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Abstract
In this thesis, the limits of conventional linear actuators for long stroke applications
are discussed, and tape-spring based actuators such as the STEM are introduced
as an alternative solution. While the literature contains several assessments of self-
deploying tape-springs, little exists in the area of closed loop deterministic control
of such mechanisms. This thesis adapts the existing models of tape springs to form
a framework for the study of closed loop controllable tape springs. Included is an
evaluation of the validity of the prevailing first order model for a coiled tape-spring.
Lastly, several avenues for future research are suggested.
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Chapter 1

Introduction

Linear actuators are generally limited in their effective strain (maximum over mini-

mum device length, including packaging) by geometric concerns. Either their driving

impetus is limited in its range of motion, as in a piston linkage or Watt coupling, or

there is a limit to the space available for retraction of the mechanism when the desired

position is close to the body of the actuator, as with a linear motor or a rack and

pinion setup. Telescoping mitigates this geometric problem to some extent, as is also

the case with push chain configurations, but at the cost of increased complexity and

part count. Tape-spring drives (such as the STEM, or Split Tube Extendable Mem-

ber), a class of actuators well known in the field of deployable structures for space

applications [10], but of uneven notoriety elsewhere, replace the numerous parts of

a telescoping device with locking flexures, countering many of the drawbacks of col-

lapsible actuators.

This thesis will examine the supporting mechanisms necessary to make a deter-

ministic and hysteresis-free rotary-to-linear transmission element from tape-springs

in general and specifically STEMs. It will further consider the dynamics of an actu-

ator built with the described transmission and determine when the traditional first

order model for extending tape-springs fails and must be replaced by a more complete

model.
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1.1 Traditional linear actuators

Most commonly found electric linear actuators involve a local rotational input and

some form of transmission system. Chief exceptions to this rule are linear electrome-

chanical motors; these can however be grouped with rack and pinion devices for the

current geometric examination. The simplest transmissions for any of these devices

is a "friction drive" which maintains rolling contact between a moving bar and a

powered wheel, matching the motion of the bar to that of the wheel and extending

any excess length of bar behind the actuator case. Telescoping devices use cabling to

drive multiple bars that nest or stack at lesser extensions. Similar in concept to the

telescoping devices are scissor linkages, which unfold from a packed configuration to

extend.

Rack and pinion mechanisms (such as that pictured in Figure 1-1(a)), along with

devices making use of pinch wheels to maintain rolling contact through friction (fric-

tion drives), benefit greatly from their simplicity. The moving bar is a single part and

can be constrained with a single bearing at the base to minimize lateral deflection.

As long as the gear teeth remain engaged or slip is prevented, the position of the

bar can be measured from the wheel axle. The equivalent moment of inertia of the

bar to the motor axis remains constant through the travel of the device, allowing for

travels as great as surrounding space and the bearings used will allow. The need for

surrounding space, specifically directly behind the actuator housing, prevents the use

of these actuators in many long stroke applications. They are, however, still used

extensively where space is available, such as retractable security gates. Through reci-

procity, rolling contact drives are, of course, used everywhere as the common wheel.

Where lack of room behind an actuator prevents use of a rack and pinion, various

telescoping mechanisms come into play. The key defining feature of any telescoping

mechanism is that it is made up of sliding pieces offset from each other in a direction

normal to the axis of extension. Common forms include traditional telescopes with

tubes nested in each other, where the offset is radial, and sets of parallel bars not

nested in each other, like the lift in Figure 1-1(b). While the use of multiple members

9



gives telescoping devices versatility, it also impacts their robustness. The bearing

on each link makes the whole system more compliant, and increased bearing quality

and cost can only compensate to a certain extent. Telescopes typically have longer

package lengths than other linear actuators, the elements not being able to pack into

a length smaller than their own. Decreasing the individual link length adds to the

number of error-producing bearings and thus has its own limits.

Folding drives such as scissor linkages (Figure 1-1(c)) rotate their links for storage,

and such devices are able to avoid the minimum length requirements of the telescope.

The scissor has its own weaknesses, however. At low extensions, the force required to

move the linkage by squeezing the base is very great, increasing the size of the motor

needed or requiring that the linkage not be allowed to retract beyond a certain limit.

Scissors also have the weakness that they are prone to lateral instability unless two

are used side by side with common axles.

1.2 Rollup actuators

Research in the area of compact deployable structures has largely been driven by the

aerospace sector, where the small launch volumes of spacebound cargoes necessitate

that antennas and instrument booms extend once the satellite has reached orbit.

Theatre and its technical support is an area which has made use of aerospace advances

in extensions. Special effects on stage often require an actor to ascend to or descend

from the ceiling. Dressing the set requires that workers be able to reach the lighting

racks, often in places where catwalks are impractical installations.

Two key extension mechanisms in use in these and other areas are the push chain

and various tape-spring drives, notably the STEM. These actuators have in common

a retraction mechanism involving a change in configuration which alters stiffness,

allowing the column to be wound on a reel.

Push chains are generally chains with one direction of flexure. As they are de-

ployed, they pass through a mechanism that arranges the links into a column capable

of supporting a compressive load as shown in Figure 1-2(a). Retracting the chain

10
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Figure 1-1: Traditional linear actuators
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pulls it back through the configuration mechanism, which reverses the arrangement,

allowing the chain to bend again for rolling purposes. In single chain configurations,

the links have a single axle connecting them when in the flexible state and a pin par-

allel to the axle in the stiff configuration. Multiple chain models exist as well, with

the two coils of links sending out chains through a zipper-like mechanism. Two kinds

of links are used, one with a foldout hook in the middle and one with a catch for the

hook, with the links either alternating on each chain or each chain being homoge-

nous. The chief weaknesses of push chain actuators are the number and precision of

parts required and the guidance needed on the load so as not to fall out of the rigid

configuration.

