
Synchronization and Adaptation of Systems of Nonlinear Oscillators

by Jennifer E. Smith

SUBMITTED TO THE DEPARTMENT OF MECHANICAL
ENGINEERING IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MAY 2005 rLxa 27 0 g _

Signature of Author:

Depa tent of Mechanical Engineering May 6, 2005

Certified by:

Jean-Jacques E Slotine
Professor of Mechanical Engineering

Thesis Supervisor

Accepted by: (, -
Ernest G Cravalho

Professor of Mechanical Engineering
Chairman, Undergraduate Thesis Committee

MASSACHUSETSIN

LIBRAR I -ES
l LIBRA~~~~~~~~~.R'E

OF TECHNOLOY

LIBRARIES

4-ft-MVES
Ow-, -1

Synchronization and Adaptation of Systems of
Nonlinear Oscillators

Jennifer E. Smith

May 6, 2005

Abstract

This paper discusses the synchronization and adaptation of systems
of nonlinear oscillators. The paper presents several simulations, which
attempt to illustrate these systems as clearly as possible, in particular in
the presence of leaders.

Thesis Supervisor: Jean-Jacques E Slotine
Title: Professor of Mechanical Engineering

2

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

1 Introduction

A flock of birds, a school of fish, brain synapses, or a crowd of people: what do
groups have in common? In each of these situations, one bird, fish, neuron, or
person moves based on its neighbors without having knowledge of the greater
surroundings. These situations, however, are difficult to predict or model with
the grace and smoothness with which they occur in nature. For example, a
school of fish swims around obstacles, and changes directions to avoid predators,
with great speed. The direction of motion of each fish is similar and depends
on the one in front of it. Because of this behavior, the school moves fluidly,
almost as if it were one individual, instead of being composed of multiple beings.
Modeling this smoothness can be complicated.

In the above cases, each individual adjusts its parameters, for example direc-
tion, based on only the movements of the others within a certain radius. This
radius is analogous to the field of vision in cases such as a flock of birds or a
school of fish. These various situations can be modeled mathematically using
systems of nonlinear oscillators. In such systems, each oscillator represents one
individual of the group, such as a bird, fish, neuron, or person. In the oscillator
equations, different parameters of the oscillator are adjusted based on the pa-
rameters of other oscillators. Different parameters linking the individual to its
neighbors are used in each simulation. These variations model different physical
situations.

This paper discusses simulations that explore the reactions of systems of
nonlinear oscillators to adaptation and synchronization. For example, if one
individual does not adapt or synchronize with the rest of the group, then there
is an impact on the final state of the system. This individual is called a "leader."
The situations discussed in this paper deal with one or more leaders. Also, this
paper presents simulations that represent the reactions of different systems of
nonlinear oscillators to various initial conditions and couplings. The goal of
these simulations is to make the complex behaviors of the mathematical models
easier to visualize.

Section 2 discusses the origin of the FitzHugh-Nagumo model, and the equa-
tions that represent it. Next, Section 2 talks about how these oscillators can be
coupled, and the effects of both coupled adaptation and synchronization. Sec-
tion 3 begins by describing the visual representation of the values of variables
in these equations through the simulations. Then Section 3 goes on to describe
the third equation required for adaptation.

Sections 4 through 8 give the results of specific simulations that were run.
Section 4 gives an example of simple synchronization of a system of oscillators.
Section 5 talks about a simulation where the system of oscillators adapts to
a common phase without the synchronization term present in the equations.
Section 6 talks about a simulation where the system synchronizes and adapts
at the same time. Section 7 talks about a simulation where the system starts
out with the same parameters, but different phases. The system is then coupled
for synchronization. After synchronization, the frequency of one oscillator is
changed, and the system adapts to this new frequency. Lastly, Section 8 presents

3

COURSE 2A UNDERGRADUATE THESIS

a simulation where the system has two different leaders. One leader had fixed
parameters, and the other was not, at first, coupled for synchronization.

2 Background

The simulations presented in this paper use the equations that represent the
model known as the "FitzHugh-Nagumo model." This model was developed to
represent the spiking impulses in neurons. It is classified as a "cubic Bonhoeffer-
van der Pol model." Cubic Bonhoeffer-van der Pol models are used to find
the voltage across membranes. This voltage is given by the variable V in the
following equations. As shown in [2, pp. 20-21], the FitzHugh-Nagumo model
is a simplification of the Hodgkin-Huxley model, which uses the system of the
following form:

V = v + V 3/3- W + I,

W = (V + a-bW).

where V1 and W are the derivatives with respect to time. In this system of
equations, I is the external current applied to the system, and W is the recovery
variable. All of these variables are dimensionless. The parameters , a, and b
are positive constants.

Similarly, the FitzHugh-Nagumo model uses the system below:

vi = v(c - v)(v - 1) - w + I,
wb = 3v - Yw.

In these equations, the parameters are a, I, 3, and -y. As in the Hodgkin-Huxley
equations, in the FitzHugh-Nagumo model, I stands for the applied current.
Again, v is the potential across the membrane, and w is a recovery variable. In
this case, a, 3, I, and -y are positive constants.

The system of equations shown above can be coupled, modeling a situation
in which numerous oscillators interact with each other. The ith oscillator is
described by a system of equations for vi and wi. In the case of the simulations
in Section 4, and Sections 6 through 8, the effect of coupling two oscillators
vi, wi and v, wj is that each oscillator influences the other's change in value.
The system becomes the following:

N
vi = vi(ai- vi)(v - 1)- wi + I + E kij (vi - vi),

j=1 (1)

&i = iVi - YjiWi.

where N is the number of oscillators.
The parameters kij in (1) are changed in order to achieve synchronization.

The parameter Ii governs the frequency of oscillation, and so is changed in order
for adaptation to take place, as described in Section 3. The value of kij controls

4

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS 5

the way in which the oscillators synchronize in phase. If the value of kij is
nonzero for two oscillators with indices i and j, then these two oscillators are
coupled, and eventually synchronize to a common phase. The value of kij may
depend on many different factors depending on the situation being modeled.
These factors might be whether the oscillators are within a certain radius of
each other or whether they are joined in network. In the simulations below, kij
is dependent on the distance between the ith and jth oscillators. Each oscillator
is coupled with every oscillator that is within a certain radius of it.

3 Methods

Systems of FitzHugh-Nagumo oscillators were used in several simulations. These
simulations show the effects of both synchronization and adaptation on each
system. The function ODE45 in MATLAB and the graphics program OpenGL
were used to create a visual output based on the mathematical equations.

These visual representations are based around a gas-like movement of dots.
Each dot represents one oscillator, and the values of the parameters are com-
puted using the system of equations presented in Section 2. These dots move
inside a 2-dimensional region, where they bounce off of the edges with elastic
collisions. These dots are given random initial positions and directions, all dots
are given the same velocity, and the velocity remains constant throughout the
simulations. Each system of oscillator equations is then given various initial
conditions for its parameters. The values of the initial parameters are different
for the various situations. For example, in one simulation, the oscillators are
given random phases and frequencies as initial conditions. In this simulations,
a first frame resembles Figure 1 from Section 5.

In the example shown in Figure 1, the different sizes of the dots represent
the different initial phases given to the oscillators. As the value of wi for each
oscillator varies from positive to negative values, the oscillators blink "on" and
"off." A large positive value of an oscillator corresponds to a large radius for the
respective dot. As vi moves towards a negative value, the radius fades to 0 and
the dot is turned "off." In this way, Figure 1 represents a variety of phases for
the various oscillators. Similarly, the frequency of each oscillator is represented
by the shade of grey of the dot. This frequency is proportional to the value of
Ii in the system (1). In Figure 1, the variety of shades of grey of the dots show
the variety of frequencies in the initial conditions.

The simulations use these basic representations to show many varieties of
synchronization and adaptation. In the system (1), the value of kij is based
on the distance between the positions of the oscillators with indices i and j.
These simulations use a circular radius of synchronization and adaptation. If
the distance between the oscillators is within this radius, then the value of kij
is a positive constant. However, if the distance is greater, then the value of kij
is 0, and the oscillators do not contribute to each others' change in value.

The adaptation of the oscillators works in a similar way, but deals with the
parameters ai, /i, -yi, and Ii. In the case of adaptation, cai, i, -yi, and Ii are

COURSE 2A UNDERGRADUATE THESIS

I
· ·

s

0
o

0

0

I

. S
0..9

0

0

0
a
0

S0
S *0

* S
0 0

* R

Figure 1: Random Initial Conditions.

no longer constants, but instead change based on the adaptation equation (2)
below. Again, two different oscillators with indices i and j only have an effect
on each others parameters ai, 3i, -yi, and Ii if they are within the set radius.
The equation for adaptation in (2) below is added to those of vi and wi. The
vector Ai is composed of the parameters cai, /3i, -yi, and Ii. The equation for
Ai controls the changing of the parameters, ai, 3i, -yi, and Ii. Therefore, as Ai
adapts and takes on a common value for all oscillators, each parameter adapts to
one value for all oscillators. For the FitzHugh-Nagumo spiking neuron model,
Equation (2) is the third equation that controls adaptation:

where

Ai = Ai + QWiTDi

0 0

.01 0

0 .01

0 0

.01

Q= O

0

(2)

01

.o0

.05

Wi = Vi(Vi-1) 1 0 0o

0 -Wi Vi '

Di = E=1 kij(vj - vi))
EjNL kij (wj - wi)

6

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

This system converges to a constant value of Ai. In [3, p. 8], convergence
of parameters is proved for a generalized system of nonlinear oscillator equa-
tions. Other systems of nonlinear oscillators, such as the system of equations
representing the FitzHugh-Nagumo model, converge in the same way as this
generalized system. This system is of the following form:

N
i = f(xi, ai, t) + E kji(xj -xi),

j=1
N

ai =PWT(xi,t) + kjk(xj - xi).
j=1

In this generalized case, Ai converges to a common value for all oscillators.
This convergence of Ai is proved using a lyapunov-like function. Also, as shown
in [3, p. 8], a similar form of this function can be used to improve the convergence
rate of the system. This improved convergence equation for a is as follows:

N

ai = ai + QiW T(xi, t) E Kji(xj - xi)
j=1

The adaptation equations used for these simulations are based on this im-
proved adaptation model. In the our specific case, Ai is composed of the pa-
rameter vector for the FitzHugh-Nagumo model. The paper [3] proves the
synchronization and adaptation of the model used in the following simulations.
The simulations should give further evidence of synchronization and adaptation
of the system in various situations, such as in the presence of a leader.

