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Abstract

The objective of this mechanical design project was to improve the current design of large and
heavy solar concentrators. The three main design goals were: making the system compact,
making the system lightweight, and minimizing expenses. The main approach to achieving these
design parameters was to use the plastic film Mylar in its aluminized form to create a paraboloid
serving as a solar concentrator. The scope of design was limited to designing and prototyping
the solar concentrator, and neglecting to design and prototype the container in which it should be
kept while in its compact form. Two designs-the tube design and the rim design-are
examined, although the rim design is emphasized because of its advantages over the tube design.
The tube design included a bicycle tire tube serving as the structural element of the solar
concentrator, while the rim design utilized a bandsaw blade (without teeth) as the structural
element of the solar concentrator. The prototype of the rim design proved to work well as a
mirror, although further work, such as improving the seal around the rim, must still be done due
to the time frame and resources allowed for this project.

Thesis Supervisor: Eesto E. Blanco
Title: Adjunct Professor of Mechanical Engineering
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1 Introduction

1.1 Motivation

Satellites have evolved immensely in a little over a third of a century. The launching of a

satellite has gone from stopping in a nation's business activities to guaranteeing that they run like

clockwork. Satellites have several applications, such as navigation, communications,

environmental monitoring, and weather forecasting. Everyday life revolves around these

services that satellites are making available to humans.

What is a satellite? A satellite is an object that orbits a larger object, such as a planet. Satellites

are composed of three main parts:

· communication capabilities with Earth

* a power source

* a control system to accomplish its mission

If any of these three components of satellites were to fail, it would be catastrophic for the

mission; therefore, the evolution of power sources for satellites is essential. The most convenient

source of energy a satellite could take advantage of is solar energy.

Our planet depends on the Sun as its most important source of energy. Temperatures on the

Sun's surface can reach up to about 6000 Kelvin. Nuclear fusion reactions occurring in the

Sun's core allow it to produce approximately 386 billion billion megawatts of energy. Man has
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created technologies that take advantage of solar energy and transforms it to other forms of

energy, such as electric energy.

1.2 Background

The current problem with solar concentrators is that they are large and massive. Professor

Ernesto Blanco,, Adjunct Professor of the department of Mechanical Engineering at the

Massachusetts Institute of Technology, suggested a design project for one of his classes,

"Elements of Mechanical Design": a new design for solar concentrators for satellites. This

design project aims to solve the problem of launching large and heavy solar concentrators along

with satellites. Blanco's own description of the problem and solution are as follows:

Problem

One of the major problems associated with the use of solar energy is the cost of
collectors. In the case of concentrator collectors the problem is even more serious.
Besides that, variable focus solar concentrators do not exist. An attempt was made here
to produce a concentrator of low cost and reasonably good optical characteristics.

Solution

For most applications where ideal optical characteristics are not essential, a rigid solid
surface is hardly justifiable economically. In those cases reflecting films are more
attractive. The only problem remaining is the cost of the frame. In the case of the
concentrator mirror, the advantages of such a surface could justify the frame cost.
The concept of this film concentrator could not be simpler. A film of reflecting Mylar
was attached to a steel dish of flat circular rim although not necessarily well made
otherwise. The whole system was well sealed and in between was evacuated with a small
vacuum pump. The surface of the taut Mylar film was depressed in a reasonably good
optical shape. Only the boundaries showed imperfections. No focal temperatures were
measured, but on a clear day wood would burn at the focus almost instantly. The focus
could easily be varied by merely changing the pressure differential across the film
surface. There may be some applications for this simple approach.
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Professor Blanco's goal was to utilize aluminized Mylar to build solar concentrators of decreased

weight and cost.

1.3 Scope of Design

The purpose of this mechanical design project was to design and prototype a solar concentrator

for satellites that utilized Mylar as its reflective material. Specifically, this project focused on

the design of a compactable solar concentrator, and neglected to design the solar concentrator's

compacting container and its positioning system. Also, the solar collector attached to the end of

the arm was a mockup made to represent where it would belong in the apparatus.

1.4 Design Goals

The three main design goals were:

· Make the system compactable

· Make the system lightweight

· Minimize expenses

Professor Blanco's idea of using Mylar as the mirror satisfies all three of these goals, but there

are several ways in which one could utilize Mylar to make a solar concentrator.

The following describes two different approaches for designing and prototyping a solar

concentrator: the tube design and the rim design. Emphasis is placed on the rim design, because

that approach achieved better results.
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2 Tube Design (Not Implemented)

The first design utilized a bicycle tire tube to create the circular structure of the solar

concentrator. By intricately folding the deflated tube, the design goal of making the solar

concentrator compact was easily achieved. Preliminary testing included folding the bicycle tire

tube as shown in Figure 1. A rubber band was used to keep the folded tube in its folded position

until the tube was inflated, triggering the rubber band to pop out, which allowed the tube to take

its form; consequently, the solar concentrator unfolded and expanded, assuming the circular

structure provided by the bicycle tire tube.

Figure 1: Photograph of the folding structure of the deflated bicycle tire tube structure

The large surface area surrounding the deflated bicycle tire tube in its folded state indicates the

solar concentrator's ability of being very compact. Figure 2 makes it clear that the deflated

bicycle tire tube accounts for less than 25% of the total solar concentrator surface area. This

means that the solar concentrator could be reduced in size by over 75%.
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Figure 2: Photograph showing the small amount of space the folded bicycle tire tube occupies
within the solar concentrator

The Presta valve attached to the bicycle tire tube was used to inflate the tube. In order to inflate

the solar concentrator, a secondary air feed needed to be included. Keeping with Occam's

razor-"Entities must not be multiplied beyond what is necessary"-the tube design was decided

to include only one valve to feed air into the system for simplicity. To accomplish this goal, a

small hole was punctured in the bicycle tire tube so that as the tube inflated, air would leak into

the solar concentrator; consequently, the solar concentrator would also inflate, creating the

parabolic shape of the reflecting Mylar film. Figure 3 explains how the dual inflation

mechanism works. The hole punctured in the tube was deliberately made small so that the rate

of air feed into the bicycle tire tube was greater than the rate of air feed into the solar

concentrator. Theoretically, this would prevent air leaking into the solar concentrator at a

premature state (i.e. before the bicycle tire tube was inflated enough to fully unfold the
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concentrator and provide it structural support). The bicycle tire tube was expected to inflate

completely, and at the same time the solar concentrator was expected to slowly inflate until they

were both completely inflated and equilibrium was reached.