Tape-spring actuators maintain the storage benefits of push chains while replacing

the many necessary joints with a continuous flexure. Most commonly encountered

in steel measuring tapes, tape-springs are strips of elastic material with transverse

curvature in their cross section. For small bending deflections, the strips act as

cantilevers. Beyond a certain point, however, the tape locally snaps into a flat strip.

In the flat form, the spring bends with constant radius, owing to the residual stresses

from the shape change. Once this bend is present, it can be moved or extended with

much less force than was initially required to achieve it. This property allows the

tape to be moved easily between its rigid straight form and a reserve magazine of

flattened tape wound on a drum.

While measuring tapes can take some amount of axial or lateral load before buck-

ling, especially at short extensions, their open-section nature leaves them prone to

twisting. The tape is already prone to twisting when bent towards its concave sur-

face, a phenomena which contributes to the much lower bending strength and force

required to achieve snap-through when the forces are towards the concave surface.

Additional twisting magnifies this weakness. Several approaches are used in practice

to close the section and reinforce the tape against both external torques and its own

inclinations to twist, increasing the length to which the straightened part can be ex-

tended and the load which can be moved. Aerospace applications make extensive use

of the STEM, a tape spring which curls into a full tube as it extends. At least one

12
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supplier of theatrical equipment offers a lift that incorporates three tape-springs that

zip together at the edges, forming a triangular column.

Triangularly interlaced tapes, sold commercially as RibbonLiftsM by the company

of that name [5], gain strength both through the stabilizing effects of the edge con-

straints and through the increased moment of inertia the column gains from the space

included in the triangle. The STEM is a single tape-spring, but where the common

carpenter's tape subtends an arc of 50 ° - 70° , the STEM curls into a full circle and

often overlaps itself, with an arc of 360 ° - 430° [10]. The STEM is thus also a closed

section with a substantial enclosed area, but without the edge on edge contact points

of the zippered mechanism and with a packaging mechanism that requires less of a

footprint in the plane normal to the axis of extension.

1.3 Deterministic plant model

The literature surrounding tape springs is primarily concerned with the solid mechan-

ics which model their behavior, with little concern for their implementation as linear

actuators for feedback control. When dynamics are considered, it is generally with

respect to the free extension of STEMs as antennas or the use of open tape-springs as

locking hinges for panels such as solar panels. It is the purpose of this thesis to exam-

ine the necessary features to use the STEM as a repeatable deterministic transmission

element in the plant of a feedback system.

Key to using the STEM to drive a load in response to a signal is the maintenance

of tension at the point where the tape-spring leaves the storage drum. Descriptions

of the unrolling process of the STEM read at first glance as if it unwraps smoothly

from the reel under impetus from the energy stored in it during wrapping and that

all that is needed to control the end position is a motor to counter or augment the

spring force as necessary, and a guide to ensure that it leaves the spool in the right

direction. This view ignores the tendency of the tape to pull away from the spool if the

straightened section is pushed. Loss of tight wrapping behavior hurts any feedback

control attempted on the system as it partially decouples the position of the drum

14
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Figure 1-3: Patent drawings of tape-spring actuators [2]

15



from the tip, disturbing the transfer function for the plant.

A configuration which gets around the above limitation is to drive the STEM

at the point where it forms a full tube, directly coupling the movement of the rigid

member to that of the controlled motor. The importance of tight wrapping becomes

an issue of maintaining a deterministic inertia for the system, which can be achieved

by putting a small opposing torque (backtorque) on the takeup reel, ensuring that the

torque is sufficient to overcome the natural unwinding torque of the tape-spring and

accelerate the drum and any spring wrapped around it to match the drive acceleration

while maintaining enough tension at the wrapping point to prevent any wrapping

irregularities. A schematic for the described system is shown in Figure 2-1, and forms

the basis for the modeling in future chapters.
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Chapter 2

Physical Model

A first order model for the implementation described in Chapter 1 can be arrived at

through Rimrott's examinations of the STEM as a machine element [9][10]. Appro-

priate use of his results, combined with fresh analysis where the current configuration

differs from that envisioned by Rimrott, provides a model for the system which is

accurate for all but the longest tape springs. As Rimrott notes in passing [9], he

disregards the effect of the changes in wrap diameter at different extensions in the

interest of maintaining manageable equations. Given the advances in computation

power in the forty years since his paper was published and this work's emphasis on

precision control, a reevaluation of the effect of varying diameter seems prudent and

will appear in Chapter 3.

As a frame of reference, the convention used will be that the tip of an entirely

coiled tape is at x = 0 and that of a fully extended tape is at x = 1.

