
September 1992 LIDS-P-2139

Tight Performance Bounds for ./D/1 Queues with
Leaky-bucket-regulated Arrivals

Daniel C. Lee

Laboratory for Information and Decision Systems, M.I.T.
Cambridge, MA 02139

ABSTRACT

We study a single server queueing system with deterministic service time in which
arrivals are regulated by a leaky-bucket control. The worst traffic of arrivals shaped
by the leaky-bucket regulation is discussed. The performance measure considered is
queueing delay averaged over all customers. We examine both a single stream and
multiple streams of arrivals. In both cases, the worst traffic is characterized as the
repetition of the following three phases: bulky arrival with bulk size related to the
bucket size or, arrival at every token generation for a specified length of interval,
and then no arrival till the token bucket is full. In the case of the single stream, the
average queueing delay for the worst traffic, i.e. tight performance bound, is expressed
in closed form as a function of leaky bucket parameters (bucket size and arrival
rate). We expect that this function will provide insights into the relationship between
leaky bucket parameters and the corresponding bandwidth allocated. For the case of
multiple streams, each stream is shaped by separate leaky bucket regulations, and the
worst queueing delays are compared for different arrangements of token generation
times for each stream.

Key words: high-speed network, congestion control, leaky bucket, admission rate,
burstiness, queueing delay

1Research supported by the NSF under grant ECS-8552419

1 Introduction

High-speed integrated packet-switching networks are characterized by high transmis-
sion speed and variety of traffic types. The high transmission speed and the resulting
high ratio of transmission speed to propagation delay make computationally simple
open-loop control schemes desirable for congestion control. In an integrated network,
congestion control must guarantee a certain bandwidth for real-time traffic such as
voice or video. For these reasons, the leaky bucket scheme [8] is considered suitable.

A leaky bucket controller is comprised of a packet buffer and a token bucket. Packets
arrive at the buffer and get queued. For a packet in the buffer to leave the controller
and be admitted into the network, it must obtain a token from the token bucket.
Tokens are generated in the bucket periodically with a specified rate r. The token
bucket has a fixed size a. If the token bucket is full at the time of token generation, the
newly generated token is discarded. This scheme is specified by two parameters: the
token generation rate r and the bucket size a. The token generation rate quantifies
the allowed rate of admissions, and the bucket size quantifies the allowed burstiness
of the traffic admitted.

This scheme has drawn the attention of various authors. In [1, 2], the throughput
of admitted packets and the blocking probability at the finite-buffer controller are
analyzed as a function of the leaky bucket parameters. In [7], the statistics of the
queue formed in the controller buffer and the interdeparture time from this buffer are
quantified under the assumption that the packet arrival at the controller is modeled
by a Poisson process. The relationship between the controller buffer's queue statistics
and the leaky bucket parameters is thereby understood. However, the statistics of
the queues formed in the network downstream from the leaky bucket controller are
not analyzed. In [5], a stochastic fluid model is used to represent the continuous
flow of data, whereas a point process model representing packets of data is used
in the aforementioned literature. In [3, 4, 6], quantities describing the behavior
of downstream queues as well as the controller are analyzed. Their formulation is
drastically different from the ones used in the other literature mentioned above in
that nonprobabilistic analysis is used. The worst delay over all packets and the
maximal queue length that can possibly be reached at some point of time under the
leaky bucket control are the primary quantities of interest in their studies.

In this paper, we analyze the leaky bucket regulation from a queueing theoretical
point of view. We analyze a single-server queue with deterministic service time at
which the arrival is regulated by a leaky bucket scheme. (See Figure 1.) Arrivals are
modeled as a point process. These arrivals at the single-server queue are departures

1

Traffic shaped by

leaky bucket control

/D/1 queue

A 1//it

Token o :bucket size

r: token generation rate

Figure 1: ./D/1 queue with arrivals regulated by leaky bucket scheme

2

from the leaky bucket controller, and satisfy a certain rate and burstiness constraint.
(This is the arrival process at point B in Figure 1. Throughout this paper, we
will interchangeably refer to this arrival at point B as "admission".) We refer to
this queueing system as a ./D/1 queue. We will use words "packet" and "customer"
interchangeably. The quantity of our interest is the queueing delay averaged over all
packets for the worst arrival pattern shaped by the leaky bucket regulation. From the
standpoint of networking, this paper views the whole network downstream from the
leaky bucket controller as a single-server queueing system with deterministic service
time. The formulation in this paper is similar to [3, 4, 6] in that a nonprobabilistic
approach is taken. A major distinction between this paper and [3, 4, 6] is that the
quantity of interest in this paper is the average delay rather than the delay at the
peak.

