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ABSTRACT

We study an optimal schedule for admitting a fixed number of customers from an
auxiliary buffer with low holding cost to a main queueing system with high holding
cost. We prove that the overall admission rate under the optimal schedule converges
to the service rate of the main system as the number of customers grows. We also
show asymptotic properties regarding admission rate and interadmission times in
early part of the optimal schedule.
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Figure 1: A system consisting of a controller followed by a single server queue
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1 Introduction

The problem of optimal admission control in a queueing system has received signif-
icant attention over a number of years [1, 3, 4, 5, 6, 7, 9, 10, 15, 16]. In most of
this literature, the assumption is made that the controller that regulates admissions
has access to full information on the state of the system. In this paper, we consider
the opposite situation in which the controller has no information on the state of the
queueing system other than the knowledge of its own past actions. Our motivation
comes primarily from the context of high-speed communication networks. The time
scales in such networks are so fast that very limited real-time feedback is possible;
in particular, many of the flow control actions have to be made essentially open loop
[2]. Past literature on the subject of admission control under imperfect information is
limited [3] [11] [13] [14]. These references deal with optimal on-line admission control
strategies to cope with a steady arrival stream of customers.

In this paper, we study optimal off-line scheduling of admission times of a fixed
number of customers. We concentrate our studies on the system depicted in Figure
1. It consists of a controller and a main system. Initially, the controller has a fixed
number of customers, and the main system is empty. The main system is assumed
to have an exponential server with service rate 1. In our model we allow any work-
conserving service discipline that does not need knowledge of service times other than
their statistics. There are two important additional components of our model:

* The controller's queue is "less expensive." In particular, we assume that the
ith customer incurs a cost Wi1 + CW/ 2, where JW1 is the time that the customer
spends in the controller's queue, W/2 is the time that it spends in the main
system's queue, and C is a constant larger than 1.

* The controller cannot observe the state of the main system's queue.

Motivation for the form of the cost function we have introduced comes from the
context of flow control in communication networks. While network level flow control
(e.g., the controller's actions in our model) cannot reduce the total delay experienced
by a typical data packet, it attempts to shift delay from a network layer (e.g. the
main system in our model) to higher layers (e.g. the controller in our model) in order
to avoid wasteful congestion in the network layer [2]. We penalize the delay in the
main system more than the delay in the controller in order to capture the essential
idea that the congestion in the network layer is more harmful because of the resulting
buffer overflows and retransmissions.

Given the above framework, we wish to study admission times that minimize the sum
of the expected costs incurred by the customers. In relation to the admission control
of steady arrival streams, the study in this paper can add insights to the case of rare

2



arrivals in big bulk. This paper addresses the question: how should a large bulk of
customers be fed into when the arrival stream has extremely low intensity?

It is intuitive that customers should be fed into the service facility at a rate approx-
imately equal to the service rate, and we provide some results corroborating this
intuition. In section 2, we show that a periodic admission schedule becomes asymp-
totically optimal if the interadmission time is properly adjusted for the number of
customers. In section 3, we show that the average admission rate under the opti-
mal schedule converges to the service rate as the number of customers increases. In
section 4, we show that the early interadmission times under the optimal schedule
can be arbitrarily small due to an edge effect. In section 5, we provide asymptotic
properties of the optimal schedule regarding admission rate averaged over partial time
intervals.

2 Formulation and the performance of periodic
admission

In the system described in Figure 1 there are N customers in the controller, and the
main system is initially empty. The controller has the knowledge that the main system
is empty initially but cannot observe the main system's queue status thereafter. The
decisions to be made by the controller can be summarized by a finite nondecreasing
sequence r N = (tN,... ,t N ) of nonnegative real numbers, where t N represents the
time that the i-th customer is admitted. Given such a sequence r N of admission
times, the cost incurred at the controller is given by

N

Etj. (1)
i=l

In addition, if Ti is the (random) time at which the service of the ith customer at the
main system is completed, the cost incurred at the main system is given by