2.1 Inertia of the system

The moment of inertia of the system as seen at the drive axis of the pinch bearing,

Jj, is a combination of the inertia of the tape, JT and that of the various rotors in

the mechanism, JR as seen from the same point:

JJ - JT + JR. (2.1)

17
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Table 2.1: Table of symbols

Symbol Units Name Figure
amax m - 2 Maximum desired acceleration
a rad Half-overlap angle of curled STEM 2-3
do m STEM tube diameter 2-3
E Pa Young's modulus of tape
Fc N Force on tape from unwinding coil
J1kg m2 Inertia of driving pinch wheel 2-1
Jal kg m 2 Inertia of driving motor's armature 2-1
Ja2kg. m 2 Inertia of backtorque motor's armature 2-1
Je, kg m 2 Inertia of pinch wheels and straightened tape 2-2
J;3 kg m 2 Inertia of coil and takeup apparatus 2-2
J* 1 kg m 2 Inertia of coil and takeup apparatus in full model 3-1
Jj kg m 2 Total inertia of the system, as seen at the driving motor
JJ g* m Total inertia of the system in full model
Jc kg m 2 Inertia of tape coiled on reel 2-1
Jc kg m 2 Inertia of tape coiled on reel in full model 3-1
Jp kg m2 Inertia of idle pinch wheel 2-1
JR kg. m2 Total inertia of all rotors and armatures
JT kg m 2 Total effective inertia of tape-spring
Jt kg. m 2 Inertia of takeup reel 2-1
I m Length of tape-spring
MM kg Total mass equivalent of the system's moving parts
MT kg Total mass equivalent of the tape in the system
m8 kg Mass of the tape off reel 2-1
mc kg Mass of the tape wrapped on the reel 2-1
v Poisson's ratio of the tape

O rad Curl of straightened STEM 2-3
r1 m Radius of drive wheel 2-1
ro m Outer radius of coil in detailed model
rp m Radius of idle pinch roller 2-1
rt m Radius of takeup reel 2-1
T N Tension in tape between reel and drive 2-4
t m Thickness of tape 2-3
Trl N m Driving torque of actuator 2-4

1~ N. m DC offset countering backtorque
N m Torque for position control

Tr2 N m Backtorque on takeup reel 2-4
-c N m Coil unwinding torque as seen at driving axis
T-~ N m Coil unwinding torque in full model as seen at driving axis
TCt N-m Coil unwinding torque, as seen at coil's axis 2-4
Tc- N-m Coil unwinding torque, as seen at coil's axis 2-4
Vc J Energy stored in coil
x m distance from coil to1'p of extended section. 2-1



2.1.1 Tape-spring

The inertia of a tape-spring with density per unit length p and length can be

considered by dividing the tape into two parts, the straightened part with mass

mt(x) = px and the coiled part with mass m(x) - p(l- x) and moment of inertia

Jc(x). As seen by the driving motor, the total effective moment of inertia of the tape,

JT is

JT = M(x)r2 + Jc- (2.2)
rt

As we are for now considering the wrapping distance to be constant, we can make

the substitution

Jc(x) mC(x)rt 2. (2.3)

Further, as the total mass of the tape, MT, is

MT m(x) +- mc(x), (2.4)

The effective moment of inertia of the tape can be seen to be

JT =MTr . (2.5)

2.1.2 Rotors

Several hubs and rotors add inertia beyond that of the tape. These elements are the

two motor armatures, Jal and J2, the drive wheel, J1, the idle pinch wheel, Jp and

the takeup reel, Jt, which shares diameter rt with the coil under our current model.

Allowing for design decisions possibly requiring different radii on the individual rotors,

the effective inertia at the drive axis for the rotors, JR is

JR = Jal + J1 JP( rl) + (J2 J)(1) (2.6)-- q-(Ja2-rp Jrt 

20



If the rotor selection can be made to set r = rp = rt, the rotor inertia simplifies to

JRs = Jal + J1 + JP + Ja2 + Jt (2.7)

2.1.3 Summation of inertias

Substituting Equations (2.5) and (2.6) into Equation (2.1), JJ is seen to be

JP - + (Ja2 + Jr) 1 (2.8)J- z MTri-Jall-~-P (~2 rpI

The equivalent linear mass of the system, MM is thus

Jai±d-J1 JP Ja2 +JtMM = MT + ai + + JP + J.2 + Jt (2.9)r2 r2 r2

A different grouping of inertias that will prove useful later is to refer to the straight-

ened section and the pinch bearing as J and to the coil and its associated rotors as

JO, as grouped in Figure 2-2:

~~~~2
Jl = m s (x)rl + Ja + J+ jp ( )(2.10)

~~~~~~2 . 1Jo = (Jc(x) + Ja2 + Jt) (r) (2.11)

2.2 Forces and torques

Left to its own devices, the tape-spring would quickly unfurl, releasing the energy

stored in the coil. The guide elements in the implementation direct this release of

energy, while the motors control its rate of release.

21
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\ Takeup reel and coiled tape Friction drive and straightened tape
'Jo ill,

Figure 2-2: A convenient grouping of the system inertias

2.2.1 Tape-spring

Rimrott's work [10] includes an evaluation of the strain energy stored in a coiled

STEM as a function of the coiled length - x which in the current nomenclature is

E qt 3(l - x) ( d2 2vd0 2
Vc = I - 2 12d0 1 + 4r2+ 2r ') (2.12)

where E and v are the elastic modulus and Poisson's ratio for the tape spring material,

t the thickness of the tape, do is the diameter of the cross section and 0 the number

of radians covered by the cross section of the tape, as shown in Figure 2-3. The force

associated with the impetus to uncoil is

F,~ av - E Ot
3 i d2 2vdo (2.13)

aX 1 - v 2 12do 4r 2r+ (2.13)

Substituting Ot = x into Equation (2.12) and solving Tct =- v in the manner of
Equation (2.13), results in expressions for ct, the torque from the coil on the takeup

Equation (2.13), results in expressions for Tc, the torque from the coil on the takeup
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Figure 2-3: End view of curled STEM
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reel, and Tc, the effective torque from the coil on the whole system:

Tct - 1 f2itr ( 1 d 2 do (2.14)

Tc 1 _ 2 2 do ( 4 2r) (2.15)
E qOt3 rl d2 2vdoT, = I+ , + ~~~~~~~~~(2.15)

I

?

rque from drive motor

Backtorque from tensioning motor
2

Figure 2-4: Torques and forces in the system

2.2.2 Back torque

An area not covered by Rimrott is rewrapping of the tape-spring during retraction.

