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Abstract
In this thesis, I investigate the static and dynamic properties of a granular heap
made cohesive by an interstitial fluid. I present the results of experimental work
measuring the maximum angle of stability and the angle of repose of such a pile in
a rotating drum geometry. I discuss existing models for the stability of a cohesive
granular pile and present a new model that predicts the maximum angle of stability
from the pile's geometry and from the cohesive forces between grains. This model
agrees well with experiment and suggests that friction is insignificant in determining
the maximum angle of stability. In addition, I investigate the effect of the viscosity
of the interstitial fluid on the dynamic properties of a granular pile. In particular,
I examine the transition from stick-slip motion to continuous motion as well as the
effect of viscosity on the angle of repose of the granular pile. I offer a qualitative
explanation for my observations of these phenomena.

Thesis Supervisor: Arshad Kudrolli
Title: Associate Professor
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Chapter 1

Introduction

Granular materials surround us. They are found in agriculture in the form of sugar,

seeds, and cereals; in geology in the form of lava flows, sand and stones; and in indus-

try in the form of coal, drug compounds, and concrete. Considering the ubiquitous

nature of granular material, there is little theory to describe it. Granular materials

sometimes behave like a liquid and sometimes behave like a solid; however, it is not

obvious whether the same equations, concepts and theories that apply to molecular

materials can be applied to the granular form of matter[1]. Theory of granular mate-

rials may eventually inspire better ways of handling commodities, improved models

of the Earth's morphological evolution and superior drilling methods.

Non-cohesive granular materials interact with other particles and boundaries mostly

through contact forces, such as hard-core repulsion or friction. In the presence of inter-

stitial fluids, liquid bridges can occur between grains. Surface tension in these bridges

leads to cohesive forces, which can alter both the static and dynamic properties of a

system[1-8].

1.1 A Static Heap

One of the simplest questions one can ask about a granular heap is "Is it stable?"

If a pile is stable, one might ask, "How steep we can make its surface before it

becomes unstable?" Anyone who has attempted to build a sandcastle knows that wet

13



piles of sand can be made steeper than dry ones. However, the exact relationship

between the force with which a liquid bridge binds two particles and the maximum

angle of stability, m, is not obvious. A number of studies have tried to relate the

surface tension and volume of liquid added to a granular system to the pile's increased

stability [5-8] but no existing model offers good, constant agreement with experiment.

In the past, some of the difficulties in describing the stability of a granular heap arose

from discrepancies in how stability was measured. The definition of 9 m is relatively

recent. Much of the older literature describes a "critical angle" for grains, which

was often studied experimentally by pouring grains and measuring the angle of the

resulting pile [8]. Now, this angle is defined as the angle of repose, r; it is not the

maximum angle for which a pile is stable under static conditions.

We chose a rotating drum geometry for our experiments. This setup allowed us

to slowly increase the angle of our pile until it became unstable and failed through an

avalanche. The angle at which the pile was observed to fail in this geometry is Sm.

1.2 A Dynamic Heap

Although it is clear that the surface tension of a fluid is important in determining

the cohesive force, the role of the viscosity of the fluid is less obvious. It is a common

observation that highly viscous fluids such as honey feel "stickier" than less viscous

fluids such as water. This is because liquids with high viscosity experience strong

viscous forces that resist shearing. Therefore, viscous forces may have a significant

effect on the dynamics of the grains and thus on the angle of repose [1]. Our ex-

perimental setup allows us to measure r, at which grains stop flowing to end an

avalanche. Through an investigation of Or, we will study the effect of viscosity on the

dynamic properties of the system.

14



1.3 Thesis Organization

This thesis will be organized as follows. We will discuss the experimental procedures

in Chapter 2. In Chapter 3 we will discuss the static properties of a granular heap.