N

C E[T_ t-]. (2)
i=1

The objective is to find, for any given N, a sequence 7rN that minimizes the sum
of the expressions (1) and (2). Note that t N is obviously 0 for a minimal 7rN. For
any fixed N, this is a deterministic nonlinear programming problem in the variables
t, ... , tN. Even though it can be verified that the cost function is convex, no closed
form solution is in sight. For this reason, we will limit ourselves to the case where
N is very large and we will derive a schedule whose cost exceeds that of the optimal
by a vanishingly small percentage, as N increases. In later sections we will derive,
based on the intuition gained in this section, some properties of an exactly optimal
schedule when N is large.
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Let GN be the cost of an optimal schedule for the problem we are considering. Let us
consider the schedule 7rN in which tN = (i- 1)(1 + EN) for each i. That is, customers
are admitted periodically, once every (1 + EN) time units, where EN is a positive real
number whose properties will be specified later. Let FN be the cost of this particular
schedule. The result that follows states that, asymptotically, FN is very close to GN.

Theorem 1 If limN_, , EN = 0 and limN_,, NN = oo00, then

FN
lim N = 1

N-oO GN

Proof: It is evident that GN < FN for all N; it remains to prove that the reverse
inequality also holds, asymptotically. We start by deriving a lower bound on the
optimal cost GN.

Let QN be the value of the optimal cost if the controller had full and instanta-
neous information on the state of the main system. It is clear that, under perfect
information, and under the assumption C > 1, the optimal schedule for the controller
is to admit a new customer whenever the main system becomes idle. Then, the total
expected cost incurred at the main system is CN. Furthermore, the time of admis-
sion of the i-th customer is equal to the sum of the service times of the first (i - 1)
customers and its expectation is equal to (i - 1). We conclude that

GN Q N = (i-1)CN N(N- 1)
GN_> QN: (i -1)+ N + CN = 2 CN (3)

i=l2

We now continue with an upper bound on FN. The cost in the controller is easily
found to be (1 + eN)N(N - 1)/2. Note that the main system behaves as a D/M/1
queue. Given that the main system is initially empty, a standard stochastic dominance
argument implies that the expected response time of each customer (in the main
system) is bounded above by the expected response time in a D/M/1 queue in steady-
state, which is 1/(1 - alN) [8], where aN is the unique solution to

0r = exp{-(1 + eN)(1- r)}, < r < 1 (4)

Putting everything together, it follows that

FN < (1 + N) N ( N - 1 ) + CN
2 1 - rN

Consider a quadratic function f((a) = 1 - (1 + )(1 - o) + B(1 - cr)2 and the equation

a = f(a), o < < 1 (5)

For sufficiently small e and sufficiently large B, f(cr) is no less than the right-hand
side of equation (4) for each ao between 0 and 1, and f(1) = 1. Therefore, 1 - eN/B,
which is the unique solution to equation (5), is no less than Crv for sufficiently large
N. Therefore, 1/(1 - rN) < B/EN, and we have

FN < (1 + CBN (6)
2 EN
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Using the assumption NEN -+ oo, the term CBN/EN is negligible compared to the
O(N 2 ) term. We then get, using equation (3) and (6)

FN
lim N < lim ( + EN)= 1.

N-0oo GN - N-o00

Q.E.D.

We note that the proof of Theorem 1 indicates that the periodic admission schedule
we described is not only very close to being optimal asymptotically, but also comes
very close to the cost of an optimal closed-loop, on-line admission policy.

3 Overall admission rate of an optimal schedule

The intuition provided by Theorem 1 leads to the conjecture that the admission rate
of an optimal schedule must converge to the service rate. In this section we rigorously
state and prove this conjecture. We now fix our notation. Throughout this section,
tN will stand for the admission time of the ith customer under an optimal schedule
for the N-customer problem.

Theorem 2

lim N 1
N-*oo tNN

Proof: Consider the following two lemmas.

Lemma 3 liminfN,,__o t~/N > 1.