If the takeup reel were to be left idle, the tape-spring would not wrap neatly around

it as the pinch rollers fed the STEM back into the magazine. Instead, the tape would

form a loose spiral out from the reel. At the very least, this behavior would play

havoc with the moment of inertia of the coil. Further, the loose spiral form becomes

a spring coupling between the drive wheel and the takeup reel, introducing a second

degree of freedom and the possibility for unplanned resonances to appear.

This detrimental decoiling can occur when the position of the takeup reel is more

positive than that of the drive motor. The coils are unable to take a compressive

load and will peel off as seen in Figure 2-5, finding a new low-energy state. For ease

24



of discussion, avoiding compressive forces at the coil juncture will be referred to as

maintaining a tension T between the coil and the pinch rollers, bearing in mind that

some component of this force is contributed by the strain in the ploy section. The

magnitude of the necessary tension as a function of the system state is found below,

but for the present, the minimum tension required in any state will be referred to as

Tm.

Figure 2-5: Decoiling failure arrested in mid process; tape should leave coil at the
36.5 inch mark.

A simple, though perhaps not the most power efficient, way of maintaining T > Tm

is to include in the controller a hard limit on the maximum magnitude of acceleration

in the negative direction, thus limiting the acceleration to

> -amax, (2.16)

where amax is the maximum allowable acceleration of the system and is thus a design

point related to the desired speed of response. With this acceleration limit in place,

the motor on the takeup reel can be set to exert a constant torque sufficient to provide

T > Tm for all accelerations in the allowable range. As the equation of motion for

25



the reel and the spring coiled around it, with Motor 2 providing a torque T2, is

x = Trt + Tt + F2, (2.17)
rt

when =-amax,

2 - [amax ( ()) +Trt + Tct (2.18)

Equation (2.18) can be considered optimized when T2 is set at the smallest value

for which the necessary tension is maintained. As T must be at least Tm and the

greatest value for J2(x) is

J2 (0)-= MTrt + Ja2 + Jt, (2.19)

we arrive at an expression for the backtorque needed to control the wrapping of the

tape-spring:
MT· 2

-[amax T J 2 + Jt + Trt Tt] (2.20)

2.2.3 Driving torque

With the backtorque found, we now turn our attention to the driving torque. As the

three net torques on the system (not counting external loads, addressed below) are

from the drive motor, 1, the back motor, T-2 and the coil, Tc, the equation of motion

for the tape-spring is

MMX = T1 + T2 + Tc (2.21)
rl rt

For control purposes, T1 can be broken down into a constant component balancing

the back torque and a varying part that provides the impetus for motion and responds

to a control signal:

MMX __1 = ] 'T1 _] 2 + c (2.22)
r1 r1 rt

Setting

r, =-(T2 + c) ' (2.23)rt
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simplifies the equation of motion to

hMMj = -- (2.24)
rl

describing a system for which it is trivial to set the point anywhere in the range

(with the center being an obvious choice) and to which standard control methods

may be applied.

For the system to be able to achieve acceleration - ama, the variable torque

must be able to achieve

71 = (MMX + L)ri, (2.25)

where Lmax is the maximum load under expected conditions, and thus the motor

must be able to supply torque

2

T1 = (MMX -+ Lmax)rl - (T2 + Tc) 1 (2.26)rt

27



Chapter 3

Full Model

While existing analyses of tape-springs in general and the STEM in particular make

use of the simplification that the tape winds around the drum at the constant radius

of rt, there is little consideration of the extent to which this approximation is appro-

priate. An evaluation of how the actual inertias and forces compare to those found

in Chapter 2 follows.

3.1 Model differences

In taking into account the changes in radius, the chief change is to move from regard-

ing the coil as a thin ring of radius rt to regarding it as a thick ring with inner radius

rt and outer radius r as in Figure 3-1. This outer radius can be found as the radius

of the circle with area equal to sum of the cross sections of the takeup reel and the

coil,

7rro -= rt + Acoil. (3.1)

As

Acoil = t(l - x), (3.2)

the outer radius of the coil is seen to be

2 2 t( - x)r-- rt + (3.3)0 ~~~~~7'
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Coil lumped inertia

Variable thickness
coil of tape-spring
J*

C

Figure 3-1: New inertias with variable wrapping diameter

3.1.1 Inertias

The linear inertia term remains the same, but the moment of inertia of the coil around

its center must be found using the equation for a thick ring,

1 =m2 rt)Jring - m(ri q ro t)· (3.4)

The new moments of inertia of the coil, J*, the takeup side of the mechanism, J,

and the whole system, J, are thus found by combining Equations (3.3) and (3.4):

1J= P(l -
JX3= I2P(I

x) (2r2 t(1 -x))7-J
- ) (2r2 +

(p(1 -x) 2rt +

t(l - x))

7r)
t( - )

7r 

2

+ Jt r + t(l-r)
7+'

2

+ Jt, r t(x) + l
7r
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3.1.2 Coil Force

As the coil releases energy from its outermost layer, r substitutes for rt in Equations

(2.14) and (2.15), the new terms for these torques, Tc and T are

E b t 3 r l 2vdO

+ 2 do ) . (3.9)T", I 1- V2 12do t1+4(r2 + L' a) + 2 J (38T: 1 _ >2 2do ( 4(Tt 2 a) 2 ):

3.2 Comparison of models

Examination of the plots of the functions found above, Figures 3-2 and 3-3, show

that the effective mass and force are actually less than those predicted by the first

order model, converging at the extreme extension, x = . While it is intuitive that

the increased bend radius at low extensions would decrease the force exerted by the

coil, the decrease in effective inertia with an increased radius is less so. It can most

succinctly be explained as an effect of the tape matching speeds with the outside

of the coil, causing inner wraps to move more slowly than the straightened section.