In section 3, the worst arrival process to the queue (or the worst departure process
from the controller) is specified. The worst queueing delay for this process is derived
as a function of the leaky bucket parameters: the token generation rate r, and the
bucket size a. Thus, the effect of r, a, and their interaction effect on the worst-case
average delay are specified. In section 4, the discussion is extended to the case of
multiple sources of arrivals, where several streams of packets arrive at the queue, with
each stream shaped by its own leaky bucket regulator.

2 Preliminaries

Before discussing main results, we note two properties of the general queueing system
that we will use frequently in our analysis.

Lemma I Assume equal service time for all customers. Then, the total waiting time
of a busy period is increased by hastening the admission time of any customer within
the busy period.

Proof
See Figure 2. Because all the customers have an equal service time, sayl//i, a service
completion takes place at every 1/It time units since the beginning of the busy period.
If we hasten the admission time of a customer from time tc to th (th < tc), the queue
size increases by 1 in the interval between th and t,. Therefore, the total waiting time
increases by t, - th. Q.E.D.

Lemma 1 concerns waiting times within a single busy period. Now we want to relate
the waiting time averaged over all customers with the waiting time averaged within
individual busy periods. We denote by wi the i-th customer's waiting time in queue.

3

Queue size in

the main system

3 J1
---- I

III t

th tc 1l0/

Figure 2: An admission hastened from t, to th

In any admission schedule of a stable queueing system, the resulting sample path
of the queue length will be a sequence of busy periods. We denote the number of
admissions in the n-th busy period by a,. We denoted by R, the sum of the waiting
times of these an customers. Then, the waiting time per customer averaged within
the n-th busy period is Rn/an. The following lemma relates this quantity with the
waiting time averaged over all customers.

Lemma 2 For any input schedule, if the number of customers served in individual
busy periods is bounded (i.e. {aln = 1,2,-- } is bounded), and service times of
customers are bounded, then we have

Jim sup -ZE wm <-su P
M-lo M =l k ak

Proof
Denote by N(m) the number of completed busy periods up to the admission time of

the m-th customer. Then, >jvffm) ai is the number of customers served in N(m) busy
periods. We then have

EMM= Wm Em) Wm Emrn=N(M)+l Wm

M M + M

toom,") Wm + Em=N(M)+1 Wm

;N(M) ai MEi=l4i-r~

Therefore,

FM .N(M)
lim sup l lim sup [m-M Wm < + Em=N(M)+1 Wm
M--o* M M-.oo N(M) MEi=l ai

N(M) iN
< limsup m=l)W + lim sup Em=N(M)+l Wm
- M--oo Z-i= ai M-.*oO M

Since the number of customers served in a busy period is bounded, and service times
are bounded, we have

EM

lim =N(M)+l Wm 0 and lim N(M) = oo
M-*o M M-Moo

Therefore,

VN(M) N
lim sup m=l Wm < lim sup zm=l Wm = lim sup = R

M-*oO M M-oo ZN(M) a N-*oo a,E Mi=l ai N 00 n=l an

Hence,

I1 M . E.=x Rn . nu=l an aim sup Wm < lim sup = lim sup
M-*o M -= N-oo En=lan N-oo En=l an

En=l an supk ak Rk
liimsup N =sup

N--oo Zn=l a, k ak

Q.E.D.

This lemma enables us to focus on only one busy period in order to find the worst
arrival schedule to a queueing system. Note that our model, */D/1 queue satisfies
the assumptions of this lemma for any allowable set of arrivals, as long as the token
generating rate is less than the service rate.