Air Feed

Figure 3: Diagram explaining the bicycle tire tube and solar concentrator dual inflation
mechanism

Figure 4 shows the fully inflated solar concentrator. As can be seen, the optical quality of the

Mylar reflecting film is poor. This was partially due to the bicycle tire tube not being rigid

enough as a structural element inside the solar concentrator. As a result, the bicycle tire tube did

not prevent radial stresses from reaching the area around the concentrator where the two sheets

of Mylar were sealed together, causing a peeling effect. Due to the peeling effect, air could not
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be pumped into the system to the point where the pressure inside the bicycle tire tube and the

pressure inside the solar concentrator would reach equilibrium. The system was not pressurized

enough, causing slack and poor optical characteristics.

Figure 4: Photograph of fully inflated tube design solar concentrator

Another drawback to the tube design is that the bicycle tire tube is not rigid enough to support an

arm for the focal point. A strong, rigid structural element is required to sustain the moment that

an arm would produce.
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3 Rim Design (Implemented)

3.1 Design Overview

The rim design apparatus is shown in Figure 5. It includes two sheets of Mylar (one sheet of

aluminized Mylar and one sheet of clear Mylar), a flexible rim, a support frame, a spring-loaded

hinge, and an arm with the solar collector attached to it. The support frame is the base of the

apparatus, on which the solar concentrator sits. The solar concentrator is clamped at both ends-

one end is clamped by the spring-loaded hinge, and the other side is clamped with a C-clamp.

The solar collector is positioned at the focal point of the paraboloid formed by inflating the solar

concentrator. A Presta valve was inserted along the outer edge of the solar concentrator.

Figure 5: Photograph of solar concentrator apparatus
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The solar concentrator is first folded in half, making it more compact. Then the concentrator is

released and it springs open, allowing the arm and collector to also pop up into its position. Air is

then pumped into the system through the Presta valve, and a paraboloid mirror/reflector is

formed. This whole process can be seen in Figure 6.
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Figure 6: Photographs describing the process of the compacted solar concentrator opening up
and being inflated.
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The following sections will detail the mechanical components of the rim design.

3.1.1 Materials

Two different types of Mylar were used for the solar concentrator: clear Mylar (.001" thick) and

aluminized Mylar (.002" thick). The Gund Company, Inc. describes Mylar as "...a flexible,

strong and durable film with an unusual balance of properties making it suitable for many

industrial applications. The excellent dielectric strength, moisture resistance and physical

toughness make Mylar a very versatile and fully functioning insulating material."

Figure 7 includes some important material properties of Mylar.

Conductivity 0.0016 W/cm K

Specific Heat 1.883 J/g K

Density 1.309 g/cm 3

Melting Point 254 C

Figure 7: Table including some of Mylar's material properties-Conductivity, specific heat,
density, and melting point

A bandsaw blade was used as the structural element inside the solar concentrator. Welding rod

was shaped to make the arm holding the solar collector. The hinge and the support frame were

both made out of aluminum.
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3.1.2 Flexible Rim

The motivation for using a flexible rim sprouted from a Frisbee design. As Figure 8 shows, the

compacted Frisbee on the palm of the hand (left picture) has a wire frame that is twisted a certain

way so that it can fit into a small container. Once removed from the container, the Frisbee

expands to the size shown in the right picture of Figure 8. The ratio of the expanded form of the

frisbee to the compacted is 3:1.

/~~~~~~~~~~~~~~ £7

Figure 8: Illustration of compactable Frisbee. Left picture shows the Frisbee in its compact
form; Right picture shows the Frisbee in its expanded form.

A bandsaw blade was utilized as the rim of the solar concentrator system. As a rough cut, the

teeth of the blade were cut off and the remaining material was grinded down using the belt

sander to produce a rim 1/8" wide. Both edges of the rim were made smooth so that it would not
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puncture the Mylar in any way, promoting an airtight seal. The two ends of the bandsaw blade

were overlapped as shown in Figure 9. In order to conform to the design of a 20" diameter, the

length of the overlap was 1.5". The overlap was then wrapped tightly with wire and expoxy was

used to bind the two ends of the bandsaw blade together along with the wrapped wire. This

proved to be an excellent joint. It could withstand a considerate amount of tension and shear,

providing still some flexibility.

Overlapped
Section

I V~k ~4I
Wire

Wrap

Figure 9: Top view diagram illustrating the joining of the two ends of the bandsaw blade used to
form the rim for the solar concentrator

Twisting the rim in three dimensions, as the Frisbee approach requires, caused a couple of

problems. The rim showed deformation in its expanded form. Also, twisting the rim in such a

manner induced high stresses on the Mylar sheets, which put them in danger of tearing and

scratching, causing air leakage and poor optical characteristics.
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A compromise was made in the manner of twisting the solar concentrator system in order to

prevent any catastrophic events such as tearing and scratching of the Mylar sheets. Bending the

rim along one plane worked much better than the previous method of bending the rim along

multiple planes (three-dimensional bending). Very little deformation was evident after the solar

concentrator was expanded and the stress on the Mylar sheets was significantly lower. As a

drawback, the solar concentrator was less compact. The ratio of the expanded form of the solar

concentrator to the compact form of the concentrator was 2:1.

3.1.3 Sealing the System

Perhaps the most critical component of the solar concentrator system is the airtight seal it

requires. Sealing the system was difficult for a myriad of reasons. For one, the resources

available in the short period of time (one month) were few.

The first approach to sealing the system was to use a heat sealer. Local hardware stores did not

carry them, so one was purchased from an online company. The purchased heat sealer can be

seen in Figure 10. When first used, it was noted that only straight seals could be made, making it

difficult to achieve the goal of creating the circular shape needed for a parabolic concentrator.

Figure 11 shows the type of seal actually made by the heat sealer purchased. Not only did the

sealer produce an undesired shape, it was also very time consuming. This idea was terminated,

due to its insufficiency in achieving design goals.
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Figure 10: Photograph of sealer purchased online (only produces straight seals)

Figure 11: Imitation of system sealed by the straight heat sealer

A heat sealer with curved sealing capabilities was sought out. Several expensive heat sealers of

this type were found online. The Eurosealer, whose primary function is to seal opened potato

chip bags, was selected as the next approach to heat sealing the system. It was capable of

making curved seals, and it was much less expensive than the other heat sealers. Minimizing

expenses was extremely important, since the budget was tight.