For each iteration of the simulation, the vector Ai is updated; in other
words, each of the parameters cai, i, yi, and Ii is updated. The result is a sys-
tem moving towards having one common frequency. Similarly, synchronization
moves along in a frame-by-frame process. The frequency of the leader, however,
does not change with time. Therefore, the simulations should show a clear step-
by-step progression towards this common phase and frequency. In this way, the
simulations should show multiple parameters and their evolution over time in
a clear and precise manner. The simulations in Sections 4 through 8 represent
a variety of possible situations, and show adaptation and synchronization with
leaders; for more information see [3, pp. 3-5].

4 Simulation 1

Simulation 1 is an example of synchronization. In this simulation, the oscilla-
tors were allowed to oscillate uncoupled for the first 30 frames. This time period
shows their initial conditions. There were 81 oscillators present in this simula-
tion, and initially they had the same frequency, and random phase. Three of
these first 30 frames are shown in Figure 2.

7

COURSE 2A UNDERGRADUATE THESIS

0

* .- .

* .So *

.

Figure 2: Out of sync oscillators of the same frequency.

This series of frames shows every third frame from the beginning of the
simulation. As can be seen in Figure 2, there was never a frame where no oscil-
lators were present. Consequently, the oscillators were completely out of phase
during this initial time period. Also, the shade of the oscillators is constant,
representing their common frequency.

After this period of initial conditions ended, the oscillators were coupled,
using the equations in (1). As can be seen in Figure 3 and Figure 4, the oscilla-
tors slowly took on a common phase. First, as shown in Figure 3, blank frames
appeared as the the oscillators became closer and closer in phase. Eventually,
as shown in Figure 4, the oscillators blinked "on" and "off" mostly at the same
time. The common phase of the oscillators can also be seen from the fact that
the oscillators share a common size. The few last points that are slightly out of
phase synchronized to the common phase in the end of the simulation.

· . . . - .

.:. , * .·I .*
.~~~~~~~~~~~% .·

I . .

Figure 3: Oscillators beginning to synchronize.

;
5 0

* * * . I

* .* . .e ... *
** . *0*

* *
. ., Jr .

* .g
e . * .
. . .* 0
0.S · l· ·

* S 0 I

, * S: 0

*0. 0 o 5 5 S

' s o b . .

Figure 4: Oscillators fully synchronized.

This simulation gives insight into how the system of oscillators synchronized
to a common frequency. A simple plot alone can not give the viewer all of this
information. As can be seen in Figure 5, the plot of 81 synchronizing oscillators
is very complicated. It is hard to determine one oscillator from another on this
plot. Also it is hard to see which oscillators are close to each other in location.

8

0

: .

* @

, .

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

0 20 40 60 80 100 120 140

Fivl o . Plot of vi v. tim fr 91 .vnchroni7,inp n.s.illa.tnr

0 * 4 . a

* .* .

* * . 'sml pl o *' t" , * ' ' '
* 0

Figure 6: Oscillators of various frequencies out of synchronization.

As can be seen from the simulation, regions of oscillators blinked "on" and "o'
together. Several oscillators in one area of the screen, close together, tended to
take on common phasreio quickly. This information can not be seen from
simple plots of the data. ththis way, the simulation is helpful in learning how
the oscillators synchronized.

5 Simulation 2

Simulation 2 is an example of adaptation, based on the equations given in
(2). Similar to the period of initial conditions from Simulation 1, the initial
conditions for this simulation were uncoupled. In Simulation 2, however, the
initial frequency for each oscillator was random as well as the phase. As can be
seen in Figure 6, there was never a time during the 30 frames of initial conditions
when no oscillators were present in a frame. Also, during this period, each
oscillator had a different frequency. This behavior can be seen by the different
shades of the oscillators.

After the initial 30 frames, the oscillators were coupled for adaptation, but
not synchronization. The third equation in (2) was added to each oscillator's
system of equations. The value of k for each oscillator in the system (1) was
zero, so they were not coupled for synchronization. The results are shown in
Figure 7 and Figure 8.

When adaptation began, the oscillators began to take on the same phase.

9

COURSE 2A UNDERGRADUATE THESIS

Figure 7: Oscillators beginning to adapt.
· ·

e -. ...' ~

0 .

* .l

0 *o0* *~~~~~ *
00.~~ ~ ~~~~~~~~~~~~ 2

Figure : Oscillators cobegntinning to adapt.

As shown in Figure 7, frames began to appear without any oscillators present.

Also, oscillators in a section of the frame started to take on the same shade ofgrey. This represents their common frequency.

As the system continued to adapt, the oscillators all took on the same phase.': -: :: . * .A
* l US e.e * . *.'

The majority of thigure 8: Oscillators became ontinuine shade of gray. Fewerto and fewer hadapt.

different frequencies. As can be seehown in Figure 7, frames began to appear without any oscillators present.ook
Also, one scillators iommon grey section of the frame startblinked to take on at the same timshade of
Along with their common size, this behavior showpresents their common phasfrequency. t

this point the system hacontinued to adapted, theaking on scillators all took mmon thfrequency andme phase.
The majority ofn, thise oscillation is bea much clearer representation of the system thad

different frequencies plot. As can be seen in Figure 8, eventually the oscillatof v versus time doesokon one common grey scale. Also, they blinked "on" and "off" at the same time.Along with their common size, this behavior shows their common phase. Atthis point the system had adapted, taking on a common frequency and phase.
Again, this simulation is a much clearer representation of the system than

a simple plot. As can be seen in Figure 9, a simple plot of v versus time does
not show the frequencies of the oscillators very well. From Figure 9, it is only
possible to see that the oscillators had in fact adapted to a common phase. The
different initial frequencies of the oscillators are even difficult to distinguish from
each other.

A plot of Ii versus time does not give a full explanation of the system either.
As can be seen in Figure 10, it is hard to determine what the frequency of each
oscillator is at each point in its oscillation. These details of the system can be
easily seen through the simulation.

6 Simulation 3

Simulation 3 is a logical follow up to the first two simulations, where each syn-
chronization and adaptation took place independently. Simulation 3 shows the
effects of adaptation and synchronization at the same time. As in Simulation 2,
all of the oscillators start out with random frequencies and phases. The 30
frames of initial conditions are similar to Figure 6.

After the initial conditions were run for 30 frames, both synchronization and

10

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

Figure 9: Plot of vi vs. time.

50

40

30

20_ _

10

0

.lr

0 50 100o 150 200 250

Figure 10: Plot of Ii vs. time.

adaptation were turned on at the same time. Synchronization took place much
more quickly than adaptation; the result is as shown in Figure 11.

As can be seen in Figure 11, the oscillators begin to reach a common phase
before their frequencies have completely adapted. In this case, common periods
develop where all the oscillators are turned "on" or "off." Not all of the shades
have become similar, but there is still a large period where none of the oscillators
are in the frame, because all of the oscillators have a negative value. As the
simulation progressed, the oscillators all adapted to a common frequency. This
result can be seen in Figure 12.

As can be seen, the system has both synchronized and adapted to a final
common state. All the oscillators share one phase and one frequency. The
leader's frequency was set to different values, leaving the other frequencies as
random. The result shows the effects of the leader. The final state of the system

Ui Ii i .L4 LL Lk...
i ,, i ! ~ , y ' !I__ I Ae

: I tE~ri, f]

M
MMM� i LL

I .

i

11

Ian

= rl

I
!I
I

i
IF I H i: I I;I , :

F
i i ,, I

lrl~~~

COURSE 2A UNDERGRADUATE THESIS

* * .. .

0* 0

* 0 * *
* 0s

1.

· a
e,

* * -. . - #

* . . 0... ..hD II

*t *

0S . 0

1.. *.
*0 *

Figure 11: Synchronization and adaptation, Phase 1.
00 * . 0 0

*.^ :: : v ' *.*:'* 0
:- .- ;. 0t

0,.h r *a . t* . . 0 _

Figure 12: Synchronization and adaptation, Phase 2.

always takes on the frequency stated in the initial conditions of the leader.
This simulation appears similar to Simulation 2. At the end of both simula-

tions, the oscillators are in the same state. The oscillators, which initially have
random phase and frequency, all take on one common phase and frequency. The
presence of the synchronization term in the system greatly increased the rate at
which this process occurred. In Simulation 2, it took the oscillators 250 frames
to reach a point of common frequency and phase. In Simulation 3, however,
this process took only approximately 100 frames. This difference can be seen
from comparison of Figure 13 and Figure 9. The improved rate of adaptation
can also be seen in Figure 14 and Figure 10. This rate can also be seen through
the simulations.

0

Figure 13: Plot of vi vs. time for 81 synchronizing and adapting oscillators.

12

l. .