Here, we will examine current models for predicting the surface slope at which a static

pile becomes unstable and propose a new model. The dynamic properties of a heap

will be discussed in Chapter 4. Chapter 5 will summarize our findings and propose

future directions for research on cohesive granular materials.
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Chapter 2

Experimental Methods

2.1 Experimental Apparatus

The experimental apparatus consists of a clear plastic drum with a diameter of 28.5

cm and a width of 14.5 centimeters. See Figure 2-1. Unless otherwise noted, all

experiments were preformed using spherical glass particles. The particles had diam-

eters ranging from 0.75mm to mm1 . The drum was half filled with 6 kg of grains

premixed with between 0.1 ml and 20 ml of water or silicone oil. The properties of

these fluids are listed in Table 2.1. We will report the amount of fluid added in terms

of the volume fraction, Vf, which is defined as the volume of added liquid divided by

the volume occupied by the particles.

The drum was placed upright on two parallel rods, one of which was connected

'All particles were obtained from Jaygo, Inc.

Fluid Viscosity (Centistokes) Surface Tension (Ynes)
cm

Water 1 70
Silicone Oil-1 5 19
Silicone Oil-2 10 20
Silicone Oil-3 100 20
Silicone Oil-4 1000 21

Table 2.1: The fluids used in our experiments allowed us to examine a range of
viscosities and surface tensions.
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Figure 2-1: The experimental setup consists of a transparent cylinder into which
grains are placed.

E

Figure 2-2: The cylinder was backlit to produce images showing a dark heap against
a white background.

to a clock motor. The second rod was able to rotate freely. We used four motors to

vary the drum's rotation rate from 9x 10- 4 rpm to 0.56 rpm. An initial obstacle in

measuring the surface slope of a pile was that the wet particles stuck to the drum

walls. To overcome this, the drum was backlit brightly enough that the light could

pass through the thin layer of grains that accumulated on the sides of the drum. The

light was unable to pass through the 14.5 cm-thick bulk of the pile. This produced

images with a sharp contrast between the granular heap and the background. See

Figure 2-2. Images were acquired with a Photron Fastcam-X digital camera model

number 1280PCI and were taken at a rate of three frames per second. At this rate, the

slope of the pile changed no more than 0.2 degrees between frames. This introduced

insignificant error considering that within a run, measured values of 0 m typically

18
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Figure 2-3: We observe two regimes in the rotating drum geometry. (a) The inclina-
tion of the pile increases with the rotation at the drum until m is reached at which
point the heap avalanches to r. This data was taken at w = 0.028 rpm and the grains
used were dry. (b) The grains flow continuously and the inclination of the heap is
relatively constant. Here, w = 0.56 rpm, Vf = 0.008, and the mixing fluid was silicone
oil with = 100 centistokes

varied by about two degrees.

Images were analyzed using Matlab code that found the boundary that marked

the surface of the pile by locating large gradients in pixel value. The slopes of the pile

were calculated from the successive images and stored in a vector for later analysis.

2.2 Observations

We observed two main regimes of behavior. In the stick-slip regime, the slope of

the pile increased with w, until the heap reached Sm. At this point, the grains were

19
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observed to avalanche and the pile's angle decreased until the grains stopped flowing.

The angle to which the pile relaxed after an avalanche the angle of repose, or 0 r. This

process then repeated. In the continuous regime, the grains were observed to flow

continuously and the slope of the pile was constant. Now that we have presented

an overview of the experimental logistics, we will leave the remainder of observations

to be discussed in their appropriate chapters and present experiment and theory

together.
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Chapter 3

Stability of a Static Pile

In this chapter, we will present experimental observations of the maximum angle of

stability. Then, we will attempt to model 0m in a dry system. Finally, we will use

the insight we gain from this analysis to study 0m for a cohesive heap and compare

various models with our experimental results.

3.1 Observations

We wish to confirm that our drum is rotating slowly enough that we can approximate

the pile as static. That is, we must show that the drum's rotation does not effect 9 m.

We find that this is the case. The maximum angle of stability was observed to not

depend on the rotation speed of the drum as long as the system was in the stick-slip

regime. See Figure 3-1.

