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Chapter 1

Introduction

One of the greatest successes of modern inflationary cosmology is to provide a natural

resolution of some of the greatest problems of cosmology. However, observational

constraints lead to the appearance of another problem - the fine tuning problem in

inflation. In this Chapter we will introduce the reasons inflation was first proposed,

and then introduce the fine tuning problem in inflation.

Big Bang cosmology is based on the fact that on scales larger than about 300Mpc

the universe is homogeneous and isotropic. The first description of the expanding uni-

verse was presented in the framework of general relativity (GR), and the metric that

describes the expansion is the Friedmann-Robertson-Walker (FRW, or RW) metric.

There are three main reasons why inflation was first developed: the horizon prob-

lem, the flatness problem, and the unwanted relics problem.

1.1 Problems With Pre-Inflationary Cosmology

1.1.1 Horizon Problem

The Cosmic Background Explorer (COBE) observations showed that the universe is

indeed isotropic and homogeneous. However, the data showed that this is true on

scales much larger than standard Big Bang cosmology could explain. COBE observed

the Cosmic Microwave Background (CMB), coming from the surface of last scattering
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(sis). The ss corresponds to a redshift of about 1100, and an age of the universe of

about 300,000 yrs. This is the time when electrons and protons recombined to form

neutral atoms, which allowed for radiation to decouple from matter, and free-stream

from the sls to the present. The observed temperature fluctuations in the CMB are

IT/T ,~ 10- 5 . However, a simple calculation based on standard Big Bang cosmology

shows that the ss consists of about 104 causally disconnected regions. This means

that on angles larger than about 0 1, which is the approximate size for one

causally connected region, the ss should show large temperature fluctuations, which

contradicts the observations.

1.1.2 Flatness Problem

The density of the universe, combined with an equation of state for all particle species,

describes completely the expansion history of the universe. One can define a critical

density, Pcrit - 8Gp/3H 2 , where H is the Hubble parameter. If the universe has a

density, p, greater than Pcrit, then it has a closed geometry (unbounded but finite);

if p < Pcrit, then the geometry is open (unbounded and infinite); and p = Pcrit is the

marginal case, corresponding to a flat geometry (unbounded and infinite). The ratio

Q-P/Pcrit is determined from observations (e.g. from the WMAP data of the CMB)

to be equal to 1, within several percent. Such a coincidence is highly unlikely. To

demonstrate this, if we extrapolate back in time, this corresponds to IQ- 1 10-16

at the nucleosynthesis epoch. This fine tuning problem was finally resolved when the

inflationary scenario was proposed.

1.1.3 Unwanted Relics Problem

As we go back in the history of the universe, the temperature rises dramatically.

In the standard scenario, this leads to a high density of relics predicted by almost

any theory dealing with high energies. Such relics can include magnetic monopoles,

topological defects, gravitinos, and a myriad of others. However, observations exclude

any significant amount of such relics. The only way to explain this is if we somehow

10



rarify their density.

1.2 Overview of Inflation

Inflation, developed by A. Guth in late 1979 [4], postulates a period of exponential

expansion of the universe lasting for a very short period of time which varies between

10-40s and 10-30s, depending on the model of inflation. In this way, regions that were

once causally connected, appear to become disconnected after inflation. During this

exponential expansion, the radius of curvature of the universe became so large that

locally (within the observable universe at least) it seems flat to within a few percent.

This, therefore, solves all of the above problems in one sweep, given that inflation

lasted long enough so that the scale factor could increase by a factor of eN, where

N > 60 to account for the observed CMB isotropy. New research in this area shows

that there exists probably an upper bound on N, as well (e.g. [1]).

To get an exponential expansion using the field equations, one needs a cosmological

constant, or equivalently a particle species or a field with equation of state w- p/p,

such that -1 < w < - 1/3. This means that a "substance" with negative pressure has

to be introduced. The easiest way to get that is by introducing a scalar field, (x, t),

dubbed the inflaton scalar field. Such a field is characterized by a potential V(b(x, t)),

and its equation of motion is entirely determined by the Lagrangian density for the

field (2.1).

However, this does not answer the question, how such a field could arise in a

classical description. Indeed, a quantum mechanical approach is needed to describe

correctly this problem, since such a description would be able to account for the

quantum fluctuations in the field (see next section). Quantum field theory (QFT)

gives the necessary machinery to tackle the problem in finest detail. However, many

authors refrain from using QFT, and rather try to use classical or semi-classical

approximations (e.g. [3]). Although such approximations are sometimes perfectly

valid for a homogeneous scalar field, and can give intuition of the evolution of the

perturbations, there is no way that they can describe the perturbations to the field
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rigorously.

1.3 Inflaton Field Fluctuations and Cosmological

Perturbations

The above discussion gives rise to the question: Why do we care about perturbations

to the scalar field, when a homogeneous field is completely enough to solve all of the

above quoted problems? The answer to this question is that quantum fluctuations in

the field provided the seeds for the future structure formation in the universe. To see

how this goes, we give an outline of the successive steps required to propagate the

quantum fluctuations to cosmological perturbations.

1.3.1 Inflation

The inflaton field starts out with a large value of V(Q). The field fluctuates around its

mean value due to quantum fluctuations, which qualitatively are due to the Heisen-

berg uncertainty principle. These fluctuations can be decomposed as a sum over

modes with definite momentum. In the ground state, the fluctuations in each mode

are then the same as those of the ground state of the harmonic oscillator in ordinary

quantum mechanics. This means that there is an amplitude of the vacuum fluctua-

tions, given by the variance. When plugged into the field equations, these inflaton

field fluctuations are translated to metric perturbations. In such case, we can canon-

ically quantize the perturbations to the gravitational potential by treating it as a

field on a given background (Minkowski or RW in our case). Therefore, according to

the Copenhagen interpretation, we can think of the perturbation to the gravitational

potential as a distribution with zero mean, and some variance.

As the universe expands, the characteristic wavelength of each mode is redshifted

in analogy with the cosmological redshift of photons. When the characteristic wave-

length of a mode is within the Hubble horizon, the fluctuations oscillate around the

mean. However, once the exponential expansion drives the mode outside the Hubble
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horizon, the mode stops evolving and the value of the potential effectively freezes at

some value drawn from the distribution (see discussion in section 1.4).

1.3.2 Radiation Domination

During radiation and matter domination, the modes that were once superhorizon,

reenter the Hubble horizon. If this happens during radiation domination, a lot of

effects come into play connected with the physics of the coupled matter-radiation

fluid. So, the amplitudes of the fluctuations evolve with time and the spectrum of the

perturbations changes from the original inflaton fluctuations spectrum. However, the

spectrum of the modes that were superhorizon at matter-radiation decoupling, stays

practically unchanged and directly probes the inflationary era.