The diagram on the left side in Figure 12 shows the layout of the materials used to facilitate the

sealing with the Eurosealer. The aluminized Mylar was placed on the surface of a table. The rim

22



was then placed over the sheet of aluminized Mylar with the sheet of clear Mylar on top of it. A

rim of slightly larger diameter was made (using the same process as the production of the solar

concentrator rim). This rim was then placed around the solar concentrator rim, which served two

main purposes---it held the two sheets of Mylar closely together, and it also served as a guide for

the Eurosealer to follow a circular path.

Outelr guide ring

1E~t I
- - "M Ar

Clear mylar

Inner ring

Silver mylar

Figure 12: Left, a diagram of the positioning of materials used to guide the Eurosealer in a
circular path; Right, a photograph of the Eurosealer

The Eurosealer approach failed in that the seals were too weak, and again, it was time consuming

to use.

Other instruments were tested for their heat sealing capabilities:

· soldering iron

· clothes iron

· hair-straightening iron

23
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· flame from lighter

These approaches all failed to seal the solar concentrator system in a desirable way. The

soldering iron and the lighter flame both melted the two sheets of Mylar together. The main

problem with these two instruments was that they had little control in the way they sealed

because they melted the plastics too quickly. On the other hand, the clothes iron and the hair-

straightening iron had little sealing capability, if any at all.

Ultrasonic welding was the next approach taken. Ultrasonic Metal Welding, a book by STAPLA

Ultrasonics Corporation, describes ultrasonic plastic welding:

"Ultrasonic welding of plastics is a state-of-the-art technology that has been in use for
many years. When welding thermoplastics, the thermal rise in the bonding area is
produced by the absorption of mechanical vibrations, the reflection of the vibrations in
the connecting area, and the friction of the surfaces of the parts. The vibrations are
introduced vertically. In the contraction area, frictional heat is produced so that material
plasticizes locally, forging an insoluble connection between both parts within a very short
period of time.

The prerequisite is that both working pieces have a near equivalent melting point. The
joint quality is very uniform because the energy transfer and the released internal heat
remains constant and is limited to the joining area. In order to obtain an optimum result,
the joining areas are prepared to make them suitable for ultrasonic bonding. Besides
plastics welding, ultrasonics can also be used to rivet working parts or embed metal parts
into plastic."

Limited access was granted for use of the ultrasonic welding machine at the M.I.T. Media

Laboratory for the available time frame; therefore, it was assumed that the ultrasonic welder

would only be used one time. Figure 13 shows two different views of the same solar

concentrator sealed using the ultrasonic welding machine. The ultrasonic welding machine
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allowed for the option between two different types of seals. One type of seal was thin and it cut

the excess Mylar material simultaneous to the sealing. The other type of seal was a double seal.

The inner seal was a strong, thick seal and the outer seal was the same as the thin seal previously

mentioned. The inner seal was not airtight, but acted as a reinforcement element, preventing the

thin seal to peel. 

Unfortunately, the time frame allowed for using the ultrasonic welding machine was too small to

master the art of creating an excellent double seal for the solar concentrator. However, the single

seal was used and the results were still better than any of the other previous approaches to

sealing the system. The process of making the seal included placing the two sheets of Mylar

together so that they are flat (without the rim), drawing a circle of 20" diameter (same as the rim)

on one of the sheets, and welding the two sheets together along the drawn circle. A small 4" arc

length was left unsealed, at which point we inserted the rim by bending it until it fit in the open

area. The unsealed area was then sealed with the ultrasonic welding machine. As shown in

Figure 13, the two Mylar sheets were welded together and fit tightly against the rim.
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Figure 13: Photographs of two views of solar concentrator sealed using and ultrasonic welding
machine

Epoxy was spread along the outer edge of the welded sheets of Mylar. This was done in order to

cover up any small holes that may be present due to bad welding. Also, adding epoxy reinforced

the weld. A Presta valve was attached to the outer edge of the solar concentrator by cutting out a

small hole on the Mylar. The hole was just big enough to squeeze a third of the Presta valve

inside the solar concentrator, and was placed at an angle to the rim, rather than perpendicular to

it. The Presta valve was sealed to the Mylar sheets by adding Epoxy to fill in the gap. The seal

was tested by inflating the solar concentrator by connecting the Presta valve to a bicycle pump

fitting. Once fully inflated, the solar concentrator produced a decent mirror, as Figure 14 shows.

The solar concentrator slowly deflated, indicating a flaw in the seal. The ultrasonic welding did

show a great improvement over previous methods of sealing the system; not only did the interval

between full inflation and full deflation increase, but the seal was able to withstand a higher

pressure with little to no peeling effect.

26



Figure 14: Photograph of inflated solar concentrator showing decent optical quality

The quality of the reflection in Figure 14 would have been even better had the aluminized Mylar

been kept in better condition prior to the sealing.

3.1.4 Hinge

The hinge component (Figure 15) served both as a clamp for the solar concentrator rim, and as a

pivot for the arm supporting the focus point (solar collector). It was made out of sheet aluminum

1/16" thick. The sheet aluminum was clamped and hammered into a 'U' shape, leaving a middle

gap of about 1/8" width. Two holes were drilled using the drill press and 10-32 bolts were

inserted. As the nuts and bolts were tightened, the two sides of the 'U' slowly closed together,

causing a clamping effect on the portion of the solar concentrator rim that was inserted in the

gap.
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Figure 15: Photograph of the hinge component (front view)

The top view of the hinge component is shown in Figure 16. In this photograph, the pivot and

spring mechanism is shown. A plastic tube of diameter slightly larger than that of the welding

rod (used for the arm that supports the focus point) was cut and wrapped with wire to prevent it

from cracking. Two small holes were drilled on the bottom part of the 'U'. One on each side of

the plastic tube, and in each of the holes a leg of a torsion spring is inserted. The two torsion

springs can be seen in Figure 16. These torsion springs offered a resistance when it was

attempted to close the arm (pivot it so that the focus point gets closer to the solar concentrator).