Particle Diameter (mm) F(de
1 20

1 70

0.5 70
0.1 70
6.0 70

0m (degrees)
30.8
37.2

45.1*
50.6*
28.4

Table 3.1: The maximum angle of stability for spherical particles premixed with fluid
depends dramatically on the surface tension of the fluid, particle size, and the material
of the particles. *Unpublished data courtesy A. Samadani.
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Glass
Glass
Glass
Plastic

Particle Diameter (mm) 0m

0.9
0.5
0.1
6.0

(degrees)

23.9
24.0*
25.8*
24.3

Table 3.2: The maximum angle of stability for dry, spherical particles is measured to
be approximately 24° regardless of the size or material of the particle. *Unpublished
data courtesy A. Samadani. Higher observed angle for 0.1mm particles likely due to
ambient humidity.

Figure 3-3: The stability of a dry grain on the surface of a pile is determined by the
three spheres that support it.

We found that as a function of volume fraction, the angle of maximum stability

rises rapidly and saturates [1]. See Figure 3-2. Table 3.1 shows that the saturation

value of m changes with surface tension of the liquid, the particle size, and the size of

the system. However, for dry spherical particles, 0m is approximately 24° regardless

of the particle size or the material from which the particles are made [8]. See Table

3.2

In this chapter, we will present two existing models used to predict the maximum

angle of stability of a dry or cohesive pile. We will then present a new model for

predicting Orn.

23
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3.2 The Dry Case

3.2.1 Geometrical Arguments

One approach to predicting the maximum angle of stability in a dry pile of spheres

was proposed in 1997 by Albert, et al [8]. This model uses only geometrical arguments

and states the following. If a particle is added to the surface of a pile of randomly

packed spheres, its stability will depend on only the arrangement of the three base

spheres which support this top sphere. See Figure 3-3. The local slope at this point

on the surface is defined as the slope of a plane passing through the centers of the

base spheres. To simplify the calculations, we may assume that all three of the base

spheres touch each other [8]. In order for the top sphere to be stable, a vertical

line that passes through the center of the top sphere must pass through the triangle

formed by connecting the three centers of the base spheres. See Figure 3-4. The

maximum local angle 0 of a base that can support an additional sphere is a function

of the orientation of the base spheres on the plane, q, and is given by the following:

1
0 = arctan cos (3.1)

CocoCs 

The critical angle 9c for a frictionless, adhesionless pile is given by the average of this

local maximum stable angle over q.

/ = A arctan v os= 23.8° . (3.2)C1 A/ cos X

This calculated critical value is in excellent agreement with the value of m for a

dry pile that we obtain experimentally from both glass and plastic spheres ( 24°).

See Table 3.2. This consistency between experiment and theory of frictionless, adhe-

sionless particles leads us to conclude that friction is of minor importance, if any, in

determining the angle of maximum stability of a dry pile.

24



Figure 3-4: The corners of the tetrahedron represent the centers of spheres. (a) The
configuration is stable if the projection of the center of the top sphere straight down
is within the base of the tetrahedron. (b) When we increase the slope of the plane
passing through the base spheres to a sufficiently high angle, the projection of the top
sphere lies outside of the tetrahedron's base. This corresponds with the configuration
becoming unstable.

25



Figure 3-5: The weight of the wedge of material above a slip plane must be supported
by the tangential stress along the slip plane.

3.2.2 Mohr-Coulomb Analysis

Another approach to predicting 0m is the Mohr-Coulomb analysis. This model as-

sumes that the geometry of a pile is unimportant and that friction between grains in

a pile that determines 0m. The angle of maximum stability is then directly analogous

to the maximum angle to which one can tip an inclined plane before an object on the

sloped surface will begin to slide[9]. That is,

f fric = Mg sin 0m. (3.3)

Where M is the mass of grains above a slip plane and ffric is the force of static

friction given by ffric = utN. Here, ffric = gsMg cos Om. See Figure 3-5. This yields

the relation

tan m = As (3.4)

For glass, ps is - 0.2, from which we calculate that m = 11.3° . This is significantly

less than our measured value of approximately 24° for dry, spherical glass beads.