How do we measure the spectrum of the fluctuations? At the surface of last scat-

tering, photons are emitted with a given frequency. However, since the gravitational

potential varies from place to place, these photons are gravitationally blue- or red-

shifted depending on the local value of the potential. Thus, there are temperature

fluctuations in the CMB, which is exactly what COBE and WMAP measured: the

CMB anisotropies.

1.3.3 Matter Domination

In the matter domination era, about 85% of the composition of the universe is Cold

Dark Matter (CDM). The fluctuations in the potential translate into fluctuations in

the density of the CDM. To gain more insight into how this interaction takes place,

we should discuss the origin of CDM.

CDM has several established properties: it consists of elementary particles which

interact only weakly (more weakly than neutrinos) and gravitationally. The model

for CDM is that these relic particles decoupled very early in the expanding universe.

Therefore, their momenta were severely redshifted, which yields practically zero ther-

mal velocities, hence the name Cold.

The two major candidates for these particles are the Weakly Interacting Massive
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Particles (WIMPs) and the axion. We consider the axion in our discussion, since it

has a number of desirable similarities with the inflaton field, as we will see below.

In short, matter domination can be thought of as axion domination. The axion

is a Goldstone bosomn, arising from breaking the Peccei-Quinn symmetry, proposed

to explain the strong CP problem in Quantum Chromodynamics (QCD). Since the

momenta of the axions are redshifted to practically zero, they can be considered to

be very well in the state of zero energy (apart from the fluctuations which we will

discuss), thus comprising a Bose-Einstein condensate. In such case, individual particle

wavefunctions overlap almost completely, and we can no longer separate individual

particles. Thus, naturally, the Bose-Einstein condensate is described by a field, in this

case - the axion field. The axion field has a potential which deviates from quadratic

only at very high energies, and so we can consider it as just a simple quadratic

potential. In such case the only difference between the inflaton and the axion field

in our discussion will be the difference in the equation of state. The axions have

(almost) zero thermal velocities, therefore, the axion field is pressureless as should be

expected for matter. Thus, its equation of state is w 0.

Let us go back to our discussion of the perturbations for superhorizon modes that

reenter the Hubble horizon during the axion domination era. There is a relation

connecting directly the scalar field and the gravitational potential. Once in the axion

domination era, the gravitational potential operator is translated back to a scalar field

operator. Thus, the modes that were once frozen, continue their evolution by following

the equations of motion for the axion scalar field. So, before horizon crossing, the

modes are described by the inflaton scalar field evolution, and after reentering they

again follow scalar field evolution (with different w, corresponding to the axion field).

The pressureless axion field evolution leads to the formation of large-scale structure

in the universe during the axion domination era. The transition from the quantum

to the classical regime is explained in the next section.
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1.4 Field Value Measurement Problem

In the outline above, there is one missing piece of physics. Namely: How do we draw

a value for the gravitational potential from its distribution at the end of inflation

(or beginning of radiation domination)? There is enormous amount of effort put

into this quantum measurement problem. The universe should somehow "perform a

measurement" of the amplitude of the gravitational field for each mode. This should

happen either at horizon crossing or while the mode is a frozen superhorizon mode.

According to the contemporary interpretation, a quantum measurement occurs in two

stages. The quantum state is first "squeezed", and then a particular value is selected

from the distribution of the observable in a process called decoherence [9].

The properties of a given quantum state can be investigated in the phase space

of two non-commuting operator observables, such as position and momentum. The

phase space trajectory of the state will be traced out by the expectation values of the

operators in this state, while at the same time we can visualize the uncertainty in these

observables as a fuzzy cloud around the expectation values. Due to the Heisenberg

uncertainty principle, the area of this fuzzy cloud can be finite, but nonzero. If

we choose to precisely determine the value of one of the observables, the cloud in

phase space reduces to a line, meaning that the other observable will be completely

undetermined. For coherent states, we choose to allow for some uncertainty in both

observables, which is represented by a (roughly) spherical cloud in phase space. For

squeezed states, the cloud becomes a long skinny ellipse. In the case of the state of

the universe, this may correspond to squeezing the uncertainty in the gravitational

potential. After allowing for decoherence to take place, the state effectively reduces

to a classical state with a precise value of the gravitational potential.

The good news is that we have some intuition of how the first process comes

about due to terms in the Hamiltonian describing the gravitational potential and the

scalar field. So, after the state is squeezed, even without further knowledge of how

decoherence takes place, we already know that a certain value of the gravitational

potential is picked up with very small uncertainty. In one case it was shown [7] that the
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squeezing is so strong, that the variance, which during inflation falls off exponentially,

is practically zero. Thus, as these authors call it, we can have "decoherence without

decoherence", just by following the evolution of the squeezing of the vacuum state.

However, even if in general this is not the case, decoherence probably takes place

during reheating (the end of inflation, when photons, quarks, etc., are created in the

universe), when the inflaton field interacts with the extremely large number of degrees

of freedom of the particles just created.

1.5 Fine Tuning Problem in Inflationary

Cosmology

Fine tuning problems in physics deal with the fact that a given quantity, not restricted

by a known physical symmetry, or process, etc., should better have a value of 0, (order

of magnitude) 1, or oc in natural units, in order to sound "natural" at first glance.

However, small or large dimensionless numbers are unnatural and call for explanation.

There is a proposition in physics that if a process is not forbidden by nature, then

it must occur. Therefore, in the absence of a mechanism which can explain why a

parameter is found (by measurements/observations) to be almost exactly equal to 0,

then such a mechanism is definitely needed to complete the theory. This requires

some new physics, as was the case with the invention of the Peccei-Quinn symmetry

to solve the strong CP problem, for example. In the other extreme, when some

calculation blows up, as is the case with the vacuum energy in QFT, then one should

devise a method to renormalize the theory. In either case, if a parameter deviates

largely from the above values, then something important is missing from the physical

description (and as a result sometimes the anthropic principle is used until a good

theoretical resolution is found).

The fine tuning problem in inflation is connected with the inflaton potential, and

more specifically with the values of the parameters involved in the potential. There

are two constraints to the inflaton potential:
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1. It should be such that the scale factor increases with the needed >60 e-foldings

during inflation (but probably should not exceed this value by too much, as discussed

in section 1.2).

2. CMB observations give a small value for the amplitude of the gravitational field

fluctuations during inflation, which in turn constrains the allowed parameter space.

For example, for the simplest case of a quadratic inflaton potential V = 2 2,

the above restrictions require that

m < 10-5mpl (1.1)

where mp is the Planck mass.

1.6 Proposed Solution

There have been numerous suggestions for solving the fine tuning problem in infla-

tion. These include topological defects, 5-dimensional assisted inflation, stochastic

inflation, etc.

Our method is to check the calculations done so far. The fine tuning problem

comes about in a treatment called the slow-roll approximation. Indeed this approxi-

mation allows for a straightforward treatment of inflation. The other approximation

made in the classical inflationary scenario, is that in the canonical quantization of

the scalar field, the creation and annihilation operators are treated as being constant

operators.

