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Abstract

2.670 is a required mechanical engineering class taught during the Independent Activities
Period (IAP) at MIT in which each student constructs a Stirling Engine. For the most
part, all of the engine parts are uniform, but if so desired, students are allowed to make
design changes to certain parts in order to compete for the fastest engine at the end of the
class. The research team in the MIT CADlab is working on an environment, called
DOME, which makes it easy to link together simulations in different packages to perform
integrated analysis and make them operable over the Internet.

An integration environment has been created as a DOME project in which students can
analyze and optimize the design of the 2.670 Stirling Engine. A thermodynamics model
of the engine was created in Matlab and a parametric solid model was created in
SolidWorks. Then, DOME was used to link the Matlab thermodynamic models to the
Solidworks cad model so that when geometric parameters are changed one can see how
this will affect engine performance. Students will be allowed to change the diameter and
length of the displacer piston and see how it affects the work per cycle of the engine.

In general, DOME was easy to learn how to use and the capabilities of web accessibility
and the speed of design analysis and optimization was impressive. The future intention is
that 2.670 students could use this integration environment to better analyze the 2.670
Stirling Engine.

Thesis Supervisor: Dave Wallace
Title: Professor of Mechanical Engineering
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1.0 Goal

The goal of this thesis is to develop geometric and thermodynamic models of the 2.670

Stirling engine and link them together in a integrated manner so that parametric changes

to the engine geometry seamlessly drives affected performance simulations. The work

will involve reusing, building, and linking Matlab and SolidWorks models describing

different aspects of the engine. The future goal is to make these models available online

to be used by future 2.670 students.

2.0 Introduction

Design in engineering is a cooperative effort which involves the integration of numerous

designers and various tools. Thus, in an un-integrated system model, the product design

cycles can be very long. Because the system is un-integrated, any changes made in the

design chain take a long time to propagate and slow down the evaluation of the effects of

the changes. Oftentimes flaws are not discovered until the end of the design cycle and

are very costly to fix. Therefore, predictive integrated system modeling is becoming a

more important and urgent issue as companies seek to produce high-quality complex

products while using fewer resources [1,2,3]. In the case of 2.670, a predictive integrated

system will allow students to quickly explore parametric changes and see how they affect

the engine efficiency.

Integrated design can reduce the design evaluation cycle time dramatically, allowing the

effects of the design changes to be seen easily and quickly. This permits hundreds of

design cycles and furthermore, errors caused by design changes can be caught

immediately [1].

3.0 Background Information

3.1 DOME

DOME stands for distributed objected-based modeling environment. DOME is a system

integration solution that has been produced by the research team in the MIT CADlab. It
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is currently a software prototype that allows experts to integrate the services of models

they have created using familiar tools to form large distributed simulations [1].

3.1.1 The Solution

In addition to a number of other unique characteristics, DOME provides the integration

functionality and multiple user web-like access issues that are needed for this application,

as mentioned in section 2.2.

3.1.2 How DOME Works

The way DOME works can be explained by 3 sets of users: the experts who define the

interface, the administrators who publish DOME models, and the users who run the

design simulations. The experts create and design the models, determine user access, and

specify input and output options of the model [1]. They log into a DOME model server

by a web browser and use special wrapper objects to make their published services

accessible via the internet. A wrapper, written as a software plug-in to DOME for third

party applications, interprets the metadata generated by a corresponding publisher in

order to create a front-end service interface constructed [2]. The administrators take

these models and make them available through the DOME server which then allows

models to be accessed anywhere by users via the internet. Users can then run design

simulations from anywhere. And they can connect models together and perform design

trade-off analysis and optimization of these models [1].

3.2 Mechanical Engineering Tools Class (2.670)

2.670 is a required mechanical engineering class taught during the Independent Activities

Period (IAP) at MIT. The objective of this class is to introduce fundamental machine

tool and computer tool use. This is done through the construction of a Stirling Engine

(see Fig 1) by each student.
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Figure 1: 2.670 Stirling Engine

The Stirling Engine operates on a closed regenerative thermodynamic cycle also known

as the Stirling cycle. The 2.670 engine, unlike an internal combustion engine, has no

valves and does not intake or exhaust gas. Instead the air is trapped and heat is converted

to mechanical work by pushing air from the cold to the hot side of the engine in

alternation. Through the use of thermodynamic regenerative processes, the efficiency of

the Stirling engine is improved over more conventional engine cycles. In theory, a

Stirling engine can operate with an almost ideal efficiency (Carnot cycle). However, the

2.670 engine loses energy from friction, poor heat transfer between the flame and the

engine, and from the heat conduction between the hot and cold side of the engine through

the walls of the displacer piston and cylinder [6].