3 Single Source

In this section, the -/D/1 queue illustrated in Figure 1 is analyzed. Each customer
has a deterministic service time of length l/,u. The arrival process in this queue
satisfies a certain rate and burstiness constraint due to the preceding leaky bucket
regulation. We are mainly interest in the effect of input rate and burstiness on the
average queueing delay. The goal of the analysis in this section is to answer the
following two questions:

* 1) What is the worst traffic of arrivals that can be allowed by the leaky bucket
input regulation?

* 2) For this worst input, what is the relationship between the average queueing
delay and the leaky bucket parameters?

Roughly speaking, our main result is that a certain periodic input schedule yields the
worst average queueing delay. Each period is comprised of a big burst of size close to
bucket size o followed by a number of sequential admissions 1/r apart in time. We
will also derive a closed-form expression for the average queueing delay as a function
of o and r. We assume r < It for stability.

Consider a fictitious adversary who schedules admissions in order to maximize the
average delay. Consider how this adversary will create a busy period that yields the
maximal average queueing delay per customer within that busy period. For a fixed
number, a of admissions in a busy period, the way to maximize the total waiting
time under the leaky bucket regulation is to inject each customer as soon as possible
after the first admission (due to Lemma 1). If a _< , the way to maximize the total
waiting time is to wait until the token bucket is full and to admit all a customers
together. The resulting total waiting time is a(a - 1)/(2/x), and the average queueing
delay per customer in a busy period is (a - 1)/(2jt). If a = o + 1, the adversary can
still push into the queue a bulk of customers of size a + 1 in the following manner.
The adversary can wait until the token bucket is full, and further wait until the next
token generation time. Immediately prior to this token generation, the adversary
can send Co customers at the leaky bucket and let them be admitted. Immediately
after the token generation, the adversary can send another customer and let it be
admitted. This way, one can start the busy period with or + 1 customers, and the
average waiting time is still (a - 1)/(21t) = o/(2,t). If a = a + 1 + k , k > 0, in order
to maximize the total queueing delay in a busy period, one must start a busy period
with ar + 1 admissions, and at the following k token generation times, the remaining
k customers must be admitted. (See Figure 3 for an example.) In this schedule, the
i-th customer has waiting time (i - 1)/bt for 1 < i < Co + 1. For the (a + 1 + I)-th
customer, the waiting time is

1 1 1 r
c-+l(--) for l<ear

t~ , r f-r

The resulting average waiting time per customer in this busy period isThe resulting average waiting time per customer in this busy period is

+ri+ 2 I I]g(k, a,r) - a(1) + k + k(k + 1) (1) 1

Notice that the average queueing delay within the busy period increases with a up to
a = C + 1. Therefore, the maximal queueing delay per customer in a busy period for
the arrival schedules regulated by the leaky bucket scheme is

max g(k, a, r)
k=O,1,2,...

6

U(t) unfinished work

O'

O stands for token generating epoch.

=2 a= 6 t=l 1 k=2

This figure illustrates how to maximize the total delay with a fixed number of admis-
sions (a = 9 admissions for example).

Figure 3: Admission for maximal total waiting time

7

The maximal k for this function is

0 O if r < it/(1 +±)
k* = kl if r > it/(l + o) and g(kl,r, r) > g(kh, o-, r) (2)

kh if r > It/(1 + a) and g(kl,or,r) < g(kh, a, r)

where

=i -(17 + 1) + 1

kh -(a +1) + S

See Appendix A for derivation. It turns out that g(k*, r, r) is the worst queueing
delay averaged over all customers. The following theorem states the result.

Theorem 3 For any input schedule under leaky bucket regulation with parameter Ca

and r, the average queueing delay has the following upper bound:

1 M

lim sup - Wm < g(k*, a,r) (3)
M-oo M=-m=-

This upper bound is attained by the admission pattern generated by the following
algorithm:
Algorithm

1. Wait until the token bucket is full; at time 1/r from the moment the token bucket
is full, admit a- + 1 customers.

2. At each of the next k* token generation times, admit a customer.

3. Go to 1.

Proof
The maximal queueing delay per customer within a busy period is g(k*, a, r), and it
is attained by first two lines of the Algorithm above. From Lemma 2, g(k*, a, r) is an
upper bound for the queueing delay averaged over all customers, and the Algorithm
above attains this upper bound. Q.E.D.