Many people have calculated the spectrum of primordial fluctuations and get a

result which is simply wrong, because it is based on wrong equations of motion. Our

correct treatment proves to weaken (and in some cases, solve) the fine tuning problem,

without reverting to more exotic theories than inflation itself.

In Chapter 2, we start our discussion in Minkowski spacetime. We introduce the

concept of Fock space, and show how to perform canonical quantization in a contin-

uous and discrete treatments. Then we work out two examples of QFT calculations,
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calculating the expectation values of the Hamiltonian and the canonical stress tensor

in the vacuum state. By working out these examples we give the basics needed to

handle the more complicated calculations in a RW background metric.

In Chapter 3, we investigate the quantization of fields in a RW background. We

start by calculating the classical solutions to the spatially homogeneous equations.

Then we introduce the second order perturbation Lagrangian, and the Hamilton

equations, from which we solve for the equation of motion. After quantizing the

field, we show how the gravitational potential can be quantized in a similar manner.

Finally, we get the correct power spectrum of the inflationary perturbations.

In Chapter 4 we compare our results with the COBE results and we show that

we weaken the fine tuning problem in inflationary cosmology. We work out several

examples and show how our correct treatment of inflation alleviates the the fine-tuning

problem for certain classical potentials.

In Chapter 5 we make our concluding remarks, and outline possible future con-

tinuation of this thesis.
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Chapter 2

Minkowski Spacetime

Throughout the thesis we use natural units (h= c= G = 1), unless otherwise noted.

2.1 Basics

There exist numerous possible choices for the inflaton potential which have been

investigated in detail in the literature. However, since we want to keep things as simple

as possible in this Chapter, we will use the quadratic potential, V(() = m2¢2/2.

The Lagrangian density for a scalar field, (x, t), is

1 1- (1 L = -. " t V(X) = 1 ( 2 _ V12 m2o2) (2.1)

Here V- 2 0_== 5&iJi0j and the dot denotes time derivative. Note that for

a scalar field the partial derivative, ,, equals the covariant derivative.

We use perturbation theory by substituting - q(t)+ (x, t), where 0o(t) is

the spatially homogeneous part of the field, and (x, t) is the perturbation to the

field. Substituting this into the Lagrangian we see that the zeroth and first order

Lagrangians give identical equation of motion, namely 0 = -rm2
00. The dynamics

of the perturbations is contained in the second order Lagrangian, which takes exactly

the same form as above, with now being the perturbation to the field. From now

on, will represent the perturbation to the field, and not the total field value, unless
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defined otherwise.

The conjugate momentum to the perturbation is then given by

L
=F = = -°o = 'oo = 

where 0,, = 0Ox.

The Hamiltonian density is given by

1 
'H= 7O-'c= (=7+ V0 + m2o2)

The canonical stress tensor (ST) is given by

hE = LP - -- 0,> (2.4)

Fortunately, for the scalar field in Minkowski spacetime the canonical stress tensor is

symmetric and is conserved, which means that we can use it as the energy-momentum

tensor in Minkowski spacetime. For this case, it is given by

= 1v + M (2.5)

where (00)2 = 0 .

The energy-momentum tensor (EMT) in curved spacetime is given by

2 6 SM (2.6)T1J vEg5. (2.6)
I-g 6g,11,

where Sml is the action of matter (or field, in our case); g = det gm,; and d/0X is the

functional derivative with respect to the field X defined for one variable as

5F[f (x)] _ lim F[f(x) + 6(x - y)] - F[f (x)] (2.7)6f(y) E-o 
The difference between the canonical ST and the EMT defined above is that in

general the canonical ST is a pseudotensor, while the EMT is a tensor. A pseu-

20
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dotensor behaves like a tensor under linear coordinate transformations with constant

coefficients, but is not transformed as a tensor under general coordinate transforma-

tions. As a consequence, in some cases (= 0, while ET" = -FTT+FaT~ y~ O.

2.2 Canonical Quantization. Continuous Treatment

The field 0(_, t) acts on states that can be represented in Fock space as a linear com-

bination of basis states, characterized with a given number of particles (occupation

number), nk, for each value of the momentum vector, k. The basis states in Fock

space are njk, nk2 , nk3 ,... , nk, ), where the labels in the ket are infinite and un-

countable, since the components of km can take any real value. The basis states can

be expressed as a tensor product of the occupation state for each k:

I ,nkl, k 3,... ,nkm, ) = Ink) r 1 2) (® Ink3 ) ( ® . g Inkm) () ... (2.8)

It is important to note that all states in the tensor product are normalized to one in

both the continuous and in the discrete treatment. This means that the basis states

themselves are also normalized to 1.

(nkm nkm) = 1 (2.9)

In quantum mechanics, the position and momentum of a simple harmonic oscilla-

tor can be decomposed as a sum of creation and annihilation operators. By analogy,

we can introduce creation, at (k), and annihilation, a(k), operators which when acting

on a Fock state, increase or decrease the number of particles with momentum k by 1

a(k) .- ,nk,... ) = /(0) m__" ,nk- 1,. --) (2.10)

at (k). Ink, *) 6(0) k1 nk + 1,.) (2.11)

The 0 in the delta function is actually k - k, which means that the delta function

itself has units of k- 3 (the inverse of its argument raised to the power D, where D is
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the number of dimensions of the Dirac delta function - 3 in this case.). The presence

of 3(0) is a bit surprising, but it is easily explained in light of equation (2.17), from

which it follows, that this is just the volume of space, which clearly diverges. This

normalization is chosen so that the following commutation relations hold

[a(k), at(k,)] -= -3 ( k') (2.12)

[at(k'), at(k')] = [a(k), a(k')] = 0 (2.13)

We can introduce the number operator,

N(k) I k, _ * - at (k)a(k) ., ~_, *
= 63(0) nk__*' , k,...) (2.14)

which gives the number of particles with momentum k.

Again by analogy with the simple harmonic oscillator, the scalar field ¢(x, t) and

its conjugate momentum, 7r(x, t), can be decomposed as a series of modes in k-space,

with angular frequency Wk, associate with momentum k. This expansion is called the

canonical quantization, since we can obtain the classical equations of motion in terms

of Poisson brackets after we make the canonical substitution {} -- 4z[].

fd 3k 1hc.
O(X, t) = (27) 3/2 1 [e(k- ckt)a(k) + h.c.] (2.15)

/ d3~ ~2 k [--zz(k-x-w t)lkq-c.7r(x, t) = q = 3 [-e(k kt)a(k) + h.c.] (2.16)(2w)3!2 2

where "+h.c." means "plus the hermitian conjugate of the rest of the terms in the

brackets". By this construction, we see that the fact that at(k) is the Hermitian

conjugate of a(k) and not of some other operator, makes the measured value of the

field and its conjugate momentum real numbers, since the operators are Hermitian.
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Using the relation

d3
xezq. x

3 (q)
(27T)3 ~ 

(q (2.17)

where 3(q) is the Dirac delta function, we can calculate the equal time Heisenberg

commutation relation, imposed by causality

(2.18)

With these expressions we can calculate the integrals over all space of 7r2 , 02 and

7V12 to find the Hamiltonian. As an example:

d3x (27)3/2
fd 3 k' 1d3k____ k 1 [e'(k-X-Wkt)a(k) + h.c.]