26



3.3 The Cohesive Case: Saturation Regime

3.3.1 Geometrical Arguments

In their 1997 paper, Albert et al. extended their geometrical model for 0m in a dry

pile to a wet one [8]. They again examined the stability of a single grain on top of a

heap of spheres, this time with an additional cohesive force F, where the top sphere

meets any of the three base spheres. They assumed that each of the spheres has a

weight G and found the following relations:

G sin 2 sin 'y 2 sin a1
+ COS 02, ~~~~(3.5)Fc sin + 2 tan 3 -f + tan3f- ) - 2 (3.)

where 1,2 and 'Y1,2 are defined in the following way:

cos i = - V['cosO - sin 0 + ai sin 0], (3.6)
3

sOS '/I2sisin sin2 sin 01 l7)
2 + sin 2

2 + sin 02 sin 0 2 2 sin sin 2 (

sin /322 + sin /332 - cos 0 sin 2
cOSY2 = 2 sin 3+ 6 sinb2 (3.8)

additionally, i = 1,2,3, al =-, 2 = , and 3

This model implies that m is ninety degrees if () is of order one or greater [8].

For 1 mm glass beads mixed with silicon oil at Vf = 0.008, the bond number' is of

order 5. We do not see 0m reach ninety degrees; our piles typically avalanche when

0 exceeds 31°. We believe that this discrepancy arises from the assumption that a

wet granular pile fails at the surface. This led us to re-examine the Mohr-Coulomb

model, which assumes failure at a depth for cohesive materials.

'The quantity Fj is the bond number. It is the ratio of the forces in a system that depend on
surface tension to the forces that arise from gravity.
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3.3.2 Mohr-Coulomb Analysis

The addition of a cohesive force between particles such as that provided by liquid

bridges modifies the Mohr-Coulomb analysis by increasing the normal force along the

slip plane [6]. The total normal force becomes

N = mgcos m + FA. (3.9)

where FA is an adhesive force generated by the liquid bridges. Such an analysis leads

to the result

tan 0m = /Is (1 + Dd cos m). (3.10)
pgDd

z is an effective number of liquid bridges per particle, d is the diameter of the particles,

g is acceleration due to gravity, p is the density of the particles, and D is the depth

at which failure occurs.

Using formula 3.10, and taking z to be six2 [10], we calculate the maximum angle

of stability for mm particles mixed with silicone oil Vf = 0.008 to be 23.7° , sub-

stantially less than our measured value of 31° . We also conclude that static friction

is not strong enough to be solely responsible for the maximum angle of stability of a

cohesive granular heap.

3.4 Liquid Bridge Model

We now propose the liquid bridge model, which assumes that failure occurs at a depth

and that liquid bridges stabilize the pile when its slope exceeds 23.8° , the dry Om.

We will draw on the idea of a slip plane from the Mohr-Coulomb analysis. We

claim that just before failure, the bridges that spanned the slip plane exactly sup-

ported the weight of the material in the wedge above this plane not supported by the

normal force. Our analysis differs from the Mohr-Coulomb analysis here, because we

2 Roughly, when particles are randomly packed in the bulk of a pile, each is held in a stable
position by three particles to its right and three to its left. In the saturation regime, there is liquid
bridge at each contact between two particles.
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believe it is the force of the liquid bridges, not static friction, that supports the wedge.

We will assume that on average, each particle feels a force equal to the strength of

one liquid bridge parallel to the slip plane. Ideally, one would find the component

FC that is directed along the slip plane. However, we know that a particle will have

either one or two liquid bonds that will increase its stability. The number of bonds

and the magnitude of their relevant components will depend on A, the orientation of

the base spheres, but this magnitude should be on the order of the strength of a single

liquid bridge. The net maximum force per unit area that the particles below the slip

plane may exert on the particles above the slip plane is proportional to the force of a

single liquid bridge times the number' of particles per unit area that intersect the slip

plane. One estimates the numiber of particles per unit volume to be

4 P (3.11)

3

Here, the radius of a particle is r, and fp is the packing fraction. This is the ratio of

the sum of the volumes of all of the individual particles of grains to the total volume

occupied by the granular pile. For a randomly packed granular heap of spheres, fp is

0.64. The number of particles per unit area is equal to the number of particles per
2unit volume to the power. Thus, we find that the force exerted by liquid bridges

along the slip plane is:

Fc( 4 )2/3 (3.12)
3

Where we assume F to be 27rFr in the saturation regime [1]. The stress given in

equation (3.12) must balance the shear stress from the weight of the wedge given by:

sin ( - Od)Mg (3.13)
WL

where d is the critical angle of dry heap from 3.1, and M is the mass of the wedge.

