in equation 3.35. Equations 3.36 and 3.37 offer an interesting

physical interpretation for the approximation in equation 3.35; the individual lenses in the lens

distribution can be brought together and treated like one large lens with a total multiple imaging

cross section equal to the total cross section of all the individual lenses. In a sense, we are moving the

lenses from their random locations on the sky together, combining them, and treating the resulting

3The multiply imaged likelihood is not a probability distribution. It is not normalized and must be combined with
the corresponding singly imaged likelihood (section 3.6.3) to obtain multiple imaging probabilities (section 3.7).
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lensing mass like one large SIS lens.

3.6.4 The Singly Imaged Likelihood

This interpretation of the multiply imaged likelihood, as codified by equation 3.37, motivates the

definition of the singly imaged likelihood

1s (Lqso, Zs) = , dP ( 6OE, ) ( I ,LZs) 'd (3.38)

where dP- (E, ) is defined in equation 3.36, and OE is given by equation 3.28.

The relationship between Cm and Cs can be clarified by taking a step back and removing the

QSO LF weight function. Then, by definition

2 dPs d/ dPm
I ddu + / d/a = 1 (3.39)
+O~ d d/

which, by equations 3.29 and 3.36, gives us

2 dP,
2 d du = 1 - r (zs) (3.40)

i+0E dp

Thus, equation 3.38 takes into account the magnification outside the multiple imaging area of the

large lens constructed through equation 3.36. This interpretation leads to an interesting problem.

Equation 3.38 only incorporates magnifications with

1 < +- < < 2 (3.41)
7r

implying that every source, (whether inside or outside the multiple imaging area), is magnified.

Clearly, such a situation is unphysical - by conservation of photons alone we expect that the mean

magnification, (), over all sources should be unity. The SIS model does not allow for demagnifi-

cation and, as such, is unrealistic far from the lens at low L, (though the approximation is quite

valid for > 2 inside the multiple imaging radius). Several authors (e.g. [Comerford et. al.] and

[Wyithe and Loebl) have attempted to bypass this problem by extending -dP down to < 1 and

rescaling the resulting distribution to yield () = 1 while conserving the relationship in equation

3.40. We have done the same and present the resulting renormalized dp- as well as the (small)

changes in the QSO LF constraints in appendix B.

3.7 Lensing Probabilities

The lensing likelihoods introduced in sections 3.6.3 and 3.6.4 are not, strictly speaking, probabilities.

They have not been normalized, and doing so would be difficult as we do not understand the behavior

of To (zs) (see equation 2.1) with redshift very well. To get around this we now define actual lensing

34



probabilities. The first is the multiply imaged probability:

P = - .m (3.42)
£m + s

and the second is the singly imaged probability:

Pi -LS (3.43)
£m + s

Thus, given a QSO with luminosity Lqso, the probability that it is an mQSO is Pm. Note that,

while these probabilities depend on z, the redshift of the QSO, and Lqso, the observed luminosity

of the QSO, there is also an implicit dependence on the parameters of the QSO LF. In particular,

the probabilities may be sensitive to changes in fl (the low end QSO LF slope), /3h(the high end

slope), and L,(the break luminosity) (see equation 2.1). By taking ratios of the lensing likelihoods,

however, we have effectively canceled out the dependence on 0 (zs).

Of course, equations 3.42 and 3.43 satisfy

Pm+Ps = 1 (3.44)

3.8 Detection Probabilities

The multiply imaged probability, Pm, predicts whether a QSO with observed luminosity Lqso is

multiply imaged or not. It does not, however, take into account the fact that we cannot identify all

mQSOs. It is possible, for example, that the multiple images are too close together and, therefore,

unresolved even in high resolution imagery. It is also possible that the images are fairly well

separated, but that the flux ratio between the two images is too far from unity to allow for a

successful detection of both images.

These two factors: the flux ratio (which we will denote fr from now on) and image separation

(which, following our current notation, we denote A0), determine whether an mQSO can be resolved

or not. More explicitly, if we consider the phase space (fr, AO) we can define a subset of the phase

space in which mQSOs will be successfully detected. We call this subset the detection hull and

shall discuss its properties, from an observational point of view, in section 5.2.7. For the current

theoretical discussion, however, let us assume we are given a detection hull for a given QSO. We

must now modify our definition of Lm (in equation 3.34) to take the detection hull into account.

We begin by defining fr in terms of the SIS model parameters. Combining equations 3.11 and

3.26 we can write

=1±+ 2 (3.45)
2

and then define fr =-/-=p2 (3.46)
Since 2 <o in the multiple imaging regime we have 0 fr 1. Equation 3.46 allows us to

Since 2 < I < c in the multiple imaging regime we have 0 < fr< 1. Equation 3.46 allows us to
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define p in terms of fr
1l±fr

2 = 2 fr (3.47)

and this definition will allow us to convert the detection hull from (fr, AO) phase space to (, A 0)
phase space. With this in mind, let us reconsider equation 3.34

,m (Zsl) Iqso) = j702 dr, (Zs, z, a,p) (lqso I-ddadz.
A P

Our first step will be to express the integral in terms of /AO instead of a. We've done this before,

in equation 3-9. VVe define

dr, (AO, , Zs,A ) = dr ( (AO, z, ,Zs,Z, ) dAO (3.48)

Now, using the approximation made in equation 3.35 and the result obtained in equation 3-9 we

can write d, (AO, z, z, p) as

d-r, (AO, , s, p o, z s) ](,0,Z A [ 8 , 1qo~

dz ,(Z\,Z~s,) [A(() zzs) (+z)2 ( ( ) z) da O 1 ( /1 )l

ILu4 ( A )]= dT(A6, Z,z s[44 (l-~,zs)] .(.9

We can now define md, the likelihood that a QSO is multiply imaged and detected as such to be

£md = fdr( ,zz)dz [4 (AO, ,Zs dAOdpt (3.50)

where DH is the detection hull delineated in (, AO) phase space. Note, that the integral over

redshift simply yields dp as defined in equation 3.25. Thus, we obtain a simplified version for our

definition of .md

mdJJ i dP (AO, s) (l _ z s) dAOdp. (3.51)
H I.4 dAO 

Using Lmd we define the probability that an observed QSO is multiply imaged and detected as

such to be

Prod =- Csd (3.52)
LCm + Ls'

3.9 Constraining the QSO LF

We now have all the pieces necessary to constrain the QSO LF. Consider, now, that we have at

our disposal a collection of QSOs with redshifts in some redshift range z < Zs < 2 and a variety

of luminosities, Lqso. Let us also assume that we have determined, by analyzing high resolution

imagery of the QSOs, which QSOs are mQSOs and which are not, and that we know what the
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detection hull for each QSO is. In particular, let nmd be the number of detected mQSOs. This
information is sufficient to compute the likelihoods £md, £m, and Ls for each QSO, assuming some

set of parameters for the QSO LF: (l, /3 h, L,).

We can then constrain the QSO LF (as discussed in [Comerford et. al.]) by computing the
likelihoods for each QSO on a grid that discretizes the QSO LF parameters. We shall do this, in
section 6.2, for h and L,. For each point on the grid (that is, for each pair (h, L,)) we compute
the mean number of expected detected mQSOs ((nmd)) as follows

(nmd) = Pmd (Zs, qso h,L.) (3.53)
QSOs

We then apply Poisson statistics to determine the probability of observing nmd mQSOs given
an expected mean of (nmd) detected mQSOs

(nmd 
P(nmd,3h,L*) = (f md e-(ndm). (3.54)

nmd!

This probability is a measure of the appropriateness of the QSO LF parameters. By plotting
these values on a (h, L,) grid, one can obtain probability contours to constrain the QSO LF
parameters. This is our ultimate goal, and we now have all the theory in place and can proceed to

the observational problem.
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Chapter 4

QSO Observations

We have obtained 1073 high resolution QSO exposures using the MagIC imager on the Magellan

telescope in Las Campanas, Chile. This chapter discusses the selection process by which the target

QSOs were selected, the instrumentation used to obtain the imagery, and a brief description of the

Coordinator, a software package we wrote to help organize the QSO imaging runs.

4.1 QSO Selection

The high resolution QSO imagery was obtained over two runs. The first run took place over two

seasons, October 2001 and late December 2001 and obtained approximately 750 images. These

were then analyzed using a significantly less sophisticated theoretical model than that discussed in

chapter 3 and a less organized pipeline than that discussed in chapter 3.