Proof: Suppose that this lemma is false; then, there exists some y > 0 and an
increasing sequence {Nk} such that tNk < (1 - y)Nk for all k. We will argue that
the last customer is very likely to find the main system busy and that the cost of the
schedule can be reduced by delaying the admission time of the last customer, thus
contradicting optimality.

Let us fix some 6 > 0. Since the service time distribution is exponential, the service
order does not affect the cost. Assume that the first-come-first-serve discipline is
used in the main system. Let cak be the probability that the service of the first Nk - 1
customers is finished by tNk + 6. This can happen only if thee service times
of the first Nk - 1 customers is less than ( 1- )Nk + 6. The weak law of large numbers
implies that this event has vanishingly small probability, and limk,, ak = 0.

Let us now consider a modified admission schedule for the Nk-customer problem in
which the admission of the last customer is delayed by 6. This modification increases
the cost incurred in the controller by S. To compare the costs at the main system, we
use a coupling argument: we assume that the service times of all customers are the
same under both policies. Then, the costs incurred at the main system are the same
under both policies, with the possible exception of the last customer. If under the
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original schedule, the last customer finds the main system idle, the same will be true
under the modified schedule and the cost incurred under either schedule at the main
system will be the same. If under the original schedule, the service of first Nk - 1
customers is not finished by the time tiN + 5, then the modified schedule results to a
cost saving of CS; this is an event that happens with probability (1 - ak). Finally, if
under the original schedule the last customer finds the main system busy at time tNk
and begins to be served before time tNk + 8, then the modified schedule still results to
some cost savings in the main system. Putting everything together, the cost savings
of the modified schedule is at least CS(1 - ck) - 6. Recall now that ak -+ 0 and that
C > 1. This implies that the cost savings will be positive when k is large enough,
contradicting optimality of the original schedule. Q.E.D.

Let us consider a sequence of time intervals [0, qN) indexed by N, the number of
customers. Denote by A(qN) the number of admissions in the interval [0, qN) under
the optimal schedule. The following lemma concerns the average admission rate in
interval [0, qN).

Lemma 4 If qN < t[ for each N, and qNv -- oo as N -+ oo, then

A(QN)
lim inf > 1
N--coo qN

Proof: We will show that if the number of admissions in [0, qN) is too small, then the
main system will have long idle periods that can be exploited to reduce the costs, thus
contradicting optimality. In order to describe sparsity of admissions in the schedule
7rN we define a deterministic function UiN(t) describing the unfinished work at the
main system at each time t under this particular schedule with the server replaced by
a deterministic one. Thus, U,rN(t) decreases at unit rate whenever it is positive and
has upward jumps of size 1 each time that a new customer is admitted into the main
system. Suppose now that lim supN_.o A(qN)/qN < 1. Then, there exists some e > 0
and an increasing sequence {Nk} such that A(qN,) < (1- e)qNk. Consider some value
of N for which A(qN) < (1-e)qN. It is clear that the set I = {t C [O, qN) I U, N(t) = 0}
has measure at least eqN. Let us split the interval [0, qNv) into q/4 intervals of equal

length and let Li be the ith such interval. (For simplicity, we assume that qN/4 is
integer.) Let Ii = {t C Li UrN(t) = 0}. Since the sum of the measures of the sets Ii
is at least eqN, it follows that there exists some i* such that the measure of the set
Ii* is at least Eq /4/2. We also claim that there exists

i* < q/4_ FC] - 2 (7)

such that the measure of Ii. is at least eqN/4/2. The reason is that if not, then the

sum of such measures in the first q /4 _ [C] - 2 intervals would be less than EqN/2

and the sum of the measures of the last [C] + 2 intervals would be bounded above
by (C + 3)q ./4. But for large N, eqN/2 + (C + 3)qN/4 < eqN, which contradicts our
assumption on the measure of the set I.
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We now consider the following modification of the assumed optimal schedule. Let
us define i* as described above and consider the first customer admitted (under the
optimal schedule ,r N) after the end of interval Li.+[cl . Such a customer exists because
we have already argued in (7) that Li. is not one of the last [C1 + 2 intervals. We
will refer to this customer as the "special customer". Under the modified schedule,
this customer is to be admitted at the beginning of the interval Li..