The tube was attached to the hinge component with epoxy. Welding rod was used as the

material for the arm.
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Figure 16: Photograph of hinge component (top view)

First, the welding rod was inserted through the tube. Then short welding rod protrusions were

spot welded onto the inserted welding rod piece in a way so that the welding rod could pivot, but

not slide out of the pivot. Also, the protrusions intersected with the free legs of the torsion

springs, which provided resistance as mentioned above.

3.1.5 Support Frame

It was noted that the moment acting on the rim as the arm was forced closer to the solar

concentrator would cause the rim to bend inward. In order to prevent this from happening, a

support frame was built. Aluminum angle was used to build the support frame. It was cut into 3

pieces: 2 pieces that were 3.5" long and one piece that was 20" long. The ends of the pieces

were cut at 45 degree angles, so they could joined by welding as shown in Figure 17.
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Figure 17: Photograph of the support frame made out of aluminum angle

Another element was welded to the top of one of the sides of the support frame. This plate was

1/8" thick aluminum, and its other dimensions were 3" X 1.5". Two holes were drilled on this

plate that matched the holes of the hinge component. The purpose of this was to allow for easy

attachment of the hinge to the plate. A clamp on the opposite end was later added in order to

stabilize the system.
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4 Discussion and Conclusion

The tube design seemed to be a great idea theoretically, but after building a prototype of the

design, it was found to be ineffective. The bicycle tire tube was not rigid enough to act as a key

structural element. As a result, peeling occurred, and the solar concentrator could not be inflated

to the point of equilibrium between the pressure inside of the bicycle tire tube and the pressure

inside of the solar concentrator.

The rim design worked great utilizing a bandsaw blade (without teeth) as its structural element.

The rim helped ease the radial stresses that the seal would otherwise have to completely incur.

Bending of the rim made it less compact than the tube design was able to achieve, but it was still

significant with a 2 to 1 ratio of fully expanded solar concentrator to compacted solar

concentrator.

Figure 18 shows the difference in optical quality between the tube design and the rim design. It

is evident that the rim design achieved a higher quality of reflection.
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Figure 18: Comparison of reflection quality between tube design (left) and rim design (right)

This project still needs further work, due to the time frame and resources available.

It is suggested to attempt a sewing approach to sealing the system. Hand sewing around the rim

could provide a strong bond between the two sheets of Mylar. Once sewn, the tiny holes created

by the sewing could be sealed with Krazy glue or epoxy.

Another improvement that could be made is using the material Kapton instead of Mylar. Kapton

may be a better option than Mylar because of it degrading less with UV radiation. Properties of

Kapton are included in Appendix B.
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5 Appendices

5.1 Appendix A (Drawings)

Solid models of rim and hinge components.
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(Provided by DuPont)

Mylar®
polyester film

Introduction to Mylar® Polyester Films

Mylar® is a biaxially oriented, thermoplastic film
made from ethylene glycol and dimethyl terephtha-
late (DMT).

Since DuPont first introduced Mylar® polyester
film in the early 1950s, it has been used in a variety
of applications that add value to products found in
virtually all segments of the world economy. After
more than 40 years, the future still holds great
promise for Mylar®. Its excellent balance of proper-
ties and extraordinary range of performance capa-
bilities make Mylar® ideal for a broad array of
applications in the electrical/electronics, magnetic
media, industrial specialty, imaging/graphics, and
packaging markets.

Equally important to the versatility of Mylar® is its
environmental friendliness. It is one of the most
environmentally safe polymer products made today.

Mylar® polyester film, only by DuPont Teijin Films,
is available uncoated or coated and in a broad variety
of gauges and widths. We are committed to continually
developing and improving our product offering. If
you have an idea or a special need for a new film,
we're ready to explore the possibilities. Just speak
with your DuPont Teijin Films sales representative or
give us a call at (800) 635-4639.

Balance of Properties
Mylar® polyester films have a unique combination
of physical, chemical, thermal, and optical
properties:

* Strong, tough, brilliant, and clear.
* Ease of converting:

laminating, extrusion coating, embossing, metal-
lizing, printing, punching, corrugation, dyeing,
stamping or forming.

* Ease of handling on high-speed equipment.
* Retain mechanical properties:

stiffness, strength, toughness, dimensional
stability, and optical clarity, over an exceedingly
wide range of temperatures.

* Excellent temperature resistance.

* Readily combined with other materials.

* Strong tear-initiation and puncture resistance.
* Excellent oil, grease, or moisture barrier

resistance.

* Excellent chemical resistance.
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How Mylar® Is Made (Figure 1) frame, where it is pulled at right angles (TD

* Molten polyethylene terephthalate (PET) polymer orientation). This stretching rearranges the PET
is first extruded onto a chill roll drum to form a molecules into an orderly structure to substan-
film. O tially improve the film's mechanical properties.

(Films stretched in the machine direction only are
* This film then is biaxially oriented by being uniaxially orented; films stretched in both

stretched first in the machine direction (MD) 0 directions are biaxially orented.)
and then in the transverse direction (TD).

* Finally, the film is heat-set 0 to stabilize it. It
* The orientation is accomplished by passing the will not shrink again until exposed to its original

film over rollers O that run at increasingly faster heat-set temperature.
speeds (MD orientation), then fed into a tenter

Figure 1. A Typical Manufacturing Process for Oriented Polyester Film

DuPont Teijin Films
1 Discovery Drive (P.O. Box 411)
Hopewell, VA 23860 USA
Product Information: (800) 635-4639
Fax: 804-530-9867

(06/2003) 247456A Printed in U.S.A.
Reorder No.: H-67160
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Mylar®
polyester film

Physical-Thermal Properties
My]ar® polyester film retains good physical proper-
ties over a wide temperature range (-70 to 150°C
[-94 to 302°F]), and it is also used at temperatures
from -25() to 200°C (-418 to 392°F) when the
physical requirements are not as demanding.

Some physical and thermal properties of Mylar® are
summarized in Table 1. Detailed information and
other physical and thermal properties are described
in the remaining pages of this bulletin.