The QSOs in the first run were predominantly selected from the SDSS database, with - 50 QSOs

coming from [Anderson et. al.]. Three distinct selection criteria were used to select the QSOs. First,

a large portion of the SDSS QSOs were selected using magnification bias arguments based onSSSSSS

[Kochanek]. These QSOs are unreasonably bright for their redshifts: a strong indication that they

may be multiply imaged.

The second selection criteria was also used in conjunction with the SDSS database to select

targets. The criteria requires that Magnesium II doublets be present in the SDSS QSO spectra.

These lines are due to intervening galaxies and are almost always present in all currently known

multiply imaged QSOs. We would expect targets with this spectral features to have a higher lensing

probability than others.

The third selection criteria is the simplest. Motivated by figure 3-8, it simply requires that we

select the highest redshift QSOs for observation. These were obtained from the [Anderson et. al.]

paper which contained a plethora of high redshift QSOs.

It is not quantitatively clear what effect these selection criteria might have on the lensing statis-

tics. It is possible, for example, to take into account the redshift of the Mg II absorption lines in

the SDSS spectra to define new lensing likelihoods. This has not been done, however, and in the

remainder of our analysis we treat the QSOs in our sample as if they were drawn from a random
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pool.

After the first run QSOs were analyzed, the possibility of obtaining more data at another run in

Chile came up. A proposal was submitted to obtain imaging for - 500 more QSOs. The QSOs were

selected from the SDSS database to fill in gaps in the redshift distribution of left by the first run

(see figure 4-1). The QSOs were first selected to lie in the appropriate redshift range: 2.2 z 5,

and the appropriate location on the sky so as to be visible from Chile in January: declination <

20°, 2h< right ascension<14h. The resulting QSOs were checked against the QSOs obtained in the

first run and duplicates were taken off the list. The multiple imaging probability, P, was then

computed' for each remaining QSO using the SDSS database values for z and lqso, and the QSOs

were sorted in decreasing order of Pm; this ordering effectively set the QSO observation priorities.

To optimize the order in which the QSOs would be observed we wrote the Coordinator, a simple

database that allowed us to keep track of which QSOs were observed, to mark interesting QSOs for

follow up imagery, and to make quick changes to the QSO observation ordering to accommodate

for changing seeing conditions. A screenshot of the Coordinator at work is available in appendix C.

The Coordinator allowed us to observe approximately 350 QSOs in about 10 hours of observation

time.

Figure 4-1 presents the distribution of the redshifts and absolute magnitudes of the QSOs. The

blue crosses are QSOs obtained in the first run, the green crosses are QSOs obtained in the second

run. The red circles denote potential mQSOs as detected by our QSO analysis pipeline (chapter 3).

The vertical lines delineate the redshift bins, each containing the same number of QSOs, which we

have used to set constraints on the QSO LF.

4.2 Instrumentation

We obtained high resolution QSO imagery using the Baade Magellan telescope in Las Campanas,

Chile. Baade is a 6.5-meter telescope complete with active optics, capable, on good nights, of

attaining angular resolutions at the 0.3" - 0.4" level. For imaging, we used MagIC, the Raymond

and Beverly Sackler Magellan Instant Camera (MagIC), which has a 2048x2048 pixel CCD camera,

at a pixel scale of 0.069"/pixel and a total field size of 2.36 square arcminutes. We obtained the

images using the SDSS i' band filter with 40 second exposures. The short exposure time was

necessary to expedite the observation process and cover as many targets as possible. In fact, during

the second run, our observation time was most strongly limited by the CCD readout time! More

information about Magellan and MagIC can be found online at [Magellan].

Several calibration flats were taken to filter out CCD noise, and the pointing coordinates were

modified to place the QSOs in a relatively "clean" region of the CCD. The high resolution images

were stored using the FITS file format and transported by DVD to MIT where they now reside on

several computer hard disks. The total, uncompressed, size of the images is at the 5 gigabyte level.

'Pm was not computed using the theoretical model described in chapter 3 which was only developed after the
data acquisition run in Chile. Instead, a simpler model was used that, nevertheless, yields results similar to those of
the more complicated theory.
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Figure 4-1: The distribution of QSOs in our sample, presented as observed absolute magnitude I vs redshift z. The
blue crosses are QSOs obtained in the first run. The green crosses were obtained in the second run. The red circles

denote potential mQSOs and the vertical lines delineate the redshift bins used to constrain the QSO LF.
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Chapter 5

The QSO Analysis Pipeline

To constrain the QSO LF we must analyze each QSO exposure to determine whether or not the QSO

is an mQSO, and to quantify the shape of the QSO's detection hull. While the former question can be

answered relatively easily by sifting through the data by eye, we desire a more rigorous quantitative

approach that will also allow us to identify and describe the detection hull. In this chapter we will

first discuss our overall approach to the problem, and then present a detailed description of the

QSO analysis pipeline applied to each QSO exposure.

5.1 Quantifying Lensing Through x2 Fitting

As we saw in section 3.3, lensing, as described by the SIS model, falls into two categories: weak and

strong lensing. Weak lensing simply makes the QSO point source appear brighter or fainter and it is

essentially impossible to determine whether or not a QSO is weakly lensed on the basis of a single,

high resolution, image. Strong lensing, however, can be easily detected if the image separations and

flux ratios are within the observing instruments resolving capabilities.

Strongly lensed mQSOs are morphologically different from simple point sources (we shall refer

to the images of point sources as point spread functions or PSFs for short) and can usually be

easily identified by eye. To identify these morphological anomalies by computer, however, we have

used a 2 based fitting technique.

The fitting procedure provides us with several benefits: we can automate the mQSO identifi-

cation process, quantify the degree to which a QSO image is anomalous, and filter out the effects

of poor and variable seeing from exposure to exposure. This last factor is especially important in

our analysis as the data was obtained with short exposures and quick telescope slews. There are

several images where the telescope slipped, or failed to settle completely, in which the QSOs appear

slightly streaked or, in the most extreme cases multiply imaged.

Abstractly, each exposure has associated with it various smearing and smudging effects due

to variable seeing. We assume that these effects are essentially constant across the exposure - a

reasonable assumption given the area of the sky covered by each image (2.36 square arcminutes).

Unfortunately, because of the variability in the smudging effects from frame to frame we cannot
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simply assume an analytical form for the exposure PSFs and compare QSOs across exposures based

on fits to a single analytical function. Instead, we define control stars (cstars) to be point sources

in each exposure that define what is meant by a normal morphology. We then compare each QSO

to the cstars in its exposure.

The selection of the cstars is important, and the resulting statistics are fairly sensitive to how

this is carried out. Selecting a galaxy as a cstar, for example, would yield a misleadingly high x2 .

Also, several exposures contain PSFs near CCD defects, or superimposed over cosmic rays; choosing

such defective point sources as cstars would also overestimate x 2. For these reasons we have decided

against utilizing an automated cstar selection system; we have attempted an implementation such

a system, but found that the computer could not consistently select appropriate cstars.

Thus, while the x2 fitting process can be easily automated, the selection of cstars cannot and

we are faced with the task of manually identifying appropriate cstars for each exposure. This task,

coupled with the problem of keeping the data organized and maintaining a decent level of quality

control, motivated the development of the Analyzer, a database package that incorporates the fitting

algorithms and allows the user to interact with the exposures and select cstars through a simple

graphical user interface. Appendix C has several screenshots of the software in action. We shall

refer to these screenshots as we describe the QSO analysis pipeline.

5.2 The QSO Analysis Pipeline

We begin our discussion of the QSO analysis pipeline by introducing some notation.

5.2.1 Notation

We will be discussing several algorithms that access pixels in the QSO exposures. We will denote the

ith pixel in an exposure using the notation i. Alternatively, we can switch to Cartesian coordinates

with the origin centered at the lower left corner of the image and denote pixels using the notation

p (x, y). When discussing pixels associated with different images we use the notation image.pi and

image.p (x, y) (x, E ) to clarify the source of each pixel.