(2x [e(L'kt)a(kk) + h2 c]
x [e zk"~-~Wk't) a(k') + h. c.]

Using the relation (2.17) for the delta function we can perform first the integral on x

in (2.19). We obtain

I

d3
d3x 2 J d k [e-21Wkta(k)a(-k) + e2 TWk t at (k)at (-k)

2+a(k)a(k) + a(k)a(k)]
+atk~ak)+ aCk)a t (k)] (2.20)

2 2 2Calculating in the same way the rest of the terms, and using k = k + 2 , we get

for the Hamiltonian

H= d3x- = Jd3k k [at(k)a(k) + a(k)at(k)] (2.21)

When the contributions from all modes are summed up, we get a total energy

which clearly diverges. However, one can measure (not counting GR effects, of course)

only energy differences, so this zero-point energy should be subtracted away in any

calculation (a procedure called regularization, renormalization or normal ordering,

depending on the details of the particular calculation). One may think that such

23
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zero-point fluctuations of the vacuum are unobservable, however, there are situations

in which such vacuum fluctuations give rise to macroscopical effects. Examples of

such effects include the Casimir effect (example: two plane parallel conducting planes

attract in vacuum), the Unruh effect (accelerated observers in vacuum detect particles

with a distribution characteristic of a thermal bath), Hawking radiation (black holes

emit radiation, due to vacuum fluctuations near the event horizon). In this thesis we

will calculate one more such effect inflationary fluctuations in the early universe.

2.3 Canonical Quantization. Discrete Treatment

Many calculations in QFT are done most easily by discretizing space and then sub-

stituting the integrals over x- and k-space by infinite sums over infinitesimal elements

in x- and k-space. To do that we must first divide the x-space in a lattice with lattice

spacing Ax. Furthermore, we will restrict ourselves in a cube with side, L, imposing

periodic boundary conditions. Then the number of lattice points will be N3 , where

N = L/Ax. At the end of the day, we will go back to the continuous limit, by letting

L - oc and Ax -- 0. By the discrete lattice representation of Fourier integrals, the

periodic boundary conditions lead to discretization of k-space with lattice spacing,

Ak = 2r/L. By analogy, the discretization of x-space imposes periodic boundary

conditions in k-space on a box with side K = 2N/L. We can assign a triplet of

numbers to each x-space lattice point by x = /Ax(n1 , n2 , n3 ), i = 0, 1, 2, ... , N- 1.

The same can be done for the lattice points in k-space, k = Ak(ml, m2 , m3 ), where

m i N-_ +1, -N +2, ... , N 1. In this case the basis states are infinite (since2, 2 + 1,-7 + 2.. 

we let N - oc) but countable.

Next we introduce creation and annihilation operators, at and &k, for this discrete

k-space, which will be connected with the continuous ones by a simple relation. We

24



want the new aL and ak to satisfy the standard relations

ak. ,rnk,) = .- , nk-1, ) (2.22)

a} ,n,. - l )= k 1 -,nk+1,) (2.23)

[ak, , kk (2.24)

[ak, ak, ] [a, at] = 0 (2.25)

1Nk | ,nk, dt) aakL| ,fnk, )=nkh| ,Thk, ) (2.26)

where 6 kk' is the Kronecker delta. Note that despite appearances, each Fock state has

finite number (N 3) of labels, since there are finite number of k values. Note also that

the units of ak and a(k) are different. ak and ar are both dimensionless, which follows

directly from their definitions (2.22) and (2.23). However, the Dirac delta function

has the units of the inverse of its argument, therefore [a(k)] = [at (k)] = k -3/ 2.

In the discrete case, the integral goes to a sum as f d3k > (Ak) 3 Ekj. This is

actually a triple sum one for each dimension in k-space. To be more concise from

now on we will suppress the j in kj appearing in the sum whenever this subscript

labels different lattice points in k-space. So, now we can finally write

Xb(t) _(xj, t) (2)32 1 [e(k -x-Wkt)a(k) + h.c.]g~j~): 0~j, ) ~ 27)3/2 [e2X/ k
EAI I W [eZ(k -X-kt)ak + h.c.] (2.27)

where A is some constant to be determined. In the discrete case rj has a somewhat

different meaning, since it is no longer the conjugate momentum to bj. It is just

defined to be 7rj -- j and how it relates to the actual conjugate momenta will be

shown below. From (2.27) we have the relation

Adk - (A )3/2a(k) (2.28)

To find the normalization constant A, we need to write down the Lagrangian for)3/2

To find the normalization constant A, we need to write down the Lagrangian for
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the discrete case

L = (Ax)3 E Zj (2.29)
xj
-J

where

2=1 ( 2 Vj 2 _ 22) (2.30)

From here we can find the discrete momenta pj conjugate to the generalized coordi-

nates Aj. These conjugate momenta, pj, are not the same as the conjugate momentum,

7, to the field, :

pj = (Ax)3 3 (AX)3 (x2.31)

In the continuous limit, 7j becomes the conjugate momentum to the field, and pj

has no longer a meaning. From this equation and from the canonical quantization

(replacing the Poisson bracket with -z times the commutator), and the value of the

Poisson bracket of Oj and pj, we require that

[hj, P = z6j (2.32)

which means that

[j, -j,] = Zjj,/(Ax) 3 (2.33)
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Let us calculate this commutator using the expansion of Oj and 7rj.

[j iry] A2 (Wk') 1/2(k +k' xe [ k k I
k~~~~~~~~~~~k~~k l' \ ~

k k

+;~e-'(k-xj +k xj -wt-w't) [t, at/

+zc z(k-jx-k' .xj -wt+w't) [ak, at/

-ze-~k j-J-'•U-wt+w't) [a, ak] } (2.34)

Using the commutators of at and ak', we get

A 2

[do, irj,] = Z -[etk(j-x) + ezk(jx ) ] = zA2Ndjj, (2.35)
k

We get the last equation using the expression for the Kronecker delta Ek elk k(xi--) =

I36jj,, in which the 3 comes from the triple sum in the 3 dimensional k-space. Com-

paring (2.35) and (2.33), we conclude that

1
A- L3/2 (2.36)

From here it follows that

ak (Ak) 3 /2 a(k) (2.37)

a t= (k)3/2at(k) (2.38)

which indeed makes dk and at dimensionless. As we can see at (k) and a(k) get a factor

of (Ak) -3 /2 = (L/2w-)3 / 2 which in the continuous case becomes exactly 6/(0). Some

authors use L = 1 (dimensionless) and then they do not get the factor of ()

in at(k) and a(k). However, we keep this factor, so that we can keep track of the

dimensionality of the results which allows us to easily check the consistency of our

calculations.
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The Hamiltonian in this discrete case becomes

H = .E ypj j-L = (Ax)3' 1 ( + V0j1 2 + 2¢ 2) (2.39)2~~~~~~~~~(.9
Itj Xzj

Using the mode expansions for Oj and 7rj, we see that with the normalization constant

that we found, all terms such as aka-k cancel out, leaving

w,=k takak + ) (2.40)
k

which is exactly the discrete representation of the Hamiltonian found in the continuous

treatment.