Table 1
Typical Physical and Thermal Properties of Mylar® Polyester Film

Property Typical Value Unit Test Method

Gauge and Type 92A
End Use Industrial

Ultimate Tensile
Strength, MD 20 (29) kg/mm 2 (kpsi) ASTM D 882

TD 24 (34)

Strength at 5%
Elongation (F-5), MD 10 (15) kg/mm 2 (kpsi) ASTM D 882

TD 10 (14)

Modulus, MD 490 (710) kg/mm 2 (kpsi) ASTM D 882
TD 510 (740)

Elongation, MD 116 % ASTM D 882
TD 91

Surface Roughness
Ra 38 nm Optical profilometer

Density 1.390 g/cm 3 ASTM D 1505

Viscosity 0.56 ASTM D 2857

Melt Point 254 °C DSC*

Dimensional Stability
at 105C (221°F), MD 0.6 % DuPont test

TD 0.9
at 150°C (302°F), MD 1.8

TD 1.1

Specific Heat 0.28 cal/g/°C

Coefficients of
Thermal Expansion 1.7 x 10-5 in/in/°C ASTM D 696
Thermal Conductivity 3.7 x 10- 4 cal-cm 30-50°C (86-122°F)
(Mylar 1000A) cmZ sec.°C 25-75°C (77-167°F)

UL94 Flame Class See UL file # E93687 VTM

*Differential Scanning Calorimeter
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Tensile Properties
Figure 1 shows typical stress-strain curves for
Mylar® polyester film at various temperatures.
Poisson's ratio is typically 0.38 before yield and
0.58 after yield.

Figure 1. Stress-Strain Curves

Temperature affects the tensile properties of
Mylar®; data on a typical sample are shown in
Figure 2. When considering the use of Mylar® at
high temperatures, reference should be made to the
last five pages of this bulletin.

Figure 2. Tensile Properties vs. Temperature
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Compressive Properties
Compression tests provide information about the
compressive properties of plastics when employed
under relatively low uniform rates of uniaxially
applied loading. Data on the compressive properties
of Mylar® polyester film were obtained in accor-
dance with ASTM D 695, except that a cylindrical
pile of pieces 1 in high, I in in diameter, was used.
The data are summarized in Table 2.

When loaded in compression, Mylar® did not
exhibit a yield point nor did it fail in compression
by a shattering fracture. Therefore, it would be
inappropriate to report any value as a compressive
strength. However, the stress at 2% deformation
and the stress at 1% offset have been calculated.
Because the latter stress occurs at very nearly the
point where the stress-strain curve begins to deviate
markedly from the initial relatively linear portion,
it is probably a meaningful upper limit for any
application where Mylar® is loaded in compression.

Shear Strength
Mylar® has a shear strength that is significantly
higher than published data for other polymeric
materials such as acetals, nylons, and polyolefins.
Shear strength was measured by a punch-type of
test according to ASTM D 732 and is reported in
the pounds of force to shear divided by the product
of the circumference and the thickness. These tests
showed that 5 and 10 mil Mylar® films have shear
strengths of 15.0 (21.5) and 13.6 (19.5) kg/mm2

(kpsi), respectively.

Dimensional Stability
The main factors affecting dimensional stability of
film are strain relief, thermal expansion, hygro-
scopic expansion, and creep. Typical values for
these factors are described on following pages.

Strain Relief
Strain relief (also called residual shrinkage) occurs
when a film is heated to an elevated temperature.
The resulting shrinkage of the film is merely a
relaxation of strains induced during the manufac-
ture of the film or during processing of the film.
Once these strains are relieved at a specific tem-
perature, there should be no further shrinkage due
to strain relief as long as that temperature is not
reached.
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Table 2
Compressive Properties of Mylar® Polyester Film

Maximum
Compressive Stress, 1% Offset Maximum Stress Strain

Modulus, kg/mm 2 (kpsi) at Stress, During Test, During Test,
Film Type kg/mm 2 (kpsi) 2% Deformation kg/mm 2 (kpsi) kg/mm 2 (kpsi) %

Mylar® 1000A 289 (413) 5.91 (8.45) 11.8 (16.8) 21 (30) 23

Mylar® 1400A 278 (397) 5.76 (8.23) 11.6 (16.6) 21 (30) 27

Some typical curves of shrinkage due to strain
relief are shown in Figures 3 and 4 for two types of
Mylar® polyester film.

Figure 3. Shrinkage vs. Temperature-Mylar 92A
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Figure 4. Shrinkage vs. Temperature-Mylar® 750A
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Thermal Expansion
The thermal coefficient of linear expansion of
Mylar® is 1.7 x 10-5 in/in/°C (9.5 x 10-6 in/in/°F).
As a guide to estimating changes due to thermal
expansion, Figure 5 gives the dimensional changes
(in/in) over a wide temperature range. Multiplying
the indicated change by the sample length gives the
thermal dimensional change in the sheet of Mylar®.

Figure 5. Dimensional Stability vs. Temperature
Changes
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Hygroscopic Expansion
The hygroscopic coefficient of linear expansion
is 0.6 x 10' in/in/% RH for Mylar® polyester film.
The dimensional change due to hygroscopic
expansion over a wide range of humidities is
shown in Figure 6. To calculate the total dimen-
sional change in a sheet of Mylar® due to hygro-
scopic expansion, multiply the indicated change by
the linear dimensions of the sheet. Under normal
atmospheric conditions, changes in thermal expan-
sion tend to compensate for changes in hygroscopic
expansion because rising temperatures usually
result in lowering in the relative humidity.
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Figure 6. Dimensional Stability vs. Relative
Humidity Changes
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Creep
Mylar® is unusually resistant to creep. Two values
measured at room temperature are 0.1% after
260 hr at 2.09 kg/mm2 (2.98 kpsi) and 0.2% after
1000 hr at 2.10 kg/mm 2 (3.00 kpsi). After 4000 hr
at 0.35 kg/mm2 (0.50 kpsi) in 100°C (212°F) oven,
a creep of 0.9% was measured.

Hydrolytic Stability
Mylar® polyester film will hydrolyze and become
brittle under conditions of high temperature and
humidity, as shown by the effect of steam on the
tensile properties of Mylar® (Figures 7, 8, and 9).
Therefore, care should be taken to ensure that there
is a minimum of water in any hermetically sealed
unit. Adequate removal of water from Mylar is
usually obtained by heating for 4 hr at 160°C

Figure 7. Tensile Strength of Mylar® after Exposure
to Steam
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(320°F). (Drying at these conditions should reduce
the water content of the film to less than 0.1%; more
than this amount of water must be present in a
system before the film can become embrittled due
to hydrolysis.) Drying at lower temperatures is not
as effective in removing water as shown in Figure
10. Data for this figure were obtained with samples
of Mylar 1000IA conditioned for one month at 22°C
(72°F) and 80% RH and then dried under vacuum
for 4 hr at the indicated temperatures.