· o·

_l·

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

Figure 14: Plot of Ii vs. time for 81 synchronizing and adapting oscillators.

*~ ~ ~~Fgr 15 Synchoniztion
7 0mlto 4.*

Thi si ato wasalo a cobnto of Siuato 1n iuain2 h
0 * *started out with-a common frequency, but .of -. Figure 15: Synchronization.

7 Simulation 4

This simulation was also a combination of Simulation 1 and Simulation 2. The
system, in this case, was made to synchronize and then to adapt to a common
frequency. The initial conditions were similar to Simulation 1. The oscillators
started out with a common frequency, but out of phase. This behavior can
be seen in Figure 2. In this case, the oscillators were all of the same shade,
representing the common frequency, but were of varied sizes, showing their
dissimilar phase.

After the first 30 frames of initial conditions, the oscillators were coupled
and underwent synchronization. Given the same radius as in Simulation 2 and
Simulation 3, the oscillators took on a common phase. This process can be seen
in Figure 15.

Again, these oscillators took on similar "on" and "off" periods, and blinked
together, sharing a common size in all frames. Compared to Simulation 1,
synchronization occurred almost immediately because of the larger radius in
this simulation.

Once synchronization had taken place, the frequency of one oscillator was
changed o be different from the rest. The original frequency of the system is
represented by a dark shade of gray. The higher the frequency, the lighter the
shade. The shade is dark if the frequency is around 20. This shade becomes