2.4 Vacuum Expectation Value of the Canonical

Stress Tensor

Let us denote the ground state in Fock space by 0), indicating that the occupation

number is zero for all k. This state is called the vacuum state since no particles are

present. We want to calculate the vacuum expectation value (vev) of the canonical

stress tensor using the discrete treatment.

1
(0 6v() 10) = 0 0v0 - 1/,~ ((0X)2 + rm2 2) 10) (2.41)

Here the subscript showing that x, and 7r are discrete is dropped. So, we need to

calculate ( 0 00O 0) and (01 02 0), and we can use (0I (0)2 10) = y/v (0 1 90v0L 0).

To simplify the calculation, let's define the momentum four vector k = (Wk, k), which

means that k = (-aWk, k). So, we can write k -x- Wkt = kx"' in the expressions

for iOj and -j. Also, note that since we are acting on the ground state with the

canonical stress tensor (ST), the only quadratic combination of operators that will
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give a nlon-zero element is akat, = 
6 kk. As an example

1 

k
(2.42)1 klt

e g ( kc- k )xk (Oj akak, 1°)

1 L E 

k
(2.43)

The last line is obtained by using the Kronecker delta to eliminate one of the sums.

By analogy, we obtain

2 (0 02 1) L 2E k
k

2-m k 10 (0) O--L 3 2Cdk

(2.44)

(2.45)

where we used kk = -2 + k2 = _m 2 which is Lorentz invariant. As we can see,

the last two terms cancel in the canonical stress tensor, and so we finally get

(0I ,(x) 1) = E k 1k 
k

(2.46)

This means that the vacuum expectation value of the density is

1 k
=3 2

k

(2.47)

Taking tile limit of L - oc, which means that Ak -- 0, we can go to the contin-

uous case, obtaining

(0o E,(x) 0) =
d 3 k 1

(2) 3 P k (2.48)

(2.49)
d3 k

k
( 0eoo(x)10) = (2) 3 2

If we stare at the equations a little longer, we will see that for a bit longer cal-

culations, there is a shortcut. Let's introduce a notation: x, (i), 0(i)(i ) A - 0/&X,).

The index i = 1, 2 denotes different copies of x and as will be explained below.
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Now pretend that in each term in the ST which contains two 's, the two O's are

two different fields, i.e. (1) and ¢(2). We introduce this so that each derivative, 0(i),

in the ST, acts on its respective O(i). Therefore, the first term in the ST becomes

(o 0(1) (1)c(,2)Cb(2) 0). In this way we can pull out (0 0(1)0(2) 0) after the canonical

ST, and act with the ST on this expectation value. After we are done, we effectively

set (1) (2), meaning x) : x(2), (1) = (2), and we get the same answer as if we

did all expectation values separately. (01 0(1)0(2) 10) is known as the propagator in

quantum field theory.
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Chapter 3

Scalar Field in Flat RW Spacetime

We will be dealing with fiat RW spacetimes exclusively to the end of the thesis.

3.1 Spatially Homogeneous Classical Solution

From now on, t denotes conformal time, defined as t = f dtproper/a(tproper). We can

then linearize the RW metric with respect to the metric perturbations, and , and

obtain

ds2 = a2(t) [-dt 2 (1 + 2ID) + (1 - 2)(dx 2 + dy2 + dz 2)] (3.1)

which is called the conformal Newtonian gauge [5]. In second order perturbation

theory, the anisotropic stress for a scalar field vanishes, and therefore we have

- = (3.2)

and b in this case corresponds to the classical Newtonian gravitational potential.

In curved spacetime the Lagrangian density for a scalar field, (x, t), is given by

= 9 [-ig9 v&,0qt - V(0)] (3.3)

This means that to zeroth order (expanding to first order gives the same equation of
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motion)

(°)L = a2 0 -a 2 V(0o) (3.4)
2

Using the Lagrangian equation of motion we get the equation of motion for the

spatially homogeneous part of the field

¢;o +220o2 Vo = 0o + 2-Oo + a 0 (3.5)
a

The EMT for a perfect fluid can be written as

Tf = (p + p)UlU, + p6~ (3.6)

where U = (a-1 , 0, 0, 0) for the uniformaly epxanding matter in a RW universe,

satisfying the normalization condition U"U = -1.

We want to express o and Po in terms of the homogeneous part of the field, 00.

However, we cannot use the canonical ST in this case, since it not only includes the

energy and pressure of matter, but also the energy "stored" in the gravitational field.

The canonical ST is used in GR mainly for calculating the energy carried away by

gravitational fields. In this case, we want to use the EMT (2.6) which yields

T = 0oO ,00o-5 [-gQo0o&/o + V(O) (3.7)

We can equate (3.6) and (3.7) and we get

1 2 (.
Po = a2o ± V(00 ) (3.8)

2a

Po = a20o-V(qO) (3.9)

where po andl Po are the density and pressure associated with 0&o.

32



The Friedmann equation in conformal time (after restoring G) is given by

t 2 87rG-) 8rGpoa2 (3.10)
a-3) 3

which gives the relation between a(t) and O0 (t).

If we assume an equation of state, instead of specifying V(^0 ) in advance, we can

solve for the time evolution of the scalar field, b0. For the equation of state we will

use

w = P/P (3.11)

which takes values w =-1 during deSitter inflation, and w = 0 for a matter domi-

nated universe. If we define A 2/(1 + 3w), then for w = const the solution to the

Friedmann equation and the equation of state gives [2] (after restoring G):

o0 (t) = A(A + 1) log (t/to) (3.12)
47rG

a(t) = (t/to)A (3.13)

A(2A - 1)eoO (3.14)V() = 8Gt(3.14)

= sign(A) V/167rG(A + 1)/A (3.15)

which is called power-law inflation (for A 4 -1).