We take ( -- d) for the following reason. A sphere can be supported by normal

forces of three spheres forming a triangular base below it up to a dry critical angle

of d = 23.8° . To support angles greater than 23.8° on the surface, it is necessary

29



to supply a force directed up along the slip plane with magnitude of mg sin ( - d),

where 0d is the dry critical angle and m is the particle's mass. Within the pile, normal

forces exerted by the base spheres can support a top particle for angles up to 23.8°.

Beyond this angle, we need a force equal to Mg sin ( - Od).

The pressure that this wedge exerts on the slip plane is proportional to the depth

of the wedge times the mass density of the wedge times gravity. If we use the small

angle approximation, the height of the wedge is ( - Od)L. The mass density of the

wedge is the mass density of the particles times the fraction of space that the particles

occupy. We find that the pressure on the slip plane from the weight of the wedge is

L(O - Od)pgfp, (3.14)

where p is the density of the particles.

Thus, at the maximum angle of stability, our pile satisfies the equation

Fc( 1 P ) 2/3 = L(Om Od) 2pgfp (3.15)

This implies that

(Ore - Od) 27rrr (3.16)
(4irr3)2pfp3gL

We have a proportionality here and not an equality because we ignored the orienta-

tions of the liquid bridges with respect to the slip plane, but we expect the constant

of proportionality to be of order one. Table 3.3 shows theoretical and experimental

values of 0m. We found good agreement between experiment and theory for particles

with wetting surfaces that produced piles with constant slope.
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Particle Diameter (mm) F( dYes) m experimental Om theoreticalcm

Glass 1 20 30.8 ° 32.5 °

Glass 1 70 37.2 ° 39.8 °

Glass 0.5 70 45.10° 45.2 °

Glass 0.1 70 50.6 ° 71.510°

Plastic 6.0 70 28.4 ° 32.21 °

Table 3.3: The maximum angle of stability for spherical particles premixed with fluid
depends dramatically on the surface tension of the fluid, particle size, and the material
of the particles. Lower angle observed for plastic spheres likely due to the surface
wetting properties of plastic. The surface of the pile of 0.1 mm spheres was observed
to be concave rather than a straight line. The average slope was reported. Further
investigation is needed to determine the significance of the non-uniform slope of the
pile.

N

Figure 3-6: Here is a schematic of the parabolic approximation. d is the distance
between the particles, which we assumed to be one micron, b is the radius of curvature,
a is the radius at the neck of the bridge, 45 is the half-wetting angle, and is the
contact angle.
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Figure 3-7: We calculated the dimensionless force of a liquid bridge binding two
particles assuming a separation distance of one micron and a contact angle of 40°

3.5 The Cohesive Case: Small Volume Fraction

3.5.1 Bridge Force

Next, we wish to describe the increase in the maximum angle of stability that occurs

from Vf = 0 to 5 x 10 - 4 . This requires us to find Fc as a function of volume fraction.

We needed to determine the shape of the bridges in order to calculate this force.

The force of a liquid bridge between two particles may be calculated using either

the toroidal or the parabolic approximation [11]. Both approximations work well

for calculating F as a function of the separation distance; however, the parabolic

approximation was slightly more accurate [11]. When we calculated Fc as a function

of volume fraction, the toroidal approximation broke down at Vf = 5 x 10 - 4, which

is one fortieth of the smallest volume fraction studied previously [11].

We decided to use the parabolic approximation because of this breakdown. We

assumed that the separation between our particles was the order of a micrometer,

based on the particle roughness measured by direct observation with a microscope

[10]. These observations also led us to assume that all of our liquid was contained

within liquid bridges and that there were, on average, six liquid bridges per particle.