Another view is that the transmission ratio from the drive wheel to the motor is more

sensitive to changes in radius than is the inertia of the coil.

An interesting ramification of the wrapping process is that a shorter STEM with

all other characteristics equal will match up with the far right hand side of Figures

3-2 and 3-3 and increased length will add to its range to the left and down the curve.

3.3 Simulations

While a complete analysis of the dynamic behavior of the more complex model found

above is beyond the scope of this thesis, numerical methods were used to model

specific instances of STEM implementation. The results of these simulations are
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Comparison of simple and full model inertia terms
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Figure 3-2: Comparison of the masses predicted by the first order and detailed models.
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Figure 3-3: Comparison of the uncoiling force predicted by the first order and detailed
models.
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analyzed for any trends providing a starting point for future investigations.

The numerical investigations were carried out in MatlabTM. SimulinkTM, Matlab's

graphical programming tool for solving differential equations provided a platform for

testing the model's step responses under various conditions, the results of which were

fed into data extraction scripts to evaluate the differences in response at different

conditions. For each situation, the simple plant model and the full model were placed

identical feedback loops and driven off the same input. Also in each situation, the

same feedback loops were applied to the plant models, but with minor loops wrapped

around the plants. For all cases in which the gain was not explicitly varied, it was

scaled with the mass of the ideal plant, such that the simulations were normalized to

the ideal plant having dominant oscillating poles at ±45° .

In Figures 3-4 and 3-5 appear the results of applying a step input to a spring

steel STEMs covering a range of lengths. The steady-state error, shown in Figure

3-4 drops off as the STEM length is increased, an effect likely due to the increase

in gain with STEM length. While the gain and mass rise together with length,

maintaining consistency of dynamic behavior, the gain rises much faster than the

difference between the ideal and actual forces.

Meanwhile, the overshoot increases with the length of the STEM. In this case,

the hypothesis for future work is that, by Figure 3-2, a STEM is proportionally

more underweight the longer it is. Being underweight effectively increases the system

gain and pushes the roots further out along the asymptotes for faster response but

decreased stability. If this is the case, it accounts for the slowing in the overshoot rise

as the Fc levels off.

As might be expected, increasing the effective mass of the rotors in proportion

to the effective mass of the tape-spring decreases the overshoot error as in Figure

3-6. This effect has the straightforward explanation that as the rotors become more

dominant in the inertia term, the effect of the variation from the tape-spring becomes

less significant to the net inertia.

The effect of moving the poles of the closed loop system around was investigated

with a simulation, but no trend was found between the variations in gain and any
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differences between the ideal model and the full model.

Steady-state error as a function of increased tape length

0 1 2 3 4 5
Length of STEM

6 7 8 9

Figure 3-4: Steady state errors across varying STEM length
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Ratio of full model overshoot to simple model overshoot for varied length
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Figure 3-5: Ratios of peak overshoots across varying STEM length
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Figure 3-6: Ratios of peak overshoots with increasing rotor mass
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Chapter 4

Conclusions and Future Work

This thesis has presented a framework for modeling long-stroke linear actuators based

on the STEM. In surveying the various rotary-to-linear transmission elements used in

practice, it provides a basis for choosing the STEM as a transmission element. New

work was done in adapting the published examinations of the STEM to a form suitable

for use in a feedback control system. Further, the body of literature was expanded

upon with a complete solution for the inertias and forces from stored energy for a

tape-spring stored on a reel.

The model for an actuator found in Chapter 2 is valid for most envisioned im-

plementations. Much of the theory behind it has been well documented and experi-

mentally confirmed in prior work. Where prior work was not publicly available, such

as in the maintenance of tight wrapping around the spool, new theories have been

advanced and studied through simulation. The chief difference between versions of

the STEM discussed in earlier papers and the implementation discussed here is that

most earlier discussions focus on using the stored energy in the coiled tape-spring as

the source of motive force, whereas this implementation counters the natural unwind-

ing force of the spring, then applies motive forces to the rigid extension section. One

very useful feature of this model is that it can be made to act as a pure inertia when

incorporated into a feedback system.

With better computational resources today than were available in 1965 during

early development of the STEM, it became feasible to evaluate Rimrott's conjecture
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that for expected lengths the simple forms of the equations for the force on and inertia

of a coiled STEM could be used without consideration of the changes in wrapping

diameter at different extensions. The simulations carried out showed that appropriate

and implementable control schemes maintain the expected settling time but add to

the expected overshoot.

4.1 Future work

Several avenues exist for future work on the described actuator design. Of most

interest would be a working implementation of the actuator to experimentally verify

the model. Experimental results will also highlight damping present in the system

for inclusion into an even more complete model, along with a way of characterizing

any hysteresis between extension and retraction. Work at Cambridge University

is currently being done on bi-stable tape-springs which have an activation energy

associated with moving into configurations between the flat and curved regimes and

thus don't have a tendency to fly open. If these springs can be manufactured as

STEMs, a path is opened for variations on the present actuator that require much

smaller motors or negator springs. Alternately, the bi-stable springs may prove to

be useful enough over traditional versions that a zippered actuator made of them

becomes the most viable option. One additional area of investigation would be in the

scaling of tape-spring linear actuators. Current models are generally in the range of

1" - 20", and producing a long-stroke actuator for lab bench or smaller applications

has potential.
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Appendix A

Computer models

Various computer models and programs which were incorporated into this thesis.