Throughout the discussion of the pipeline we will make references to "the QSO," to be interpreted

as the QSO of the exposure currently going through the pipeline. We will also refer to the selected

cstars in the exposure by the names csl and cs2 (we will select at most two control stars per

exposure). Associated with each object in the exposure (be it the QSO or csl/cs2) are several

properties such as the x and y coordinates of the object. When referring to the property of a

specific object we will use the notation object.property. So, for example, the x coordinate of csl is

denoted csl.x.
Finally, each exposure in the data set has its own unique ID. Exposures from the first run have

IDs of the form xxxxxx.nnn where xxxxxx is the date the exposure was taken and nnn is an integer

corresponding to the exposure's ID (these were assigned sequentially). Exposures from the second

run have IDs of the form nnn where nnn is an integer corresponding to the QSO's Pm sorted ranking.
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5.2.2 Preparing the Exposure

Several (around 10) MagIC flat fields were taken during the observation runs to compensate for

CCD defects and gradients. These flat fields were combined together to form a single calibration

fiat field image.

MagIC images are acquired by four amplifiers on one CCD and the resulting images must be

carefully trimmed, with each CCD quadrant undergoing a bias transformation to account for the

different amplifications characteristic of the different CCDs. Once trimmed the image is flatfielded

using the expression

exposure.pi = exposure.pi x flatfield.pi

For the purposes of our fitting algorithm, we define the error associated with each pixel to simply

be the Poisson counting error. Thus the error of the ith pixel is

Pi= /I. (5.1)

5.2.3 Target Identification

Once fatfielded, the exposure is ready for analysis. The first step involves the identification of the

QSO and, ideally, of two cstars. These objects are identified manually by the user who, by clicking

on the exposure, instructs the Analyzer to attempt a PSF fit centered on the clicked point. The

PSF fitting function is a two dimensional Gaussian of the form

PSF (x, y) = ao exp -[4 4 ( )+ (+) ) al (5.2)

where

a [ cos(a6 ) sin(a6 ) ] x - a2 (5.3)
[,B -sin (a 6 ) cos (a6) y - a3

Here, the ai are the fitting parameters described in table 5.1. The fitting function is compared to

pixels in the exposure contained within a 60x60 pixel square. The square size is adjustable though

this feature is rarely needed to allow the fits to converge. Figure C-2 is a screenshot of the Analyzer

performing a PSF fit.

We define the full width at half maximum (fwhm) of these analytical PSFs in terms of the

major axis fit parameter (M)

fwhm = 2M n2 (pixels) (5.4)
2M 21n2 x 0.069 (")

The fwhm is a good measure of the exposure's seeing quality. We also define the PSF pixel function

PSF.p (x, y) (5.5)
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Fitting Parameter Description Property Identifier
ao The PSF peak peak
al The sky background sky
a2 x coordinate of the PSF center xc
a3 y coordinate of the PSF center Yc
a4 Major axis (pixel units) M
a5 Minor axis (pixel units) m
a6 Orientation (radians) 0

Table 5.1: PSF fitting parameters (see equations 5.2 and 5.3)

such that PSF.p (0, 0) = p (QSO.xc, QSO.yc).

Targets are selected using the PSF fitting procedure for two reasons. First, we shall soon see that

the PSF fit parameters will play an integral role in running lensing simulations for each exposure.

Second, the PSF fits guide the user through the target selection process. One can easily mistake

extended sources for point sources, particularly in exposures with poor seeing and inappropriately

set color scaling schemes; the resulting x2 obtained are often misleadingly high. To avoid targeting

such objects the fwhm, as computed by the fit parameters, can be quickly compared against the

fwhm of other objects in the field - objects with relatively high fwhm are generally avoided.

Target identification is completed by cleaning up the targeted objects. Several exposures contain

QSOs and cstars that are plagued by bad pixels and cosmic rays. These anomalous pixels can be

masked out in the Analyzer and effectively ignored throughout the rest of the QSO analysis pipeline.

Figure [coming soon!] is a screenshot of the masking function at work.

5.2.4 The x2 Statistic

With targets selected we proceed with the x2 fitting. We have not yet described the X statistic in

detail, but shall do so now.

The x2 statistic is often used to compare theoretical models to data. We think of the data as a

function D (xi}), where {xi} is an appropriate set of variables with the dimensionality of the data

(in the case of the QSO, the data are represented by the QSO pixels: QSO.p(xy)). Note that each

data point has, associated with it, some known error which we call aD (xi}) (in the case of the

QSO, this is QSO.p(x,y).o: see equation 5.1).

We can then define a theoretical fitting function f (xi} , {ai}), where {xi} is the same set of

coordinates used o describe the data and ai} is a set of parameters that is, for our purposes,

independent of {xi}. We also have the error associated with the fitting function Of ({xi}, {ai}). We

can then compute the sum

2 [D ({xi}) - f ({Xi} , {ai} )]2 (56)
x 2 CD Xi}) + a, (5.6)

data points 0Df( ifi)
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This defines the x2 parameter which is a measure of the goodness of fit. Using x2 alone, however,

is misleading especially when comparing the quality of fits among different data sets. Consider two

data sets describing the same system, one with more data points than the other, and both with

comparable errors. Then by virtue of the fact that the denominator and numerator of the expression

for x2 are both positive and of, essentially, the same magnitude for similar data points in either

data set, the x2 for the data set with more data points will necessarily exceed the x2 of the smaller

data set. In fact, the x2 will scale with the number of data points.

To correct for this we rescale the x2 statistic by = n - nc where n is the number of data points

and nc is the number of parameters (i.e. the number of elements in {ai}) [Bevington], and v is then

the number of free parameters. This allows us to define the reduced x2

2 X X (5.7)
-/- (5.7/Y> n - nc

The reduced x2 has a probability distribution associated with it that allows one to convert a given

value of Xv into the probability that the theoretical model being tested correctly describes the data

set. We will not make use of this probability distribution but shall instead try to understand the

behavior of the X2 statistic within the context of the QSO fits. As a general guideline, in this

context Xv close to 1 (2v 1 ± 0.2) is indicative of a good fit.

The x2 statistic is often used hand in hand with optimization (in our context, minimization)

algorithms to explore the {ai} parameter space in search of the "best fit" parameters. The algorithm

we have employed in the Analyzer is the "amoeba" Levenberg-Marquardt algorithm as implemented

in the C programming language by [Press et. al.]. Amoeba takes in initial guesses for the values of

{ai} as well as initial search vectors in the {ai} parameter space (as many as the dimensionality of

the space) along which it begins its search for the optimal parameters. The length of these vectors,

in a sense, sets the maximum scale at which the algorithm traverses the {ai} space in search for

the best fit parameters. The appropriate selection of these starting parameters and vectors is quite

important in obtaining good fits; this generally tends to be more of an art than a science.

5.2.5 x2 Fitting

We now describe the fitting procedure. Given a target object (let's use the QSO), and a fitting

object (let's use cs1), we define the data function

D (, y) = QSO.p (x, y) (5.8)

where QSO.p (x, y) is obtained from equation 5.5. We then define the fitting function

f (, {ai}) =aocsl.p(x - a2, -a 3 ) + a. (5.9)

The parameters {ai} simply adjust the cs1 pixels: a rescales the pixels, a shifts the background

pixel level, and a2 and a3 shift the pixels about the cs1 fit centroid. The shift parameters, a2 and
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a3, were initially allowed to take on non-integer values, and a sophisticated Gaussian averaging

technique was used to incorporate sub-pixel shifts into the fitting process. This technique slowed

down the fitting process significantly, however, and did not improve the X2 results significantly.

We have switched to a simpler model in which a2 and a3 are forced to be integers. This does not

increase the resulting X2 significantly at all but does yield a speed up factor of - 30.

The fitting object is compared to the target object by computing X2 over a 60x60 pixel square.

This square size is adjustable, though this feature has only been used in rare cases where severe sky

gradients or disconritinuities across different CCD quadrants impede the convergence of the amoeba

algorithm. Limiting the comparison to squares of this size means that the algorithm is only sensitive

to image separations with AO < 30V/2 x 0.069 3". A quick look at figure 3-10 indicates that we

should only miss about 1 out of every 100 mQSOs with this square size.

With the definitions for D and f, and an understanding of the implications of the fitting square

size, we can easily compute and minimize X2 using the amoeba algorithm. For exposures with only

one cstar we are forced to use the X2 of just one fit to test whether or not the QSO is multiply

imaged. This can be problematic, particularly in exposures where the singly cstar is near a strong

sky gradient, or in exposures where the QSO and cstar signal strengths are not well matched. For

exposures with two cstars we computeX:lQ, X v the obtained by fitting csl to the QSO, and Xv:2Q,

the X obtained by fitting cs2 to the QSO. We then compute X 2, the X obtained by fitting cs to

cs2: this allows us to locate anomalous cstars - if the cstars are not well matched then at least one

of the cstars is not representative of what "morphologically normal" means for the current exposure.

