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Abstract
We examine the effect that the shape of the source brightness profile has on the
magnitude fluctuations of images in lens systems due to microlensing. We do this by
convolving a variety of accretion disk models (including Gaussian disks, uniform disks,
"cones," and. a Shakura-Sunyaev thermal model) with two magnification patterns in
the source plane, one with convergence sn = 0.4 and shear y = 0 (positive parity), and
the other with , = = 0.6 (negative parity). By looking at magnification histograms
of the convolutions and using chi-squared tests to determine the number of obser-
vations that would be necessary to distinguish histograms associated with different
disk models, we find that, for circular disk models, the microlensing fluctuations are
relatively insensitive to all properties of the models except the half-light radius of the
disk.

Thesis Supervisor: Paul L. Schechter
Title: William A. M. Burden Professor of Astrophysics

3



4



Acknowledgments

I owe many thanks to my advisor, Paul Schechter, who introduced me to gravita-

tional lensing, suggested that I investigate the effects of source properties on quasar

microlensing, and provided helpful advice and criticism at all stages of my research.

I am also grateful to Joachim Wambsganss for some useful discussions and for the

magnification patterns that were the starting point for my work, and to Rob Simcoe

and Ron Remillard for their help with chi-square tests.

I would like to thank Karyn, my parents, and my friends for their continual support

and encouragement. Finally, I give thanks to my fellow classmates in physics for

making the work and stress easier to bear.

5



6



Contents

1 Introduction

2 Gravitational Lensing Basics

2.1 Time-Delay Function and Fermat's Principle ..............

2.2 Magnification of Images .........................

2.3 Point Mass Lens .............................

2.4 Critical Lines and Caustics ........................

3 Observations

4 Quasar Microlensing

5 Flux Ratio Anomalies

6 Factors that Affect Microlensing

6.1 Cosm ology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.2 The Lens. .................................

6.3 The Source ...............................

7 Accretion Disk Models

7.1 Gaussian Disks ....

7.2 Uniform Disks ....

7.3 Cones .........

7.4 Shakura-Sunyaev Disks

7.5 Other Models .....

7

17

19

20

22

23

25

27

29

33

35

35

36

36

39

39

40

40

40

44

....................................................

..........................

..........................

..........................



8 Magnification Patterns

9 Magnification Histograms 49

9.1 Histograms of Convolutions with Shakura-Sunyaev Disks ...... . 49

9.2 Histogram Statistics ........................... 52

9.3 Chi-square Tests ............................. 54

10 Conclusions 59

A Elliptical Disk Models 63

A. 1 Ellipticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.2 Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.3 Conclusions ............................... 65

8

45



List of Figures

2-1 Geometry of strong gravitational lensing. Multiple images are possible,

and the lens, source, observer, and image positions do not necessarily lie

in the same plane. For simplicity, however, only one image is depicted

here and the lens geometry is projected into a plane ......... . 20

2-2 An example of caustics and critical lines for an elliptical lens, showing

a caustic crossing. As the source (the d(lot in the source plane) crosses

the inner diamond-shaped caustic, two of the images in the image plane

(shaded gray) merge and disappear on the outer critical line. Based

on figures in Courbin, Saha, & Schechter (2002) ........... . 25

4-1 A magnification pattern of caustics in the source plane for a positive

parity macroimage at a position with convergence n, = 0.4 and shear

y = 0. Each side has a length of 20 (microlens) Einstein radii, and the

circle in the upper right corner has a radius equal to one Einstein ra-

dius. The white lines on the greyscale bar correspond to magnifications

that are 1, 2, 3, and 4 times the average macroimage magnification.

Dark regions have greater magnification than light regions. 6931 mi-

crolenses were used in this simulation, which was provided by Joachim

Wambsganss ............................................... 31

7-1 Radial intensity distributions (27rsI(s)) for an r = 0.2rE Shakura-

Sunyaev disk model in four filters, with central wavelengths xo 0 =

0.0271, x0 = 0.2014, x1o0 = 1.498, and X15 = 4.086. The vertical axis is

normalized so that the total disk intensity equals unity ....... 42

9



8-1 Magnification patterns in the source plane for a positive parity image

with n, = 0.4, y = 0 (left) and a negative parity image with r, = y = 0.6

(right). The length of each side is 100 Einstein radii. The white lines

on the greyscale bar correspond to magnifications that are 1, 2, 3,

and 4 times the average macroimage magnification. Dark regions have

greater magnification than light regions. The black circles have radii of

1, 3, and 6 Einstein radii for comparison with the accretion disk models. 46

8-2 Examples of magnification patterns from convolving Shakura-Sunyaev

disk profiles with the original positive parity pattern in Figure 8-1.

The innermost radius of each disk is rin = 0.2 rE. For the left pattern,

the filter is i = 0 with central wavelength x, the wavelength of the

peak of the blackbody distribution at the maximum temperature To;

the disk intensity peaks around r = 1.4rin at this wavelength. For the

right pattern the filter is i = 10 with central wavelength x1o0 = 7.44x0 ,

and the peak of the disk intensity is approximately at r = 2.2ri~. The

scale and the reference circles are the same as in Figure 8-1 ...... 47

8-3 Sample light curves from the magnification pattern on the left in Fig-

ure 8-1 and both patterns in Figure 8-2 ( = 0.4, y = 0). The source

travels on a vertical path of length 4 Einstein radii in the center of

each pattern. The thin curve is from the unconvolved positive par-

ity pattern, the medium curve is from the convolution with the disk

viewed in the filter associated with the peak intensity at the maximum

temperature To (i = 0), and the thick curve is from the convolution in

the filter that is a factor of 7.44 longer in wavelength (i = 10). .... 48

9-1 Magnification histograms for the unconvolved magnification patterns

in Figure 8-1. The left histogram is for the positive parity image, the

right, negative parity ........................... 50

10



9-2 Histograms of magnitudes (relative to the magnitude that corresponds

to the average macroimage flux) for convolutions of Shakura-Sunyaev

disk profiles with rin - 0.2rE in various filters with the positive parity

= 0.4, y = 0 magnification pattern (solid curves) and the negative

parity = = 0.6 magnification pattern (dashed curves). The half-

light radii of the disks used as sources are 0.2 8 rE, .4 1rE, l.OOrE,

and 3 .3 2 rE, respectively. The histograms at shorter wavelengths than

that of the filter associated with the peak intensity at the maximum

temperature To (upper left) are all very similar, and so they are not

shown here ............................................. . 50

9-3 Histograms of magnitudes relative to the average for convolutions of

Shakura-Sunyaev disk profiles of various sizes in the filter associated

with the peak intensity at the maximum temperature To (i = 0) with

the positive parity = 0.4, y= 0 magnification pattern (solid curves)

and the negative parity r = = 0.6 magnification pattern (dashed

curves). The half-light radii of the disks used as sources are 0.28 rE,

0 .7 7 rE, 1.58rE, and 4 .8 4 rE, respectively . . . . . . . . . . . . . . . . 51

9-4 Dimensionless half-light radius (/2 = rl/ 2/rin) versus dimensionless

wavelength, x ................................ 52

9-5 Standard deviation (rms) and skewness of convolutions of the =

0.4, y = 0 magnification pattern with various Shakura-Sunyaev disk

profiles. Different plot symbols are used for different values of rin

(given in Einstein radii). Dashed curves for the Gaussian disk models

are shown for comparison. Note that positive skewness is associated

with brighter (more negative) magnitudes ...................... . 53

11



9-6 Standard deviation (rms) and skewness of convolutions of the -

0.6, = 0.6 magnification pattern with various Shakura-Sunyaev disk

profiles. Different plot symbols are used for different values of rin

(given in Einstein radii). Dashed curves for the Gaussian disk models

are shown for comparison. Note that positive skewness is associated

with brighter (more negative) magnitudes ...................... . 54

9-7 Reduced chi-square measure of the differences between histograms from

convolutions with different disk models. For the shape comparison,

the two models used are a Shakura-Sunyaev disk and a Gaussian disk,

each with half-light radius r1/ 2 = 0.76 5 rE. The two models used for

the size comparison are both Gaussian disks, one with half-light radius

rl/ 2 = 0.5rE and the other with r/ 2 = 0.75rE. Higher values of Xv

indicate a greater ability to distinguish the two models ......... . 55

9-8 Probability that two sample distributions have the same parent dis-

tribution as a function of the number of observations in the samples.