A.1 Simulink Block Diagrams

Figure A-1 has three subsystems. The variable mass is always filled by the block in
Figure A-2. Depending on the test, the ideal and full loop blocks are filled by those
in Figures A-3 and A-5 or A-4 and A-6 respectively.
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Figure A-1: Main block diagram for simulation.
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Figure A-2: Subsystem for calculating variable mass.

Position

Figure A-3: Plant and compensator for simple model.

Position

Figure A-4: Plant and compensator for simple model with minor loop feedback.

41



oOC00r)

0q.2

n

Q)

4 7~
C

U

Oa)
'r-0C:

as
OD

IC
WE

Figure A-5: Plant and compensator for full model.
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Figure A-6: Plant and compensator for full model with minor loop feedback.
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A.2 Functions called by blocks

A.2.1 Mass of straightened tape

function [Mstrict] = TapeM(x)

%Parameters of STEM

rho=7.85e3;

t=1.25e-4;

1=1;

D=.02;

alpha=77.5;

E=210e9;

nu=.3;

%derived parameters

w=((360+2*alpha)/360)*pi*D;

gmma=l+alpha/pi;

%density of tape material

%thickness of strip in flat form

%length of tape

%diameter of tube

%half-overlap

%Young's Modulus of material

%Poisson's Ration of material

%width of flat tape

%intermediate term in spring equation

J_strict = Jfind(x,rho,t,l,D,alpha,E,nu,w,gmma);

M_strict = Mfind(x,rho,t,l,D,alpha,E,nu,w,gmma);

R_o_strictsquared = Ro2find(x,rho,t,l,D,alpha,E,nu,w,gmma);

Meq = Mnetfind(Jstrict,Mstrict,Ro_strict_squared);

function [Jstrict] = Jfind(x,rho,t,l,D,alpha,E,nu,w,gmma)

%finds strict solution of coil inertia for a given position

Jstrict = rho*t*w*(l-x)*(D-2/4+(t*(l-x))/(2*pi));

function [Mstrict] = Mfind(x,rho,t,l,D,alpha,E,nu,w,gmma)

%finds mass of sliding portion as for given position

Mstrict = rho*t*w*x;

function [Ro2] = Ro2find(x,rho,t,l,D,alpha,E,nu,w,gmma)

%finds the outer radius of the coil for given position

Ro2 = D2/4+(t*(l-x))/pi;

function [Mstrictnet] = Mnetfind(J,M,Ro2)

%finds the net mass seen anywhere along the formed tube

Mstrictnet = J/Ro2+M;
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A.2.2 Equivalent mass of coiled tape

function [Jstrictmequiv] = TapeMeqJ(lmx)

%Parameters of STEM

rho=7.85e3;

t=1.25e-4;

1=1;
D=.02;

alpha=77.5;

E=210e9;

nu=.3;

%derived parameters

w=((360+2*alpha)/360)*pi*D;

gmma=l+alpha/pi;

%density of tape material

%thickness of strip in flat form

%length of tape

%diameter of tube

%half-overlap

%Young's Modulus of material

%Poisson's Ration of material

%width of flat tape

%intermediate term in spring equation

J_strict = Jfind(lmx,rho,t,l,D,alpha,E,nu,w,gmma);

% Mstrict = Mfind(x,rho,t,l,D,alpha,E,nu,w,gmma);
R_o_strictsquared = Ro2find(lmx,rho,t,l,D,alpha,E,nu,w,gmma);

% Meq = Mnetfind(Jstrict,M_strict,R_o_strict_squared);

J_strictmequiv= Jstrictmequivfind(Jstrict, Rostrict_squared);

function [Jstrict] = Jfind(lmx,rho,t,l,D,alpha,E,nu,w,gmma)

%finds strict solution of coil inertia for a given position

Jstrict = rho*t*w*(lmx)*(D-2/4+(t*(lmx))/(2*pi));

% function [Mstrict] = Mfind(x,rho,t,l,D,alpha,E,nu,w,gmma)
% %finds mass of sliding portion as for given position

% Mstrict = rho*t*w*x;

function [Ro2] = Ro2find(lmx,rho,t,l,D,alpha,E,nu,w,gmnma)

%finds the outer radius of the coil for given position

Ro2 = D2/4+(t*(lmx))/pi;

% function [Mstrictnet] = Mnetfind(J,M,Ro2)
% %finds the net mass seen anywhere along the formed tube

Mstrictnet = J/Ro2+M;

45



function [Jstrictmequiv] = Jstrictmequivfind(J,Ro2)

%.finds the net inertia seen at the drive axle of the spool

Jstrictmequiv = J/Ro2;

A.2.3 Unwinding force of coil

function [force] = TapeF(Y)

%Parameters of STEM

rho=7.85e3;

t=1.25e-4;

1=5;

D=.02;

alpha=77.5;

E=210e9;

nu=.3;

%derived parameters

w=((360+2*alpha)/360)*pi*D;

gmma=l+alpha/pi;

%density of tape material

%thickness of strip in flat form

%length of tape

%diameter of tube

%half-overlap
%Young's Modulus of material

%Poisson's Ration of material

%width of flat tape

%intermediate term in spring equation

% function [F] = Ffind(x)

%Finds the unrolling force as a function of x

% global rho t D alpha E nu w gmma;