13

COURSE 2A UNDERGRADUATE THESIS

Figue 16 Unoupe siltrwt n' frq ey inrasd

lighter~~~~~~~ agi as th feunyapoce 0Fraotr30rms, thiita· O ·
* 4 * * *

* . . * .e .I s * : V*
ada Xa, tis . . . -

~~~ ~~~~~~~~~~~~~~ 0' , . .

*: : · * * :
00 -

Figure 16: Uncoupled oscillators, with one's frequency increased.

is t ' * ^' s . k nc* . 0 * * *
*. . * * *0..

*.- ~ ~ Sf n*6 * * :

on wt th one lihe siltrrpeetn telaeftesse.Aan*. . . 0lighteragainns the frequency of teo hroa s 5. A scanotere i figure inithe

sadepato odtoswr ed ihu the oscillatorsmvdbtenvr ih n dakeg coupled ta softhe slatoer of tfrequency is cate o in . The ad e e sultlsighteragain aso the reqiunc proache 50.in Frc anther 30d fresethe initial
adaptin conitios wer hyseldf wsilthot, th oatuorbeighupedshto show

th pesencTe fretheony lighte olltos oiffetrnta frqency.me resulnthisshown in Figure 16.
AS can be seen in these initial conditions, the one lighter oscillator turns

"on and "off at a higher frequency than the rest, but therwise the system
is in sync and phase together. This initial condition series was kept uncoupled.
After these initial conditions had been kept for 30 frames, adaptation was turned
on, with the one lighter oscillator representing the leader of the system. Again,
every third frame was recorded, and is shown in Figure 17.

The result of this last part of the simulation is that all of the oscillators took
on the frequency of the one lighter oscillator. As can be seen in Figure 17, the
shade of the oscillators moved between very light and a darkness between that of
the oscillators of frequency 20 and 50. The blinking rate of all of these oscillators
increased from the previous period, during which they had a frequency of 20.
The final result was a system of oscillators, all of a uniform, lighter shade and
in phase. The frequency of all of these oscillators had become 50. In this
simulation, adaptation took place much more slowly than synchronization at
the same radius.

8 Simulation 5

In Simulation 5, there were two different leaders present in the system. One
leader was kept at a constant frequency, and the other was not coupled with
its neighbors for synchronization. As in the simulations of Sections 4 to 7,
the oscillators were not coupled for the first 30 frames. Each oscillator was

14

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

* *'^ i * .* * to
- ,. t f .* A * ***. ,, · .

:Y' 0 4% *.

* : 0 . 4.
* ~ ~~~~~~~~~~~~~~~~· ·

· 4 . . 44

* * .

Figure 18: Synchronization and Adaptation in the Presence of Two leaders

given a random initial phase and frequency as in Simulation 2 and Simulation
3. After this period, the oscillators were coupled for both synchronization and
adaptation.

However, this time two different leaders were present in the system. The first
leader did not adapt to the other oscillators in frequency. The second leader did
not synchronize to its neighbors in phase. As Figure 18 shows, the oscillators
began to synchronize and adapt to a common frequency. One oscillator, though,
is very slow to take on the frequency of the others. Because of this slower
adaptation, this oscillator had more influence on the others' frequency.

Also, as can be seen in Figure 19, in the final state, the oscillators had a
common phase and frequency. Thus the system does, in fact, adapt to the final
state of the frequency leader.

fr i l i 3. p t .

. 5 * ~._ * *

.: * . ! *re*
S* % .5..- * * e

*1 .. * 55

@.5 .*,. - 0

Figure 19: Synchronization and Adaptation in the Presence of Two leaders

As caa be seen in Figur th he plot of v verses time is similar to that
for Simulation 3 simlat ion 5 makes it possible to see the frequency of each
oscillator and to see how they adapt to the leader's frequency.

Also, as can be seen in Figure 21, the plot of Ii versus time shows how one
oscillator is slower in adapting to the rest.

15

COURSE 2A UNDERGRADUATE THESIS

Figure 20: Plot of vi vs. time for 81 oscillators and 2 leaders.

0

Figure 21: Plot of Ii vs. time for 81 oscillators and 2 leaders.

9 Appendex

Simulation One Code 1

%global vairables

global row; global column; global init;; global a; global b;

global c; global I; global k; global Ahatdot;

global P; global xveloc; global yveloc;

global v; global w; global v_dot; global wdot; global x_dot;

global xposO; global yposO; global xposlist; global yposlist;

global radius; global S; global S2; global IO; global countsc;

16

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

global countlist; global init2;

%setting variables for number of oscillators etc

%%
init=130;

%t = [0::l:init];

t = [O, init];

velocmov = .6;

radius 1.5;

row =9;

column = 9;

init2= 30;

%%%%%%%/%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%setting variables for F-N

%%%
a = 5.23;

b = 3;

c = .1;

k = 15;

I = 20;

%%
%random motion

%%%
xposO = (10*rand(row,column))-5*ones(row,column);

yposO = (10*rand(row,column))-5*ones(row,column);

xveloc =ones(row, column);

xveloc(:,floor(row/2+1):row)=-1;

yveloc = ones(row,column);

yveloc(floor(column/2+1):column,:)=-1;

xveloc = velocmov*xveloc;

yveloc = velocmov*yveloc;

xposlist = zeros((init+S), row*column);

yposlist = zeros((init+S), row*column);

for m=l:l:(init)

for i=l:l:row

for j=l:l:column

xposO(i,j)= xposO(i,j)+ xveloc(i,j);

yposO(i,j)= yposO(i,j)+ yveloc(i,j);

if xposO(i,j)>5

xveloc(i,j) = -xveloc(i,j);

17

COURSE 2A UNDERGRADUATE THESIS

end
if xposO(i,j)<-5

xveloc(i,j) = -xveloc(i,j);

end

if yposO(i,j)>5

yveloc(i,j) = -yveloc(i,j);

end

if yposO(i,j)<-5

yveloc(i,j) = -yveloc(i,j);

end

xposlist(m,((i-1)*column+j)) = xposO(i, j);

yposlist(m,((i-1)*column+j)) = yposO(i, j);

end

end

end

%%%%%%%%%%%%'/%./%%%%%%%%%%%%%.
YODE and plot

=z%%%%%%%ow%,%%%%%%%m %%%
v = zeros(row, column);

w = ze ros(row, column);

v_dot = zeros(row, column);

w_dot = zeros(row, column);

%%%%%%%%%% %%%%%h.A/hhA.AAhh'%%.
%choose initial conditions randomly

%v%%%%m%%%%%% rm%%%%%%%%%%%%%%%
%vO = random('Uniform',-2,9, 1,row*column);

wO = random('Uniform',-2,9, 1,row*column);

v_ = random('Uniform',-40,40, 1,row*column);

w_O = random('Uniform',-40,40, 1,row*column);

x_dot = zeros(2*row*column,1);

[T, X]=ode23t('Adaptl2',t, [v_O w_O]);

plot(T(:,:),X(:,1:81))

%Save Matrix R

%%%%%%% %%%%%%%%%%%%%%%%

18

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

n=1;

for m=1:1: (length(X))

if T(m)>n

for i=1:1:row

for j=l:1:column

R(n, (((i-1)*column+j)*4)-3)=X(m,((i-1)*column+j));

R(n, (((i-1)*column+j)*4-2)) = xposlist(n, ((i-1)*column+j));

R(n, (((i-1)*column+j)*4-1)) = yposlist(n, ((i-1)*columnn+j));

R(n, (((i-1)*column+j)*4))= I;

end

end

n=n+1;

end

end

save('radl2.mat', 'R')

19

COURSE 2A UNDERGRADUATE THESIS

Simulation One Code 2

function dx=Adaptl2(t,x)

%global variables

global a; global b; global c; global I; global k;

global P; global init2; global x_dot; global A_hat_dot

global row; global column; global init;

global v; global w; global v_dot; global w_dot; ;

global xposO; global ypos0; global xposlist; global yposlist;

global xveloc; global yveloc; global init2;

global radius; global I_O0; global countsc; global countlist;

%extract the initial conditions

for i=l:l:row

for j=l:1:column

v(i,j) = x((i-1)*column+j);

w(i,j) = x(row*column + (i-1)*column+j);

end

end

%synchronization code

if t>(init2)

for i=l:l:row

for j=l:l:column

vdiff=0;

wdiff=0;

for l=l:l:row

for m = 1:1:column

rad = ((xposlist((ceil(t)),((i-1)*column+j))-...

...xposlist((ceil(t)),((l-1)*column+m)))^2 + ...

... (yposlist((ceil(t)),((i-1)*column+j)) - ...

...yposlist((ceil(t)),((l-1)*column+m)))2).5;

20

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

if (rad <= radius)

vdiff = vdiff + v(1,m)- v(i,j);

wdiff = wdiff + w(1,m)- w(i,j);

end

end

end

v_dot(i,j) = v(i,j)*(a-v(i,j))*(v(i,j)-1) - w(i,j) + I+k*vdiff;

w_dot(i,j) = b*v(i,j) - c*w(i,j);

end

end

end

%initial conditions-not coupled

if t<init2

for i=l:l:row

for j=l:l:column

v_dot(i,j) = v(i,j)*(a-v(i,j))*(v(i,j)-1) - w(i,j) + I;

w_dot(i,j) = b*v(i,j) - c*w(i,j);

end

end

end

%orgize the returned values

for i=l:l:row

for j=l:l:column

xdot((i-1)*column+j) = vdot(i,j);
xdot(row*column + (i-1)*column+j) = wdot(i,j);

end.

end

21

COURSE 2A UNDERGRADUATE THESIS22