We now compare the costs under the two policies. Regarding the controller,
under the modified schedule a customer is admitted earlier, thus resulting in some
cost savings. Since each interval Li has length at least q3/4, and the customer is
admitted earlier by at least [C1 + 1 whole intervals. Therefore, the special customer
is admitted earlier by ([Cl + 1)q7/4 + hN for some hN > O. The cost savings in

the controller is ([C] + 1)q3/4 + hN. Let us now consider the cost change in the
main system. To do the comparison, we use a coupling argument, by considering the
sample paths resulting from the application of the two different policies while keeping
the service time of each job the same. Due to the exponential service times, the cost
at the main system is the same for any work-conserving queueing discipline. We
therefore can, and will, assume that under both schedules, the special customer has
the lowest service priority, and other customers have preemptive priority over this
special customer. Due to the priority discipline we have assumed, it is clear that all
customers except for the special one incur the same cost at the main system. We can
therefore focus on the special customer. If under the modified schedule the service of
the special customer is completed during the interval Li., its cost at the main system
is bounded above by Cq3/4; denote the probability of this event by /3N. If the special
customer is not finished during the interval L*, it will nevertheless be served no later
than the time it would be served under the optimal schedule. Thus, an upper bound
on the excess cost of the modified schedule is C times the amount of time by which
the admission of this customer has been hastened, which is ([C] + 1)qj/4 + hN. To
summarize, the cost savings resulting from the considered schedule modification is at
least

([C] + 1)q3/4 + hN -NCq 3/4 - (1 - /3N)C{([] + ± 1)q3/ 4 + hN}.

Recall that the measure of Ii. is at least eq/4/2. We claim that the probability that

the main system remains idle for at least eq/4 /6 time units in Li. under the optimal
schedule converges to 1 as N -- oo. (This claim is essential for establishing this
lemma and proved in Appendix A.) Therefore, for N large enough, 3iN is sufficiently
close to 1, so cost savings are positive, thus contradicting optimality of the original
schedule. Q.E.D.

If we use qN = tN in Lemma 4, A(tN) - N and from Lemma 3 tN -N- oo as N --

oo, so Lemma 4 implies that liminfNv, , A > 1. From Lemma 3 we also have

liminfN, tNi > 1. Therefore,

N
lim - 1

N-boo tN
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Q.E.D.

4 First interadmission time

In this section we show that periodic admission is not an optimal schedule due to
an edge effect. (Note that the main system is initially empty.) We will show that
under an optimal scheudle, the first interadmission time becomes arbitrarily small as
the number of customers increases. If a large number of customers are waiting in the
controller, allowing idle time in the main system can cause big losses, so one would be
more eager to admit a customer, in spite of the risk of congesting the main system.
We can figuratively say that the large number of customers in the controller buffer
pressures the controller to admit customers quickly. From now on, we denote the
N customers that are initially in the controller by el 2, 2,' , en, and their admission
times under an optimal schedule by tN < t •< ... < tN. Obviously t{N is 0. The
main result of this section is limN t2 0.

In establishing this result, we will use interesting properties of an optimal schedule
regarding the probability that the main system becomes idle in an early time interval.
We denote by a left continuous function XN(t) the population of the main system
at time t under the optimal schedule irN. Let [0, qN) be a sequence of time intervals
indexed by N. We will consider the following probability.

CN - P( XN(t) > 0, Vt C (t3qN) XN(t) - 1 ) (8)

Lemma 5 If for some e E (0, 1/C)

qN <(C - )N 'VN, (9)

then {CN} is bounded below by a positive number.