Figures 4, 5 show the relationship between the worst average delay per customer,
g(k*,a, r) and the leaky bucket parameters for ,t = 1. Figure 5 indicates that the
relation between the queueing delay and a- is very close to a linear relation. Let us
compute the asymptotic slope. For sufficiently large ao, we have r > It/(1 + a) , so
the ratio of the queueing delay to a- is

g(k*, r, r) 1 1 k* (1 1 k*

C- 2it 2a r tJ 2rcr+1+k*

8

20 i i

_18 sigma = 1 to 20

16

.14

12

'-4'

...

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

r (Token generating rate)

Figure 4: Average delay in the worst case vs. token generation rate
1"*11 ~ ~ ~ ~~~~.................. ------

16

r=.1,.2,.39
14

12

' 10
4)

8

0 I I I I I I , II

0 2 4 6 8 10 12 14 16 18 20

sigma (bucket size)

Figure 5: Average delay in the worst case vs. bucket size

10

-2

-4 i

-6 -

-8

UI -10

-12 :

-14

-16

-18 I I .
0 20 40 60 80 100 120 140 160 180 200

sigma (bucket size)

r = 0.1

r = 0.5

r = 0.9

Figure 6: Percentage error

11

Also,
kl kh 1 k*

lim -=limn -=-1+ = lim
Zo~~o a Zoo C /1 a ooIC rCoo

Finally, we have

maxkg(k, c, r) 1-r
-lic (4)
-4 00 Cr/ft it

Therefore, the queueing delay is approximated by the following expression:

maxg(k,o, r) _ / a (5)

This equation indicates the effect of r, oa, and their interaction effect on the worst-case
average delay. The percentage error of this approximation for fp = 1,

maxk g(k, ao, r) - 1-4T-

maxk g(k, a-, r)

is plotted in Figure 6.

4 Multiple Sources

In the previous section, we considered the relationship between the worst-case average
queueing delay and the leaky bucket parameters for a single source. In this section,
we discuss this relationship for multiple sources. Each of S sources admits customers
under a leaky bucket regulation with parameters al/S and r/S. A new issue arises in
the case of multiple sources: how to interleave the token generation times of different
sources. In order to exclude the effect of fractional bucket size r/S and to focus our
attention on the effect of multiple sources, we assume that ca/S is an integer.

4.1 Perfectly Interleaved Token Generations

Suppose that the token generation times of S sources are perfectly interleaved, so
that the time between the token generations of different sources is exactly 1/r. In
this case, obviously, the worst case average queueing delay is identical to the case of
a single source.

4.2 Coinciding Token Generations

Suppose that all S sources generate tokens at the same time; therefore, S tokens
are generated simultaneously every SIr time units. Consider the admission schedule
generated by the following algorithm:

12

Algorithm 4

1. Wait until all sources have a full token bucket.

2. Immediately prior to the next token generation, each source admits c-/S cus-
tomers; immediately after this token generation, each source admits another
customer.

3. Each source admits a customer at the next J token generation epochs; go to 1.

For this admission pattern, the total waiting time per busy period is

O+S-1 1 J S-l 1 1 1 1 1Z i- + I S-- + js --)+ for such J as -+ JS(---) O
i=O t, j=l 1=0 A t r f

The number of admitted customers in this busy period is or + S + JS, so the average
waiting time per customer in this busy period is

h(J, , r, S)

_S1 [,+S-1 1 iVJ S-1 1 l 1)

a + S + JS I=,I j=1 1=0/ It l =0 /r)

JS(,1 1 .+S-1 + o (-6+S
2 ±u r 2p 2r 2r c + S + JS (

Among the input patterns generated by Algorithm 4, let us consider which parameter
J yields the maximal average queueing delay per customer in a busy period. By the
procedure similar to the maximization of g(k, c, r), we can derive the maximum:

