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Abstract

We study the space-time characteristics of the ALOHA multiple access
protocol in a high speed bidirectional bus network where transmissions
are in the form of packets of constant length. For point-to-point
communications, slotted ALOHA is generally considered to have better
throughput performance than unslotted ALOHA, whose maximum
throughput is known to be 1/(2e), independent of station configuration.
We show that, with a probabilistic station configuration, the maximum
point-to-point throughput of slotted ALOHA degrades to nearly 1/(3e),
when a, the end-to-end propagation delay normalized with respect to the
packet transmission time, is much greater than 1. However, with a
deterministic station configuration, the point-to-point throughput of
slotted ALOHA can be as high as 1/2. For broadcast communications, the
maximum throughput for slotted ALOHA is well known to be 1/{e(l+a)}.
For unslotted ALOHA, we show that, if the offered load density is uniform
along the bus, the maximum broadcast throughput achievable by a station
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greater than that derived by conventional analysis.
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1 INTRODUCTION

The ALOHA protocol, which is the simplest contention-based multiple

access protocol, may either be completely asynchronous or require packet

transmissions starting only at the beginning of fixed-length time slots [1],

[2]. The former version is known as the unslotted ALOHA protocol, and the

latter the slotted ALOHA protocol. In this paper, we present the space-

time characteristics of both slotted and unslotted ALOHA protocols in high

speed bidirectional bus networks where transmissions are in the form of

packets of unit length. We assume that the bus is of unit length and has

perfectly non-reflecting terminations at both ends. We consider both

point-to-point and broadcast communications. For point - to-point

communications, each transmission is designated for successful reception

by exactly one station. For broadcast communications, each transmission

must be successfully received by all stations.

The speed of a bus network is often specified by the parameter a, which

denotes the end-to-end propagation delay normalized with respect to the

packet transmission time. In this paper, we are interested in high speed

(i.e. a>l) bidirectional bus networks. We will not consider carrier sensing

since it is known to be inefficient for contention-based multiple access

protocols for this case [3].

When propagation delay is negligible, as conventionally assumed, there is

no difference in the performance of the ALOHA protocol between point-to-

point and broadcast communications. The vulnerability of a transmission is

simply characterized by the time interval over which any other packet

transmitted could cause a collision. During this time interval, which is
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known as the vulnerable period, the given transmission is vulnerable

everywhere on the bus.

Due to propagation delay, packets transmitted simultaneously may overlap

non-destructively, as shown in the space-time diagram in Figure 1. When

this occurs, we say that there is channel reuse [4], [5]. Space-time

diagrams have been widely used in the literature for the analysis of

multiple access protocols in bus networks: e.g. [6], [7]. Allowing for

channel reuse, point-to-point transmissions are generally less demanding

on channel resources than broadcast transmissions, and one expects the

former to have better throughput performance. Such distinction is seldom

emphasized in the literature because the difference is insignificant in

networks with small propagation delays.

In a bidirectional bus network where channel reuse is possible, vulnerable

periods do not adequately characterize the vulnerability of transmissions.

We need to consider space-time vulnerable regions instead. A vulnerable

region associated with a transmission is the space-time region over which

any other packet arriving at the network could cause a collision. The size

of the vulnerable regions is a limiting factor on the performance of a

contention-based protocol. In general, for a given protocol, the larger the

size of the vulnerable regions, the smaller is the probability of success of

each transmission.

The spatial properties of the ALOHA protocol were first studied by

Abramson, who analyzed the spatial densities of throughput and offered

load in a packet radio broadcasting network with capture [8]. It was only

recently that the space-time behavior of the ALOHA protocol on bus
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networks was studied [4], [9], [10]. Gonsalves and Tobagi have conducted a

simulation study of the effects of station locations on the broadcast

performance of Ethernet type bus networks using the CSMA/CD protocol

[11]. They observed that, with stations uniformly distributed along the

bus, those near the center of the bus obtain better performance than those

near the ends. We confirm the above behavior analytically for the

unslotted ALOHA protocol.