dx=[xdot];
end

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

Simulation Two Code 1

%global vairables

global row; global column; global init; global a; global b;

global c; global I; global k; global A_hat_dot; global xveloc;

global yveloc; global countlist; global init2;

global FP; global A_hat_0; global init3; global init4;

global v; global w; global vdot; global w_dot; global x_dot;

global xposO; global yposO; global xposlist; global yposlist;

global radius; global S; global S2; global IO; global countsc;

%setting variables for number of oscillators etc

init=250;

%t = [0:1:init];

t = [0, init];

velocmov = .6;

radius = 2.7;

row =9;

column = 9;

init2= 30;

init3= 100;

init4=130;

%%%%%%%%%%%%%%%%%%%%%.%%%%%%%%%%
%setting variables for F-N

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a = 5.23;

al= 4+3*rand(row*column,1);

b = 3;

bl= 2+2*rand(row*column,1);

c = .1;

cl=.1+.05*rand(row*column,1);

k = 15;

I = 25;

I1=15+20*rand(row*column,1);

P = [0.6 0 0 0 ; 0 30 0 0 ; 0 0 0.002 0 ; 0 0 0 0.4]/10;

23

COURSE 2A UNDERGRADUATE THESIS

%random motion
(o/o/o/odoo/oo/o/o/o/o/o/o/o/o/o/o/o/o/o/od'o§o/§oo/o/~o/o/aoo/o/ooooooooo/

xposO = (10*rand(row,column))-5*ones(row,column);

yposO = (10*rand(row,column))-5*ones(row,column);

xveloc =ones(row, column);

xveloc(:,floor(row/2+1):row)=-1;

yveloc = ones(row,column);

yveloc(floor(column/2+1):columnn,:)=-1;

xveloc = velocmov*xveloc;

yveloc = velocmov*yveloc;

xposlist = zeros((init+S), row*column);

yposlist = zeros((init+S), row*column);

for m=l:l:(init)

for i=l:l:row

for j=l:l:column

xposO(i,j)= xposO(i,j)+ xveloc(i,j);

yposO(i,j)= yposO(i,j)+ yveloc(i,j);

if xposO(i,j)>5

xveloc(i,j) = -xveloc(i,j);

end

if xposO(i,j)<-5

xveloc(i,j) = -xveloc(i,j);

end

if yposO(i,j)>5

yveloc(i,j) = -yveloc(i,j);

end

if yposO(i,j)<-5

yveloc(i,j) = -yveloc(i,j);

end

xposlist(m,((i-1)*column+j)) = xposO(i,);

yposlist(m,((i-1)*column+j)) = yposO(i, j);

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%
%set variables

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
v = zeros(row, column);

w = zeros(row, column);

24

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

Ahat=zeros (row*column,4);
v_dot = zeros(row, column);

wdot = zeros(row, column);

A_hatdot=zeros(4*row*column,1);

Y.%choose initial conditions randomly
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
Y. v0 = random('Uniform,-2,9, 1,row*column)

%.vO = random('Uniform',-2,9, 1,row*column);

vw_O = random('Uniform',-402,94, 1,row*column);

v_O = random('Uniform',-40,40, 1,row*column);
w_O = random('Uniform' ,-40,40, l,row*column);

AhatO=zeros(1,4*row*column);

for i=2: 1:row*column

A_hat0_(1,(i-1)*4+1)= al(i,1);

A_hatO(1,(i-1)*4+2)= I(i,1);
Ahat0_(1,(i-1)*4+3)= cl(i,1);

A_hatO(11,(i-1)*4+4)= bl(i,1);

end

A_hatO(1,1)= a;

A_hat_0(1,2)= I;

A_hatO0(1,3)= c;

A_hat_0('1,4)= b;

%.run and plot ODE

x_dot = zeros(6*row*column,1);

[T, X]=ode23tb('Adaptl4',t, [vO w_O A_hat_O]);

plot(T(::,:),X(:,1:4))

%Save Matrix R

hhh.hhZ~h/. .h/.7.%Y.%
step=floor(length(X)/init);

n=l;

for m =1:1:length(X)

if T(m)>n

25

COURSE 2A UNDERGRADUATE THESIS

for i=l:l:row

for j=1:1:column

R(n, (((i-1)*column+j)*4)-3)=X(m,((i-1)*columnn+j));

R(n, (((i-1)*column+j)*4-2)) = xposlist(n, ((i-1)*column+j));

R(n, (((i-1)*column+j)*4-1)) = yposlist(n, ((i-1)*column+j));

R(n, (((i-l)*column+j)*4))=X(m, 2*row*column+4*((i-1)*column+j)-2);

end

end

n=n+1;

end

end

save('radl4.mat', 'R')

26

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

Simulation Two Code 2

function dx=Adaptl4(t,x)

%global variables

%%%%%%%%%%Z%%%%ZZZ%%%Z%%%

global a; global b; global c; global I; global k; global P; global init2

global row; global column; global init;global A_hat_O;

global v; global w; global v_dot; global w_dot; global x_dot;

global xposO; global yposO; global xposlist; global yposlist;

global xveloc; global yveloc; global Ahat_dot;

global radius; global IO; global countsc; global countlist; global init2;

%%%%%%%/%%%%%%%%%%%%%%%%% %%/%%%%%/%
%extract the initial conditions

%%%%%%%%%%%%%/%%%%%%%%%%%%%%%%%
for i=l:l:row

for j=l:l:column

v(i,j) = x((i-1)*column+j);

w(i,j) = x(row*column + (i-1)*column+j);

end

end

Ahat = x(2*row*column+1:6*row*columnn);
%%%%%%% /%%%%%%%%%%%%%%%%%%%%
%adaptation code

if t>(init2)

for i=l:l:row

for j=l:l:column

vdiff=O;

wdiff=O;

for l=l:l:row

for m = l:l:column

rad = ((xposlist((ceil(t)),((i-1)*column+j))-...

...xposlist((ceil(t)),((l-1)*column+m)))^2 + ...
...(yposlist((ceil(t)),((i-1)*colum-n+j)) - ...

.../yposlist((ceil(t)),((l-1)*column+m)))^2)^.5;

if (rad <= radius)

27

COURSE 2A UNDERGRADUATE THESIS

vdiff = vdiff + v(1,m)- v(i,j);

wdiff = wdiff + w(l,m)- w(i,j);

end

end

end

v_dot(1,1) = v(1,1)*(A_hat_0(1,1)-v(1,1))*(v(1,1)-l) - ...

.. w(1,1) + Ahat_0O(1,2);
w_dot(1,1) = AhatO(1,4)*v(1,1) - A_hat_O(1,3)*w(1,1);

%end

% end

if i*j>l

W = [(v(i,j)*(v(i,j)-l)), 1, 0, 0; 0, 0, -w(i,j), v(i,j)];

Ahatdot((i-)*colmn+j-)*4+1:(i-)*column+j-1)4+1:((i-)*mn+j-)n+j-)*4+4) = ...

.. k *P*transpose(W)* [vdiff ; wdiff];

%Ahatdot= .1*ones(row*column*4,1);
Q = [1 0 0 0 ; 0 1 0 0 ; 0 0 1 0 ; 0 0 0 5] * 0.01;

A_hat(((i-l)*column+j-1)*4+1 : ((i-1)*column+j-1)*4+4)= ...

...A_hat(((i-1)*column+j-1)*4+1 : ((i-1)*column+j-1)*4+4) + ...

..Q * transpose(W) * [vdiff ; wdiff];

end

v_dot(i,j) = v(i,j)*(Ahat(((i-1)*column+j)*4-3,1)-v(i,j))*(v(i,j)-1) .

...- w(i,j) + A_hat(((i-1)*column+j)*4-2,1);

w_dot(i,j) = Ahat(((i-)*column+j)*4,1)*v(i,j) - ...

·.. Ahat(((i-1)*column+j)*4-1,1)*w(i,j);

end

end

end

%initial conditions-not coupled
%initial conditions-not coupled

vvvvvvvvvvvvvvvvvvvvvvvv

28

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

if t<init2

for i=l:1:row

for j=l:1:column

v_dot(i,j) = v(i,j)*(A-hat-O(1,((i-1)*column+j)*4-3)-v(i,j))*(v(i,j)-1) -

...- w(i,j) + AhatO(1,((i-1)*column+j)*4-2);

w_dot(i,j) = AhatO(1,((i-1)*column+j)*4)*v(i,j) - ...

..A_hatO(1,((i-1)*column+j)*4-1)*w(i,j);
end

end

end

%orgize the returned values

for i=l:1:row

for j=1:1:column

xdot((i-1)*column+j) = vdot(i,j);
x_dot(row*column + (i-1)*column+j) = wdot(i,j);

end
end

x_dot (2*row*column+1: 6*row*column) = A_hatdot(:,1);

dx=[xdot];
end

29

COURSE 2A UNDERGRADUATE THESIS

Simulation Three Code 1

%global vairables

global row; global column; global init; global a; global b;

global c; global I; global k; global x_dot;global A_hatdot;

global P; global Ahat_O; global init3; global init4;

global v; global w; global vdot; global wdot;

global xposO; global yposO; global xposlist; global yposlist;

global xveloc; global yveloc; global xveloc; global yveloc;

global radius; global S; global S2; global I_0; global countsc;

%setting variables for number of oscillators etc

init=150;

%t = [0:l:init];

t = (0, init];

velocmov = .6;

radius = 2.7;

row =9;
column = 9;

init2= 30;

init3= 100;

init4=130;

%setting variables for F-N

vvv
a = 5.23;

al= 4+3*rand(row*column,1);

b = 3;

bl= 2+2*rand(row*column,1);

c = .1;

cl=.1+.05*rand(row*column,1);

k = 15;

I = 25;

I1=15+20*rand(row*column,1);

P = [0.6 0 0 0 ; 0 30 0 0 ; 0 0 0.002 0 ; 0 0 0 0.4]/10;

30

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

%random motion

xposO = (10*rand(rowcolumn))-5*ones(rowcoln);

xposO = (10*rand(row,column))-5*ones(row,column);
yposO = (lO*rand(row,col~umn))-5*ones(row,column);

xveloc =ones(row, column);

xveloc(:,floor(row/2+1):row)=-1;

yveloc - ones(row,column);

yveloc(floor(column/2+1):column,:)=-1;

xveloc velocmov*xveloc;

yveloc velocmov*yveloc;

xposlist = zeros((init+S), row*column);

yposlist = zeros((init+S), row*column);

for m=l::l:(init)

for i=l::l:row

for j=l::l:coluimn

xposO(i,j)= xposO(i,j)+ xveloc(i,j);

yposO(i,j)= yposO(i,j)+ yveloc(i,j);

if xposO(i,j)>5
xveloc(i,j) = -xveloc(i,j);

end

if xposO(i,j)<-5

xveloc(i,j) = -xveloc(i,j);

end

if yposO(i,j)>5

yveloc(i,j) = -yveloc(i,j);
end

if yposO(i,j)<-5

yveloc(i,j) = -yveloc(i,j);

end

xposlist(m, ((i-1)*column+j)) = xposO(i, j);
yposlist(m,((i-1)*column+j)) = yposO(i, j);

end

end

end

%set variables
777777y/@@/yyy/y/77/y/777yyy/@/y/y//§//v

v = zeros(row, column);

w = zeros(row, column);

31

COURSE 2A UNDERGRADUATE THESIS

A_hat=zeros(row*column,4);