J 0 if S/r > (a + S)/hl
J* = J if S/r < (oa + S)/,L and h(Ji, a,r, S) > h(Jh, a,r, S) (7)

Jh if S/r < (a + S)/1L and h(Ji, a, r, S) < h(Jh, r, r, S)

where

J, - -(s +1)+ ((8)

Jh - -(1)+ (+ 1)S r/ 1 (9)

Theorem 5 For S sources with coinciding token generation times with an overall
rate r, and overall bucket size oa, the average queueing delay per customer has the
following upper bound:

lim sup M Wm < h(J*, a, r, S)
M40 m=1

This upper bound is attained by Algorithm 4 with parameter J* of formula (7)

13

Proof
Lemma 1 states that for a fixed number of customers, say a, admissions must take
place as soon as possible in order to maximize the total waiting time. Therefore, the
adversary admits these a customers according to a strategy similar to Algorithm 4.
Namely, wait until all the token buckets are full. Immediately prior to the next token
generation time, admit min(a, a) customers. If o- < a < ar + S, immediately after this
token generation time, admit the rest a - Co customers. If a > or + S, immediately
after this token generation time, admit S customers, ending up with C + S admissions
at the beginning of the busy period. From there on, at every token generation time,
admit up to S customers until all a customers are exhausted. We claim that the
number of admissions that maximizes the average waiting time per customer satisfies

a* = + S + JS for some integer J . (10)

This is proved in Appendix B. Therefore, the maximal average waiting time per
customer in a busy period is h(J, o,r, S) for some J. Hence, the maximal average
waiting time per customer in a busy period is maxj h(J, A, r, S) = h(J*, a, r, S). From
Lemma 2, for any admission schedule,

lim lllsup i E w, < h(J*,C,.,S)

and this bound is attained by Algorithm 4. Q.E.D.

4.3 General Token Generating Patterns

Recall function g(k, A, r) defined in (1) and maximum, k* of formula (2).

Theorem 6 The average queueing delay in the worst case under any token genera-
tion pattern lies between the worst-case bounds for the 'perfectly interleaved' and the
'coinciding' token generation patterns. That is,

1 M 1 M
g(k*, A, r) <lM M -oo Wm < limsup wm< h(J*, ,r,S)

m=l-- M-*oo M m=

Proof
See Appendix C.

5 Comparison between Multiple Sources and Sin-
gle Source

We have established that multiple sources exhibit worse delay performance than a
single source except in the case of a perfectly interleaved token generating pattern.

14

For this pattern, the performance is identical to the single source. Now we show that
the asymptotic growth of the maximal average queueing delay as a function of o- is
independent of the number of sources. From equations (6), (8) and (9),

Jimm - = Ji 1 (-1+ 1 so
-too Ca a-Woo S V

limax h(J, a, r, S)lin
a -- oo (

2(-1__1 +(I J/) 1 1 21/l r/ 2

[/1 ~- r/!
1- /1-r/t 1

r/t* t

This quantity is identical to formula (4) of the single source. Therefore, the asymp-
totic growth does not depend upon the number of sources.

6 Conclusion

We have studied the performance of a single-server queue with deterministic service
time where arrivals are regulated by a leaky bucket scheme. We have discussed the
cases of both a single source of arrivals and multiple sources. In both cases, we
have characterized the worst arrival pattern that passes through the leaky bucket
regulation. In the case of a single arrival source, we have also specified the average
queueing delay per customer as a function of the leaky bucket parameters.

For a leaky bucket regulation with bucket size 7r and token generation rate r, the
arrival pattern that maximizes the average queueing delay per customer is character-
ized as the repetition of the following three phases: bulky admission with bulk size
related to cr, admission at every token generation for a specified length of interval,
and then no admission till the token bucket is full. For the case of the single source,
the maximal average queueing delay is closely approximated by

1- 1-r/ O

For the case of multiple sources, the arrangement of the token generation times affects
the delay averaged over all customers. The worst arrangement is when the token
generation times for all sources coincide. The best arrangement is when the token
generations for different sources are perfectly interleaved.