Among the noisier exposures, and the exposures with particularly poor seeing, the X2 tend to

be generally higher. We attempt to normalize against these effects by defining a new goodness of

fit measurement, applicable only to the exposures with two cstars. We define Xr2 to be the ratio

X2:1Q + X 2X2 = XV l 2Q (5.10)r ~~2
2X v:12

X2 is generally more robust than X2:iQ. Since all QSO exposures, regardless of the number of cstars,Xr igeealXV1 9 QOrgdls
go through the analysis pipeline, however, we shall use the notation x 2 to refer to the x2 measure

for the current exposure. Thus, for exposures with two cstars x 2 = X2 , while for exposures with

one cstar we set X2 = X :Q

It would seem that we are now equipped with a robust lens finding algorithm. Unfortunately,

things are not so simple and we are faced with two remaining issues that must be dealt with. We

describe these issues, and their solutions, now.

5.2.5.1 Misleading Amoeba

The Analyzer allows us to visualize the residuals of the fits (the difference f - D at each pixel) and

a quick look through the first fitting run showed that the amoeba algorithm failed to successfully

match the target and fitting objects consistently. As a result, several fits suffered from unreasonably

high x2; apparently, the parameter space {ai} being explored is rather complicated and filled with
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Figure 5-1: QSO Exposure 011011.243. The flux ratio between the two PSFs is 27!

regions where the amoeba algorithm is tricked into premature convergence. WVe approach this

problem with a two-pronged solution.

On the one hand, we pick more sophisticated initial guesses for the {ail parameters by refining

both the initial parameters as well as expanding the initial search vectors to search more of the

parameter space (thereby, hopefully, avoiding false convergences by "looking over" x2 valleys).

Unfortunately, picking the initial values with finesse, however, only improves the 2 results

mildly. To truly force the system to converge to lower x2 we have devised a brute force scheme. We

not only expand the initial search vectors, but also allow them to be selected randomly (admittedly,

there is some degree of additional finesse associated with the randomization of the vectors, but that

is tangential to our discussion). We then run amoeba on the target and fitter objects several times,

keeping only the fit parameters that result in the lowest X2. In a sense, we send amoeba looking

in different random directions several times and choose the "winning" fit on the basis of x2. When

the brute force method was initially implemented we were still using the sub-pixel shifts and could

only repeat the fits 2-3 times. When we switched to the integer pixel shifts we began repeating the

fits 10-15 times and saw improvements in the X2 convergence.

5.2.5.2 Signal to Noise Issues

Purely by chance, a significant issue with the X2 process we've described, was discovered. While

going through a subset of the dataset by hand we noticed that the QSO in exposure 011011.243 had

a nearby partner (figure 5-1) - an event that would ordinarily yield a large X2 signal - but that the

associated x2 were well within normal values. Further investigation shows that the brighter image

is 27 times brighter than the fainter one, 90 times brighter than its sky background, and 8 times

brighter than the brightest cstar in the image (csl)!

When the cstar fitting objects are rescaled to match the bright QSO image the adjacent sky is

also rescaled. This., unfortunately, scales the sky error up by the same factor (8 in the particular

case of 011011.243) and faint objects (with a signal, in this case, fainter than 8 times the sky) near

the QSO become shrouded in the scaled sky noise (in terms of X2 , the denominator in equation 5.6
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becomes unreasonably large). This problem is quite serious, as exemplified by 011011.243, and an

effective solution is essential for the success of the x2 approach.

After experimenting with several ideas, we opted for the following solution (which is only made

possible by the speed increase obtained in switching to integer pixel shifts). We replace the fitting

function in equation 5.9 with

( ) {aocsl.p(x - a2,y- -a 3 )+al If (x - a 2 ,y-a 3) E A (511)
f(xy,{a}) csl.p(x - a2,y - a3) +a 5 If (x - a2, y-a3) A.11)

where A is the region in which csl's fitted PSF (equation 5.2) exceeds 0 + csl.sky. Thus,

the new fitting function is identical to the original fitting function where the signal due to cs1

exceeds the sky noise csl.sky (the factor of 10- expands this region slightly to take into account

the fact that the PSF fits may be imperfect). In this region, rescaling predominantly affects the

pixels containing data dominated by cs1 signal and not sky signal. Outside A, where the signal is

dominated by sky, we avoid noisy rescaling completely by introducing a new parameter, a, which

simply shifts the sky background level. Figure 5-2 illustrates the differences between the new fitting

function (equation 5.11) and the old one (equation 5.9).

5.2.6 Non Lensed Simulations

Our knowledge of a QSO's X2 is not enough to determine whether or not the QSO is lensed: we

need to understand the distribution of x2 to tackle this problem. Unfortunately, the distribution

depends heavily oni the conditions of each exposure: the seeing, as characterized by the fwhm of the

cstars, and the flux ratios between the QSO and the cstars, all affect the x 2 distribution.

Our approach, then, is to generate the non-lensed x2 distribution for each exposure. We do this

by generating dummy PSFs (using equation 5.2) and running the amoeba fitting algorithm on the

resulting dummy images. We repeat this 10 times, randomly perturbing the positions of the PSF

centroids and regenerating the signal noise of the simulated image each time. These perturbations

lead to a spread i the x2 distribution which allows us to characterize the mean and dispersion of

the non-lensed x2 for the exposure.

To do this well we must carefully select the PSF parameters to match the actual QSO and

cstar object parameters of the exposure. Since the cstars are chosen because of their morphological

regularity we can generally trust all the fit parameters obtained in section 5.2.3, during the target

selection phase, as adequate representatives of the cstar morphology. This gives us all the parameters

necessary to generate dummy cstar PSFs. To generate the QSO PSFs we must be more careful.

Since lensed QSOs are, by definition, morphological deviants we cannot trust the fit parameters

obtained in section 5.2.3 to be good representatives of a non-lensed QSO morphology. Instead, we

combine parameters from the QSO target selection fits with cstar target selection parameters.

To choose the appropriate combination of parameters we make the following argument: QSO

PSFs carry information that comes from two sources. They carry intrinsic information about the
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Second image is barely visible Second image is clearly visible
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Figure 5-2: Two screenshots illustrating the difference between fit equation 5.9 (top) and equation 5.11 (bottom).

In the top image, noisy sky rescaling washes out the fainter images residue (center image). In the lower image the

dashed grey line delineates the boundary between A and the rest of the frame. The fainter image's residue is now

clearly visible and the ;2 is much higher. Finally, notice that the faint image is not visible in the QSO image (leftmost

images) - this is because of the color scaling and the extreme flux ratio between both images.
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QSO and sky quantified by the peak and sky parameters in table 5.1. These properties are (es-

sentially) independent of the seeing and are unrelated to the exposure's intrinsic morphological

anomalies. Rather, these intrinsic anomalies are encoded in the M, m, and parameters of the

PSF fits and the X. fits are very sensitive to these parameters. Since the cstars are used to define

morphological normality in the exposure we borrow the M, m, and 0 parameters from the cstar

target selection fit; and combine them with the peak and sky parameters, obtained from the QSO

target selection fit, to generate dummy QSO PSFs.

To determine how best to model the x2 distribution analytically we generated several high-

resolution distributions by carrying out the simulated fits 400 times for 10 randomly selected ex-

posures. We then generated normalized x2 histograms for each of the exposures (all of which were

chosen to contain 2 cstars), and normalized Xv:1Q histograms using the csl of each exposure. We

experimented with a variety of analytical functions in search for good fits to the distributions and,

after some trial and error, chose the Gumbel distribution [McLaughlin] - a distribution commonly

used by economists - because it matches the high x2 slope of the distributions well (see figure 5-3

for an example). The Gumbel distribution is given by

Iexp (A y) exp (- exp (A Y)) (5.12)
B B B~

with mean and variance given by

Mean = A +YB (5.13)

Variance = (7rB)2 (5.14)

where -y is the Euler gamma constant -y = 0.57721566. Figure 5-3 is obtained, not by fitting the

parameters A and B to the observed histogram, but by computing A and B from equations 5.13

and 5.14. Note that the high x2 end of the distribution fits well and that the fits are good for both

Xr2 and X.:1Q distributions.