Proof: In proving this we will often compare the optimal schedule TrN with the
modified schedule TiN for which eN is admitted at time t = 0 instead of tN. We will
show that if there exists an increasing sequence {Nk} such that cNlk -* 0 as k -, oo,

the modified schedule incurs less cost for some Nk, thus contradicting optimality.
As a result of the modification, the cost incurred in the controller is reduced by

tN. Now we consider the increase of the cost in the main system. Note that due to the
exponential service time the expected cost does not depend on service disciplines as
long as they are work-conserving. For both schedules, we assume that customer eN
has the lowest priority, and other customers can preempt eN. Then, the total increase
of cost in the main system is C times the increase of eN's response time. Denote by
a left continuous function XN(t) the population of the main system at time t under
this modified schedule -rN. If the main system becomes idle before time qN under
the modified schedule *rN, the response time of eNv is less than qN under this schedule
rN, thus the cost increase is at most qN. If the main system stays busy until time
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qN under iN, the expected response time of eN conditioned on this event is no more
than qN + N. The reason is that service times are memoryless, and there are only N
customers. Combining all these, we see that the total increase of expected response
time in the main system as a result of the schedule modification is at most

P( XN(t) > 0, Vt < qN ) (qN + N) + { 1- P(kN(t) > O, Vt < qN ) } qN

qN + P( XN(t) > 0, Vt < qN )N

Therefore, the increase of cost due to the schedule modification is

-tN + CNP( XN(t) > O, t < qN ) + CqN ,

which is bounded above by

-tN + CNP( JXN(t) > O, t < qN ) + C(1/C - E)N

due to hypothesis (9). From Theorem 2, for any y > 0, we have tN > (1 - y)N for
sufficiently large N. Therefore, for any y > 0, if N is sufficiently large, the increase
of cost is bounded above by

[Y + CP( XN(t) > 0, Vt < q )- C N (10)

Define the probability that the main system remains busy in time interval (tN, qiN)
under irN, given that there is no service completion in [0, t T] (recall that under kN,
customers el,eN, e2 are admitted in [0,tN) ):

CNr -- P( XN(t) > O, Vt C (t N, qN ) (t) = 3)

Then, P( XN(t) > 0, Vt < qN ) < CN for each N. Suppose that there exists a
sequence {Nk } such that CNVk - 0 as k -4 oo. We argue that this implies Nk -- 0 as

k -- oo (proof in appendix B ), and thus P( AN(t) > 0, Vt < qNik ) - 0. For each

k, compare irNk with 17rNk. In expression (10), if we pick 7y < Ce, the cost of schedule
irNk is less than that of 7rNk for sufficiently large k. This contradicts optimality of the
original schedule. Therefore, {cN} is bounded below by a positive number. Q.E.D.

Lemma 6

tN < In C and tN < t* for each N,

where t* is the unique solution to equation

(C + t - ln C) exp(-t) = 1/C (11)

Proof: Assume the first-come-first-serve discipline. Suppose that tN > In C. Con-
sider hastening the admission time of customers e2, e3 ,..., eN by some 6 < tN - In C.

Then, the cost in the controller is reduced by 6(N - 1). The cost incurred in the
main system increases only if the service time of el is longer than t _ 6, of which
the probability is exp{-(tN - 6)} < 1/C. Therefore, the expected cost increase in
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the main system is less than (1/C)C6(N - 1). Putting two terms together, the total
cost is reduced, and this contradicts optimality. Therefore, t2 < In C.

Consider the event, A, that the system main system is busy at time t > InC
serving el or e2. The probability of this event under rirN is bounded above by the one
under another schedule flN that admits el at time 0 and e2 at time In C. That is,

P(A; rN)

< P(A; tN)

= exp(-)+ -exp(-lnC)}exp(lnC-t) +1 C exp(-r)exp(r -t)dr

= (C + t - In C) exp(-t)

The function (C + t - In C) exp(-t) is monotonically decreasing in t for t > 0, and
assumes at t = 0 the value C - In C, which is greater than 1/C, and decays to 0 as
t -- oo. Therefore, there is a unique solution, say t*, to equation (11), and for any
t > t*, P(A;irN ) < 1/C. Suppose tN > t*. Then, by hastening the admissions of
customers e3, e4,.. , es by a sufficiently small amount we can decrease the total cost
because the expected increase of the cost in the main system is less than the cost
savings at the controller. This contradicts optimality. Q.E.D.