v_dot = zeros(row, column);

w_dot = zeros(row, column);

A_hat_dot=zeros(4*row*column,1);

%choose initial conditions randomly

%vO = random('Uniform',-2,9, 1,row*column);

%wO = random('Uniform',-2,9, 1,row*column);

vO = random('Uniform',-40,40, 1,row*column);

w_ = random('Uniform',-40,40, 1,row*column);

A_hatO=zeros(1,4*row*column);

for i=2:1:row*column

A_hatO(1,(i-1)*4+1)= al(i,1);
A_hatO(1,(i-1)*4+2)= I(i,1);
AhatO(1,(i-1)*4+3)= cl(i,1);
A_hatO(1,(i-1)*4+4)= bl(i,1);
end

A_hatO(1,1)= a;

A_hat_0(1,2)= I;

A_hatO(1,3)= c;

A_hatO(1,4)= b;

%run and plot ODE

x_dot = zeros(6*row*column,1);

[T, X]=ode23tb('Adapt16',t, [vO wO AhatO]);

plot(T(:,:),X(:,1:4))

%Save Matrix R

step=floor(length(X)/init);

n=1;

for m =l:l:length(X)

if T(m)>n

32

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

for i=l:1:row

for j=l:1:column

R(n, (((i-1)*column+j)*4)-3)=X(m,((i-l)*column+j));

R(n, (((i-1)*column+j)*4-2)) = xposlist(n, ((i-1)*column+j));

R(n, (((i-1)*column+j)*4-1)) = yposlist(n, ((i-1)*column+j));

R(n, (((i-1)*column+j)*4))=X(m, 2*row*column+4*((i-l)*column+j)-2);

end

end

n=n+1;

end

end

save('radl6.mat', 'R')

33

COURSE 2A UNDERGRADUATE THESIS

Simulation Three Code 2

function dx=Adapt16(t,x)

%global variables

%Z%%%%%%%%%%%%%%%%%%%%%%
global a; global b; global c; global I; global k; global P;
global row; global column; global init;global A_hat_O;

global v; global w; global v_dot; global wdot; global x_dot;

global xposO; global yposO; global xposlist; global yposlist;

global xveloc; global yveloc; global Ahatdot; global init2

global radius; global I_O; global countsc; global countlist;

global init2;

%extract the initial conditions

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
for i=l:l:row

for j=l:l:column

v(i,j) = x((i-1)*column+j);

w(i,j) = x(row*column + (i-1)*column+j);

end

end

Ahat = x(2*row*column+1:6*row*column);

%%%%%%%%%%%%%%%%%%%%%%%%%%
%adaptation code

~%%%%%%%%%%%%%%%%%%%%%%%%
if t>(init2)

for i=l:l:row

for j=l:l:column

vdiff=O;

wdiff=O;

for l=l:l:row

for m = l:l:column

rad = ((xposlist((ceil(t)),((i-1)*colulmn+j))-...

. .xposlist((ceil(t)),((l-1)*column+m)))^2 + ...
... (yposlist((ceil(t)),((i-1)*colmn+j)) - ...

.. yposlist((ceil(t)),((l-1)*column+m))) 2) .5;

34

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

if (rad <= radius)

vdiff = vdiff + v(1,m)- v(i,j);

wdiff = wdiff + w(1,m)- w(i,j);

end

end

end

v_dot(1,1) = v(l,1)*(A_hat_0(1,1)-v(1,1))*(v(1,1)-l) - w(1,1) + ...

...Ahat_0(1,2) +k*vdiff;

wdot(1,l) = A_hat_0(1,4)*v(1,1) - A_hat_0(1,3)*w(1,1);

%end

encld

if i*j>1.

W = [(v(i,j)*(v(i,j)-1)), 1, 0, 0; 0, 0, -w(i,j), v(i,j)];

A_hatdot(((i-l)*column+j-1)*4+1:((i-l)*column+j-1)*4+4) = ..

.. .k *P*transpose(W)* [vdiff ; wdiff];

%Ahatdot= .l*ones(row*column*4,1);
Q = [1 0 0 0 ; 0 1 0 0 ; 0 0 1 0 ; 0 0 0 5] * 0.01;

A_hat(((i-l)*column+j-1)*4+l : ((i-1)*column+j-1)*4+4)= ...

..A_hat(((i-l)*column+j-1)*4+ : ((i-l)*column+j-1)*4+4) + ...

..Q * transpose(W) * [vdiff ; wdiff];

end

v_dot(i,j) = v(i,j)*(Ahat(((i-l)*column+j)*4-3,1)-v(i,j))*(v(i,j)-l) ...

...- w(i,j) + Ahat(((i-1)*column+j)*4-2,1)+k*vdiff;

w_dot(i,j) = Ahat(((i-l)*column+j)*4,1)*v(i,j) - ...

.. .Ahat(((i-l)*column+j)*4-1,1)*w(i,j);

end

end

end

%initial conditions-not coupled

35

COURSE 2A UNDERGRADUATE THESIS

if t<init2

for i=l:l:row

for j=l:l:column

v_dot(i,j) = v(i,j)*(AhatO(1,((i-1)*column+j)*4-3)-v(i,j))*(v(i,j)-1) ...

...- w(i,j) + AhatO(1,((i-)*column+j)*4-2);
w_dot(i,j) = AhatO(1,((i-1)*column+j)*4)*v(i,j) - ...

...AhatO(1,((i-1)*column+j)*4-1)*w(i,j);
end

end

end

%orgize the returned values

%%%%%%%%%%%%%%%%%%%%%%X%%%
for i=l:l:row

for j=l:l:column

x-dot((i-1)*column+j) = vdot(i,j);

xdot(row*column + (i-1)*column+j) = w_dot(i,j);

end

end

xdot(2*row*column+1: 6*row*column) = Ahatdot(:,l);

dx=[xdot];
end

36

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

Simulation Four Code 1

Y.%global vairables

global row; global column; global init; global a; global b;

global c; global I; global k; global xveloc; global yveloc;

global E'; global A_hat_0; global init3; global init4; global I2;

global v; global w; global v_dot; global wdot; global xdot;

global xposO; global yposO; global xposlist; global yposlist;

global radius; global S; global S2; global I0; global countsc;

global countlist; global init2; global jump; global Ahatdot;

global A-hat; global X;

%setting variables for number of oscillators etc

%%%%%'I.%%%%%%%%././..Y% .%/.%/%%%/%.%%%%%%%Z %%% %%
init=250);

.t = [O:1l:init];

t = [0, init];

velocmov = .6;

radius 2.4;

row =9;

column = 9;
init2= 30;

init3= 90;
init4=120;

jump=0;

%setting variables for F-N

vvv
a = 5.23;

al= 4+3*rand(row*column,1);

b = 3;

bl= 2+2*rand(row*column,1);

c = .1;

cl=. 1+.05*rand(row*column,1);

k = 15;

I = 20;

I1=15+1E*rand(row*column,1);

I2 = 50;

P = [0.6 0 0 0 ; 0 30 0 0 ; 0 0 0.002 0 ; 0 0 0 0.4]/10;

37

COURSE 2A UNDERGRADUATE THESIS

%random motion

%%%
xposO = (10*rand(row,column))-5*ones(row,column);

yposO = (10*rand(row,column))-5*ones(row,column);

xveloc =ones(row, column);

xveloc(:,floor(row/2+1):row)=-1;

yveloc = ones(row,column);

yveloc(floor(column/2+1):column,:)=-1;

xveloc = velocmov*xveloc;

yveloc = velocmov*yveloc;

xposlist = zeros((init+S), row*column);

yposlist = zeros((init+S), row*column);

for m=l:l:(init)

for i=l:l:row

for j=l:l:column

xposO(i,j)= xposO(i,j)+ xveloc(i,j);

yposO(i,j)= yposO(i,j)+ yveloc(i,j);

if xposO(i,j)>5

xveloc(i,j) = -xveloc(i,j);

end

if xposO(i,j)<-5

xveloc(i,j) = -xveloc(i,j);

end

if yposO(i,j)>5

yveloc(i,j) = -yveloc(i,j);

end

if yposO(i,j)<-5

yveloc(i,j) = -yveloc(i,j);

end

xposlist(m,((i-1)*column+j)) = xposO(i, j);

yposlist(m,((i-1)*column+j)) = yposO(i, j);

end

end

end

%%%%%%%%%%%%%%%%%%%%%%% % % %
%set variables

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

38

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

v = zeros(row, column);

w = zeros(row, column);

Ahat=zeros(row*column*4, 1);

v_dot = zeros(row, column);

w_dot = zeros(row, column);

Ahatdot=zeros(4*row*column, 1);

%choose initial conditions randomly

%vO = random('Uniform',-2,9, 1,row*column);

%wO = random('Uniform',-2,9, 1,row*column);

v_ = random('Uniform',-40,40, 1,row*column);

w_ = random('Uniform',-40,40, 1,row*column);

A_hatO=zeros(1,4*row*column);

for i=2:1:row*column

%AhatO(1,(i-1)*4+1)= al(i,1);
A_hatO(1, (i-1)*4+1)=a;
%AhatO(1,(i-1)*4+2)= I(i,1);
A_hatO(1,(i-1)*4+2)= I;

%AhatO(1,(i-1)*4+3)= cl(i,1);
A_hatO(l1,(i-1)*4+3)= c;

%A_hat_O(1,(i-1)*4+4)= bl(i,1);
A_hatO0(:1,(i-1)*4+4)= b;

end

A_hat_O(1,1)= a;

A_hat_0(1,2)= I2;

A_hat_0(1,3)= c;

A_hat_0(1,4)= b;

%run and plot ODE

%%%%/Y%%%%%%% .Z. YYZZ.Y...Y.Z%ZZM%

x_dot = zeros(6*row*column,1);

[T, X]=ode23tb('Adaptl5',t, [vO w_O A_hat_O]);

plot(T(:,:),X(:,10:4:24))

step=floor(length(X)/init);

39

COURSE 2A UNDERGRADUATE THESIS

n=1;

for m=1:1: length(X)

if T(m)>n

if n<init3

for i=l:1:row

for j=l:1:column

R(n, (((i-l)*columnn+j)*4)-3)=X(m,((i-l)*column+j));

R(n, (((i-1)*column+j)*4-2)) = xposlist(n, ((i-1)*column+j));

R(n, (((i-1)*column+j)*4-1)) = yposlist(n, ((i-1)*column+j));

R(n, (((i-1)*column+j)*4))= I;

end

end

n=n+1;

end

if T(m)>init3

for i=l:1:row

for j=l:1:column

R(n, (((i-l)*column+j)*4)-3)=X(m,((i-l)*column+j));

R(n, (((i-1)*column+j)*4-2)) = xposlist(n, ((i-1)*column+j));

R(n, (((i-1)*column+j)*4-1)) = yposlist(n, ((i-1)*column+j));

R(n, (((i-1)*column+j)*4))= X(m, 2*row*column+4*((i-1)*column+j)-2);

end

end

n=n+1;

end

end

end

save('radl5.mat', 'R')

40

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS 41

COURSE 2A UNDERGRADUATE THESIS

Simulation Four Code 2

function dx=Adapt14(t,x)

%global variables

%%%%%%%%%%%%%%%%%%%%%%%%%%

global a; global b; global c; global I; global k; global P; global init2

global row; global column; global init;global A_hat_O;

global init3; global init4; global A_hat_dot;

global v; global w; global v_dot; global wdot; global xdot;

global xposO; global yposO; global xposlist; global yposlist;

global xveloc; global yveloc; global init2; global X;

global radius; global I_O; global countsc; global countlist;

global I2; global jump; global Ahat;

%extract the initial conditions