On the left we compare histograms from disks with r/ 2 0.7 65 rE

but with different shapes (a Shakura-Sunyaev model and a Gaussian

model), and on the right we compare histograms from two Gaussian

disks that differ in size by 50% (with half-light radii 0.5rE and 0.75rE).

The horizontal dashed lines show where the probability is 5%, which

is the threshold we used to determine the number of observations n95%. 58

10-1 Disk profiles for disks with different shapes (left) and sizes (right). The

disks on the left both have half-light radius r1/2 = 0.76 5 rE, but one

is a Shakura-Sunyaev disk (solid line) and the other is a cone (dashed

line). The disks on the right are both Gaussian disks, but they have

slightly different half-light radii as indicated in the legend. The slope

of x2(n) is about the same for the histograms that come from each pair

of disks, even though the disks on the right are much more similar to

each other than those on the left .................... . 61

12



A-1 Magnification histograms for convolutions of the = 0.4, Y = 0 pattern

with a circular Gaussian (solid line), and with an elliptical Gaussian

whose major axis is 6 times longer than its minor axis (dashed line). 64

A-2 Magnification histograms for convolutions of the = ' = 0.6 pattern

with elliptical Gaussians, one oriented parallel to the shear (solid line),

and the other perpendicular (dashed line) ...................... . 66

13



14



List of Tables

9.1 Slopes of X2(n) for disk shape comparisons. The disk models listed

are compared to a Shakura-Sunyaev model; all of these models have

half-light radius rl/ 2 = 0.7 6 5 rE. The number of observations necessary

to tell that the two histograms are different with 95% confidence, n95%,

is also listed ................................. 56

9.2 Slopes of X2(n) for size comparisons between Gaussian disks. The

sizes of the two disks for each chi-square test are listed in columns two

and three. The number of observations necessary to tell that the two

histograms are different with 95% confidence, n95%, is also shown here. 57

A.1 Slopes of x2(n) for elliptical Gaussians with different ellipticities. The

disk models listed are compared to a circular Gaussian model, and a/b

is the ratio of the width along the major axis to the width along the

minor axis. The number of observations necessary to tell that the two

histograms are different with 95% confidence, n95%, is also given ... . 65

A.2 Slopes of X2(n) for elliptical Gaussians oriented at different angles with

respect to the shear of the r, = y = 0.6 magnification pattern. One

disk in each case has its major axis aligned with the shear, and the

angle between the major axis of the other disk and the shear is given

in the first column. The number of observations necessary to tell that

the two histograms are different with 95% confidence, n95%, is also given. 65

15



16



Chapter 1

Introduction

Gravitational lensing, the deflection, magnification, and distortion of light from dis-

tant sources by intervening mass such as galaxies or stars, is an astronomical tool

with many uses, including measuring the dark matter content of galaxies, studying

the structure of quasars, and estimating the values of cosmological parameters.

This variety of applications is sometimes a shortcoming, however. When trying

to model a specific lens system, for example, we are plagued with an overabundance

of parameters to choose from. We know that all these factors should have some sort

of effect on what we observe, but we do not always know which factors are the most

important and which could be ignored. As a result of having so many parameters,

there is a problem of degeneracies in modeling lens systems, where systems with

different lens or source properties can produce the same set of images (e.g., Courbin,

Saha, & Schechter, 2002). It is important to find out which parameters have little

effect on the observables in lensing so that those properties can be neglected in lens

models. Including these extra details just adds unnecessary complications to the

models and obscures the properties of the lens system that really matter.

In a subfield of gravitational lensing, microlensing, the size of the source can have

a large effect on the brightnesses of the images. It is not clear, however, what effect

the shape of the source has, or if there is any significant effect at all. Here we examine

this question by studying the observable changes in microlensing when we vary the

distribution of light from the source.
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Chapter 2

Gravitational Lensing Basics

From Einstein's theory of general relativity, we know that light is deflected by massive

objects. Since gravitational fields curve not only space, but spacetime, massive objects

in the vicinity of a photon's path also affect the time that the photon appears to take

to travel along that path.

Imagine a photon traveling from some distant source in space to an observer on

Earth. In the absence of any mass between the source and the observer, the photon

travels in a straight line. If, however, we put a massive object directly between the

source and the observer (and imagine that the photon can still travel on a straight

path through the object), the photon appears to travel more slowly1 as it passes

through the region where the gravitational potential is strongest, so the shortest

path is no longer a straight line. A photon that travels in a wide curve around the

mass, however, will also have a time delay, simply because its path is longer than the

straight-line path. The optimal path must balance between gravitational increase of

travel time and extra path length.

1One can view this time delay as if the light were traveling through a medium with a refractive
index rn = 1 - 2, where 4· is the gravitational potential (Narayan & Bartelmann, 1996).
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Figure 2-1: Geometry of strong gravitational lensing. Multiple images are possible,
and the lens, source, observer, and image positions do not necessarily lie in the same
plane. For simplicity, however, only one image is depicted here and the lens geometry
is projected into a plane.

2.1 Time-Delay Function and Fermat's Principle

We can construct a time-delay function to express the additional time it takes a

photon to travel along some arbitrary path compared to the travel time along a

straight-line path in the absence of a gravitational field: t = tgeom + tgrav.

Fermat's principle states that light travels along paths of extremal time, which for

lensing means paths for which the time-delay function has a local minimum, saddle

point, or maximum (Courbin, Saha, & Schechter, 2002). At each of these points an

observer will see an image, so under certain conditions a lens will produce multiple

images of a source.

As with scattering in particle physics, virtually all of the photon's deflection occurs

in a small region near the lens mass. We can therefore assume that the photon travels

along a straight path from the source to the lens, and from the lens to the observer, but

with some deflection angle at the lens itself. Then the component of the time-delay

function due to extra path length, tgeom, can be calculated using simple geometry (see

20



Figure 2-1). Assuming that 0 - < 1,

tgeo DLDs (o-3)2 (2.1)tgeom 2DLS

ill units where c = 1, where 0 and 3 are now vectors in the plane of the sky indi-

cating the angular separations of the image and the source, respectively, from the

lens. The distances DL, Ds, and DLS are all angular diameter distances (Narayan &

Bartelmann, 1996).2

To find the gravitational contribution to the time-delay function, also known as the

Shapiro delay (Shapiro, 1964), we assume that the fields are weak, meaning that the

gravitational potential satisfies I1l << 1. At a distance of a few kiloparsecs from the

center of a 1012 -M® galaxy modeled by an isothermal sphere with a circular velocity

v, - 300 km/s, I14) - 10-6, so this approximation is justified in most cases of interest.

We assume that the mass distribution of the lens is static over the time it takes for

light to travel across it, so is a function of space but not time. The spacetime

metric with a single mass (with potential ) localized at the origin is (Carroll, 2004)

dr2 = (1 + 2)dt 2 _ (1 -2)(dx 2 + dy2 + d 2). (2.2)

For a photon, d = 0, so dt = (1-2D)dl to first order in , where dl = dx 2 + dy 2 + dz

is an infinitesimal path length. Integrating along the path of the photon, we find thattgrav -- 2q)dl. (2.3)

Assuming that the angle of deflection is small, we can approximate the integral in

Equation (2.3) by - f 21dx, taking x to be the direction along the line of sight. We

then define a two-dimensional lensing potential,

2DLsf d.
D D Ds dx. (2.4)

2 Angular diameter distances are defined such that an object of size that subtends an angle 0 in
the sky is at an angular diameter distance D 1/O.
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Using this definition, and including an overall factor of (1 + ZL), where ZL is the

lens redshift, to shift into the observer's reference frame, we can write the time-delay

function as
DLDs [1 1O_02_OO

t(0) = (1 + ZL) DLS 2 -)2-() (2.5)

Using Fermat's principle, we can find the locations of the images by solving

Vt(O) = - /3- V+(0) = . (2.6)

2.2 Magnification of Images

Lensing not only affects the positions of images, but also stretches and distorts them.