Now we can show that the first interadmission time becomes arbitrarily small for a
large N.

Theorem 7
lim tN = 0

N-oo

Proof: Suppose not. Then, there is an increasing sequence {Nk} such that {tNkIk =
1, 2, 3,.. .} is bounded below by a positive number. We will show that by hastening
admission of e2 we can reduce the cost when Nk is large, thus contradicting optimality.

Compare the optimal schedule TirN with the modified schedule krN that admits e2
at time 0 and keeps the admission times of other customers the same as in irN. By
changing the admission time of e2, we decrease the cost in the controller by

2t2 (12)

Let us consider the change of cost incurred in the main system. Since the service time
is memoryless, the cost does not depend upon the service discipline as long as it is
work-conserving. We assume that e2 has the lowest priority, and all other customers
can preempt e 2. Then, the expected change of the cost is C! times the expected change
of e 2's response time. If the service time of el, say r, is longer than t2, e 2's response
time increases by

t2:N (13)
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Now we consider the expected response time of e2 for the case, r < t~. We define
the expected queue depletion time under the optimal schedule 7rN given that there is
one customer in the main system immediately prior to tN:

RN = E [ inf{t > tt [XN(t) = } XN(tN) 1 ] -N

Under 7rN, the expected response time of e2 is more than exp(t N- tN)RN. Under *N,

the expected response time of e2 is bounded above by tN + exp(r - tN)RN. Therefore,
the difference of the expected response times between two schedules is at most

tN + {exp(r - tN) - exp(tN - t3)} RN

which equals

t3 + exp(-t'){exp(r) - exp(tN)}RN (14)

Taking weighted average of terms (12)(13)(14) by their probabilities, we have the
following upper bound on the expected increase of the total cost:

-tN + CtN exp(-tN) +

cj2 exp(-r)[ t3N + RN exp(-t'f){exp(r) - exp(t')} ]dr 

which is bounded above by

Ct exp(-t) + Ctt - CRN exp(-tY) jf{ exp(t - - 1 }dr (15)

The first two terms of expression (15) are bounded above over all N from Lemma 6.
For the last term, we have

N -NN -N :tN
RN > P( XN(t)> O, t3N <t< XN(t )= 1 ) (Ct3)

It follows from Lemmas 5 and 6 that for some 5 > 0, we have RN > SN for sufficiently
large N. From Lemma 6, tN is bounded above, so RN exp(-tN) grows unbounded
with N. Suppose that {tNk ik 1,2,.. } is bounded below by a positive number.
Then,

t [ exp(tkt - r) - 1 ]dr

is also bounded below by a positive number. Thus, the last term of expression (15)
blows to -oo as Nk grows. Therefore, the change of cost becomes negative for a large
Nk, contradicting optimality. Therefore, limNoo tN = 0. Q.E.D.

5 Intermediate admission rate

We have discussed the overall admission rate in section 3. In this section we discuss the
partial admission rate averaged over early time intervals under an optimal schedule.
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In section 3, Lemma 4 was used as a stepping stone to establish the limit of the
admission rate averaged over entire admission history. We point now that this lemma
also provides results on admission rate averaged over partial time intervals. As long as
the intervals [0, qN] in the sequence are short enough relative to N (namely, less than
tN), and qN grows to oo as N grows, then the asymptotic admission rate averaged
over this sequence of intervals is at least the service rate. In this section we explore
the flip side of this lemma. Namely, we show that admission rate averaged over a
sufficiently long portion of the early admission history is is bounded above the service
rate in the asymptote.