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
for il:l:row

for j=l:l:column

v(i,j) = x((i-1)*column+j);

w(i,j) = x(row*column + (i-1)*column+j);

end

end

Ahat = x(2*row*column+1:6*row*column);

%adaptation code

%%%%%%%%%%%%%%%%7%%%%%%
if t>(init4)

%Ahat(1,2)=I2;
for i=l:l:row

for j=l:l:column

vdiff=O;

wdiff=O;

for l=l:l:row

for m = :l:column

rad = ((xposlist((ceil(t)),((i-1)*column+j))-...

. .xposlist((ceil(t)),((l-1)*column+m)))^2 + ..
... (yposlist((ceil(t)),((i-1)*column+j)) - ...

·.. yposlist((ceil(t)),((1-1)*column+m)))^2)^.5;

42

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

if (rad <= radius)

vdiff = vdiff + v(1l,m)- v(i,j);

wdiff = wdiff + w(1,m)- w(i,j);

end

end

end

v_dot(l:,l) = v(1,1)*(Ahat(1,1)-v(1,1))*(v(1,1)-1) - w(1,1) + A_hat_0(1,2);

w_dot(l,l) = Ahat_0(1,4)*v(1,1) - A_hat_0O(1,3)*w(1,1);

if i*j>l.

A_hat(2,1)=I2;

W = [(v(i,j)*(v(i,j)-l)), 1, 0, 0; 0, 0, -w(i,j), v(i,j)];

A_hatdot(((i-l)*column+j-1)*4+1:((i-l)*column+j-1)*4+4) = ..

.. .k *P*transpose(W)* [vdiff ; wdiff];

%Ahat_dot= .1*ones(row*columnn*4,1);
Q = [1 0 0 0 ; 0 1 0 0 ; 0 0 1 0 ; 0 0 0 5] * 0.01;

A_hat(((:i-1)*column+j-1)*4+1 : ((i-1)*column+j-1)*4+4)=

...A_hat(((i-1)*columnn+j-1)*4+1 : ((i-1)*column+j-1)*4+4) +

..Q * transpose(W) * [vdiff ; wdiff];

end

v_dot(i,j) = v(i,j)*(Ahat(((i-1)*column+j)*4-3,1)-v(i,j))*(v(i,j)-1) - ...

...w(i,j) + Ahat(((i-1)*column+j)*4-2,1);

w_dot(i,j) = Ahat(((i-l)*column+j)*4,1)*v(i,j) - ..
.. .A_hat(((i-1)*column+j)*4-1,1)*w(i,j);

end

end

end

., ., . ., ., . O~ ., , , , , ., ., ., ., .., ., ., ., ., ., .,.
%IC's 2

%%%%%%%%if t>init3
if tinit3
if t<init4

Ahat (2,1)=I2;
X(init3:end,row*column*2+2)=I2;

43

COURSE 2A UNDERGRADUATE THESIS

for i=l:1:row

for j=1:1:column

if i*j>1

v_dot(i,j) = v(i,j)*(Ahat0_(1,((i-1)*column+j)*4-3)-v(i,j))*(v(i,j)-l)...
... - w(i,j) + AhatO(1,((i-1)*column+j)*4-2);

wdot(i,j) = AhatO(1,((i-)*column+j)*4)*v(i,j) - ...

...AhatO(1,((i-1)*column+j)*4-1)*w(i,j);
end

end

end

v_dot(1,1) = v(1,1)*(Ahat_0(1,1)-v(1,1))*(v(1,1)-1) - w(1,1) + I2;

w_dot(1,1) = Ahat_0(1,4)*v(1,1) - A_hat_O(1,3)*w(1,1);

end

end

%Synchronization Code

if t>(init2)

if t<(init3)

for i=l:1:row

for j=l:1:column

vdiff=0;

wdiff=0;

for 1=1:1:row

for m = 1:1:column

rad = ((xposlist((ceil(t)),((i-1)*column+j))- ...

..xposlist((ceil(t)),((1-1)*column+m)))-2 + ..
... (yposlist((ceil(t)),((i-l)*column+j)) - ...

·.. yposlist ((ceil (t)), ((1-1) *column+m))) -2) -.5;

if (rad <= radius)

vdiff = vdiff + v(1,m)- v(i,j);

wdiff = wdiff + w(1,m)- w(i,j);

end

end

44

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

end

v_dot(i,j) = v(i,j)*(a-v(i,j))*(v(i,j)-1) - w(i,j) + I+k*vdiff;

wdot(i,j) = b*v(i,j) - c*w(i,j);

end

end

end

end

%initial conditions-not coupled

if t<init2

for i=l:l:row

for j=l:l:column

v_dot(i,j) = v(i,j)*(a-v(i,j))*(v(i,j)-1) - w(i,j) + I;

w_dot(i,j) = b*v(i,j) - c*w(i,j);

end

end

end

%orgize the returned values

for i=l:l:row

for j=l:l:column

x_dot((i-1)*column+j) = vdot(i,j);

x_dot(row*column + (i-1)*column+j) =

end

end

w_dot(i,j);

x_dot(2*row*column+1: 6*row*column) = Ahatdot(:,1);

dx=[xdot];
end

45

46 COURSE 2A UNDERGRADUATE THESIS

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

Simulation Five Code 1

%%%%%%%%%% %o%%%%%%%%%%%%

%global vairables

%%%%%%%%%%%%%%%%o%%%%/%%%%%%

global row; global column; global init; global a; global b; global c;

global 1; global A_hat_0; global init3; global init4;

global v; global w; global v_dot; global wdot; global xdot;global Ahat_dot;

global xposO; global yposO; global xposlist; global yposlist;

global xveloc; global yveloc; global I; global k

global radius; global S; global S2; global I_O; global countsc;

global countlist; global init2;

%setting variables for number of oscillators etc

%%%%%%%~%%%%%%%v%%%%v%%%%%%~%%%%%%%v%%%%%%

init=150);

%t = [0:1:init];

t = [0, init];

velocmov = .6;

radius 2.7;

row =9;

column = 9;

init2= 30;

init3= 100;

init4=130;

Z%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%setting variables for F-N

%%%%%%%/%%%%%%%%%%%%%%%%%%%%%%%%%%/%%%%%%
a = 5.23;

al= 4+3*rand(row*column,1);

b = 3;

bl= 2+2*rand(row*column,1);

c = .1;

cl=.1+.05*rand(row*column,1);

k = 15;

I = 50;

I1=15+15*rand(row*column,1);

P = [0.6 0 0 0 ; 0 30 0 0 ; 0 0 0.002 0 ; 0 0 0 0.4]/10;

47

COURSE 2A UNDERGRADUATE THESIS

%random motion

%%%%%%%%%/%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
xposO = (10*rand(row,column))-5*ones(row,column);

yposO = (10*rand(row,column))-5*ones(row,column);

xveloc =ones(row, column);

xveloc(:,floor(row/2+1):row)=-1;

yveloc = ones(row,column);

yveloc(floor(column/2+1):column,:)=-1;

xveloc = velocmov*xveloc;

yveloc = velocmov*yveloc;

xposlist = zeros((init+S), row*column);

yposlist = zeros((init+S), row*column);

for m=l:l:(init)

for i=l:l:row

for j=l:l:column

xposO(i,j)= xposO(i,j)+ xveloc(i,j);

yposO(i,j)= yposO(i,j)+ yveloc(i,j);

if xposO(i,j)>5

xveloc(i,j) = -xveloc(i,j);

end

if xposO(i,j)<-5

xveloc(i,j) = -xveloc(i,j);

end

if yposO(i,j)>5

yveloc(i,j) = -yveloc(i,j);

end

if yposO(i,j)<-5

yveloc(i,j) = -yveloc(i,j);

end

xposlist(m,((i-1)*colmn+j)) = xposO(i, j);

yposlist(m,((i-1)*column+j)) = yposO(i, j);

end

end

end

%set variables

v = zeros(row, column);

w = zeros(row, column);

48

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

Ahat=zeros(row*column,4);
v_dot = zeros(row, column);

wdot = zeros(row, column);

A_hat_dot=zeros(4*row*column,1);

%choose initial conditions randomly

%vO = random('Uniform',-2,9, 1,row*column);

%wO = random('Uniform',-2,9, 1,row*columin);

vO = random('Uniform',-40,40, 1,row*column);

w_ = random('Uniform',-40,40, 1,row*column);

AhatO=zeros (1,4*row*column);

for i=2:: 1 row*column

A_hatO0(1,(i-1)*4+1)= al(i,1);

AhatO(1,(i-1)*4+2)= I(i,1);
AhatO(1,(i-1)*4+3)= cl(i,1);
A_hatO(1,(i-1)*4+4)= bl(i,1);
end

A_hatO(1,1)= a;

AhatO0(1,2)= I;

A_hat_0O(1,3)= c;

AhatO(1,4)= b;

%.run and plot ODE

x_dot = zeros(6*row*column,1);

[T, X]=ode23tb('Adapt18',t, [v_O w_O A_hat_O]);

plot(T(:,:),X(:,1:4))

%Save Matrix R

step=floor(length(X)/init);

n=1;

for m =1:1:length(X)

if T(m)>n

49

COURSE 2A UNDERGRADUATE THESIS

for i=l:l:row

for j=l:l:column

R(n, (((i-1)*column+j)*4)-3)=X(m,((i-1)*column+j));

R(n, (((i-1)*column+j)*4-2)) = xposlist(n, ((i-1)*column+j));

R(n, (((i-1)*column+j)*4-1)) = yposlist(n, ((i-1)*column+j));

R(n, (((i-1)*column+j)*4))=X(m, 2*row*column+4*((i-1)*column+j)-2);

end

end

n=n+l;

end

end

save('radl8.mat', 'R')

\begin{verbatim}

\newpage

\begin{flushleft}

{\bf Simulation Five Code 2}

\end{flushleft}

\begin{verbatim}

function dx=Adaptl6(t,x)

%global variables

global a; global b; global c; global I; global k; global P; global init2

global row; global column; global init;global AhatO;

global v; global w; global v_dot; global wdot; global xdot;

global xposO; global yposO; global xposlist; global yposlist;

global xveloc; global yveloc; global A_hat_dot;

global radius; global IO0; global countsc; global countlist; global init2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%extract the initial conditions

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=l:l:row

for j=l:l:columnn

50

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

v(i,j) = x((i-1)*column+j);

w(i,j) = x(row*column + (i-1)*column+j);

end

end

A_hat = x(2*row*column+1:6*row*column);

%adaptation code

if t>(init2)

for i=l:l:row

for j=l:l:column

vdiff=0;

wdiff=0;

for l=l:l:row

for m = l:l:coluimn

rad = (xposlist((ceil(t)),((i-1)*column+j))-

...xposlist((ceil(t)),((1-1)*column+m)))^2 + ...

...(yposlist((ceil(t)),((i-1)*column+j)) - ...

...yposlist((ceil(t)),((1-1)*column+m)))^2)^.5;

if (rad <= radius)

vdiff = vdiff + v(1,m)- v(i,j);

wdiff = wdiff + w(1,m)- w(i,j);

end

end

end

v_dot(1,1) = v(1,1)*(A_hat_0(1,1)-v(1,1))*(v(1,1)-1) - ...

...w(1,1) + Ahat_0(1,2)+ k*vdiff;
wdot(1,1) = Ahat_0(1,4)*v(1,1) - Ahat_0(1,3)*w(1,1);

%end

% end

if i*j>1

51

COURSE 2A UNDERGRADUATE THESIS

W = [(v(i,j)*(v(i,j)-1)), 1, , ; , 0, -w(i,j), v(i,j)];

Ahatdot(((i-l)*column+j-1)*4+1:((i-l)*columin+j-1)*4+4) = ..

...k *P*transpose(W)* [vdiff ; wdiff];

%Ahat_dot= .1*ones(row*column*4,1);
Q = [1 0 0 0 ; 0 1 0 0 ; 0 0 1 0 ; 0 0 0 5] * 0.01;