Starting with Equation (2.6) and taking derivatives with respect to 0i (i = 1, 2), we

get the inverse magnification matrix (Narayan & Bartelmann, 1996):

_1 0,3 / 2 V) 

M i= -13 (ij- _ (2.7)

This matrix can be written in terms of the convergence, , and the shear, -y, which

are related to the lensing potential +(o) by

= 1 92 + a2 V
2 V02 a02' 

'~~~~1 2--~~ 0

(- 0i 02}~ - ycos(2), and
02,

7Y2 -- ae = a sin(20), (2.8)06002 ysn2)

where is the orientation angle of the shear, and y 12+-y22 = y2 (Narayan & Bartelmann,

1996). The convergence is the dimensionless version of the lens surface density, E, and

the shear measures the anisotropic stretching of the lens in the direction determined

by the angle 0. Using K and the components of y, the inverse magnification matrix

becomes

M 1 =(Y1E-1 -72 ) (2.9a)
MI -- 2 1- + /Yl
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Diagonalizing this matrix, we get

K 1-fi- O (2.9b)0 1 _ ~+ /

where the new basis vectors are rotations of the original vectors 01 and 02 by the

shear orientation angle 0. The scalar magnification, the ratio of the image brightness

to the source brightness, is equal to the determinant of the magnification matrix:

1 1= det M = dt M - (1-) (2.10)

If + -y > 1, then the magnification p is negative. The sign of is associated with

the parity of the image; the parity of an extended source is reversed in an image that

has a negative value of p.

It is important to note that lensing conserves the surface brightness of the source

(brightness per unit solid angle), so images are magnified by covering a larger area

(solid angle) than the source. Conservation of surface brightness is a consequence of

Liouville's Theorem (Narayan & Bartelmann, 1996).

2.3 Point Mass Lens

One of the simplest lens systems is a lens consisting of a single point mass, with

mass M. The two-dimensional potential for a point mass is +(o) = k ln, where

0 = 101O and k- 4GMDLS is a constant (Courbin, Saha, & Schechter, 2002). UsingDLDS

Equation (2.6) gives

0-, = V(k ln ) = -0, (2.11)

which shows that /3 and have the same or opposite direction. Solving for 0, we get

0=0 + 2 + 4k) (2.12)

where 3= 1/1 and 3=,/3,3.
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If the source is collinear with the lens and observer (/3 = 0), Equation (2.12)

becomes 0 = v'k. Since there is no preferred direction away from the lens, the image

forms a circular ring around the lens with an angular radius of

4GMDLS
H =V T ULDsS (2.13)

This type of image is called an Einstein ring, and 0E is called the Einstein radius. Even

in systems with different kinds of lenses and different geometries, SE is a characteristic

scale for the image separations (Courbin, Saha, & Schechter, 2002). In the source

plane, the Einstein radius is

rE = OEDS 4GMDLSD S (2.14)

For / = 0, any circular mass distribution for the lens will form an Einstein ring

if the mass is compact enough to fit within its own Einstein radius (Courbin, Saha,

& Schechter, 2002). This happens at a critical density, Ec. If we consider a uniform

sheet of mass, then 7rO2Ec = M, so

1 DLDs
EC = 47rG DLS ' (2.15)

where Ec has units of mass per solid angle.

Using the critical density, we can write a second formula for the convergence. By

combining the first line of Equation (2.8) and the definition of I/ in Equation (2.4),

we find

= v2= DLDLS f V2 dx. (2.16)
2 Ds I

Now we use Poisson's equation for the potential (I:

V2I = 47rGp, (2.17)

where p is the mass density of the lens. The surface mass density of the lens in the

plane of the sky (in units of mass per solid angle) is E = D2 f pdx, so we can write
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Figure 2-2: An example of caustics and critical lines for an elliptical lens, show-
ing a caustic crossing. As the source (the dot in the source plane) crosses the in-
ner diamond-shaped caustic, two of the images in the image plane (shaded gray)
merge and disappear on the outer critical line. Based on figures in Courbin, Saha, &
Schechter (2002).

Equation (2.16) as c=~~~~~-~~ ~(2.18)
Ec

2.4 Critical Lines and Caustics

For lenses more complicated than the point mass or other simple circularly symmetric

distributions, keeping track of the images becomes much more difficult. It is useful

to introduce two sets of curves: critical lines in the image plane and caustics in the

source plane (Courbin, Saha, & Schechter, 2002). These curves map on to each other,

so that when the source is on a caustic, an image appears on a critical line. Pairs of

images merge and then disappear, or appear and then split apart, at critical lines,

with one image on each side of the line. Images near a critical line are also extremely

bright. Since the critical lines are where images are created or destroyed, the caustics

form boundaries such that when the source crosses a caustic, the total number of
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images changes by two. An example for the case of an elliptical lens is shown in

Figure 2-2.
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Chapter 3

Observations

The deflection of light by massive objects was proposed by Newton, predicted by

Einstein's general relativity, and confirmed experimentally by Eddington's observa-

tion of the deflection of starlight by the sun in 1919 (Dyson, Eddington, & Davidson,

1920). Throughout the 1920s and 1930s, it was known that not only could light be

deflected by a gravitational field, but it could also be separated into multiple im-

ages by gravity (Eddington, 1920; Chwolson, 1924; Einstein, 1936). However, most

people at the time thought that actually observing such an effect was out of the

question. This changed when Zwicky (1937a) predicted that galaxies could produce

observable splitting of light from distant sources, and that there should be significant

numbers of lens systems within reach of observers (Zwicky, 1937b). It was over 40

years before the first lens was discovered by Walsh et al. (1979): Q0957+561, a pair

of images of a quasar at a redshift of z = 1.41. The first quadruple lens detected was

PG1115+080 (Weymann et al., 1980).

In the late 1980s, lensed radio quasars were discovered, some of which had com-

plete or partial Einstein rings (Hewitt et al., 1987). Extended images in the forms of

arcs or arclets, galaxies lensed by foreground galaxy clusters, were also observed (Sou-

cail et al., 1987a,b; Lynds & Petrosian, 1986; Tyson, 1988; Fort et al., 1998; Tyson,

Valdes, & Wenk, 1990).

Many lenses of various types have been discovered over the past few decades. A

partial list is presented in Courbin, Saha, & Schechter (2002). A catalog of several
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more observed lens systems can be found at the website for CASTLES, the CfA-

Arizona Space Telescope Lens Survey (Kochanek et al., 2004).

Through studies of gravitational lenses, we can learn about both the sources, which

are magnified by lenses, and the lensing masses (often galaxies), whose properties af-

fect the image positions and relative fluxes. We can also use lensing to constrain

cosmological parameters. Refsdal (1964) suggested that differences in time delays

between images in a lens system could be used to place limits on the Hubble con-

stant, H0 . Surveys that look for faint gravitational signatures of large-scale structure

through weak lensing and statistical modeling of lenses also aim to constrain param-

eters such as the matter density of the universe and the amount of vacuum energy.

Observers measuring time delays look for correlated variations in the brightnesses

of different images (Courbin, Saha, & Schechter, 2002). Intrinsic variability of the

sources produces these kinds of fluctuations. Uncorrelated brightness variations have

also been observed, for instance in Q0957+561 (Falco, Wambsganss, & Schneider,

1991) and the "Einstein cross" or "Huchra's Lens," Q2237+0305 (Ostensen et al.,

1996). One possible reason for these uncorrelated fluctuations is microlensing, which is

due to stars in the lensing galaxy and produces images separated by microarcseconds,

too close to be resolved (Courbin, Saha, & Schechter, 2002). Microlensing of quasars

will be discussed in more detail in the next chapter. Microlensing has also been used

for searches for dark matter (in the form of MACHOs) in the galactic halo, an idea

suggested by Paczyiski (1986b) and carried out by several groups (Alcock et al., 1993;

Aubourg et al., 1993; Udalski et al., 1993; Alard, 1995).

28



Chapter 4

Quasar Microlensing

The smooth potentials used to model lensing galaxies are only approximations. The

stars that make up the galaxies have their own potentials, which, when added to-

gether, introduce "lumpiness" to the overall galaxy potential. This produces small

bumps and valleys in the surface of the time-delay function, leading to the production

of more images.