We apply these results to the entire data sample by computing 10 x2 fits for simulated QSO

and cstar PSFs. We then compute the mean and variance of the 10 x2 values and estimate the X2

distribution using the Gumbel distribution (equation 5.12) and equations 5.13 and 5.14.
2 2 ~~~2We can now compare the exposure's actual x. results (be they Xr2 or X2:1Q) against the Gumbel

distribution to determine whether or not the QSO is multiply imaged. Though the Gumbel distri-

bution allows us to compute the probability that the QSO is multiply imaged we do not do this but,

instead, opt for a clearcut definition by setting a 2 cutoff (2) at the 0.1% level. With this cutoff

we expect no more than 1 out of every 1000 QSOs to register as a false positive mQSO.

5.2.7 Detection Hull

The nonlensed distributions tell us whether the QSO is lensed or not. To constrain the QSO

LF, however, we also need the QSO's detection hull. Like the x2 distribution the detection hull
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Figure 5-3: The Gumbel distribution overlaid on the X2 :1Q distribution (left) and the X2 distribution (right) for
two randomly chosen exposures.

depends on many different properties of the exposure and its objects. Thus, rather than developing

a general detection hull that applies to all exposures, we compute the detection hull individually

for each exposure.

We do this, again, through simulation. We generate cstar fitter PSFs just as in section 5.2.6,
and QSO PSFs with parameters chosen as described in section 5.2.6. We add, however, to the QSO

image a second PSF separated from the core image by some AO with flux ratio f. The second

image has the same m, M, and 0 as the primary image, but has an adjusted peak to take the fr

into account. Also, the line connecting the first and second image is at a random angle relative to

the horizontal.

We run the amoeba algorithm on these setups for several values of (fr, AO) and generate the

function

X* (fr, 6) . (5.15)

The (fr, AO) are chosen on a grid extending from 0 < fr < 1 and 0 < AO < 1.4 with Afr = 0.2 and
A (0) = 0.35. We then fit an analytical function of the form

alf 3 + a2 (A0)3 + a3f2AOd + a4 fr (AG)2 + a5fr2 + a6 (A0)2 +

a7fr/AO + asfr + a9AO + alo (5.16)

to the generated X2 (fr,AO). This fitting function can be thought of as the third order two-

dimensional Taylor expansion of x 2 and it generally fits the generated data points fairly well. Figure

5-4 presents typical x 2 (fr, AO) distributions as observed in three different exposures.
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Figure 5-4: x (fr,A6) for (from left to right) exposures 70,31, and 020101.55. The blue planes indicate the

measured value of x.2 , the green planes are the threshold X.2 obtained by non-lensed simulation. Exposures 70 and 31

are not lensed and illustrate typical variations of the shape of X. (fr,, AO). Exposure 020101.55 is a potential mQSO.
Note that AO is in units of pixels, not arcseconds.

By combining the non-lensed simulation results with x2 (fr, AO) we can identify the detection

hull to be the region in the (fr, A0) plane where

X (fr, A O) > X. (5.17)

Figure 5-4 illustrates the wide variation in shape that the detection hull can take. The detection hull

for exposure 70, for example, is markedly different from that of exposure 31. While it is possible

to combine equations 5.16 and 5.17 to determine the detection hull outline analytically such an

approach is difficult to automate. Though the equations can be solved easily by an analytical

mathematics package, the integral necessary to compute Pmd (equation 3.51) becomes extremely

complicated.

Instead, we approximate (equation 3.51) by breaking up the detection hull into rectangular re-

gions (see figure 5-5). We do this by first locating the boundary of the detection hull at discrete

intervals in fr and then constructing rectangular regions that alternately underestimate and over-
estimate the actual area of the detection hull. The resulting integrals are well behaved and can be

computed quickly

5.2.8 Computing Lqso

With the detection hull approximation presented in figure 5-5 we almost have everything necessary

to compute Pmd. We still need to find Lqso and we turn to this problem now.

The SDSS database gives us both the redshift and observed magnitude (in SDSS band) of the

QSOs. The redshift, Zs, is taken at face value and enters into equation 3.51 unaltered. We must,
Lqsohowever, convert qso into an observed intrinsic luminosity Lqsolqso and then compute L
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Figure 5-5: Various examples of detection hulls (top) and the approximation used to compute Pmd (bottom). Each
red and blue rectangle is integrated over. These detection hulls are for exposures 315, 011229.104, and 011231.110.

The iqso -+ Lqso transformation is made up of several elements. We must first compute the

intrinsic magnitudle of the QSO, Mqso, and then form

Lqso = 1 0
- (Mqso) (5.18)

To compute Mqso we must take into account the QSOs distance from the Earth, and the fact that the

QSO's spectra has been redshifted by the Hubble flow. The latter is of great concern: to compare

the Mqso of two QSOs at different redshifts we must compare the brightness of the same part of the

QSO spectrum. By assuming that the QSO spectrum follows a simple power law we can compute a

k-correction term (kc) geared towards the SDSS i' band [Schneider et. al.]

kc = 2.5 (0.79 - 1) log10 (5+ 2 ' (5.19)

To take the QSO's distance into account we can compute dM, the change in magnitude due to the

QSO's redshift. This is computed in [Hogg] and is given by

dM 5 log1 0 ((1 + /) DM () (5.20)
10pc

where DM (s) is the comoving distance given in equation 3.3. dM is known as the distance

modulus and incorporates information about the assumed cosmology. To be consistent with our

theoretical discussion we will use the A - CDM parameters in table 2.1.
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we combine all. these elements to find

Mqso = qso - kc - dM. (5.21)

It is customary to visualize QSO LF constraints in terms of the logarithm of L, and not L*

itself [Comerford et. al.]. We shall follow suit by defining M* so that

Lqso 2Lqso - 1 0 -5 (Mqo-M*) (5.22)

or, more explicitly
2 M"

L 10- (5.23)

To compare our QSO LF constraints with those of others we will need to compare break mag-

nitudes: M,. Unfortunately, most QSO LF constraints in the literature are computed assuming a

mass dominated cosmology with Qm = 1, h = 0.5, and QA = 0. Thus we must rescale the M*

constraints found in the literature to compare them to our M*constraints. We do this by noting

that cosmology manifests itself entirely in the distance modulus dM, thus we expect to obtain a

different dMlit for the cosmology used in the literature.

There is one other difficulty that must be overcome before we can compare our QSO LF con-

straints with those in the literature. The literature results are presented in B band magnitudes. To

convert from a B band M, to an SDSS i' band M, we apply a k-correction with an effective redshift

Ai
Zeff A B

where A = 7500 and AB = 4400 are the central wavelengths of the two filters.

Combining the k-correction with the distance modulus correction we can then compute

M (Zs) I' lt
Mc m (Zs)= Ml it (zs) - dM (Zs) + dMlit (zs) + kc (Zeff). (5.24)

We then compare M*C°m to our Mconstraints.

With the ability to compute Lqso and the detection hull we are finally capable of computing Pmd
for all the QSOs in the data set. In the next chapter we present the results of these computations:

the constraints on the QSO LF.
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Chapter 6

Results

6.1 mQSOs in the QSO Sample

The theoretical framework and analysis approach presented in this thesis were applied to all 1073

high resolution QSO images. These QSOs span a redshift range 0.71 < z < 5.8 and the distribution

of redshift vs absolute magnitude is presented in figure 4-1.

Of these QSOs 15 were identified as mQSOs by the nonlensed simulation process discussed in

section 5.2.6. After double checking the fitting residues by hand, however, it was found that 5 of the

identified mQSOs are, in fact, false positives. Table 6.1 presents the vital statistics of each identified

mQSO. The table includes, from left to right, the exposure ID, the QSO's RA, DEC, redshift, and

observed magnitude, the threshold X2 obtained from the Gumbel distribution, and the measured

x 2. The last column distinguishes the mQSOs from the false positives.

The 5 false positives were identified by looking through the x2 fit residues by eye. Note however

that, while the remaining 10 candidate mQSOs appeared to be morphologically anomalous, this

alone does not verify that they actually are multiply imaged gravitationally lensed objects; we

discuss this further in section 6.3.