A_hat(((i-l)*column+j-1)*4+1 : ((i-l)*column+j-1)*4+4)= ...

...Ahat(((i-1)*column+j-1)*4+1 : ((i-1)*column+j-1)*4+4) + ...

...Q * transpose(W) * [vdiff ; wdiff];

end

v_dot(i,j) = v(i,j)*(Ahat(((i-1)*column+j)*4-3,1)-v(i,j))*(v(i,j)-1) - ...

...w(i,j) + Ahat(((i-1)*column+j)*4-2,1)+k*vdiff;
w_dot(i,j) = Ahat(((i-1)*column+j)*4,1)*v(i,j) - ...

·. .A_hat(((i-l)*column+j)*4-1,1)*w(i,j);

end

end

end

v_dot(1,2) = v(1,2)*(Ahat(5,1)-v(1,2))*(v(1,2)-1) - w(1,2) + Ahat(6,1);
w_dot(1,2) = Ahat(8,1)*v(1,2) - A_hat(7,1)*w(1,2);

%initial conditions-not coupled

%%%%%%%%%%%%%%%%%%%%%%%%

if t<init2

for i=l:1:row

for j=1:1:column

v_dot(i,j) = v(i,j)*(AhatO(1,((i-1)*column+j)*4-3)-v(i,j))*(v(i,j)-1) ...
... - w(i,j) + AhatO(1,((i-1)*column+j)*4-2);

wdot(i,j) = AhatO(1,((i-1)*column+j)*4)*v(i,j) - ...
... AhatO(1,((i-1)*column+j)*4-1)*w(i,j);

end

end

end

52

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS 53

%orgize the returned values

for i=1:1:row

for j=1:1:column

x_dot((i-1)*column+j) = v_dot(i,j);

x_dot(row*column + (i-1)*column+j) = wdot(i,j);

end

end

xdot(2*row*column+1: 6*row*column) = Ahatdot(:, 1);

dx=[xdot];
end

COURSE 2A UNDERGRADUATE THESIS

Graphics Code

#include "mex.h"

#include <GL/glut.h>

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <unistd.h>

#include "dumpImages.h"

GLenum rgb, doubleBuffer, windType;

GLint windW, windH;

/*
#include "tkmap.c"

*/

GLenum mode;

GLint size;

float point[3] = {1.0, 1.0, 0.0};

#define PI 3.1415926535898

#define NUMPARAMS (0)

#define IMGNUMROWS 600

#define IMGNUMCOLS 600

#define BYTES_PER_PIXEL 3

#define ASCII_O 48

#define numparam 4

#define numrow 9

#define numcol 9

#define numscenes 249

int mrows=O;

int ncols=O;

int count=O;

int count2=0;

double xone[numrow*numcol*numparam*numscenes]={O};

int xonecount = O;

int loopl=O;

int loop2=O;

int rtri=O;

int scene=O;

float cosine, sine;

/*
static void Init(void)

54

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

{
GLint i;

glClearColor(O.O, 0.0, 0.0, 0.0);

glBlendFunc(GLSRCALPHA, GLZERO);

if (!rgb) {

for (i = ; i < 16; i++) {

//glutSetColor(i+CIANTIALIAS_RED, i/15.0, 0.0, 0.0);

// glutSetColor(i+CIANTIALIASYELLOW, i/15.0, i/15.0, 0.0);

// glutSetColor(i+CIANTIALIASGREEN, 0.0, i/15.0, 0.0);

}

}

// mode = GLFALSXE;
size = 1;

}

,/

void InitGL(int Width, int Height)

// We call this right after our OpenGL window is created.

glClearColor(O.Of, .Of, .Of, .Of);

// This Will Clear The Background Color To Black

glClearDepth(1.0);

// Enables Clearing Of The Depth Buffer

glDepthFunc(GLLESS);
// The Type Of Depth Test To Do

glEnable(GLDEPTH_TEST);
// Enables Depth Testing
glShadeModel(GLSMOOTH);
// Enables Smooth Color Shading

glMatrixMode(GLPROJECTION);
glLoadIdentity();

// Reset The Projection Matrix

gluPerspective(90.Of,(GLfloat)Width/(GLfloat)Height,O.lf,120.Of);

// Calculate The Aspect Ratio Of The Window

glMatrixMode(GLMODELVIEW);

}
static void Reshape(int width, int height)

{

55

COURSE 2A UNDERGRADUATE THESIS

windW = (GLint)width;

windH = (GLint)height;

glViewport(O, 0, width, height);

glMatrixMode(GLPROJECTION);
glLoadIdentity();

/*gluOrtho2D(-windW/2, windW/2, -windH/2, windH/2);*/

gluPerspective(90.Of,(GLfloat)width/(GLfloat)height,O.lf,120.Of);

glMatrixMode(GL_MODELVIEW);

}

static void Key2(int key, int x, int y)

{

switch (key) {

static void Key(unsigned char key, int x, int y)

{
usleep(100);

switch (key) {

case 27:

//{glutDestroyWindow(scene);

exit(l);

case '1':

mode = !mode;

break;

//break;

default:

return;

}

glutPostRedisplay();

}

static void Draw()

56

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

double yonel [1] [1] ={0};

double yone2[1] [1] ={0};

double yone3[1] [1] ={0};

double yone[numrow*numcol*numparam][numscenes] = {0};

double colorg[1][1] = {0};

double colorr[1][1] = {1};

double colorb[1][1] = {0};

double subl[1][1] = {0};

double sub2[1][1] = {0};

double sub3[1][1] = {0};

int tot= numparam*numrow*numcol;

int ycountone=O;

int test;

int tests;

int numpt = O;

printf(" f \n", xone[scene+numscenes*9]);

printf(" %f \n", xone[scene+numscenes*5]);

GLint i=O;

glClear(GLCOLORBUFFERBIT I GLDEPTHBUFFERBIT);
for (loopl=O; loopl<numrow; loopl++)

{
for (loop2=O; loop2<numcol; loop2++)

{

//To get into black and white:

// glBegin(GLPOLYGON);
// glColor3f(1.Of, 1.Of, 1.Of);

// glVertex3f(12, -12, -6.5f);

// glVertex3f(-12, -12, -6.5f);

// glVertex3f(-12, 12, -6.5f);

// glVertex3f(12, 12, -6.5f);

// glEndo();

glLoadIdentity ();

glTranslatef(xone[(scene+(numscenes)*(numpt+1))], ...
...xone[(scene+(numscenes)*(numpt+2))], -5.0);

sub3[0] [0] = xone[scene+(numscenes) * (numpt)];

57

COURSE 2A UNDERGRADUATE THESIS

if (xone[(scene + (numscenes)*(numpt+3))]>57)

subl[0][0] = (xone[(scene+(numscenes)*(numpt+3))]-52)/10;

sub2 [0] [0] = (1-subl [0] [0]);

//if (xone[(scene+(numscenes+l)*(numpt))] >0) {

glColor3f(subl[0][0], sub2[0] [0], O. Of);

}

if (xone[(scene + (numscenes)*(numpt+3))]<57) {

if (xone[(scene + (numscenes)*(numpt+3))]>43) {

subl[0][0] = (xone[(scene+(numscenes)*(numpt+3))]-17)/1;

sub2[0] [0] = (1-subl[0][0]);

//if (xone[(scene+(numscenes+l)*(numpt))]>0) {

glColor3f(0.Of, subl[0][0], sub2[0] [0]);

}

}

if (xone[scene+(numscenes)*(numpt+3)] <43) {

subl [0] [0]= (xone[(scene+(numscenes) * (numpt+3))] -38)/15;

sub2[0] [0]= (1-subl[0][0]);

glColor3f(0. Of, subl[0][0], sub2[0] [0]);

}

if (xone[(scene+(numscenes)*(numpt+3))] != O) {

if (xone[(scene+(numscenes)*(numpt+2))] != O)

{

xonecount+=1;

//ycountone+ = (numscenes)*3;

numpt+=4;

if (sub3[0] [0]>1) {

glBegin(GLPOLYGON);
for (i=O; i<100; i++) {

cosine=cos(i * 2 * PI / 100.O)*(sqrt(sub3[0][0])) /13;

sine=sin(i * 2 * PI / 100.0)*(sqrt(sub3[0] [0])) /13;

glVertex3f(cosine, sine, .Of);

}
glEndo();

}

}

58

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

}
unsigned char img[IMGNUMROWS * IMGNUMCOLS*BYTESPER_PIXEL];
FILE *fptr;

glReadPixels(O, , IMGNUMCOLS, IMGNUMROWS, GL_RGB ...
... GL_UNSIGNEDBYTE, img);

char fname[17] = "fig6/figOOO.jpg";

if (scene<10){

fname[10]=(char)(scene+ASCII0_O);

}

else {

if (scene < 100){

fname[9]=(char)((int)(scene/lO)+ASCIIO);
fname[10]=(char)((int)(scene%1O)+ASCIIO);

}

else{

fname[8]=(char)((int)(scene/loo100)+ASCII0_O);

fname[9]=(char)((int)(scene/10)%10+ASCIIO0);

fname[10]=(char)((int)(scene%10)+ASCIIO);

}}
dumpRGBimg(fname, IMGNUMCOLS, IMG_NUMROWS, img);

scene++;

glFlush();

if (doubleBuffer) {

glutSwapBuffers ();

}

usleep(200000);

}

static GLenum Args(int argc, char **argv)

{
GLint i;

rgb = GLTRUE;

doubleBuffer = GL_FALSE;

for (i = 1; i < argc; i++) {

if (strcmp(argv[i], "-ci") == O) {

} else {

printf("%s (Bad option).\n", argv[i]);

59

COURSE 2A UNDERGRADUATE THESIS

return GL_FALSE;

}

}
return GL_TRUE;

}

void timestwo(double * x)

{
int j = O;

int i = O;

int count3 = 0;

//printf("x is &f \n", x);

for (i=O; i<(numrow*numcol*numparam*numscenes); i++)

{
xone[i] =*((double *)(x+count3));

count3+=1;

}

int myArgc = 1;

char** myArgv;

char* myString = {"hello3"};

myArgv = &myString;

glutInit(&myArgc, myArgv);

if (Args(myArgc, myArgv) == GLFALSE) {

}
windW = 640;

windH = 640;

glutInitWindowPosition(200, 0); glutInitWindowSize(windW, windH);

windType = (rgb) ? GLUT_RGB : GLUTINDEX;

windType [= (doubleBuffer) ? GLUT_DOUBLE : GLUTSINGLE;

glutInitDisplayMode(windType);

if (glutCreateWindow("hello3") == GLFALSE) {

}

glutReshapeFunc(Reshape);

glutKeyboardFunc(Key);

60

SYNCHRONIZATION AND ADAPTATION OF NONLINEAR OSCILLATORS

glutDisplayFunc(Draw);

glutIdleFunc(Draw);

InitGL(windW, windH);

glutMainLoop();

}

void mexFunction(int nlhs, mxArray *plhs[], int nrhs,

const mxArray *prhs[])

{
double *x;

int status, mrows, ncols;

x = mxGetPr(prhs[O]);

mrows = mxGetM(prhs[O]);

ncols = mxGetN(prhs[O]);

timestwo(x);

}

61

62 COURSE 2A UNDERGRADUATE THESIS

References
[1] Pikovsky, A., Rosenblum, M., and Kurths, J., "Synchronization: A Universal

Concept in Nonlinear Sciences", Cambridge University Press, 2003

[2] Sherman, H. "Biological Engineering," McGraw-Hill, 1969.

[3] Wang, W., and Slotine, J. J. E., "Where To Go and How To Go: A Theo-
retical Study of Different Leader Roles in Networked Systems," 2004.