We used the following equation to calculate the force of the liquid bridge from the
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shape:

F = rr sin 02Ap + 2rr sin 0. (3.17)

The capillary (Laplace) pressure is equal to

Ap = y(1/a + 1/b). (3.18)

We then defined the non-dimensional force [14]

F*, - (3.19)
?y2r

We assumed a contact angle of 40 degrees. This angle contact angle has been found

to be most accurate for calculating the strength of a liquid bridge to determine the

tensile strength of wet granular material [13].

These assumptions lead us to predict that the maximum angle of stability reaches

its saturation point at Vf = 2 x 10- 4, which we can estimate from Figure 3-7. Exper-

imentally, we find that the maximum angle of stability saturates at Vf = 5 x 10- 4 .

See Figure 3-2. While the parabolic approximation allows us to predict within an

order of magnitude where saturation occurs, it predicts a more rapid increase than

we observe. This is not entirely surprising. We assumed a coordination number of

6 for all volume fractions; however it has been experimentally determined that at

very low volume fractions the coordination number is less than 6 [14]. Fewer liquid

bridges could result in a lower cohesive stress. Further investigations need to be done

to include the statistical distribution of number of liquid bridges per particle the

maximum angle of stability.
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Chapter 4

A Dynamic Pile

4.1 Stick-Slip to Continuous Motion Transition

As discussed in chapter 2, there are two general regimes of motion for grains in a

rotating drum. The pile undergoes stick-slip motion at slow rotations rates up to wt.

Past this transition, the surface undergoes continuous motion. Roughly speaking, the

transition from stick-slip to continuous motion occurs because if we rotate the drum

fast enough, the rate at which the flowing grains decrease the slope of the pile will

equal the angular velocity of the rotating drum, and the system will be in equilibrium.

We studied this transition by observing the behavior of a granular heap at different

rotation rates.

We expect that in a dynamic system, the viscosity of the interstitial fluid will

have a significant effect on the particles' dynamics. For this reason, we studied grains

mixed with silicone oils having viscosities v of 10, 100, and 1000 centistokes. Figure

4-1 shows our results. All data were taken in the saturation regime, at a volume

fraction of 0.008. We measured 0m and 0r in the stick-slip regime. In the continuous

regime, the slope of the system remained constant, and this single angle was plotted

as m and Or If we plot the maximum angles stability and repose as a function of w,

we find that St decreases as viscosity of the interstitial liquid increases. Qualitatively,

we expect to find this shift because viscosity adds a frictional force to the system

proportional to the shearing of the fluid, which is related to the velocity of the fluid.
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Figure 4-1: We observe that the transition from stick-slip to continuous motion occurs
at slower rotation rates for higher viscosities. 9m was plotted open triangles and 9r

was plotted with filled triangles. This data was obtained with silicone oil, which
allowed us to vary the viscosity over several orders of magnitude.
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Figure 4-2: \We observe that the transition from stick-slip to continuous motion occurs
at lower volume fractions for higher viscosities. 0 m was plotted with open triangles
and 0 r was plotted with filled triangles. Silicone oil was used to vary over three
orders of magnitude.

We expect that the more viscous the interstitial liquid, the stronger this viscous force,

and the slower the velocity of the avalanching grains. If the flow rate of the heap

decreases as we increase the viscosity, it is reasonable that the rotation rate needed

to enter the continuous regime decreases as well.

After investigating the effect of w on the transition from the stick-slip to the con-

tinuous regime, we investigated the effect of volume fraction at W = 0.028 rpm. We

will define V'i as the volume fraction at which the transition occurred. We found

a decrease in Vt with increasing viscosity. This is most likely due to the fact that

viscous dissipation is proportional to both fluid volume and viscosity. As this dissi-

pation increases, the energy (including the kinetic energy) of the system decreases.

37

V=-1 OCS



Eventually, the flow rate of our heap will match the rotation rate of our drum, and

the system will exhibit continuous motion. Because the viscous dissipation increases

with both volume and viscosity, it is reasonable that the flow rate of a highly viscous

liquid at a low volume fraction would meet the flow rate in a system with a less vis-

cous liquid at a higher volume fraction. While we have not developed a quantitative

description of this shift, it does provide a qualitative explanation for our observation

that Vt decreases in volume fraction with increasing viscosity.