We now present images of the mQSO fits for all 15 identified mQSOs. For the false positives we

also offer an explanation as to why the obtained x*2 were high.
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DEC

08:10:01.8

09:11:27.6

10:42:57.6

03:33:20.4

10:48:37.4

03:48:01.2

08:41:06.8

11:12:25.7

11:38:03.7

01:34:39.3

09:44:9.5

10:38:21.2

00:34:13.0

01:48:12.2

03:21:19.8

z

+05:19:36.5

+05:50:54.1

+07:48:50.6

+00:07:20.6

-00:28:13.8

-07:04:16.7

+03:12:06.8

-00:51:01.8

+03:14:57.8

+00:17:31.7

+10:06:56.7

+09:43:23.0

-01:00:27.0

+00:01:53.4

-01:05:39.84

iqso

4.00

2.80

2.67

1.25

4.00

1.97

1.84

1.82

2.44

1.67

4.78

3.66

1.29

1.71

2.41

19.8

17.8

17.3

16.6

19.1

18.1

16.3

18.2

18.8

18.1

19.3

19.7

17.1

17.68

17.9

2
xC

1.20

1.47

1.29

2.02

1.37

1.40

1.99

1.60

1.41

1.33

1.25

0.87

1.31

1.25

1.43

2

1.52

1.91

1.61

5.94

2.63

1.77

6.46

1.84

1.77

5.13

1.32

1.03

1.49

1.28

1.72

Table 6.1: The vital statistics of the detected mQSOs
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ID RA

117

153

116

011011.243

011228.48

011229.168

011230.180

011230.318

011231.160

020101.55

4

287

011011.170

011011.204

011011.241

mQSO?

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

NO
NO
NO
NO
NO



6.1.1 The mQSOs

We shall first describe the layout of figure 6-1, before discussing QSO 117; this description also

applies to the other QSO images. The raster images on the left are (from left to right) the fit target,

the residue (red indicates negative pixels, blue indicates positive pixels, each pixel is obtained by

computing D - f), and the fitting object adjusted using the best fit parameters obtained from the

X2fit (the fit model used in all these images is described in equation 5.11). The rows of raster

images, from top to bottom, are the results of the cs - QSO, cs2 - QSO, and cs2 - csl fits

respectively.

On the right, the top image is the x 2 distribution obtained using the Gumbel distribution

(equation 5.12). The red vertical line is the 0.1% threshold x2 and the green line is the measure 2.

The figure on the bottom is X 2 (fr, AO) (equation 5.15). The blue plane is the measured X2 plane,

while the green plane is the threshold x2 plane.

Figure 6-1: Exposure 117

Exposure 117: The QSO has a nearby partner (O 29px 2"). The residual plot clearly

depicts the presence of the secondary image.
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Figure 6-2: Exposure 153

Exposure 153: This QSO is an excellent example of the importance of using the X2 fitting

approach to identify mQSOs. The seeing quality in the exposure is poor and is incapable of resolving

what is, in fact, three point sources at the QSO coordinates. The residual image, however, clearly

indicates the presence of some extended structure in the QSO pixels. This QSO is the only one in

our sample of mQSOs present in the CASTLES mQSO catalog: it is object RXJ0911+0551 and

was first discovered in 1997!

Figure 6-3: Exposure 116

Exposure 116: There was only one faint cstar available in this exposure. The QSO appears

to be near an extended object, probably a galaxy. It is possible that higher resolution multi-band

imagery might detect signs of lensing given the foreground galaxy's close proximity to the QSO.

60

-0

I



The image at our disposal, however, does not offer any convincing proof that the QSO is, in fact,

an mQSO.

Figure 6-4: Exposure 011011.243

Exposure 011CI11.243: This exposure was discussed in section 5.2.5.2. The QSO is extremely

bright relative to the other objects in the system and this has even shifted the non-lensed X.

distribution towards significantly high 2. The faint image is not lost in rescaled sky noise, but

is, instead, strongly present in the residual images. The separation between the two objects is

AO ~ 22.5px 1.6".
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Figure 6-5: Exposure 011228.48
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Exposure 011228.48: The QSO in this exposure has a superimposed cosmic ray (the black dot

in the QSO images) which has been masked out using the Analyzer's masking feature. The QSO

has a partner at a separation AO 37.6px 2.6".

20

1 5

0

Figure 6-6: Exposure 011229.168

Exposure 011229.168: The

visible in the residuals.

QSO as a nearby partner (separation AO 21.8px 1.5") clearly

20

Figure 6-7: Exposure 011230.180

Exposure 011230.180: The QSO has a distant partner at a separation A/O 38.4px 2.6".
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Figure 6-8: Exposure 011230.318

Exposure 011230.318: The QSO has a nearby partner at a separation AO ~ 26.6px 1.8".
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Figure 6-9: Exposure 011231.160

Exposure 011231.160: This QSO is an mQSO discovered by Professor Scott Buries while ac-

quiring data for this survey. It is an excellent example of the typical quad mQSO morphology.

The multiple images are clearly visible in the residual image. The blue patch at the center of the

quad, as seen in the residual, may be the lensing galaxy! This QSO was selected on the basis of the

presence of Mg II lines in the QSO spectrum.
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Figure 6-10: Exposure 020101.55

Exposure 020101.55: This exposure only has one, very faint, QSO. The A region discussed in

section 5.2.5.2 is clearly visible in the cstar image. This image is interesting. It shows the extremely

magnified cstar core surrounded by a noisy black and white annulus. This signal in the annulus

is predominantly from the sky surrounding the QSO. It is completely black and white because the

rescaling of the sky to high values, followed by the background subtraction expands the sky noise

so much that the sky pixels are either extremely positive (and, therefore, white on our color scale)

or extremely negative (and therefore black). Just outside the A region the sky coloration returns

to its normal values. The residual image also illustrates the noisy effects of rescaling inside the A

region, and the less extreme noise outside the A region.

The QSO has a partner at a separation AO 43.5px 3".
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6.1.2 The False Positives

Figure 6-11: Exposure 4

Exposure 4: This exposure contains only one moderately bright cstar. Unfortunately, the QSO is

quite faint with a signal about equal to the sky signal. The resulting x2 is fairly high and only just

exceeds the simulated nonlensed x2 distribution. The QSO residual clearly shows that the QSO is

not an mQSO: this exposure is a false positive.
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Figure 6-12: Exposure 287

Exposure 287: This exposure is another false positive. The residual in the csl fit clearly shows

no sign of extended structure in the QSO. The second cstar, however, is extremely faint and fails

to fit the QSO at all! In fact, the cs2 -+ csl fit also fails. This image is an example of the problems
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one faces when one selects poor cstars.

Figure 6-13: Exposure 011011.170

Exposure 011011.170: The QSO in this exposure is extremely bright relative to all the cstars

in the exposure. While the cstars fit each other well (X2 = 1.137), the cstars both fail to fit the

QSO well. In fact, this exposure, and the next remaining two false positives, illustrate the primary

drawback to using the A region fitting model described in section 5.2.5.2. In these two exposures

the QSO is so bright that its A region (the region where the signal is dominated by signal from the

QSO) is larger than the cstars A regions. This effect manifests itself in the blue halo surrounding

the core A region in each of the cstar - QSO fits and leads to higher x 2 values than anticipated.
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Figure 6-14: Exposure 011011.204

Exposure 011011.204: This exposure is essentially identical to exposure 011011.170. It also

presents another example of masking. The QSO has a row of bad pixels in it which has been

masked out. There are several other exposures in which this kind of masking takes place and none

of those were identified as mQSOs. It appears the primary problem with this exposure is not the

masking, it is the relative brightness of the QSO.

fIr

Figure 6-15: Exposure 011011.241

Exposure 011011.241: This exposure is also, essentially, identical to exposure 011011.170, though

the pretense of only one, faint, cstar makes controlling the x 2 values even harder.
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6.2 QSO LF Constraints

We constrain the QSO LF parameters in 6 redshift bins, chosen so that each bin contains the same

number of QSOs. Figure 4-1 depicts the 6 bins; the redshift ranges of the bins, the average redshift

of the QSOs in each bin, the number of QSOs in each bin, and the number of mQSOs in each bin,

are presented in table 6.2.

Bin Redshift Range Average Redshift Number of QSOs nmd

1 0.71 < zs < 1.41 1.18 178 1

2 1.41 < zs < 1.75 1.58 179 1

3 1.75 < zs < 2.12 1.93 179 3

4 2.12 < zs < 2.98 2.45 179 3

5 2.98 < zs < 3.76 3.42 178 0

6 3.76 < zs < 5.8 4.14 185 2

Table 6.2: The distribution of QSOs and mQSOs in the LF constraint bins.