The separations of these additional images should be on the order of the Einstein

radii of the lensing stars. For a one-solar mass object at a distance of 10 Gpc, SE 

1 puarcsec. This is far too small an angle to be resolved by any present-day instruments,

but changes in the magnitudes of these microimages can affect the brightness of the

entire bundle of microimages (the "macroimage"). If the source is smaller than the

Einstein radii of the microlenses, then relative motion between the source, the field of

lensing stars, and the observer will cause the macroimage's magnitude to fluctuate.

Since light from different macroimages in a lens system passes through different parts

of the lensing galaxy, the fluctuations in the resolved images are uncorrelated with

each other.

Since there is no way to know the exact positions and velocities of the stars that

act as microlenses in a particular galaxy, we approximate the system as a field of stars

randomly distributed in a plane. With so many objects and parameters, few analytical

results can be obtained for quasar microlensing. Instead, numerical simulations are

used to model microlensing and make predictions.
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One technique for studying quasar microlensing numerically is the method of

ray-shooting (Courbin, Saha, & Schechter, 2002; Kayser, Refsdal, & Stabell, 1986;

Schneider & Weiss, 1987; Wambsganss, 1990; Wambsganss, Paczyiski, & Katz, 1990;

Wambsganss, Schneider, & Paczyfiski, 1990). Since surface area is conserved by

lensing, a region in the source plane where the source would be highly magnified

corresponds to a large area of light-ray endpoints at the observer. The ray-shooting

method turns this around and simulates sending the light rays back from the observer

to the source plane. Firing a large number of rays from the observer at random angles

leads to a build-up of rays at high-magnification areas of the source plane, while

low-magnification regions will be struck by rays less often. The result is a pattern

of caustics in the source plane, where the value of the distribution at each point is

proportional to the magnification that a source at that position would have (Courbin,

Saha, & Schechter, 2002). Simulated microlensing light curves can be produced from

these magnification patterns by tracing a path across a pattern and reading off the

value at each point along the path. Figure 4-1 shows an example of a magnification

pattern produced by the ray-shooting method.
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Figure 4-1: A magnification pattern of caustics in the source plane for a positive parity
macroimage at a position with convergence = 0.4 and shear - = 0. Each side has a
length of 20 (microlens) Einstein radii, and the circle in the upper right corner has a
radius equal to one Einstein radius. The white lines on the greyscale bar correspond
to magnifications that are 1, 2, 3, and 4 times the average macroimage magnification.
Dark regions have greater magnification than light regions. 6931 microlenses were
used in this simulation, which was provided by Joachim Wambsganss.
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Chapter 5

Flux Ratio Anomalies

One of the uses of quasar microlensing is to try to help explain the problem of flux

ratio anomalies. These anomalies are observed flux ratios between images in a lens

system that disagree with theoretical predictions (Schechter, 2003). One common

type of flux ratio anomaly concerns close pairs of images in quadruple lens systems.

A theorem states that two images that are close together in a quadruple system

should have the same brightness (Gaudi & Petters, 2002). Several systems, including

PG1115+080 (Vanderriest et al., 1986; Kristian et al., 1993; Courbin et al., 1997; Iwa-

muro et al., 2000), MG0414+0534 (Schechter & Moore, 1993), HS0810+2554 (Reimers

et al., 2002), and SDSS0924+0219 (Inada et al., 2003) have close pairs that do not

obey this theorem, with anomalous flux ratios as high as 10 (Schechter, 2003).

Microlensing has been put forward as one solution to this problem (Schechter,

2003). The theorem mentioned above assumes that the gravitational potential is

smooth in the region where light from the close pair of images passes through. As

explained in the previous chapter, not only is this assumption incorrect when the

lens is a galaxy with billions and billions of stars, but also relaxing this assumption

can have a significant effect on the magnitudes of images, and thus on the flux ratios

between images.

Microlensing, however, is not the only possible solution. It has also been suggested

that the mini-halos that form around galaxies in cold dark matter simulations (Moore

et al., 1999) could act as lenses (e.g., Metcalf et al., 2003). Since these mini-halos
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are larger than stars but smaller than galaxies, the image separations they would

produce are between the scales of strong lensing and microlensing, on the order of

milliarcseconds, still too small an angle to resolve separate images (Schechter, 2003).

There are several ways to determine to what extent microlensing and lensing by

galactic substructures contribute to explanations of flux ratio anomalies. The fact

that mini-halos deflect light by much larger angles than stars do means that sources

that are larger than stellar Einstein radii but smaller than mini-halo Einstein radii

would be affected by mini-halo lensing but not by microlensing. For example, it is

thought that radio quasars emit from regions that fall in this size range, so radio flux

ratio anomalies are more likely to be due to mini-halo lensing. Similarly, the size of

broad emission line regions is probably between the stellar and mini-halo Einstein

radii, whereas continuum emission comes from parts that are smaller than the stellar

Einstein radius, so if anomalies are observed in the continuum but not in emission

lines, that would point to microlensing (Schechter, 2003).

The time scale for brightness variations caused by mini-halo lensing is on the

order of thousands of years, much longer than the microlensing time scale, which is

on the order of months or years. Therefore, we can say that the observed uncorrelated

variations in the lenses mentioned in Chapter 3 are due to microlensing. Flux ratio

anomalies that persist unchanged for a long time, on the other hand, could be the

result of mini-halo lensing (Schechter, 2003).

Of course, microlensing and mini-halo lensing do not exhaust the possibilities.

While both effects are likely to contribute to flux ratio anomalies at some level, there

may be other contributing effects, such as different kinds of halo substructure (Mao

et al., 2004; Keeton, Gaudi, & Petters, 2003). In a few cases, it is even possible that

the "anomalous" flux ratios can actually be modeled with a smooth potential (Evans

& Witt, 2003).
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Chapter 6

Factors that Affect Microlensing

6.1 Cosmology

Observations of lensing can be used to study cosmology in a number of ways. The

use of time delays to measure the current value of the Hubble constant, as mentioned

in Chapter 3, has been carried out with several lens systems (e.g., Koopmans et al.,

2003; Kochanek & Schechter, 2004). One of the more recent applications of lensing to

cosmology is an effort to predict and observe the effects of weak lensing by large scale

structures by measuring the polarization of the cosmic microwave background (e.g.,

Seljak & Hirata, 2004). Statistical modeling and observations of lensing by galaxy

clusters provide possible ways to place constraints on the matter density of the uni-

verse (Qm) and the dark energy equation of state (e.g., Chae, 2003; Lopes & Miller,

2004; Wambsganss, Bode, & Ostriker, 2004).

Microlensing has more limited applicability to cosmology than other types of grav-

itational lensing. Some statistical studies of microlensing have been used to place up-

per limits on the value of Qm (Narayan & Bartelmann, 1996), but these constraints

are looser than bounds determined by other means.
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6.2 The Lens

Perhaps the most obvious factor that can affect microlensing is the mass distribution

that makes up the lens. For quasars lensed by foreground galaxies, the microlensing

fluctuations depend on the fraction of matter in the galaxy in compact objects, such

as stars, and the fraction in smooth dark matter (Schechter & Wambsganss, 2002).

Microlensing is also sensitive to substructure in the lensing galaxy (Metcalf et al.,

2003). The effect of varying the masses of the microlenses has been studied (Refsdal

& Stabell, 1993), and recently, Schechter, Wambsganss, & Lewis (2004) found that

the mass function of stars in the lensing galaxy can influence microlensing variability.

There have also been studies of microlensing in the Milky Way Galaxy. Microlens-

ing of sources in the Magellanic Clouds by lenses in the Galactic halo can provide

estimates of the contributions of Massive Astrophysical Compact Halo Objects (MA-

CHOs) to the halo (Alcock et al., 1993; Aubourg et al., 1993; Udalski et al., 1992;

Alard, 1995; Narayan & Bartelmann, 1996).

Another suggested use of microlensing is to search for extrasolar planets orbiting

lensing stars by looking for sharp peaks in the microlensing light curves (Mao &

Paczyfiski, 1991; Gould & Loeb, 1992). Bond et al. (2004) claim to have detected

a planet of about 1.5 Jupiter masses around a Galactic halo star using microlensing

observations.