Figure 8. Tensile Elongation of Mylar® after Expo-
sure to Steam
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Figure 9. Tensile Modulus of Mylar® after Exposure
to Steam
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Figure 10. Effect of Temperature on the Removal of
Water from Mylar'
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Figure 11. Tensile Strength of Mylar® after Heating in
150°C (302°F) Air
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Heat Aging
The maximum service temperature usually recom-
mended for Mylar® polyester film is 150°C
(302°F). Where extensive exposure, severe environ-
mental conditions, or unusual physical require-
ments are involved, it may be necessary to reduce
service temperatures. However, coatings are
available to increase the resistance of Mylar® to the
effects of heat aging. The effects of heat aging on
uncoated Mylar® in 150°C (302°F) air are shown in
Figures 11 and 12.

Processing conditions for Mylar® should be kept
below 200'C (392°F) to prevent damaging the film.
For instance, if heated at 220°C (428°F) for 30 min,
the film loses about 10% of its tensile strength;
moreover, the film becomes brittle and shatters
after heating at 235°C (455°F) for less than 1 min.

Figure 12. Tensile Elongation of Mylar® after Heating
in 150°C (302°F) Air
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Service Life
The service life of Mylar®, when subject to severe
flexing, is considered to be the time required to
reach 10% elongation under various conditions of
humidity and operating temperature. The curves
shown in Figure 13 are based upon tests of
Mylar® 92 and 1000A at various partial pressures
of water. The estimated service life will be greater
when the film is suitably encapsulated or coated.
Longer life can also be expected when the Mylar®
is not subject to flexing.

Figure 13. Effect of the Partial Pressure of Water on
Service Life
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Note: These values are typical performance data for Mylar® polyester film; they are not intended to be used as design data. We believe this information
is the best currently available on the subject. It is offered as a possible helpful suggestion in experimentation you may care to undertake along these lines.
It is subject to revision as additional knowledge and experience is gained. DuPont Teijin Films makes no guarantee of results and assumes no obligation
or liability whatsoever in connection with this information. This publication is not a license to operate under, or intended to suggest infringement of, any
existing patents.

DuPont Teijin Films
I Discovery Drive (P.O. Box 411)
Hopewell, VA 23860
Product Information: (800) 635-4639
Fax: (804) 530-9867

Mylar®
Only by DuPont Teijin Films

(06/20)03) 222367D Printed in U.S.A.
[Replaces: H-37232-21
Reorder No.: H-37232-3
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Permeability
Mylar® polyester film is virtually impermeable to
the liquid phase of most chemicals and reagents.
The permeability of Mylar® to the vapor phase of
some typical chemicals is shown in Table 4. The
effect of film thickness on the rate of water vapor
transmission through Mylar® is shown in Figure 1.
Gas permeability rates are shown in Table 4 and
Figure 2. Marked reductions in gas permeability
(up to a factor of 100) can be obtained through
polymeric coatings, metal foil laminations, or
vacuum metallization.

Table 4
Permeability of MylarO to Gases and Vapors

Vapors g/100 in2/24 hr/mil*
Acetone 2.22
Benzene 0.36
Carbon Tetrachloride 0.08
Ethyl Acetate 0.08
Hexane 0.12

cc/100 in2/
Gas Temp., °C (°F) 24 hr/atm/mil Test Method

Carbon Dioxide 25(77) 16 ASTM D1434-58

Freon® 12 55(131) 0.01

Methane 25(77) 1

*Permeabilities of vapors are determined at the vapor pressure of the
liquid at the temperature of the test, 40°C (104°F), using 1 mil film.

Figure 2. Gas Permeability of Mylar e vs. Temperature

_

._
E
v

X

Ne
N

C

00

0Nc._M

Ea)
00._
XD

I UUUUU80uu,u00
80,000
60,000

40,000

20,000

10,000
6,000

4,000

2,000

1,000
800
600
400

200

100
80
60
40

20

10
8
6

4

2

3.6
inn nnn

3.4 3.2

(32) (77) (122)
Temperature, °C

Figure 1. Water Vapor Transmission Rate of Mylar ®

at 38°C (100°F) (ASTM E-96, Procedure E)

^.U { 2r

1.8_

1.60
1.4

a
1.2

cc
C
.° 1.0
en._

E 0.8
U'
Cc
_ 0.6

0
Q 0.4

a) 0.2
X

n o
v u

0 2 4 6 8 10 12

Film Thickness, mil

2000

1500 le
N

_

._

o00
1000 Z

500 .,

500

42

Moisture Absorption
Mylar® polyester film is relatively insensitive to
moisture absorption. It absorbs less than 0.8%
moisture when totally immersed in water for 24 hr
(ASTM D-570-63). For sheet samples hanging in
air, with a relative humidity of 80%, the time
required to absorb moisture increases as the film
thickness increases (see Table 5). The effect of
relative humidity on the moisture content of single
sheet samples is shown in Figure 3. (Moisture
content was determined by drying at 1000 C (212°F)
-drying at 150°C (302°F) drives off another 0.2 to
0.3% water.)

For slit rolls of film, the rate of change in moisture
content of Mylar® is very slow because of the low
moisture permeability of the film. Hence, except for
very unusual situations, the moisture content of the
film at the time of manufacture will be maintained
until processed by the customer.

Table 5
Rate of Moisture Gain of Single

Sheets of Mylar ®

Time Required to Gain 90% Equilibrium
Gauge, mil Moisture Content, min

1/2 15
1 60
5 135

3.0 2.8 2.6

1167)
(°F)

(212)
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Kapton® polyimide film possesses a unique
combination of properties that make it ideal for
a variety of applications in many different
industries. The ability of Kapton® to maintain
its excellent physical, electrical, and mechani-
cal properties over a wide temperature range
has opened new design and application areas to
plastic films.

Kapton® is synthesized by polymerizing an
aromatic dianhydride and an aromatic diamine.
It has excellent chemical resistance; there are
no known organic solvents for the film.
Kapton® does not melt or burn as it has the
highest UL-94 flammability rating: V-0. The
outstanding properties of Kapton® permit it to
be used at both high and low temperature
extremes where other organic polymeric
materials would not be functional.

Adhesives are available for bonding Kapton®
to itself and to metals, various paper types, and
other films.