During inflation A < -1 and to < 0 since the solution assumes t going from nega-

tive values (tj >> 1) to zero, when the scale factor blows up as needed. Then, during

radiation and matter domination t starts from zero and grows monotonically. So, we

can consider the conformal time to be continuous from -oc to 0- for inflation. Then,

at the end of inflation, w changes quickly from -1 to 1/3 as we enter the radiation

domination era. During this transition w and is no longer constant, so the validity

of the above solution breaks down. However, we can bootstrap the solutions for in-

fiation to the solution for radiation and matter domination for which the conformal

time starts from + and goes to tpresent.
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3.2 Perturbations of the Scalar Field, Treated as

a Quantum Operator

3.2.1 The Lagrangian in Curved Spacetime

In order to quantize the gravitational potential, we need to obtain a Hamiltonian,

and then perform canonical quantization. However, the Hamiltonian formulation

separates the time and spatial components, and the equations are no longer manifestly

covariant. However, the obtained equations of motion are identical to those obtained

from the Lagrangian formulation in any coordinate system. For one particle, the

choice of a time coordinate is easy - this would be the proper time. In our case, we

choose our time variable to be the conformal time.

Let's make the following field definition [6]

(3.16)X = a (+ a. ) (3.16)

where ¢ is the perturbation to the field, a is the scale factor, and is the gravitational

potential. X is usually referred to as the Mukhanov variable.

The second order Lagrangian in curved spacetime is given by [6]

(2)L= 1 (X2 - X _t2 (t)X 2) (3.17)
2

Here, p2 (t) -/z, where z a2 Oo/a. Here, z(t) is a definite function that depends

only on q0 (t), since a(t) depends on 0o(t) through the Friedmann equation (3.10).

The Hamiltonian [6] is

1= 2 I+ V X 2 + 2 (t)X2 ) (3.18)= - (i% +3 18

where w7X is the conjugate momentum of X.

As you can see, this result, obtained by [6] is fascinating, since it reduces the

number of fields from 11 (10 for the metric, and 1 scalar field) to 1. Moreover, there
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are no cross terms in the Hamiltonian between the field and its conjugate momentum.

This can only be achieved in second order perturbation theory when gravity waves

and vector perturbations are neglected.

The metric in this problem is that of fat RW with ()g, =- a2 r,,. Gravity and

the scalar field are both incorporated in the new field X, which "lives" on this flat

RW background.

3.2.2 The Hamilton Equations

The Hamilton equations are given by

/rx = {x, H} (3.19)

(3.20)

where {} is the Poisson bracket defined as

{A, B} = d3x 6A 6B
6 X Bx

6A B
6FX 6X

(3.21)

(3.22)

(3.23)

Using Hamilton equations (3.20) and (3.19) we get

rx = -/2(t)X + V2X

X = 7ix

Eliminating 7rX, we get the following PDE

X = -_2(t) + V2X (3.24)

Taking the spatial Fourier Transform (FT), we can write this equation in k-space

V)k = - [k2 + i2(t)] Vk (3.25)

where Vk (t) = FT(X(x, t)).
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Approximating w const allows us to use (3.12) and (3.13). We see that z a,

and thus, ,/z i/a for w const. This means that ,u2 (t) =-A(A - 1)/t 2, which

gives

2
82(t) = -t2 (3.26)

for both matter dominated universe, A = 2, and for deSitter inflation, A = -1.

This is surprising but we should remember that t is conformal time. Plugging in the

equations of motion, for A -1, 2 we get that

v+ coskt -+ Z k t + ( k sin kt) k , ekt (3.27)

sin kt' /COS ktkt>1-t(v_ = cos kt - + sin kt) e (3.28)k~~~~~~kt]3kltk

Following [2], the choice of normalization will be evident when we calculate the

commutator of X and 7x . This linear combination of the solutions is necessary in

order to get for kt > 1 that v = v+l, and recover the Minkowski solutions.

If the Wronskian of two functions is non-zero at a given point, then the two

functions are linearly independent at that point. For a second order ODE with a

coefficient P'(t) multiplying , we know that W'(t)/W(t) = -P(t). From here it

follows, that the Wronskian is constant for all times, since P(t) = 0 in (3.25). The

Wronskian equals

W(t) = +v_ - v+_ = 2k (3.29)
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3.2.3 Canonical Quantization

For arbitrary w, the field X, and its conjugate momentum 7rX, can be expanded in

terms of creation and annihilation operators as

[ d 3 k 1

x(, t) = (2)3/2 [ek.x v_(k, t)a(k, t) + h.c.] (3.30)(27 V32- V-

[d 3 k 1
7x(x t) = d3 I [elkxtv (k, t)a(k, t) + h.c.] (3.31)

(27r)3/2 VX//k 

since from Hamilton's equations (3.20) we have 1Ok = FT(wx). Our k differs from

Mukhanov's [6] by a factor of k. It is important to emphasize that the creation

and annihilation operators obey the commutation relations of Minkowski spacetime

(2.12) and (2.13). This decomposition indeed yields the commutator (2.18), when we

use the value of the Wronskian (3.29).

Integrating the Hamiltonian density (3.18) with respect to spatial variables, we

find that the Hamiltonian equals

I 21/ J k [f(k,t)a'(t)atk(t)+ g(k,t)ak(t)at(t)+ h.c.] (3.32)

f(k, t) _v+©t+ + (k2 + P2(t))v+v+ (3.33)

g(k, t)-_;+ + (k2 + P2 (t))v_v+ (3.34)

From here it is easy to see that, in general, the Hamiltonian does not commute with

itself at different times. For w = -1, 0, we get

f(k,t) = 1 - 2zkte2kt(3.35)
k2t4

g(k, t) = 2k2
-1 +2k 2t2 (3.36)

k2t4

Given these expression, for arbitrary w, we can calculate the time dependence

of the creation and annihilation operators, using the Heisenberg equation of motion.

Canonical quantization gives us operators which are in the Heisenberg picture. In

this case the correct Heisenberg operator is not just a(k, t) but v_(k, t)a(k,t), since
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the latter has the whole time dependence incorporated into it. So, if we are to use

the Heisenberg equation of motion to get the evolution of a(k, t), we should do that

by plugging the correct Heisenberg operator, v_(k, t)a(k, t), which gives

t I [f*(k t)a_ k g(kt)a] -+ (k t)at (337)= - + g(k, a 
2k k v+ ~~~~0(k, t)k

ak -2 [f(k, t)aLk +t)a,t)ak- (k t) ak (3.38)
2k v~- -k t

In the ktj >> 1 limit we get f(k, t) --+ 0, and g(k, t) - 2k 2 for w 0,= O-1, which

gives constant annihilation and creation operators.

at (t) = at (to) (3.39)

ak (t) = ak(to) (3.40)

So, in the limnit kt > 1, the eigenstates of the annihilation operator are fixed, an

important result which we will use in the next section.

3.2.4 The Initial State Problem for w -1, 0

As we saw in section 3.1, the conformal time increases from -oo to 0- during inflation,

and then skipping t = 0 continues increasing during radiation and axion domination.

So, for a given mode before inflation kt > 1 and the scale of the perturbation

was inside the Hubble horizon. Then close to the end of inflation, during radiation

domination, and in the beginning of matter domination, the Hubble horizon was small

(in comoving coordinates), and ktj < 1. Then in the late axion domination epoch

kit > 1 again, and the perturbation again reentered the Hubble horizon.