6.3 The Source

The size of the source has a large effect on the fluctuations due to microlensing, and

this fact has been used to place constraints on the sizes of quasars using observations

of extragalactic microlensing (e.g., Wyithe, Webster, & Turner, 2000; Yonehara, 2001;

Shalyapin et al., 2002; Wyithe, Agol, & Fluke, 2002; Schechter et al., 2003). "Size"

in this context does not necessarily refer only to the size of the quasar as a whole, but

also to the sizes of regions of the quasar that emit different kinds of light that can

be distinguished observationally. A large extended source covers more microlensing
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caustics in the source plane at a single time than a small source, so its brightness varies

less as it moves relative to the lens and observer. As a general rule, the variability

of a lensed source will only be significantly affected by microlensing if the source

is smaller than the projection of the Einstein radius of a microlens into the source

plane (Courbin, Saha, & Schechter, 2002).

A related[ effect could be responsible for differences between emission-line and

continuum flux ratios, which have been found in a number of lens systems (e.g.,

Wisotzki et al., 1993; Schechter et al., 1998; Burud et al., 2002; Wisotzki et al., 2003;

Metcalf et al., 2003; Chartas et al., 2004). A possible explanation for these differences

is that the broad emission line regions of quasars are larger than the Einstein radii

of the microlenses, and the continuum-emitting regions are smaller than the Einstein

radii (Moustakas & Metcalf, 2003).

The dependence of temperature on radius in quasar accretion disks leads to an-

other related effect. Since the disk is cooler far from the center than it is near the

central black hole, the disk will have a larger effective radius when observed at long

wavelengths than it will when observed at short wavelengths. At long wavelengths,

therefore, we expect the magnitude variations due to microlensing to be suppressed.

The Shakura-Sunyaev accretion disk model (Section 7.4) incorporates the tempera-

ture profile of the disk so that we can study the effects on microlensing fluctuations

of varying wavelength and source size. Besides using photometric observations of mi-

crolensing, it has also been suggested that astrometric observations, looking for small

shifts in image positions due to microlensing, could constrain the sizes of quasars at

different wavelengths (Lewis & Ibata, 1998; Treyer & Wambsganss, 2004).

It is clear that source size is an important property for quasar microlensing. De-

pending on how the size of the source is measured, it is possible to imagine sources

that have the same size but differ in other ways. For example, if we describe the

size of a source by its half-light radius (rl/ 2), the radius at which half of the light is

interior to the radius and half of it is outside, then we can construct different source

models with the same half-light radii but with their brightness distributed in the

source plane in different ways. The brightness of one source may fall off with distance
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from the center like a Gaussian, while another could have the same brightness out

to a certain radius beyond which there is no light, but these sources could still have

equal half-light radii and therefore be the same "size." We will refer to this distribu-

tion of brightness as the "shape" of the brightness profile.1 The question we would

like to address is this: for sources with the same size, as determined by the half-light

radius, to what extent does the shape of each source influence the fluctuations due to

microlensing of the source? The answer to this question tells us how important the

shape of the source brightness profile is to observations and models of microlensing.

Agol & Krolik (1999) and Wyithe et al. (2000) have also looked at the connection

between source properties and microlensing, but their studies use a large number of

parameters for the disk models and focus on light curves and caustic-crossing events.

Our models have fewer parameters while still covering a wide range of disk shapes, and

our main tool for analyzing the effect on microlensing fluctuations is the magnification

histogram.

1 Note that all of the source models we consider (except in Appendix A) are circularly symmetric,
so "shape" does not refer to the shape of the contours of constant brightness, but rather how the
spacing of those contours varies with radius.
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Chapter 7

Accretion Disk Models

To study the effects of the shape of a source brightness profile on microlensing fluctu-

ations, we use a variety of highly idealized accretion disk models with different shapes

to model the source quasar. The first three models (Sections 7.1 to 7.3) are adopted

not because they are necessarily realistic, but because they are mathematically simple

and span a wide range of possibilities. The fourth model (Section 7.4), while still an

idealization, is physically motivated.

7.1 Gaussian Disks

One common type of accretion disk model is a circular two-dimensional Gaussian (e.g.,

Wyithe, Agol, & Fluke, 2002). The brightness profile can be written

G(r) =L __r 2/20 2

where L is the total disk luminosity (with units of erg/s), r is the radius from the

center of the disk and (x is the width of the Gaussian.

39

(7.1)



7.2 Uniform Disks

Although even less realistic than the Gaussian disk, a uniform disk is essentially the

simplest disk model imaginable. The uniform disk model has a value of L/(7rR2 ) for

radii 0 < r < R (where L is the total disk luminosity), and is zero for r > R.

7.3 Cones

The "cone" disk model is peaked at the center, and decreases linearly with increas-

ing radius until it reaches zero at a radius R, outside of which the model is zero

everywhere. The brightness profile is

C(r) = 3LR2 (1-r , r < R, (7.2)wrR2 \R/T

where L is the total disk luminosity, r is the radius from the center, and the factor

of 3/(7rR 2) is for normalization.

7.4 Shakura-Sunyaev Disks

The last circular accretion disk model we consider is a thin static disk, viewed face-on,

with a two-dimensional brightness profile determined by the temperature at each part

of the disk. Though more complicated than the previous models, it is still simpler

than the similar thermal disk models used by Agol & Krolik (1999) and Wyithe et

al. (2000). Many of the results we present in Chapter 9 use this disk model.

We begin with a temperature-radius relation for the disk from Shakura & Sunyaev

(1973):

T(r) = 2.049To (r )3/4 (- ' (7.3)

where To is the peak disk temperature, and rin is the radius of the inner edge of the

accretion disk, which we take to be the radius of the innermost stable circular orbit

around the central Schwarzschild black hole. Thus, rin depends on the black hole
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mass.

We assume that the disk radiates as a black body with an energy density per unit

wavelength u(A, T) that depends on the temperature, and therefore on the radius.1

Using Equation (7.3), we can write the distribution as a function of wavelength and

radius:

~A~dA -87rhc f F 4 _hc (r 3/4 rin Y 1/41 1>d (74
u(A = r-- -- i- 048~ - 1 dA. (7.4)A5 exp [ AkTo8 -rin r

It is convenient to use dimensionless variables for the parameters, so we define a

dimensionless wavelength, x, and a dimensionless radius, s:

kTo rx _ cA, , (7.5)
hc rin

which makes the black body distribution

u(x, s)dx = {exp [x ( I/2) -1} dx, (7.6)
X5~ ~~~ - s-1/2

where we define a 8rr 2_hc (kT ) . For the maximum disk temperature To (at

r = 1.36rin), the peak of u(x, s) is at x0 = 0.2014.

Since the disk radiates at cooler temperatures with increasing distance from

the center, observations at different wavelengths will detect different parts of the

disk (Wambsganss & Paczyfiski, 1991; Gould & Miralda-Escude, 1997). To take the

wavelength dependence into account, we define a set of filters associated with specific

ranges of the dimensionless wavelength x. The filters are numbered in the direc-

tion of increasing wavelength, with filter 0 centered at x = xo. The ranges of x are

chosen so that the filters span the space of wavelengths without overlapping (that is,

Xi,max Xi+l,mi n where Xi,min and Xi,max are the minimum and maximum wavelengths

for filter i). We assume that each filter transmits 100% of the light in its wavelength

1 All wavelengths are assumed to be in the quasar frame, so to compare with wavelengths in the
observer's frame the quasar's redshift must be accounted for.
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Figure 7-1: Radial intensity distributions (27rsI(s)) for an rin = 0.2 rE Shakura-
Sunyaev disk model in four filters, with central wavelengths x-1 = 0.0271, o =
0.2014, x1 = 1.498, and x15 = 4.086. The vertical axis is normalized so that the
total disk intensity equals unity.
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range. The filters have constant A(log x) = Ax= 1 soxi 

Xi e¢0.2i-1.6025 (77)

where xi is the central wavelength of filter i.

To create a model of the disk as it would be seen through a particular filter i, we

integrate the black body distribution over the wavelengths included in the filter:2

/Xf ma.z=U() u(x, s)dx. (7.8)

Then we can define

Li = 27r j u(s)sds, (7.9)

the total luminosity of the disk in filter i. If we change variables from s back to r for

comparison with the Gaussian disk, uniform disk, and cone models, and define

fi4(r) Ci( () (7.10)

then the flux from the disk in filter i is

Li
Fi(r) = - fi(r), (7.11)

rin

which has the same form as Equations (7.1) and (7.2). Radial brightness profiles in

four filters are shown in Figure 7-1.