Students learn to use machine tools to build parts for the engine, a CAD program called

Solid Works to design solid models of parts, and other tools such as MATLAB to study

the thermodynamics of the engine. For the most part, all of the engine parts are uniform.

However, if so desired, students are allowed to make design changes to certain parts in

order to compete for the fastest engine at the end of the class.
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Figure 2: Stirling Engine with Labeled Parts [6]

4.0 Stirling Engine Model Parameters

There are many parameters of the 2.670 stirling engine that students in the past have

considered modifying, but very few have resulted in a significant improvement in

performance. The ones that have had an effect on performance have been changes made

to dramatically lower friction. These changes increase speed by reducing the energy per

cycle lost by friction, but they do not increase the power output of the engine. The

analysis done here will study the effects on the work per cycle of the engine and thus the

engine power. According to Professor Doug Hart, most modifications are too costly.

However, because the displacer piston is one of the most expensive parts, any reasonable

modification to this part will likely have little impact on cost [4]. Thus, the displacer

piston will be the focus of the 2.670 stirling engine that will be examined for

modification and optimization. In particular, two aspects of the displacer piston will be

analyzed.
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4.1 Material of the Displacer Piston

Currently, the displacer piston is made by hollowing out a solid piece of brass. Analysis

previously done has demonstrated that the thermal resistance of the displacer piston is

dominated by the convective heat transfer term and thus it matters little what the

displacer material is. The best material would therefore be something inexpensive, light,

and easily machined [4].

4.2 Dimension of the Displacer Piston

Modifications of the dimensions of the displacer piston are key because they affect the

average volume of the engine hot and cold side, along with the change in hot and cold

engine volume, all of which are important parameters that effect the work per cycle of the

engine. The current outer diameter of the displacer piston is 1.063 inches and its length is

1.960 inches. Due to restrictions of the size of the base, there is a limit of 1.935 inches of

increase in diameter of the current displacer piston, and due to restrictions of the heat

transfer cylinder there is a limit of 1.127 inches in its current length.

5.0 Design and Construction

5.1 Thermodynamics Model of Stirling Engine [5]

The mechanical work output by the stirling engine can be calculated by analyzing its

thermodynamic cycle. Starting with the basic definition of work:

Work = Fdx = PAdx = PdV (1)

where P is the air pressure inside the engine and V is the volume of air in the engine,

which is equal to the sum of the of the volume of air on the cold and hot side. The

volume of the cold side is:

Vc = Vc - vdsin(O + ¢ + vpsin 0 (2)

and the volume of the hot side is:

VH = VH + Vd sin( + ) (3)

where vd and vp are the volumes of gas displaced by the displacer piston and power piston

respectively. q> is the phase angle of the displacer piston relative to the crank angle 0 and
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V br and VH bar are the average volumes of the cold and hot side of the engine

respectively.

Therefore, the total engine volume is defined as:

V = [Vc - vdsin(9 + + vpsin ]+[VH + vdsin( + )] (4)

and dV=vpcosOd0. (5)

The ideal gas law is used next to express the engine air pressure, P, as a function of the

air temperature.

MRT
P = -V (6)

Therefore, the engine mechanical work per cycle is:

Work 2f fMRT
Work = !7--vp cos 0 dO.
cycle 0 V

This expression is non-dimensionalized as follows:

Work 2MgT

Wo a- vp cos a. dO
W Cycle v c (8)

Pengine Vp vp Pd

2r o

Using the ideal gas law, the average temperature of the air inside the engine can be

approximated to be:

VT + VcVH
T=- (9)

V

where Tc and TH are the temperatures of the air on the hot and cold side respectively.

Because the 2.670 engines do not have perfect seals around the piston or guide bushing,

as the average temperature increases from the heat, the air slowly leaks out of the engine.

Thus in this case, the average pressure inside the engine can be set equal to the

atmospheric pressure. Using this fact and the substitution for T from above, the non-

dimensional engine work per cycle becomes:
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Work

'W = Cycle _ 2r
Patm Vp

(10)

Substituting the previous equation for Vc, VH, and V into the above equation, gives the

final equation.