Using (3.39) and (3.40) we get that the Hamiltonian for the period before and

during the early stages of inflation reduces exactly to the expression we had in the

Minkowski spacetime case

H = d3k- [ak(to)a(to) + a'(to)ak(to)] (3.41)2 1 --k - I~ ~ ~~~~(341
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and it commutes with itself at different times. From this expression we can conclude

that the number operator and the Hamiltonian commute for this epoch. This means

that we can start our evolution from the Bunch-Davies vacuum, which is the state

with zero occupation number, N 0) 0. This state coincides with the zero-point

energy eigenstate for this Hamiltonian, from which we want to start our evolution.

When we calculate the power spectrum of the perturbations in the next section,

close to the end of inflation (i.e. kt < 1), we should make an assumption that

after the transition epoch (k t 1) ak(to) = ak(t). The result for the spectrum of

the primordial fluctuations obtained using this assumption we show to be the same

even without making the assumption. To do that we needed to do a more thorough

analysis using the Bogolyubov transformation, which will be presented in a follow-up

paper. Our results show that the time dependence of ak(t) will affect the state only

at horizon crossing, where it causes squeezing of the state, but does not change the

spectrum of the perturbations.

3.2.5 Quantization of the Gravitational Potential

The gravitational potential is given by [6]

V2. = 47 a2d (X) (3.42)
a dt z

From here we get

f0 d k 1 z-

1 (x,t) = (2)3/2 [(t)e ak + h.c.] (3.43

where

Uk= -47rkd (E+) (3.44)

For w =-1, 0 this gives

zkt

'Uk = -z 4 7r kt2 [k2 t 2 + (1 + A)(zkt- 1)] (3.45)
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Thus, for inflation we have

ezkt
Uk -7-

k
(3.46)

which is also true for axion domination, given that k1tL > 1.

From (3.8) and (3.9) the prefactor in (3.43) equals

Yu = ,~_UV Po +Po
a

(3.47)

So, during inflation this prefactor is close to zero.

3.2.6 Power Spectrum of the Perturbations for Nearly de-

Sitter Inflation

Given the initial state, we can calculate the correlation function for the potential

(0I 4(x, t)4'(x + r, t) 0) = 2
a2

00

0

dk sin (kr) 2

(27) 2 r IUk
(3.48)

(3.49)k 12 = 6r4 [k4t4 + k2t2

lUki2_ k6t 4 [ A

where the last equation holds for w =-1, O. This should equal the integral over the

power spectrum, P (k, t).

(oI ¢(x, t)(x + r, t) 0) - I d3kP,(k, t)e-k'r

From these two equations we can derive the power spectrum of the fluctuations for

different epochs

p - =o 2 1uk[2
a2 16rak

(3.51)
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Then, in almost deSitter inflation, we get that

1
P4 = I (Po + Po) "' 0 (3.52)

3.2.7 Power Spectrum of the Perturbations During Inflation

WVith -1 < w < -1/3

During inflation we have -1 < w < -1/3, hence A < -1. The equation of motion

(3.25) gives the following two solutions: /-L-J_\+/ 2 (kt) and -/tYxA+l/ 2 (kt) for

v(t), where Y and J are the cylindrical Bessel functions. These two solutions can be

combined as

i

V+ = - --2 [J-_+1/2(kt) - r_)+1/2(kt)]
V_ =V_

The Wronskian is again time independent and in this case equals

W = +v_ - v+i_ - 2zw

= [v+]R[v+] - [v+]R[v+]

--4 [ (J +1/2(kt) + -Y*A+1/2 (kt))

x (J-A- 1/ 2(kt) - ZJ-A+3/2 (kt) + Y-A-1/ 2 (kt)- Y-,+ 3/2(kt))]

= 1- 2cos[27( + 1)] (3.58)

where the last equation we found empirically. This gives a canonical quantization

given by

f 3 k 1
X(x t) = I /2 d-- U 2 [e -v (k, t)a(k) + h.c.]

(2=)/-2F 7

7w/,(x,t O J
d3 k

(27r)3/2 12 [el-k _ (k, t)a(k) + h.c.]

which satisfies the commutator between X and 7rx.
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(3.56)
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Using (3.53) we get that

312t - [J-A-/2(kt)- Y- (kt)] (3.61)

and the gravitational potential is given by

1(D ) - J ( 2 /7r)2 / [ (t)exak + h (3.62)

Finally we can write the spectrum of the perturbations

p'J 0 jUk (3.63)
a 2 167r3 (3.63)

which is our general solution which is independent of time for ktj < 1. We can take

the modulus of w since, we can always exchange q+ and q_, resulting in a change of

the sign of z. So, we always choose the positive value. By direct substitution, we

can see that we recover our expression (3.52) for inflation with w -1.

For small values of 0, we have A < -1. So, we will expand our solution to see

how the spectrum of the fluctuations behaves. w has an extremum at A = -1, which

means that -1 - A makes a second order contribution to , and a third order

contribution to Pm.

Since we need bo to be real, we require that e > 0, which is equivalent to w > -1.

To first order in we reproduce our previous result for the power spectrum (3.52).

Thus, we show that even though the mode functions, v(k, t), change a little for non-

zero , this is a higher order effect.

The spectrum of the curvature perturbations for w m -1 is given by

k 2 4k 3P (k) = 4 (po + po) (3.64)

which is a constant with respect to k and t. This is the correct formula for the

curvature perturbations for almost deSitter universe. For an arbitrary value of w, the

generalilzation of this is given by (3.63). We will see how it changes our understanding
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of the spectrum of the perturbations in the next section.
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Chapter 4

Comparison With the Wrong

Previous Results

In this section we will use a to denote the homogeneous part of the scalar field.

4.1 Comparison With the Wrong Slow-Roll Infla-

tion Solution

Slow-roll inflation assumes large Hubble damping, i.e. small q, and small ¢. In this

approximation the two slow-roll parameters are given by [8]

H'
= -H 2 = 4r ( )H2

H 2 16r V

1 V 1 V,
nr= V -3 H 2

87 V 3 H2

(4.1)

(4.2)

where a prime denotes proper time derivative. These parameters are both taken to

be very small.

The spectrum of the perturbations in the case of the wrong solution is given by

[8]

2 9 H 2 32 V3

| 6k Ws W)2 = - (4.3)
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The subscript WS stands for Wrong Solution.

Our correct treatment in the slow-roll approximation gives

k~k~ -I (V6)2
6k 1s2 61r V (4.4)6w V

The subscript CS stands for Correct Solution.