% Y=l-x
K=(E*gmma*pi*t^3) / ( (1-nu-2)*6*D);
a=D-2;

b=2*nu*D;

f=D-2;

c=4*t/pi;

H=f+c*Y;

force=K*(l+a/(H)+b/(H) .5);

A.3 Other programs

A.3.1 Extraction and plotting code for Simulink Results
function lengthextract

headers=[
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%length, rotor

.1 0 4.93e4

.25 0 4.93e4

.5 0 4.93e4

.75 0 4.93e4

1 0 4.93e4

2.5 0 4.93e4

5 0 4.93e4

7.5 0 4.93e4

10 0 4.93e4

1;

percentatge,

.01 .001

.01 .001

.01 .001

.01 .001

.01 .001

.01 .001

.01 .001

.01 .001

.01 .001

gain, zero, pole

load lengthdata2

lengthexperiment{1,2}.signals.values(1,1)

[final peak sserror twopsettle]=thesiscare(lengthexperiment);

for i=1:4,

cbase=(((floor((i+1)/2))*2)-1);

osratio(:,:,i)=(peak(:,:,i)-final(:,:,cbase))./(peak(:,:,1)...

-final(:,:,cbase));

sserrorprc(:,:,i)=sserror(:,:,i)./final(:,:,cbase);

settleprc(:,:,i)=twopsettle(:,:,i)./twopsettle(:,:,cbase);

end

figure(2)

subplot(2,1,1)

plot(headers(:,1), osratio(:,1,2),'x', h

osratio(:,1,4), 'o')

subplot(2,1,2)

plot(headers(:,1), osratio(:,2,2),'s', h

osratio(:,2,4), 'd')

title('Peak Deviation with Tape Length')

eaders(:,l),...

eaders(:,l),...

figure (3)

subplot(2,1,1)

plot(headers(:,1), sserrorprc(:,1,2),'x', headers(:,1),...

sserrorprc(:,1,4), 'o')

subplot(2,1,2)
plot(headers(:,1), sserrorprc(:,2,2),'s', headers(:,1),...

sserrorprc(:,2,4), 'd')
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title('Fraction of steady state error with Tape Length')

figure (4)

subplot(2,1,1)

plot(headers(:,1), settleprc(:,1,2),'x', headers(:,1),...

settleprc(:,1,4), 'o')

subplot(2,1,2)

plot(headers(:,1), settleprc(:,2,2),'s', headers(:,1),...

settleprc(:,2,4), 'd')

title('Settling time deviation with tape length')

figure(5)
subplot(2,1,1)

plot(headers(:,1), sserror(:,1,2),'x', headers(:,1), sserror(:,1,4), 'o')

subplot(2,1,2)

plot(headers(:,1), sserror(:,2,2),'s', headers(:,1), sserror(:,2,4), 'd')

title('absolute steady state error with Tape Length')

figure(17517)

[AX,H1,H2]=plotyy(headers(:,1), sserror(:,1,2), headers(:,l),...

sserrorprc(:,1,2))

set(Hl,'LineStyle','--','LineWidth',1.5,'Marker', 'x');
set(H2,'LineStyle',':','LineWidth' ,1.5,'Marker', 'o');

set(get(AX(l),'Ylabel'),'String','Steady-state error [m]');

set(get(AX(2),'Ylabel'),'String','Proportional Steady-state error');

%axis(AX(2), [ 10 -.6 .1]);

xlabel('Length of STEM')

title('Steady-state error as a function of increased tape length')

legend(H1, 'Error','Location','East')

legend(H2, 'Proportional Error','Location','NorthEast')

print sserrorfig -depsc

figure(17217)

plot(headers(:,1), osratio(:,1,2),'x','LineStyle','--','LineWidth',1.5)

hold on

plot(headers(:,1), osratio(:,1,4),'o', 'LineStyle',':','LineWidth',1.5)

hold off

title...

('Ratio of full model overshoot to simple model overshoot for varied length')

xlabel('Length of STEM')

ylabel('Overshoot Ratio')

legend('Single Feedback Loop','Model with inner feeback loop')
print overshotfig -depsc
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function [final peak sserror twopsettle] = thesiscare(dataset)

%data columns are ideal,full plant model, ideal, full plant model with

%closed internal loop

[MM, NN]=size(dataset);

for i=i:MM

for n=l:NN

for q=[1:4]

for p=O:length(dataset{i,n}.signals.values)-1

~% i
% n

~% q% ~p
if abs((dataset{i,n}.signals.values(end-p,q)- ..

dataset{i,n}.signals.values(end,q))/...

dataset{i,n}.signals.values(end,q)) >= .03

%.03 accounts for offset in initial value

twopsettle(i,n,q)=dataset{i,n}.time(end-p,1)-1;

break

end

end

if n==1

peak(i,n,q) = max(dataset{i,n}.signals.values(:,q));

elseif n==2

peak(i,n,q) = min(dataset{i,n}.signals.values(lOO:end,q));

end

final(i,n,q) = dataset{i,n}.signals.values(end,q);

sserror(i,n,q) = dataset{i,n}.signals.values(end,1)...