5.1.1 Matlab Analysis of Thermodynamics Model

Matlab was used to analyze the thermodynamic model previously discussed, specifically

for the engine work per cycle as a function of the cold side to hot side temperature ratio,

T/TH, also known as Ti. Two m-files, enginenum2.m and engineden2.m, were written

using the quad function to calculate the integrals of the numerator and denominator of

equation 10 separately. The values of average V, VH, VP, and vd were calculated using

values of the diameters and lengths of both the displacer piston and power piston. The

phase angle was a constant value of n/2. An m-file, enginefinal2.m was used to calculate

the work per cycle and plot the function as a function of Ti, where Ti was declared a

global variable that varied from 0 to 0.99 in increments of 0.01. A final m-file, main.m,

was created to call the enginefinal2 file and declare the diameter and length of the

displacer piston, which would be passed in from a user input, as global variables. (See

Appendix A for MATlab files).

5.2 Solid Model of Stirling Engine

Below is the 2.670 Stirling engine that was created as a parametric model in SolidWorks

(Fig 3). The diameter and length of the displacer piston are the two dimensions that are

changeable. Because it is a parametric model, the dimensions of the displacer cylinder,

cylinder plate, and base are driven by the dimensions of the displacer piston, and increase

or decrease parametrically depending on the changes made to the displace piston.
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Figure 3: Solid Model of 2.670 Stirling Engine

5.3 DOME Wrapped Models

The two models discussed in section 5.2 were constructed as DOME wrapped models.

5.3.1 Matlab Wrapper Model

The Matlab code created for the analysis of the thermodynamic model takes the diameter

and length of the displacer piston to calculate values of average volume of the engine hot

side, VH, and change in hot and cold engine volume from the displacer piston, vd, in order

to solve for the work per cycle, W. Therefore in creating the Matlab wrapper model, the

diameter and length of the piston were defined as the independent parameters and the

work per cycle was defined as the derived parameter as shown (Fig 4).
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Figure 4: Parameters of Matlab Thermodynamics Model

Figure 4 shows the definition of the wrapper model. The current values shown are the

default values set by the expert. Both the diameter and length of the displacer piston are

real values whereas the work per cycle has been defined as a 1 x 100 matrix. The far

right column shows the name of the Matlab variable to which each of these parameters

are linked or mapped to. One may notice that the ratio of cold to hot side, Ti, has been

included as a derived parameter although in reality it can stand alone. This was created

as a "dummy"' variable so that it could later be used as an output when creating the "Work

per Cycle vs. Ratio of Cold to Hot Side" curve.
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After the variables have been determined, the relationships are determined by the

causality tab (Fig 5).

Figure 5: Causality of Matlab Thermodynamics Model

The checked boxes indicate which objects in the row depend on the objects in the

column. Once again, the ratio of cold to hot side was used as a "dummy variable."

The setup is used to link the matlab files to the model wrapper, indicate which file is the

main one, and determine the software version of the program, in this case matlab (Fig 6).
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Figure 6: Setup of Matlab Thermodynamics Model

The model files icon can be opened to add the files (Fig 7). As seen below, the four

Matlab files previously discussed in 5.2.1 are associated with this model.

Figure 7: Files of Matlab Thermodynamics Model
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Next, an interface must be created. The interface is defined by the expert to define the

user accessibility in a model. In this case, the independent parameters have been defined

as the user inputs and the outputs are the workper cycle matrix and the ratio of cold to

hot side matrix (Fig 8).

Figure 8: Interface of Matlab Thermodynamics Model

Finally, the model was deployed to the server.

5.3.2 SolidWorks Wrapper model

The 2.670 Stirling Engine was created as a parametric Solid works model in which the

dimensions of the diameter and length of the displacer piston are changeable. Therefore,

the Solid works Wrapper model was created in which the dimensions of the displacer

piston could be modified by an increase or decrease of 0.5 inches in the diameter and a

decrease of 1.5 inch in the length. Similarly to the Matlab wrapper model, the

independent parameters are the displacer piston diameter and length (Fig 9). The current

values shown are the default values set by the expert. Both the diameter and length of the
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displacer piston are real values and the far right column shows the name of the dimension

or property of the part in SolidWorks to which each of these parameters are mapped to.

:j

Figure 9: Parameters of SolidWorks 3D Model

Another dummy variable, "Volume," was introduced this time as well. Although this

time it was in order to be able to set up causality (Fig 10).