The Shakura-Sunyaev disk model that we end up with depends on two parameters:

rin, the innermost radius of the disk, and i, the filter number. The temperature To

only determines the relation between A and x.

2For narrow filters, the wavelength across a single filter can be treated as a constant, xi, as
in Kochanek (2004). This eliminates the need to do the integral in Equation (7.8), since ui(s)
u(xi, s). Note, however, that in Kochanek (2004), the factor of (1 - r/7r)1/ 4 in Equation (7.3) is
neglected, so those disk models differ significantly from ours for r r rin.
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7.5 Other Models

Our Shakura-Sunyaev disk model is similar to the thin accretion disk models used

by Agol & Krolik (1999) and Jaroszyfiski, Wambsganss, & Paczyiski (1992). Those

models are more complicated, however, as they include rotating black holes, tilted

disks, and relativistic effects. (See Appendix A about elliptical Gaussian disk mod-

els, which can be used to approximate tilted disks.) Microlensing simulations with

nonthermal models have also been considered (Rauch & Blandford, 1991), but we do

not include such models in this study.
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Chapter 8

Magnification Patterns

The effect of microlenses on the total macroimage flux may be represented by a pat-

tern of caustics in the source plane, where the value at each point of the pattern is

equal to the magnification of the source at that point, relative to the average macroim-

age magnification (Kayser, Refsdal, & Stabell, 1986; Paczyfiski, 1986a; Wambsganss,

1990; Wambsganss, Schneider, & Paczyfiski, 1990). The microlensing light curve of

a point source can be found by tracing a path across the magnification pattern (e.g.,

Paczyiski, 1986a; Wambsganss, Schneider, & Paczyfiski, 1990; Kochanek, 2004). For

an extended source, we must first convolve the source profile with the magnification

pattern to find the magnification due to microlensing at each location in the source

plane (e.g., Wyithe, Agol, & Fluke, 2002).

The patterns, which were kindly provided by Joachim Wambsganss, were made

using ray-shooting techniques that simulate sending rays from the observer through

the lens to the source plane, as described in Chapter 4 (Kayser, Refsdal, & Stabell,

1986; Schneider & Weiss, 1987; Wambsganss, 1990; Wambsganss, Paczyfiski, & Katz,

1990; Wambsganss, Schneider, & Paczyfiski, 1990). The patterns are 2000 by 2000

pixel arrays with sides of length 100 Einstein radii. We examined two cases: a positive

parity image (minimum of the time-delay function) with convergence , = 0.4 (all in

compact objects), shear = 0, and theoretical average magnification / = 2.778;

and a negative parity image (saddle point) with r = 0.6 (again, all in compact

objects), - = 0.6, and [ = -5. Magnification patterns for each case are shown in
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Figure 8-1: Magnification patterns in the source plane for a positive parity image
with = 0.4, fy = 0 (left) and a negative parity image with ti = -y = 0.6 (right).
The length of each side is 100 Einstein radii. The white lines on the greyscale bar
correspond to magnifications that are 1, 2, 3, and 4 times the average macroimage
magnification. Dark regions have greater magnification than light regions. The black
circles have radii of 1, 3, and 6 Einstein radii for comparison with the accretion disk
models.

Figure 8-1. The positive parity simulation included 8011 lenses, and the negative

parity simulation included 56,224 lenses.

For each disk model we wished to study, we used the relevant equation from

Chapter 7 to create a 2000 by 2000 pixel array for the disk brightness profile, A. Let

us call the original magnification pattern M. By the convolution theorem, we can

convolve M and A by multiplying their two-dimensional Fourier transforms and then

taking the inverse Fourier transform of the product. This produces a new 2000 by

2000 pixel magnification pattern,

C = fft-1 [fft(M)fft(A)], (8.1)

where fft and fft-1 stand for the fast Fourier transform and the inverse fast Fourier

transform, respectively (e.g., Press et al., 1992). Figure 8-2 shows two examples of

magnification patterns from convolutions with Shakura-Sunyaev disk models. Sample
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Figure 8-2: Examples of magnification patterns from convolving Shakura-Sunyaev
disk profiles with the original positive parity pattern in Figure 8-1. The innermost
radius of each disk is rin = 0.2 rE. For the left pattern, the filter is i = 0 with
central wavelength x0 , the wavelength of the peak of the blackbody distribution at
the maximum temperature To; the disk intensity peaks around r = 1.4rin at this
wavelength. For the right pattern the filter is i = 10 with central wavelength x1o =
7.44xo, and the peak of the disk intensity is approximately at r = 2.2rin. The scale
and the reference circles are the same as in Figure 8-1.

light curves for paths through these patterns are shown in Figure 8-3.

The longest wavelengths used in our simulations were chosen so that at least

95% of the accretion disk intensity would lie within the 2000 by 2000 pixel area of

the magnification pattern. At longer wavelengths, the cooler temperatures of the

disk at large radii make the outer regions of the disk more important than in the

shorter-wavelength filters. If we use too long a wavelength, a large fraction of the

disk intensity spills out of the area of our simulation, making the results inaccurate.

The wavelength at which this occurs varies with rin. Although the cutoff is 95%, for

the majority of filters used the fraction of light included in the 2000 by 2000 pixel

area is above 99%.

At the short-wavelength end, the cutoff was more arbitrary since the disk profiles

and their magnification histograms do not vary much with wavelength beyond a

certain point that depends on the value of rin. We chose to use wavelengths short
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Figure 8-3: Sample light curves from the magnification pattern on the left in Figure 8-
1 and both patterns in Figure 8-2 ( = 0.4, = 0). The source travels on a vertical
path of length 4 Einstein radii in the center of each pattern. The thin curve is from
the unconvolved positive parity pattern, the medium curve is from the convolution
with the disk viewed in the filter associated with the peak intensity at the maximum
temperature To (i = 0), and the thick curve is from the convolution in the filter that
is a factor of 7.44 longer in wavelength (i = 10).

enough to probe values of the half-light radius (see Section 9.2) close to the inner

radius rin (within one Einstein radius).
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Chapter 9

Magnification Histograms

9.1 Histograms of Convolutions with Shakura-Sunyaev

Disks

The values in a magnification pattern are ratios of the macroimage's flux when the

source is at a particular point in the pattern, F(r), to the average macroimage flux,

F = F,, where Fs is the unlensed source intensity. We convert these ratios to

magnitude differences,

Am = -2.5 log1o (Fr) (9.1)

and plot a histogram of Am for the convolution with each disk model, as in Wamb-

sganss (1992). The number of pixels that fall into each bin of Am is represented as

a probability for the macroimage to have a certain magnitude shift by dividing the

number of pixels in the bin by the total number of pixels. Histograms of the original

magnification patterns are shown in Figure 9-1.

We made magnification patterns for convolutions with Shakura-Sunyaev disks in

several filters with ri = 0.2 rE, 0.5rE, rE, and 3 rE. Some histograms from these

patterns are shown in Figures 9-2 and 9-3.

For long wavelengths or large rin, the histograms are sharply peaked at the average

macroimage magnification, and there is little difference between the positive and

negative parity cases. For small disks at short wavelengths, a low-magnification bump
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Figure 9-4: Dimensionless half-light radius (1/2 = rl/2/rin) versus dimensionless
wavelength, x.

is visible for the positive parity image but is absent for the negative parity image.

This bump is due to the fact that an image that is a minimum (positive parity) must

have at least unit magnification, so the histogram is cut off at the low-magnification

end. At lower magnification, the negative parity histogram has a tail that extends

down to Am 2 - 3. For the positive-parity histograms with two peaks, the left

one around Am = is associated with a case where there are no extra microimage

minima, while the right peak around Am = 0 is associated with the case of one extra

microimage pair (Rauch et al., 1992).

9.2 Histogram Statistics

Since the intensity from disks in different filters falls off at different rates, we can use

the half-light radius, r1/2 , as an alternative measure of wavelength (see Figure 9-4).

For each magnification histogram, we calculated the standard deviation or root mean

square (rms) and skewness of the data and plotted these statistics against rl/2/rE.

The results are shown in Figures 9-5 and 9-6.