-dataset{i,n}.signals.values(end,q);

end

end

end

A.3.2 STEM modeling code
function stemlinearization
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%This function simulates the dynamic response of a STEM device

%It compares various linearizations with a complete model

global rho t 1 D alpha E nu w gmma;

%Parameters of

rho=7.85e3;

t=1.25e-4;

1=5;

D=.02;

alpha=77.5;

E=210e9;

nu=.3;

%makes material parameters global

STEM

%density of tape material

%thickness of strip in flat form

%length of tape

%diameter of tube

%half-overlap

%Young's Modulus of material

%Poisson's Ration of material

%derived parameters

w=((360+2*alpha)/360)*pi*D;

gmma=l+alpha/pi;

%width of flat tape

%intermediate term in spring equation

%Inertia comparisson

resolution=.01;

x= [O: resolution: 1]';

J_strict_net=zeros(length(x),1);

M_strictnet=zeros(length(x),1);
J_lin_net=Jlinfind(Ro2find(1/5))*ones(length(x),1);

M_lin_net=Mlinfind(Ro2find(1/5))*ones(length(x),1);

Rostrictsquared = zeros(length(x),1);

J_strictmequiv=zeros(length(x),1);

J_strict=zeros(length(x),1);

m_strict=zeros(length(x),1);

for i=l:length(x)

J_strict(i) = Jfind(x(i));

Mstrict(i) = Mfind(x(i));

Ro_strict_squared(i) = Ro2find(x(i));

J_strict_net(i) = Jnetfind(Jstrict(i),Mstrict(i),Rostrictsquared(i));

Mstrict_net(i) = Mnetfind(Jstrict(i),Mstrict(i),Rostrictsquared(i));
J_strict_mequiv(i)= Jstrictmequivfind(Jstrict(i), Rostrict-squared(i));
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end

figure(17)

plot(x, J_strictnet)

hold on

plot(x, J_lin_net)

hold off

axis([0 5 0 2.2e-5])

figure(171)

plot(x, M_strictnet)

hold on

plot(x, Mlinnet,'-.')

plot(x, J_strictmequiv,'--')

plot(x, Mstrict,':')

hold off

axis([0 5 0 .5])

title('Comparison of simple and full model inertia terms')

legend('Full effective mass','Simple predicted mass','Full effective mass of coil' ,'M

xlabel('Tip position (m)')

ylabel('Mass (kg)')

print masscomparefig -depsc

YForce Comparisson

resolution =.01;

x= [O:resolution: 1] ';

F_strict=zeros(length(x),1);

Ffind(l/2)

F_lin=Ffind(l)*ones(length(x),1);

%Flin=Ffind(0)*ones(length(x), 1);

R_o_strictsquared = Ro2find(0);

for i=l:length(x)

F_strict(i) = Ffind(x(i));

end

figure(27)

plot(x, Fstrict,'LineWidth',1.5)

hold on

plot(x, F_lin,'-. ','LineWidth',1.5)

hold off

axis([0 5 0 825])

title('Comparison of simple and full model force terms')
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legend('Force under full model' ,'Force under simple model', 'location', 'east')

xlabel('Tip position (m)')
ylabel('Force (N)')

print forcecomparefig -depsc

%.Unrolling simulation

done = 1

function [Jstrict] = Jfind(x)

%finds strict solution of coil inertia for a given position

global rho t 1 D alpha E nu w gmma;

Jstrict = rho*t*w*(l-x)*(D-2/4+(t*(l-x))/(2*pi));

function [Mstrict] = Mfind(x)

%finds mass of sliding portion as for given position

global rho t 1 D alpha E nu w gmma;

Mstrict = rho*t*w*x;

function [Ro2] = Ro2find(x)

%.finds the outer radius of the coil for given position

global D t 1;

Ro2 = D2/4+(t*(1-x))/pi;

function [Jstrictnet] = Jnetfind(J,M,Ro2)

%finds the net inertia seen at the drive axle of the spool

Jstrictnet = J+M*Ro2;

function [Jstrictmequiv] = Jstrictmequivfind(J,Ro2)

%finds the net inertia seen at the drive axle of the spool

Jstrictmequiv = J/Ro2;

function [Mstrictnet] = Mnetfind(J,M,Ro2)

%finds the net mass seen anywhere along the formed tube

Mstrictnet = J/Ro2+M;

function [Jlin] = Jlinfind(xbase2)

%finds the linear approximation of the total inertia

%for a given working radius

global rho t 1 D alpha E nu w gmma;

Jlin = rho*t*w*l*xbase2;
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function [Mlin] = Mlinfind(xbase2)

%.finds the linear approximation of the total inertia

%for a given working radius

global rho t 1 D alpha E nu w gmma;

Mlin = rho*t*w*l;

function [F] = Ffind(x)

%Finds the unrolling force as a function of x

global rho t 1 D alpha E nu w gmma;

Y=l-x;
K=(E*gmma*pi*t3) / ((1-nu^2)*6*D);
a=D^2;

b=2*nu*D;

f=D^2;

c=4*t/pi;

H=f+c*Y;

F=K*(l+a/(H)+b/(H) .5);

function [Vstrict] = Vfind(x)

%finds the stored energy in the coil as a function of x

global rho t 1 D alpha E nu w gmma;

Y=l-x;

K=(E*gmma*pi*t^3) / ( (1-nu^2)*6*D);
a=D^2;

b=2*nu*D;

f=D^2;

c=4*t/pi;

H=f+c*Y;

Vstrict = K*(Y + a/c*log((H)/f) + 2*b/c*((H)^.5-f^.5));

function [Vlin] = Vlinfind(x,xbase)

%Finds the stored energy in the coil as a function of x

%for the approximation of constant bend radius equal to

%that found at the operating point of x=xbase

global rho t 1 D alpha e nu w gmma;

Y=l-x;

K=(E*gmma*pi*t3) / ( (1-nu^2)*6*D);
a=D^2;

b=2*nu*D;

f=D^2;

c=4*t/pi;

H=f+c*Y;

V=K*Y*(l+a/(H)+b/(H) .5);
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