FigurelO: Causality of SolidWorks 3D Model
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In this case, the part file of the displacer piston and assembly file of the Stirling engine

have been added to the model (Fig 11). The assembly file has been chosen as the main

file and SolidWorks has been chosen to run in the foreground so that the changes

propagated in the engine assembly could be seen.
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Figurell : Setup and files of SolidWorks 3D Model

Finally, an interface was created and the model was deployed to the server. In this case,

the independent parameters have been defined as the user inputs and the output is the

dummy variable "Volume" (Fig 12).
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5.3.3 Integrated Model

After the construction of the Matlab wrapper model and the SolidWorks wrapper model,

an integrated model was formed in an integrated project. The integrated model is called

iModel. In order to do this, an integrated project called Engine project was created in

which both the Matlab and SolidWorks wrapper model were added as resources to the

project (Fig 13).
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Figure 13: Integration Project and Resources
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I
In the iModel, three subscriptions were initially added: the Matlab interface, the

SolidWorks interface, and visualization, which will be used to output the work per cycle

vs. Tc/Th curve derived from the Matlab thermodynamics model (Fig 14).

Figure 14: iModel and Subscriptions

First, the Matlab model and visualization were linked. Since the visualization would be

produced by the work per cycle and Ratio of cold to hot side, a copy of these two

matrices were added into the iModel and these corresponding variables from the Matlab

interface and visualization were mapped to the copies (Fig 15).
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Figure 15: Matlab and Visualization Mapped
Figure 15: Matlab and Visualization Mapped
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Similarly, the Matlab model and SolidWorks model were linked. A copy of the

dimensions for the diameter and length of the displacer piston were created and mapped

to the respective dimensions in the respective models (Fig 16).
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Figure 16: Matlab and SolidWorks Mapped

Finally, an iModel interface called "Dome Model Inteface" was created in which the

input was the piston diameter and length and the output was the visualization. The

following section will show a demonstration of this interface and the output of the

iModel.
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6.0 Demonstration

Once the project has been deployed, it is ready to run. Once the user has logged in and

the project is opened, the iModel is opened to reveal the interface (Fig 17).

f�ufrj i�ct� �J�e$? 9n�v� Vt�$�w� � 7 I�u�3�i

Mod h~~c

Figure 17: Opening iModel

Double-clicking on the Dome Model Interface icon will open up the user interface (Fig

18).

Figure 18: User Interface
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The dimensions shown are the default values. The green indicates that they have not

been changed. In this demonstration, the diameter of the displacer will be increased by

0.5 inches and the length of the displacer length will be decreased by 1.5 inches. The

yellow indicates that the dimensions have been changed (Fig 19).

Figure 19: Changing Inputs

Next the submit button is pressed and SolidWorks will pop up with the dimension

changes. A comparison of the original and new dimensioned engine is shown below

(Fig 20).

Figure 20: Original vs. New SolidWorks Model
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Double clicking on the visualization icon will produce the following curves of Work per

cycle vs. Ratio of Cold to Hot Side (Tc/Th). Figures 21 and 22 show the graphs for the

original and new dimensions, respectively.

Figure 21: Work per cycle vs. Ratio of Cold to Hot Side (Tc/Th),
Displacer diameter 1.063in, length 1.96in
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7.0 Conclusion

Through this thesis project I learned many new things and got to apply the things that I

learned. First of all, I was able to learn how to better use SolidWorks for 3-D parametric

modeling. I was also able to apply my computer programming skills to write the code for

the Matlab analysis. Most important of all, I learned what current integrated design

looked like and how DOME played a role in the future improvement of integrated

systems. With the help of many graduate students in the lab and through DOME

tutorials, I was able to learn how to use DOME in order to carry out my thesis project.

In general, I am pleased with the results of this project. DOME was easy to learn how to

use and I was impressed at the capabilities of web accessibility and the speed of design

analysis and optimization. However, if I could go back, there are several things I would

change about this project and the methods in which I pursued it. First of all, I created the

SolidWorks model without really understanding how parametric modeling worked. This

caused problems because there were a few cases in which parametric modeling could

have been much more simplified had I created my parts in a particular way that is

friendly to parametric modeling, for example, thinking about the location of the reference

point of the part. Secondly, I started off with creating the solid model of the engine in

SolidWorks and writing Matlab code for the thermodynamic analysis before I learned

how to use DOME. However, this turned out to be a problem because there were times

when I had to go back to redo or rename SolidWorks dimensions or Matlab file names in

order for it to be better compatible to DOME code. Lastly, because DOME is still in its

prototype stage, tutorials and help sections were not entirely complete and thus whenever

I ran into a problem or question, at times, it took a long time to find someone who knew

how to answer my question and had the time to answer it.