For all disk sizes, the rms decreases with rl/2/rE. This shows that the effect of
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Figure 9-5: Standard deviation (rms) and skewness of convolutions of the ic = 0.4,
ye= 0 magnification pattern with various Shakura-Sunyaev disk profiles. Different

plot symbols are used for different values of ri (given in Einstein radii). Dashedcurves for the Gaussian disk models are shown for comparison. Note that positive

skewness is associated with brighter (more negative) magnitudes.

microlensing is diminished at longer wavelengths and for larger disks. These trends~~~~~~~~~~~ 0.2

0.0 ......... 0.4........

0 2 4 6 8 0 2 4 6 8

are expected since the source must be smaller than the microlens Einstein radii) us for

microlensing to play a significant role (see Chapter 6).F sing the 9-5:same methods described in Section 9., we produced magnification his- 0.4,

tograms from convolution pattern with varioussian disks, unyaeiform disks, and confiles. ThDifferent
phistogramls arell had very similar rms andlues of rin (given in Einstein of radii)./2 , so only the

curves for the Gaussian disk models are shown in Figures 9-5 and 9-6. For a given value of

r112 , there is little practical difference between the rms values of histograms producedsewith the Gaussian disks and those produced with the Shakura-Sunyaev accretiondisk models. This diminisuggests that, to a goonger waved approximation, the microlensing fluctua-aretions only depented sion re 2, and the dimust be smay be modeled with any reasonable surface forbrightness profile. We examsine this claim more quantitatively in the next seetion.UsiNote that in Figure 9-4, at a given dimensction 9.less wavelength, the half-light radius
togramdepends from convolutihus o withe black hole mass. Also, ithe scaling between the

dimensionlesstograms all had verphysimical wavelengthr rms and skewnesnds ason the valuesnction of rn/2, so only theile

curves for the maiusn iparameter that mattershown in Figurelations 9-5 and 9-6. For actual obsern value tionsr1/2, there is little practical difference between the rms values of histograms produced

ithe black hole mass and disk those produed will alsoth the Shakura-Sunyaev accretion

disk models. This suggests thate histogramso, the mioskewness, we begin to see some greaterua-tions only depend on rj/2, and the disk may be modeled with any reasonable surfacebrightness profile. We examine this claim more quantitatively in the next section.Note that in Figure 9-4, at a given dimensionless wavelength, the half-light radiusdepends on in and thus on the black hole mass. Also, the scaling between the
dimensionless and physical wavelengths depends on the values of in and To. So while

tile main parameter that matters in our simulations is r/2, for actual observations

tile black hole mass and disk temperature will also matter.

In the third moment of the histograms, the skewness, we begin to see some greater
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Figure 9-6: Standard deviation (rms) and skewness of convolutions of the n = 0.6,
= 0.6 magnification pattern with various Shakura-Sunyaev disk profiles. Different

plot symbols are used for different values of rin (given in Einstein radii). Dashed
curves for the Gaussian disk models are shown for comparison. Note that positive
skewness is associated with brighter (more negative) magnitudes.

differences between the accretion disk models and the Gaussian models. However,

since the skewness is much more difficult to measure with observations than the

standard deviation, these differences may well be unimportant for most applications.

9.3 Chi-square Tests

One way to compare the magnification histograms associated with different source

profiles, besides looking at their rms and skewness, is to try to get a sense of the

amount of observation necessary to distinguish different kinds of sources. The proce-

dure chosen here to do this involves using chi-square tests.

First, we consider each histogram as a probability distribution for measuring dif-

ferent values of Am. We then simulate a certain number of random observations (n)

of each histogram, and use the results to make two new histograms, A and B (where

Ak or Bk is the number of counts in bin k), each containing a sample from one of the

original magnification histograms. Computing the reduced chi-square (X>) of the two

sample histograms,
X2= 1 (Ak- Bk) 2 (9.2)- Ak + Bk(9.2)
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Figure 9-7: Reduced chi-square measure of the differences between histograms from
convolutions with different disk models. For the shape comparison, the two models
used are a Shakura-Sunyaev disk and a Gaussian disk, each with half-light radius
r_/2 0.7 65 rE. The two models used for the size comparison are both Gaussian
disks, one with half-light radius r1/ 2 = 0.5rE and the other with r/ 2 = 0.7 5rE.
Higher values of x2 indicate a greater ability to distinguish the two models.

where I is the number of degrees of freedom, gives an indication of how likely it is that

the two samples came from the same parent distribution. We can use the chi-square

probability function (based on the incomplete gamma function) to express the result

as the probability that x2 would be greater than or equal to the value we found if the

two samples were from the same parent distribution.

If we repeat these computations for various values of n, we can construct X2(rn)

and P(n), the reduced chi-square and probability described above as a function of the

number of observations. Since our ability to distinguish the two original histograms

should increase with n, we expect that (n) should grow and P(n) should fall off

as we increase the number of observations. Using these functions, we can estimate a

value of n that is a sufficient number of observations to tell the difference between the

two cases. To decrease variability due to the random nature of this process, we create

several sample distributions (for all results presented here, 10 samples) and average

over the results for each value of n.

Figure 9-7 shows the reduced chi-square for representative shape and size compar-

isons. The slopes of X2(n) for comparisons between histograms of convolutions with

Shakura-Sunyaev disk models and histograms of convolutions with Gaussian disks,
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Table 9.1: Slopes of x2(n) for disk shape comparisons. The disk models listed are
compared to a Shakura-Sunyaev model; all of these models have half-light radius
r1/2 = 0 .76 5 rE. The number of observations necessary to tell that the two histograms
are different with 95% confidence, n95%, is also listed.

uniform disks, and cones are given in Table 9.1. Smaller slopes correspond to greater

similarity between the models.

Note that matching the "number of observations" n to an actual number of ob-

servations to be made with a telescope is not necessarily a straightforward task. The

observations in these simulations are randomly drawn from the magnification his-

tograms. Real observations, unless separated by times greater than the characteristic

time scale for microlensing fluctuations, will be correlated since the image magni-

tude changes smoothly over short time scales. One could multiply the number of

random observations n by the characteristic time scale for the lens to estimate the

total amount of time over which observations would need to be taken to determine

the shape and structure of the source, but this estimate would not be very accurate

since it would not account for rapid events like caustic crossings, or for periods of

time much longer than the characteristic time scale over which the image magnitude

stays almost constant.

One way to use the chi-square results is as a relative measure of similarity between

histograms, comparing results that probe one property of the source with results that

probe a different property. Table 9.2 gives the slope of X2(n) for comparisons between

Gaussian disk models with different sizes. We can compare these results to those that

examine the effect of disk shape (Table 9.1).

We can also characterize the similarity between two histograms by asking how
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Original Pattern Disk Model Slope of x2(n) n95% (thousands)
- = 0.4, "y = 0 Gaussian (7.834 ± 0.163) x 10-6 44

Uniform (3.597 + 0.028) x 10 - 5 10

Cone (8.780 0.183) x 10- 6 40
= y = 0.6 Gaussian (7.324 ± 0.156) x 10- 6 52

Uniform (2.813 ± 0.022) x 10 - 5 14
_______ _ ~Cone (9.396 ± 0.175) x 10-6 36



Table 9.2: Slopes of X2(n) for size comparisons between Gaussian disks. The sizes
of the two disks for each chi-square test are listed in columns two and three. The
number of observations necessary to tell that the two histograms are different with
95% confidence, n95%, is also shown here.

many random observations we would need to be 95% confident that the parent dis-

tributions are different. The probability that the distributions are the same, as a

function of the number of observations, P(n), is shown in Figure 9-8 for one shape

comparison and one size comparison. The results are plotted only for the positive

parity image, but the negative parity case gives very similar results. The numbers of

observations needed for 95% confidence (n9 5 %) for all of the histogram comparisons

are listed in Tables 9.1 and 9.2.
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Original Pattern rl/2/rE #1 rl/2/rE #2 Slope of x2(n) n95% (thousands)
= 0.4, r = 0 0.5 0.55 (8.392 i 0.179) x 10-6 41

0.5 0.75 (1.666 ± 0.006) x 10 - 4 2.4
2.5 2.55 (8.820 ± 0.224) x 10-6 48
2.5 2.75 (8.795 i 0.046) x 10 - 5 3.2

= -y = 0.6 0.5 0.55 (8.612 i 0.156) x 10-6 42
0.5 0.75 (1.247 + 0.003) x 10 - 4 3.8
2.5 2.55 (1.055 0.026) x 10 - 5 51
2.5 2.75 (1.246 i 0.005) x 10 - 4 4.1
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Figure 9-8: Probability that two sample distributions have the same parent distri-
bution as a function of the number of observations in the samples. On the left we
compare histograms from disks with rl/ 2 = 0.7 65 rE but with different shapes (a
Shakura-Sunyaev model and a Gaussian model), and on the right we compare his-
tograms from two Gaussian disks that differ in size by 50% (with half-light radii 0.5rE
and 0.75rE). The horizontal dashed lines show where the probability is 5%, which is
the threshold we used to determine the number of observations n95%.
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Chapter 10

Conclusions

We have produced several magnification histograms by convolving source brightness

profiles with a variety of shapes and sizes with both positive and negative parity image

magnification patterns. These histograms can be thought of as distributions of the

probability to observe the macroimage with a certain magnification. We compared

histograms associated with disks of different shapes and different sizes by computing

moments of the histograms (rms and skewness), and by computing chi-square values

for pairs of histograms.