Before we present the QSO LF parameter constraints, let's first consider how we expect the

constraints to behave. Changing the parameters of the QSO LF changes the expected number of

lenses. Intuitively., if we fix M, and allow fh, the high end slope, to vary then for high Oh the number

of bright QSOs drops rapidly. Since QSOs must be brighter than a certain threshold luminosity for

them to be observable we would expect the number of observed QSOs that are lensed to rise. This

is known as the magnification bias. The same reasoning holds true if we shift M, to the fainter

end (less negative). Thus, if we observe no mQSOs, then we should be able to constrain the f 3h and

M, from above1. We can say nothing about constraining fh and M, from below if we observe no

mQSOs: thus we can only constrain fh and M, from above for redshift bin 5.

We do have mQSOs for the other bins, however, and their presence allows to set strong upper

and lower constraints on fh and M,. For if 13h and M, are too low we would expect relatively fewer

observed QSOs would need to be lensed to be observable; the magnification bias is low in such cases.

All these properties are encapsulated in equation 3.54.

We shall compare our constraints to those obtained by [Pei], [Madau et. al.], [Wyithe and Loeb],

and [Wyithe]. To do this we first describe the constraints found by these authors.

[Pei] does not evolve /3h with redshift. He does, however, use an L, (B band) evolution of the

form
LPei (z) = L (1 + z)-0 5 exp (z- z,)2

The parameters [ei] uses are = 3.52 ± 0.11, z = 2.75 + 0.05, a,* = 0.93 ± 0.03, and L* =
6.9 x 1010° ± 1.5 x 1010.

'Note: "constraining M, from above" means constraining how positive M* can be or, equivalently, how faint it
can be.
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[Madau et. al.] also uses a fixed Ah but adjusts Pei's L. evolution to better fit the high redshift

QSO LF

LMadau (z) = L, ( 1 + z) - e (1 + ez*)

The parameters [Madau et. al.] uses are fh = 3.52, z = 1.9, = 2.58, ~ = 3.16, and L* = 8.7 x 108

(Madau does not present errors in his paper).

[Wyithe and Loeb] use Madau's L* evolution but provide alternate values for the parameters.

[Wyithe and Loeb] do allow for the evolution of fh, but they also present a model that ignores the

fh evolution. The parameters for the model that incorporates h evolution are Ah = 3.43 for zs < 3

and Oh = 2.58 for z > 3, z = 1.60, = 2.65, = 3.30, and L* = 9.6 x 1010. The nonevolving /h

model uses fh = 3.43, z = 1.45, ( = 2.70, = 2.90, and L* = 9.6 x 101°.

[Wyithe] constrains fh using the z > 6 QSOs found in the SDSS survey. He obtains 2.9 < h <

3.1 at the 90% confidence level. We shall present this constraint in the high redshift bins used to

compute our constraints.

Figure 6-16 presents the QSO LF constraints as color coded contour plots in the (M*,, 3h) plane

for each redshift bin. The color scale in the figure describes the scaling: whiter regions represent

more likely QSO LF models, while darker regions represent the least likely QSO LF models. Bins 1,

2, 3, 4, and 6, (the bins containing mQSOs) have maximal probability contours which we trace out

in blue. The constraints in figure 6-16 assume that all the observed mQSOs in our sample are, in

fact, real multiply imaged QSOs. Since this is probably not the case, we also present the constraints

assuming that only the verified mQSOs are real mQSOs (exposures 153 and 011231.160). Both of

these mQSOs lie in the fourth redshift bin. The resulting conservative constraints are presented in

figure 6-17.

The constraint plots show good agreement between our constraints and those of [Pei], [Madau et. al.],

[Wyithe and Loeb], and [Wyithe] at low redshift. At high redshift we verify the increasingly popular

possibility that fh flattens out at higher redshift. Our results match those of [Wyithe and Loeb]

(with evolving Ah), and [Wyithe] well at high redshift. Particularly important is the good agreement

of our results in redshift bin #4, where we are certain of the number of mQSOs.

To compare constraints, we compute and present the Ms of [Pei], [Madau et. al.], [Wyithe and Loeb],

and [Wyithe] over the redshift range of each bin; we also compute the M~s at the average redshift

of the bin (see table 6.2). We present the resulting range in Ms as a line on the plot, and the value

of M, at the average redshift as a point on this line.

The slightly poorer agreement in the first three redshift bins in figure 6-16 is probably due to two

factors. First, the actual number of mQSOs may have been overestimated. Second, the constraints

are smeared out because of the size of the redshift bins in which they are computed. This smearing

is a systematic effect and has a tendency to prematurely pull the constraint contours up to higher oh

at relatively faint M,. Compared to the constraints, we find better agreement between the fainter

(in terms of M,) end of the constraint and our contours than the brighter end (see redshift bins 1,2,
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and 3 in particular; bin 6 also exhibits similar behavior).

In appendix B3 we present these results again using a renormalized version of dP

6.3 Potential Improvements

Several improvements and refinements can be made to the analysis we have described in this thesis.

Perhaps the most important of these is the determination of the number of mQSOs in each redshift

bin. While our algorithm is capable of picking out morphologically interesting QSOs there is no

guarantee that these are actually gravitationally lensed mQSOs. The QSO may, by chance, be close

to a faint foreground star and some of the mQSOs might actually be binary QSOs (an interesting

phenomenon in and of itself). By far, the most convincing verification that a QSO is an mQSO

is the extraction of the lensing galaxy from high resolution imagery. This can be done with long

exposure times and multiple color imaging. One can also compare the spectra of the multiple images

and compare the light curves of the images over time to verify that the images do, in fact, stem

from the same source.

Improvements can also be made to the theoretical lensing probabilities derived in chapter 3.

According to [Li and Ostriker] the NFW lens model is superior to the SIS model in its agreement

to simulation results. Unfortunately, the NFW model complicates the probability integrals severely

making the integrals more computationally intensive. In large statistical samples such as the one

we have been working with, this can overwhelmingly increase the necessary analysis time.

In our analysis we assumed that early-type galaxies were the dominant lenses. The veracity of

this statement should be determined by analyzing the contributions to the multiple imaging cross

section of other potential lenses.

There are also a variety of improvements that can be made to the analysis pipeline discussed in

chapter 5. The acquisition of longer exposure data would help expand the mQSO detection hull,

allowing us to, potentially, identify more mQSOs. Ideally the acquisition of high resolution imagery

would occur over several nights to allow for more consistent images as well as longer exposures.

This would decrease the variability in the quality of the exposures and would significantly reduce

the number of false positives in the analysis pipeline. Improvements could also be made to better

determine the mQSO detection hull. A denser (O, fr) grid, with an increased AO range, would

greatly improve the determination of the detection hull - though such an improvement is unlikely

to greatly affect the resulting lensing probabilities.
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Figure 6-16: The QSO LF Constraints. Top (left to right): the constraints in bins 1,2,3. Bottom (left to right):

the constraints in bins 4,5,6. The vertical axes are Ah while the horizontal axes are M. The plot beneath the curves

is the color scaling used to generate the QSO LF constraint plots. The horizontal axis is P as defined in equation

3.54. The constraints from [Pei] are presented in red, the constraints from [Madau et. al.] are presented in green,

the constraints from [Wyithe and Loeb] are presented in blue (with /h evolution) and black (without Ah evolution).

Finally, the high redshift constraint onI/ h by [Wyithe] is bounded by the dashed white lines.
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Figure 6-17: The conservative QSO LF constraints, computed assuming only the verified mQSOs
are, in fact, real mQSOs.
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Appendix A

OR Fitting Functions

The plot of ObR (a, z) in figure 3-4 presents the results of simulation computations (the discrete

points) accompanied by an overlaid analytical fit. We shall describe the fit function and present

the fit parameters in this section. Unfortunately, we were unable to obtain the errors associated

with the simulation computations and, as such, we cannot quote errors to our fitted parameters.

We have, however, already discussed the goodness of fit in terms of the relative error between the

analytical fit function and the data points (see section 3.4.2).