Theorem 8 If (In N)/qN -O 0 as N -* oo, then,

A(qN)
lim sup A(qN) < 1

N-- oo qN

Proof: For each N, consider a modified schedule for which the admission of eA(qN)

is delayed by 1, and other customers' admission times are unchanged. The cost in
the controller increases by 1 as a result of the modification. Now we examine the
cost change in the main system. For both the optimal and the modified schedule, we
assume that eA(qN) has the lowest priority, and other customers can preempt it. For
other customers, the service discipline is the first-come-first-serve. The cost change
in the main system is C times the change of this special customer's response time.

Consider the event, denoted by B, that under the optimal schedule 7r, the main
system is kept busy in the time interval [tAN(N)) tN + 1] with customers that have

been admitted before eA(qN). Note that P(B) > P('LA (Q N)- l i > qN + 1), where (i is

the service time of ei. If this event B happens, the response time of eA(qN) decreases
by 1 as a result of schedule modification. Even in the case that B does not happen,
the conditional expectation of the increase of eA(qN)'S response time cannot be more
than N - 1 because there are only N - 1 other customers. Therefore, the change of
cost AN satisfies

AN < 1 -CP(B) + C(N - 1){1 - P(B)}

= 1-C + CN{1-P(B)}
A(qN)--1

< 1-C+CNP( E i <qN+l) (16)
i=l

Due to optimality of the original schedule, AN > 0, so expression (16) must be
nonnegative, and we have

C 1 A(qN)-1
N <P( E i<qN+l)CN i =1

Using the Chernoff bound [12], we have

C - 1 A(qN)-1 I A(qN)-1

CN < P( i < qN + 1) < exp(s(qN + 1)) ) s > 
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This implies that

n (C- )-ln(N) < s(qN + 1) - (A(qN) -1)1n(s + 1), and thus

A(qN)-1< s 1 ln(N) -ln( )
< +- C Vs > O

qN - ln(s + 1) qN qNln(s + 1)

Since qN - oo0 and (in N)/qN -- 0 as N -4 oo,

lim sup < As > o
N-oo qN ln(s + 1)

By taking the limit as s -- O, we have

lim sup < 1
N-oo qN

Q.E.D.

Combining Lemma 4 and Theorem 8, we can establish a convergence result for the
admission rate averaged over an initial time interval [0, qN] for some range of qN. If
the sequence {qN} grows faster than the order of In N, and qN < N, then we have

lim A(qN) = 1
N-- oo qN

In words, the admission rate of the optimal schedule asymptotically becomes the
service rate. For a sequence of intervals whose length increases slower than In N, we
have only shown (Lemma 4) that the admission rate is no less than the service rate,
asymptotically.

6 Discussion

In this section, we briefly discuss outstanding open problems. In Theorem 1, we
showed that periodic admission becomes asymptotically close to the optimal schedule
in performance as long as interadmission times are properly adjusted for growing
number of customers. In the proof of this theorem, we saw that the dominant term of
the total cost is the term N(N - 1)/2 that comes from waiting time at the controller.
We derived an asymptotically optimal policy whose cost was N(N - 1)/2 plus lower
order terms. It would be interesting, although quite hard, to derive a policy that
matches both the quadratic and the linear part of the optimal cost function.

The proof of Theorem 7 may be extended to show that limNIN tiN = 0 for any fixed
k. This implies that the number of customers admitted during the time interval [0, 1]
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converges to infinity as N increases. Based on this observation, we are led to consider
policies of the following type: admit KN customers at time 0; from then on, admit a
customer once every rN time units. We conjecture that once the values of KN and
rN are properly adjusted, such policies will lead to a better linear term, compared to
the policy of Subsection 3.1 in which we had KN = 1.

A Appendix to Lemma 4
Recall that we assumed A(qN) < (1 - e)qN in order to prove the contraposition. Also
recall that the measure of Ii. is at least qN3/4/2.