This means that the wrong result gives a power spectrum which is much bigger in

magnitude than what was obtained with the correct treatment. To rewrite everything

using the slow roll parameters we get

6 V
|1k Iws 2 (4.5)ws -

|6k -= VE (4.6)
3

This means that the energy scale of inflation, E, is given by

zV 1/4
Ews = (4.7)

Ecs (V) 1/4 (4.8)

4.2 Comparison With CMB Results

On large angular scales 0 > 1, the CMB anisotropies are caused by the fluctuations

of the gravitational potential on the surface of last scattering - an effect called the

Sachs-Wolfe effect. On these scales, the CMB anisotropies had superhorizon size at

photon decoupling, therefore they directly probe the spectrum of the fluctuations of

potential during inflation.

For adiabatic fluctuations, we have ([8], his equation (212))

l(1 + ) C, A 21(1 + = 1C A O-10 (4.9)
27r 9

where the last result quotes the result of COBE; A is defined by 6 k12 47rA2 - 10- 8.

Using this data we can conclude that the energy scale in the wrong and in the
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correct treatment of inflation equals

(V) 1/4
Ews = 5 X 106 GeV (4.10)

Es = (V) 1/4 7 x 1016GeV (4.11)

This means that the fine-tuning problem is greatly alleviated by the fact that E which

in the slow-roll inflation is [ << 1 goes in the numerator in the correct expression

of the energy scale. This means that the potential in the correct treatment is no

longer required to be small in natural units to explain the observed CMB temperature

anisotropies.

4.3 Examples of Inflaton Potentials

Now let us consider several "classical" inflaton potential models.

First, we need to express the number of e-foldings, N, in terms of the potential

tf
aN- = -dt (4.12)

J a2
ti

This in the slow-roll limit becomes

Of

N 8 V-dO (4.13)
hi

Also, we want to test the slow-roll approximation. To do that we need to show

that the kinetic term is much smaller than the potential term in the equation of

motion (3.25). This translates into

V¢, << V (4.14)
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4.3.1 Quadratic Potential

The potential is given by V(0 0 ) = m2 o2/2. This potential is nowadays the preferred

model of inflation, not only because of its simplicity, but because it does not require

special initial conditions (as is the case with "new" inflation, described below).

This means that the number of e-foldings equals

N = 27rh2 (4.15)

Using the equations for the spectrum of the perturbations (4.6) and (4.5) and the

result for N (4.15) we get

1k 1wS .03m2 hi4 o10-8 (4.16)

6 k Cs 0.2m2 -10-s (4.17)

Note that this is given in terms of hi. This is due to the fact that the large angle modes

in the CMB that we observe have crossed the Hubble horizon at the early stages of

inflation (possibly at few e-foldings). This means that in the slow-roll approximation,

our results for the perturbations should be given only in terms of the initial value of

the field.

Our result (4.17) is fascinating, since this means that in light of our correct treat-

ment, the CMB spectrum directly measures the inflaton mass. As a comparison, the

wrong result depends on the dynamics, and on N in particular. However, in light of

the new results on the upper bound on N [1], the wrong and the correct treatments

give approximately equal values for the mass of the inflaton. To summarize

mws < 10- 5 (4.18)

mcs 10- 4 (4.19)

From the correct treatment combined with the CMB measurements, we get a mass

of the inflaton field in the range of the Grand Unified Theory (GUT) energy scale,
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EGUT, Inot depending on how long inflation lasted, and how many e-foldings it caused.

4.3.2 04 Potential

The potential is given by V = A04. For this case we have

N = O2 (4.20)

from which we get

k5k 1s A6 (4.21)

k5klcs A20 (4.22)

This gives

2ws < 10 (4.23)

Acs < 1010 (4.24)

In this case, the correct model does not give a substantial weakening of the fine-tuning

problem.

4.3.3 "New" Inflation

New inflation ("new" as of 1982) uses a potential which arises from spontaneous

symmetry-breaking, (e.g. the Peccei-Quinn symmetry breaking). The field starts

from an unstable equilibrium at ~ 0, and rolls down to the true vacuum. The

potential for this case is given by V = A(1 - (/u)P), where p > 1. If we require

that /f is of order in natural units, we will obtain a constraint on A using the CMB

result. The requirement (4.14) for slow-roll inflation then is << 1. The e-foldings

49



constraint is easily satisfied by choosing the value of of. For this potential we get

A 4

5klws 2(p1) (4.25)
Oi

16k 12 S~zz~ 402(p-1) (4.26)

Since we require, p > 1 and q < 1, we see that in the wrong treatment, there is no

way that A - 1. In fact A < 10-2 for the wrong case. For the correct treatment,

the small value of the CMB temperature fluctuations can be entirely ascribed to i

which is just a dynamical variable, hence there is no problem to get A 1. So, for

the case of new" inflation, the correct treatment completely solves the fine-tuning

problem, since we can have all parameters of order unity in natural units.

4.3.4 Power-Law Inflation

This is inflation for which w = const. The solution to the dynamics is given by (3.12)

and (3.13). From (3.14), the potential is given by V = V0 e1lvT r . The number of

e-foldings is

NV0 ¢, N~~ NVo.~ ~(4.27)

The slow-roll requirement is << 1, which means w -1. From here we get

I klws .0 2 V eNVo/2 10- 8 (4.28)

16k Cs 0.04VoeNVo/2 lo-8 (4.29)

If we choose the natural value V0 m 1, we get that

ecs ," 10- 7 (430)

and there are no real solutions for ws. So, for this potential our correct treatment

satisfies all the requirements for slow-roll inflation for natural value of the parameter
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1, for practically arbitrary value of N (in fact we need N < 107, which is

completely "reasonable"). This means that in this case we completely solve the fine-

tuning problem in inflation.
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Chapter 5

Conclusions and Outlook

In this thesis we showed that the spectrum of primordial fluctuations as calculated

until (e.g. [5]) now is wrong. We find the correct expression for the spectrum using a

field variable introduced by Mukhanov. Like most authors, we assume that all modes

evolve independently, i.e. we neglect squeezing. In a follow-up paper we will show

that the coupling of modes results in squeezing of the state without affecting the

power spectrum.

We also show that using our correct treatment, the fine-tuning problem in infla-

tionary cosmology is solved for certain potentials, and is alleviated in others (e.g.

"new" inflation and power-law inflation). We also show that in the case of chaotic

inflation with quadratic potential, the spectrum of the CMB directly measures the

mass of the inflaton field, instead of also depending on the number of e-foldings.

Compared with the CMB power spectrum, we get a value for the inflaton mass of

101 5GeV which is of the order of the GUT energy scale.

Our discussion of the inflaton field can be continued to encompass the later stages

of the evolution of the universe after inflation. As we discussed in Chapter 1, struc-

ture formation in the universe may be governed by the dynamics of the axion scalar

field. This means that our treatment of the inflaton scalar field can be applied to

the axion field, as well. Thus, by extending our analysis, we can rigorously follow

the evolution of cosmic perturbations from the primordial vacuum fluctuations to

structure formation, without reverting to semi-classical approximations.
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