We tailored an analytical fit to match the data points in a step by step process. We first fit

functions to trace out the behavior of OR at low a and at high a. We shall call these edge functions

as they delineate the a edges of the O5R (a, z) distribution. To be precise, we define the low and high

ato be

a = 20.07285 (A.1)

ah = 686.53617 (A.2)

We then define the edge functions

iA, (W) ":ZOR (d, Z) (A.3)

fh, (z) - OR (h,z) (A.4)

throughout this appendix f will refer to analytical fitting functions. Also, when the context is not

clear, we use the notation f,.ai to denote the i th fit parameter of fit function f. For fla (z) we

chose a simply polynomial analytical fit function of the form

2 3 4fla (z) = 1 alz + a2z2 a3z 3 + a4z4. (A.5)

The resulting fit is presented in figure A-1, and the fit parameters are presented in table A.1.

For fh, (z) we chose a fitting function of the form

fh () = exp (alza2). (A.6)
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fli Parameter Value
6.823 x 10-1
2.515 x 10

-6.717 x 10- 2

4.086 x 10- 3

Table A.1: The fit

fha .al
fha.a2

-9.531 x 10-'
1.408

parameters for fhaand fli

1-
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Figure A-1: Plots of the f (left) and fhe (right) fits.

The resulting fit is presented in figure A-1, and the fit parameters are presented in table A.1. Note

that both fh, and fla go to 1 at z = 0. This is a necessary condition enforced by equation 3.15.

We now use these edge functions to guide what we call filler functions - functions that trace

out the z behavior of O¢R as a function of z. After much experimenting it was found that one

analytical function would be insufficient to completely describe the behavior of OR at all redshifts.

We have opted, instead, to define two filler function forms: one that is valid for z < 2 and another

that is valid for z > 2. (This splitting is unimportant: when we compute integrals involving OR we

simply split the redshift integral into two). Thus, we define

fiz (, z) O R ( Z < 2) (A.7)

fhz (, z) R (7, Z > 2) (A.8)

The analytical form chosen for flz (a, z) is

(A.9)fiz (a) Z) = -ir (Z + [h - U (Z) (a- _)2.flz (, Z) =fl (z) '-+ [fh (z) -fl (z) - b ( (h -- (7l)2] --b () (h - (71

This is not as complicated as it looks. It is simply a quadratic constrained such that flz (al, z) =

74

fi,al
fj, .a2

fil,.a 3

ifl, .a4

5-

4-

3-

2-

N

C~

z
6 i 23 6 6 6 123 4 56

z

- -
v - 4

4

W

i

&

fh, Parameter Value



b2 Parameter Value
bl.al -3.071 x 10- 3

bl.a2 -9309 x 10 - 4

bl.a3 1.093 x 10 - 3

b2.al -4.440 x 10-

b2.a2 5.733 x 10 - 3

b2.a3 -2.293 x 10 - 3

b2.a4 1.322 x 10 - 4

b3.al 1.833
b3.a2 -4.201 x 10- 1
b3.a3 7.293 x 10 - 2

b3.a4 -4.420 x 10 - 3

Table A.2: The parameters for the bi functions.

fl (z) and fl (h, z) = fha (z). These two constraints leave only one free fitting parameter, b (z).

Unfortunately, b cannot simply be a constant: it must change with z to track the curvature of

OR (, z). We must, therefore, find an appropriate fitting function for b (z)! To do this we first fit

flz (, z) to the R data by holding z at a constant zc and fitting the function of a: fliz (a, Zc) to
OR (a, Zc). This gives us the value of b1 (zc). We repeat this for all values of zc < 2 in the OR data

set and obtain a scatter plot of bl (z) vs z (figure A-2). We then choose an appropriate function to

fit to this scatter plot.

Again, after much trial and error we choose a function of the form

bl (z) = (al - al exp (a2z + a3z2)) . (A.10)

This function guarantees that b (z) = 0 at z = 0, which guarantees that fiz (a, 0) = 1 which it

must to agree with equation 3.15. The values of the parameters are presented in table A.2.

The analytical form chosen for fhz (, z) is

(fh, (z)- fl (z)) [1 + exp (b2 (z) (-am)b3() )]
fhz (a, z) = - (z). (A.11)

exp (b2 (z) (a - am)b3(Z)) - 1

Again, this function is not as complicated as it appears. It is simply an exponential fit equation

of the form A [1 + eb2 (z)( - am)b 3(Z)] + B where A and B have been determined so that fhz (al, z) =

fla (z) and fhz (ah, z) = fhA (z). Just as in the fitting function for flz the expression for fhz has z

dependent fitting parameters. We proceed as we did with b (zc) by finding scatter plots of b2 (z)

vs z and b3 (z) vs z (figure A-2) and fitting analytical expressions for b2 and b3 to the resulting

scatterplots.
It turns out that we can simply use polynomial fit functions for both b2 (z) and b3 (z). To be

precise

2 3b2(3) (z) = al + a2z + a3z + a4z3 . (A.12)

The values of the parameters are presented in table A.2.

The analytical forms for the bi allow us to express fhz (a, z) and fi (a, z) completely analytically.

The resulting function was presented in figure 3-4 along with an image depicting the relative errors

of the fit.
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Figure A-2: The bi scatter plots with associated fit functions. From left to right: b,b 2, and b3.
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Appendix B

Renormalizing dPdp

We discussed, in section 3.6.4, the physical motivation behind renormalizing dPl. As it stands the

combined magnification probability distribution defined in equation 3.28 yields a mean magnification

(p) > 1. This cannot be right and we seek to renormalize dP so that () = 1. At the same time we

must retain the fact that f2 dP--d is the multiple imaging cross section while keeping the total

probability distribution normalized.

Our approach will be similar to that of [Comerford et. al.] and [Wyithe and Loeb]: we will add

constant probability to the low p end of dps down to a new minimum pi

Amin < 1. (B.1)

The value for this constant probability will be given by dP evaluated at some Wc > 1 + 0E (remember

that + was the old minimum value of p). We define

P_ dPs I (B.2)
dl-L

We can write the renormalization constraints in terms of IPmin and Pc To enforce the standard

probability normalization we must set

Pc+ fdP, PcfdPm(c- Amin) Pc + dp d dp. (B.3)

To force (p) = 1 we set

(2 _Li. dPdn2 ( mi P c + dP dPm . (B.4)

We can solve these two equations numerically to obtain, for each value of E both min and

Pc. This process is not very enlightening, it simply involves solving for Amin in terms of pc for

each equation (this just involves solving a linear equation for the normalization constraint and a

quadratic equation for the () = 1 constraint). We then compute the PImin for a values of pc on a
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Figure B-i: dP-n as normalized for 01 = 0.048 and 02 = 0.079.

grid and find the (unique) value of /c that yields agreement for both expressions for Imin. We then

define the normalized singly imaged magnification probability distribution

dPn { P Imin < / < Ic (B.5)

Figure B-1 presents plots of dP~ for two values of OE: 01 = 0.048 represents the effective Einstein

radius of the lenses lensing an object at z = 2 and 02 = 0.079 is the effective Einstein radius for

an object at z = 4. The dPn distribution normalized for 01 has umin = 0.896 and ac = 1.058. The
dPn distribution normalized for 02 has /min = 0.825 and /c = 1.0966.
dp~

We've used to compute new constraints on the QSO LF. These are presented in figuredi u

B-2, with the corresponding conservative constraints presented in figure . There are some small

differences (which become more pronounced at higher redshifts). For a more direct comparison

figure B-3 presents the difference in the constraints P - Pn where P is defined in equation 3.54 and

Pn is the corresponding definition involving dP.d/i'
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Figure B-3: The difference P- P-/ as computed in each redshift bin.
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Appendix C

Software Screenshots

The Analyzer and Coordinator are software packages written to analyze and organize the high

resolution QSO imagery. Both packages were implemented in C++ using the Tcl/Tk library for the

graphical user interface.

The Coordinator was used to organize the second run QSO target list and optimize the QSO

ordering to minimize the telescope slew time between targets. Figure C-1 is a screenshot of the

Coordinator in action. The labels on the figure illustrate the different functions that the Coordinator

carries out.

The Analyzer was used to select targets and perform x2 fits. Figure C-2 is an image of the

Analyzer performing a PSF fit. Figure C-3 illustrates the Analyzer's masking capabilities. Figure

C-4 presents the Analyzer's x 2 fitting interface.
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Figure C-1: The Coordinator.
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Figure C-2: A PSF fit in the Analyzer (exposure ID: 20). The three images in the top right corner are (from

top to bottom) the selected target, the residue obtained by subtracting the target from the generated PSF, and the
generated PSF. The resulting best fit parameters are presented in the lower right corner alongside the reduced x2 of

the fit.

Figure C-3: An example of masking in the Analyzer.
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