Let VN = inf{r E L£i* U,N(T) = O} and ZN = SUp{ CE i. U,N(r) = 0}. Let kN
be the number of admissions during the interval [0, VN] and let fN be the number of
admissions during the interval [VN, ZN]. Clearly, the subset of Li. on which U,N(t) = 0
is contained in [vN, ZN]. Therefore,

£N < ZN - VN- -Eq /2. (17)

Furthermore,

kN < VN (18)
Let TiN be the time at which the service of the ith customer ends. Let SN be the

sum of the service times of the customers admitted during [vN, ZN]. Suppose that
the following two events occur (a) TNfN < VN + EqN /6 and (b) SN < ZN - VN -
2EqN/4/6. Then the interval [VN, ZN] consists of at most eqN/4 /6 time units spent to
serve customers admitted before time VN and at most ZN - VN - 2Eq/4/6 time units
spent to serve customers admitted during [VN, ZN]. It follows that there are at least
Eq /4/6 units of idle time during that interval. Now we only need to show that the
probability that both events (a) and (b) happen converges to 1. Note that SN is
the sum of fN exponential random variables. Its mean is at most ZN - VN - eqN/4/2
(because of inequality (17) ) and its standard deviation is at most BqN/2, where B is
a constant independent of N. (This is because fN < A(qN) < (1 - E)qN .) For event
(b) not to occur, SN must be at least Eq?/4/(6B) standard deviations above its mean
and the probability of this happening goes to zero, by the Chebychev inequality.
Therefore, the probability of event (b) goes to 1. For event (a) not to occur, the
sum of the service times of the first kN customers must exceed VN + EqN/4/6. On
the other hand, the mean of this sum of these service times is bounded above by
VN [cf. inequality (18)], and it easily follows (as in the case of event (b)) that the
probability of event (a) also converges to 1. Since these two events are independent,
the probability that both events happen converges to 1. Q.E.D.

B Appendix to Lemma 5
Recall

cN = P( N(t) > O Vt C (t, qN ) N(t3 = 1 )
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CN P( XN(t) > 0 Vt E (t3, qN ) XN(t 3 = 3

Let {CNk} be an arbitrary subsequence of {CN}. We will show that if limk,, cNk- = 0,
then limko,, cN = 0.
Proof: Note that CN and SN do not depend on the service priority due to the mem-
oryless service time distribution. In this proof we assume the first-come-first-serve
priority for both schedules irN and irN. Define a random variable A 3 to be the time
e3 is ready to be served in the optimal schedule TrN. Note that under schedule rN , el
and e2 must be served before e3 is ready to be served. Define A 3 to be the time the
service of e3 is ready to be served in the schedule TrN. Note that under schedule TN,
el,eN, and e2 must be served before e3 is ready to be served. Also, define

VN(T) P(X(t) > 0, Vt C (t, qN) I X(tN) 1, A 3 = + tN ) (19)

vN(T) - P(X(t)>O 0, Vt C(t, qN) X(t) 3, A 3 = r + t3 ) (20)

Since f.N has one less customer to admit than rN has, after tN, we obtain iN(r) <
VN(r), Vr > 0. Now,

CN = J exp(-r)vN(r)dr, and (21)

CN = J 2 exp(- r)VN(r)dr < . JT2exp-7)vvN()dr (22)

Suppose cNk - 0 as k - co. Define rNk - 1/ ;N; then, rNh -° oo and rvNkCNk -4 0
as k -4 oo. Let Tk - r/I--N; then,

CNh < ! ; T 2 exp(--)vNk~()dr + 21 J 2 exp(-T)vN(Or)dr

The right hand side of this inequality has two terms. We now claim that both terms
converge to 0 as k increases. Consider the first term.

2J fo r exp( -r)vNk(r)d - <• Tk J exp(-r)vNk(r)dr

=.- ~N~ J exp(-r)vNh(-)dr

1 f0J . exp(-r)vN,(r)dr< 2!rNk y exp(-r)vNk(r)dr

- T r N k CNk

Since rNkCNk - 0 as k increases, the first term converges to 0. As for the second term

2! JT 2 exp(-)vN(r 2e (-)dr

Since Tk grows infinitely as k increases, the second term converges to 0 as k increases.
Therefore, CNk -O 0 as k -- oo. Q.E.D.
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