4.2 The Continuous Regime

There are two main phenomena we notice in the continuous regime. First, we notice

that at a given viscosity, the slope of the pile increases with rotation rate. This effect

is particularly dramatic for the 1000 centistokes oil. See Figure 4-1. For the system

to be in a steady state, the flux of the grains must increase as w increases. In fact,

w vd. (4.1)

Where v is the velocity of the grains and d is the depth of the flow. The component

of the grains' weight that is tangential to the piles surface balances the viscous forces.

The viscous forces are proportional to the shearing rate, which goes as . This leads

to the relation
V

sin -. (4.2)

We observe that increases as w increases. In order for equations 4.1 and 4.2 to

be consistent, we conclude that the velocity of the avalanching grains increases with

increasing w

We also notice that the slope at which the grains continuously avalanche increases

with increasing viscosity for a fixed w. See Figure 4-2. This is not surprising. As

we increase the viscosity at a given rotation rate, the particles experience a greater

viscous drag at the same velocity. Once again, the system balances this increased

viscous drag with an increased tangential weight component by increasing its slope.
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4.3 The Stick-Slip Regime: The Angle of Repose

We will discuss the angle of repose in this section because it depends on the dynamic

properties of the system. Again, we expect to find that the viscosity of the liquid can

have an effect on the particles' motion and thus on 0.r Somewhat surprisingly, we

find that there are two regimes for Or. When Vf < 4 x 10 - 4 , the angle of repose does

not appear to significantly depend on the viscosity of an interstitial liquid. In this

regime, Or decreases rapidly. At these lower volume fractions, we find no significant

difference in the angles of repose over the three viscosities that we studied. As we

continue to increase the volume fraction, we find that the 0r depends strongly on

viscosity. The angle of repose begins to increase with volume fraction. See Figure

4-2. It then either saturates as is the case for silicon oil with viscosity 5 centistokes,

or rises to meet the angle of maximum stability and exhibiting continuous motion as

is the case for silicon oil with viscosity of 100 or 1000 centistokes. It is worthwhile

to note that our measurements of the r as a function of volume fraction differ from

those performed in a pouring geometry. When the angle of repose is studied in this

fashion, it increases linearly as a function of volume fraction [3] in contrast to our

observed initial sharp decrease. This will be addressed in our discussion on stick-slip

models.

4.4 Stick-Slip Models

The stick-slip behavior observed for granular material in a rotating drum geometry

displays similar properties to a block resting on a surface being pulled by a spring. In

this system, we pull on the spring until Kx, the force with which the spring pulls on

the block exceeds asN, the static friction. At this point, the block begins to accelerate

(this is the "slip"), overshoots its equilibrium position, compresses the spring, and

comes to rest (the "stick") until the spring is sufficiently extended once again. If the

block is pulled with a high enough velocity, the system will reach equilibrium and

the force of the spring will balance PdN, the dynamic friction of the system. In this
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regime, the block will move at a velocity equal to the velocity with which the spring

is being pulled. The equation for such motion is [12]:

If

= V (4.3)

and

K7 < Mbgpus (4.4)

then

y=0. (4.5)

Where Mb is the mass of the block, y is the spring's compression or extension, K is

the spring constant, V is the velocity with which the spring is being pulled, and d

is the dynamic friction, which may be a function of V - 1. In all other cases,

Mb' + Ky = Mgld(V- ). (4.6)

These equations are subject to the initial condition:

y(t = 0) = V (4.7)

In the rotating drum system, we replace velocity with w. Static friction becomes

t9 m and weight acts like the restoring force in the spring. However, there is no obvious

analogy for kinetic friction. We can define an effective dynamic friction, od, the angle

at which = 0. This angle is complicated to predict because energy loss through

inelastic collisions, liquid bridge rupture, and viscous dissipation all resist motion in

a dynamic pile. We obtain the equation:

(4.8)= -YP9 + 7YPqd( (-) (4-8)

where is 2 , R is the radius of the drum, p is h , g is acceleration due to gravity,

w is the drum's rotation rate, and h is the flow depth. If we assume that the effective

dynamic friction is constant, and make the variable substitution a = 0 - qd, we find
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the following:

& = -ypa. (4.9)

This is an equation that describes simple harmonic motion with the equilibrium po-

sition at d. This is to say that if we define Om = d + OZo, then r, the angle at

which the system comes to rest is given by d - aO0 . If we assume that for dry grains,

the friction does not depend on velocity, we find that qd is given by the average

0m and 0 r, or 23.5° . Our data for 0m and 0 r show that d for a system in which

Vf < 4 x 10 - -4 may be approximated by the value of d found in the dry case. This is

somewhat surprising considering that in this low volume fraction regime, 0 m cannot

be approximated by 0m for dry grains.

The only dependence of 0 r on Vf at low volume fractions arises from the depen-

dence of the static properties of the system on Vf, and not from any dependence of the

dynamic properties. We find that Or is partly governed by the state of the pile when

the avalanche begins. The discrepancy between our values of 0 r and those found in a

pouring geometry arise from the fact that the different experiments set up different

initial conditions.

We should note here that it is not entirely correct to assume that the q)d is con-

stant for dry materials and in the very low volume fraction regime. We know from

experiment that when w = 5 x 10-2 rpm, flow become continuous for dry grains. We

can see from equation 4.9 that this is impossible if Od does not depend on rotation

rate unless we are able to start the system at exactly 0 = d, or more accurately

if Om = kd. We know from experiments at lower rotation rates that this is not the

case, so we must conclude that there is some term in kd that depends on 0 - w. In

fact, there is some friction in avalanching grains proportional to the velocity squared.

This term arises from the inelastic collisions of the grains in motion. To improve this

model, we need to inlude terms in O/d that account for liquid bridges between particles

and viscous forces.
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Chapter 5

Conclusions

5.1 Summary

In this thesis, we investigated the static and dynamic properties of a cohesive granular

heap. We made the pile cohesive by the addition of small amounts of liquid. In chapter

three, we examined existing models for the stability of a cohesive granular pile and

presented the liquid bridge model to predict Sm. This model had good agreement

with theory for particles made of wetting material when the surface of the pile was

observed to be linear. The liquid bridge model did not take friction in to account, so

we conclude that it is of minor importance compared to geometry in determining the

stability.

In addition, we investigated the effect of the viscosity of the interstitial fluid on

the dynamic properties of a granular pile. In particular, we examined the transition

from stick-slip motion to continuous motion in a rotating drum geometry as well as

the effect of viscosity on the angle of repose of the granular pile. We used scaling

arguments to predict that in the continuous regime, grains move with higher velocities

as we increase rotation rate.

Finally, we used a stick-slip model to infer information about the dynamic friction

in a pile from the maximum angle of stability and the angle of repose. We found that

it is possible to use the 0 m and 0 r to study and draw conclusions about the dynamic

friction of a granular pile.
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In the final chapter we will conclude by proposing future research directions.

5.2 Future Investigations

In chapter 3, we presented a model for the relationship between cohesive inter-particle

forces and the maximum angle of stability. We would like to conduct further exper-

iments to either confirm or disprove this model. While we were able to vary the

particle size and the surface tension of the liquid somewhat, one would like to test

the model over a wider range of particle size. Additionally, one would like to test the

dependence we derived for 0 m on the system size, and the density of the particles. It

would also be informative to measure m for dry and wet piles of grains with very

different frictional properties to determine whether friction indeed has no effect on

Om.

Ideally, one would like to determine whether our drum is sufficiently large that we

may ignore the effects of the side walls. This can be tested by using an insert that

may be placed at different distances inside the drum to effectively reduce the depth

of the cylinder. This will be a crucial step experiment to justify the validity of the

results presented here.

In chapter 4, we predict that an increase in grain velocity, and not in flow depth

provides the necessary flux when w is increased. One could pursue this question using

a high-speed camera to study the velocity of the grains and the depth of flow in the

continuous regime.

In chapter 4 we also showed that it is possible to deduce information about the

forces in a dynamic pile from the angle of maximum stability and angle of repose of

a system. Finally, more work needs to be done to understand d in the saturation

regime and its dependence on viscosity and volume fraction.
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