By plotting rms and skewness against half-light radius (Figures 9-5 and 9-6), we

discovered that for any particular disk model there is a definite dependence of rms and

skewness on the half-light radius, but if we compare disk models with different shapes

but the same half-light radius, the rms and skewness of the associated histograms are

only slightly dependent on the shape of the model. This suggests that size differences

have a more significant effect on microlensing fluctuations than shape differences do,

at least for circular sources.

The chi-square tests confirm this result, showing that the number of observations

needed to distinguish sources with differently-shaped brightness profiles but the same

size is significantly higher than the amount needed to tell the difference between

sources with different sizes but the same shape of the brightness distribution (see

Figure 9-8).

One might object that in some cases, a difference in shape appears to have more
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of an effect than a difference in size. For instance, by looking at Tables 9.1 and 9.2

we see that the number of observations required to distinguish a uniform disk from

a Shakura-Sunyaev disk of the same size is only about one-fourth the number of

observations needed to tell the difference between two Gaussian disks with half-light

radii of 2 .5rE and 2 .55rE. However, it is always possible to make the difference in size

less significant than a difference in shape if we choose two disks with arbitrarily similar

half-light radii. The problem is that we do not know if, for example, a Gaussian disk

and a Shakura-Sunyaev disk with the same size are more similar to each other than

two Gaussian disks that have a 10% difference in size. (Note that we are talking

about the disks themselves now, not the histograms produced by convolving patterns

with those disks.)

One simple way to evaluate the similarity of two disks is to look at their brightness

profiles and make the judgment by eye. In Figure 10-1, we plot radial brightness

distributions for a pair of disks with the same size but different shapes, and another

pair with the same shape but different sizes. The slope of x2(n) and the number of

observations needed to tell the associated histograms apart with 95% confidence for

the pair of disks on the left and the pair on the right differ by less than 5%. If size

and shape mattered equally to microlensing, we would therefore expect that the disks

on the left were just as similar to each other as the disks on the right. However, this

is clearly not the case. The disks on the left, with different shapes, have extremely

different brightness distributions, whereas the brightness distributions of the disks

on the right are nearly equal. Despite this observation, the chi-square tests show

that it is just as difficult to tell apart the histograms associated with the disks on

the left as it is those associated with the disks on the right. This is strong evidence

that the dependence of microlensing variability on source shape is far weaker than the

dependence on source size. We can model the accretion disk by any circular brightness

profile we like-Gaussian disk, uniform disk, or any other well-behaved disk model-

and our model will produce the correct results, as long as it is the correct size.
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Figure 10-1: Disk profiles for disks with different shapes (left) and sizes (right). The
disks on the left both have half-light radius r/ 2 = 0.7 6 5 rE, but one is a Shakura-
Sunyaev disk (solid line) and the other is a cone (dashed line). The disks on the right
are both Gaussian disks, but they have slightly different half-light radii as indicated
in the legend. The slope of x2(n) is about the same for the histograms that come
from each pair of disks, even though the disks on the right are much more similar to
each other than those on the left.
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Appendix A

Elliptical Disk Models

The results of the previous few chapters only used accretion disk models with circular

symmetry. In actual observations, however, even if a disk is circular it is likely to be

inclined at some angle relative to our line of sight, so that the projection of the disk

on the sky looks more like an ellipse. We can ask, then, what kind of microlensing

fluctuations we get with various elliptical sources.

It is safe to assume that elliptical models with the same shape but different sizes

will lead to magnification histograms that vary with size in a similar manner to the

circular models, so we will not examine the effect of the overall disk size here. The

properties of the elliptical disks that we are interested in are their ellipticity and their

orientation. To study these properties, we use elliptical Gaussians for the disk model.

We can write these models as

2 2

Ge1(x, )= 2 - be 2 2 (A.1)27ab

where L is the total disk luminosity, ( = x cos 0 - y sin , ( = x sin 0 + y cos , and the

x and y directions line up with the rows and columns of our two-dimensional array.

This model has three parameters: a and b, the widths in the x and y directions before

rotation; and o, the angle of rotation (measured clockwise from the positive y-axis).
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Figure A-1: Magnification histograms for convolutions of the s = 0.4, = 0 pattern
with a circular Gaussian (solid line), and with an elliptical Gaussian whose major
axis is 6 times longer than its minor axis (dashed line).

A.1 Ellipticity

In the first set of models, a and a remain fixed while b varies from b= a to b = a/6.

We convolved these models with the positive parity r, = 0.4, y = 0 magnification

pattern. Two of the resulting magnification histograms are shown in Figure A-1.

Results of chi-square tests between the circular model (b = a) and models with

various ellipticities are listed in Table A.1. The slopes are quite large compared to

those in Chapter 9. However, in some sense a change in ellipticity is more of a change

in size (but only in one dimension) than a change in the shape of the brightness

distribution.

A.2 Orientation

In the second set of models, a and b remain fixed (with a = 4b) and ca varies from 0°

to 90° . Convolving these models with the n, = 0.4, y = 0 magnification pattern would
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Table A.1: Slopes of X2(n) for elliptical Gaussians with different ellipticities. The
disk models listed are compared to a circular Gaussian model, and a/b is the ratio of
the width along the major axis to the width along the minor axis. The number of ob-
servations necessary to tell that the two histograms are different with 95% confidence,
n95%, is also given.

a/b Slope of x(n) n95r% (thousands)
1.5 (1.450 ± 0.005) x 10- 4 3.6
3 (5.167 0.009) x 10 - 4 < 2
6 (7.610 ± 0.012) x 10- 4 < 2

Table A.2: Slopes of x2(n) for elliptical Gaussians oriented at different angles with
respect to the shear of the rn = = 0.6 magnification pattern. One disk in each case
has its major axis aligned with the shear, and the angle between the major axis of
the other disk and the shear is given in the first column. The number of observations
necessary to tell that the two histograms are different with 95% confidence, n9 5 %, is
also given.

Angle Slope of x2(n) n95 % (thousands)
30° (8.285 ± 0.034) x 10 - 5 4.0
60° (3.885 ± 0.007) x 10

- 4 < 2
90° (5.249 + 0.007) x 10 - 4 < 2

not tell us much since that pattern has no preferred direction. The negative parity

= y = 0.6 pattern has shear in the x-direction, so we convolve the models with

that pattern and examine how the magnitude fluctuations vary as the angle between

a and the direction of shear changes. Two of the resulting magnifiction histograms

are shown in Figure A-2.

Results of chi-square tests between the parallel model (a = 0) and models with

various orientations are listed in Table A.2.

A.3 Conclusions

In both cases, when we vary ellipticity and when we vary orientation, the slopes

of X2(n) are generally higher and the values of n95% are generally lower than for

the shape comparisons and the size comparisons of Chapter 9. This suggests that,
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Figure A-2: Magnification histograms for convolutions of the = -y = 0.6 pattern
with elliptical Gaussians, one oriented parallel to the shear (solid line), and the other
perpendicular (dashed line).

unlike the shape of the brightness distribution for circular disk models, ellipticity

and orientation can have quite a large effect on microlensing fluctuations. Further

investigations of non-circular disk models may therefore prove interesting.
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