Kapton® polyimide film can be used in a
variety of electrical and electronic insulation
applications: wire and cable tapes, formed coil
insulation, substrates for flexible printed
circuits, motor slot liners, magnet wire insula-
tion, transformer and capacitor insulation,
magnetic and pressure-sensitive tapes, and
tubing. Many of these applications are based
on the excellent balance of electrical, thermal,
mechanical, physical, and chemical properties
of Kapton® over a wide range of temperatures.
It is this combination of useful properties at
temperature extremes that makes Kapton® a
unique industrial material.

Three types of Kapton® are described in this
bulletin:

* Kapton® Type HN, all-polyimide film, has
been used successfully in applications at
temperatures as low as -269°C (-452°F)
and as high as 400°C (752°F).

Type HN film can be laminated, metallized,
punched, formed, or adhesive coated. It is
available as 7.5 pm (0.3 mil), 12.5 pm
(0.5 mil), 19 pm (0.75 mil), 25 pm (1 mil),
50 pm (2 mil), 75 pm (3 mil), and 125 pm
(5 mil) films.

Kapton® Type VN, all-polyimide film with
all of the properties of Type HN, plus
superior dimensional stability. Type VN is
available as 12.5 pmrn (0.5 mil), 19 pm
(0.75 mil), 25 pm (1 mil), 50 pmrn (2 mil),
75 pm (3 mil), and 125 pm (5 mil) films.

Kapton® Type FN, a Type HN film coated
on one or both sides with Teflon® FEP
fluoropolymer resin, imparts heat seala-
bility, provides a moisture barrier, and
enhances chemical resistance. Type FN is
available in a number of combinations of
polyimide and Teflon® FEP thicknesses
(see Table 16).

Note: In addition to these three types of
Kapton®, films are available with the follow-
ing attributes:

* antistat

* thermally conductive

* polyimides for fine line circuitry

* cryogenic insulation

* corona resistant

* pigmented for color

* conformable

* other films tailored to meet customers'
needs

Data for these films are covered in separate
product bulletins, which can be obtained from
your DuPont representative.

The Chemical Abstracts Service Registry
Number for Kapton® polyimide film is
[25036-53-7].

1
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Kapton~ withstands the harsh chemical and physical demands
on diaphragms used in automotive switches.

Kapton® is used in numerous electronic applications,
including hard disk drives.
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Kapton® polyimide films retain their physical
properties over a wide temperature range. They
have been used in field applications where the
environmental temperatures were as low as
-269°C (-452°F) and as high as 400°C (752°F).

Complete data are not available at these
extreme conditions, and the majority of techni-
cal data presented in this section falls in the
23 to 200°C (73 to 392°F) range.

Table 1
Physical Properties of Kapton® Type 100 HN Film, 25 gm (1 mil)

Typical Value at
Physical Property 23°C (73°F) 200°C (392°F) Test Method

Ultimate Tensile Strength, MPa (psi) 231 (33,500) 139 (20,000) ASTM D-882-91, Method A*

Yield Point at 3%, MPa (psi) 69 (10,000) 41 (6000) ASTM D-882-91

Stress to Produce 5% Elongation, MPa (psi) 90 (13,000) 61 (9000) ASTM D-882-91

Ultimate Elongation, % 72 83 ASTM D-882-91

Tensile Modulus, GPa (psi) 2.5 (370,000) 2.0 (290,000) ASTM D-882-91

Impact Strength, N cm (ft. lb)

Folding Endurance (MIT), cycles

Tear Strength-Propagating (Elmendor0, N (Ibf)

Tear Strength-Initial (Graves), N (bf)

Density, g/cc or g/mL

78 (0.58)

285,000

0.07 (0.02)

7.2 (1.6)

DuPont Pneumatic Impact Test

ASTM D-2176-89

ASTM D-1922-89

ASTM D-1004-90

1.42

Coefficient of Friction-Kinetic (Film-to-Film)

Coefficient of Friction-Static (Film-to-Film)

Refractive Index (Sodium D Line)

Poisson's Ratio

Low Temperature Flex Life

0.48

0.63

1.70

0.34

Pass

ASTM D-1505-90

ASTM D-1894-90

ASTM D-1894-90

ASTM D-542-90

Avg. Three Samples
Elongated at 5%, 7%, 10%

IPC TM 650, Method 2.6.18

*Specimen Size: 25 x 150 mm (1 x 6 in); Jaw Separation: 100 mm (4 in); Jaw Speed: 50 mm/min (2 in/min); Ultimate refers to the
tensile strength and elongation measured at break.

Table 2
Thermal Properties of Kapton® Type 100 HN Film, 25 pm (1 mil)

Thermal Property Typical Value Test Condition Test Method

Melting Point None None ASTM E-794-85 (1989)

Thermal Coefficient of 20 ppm/°C -14 to 38°C ASTM D-696-91
Linear Expansion (11 ppm/°F) (7 to 100°F)

Coefficient of Thermal Conductivity, ASTM F-433-77 (1987)E1
W/mK 0.12 296 K

cal
cm sec.°C 2.87 x 10" 23°C

Specific Heat, J/g.K (cal/g-°C) 1.09 (0.261) Differential Calorimetry

Flammability 94V-0 UL-94 (2-8-85)

Shrinkage, % 0.17 30 min at 1500C IPC TM 650, Method 2.2.4A
1.25 120 min at 400°C ASTM D-5214-91

Heat Sealability Not Heat Sealable

Limiting Oxygen Index, % 37 ASTM D-2863-87

Solder Float Pass IPC TM 650, Method 2.4.13A

Smoke Generation DM = <1 NBS
Smoke Chamber NFPA-258

Glass Transition Temperature (Tg) A second order transition occurs in Kapton' between 360C (680°F) and 410C (770°F)
and is assumed to be the glass transition temperature. Different measurement
techniques produce different results within the above temperature range.
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Table 3
Physical and Thermal Properties of Kapton® Type VN Film

Typical Value for Film Thickness

25 m 50 m 75 gm 125 m Test
Property (1 mil) (2 mil) (3 mil) (5 mil) Method

Ultimate Tensile Strength, MPa 231 234 231 231 ASTM D-882-91
(psi) (33,500) (34,000) (33,500) (33,500)