15

A Derivation of max g(k, a, r)

Let us extend the function g for real values of k and consider the partial derivative
with respect to k. We have

ag I (; - ;) O(a $+1)g)k 2(+ 1)kk+2 (± +1)2± (o+1) 1
Ak 2 (I + 1 + k)2 [rh + 1]

The roots of this partial derivative are

-(f + l)+ 1)

Function g(k, c, r) is nondecreasing in k for,

k -(r+) - -(+ 1)+ ()
kc [,,,,, a~cr $ 1) r(e+ 1)1-r/ '1 /

and nonincreasing in k for

k G (-(1+ l) (, 1) 0)

For the case, r < It/(l + a), we have

-(a + 1) + <)

so g(k, a, r) on nonnegative integer domain is maximized at k = 0. For the case

r > u/(1 + a),

-(+ 1) a(+ 1)> 0,
~-(r +l)+, - r/I 0

so g(k, ar, r) on nonnegative integer domain is maximized either at

kt = -(O + 1)+1 - I or.(.+ or

kh- [-(+1) + (1) -]/L
Hence,

0 if r < t/(l + a)
k* = k if r > tt/(1 + a) and g(kl, a, r) > g(kh, cr, r)

kh if r > p/(1 + a) and g(kl, r,r) < g(kh,or, r)

Q.E.D.

16

B Proof of formula (10)

Because a* maximizes the average waiting time per customer in a busy period,

/·i=1 Wi

a*-1 -

Suppose a* = a + S + (J-)S + 1, 1 < I < S- 1 as the example in Figure 7.
Then, we can admit another customer at the same time as the a*-th customer, and
Wa*+1 = Wa* + (1//). We now compare the waiting time the (a* + 1)-st customer
would have, Wa*+1 and the waiting time averaged up to a*-th customer, (EZ=_* wi)/a*.
We have

L_ 1 Wi +1 > Wi
Wa,+l i=1 Wai

a* - a*

(a* 1)Wa* - Wi 1
+ -

a* f /

[Wa. .i i+--a= a* 1 - I]+

> 0 using inequality (11)

This implies that
i=s Wi . r a i +

a* a* + 1
This contradicts the maximality of a*. Therefore, a* = C + S + JS for some integer
J. Q.E.D.

C Proof of Theorem 6

Suppose that we try to make the total waiting time of a busy period as large as possible
with a fixed number of admissions, a. From Lemma 1, for any token generating
pattern, we will wait until all the sources have a full token bucket. That way, we
can admit at least a customers at the beginning of the busy period. For a coinciding
pattern, we can admit S more customers at the beginning of the busy period by
admitting the o customers immediately prior to the token generation and S customers
immediately after the token generation. For any token generation pattern, one and
only one token generation for each source happens in the interval [tb, tb + S/r), where
tb is the time at which busy period starts with at least o admissions. Therefore, the
S customers for the case of the coinciding pattern admitted at the beginning of the
busy period in addition to the C customers can be viewed as admitted earlier than
S customers admitted in the interval [tb, tb + S/r) for the case of an arbitrary token
generation pattern. The same statement holds true for subsequent bulky admissions of

17

U(t): unfinished work

t

= 9, S = 3,J = 2,1 1

Figure 7: Algebraic structure of the maximal number of admissions

18

the coinciding token generation pattern and the admissions of the subsequent intervals
of length S/r for the case of an arbitrary token generation pattern. (See Figure 8.)
Therefore, for any fixed number of admissions, a, the coinciding pattern ends up with
the largest total waiting time in one busy period. Therefore, the coinciding pattern
gives rise to the largest queueing delay per customer in one busy period. Therefore,
using Lemma 2, we prove

li sup 1 MliMnsu M p], Wm ~ h(J*,,'r,,S)M-+oo M--=1

For a perfectly interleaved token generation, tokens for each source are generated
with period S/r. Since the token generations for S sources are perfectly interleaved,
tokens are generated with period 1/r. Therefore, the maximal average waiting time
per customer is identical to the single source case. Let us compare this system with
an arbitrarily interleaved token generation. Without loss of generality, let us say that
a token for source 0 is generated at time 0, and that the following token generation
for source 1, 2,... , S- 1 occurs at time 0 < tl < t2 < ... < ts_ < S/r, respectively.
Each source generates a token with period S/r, so source k generates tokens at

m- + tk m = 0, 1,2,-..