Future modifications to this project could include a 2-D animation wrapper that links to

my thermodynamics and solid model wrappers. It would also be nice to include a custom

GUI so that it would be more user-friendly to future 2.670 students. Once, DOME is

officially released, and if it will be available at MIT, the future hope is that 2.670 students

could use my project to better analyze the 2.670 Stirling Engine.
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Appendix A: MATlab code for Thermodynamics Model

main.m
global d_displacer;
global l_displacer;

Ti = 0:.01:.99;

W = enginefinal2(ddisplacer, ldisplacer, Ti);

enginefinal2. m
function W = enginefinal2(d_displacer, ldisplacer, Ti)

global T;
global dpower;
global lpower;

dpower = 0.625;
l_power = 0.875;

form= 1:1: 1 00

T m/100;
Q1l(m) = quad((enginenum2,0,2*pi);
Q2(m) = quad((engineden2,0,2*pi);
W(m)=2*pi*Q 1 (m)./Q2(m);

end

plot (Ti, W);
title('Normalized Engine Work per Cycle vs. Ratio of Cold to Hot side Temperature');
xlabel('Tc/Th');
ylabel('W');
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enginenum2.m
function num= enginenum2(x)

global T
global ddisplacer
global ldisplacer
global d_power
global l_power

d_heatcyl = d displacer + 0.125;
d_powercyl = dpower + 0.035;

Vhmax - pi*dheatcylA2/4*(3.510-1.960);
Vh_min pi*dheatcyl^2/4*(3.510-1.960-.5);

Vc_max = pi*dpowercyl2/4*(.25-(l_power-.875)) + pi*dheatcyl^2/4*(.5+(1.960-
l_displacer));
Vc_min = pi*d_powercylA2/4*(.25-(lpower-.875)) + pi*d heatcylA2/4*(1.960-
ldisplacer);

Vc = (Vcmax+Vc_min)/2; %Average volume of engine cold side
Vh = (Vhmax+Vh_min)/2; %Average volueme of engine hot side
vp = pi*d_power^2/4*.5; %Change in engine volume from the piston
vd = pi*ddisplacer^2/4*.5; %Change in hot and cold engine volume from the displacer
piston
p = pi/2; %phi= phase difference between the displacer and power piston

num = (cos(x).*(Vh + vd*sin(x+p) + (Vc + vp*sin(x) - vd*sin(x+p))*T))./((Vc + Vh +
vp*sin(x)).2);
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engineden2.m
function den = engineden2(x)

global T
global d_displacer
global l_displacer
global dpower
global l_power

dheatcyl = d displacer + 0.125;
d_powercyl = dpower + 0.035;

Vh_max pi*dheatcylA2/4*(3.510-1.960);
Vh_min pi*d heatcylA2/4*(3.510-1.960-.5);

Vc_max pi*d_powercylA2/4*(.25-(l_power-.875)) + pi*dheatcylA2/4*(.5+(1.960-
l_displacer));
Vc_min = pi*d_powercyl2/4*(.25-(lpower-.875)) + pi*dheatcylA2/4*(1.960-
l_displacer);

Vc = (Vc max+Vc_min)/2; %Average volume of engine cold side
Vh = (Vh max+Vh_min)/2; %Average volueme of engine hot side
vp = pi*d_powerA2/4*.5; %Change in engine volume from the piston
vd = pi*ddisplacerA2/4*.5; %Change in hot and cold engine volume from the displacer
piston
p = pi/2; %phi= phase difference between the displacer and power piston

den- ((Vh + vd*sin(x+p) + (Vc + vp*sin(x) - vd*sin(x+p))*T))./((Vc + Vh +
vp*sin(x)).2);

29



References

[ 1] Dome Fact Sheet
http://cadlab.mit.edu/research-dome/fact sheet.shtml

[2] David R. Wallace, Shaun Abrahamson, Nicola Senin, Peter Sferro, Integrated Design
in a Service Marketplace. Computer-aided Design, volume 32, number 2, pp. 97-107,
2000.

[3] Nicola Senin, David R. Wallace, Nicholas Borland, Distributed Object-Based
Modeling in Design Simulation Marketplace, ASME Journal of Mechanical Design,
volume 125, March, 2003.

[4] Hart, Douglas. 2.005 Stirling Redesign, Fall 2002

[5] Hart, Douglas. Stirling Engine Analysis. March 2002.

[6] 2.670 MIT Mechanical Engineering Tools handbook

30