Ultimate Elongation, % 72 82 82 82 ASTM D-882-91

Tear Strength-Propagating (Elmendorf), N 0.07 0.21 0.38 0.58 ASTM D-1922-89

Tear Strength-Initial (Graves), N 7.2 16.3 26.3 46.9 ASTM D-1004-90

Folding Endurance (MIT), x 103 cycles 285 55 6 5 ASTM D-2176-89

Density, g/cc or g/mL 1.42 1.42 1.42 1.42 ASTM D-1505-90

Flammability 94V-0 94V-0 94V-0 94V-0 UL-94 (2-8-85)

Shrinkage, %, 30 min at 150°C (302°F) 0.03 0.03 0.03 0.03 IPC TM 650
Method 2.2.4A

Limiting Oxygen Index, % 37 43 46 45 ASTM D-2863-87

Table 4
Physical Properties of Kapton® Type FN Film*

Typical Value for Film Type* *
Property 120FN616 150FN019 250FN029

Ultimate Tensile Strength, MPa (psi)
23°C (73°F) 207 (30,000) 162 (23,500) 200 (29,000)
200°C (392°F) 121 (17,500) 89 (13,000) 115 (17,000)

Yield Point at 3%, MPa (psi)
23°C (73°F) 61 (9000) 49 (7000) 58 (8500)
200°C (392°F) 42 (6000) 43 (6000) 36 (5000)

Stress at 5% Elongation, MPa (psi)
23°C (73°F) 79 (11,500) 65 (9,500) 76 (11,000)
200°C (392°F) 53 (8000) 41 (6000) 48 (7000)

Ultimate Elongation, %
23°C (73°F) 75 70 85
200°C (392°F) 80 75 110

Tensile Modulus, GPa (psi)
23°C (73°F) 2.48 (360,000) 2.28 (330,000) 2.62 (380,000)
200°C (392°F) 1.62 (235,000) 1.14 (165,000) 1.38 (200,000)

Impact Strength at 23°C (73°F),
N-cm (ft lb) 78 (0.58) 68.6 (0.51) 156.8 (1.16)

Tear Strength--Propagating (Elmendorf),
N (Ibf) 0.08 (0.02) 0.47 (0.11) 0.57 (0.13)

Tear Strength-Initial (Graves), N (Ibf) 11.8 (2.6) 11.5 (2.6) 17.8 (4.0)

Polyimide, wt% 80 57 73
FEP, wt% 20 43 27

Density, g/cc or g/mL 1.53 1.67 1.57

Test methods for Table 4 are the same as for Table 1.
* *Because a number of combinations of polyimide film and fluorocarbon coating add up to the same total gauge. it is necessary to

distinguish among them. A three-digit system is used in which the middle digit represents the nominal thickness of the base
Kapton' film in mils. The first and third digits represent the nominal thickness of the coating of Teflon" FEP fluoropolymer resin
in mils. The symbol 9 is used to represent 13 gtm (0.5 mil) and 6 to represent 2.5 gm (0.1 mil). Example: 120FN616 is a 120-gauge
structure consisting of a 25 gm (1 mil) base film with a 2.5 uzm (0.1 mil) coating of Teflone on each side.
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The usual values of tensile strength, tensile
modulus, and ultimate elongation at various
temperatures can be obtained from the typical
stress-strain curves shown in Figures I and 2.
Such properties as tensile strength and modulus
are inversely proportional to temperature,

whereas elongation reaches a maximum value
at about 300°C (570°F). Other factors, such as
humidity, film thickness, and tensile elongation
rates, were found to have only a negligible
effect on the shape of the 23°C (73°F) curve.

Figure 1. Tensile Stress-Strain Curves, Type HN Film, 25 gm (1 mil)
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Figure 2. Tensile Creep Properties, Type HN Film, 25 4m (1 mil)
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Kapton® polyimide film is made by a condensa-
tion reaction; therefore, its properties are
affected by water. Although long-term expo-
sure to boiling water, as shown in the curves in
Figures 3 and 4, will reduce the level of film
properties, sufficient tensile and elongation

Figure 3. Tensile Strength After Exposure to
25 Am (1 mil)
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remain to ensure good mechanical perfor-
mance. A decrease in the temperature and the
water content will reduce the rate of Kapton'
property reduction, whereas higher temperature
and pressure will increase it.

100°C (212°F) Water, Type HN Film,
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Figure 4. Ultimate Elongation
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The dimensional stability of Kapton® polyimide
film depends on two factors-the normal
coefficient of thermal expansion and the
residual stresses placed in the film during
manufacture. The latter causes Kapton® to

shrink on its first exposure to elevated tempera-
tures as indicated in the bar graph in Figure 5.
Once the film has been exposed, the normal
values for the thermal coefficient of linear
expansion as shown in Table 5 can be expected.

Figure 5. Residual Shrinkage vs. Exposure Temperature and Thickness,
Type HN and VN Films
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*Type VN shrinkage is 0.03% for all thicknesses.

Table 5
Thermal Coefficient of Expansion,

Type HN Film, 25 gm (1 mil),
Thermally Exposed

Temperature Range, C (F) ppm/°C

30-100 (86-212) 17

100-200 (212-392) 32

200-300 (392-572) 40

300-400 (572-752) 44

30-400 (86-752) 34
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The useful life of Kapton® polyimide film is a
function of both temperature and oxygen
concentration. In accordance with UL-746B
test procedures, the thermal life of Kapton® was

determined at various temperatures. At time
zero and 325°C (617°F), the tensile strength is
234 MPa (34,000 psi) and the elongation is
67%. The results are shown in Figures 6-8.

Figure 6. Tensile Strength vs. Aging in Air at 325°C (617°F), Type HN Film, 25 gm (1 mil)
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Figure 7. Ultimate Elongation vs. Aging in Air at 325°C (617°F), Type HN Film,
25 gm (1 mil)
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Figure 8. Retained Dielectric Strength at 325°C (617°F) for 25 gm (1 mil) Film,
Test Method UL-746B
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The life of Kapton® polyimide film at high
temperature is significantly extended in a low-
oxygen environment. Kapton® is subject to
oxidative degradation. Hence, when it was
tested in a helium environment, its useful life

was at least an order of magnitude greater than
in air. Using a DuPont 1090 thermal analyzer
system, the weight loss characteristics of
Kapton® in air and helium at elevated tempera-
tures are shown in Figures 9 and 10.

Figure 9. Weight Loss, Type HN Film, 25 gm (1 mil)*
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