Without loss of generality, source k of the system with perfectly interleaved token
generation generates a token at times

S k
m-+- m = 0, 1, 2, ...

Note that for a fixed number of admissions within a busy period, in order to maximize
the total waiting time, the busy period should start after all sources have a full token
bucket. Define rk = tk - k/r'. Suppose rk < 0 for k = 0, 1,. .. ,S - 1 . Then, if we
start busy periods for both token generating patterns at time 0, all the admissions
of this arbitrarily interleaved token generation system can be viewed as the hastened
admission from the perfectly interleaved one. Suppose rk > 0 for some k. Take the
largest rk and define

7k *> rk for all k

If we start busy periods for both token generating patterns at time tk*, an admission
at any subsequent token generation of this arbitrarily interleaved token generating
system can be viewed as a hastened admission from the 'perfectly interleaved' sys-
tem. This statement can be explained pictorially in Figure 9. For the purpose of
comparison with the 'perfectly interleaved' system, starting a busy period at time tk.
is viewed as shifting the time axis of the system with an arbitrary token generating
pattern so that tk. coincides with a token generation time of the 'perfectly interleaved'
system. Due to this shift and the periodic nature of the token generation, the time
difference between the token generation time for each source k for the system with
an arbitrary token generation pattern and the corresponding token generation time

19

of the 'perfectly interleaved' system is

(tk -rk*) - - = <e - rk* <0

Therefore, the subsequent admissions of the arbitrarily interleaved system can be
viewed as hastened admissions of the perfectly interleaved one. Therefore, for each
fixed number of admissions, a, the total waiting time in a busy period for the arbitrar-
ily interleaved system is no smaller than the perfectly interleaved one from Lemma
1. Therefore, using Lemma 2, we prove that the maximal average waiting time of an
arbitrarily interleaved token generating pattern is no smaller than the one from the
perfectly interleaved system. Therefore,

g(k*,, r) < liminf 1 M

Q.E.D.

20

U(t): unfinished work

t

.Coinciding token generation

ct~~~~~~~~~~~~~~~~~~~~~~~~~~t

Arbitrarily interleaved token generation

Figure 8: Comparison between token generation time arrangements

21

1 <O0

-- , t '"l tl

2/r _

72 >0

t2

r3 = 0

.3/r

t3

3 (t - 2) t- 1/r

-PIC"I ~ ~ ~ ~ ~~~=r - r2 < O

(t3 -T)- 3/r

= -73-2 < 0

Figure 9: Circular shift of an arbitrarily interleaved token generation

22

References

[1] Arthur W. Berger. Performance analysis of a rate-control throttle where tokens
and jobs queue. IEEE Journal on Selected Areas in Communications, 9(2):165-
170, February 1991.

[2] Arthur W. Berger and Ward Whitt. A multi-class input-regulation throttle. In
Proceedings of the 29th IEEE Conference on Decision and Control, pages 2106-
2111, Honolulu, Hawaii, December 1990.

[3] Rene L. Cruz. Calculus for network delay - part I: Network elements in isolation.
IEEE Transactions on Information Theory, 37(1):114-131, January 1991.

[4] R.L. Cruz. Calculus for network delay - part II: Network analysis. IEEE Trans-
actions on Information Theory, 37(1):132-141, January 1991.

[5] A.I. Elwalid and D. Mitra. Rate-based congestion control. Queueing Systems, 9,
1991.

[6] A. Parekh. A generalized processor sharing approach to flow control in integrated
service networks. PhD thesis, Massachusetts Institute of Technology, Cambridge,
MA, 1992. Dept. of Electrical Engineering and Computer Science.

[7] M. Sidi, W.Z. Liu, I. Cidon, and I. Gopal. Congestion control through input rate
regulation. In Proceedings of GLOBECOM'89, Dallas, TX, 1989. volume 3.

[8] Jonathan S. Turner. New directions in communications (or which way to the
information age?). IEEE Communications Magazine, October 1986.

23