In [9], Maxemchuk showed that for unidirectional bus networks, slotted

protocols are always more efficient than unslotted protocols. We show a

different result for bidirectional bus networks. With a probabilistic station

configuration, the maximum point-to-point throughput of slotted ALOHA

must degrade to nearly 1/(3e), when a>>1. On the other hand, the

maximum point-to-point throughput of unslotted ALOHA is known to

remain as 1/(2e) for a >> 1. For a bidirectional bus network with N evenly

spaced stations, and a=(N-1), Levy and Kleinrock showed that, provided

there is no carrier sensing, the maximum throughput of any slotted

contention-based multiple access protocol in such a network approaches

1/e as the number of stations becomes very large [10], [12]. We show that

the maximum throughput of slotted ALOHA in such a network is at least

1/2. Our definition of a slot includes propagation delay, and is thus

different from that of Maxemchuk, and that of Levy and Kleinrock.

We discuss slotted ALOHA and unslotted ALOHA in Section 2 and Section 3

respectively. In each case, we first specify our ALOHA model, and review

the basic results from conventional throughput analysis. We then examine

the space-time characteristics of the protocol, and present our analysis of

maximum throughput. For slotted ALOHA, we offer some new results in
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point-to-point communications. For unslotted ALOHA, we offer some new

results in broadcast communications.

2 SLOTTED ALOHA

In this section, we study the slotted ALOHA protocol in a bidirectional bus

network supporting N stations. Time is divided into slots of length (l+a)

units of packet transmission time. A packet arriving at a station during a

slot is transmitted at the beginning of the following slot, and is completely

received by the designated station before the end of the same slot. We

summarize below our slotted ALOHA model.

* Large but finite population of users;

* Synchronous transmissions at discrete points in time with period

(1+a) units of packet transmission time;

* Offered traffic including retransmissions is a memoryless random

process;

* Symmetric traffic configuration;

* Statistical equilibrium.

2.1 Conventional Analysis

Conventional analysis of the slotted ALOHA protocol without channel reuse

is based on the assumption that a transmission in a given slot is successful

only if there are no other transmissions within the same slot. Let G be the

average offered traffic per slot, in packets per packet transmission time.

The offered traffic is assumed to be uniform across all stations. By
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symmetry, each station is active during a slot with probability (I+a)G/N.

Thus, the probability of success is

Pa(G)= {1- (+a)} for a >0 (1)

The throughput is then Sa(G) = G.Pa(G). For large N,

Sa(G) = G e (+ )G for a >0 (2)

whose maximum with respect to G is

Sa* = 1 ) 1 for a 0 (3)

The above analysis applies to both point-to-point and broadcast

communications. Note that Sa* vanishes as a becomes very large. When

channel reuse is taken into consideration, we reach a different conclusion

for the slotted ALOHA protocol with point-to-point communications.

2.2 Space-Time Characteristics

For broadcast communications with a >0, and point-to-point

communications with 0< a < l, the entire previous slot is the vulnerable

region. Hence, the maximum throughput is the same as that derived by

conventional analysis. For point-to-point communications with a>l, a

vulnerable region may be considerably smaller than a whole slot. We

show that the point-to-point throughput of slotted ALOHA does not

degrade indefinitely as a becomes very large.

In Figures 2 and 3, we show how two simultaneously transmitted packets

may collide destructively in the same time slot. We call the inverted V-

shaped space-time region covered by a transmission a transmission region.

We examine these two cases separately.
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In the case of Figure 2, two transmitting stations are within (1/a)- units of

distance from each other, where

(*)-= min(*,l) (4)

There is a totally destructive collision since no station can successfully

receive the transmission. The spatial interval, in which no other

transmission may originate without causing a totally destructive collision,

is called a totally vulnerable interval.

In the case of Figure 3, two transmission regions cross each other, and

there is a potentially destructive collision. The collision is non-destructive

if neither of the two designated receivers is located within the spatial

interval where the transmission regions cross each other. This spatial

interval is (l/a )- units long. The spatial interval in which no other

transmission may originate without causing a potentially destructive

collision is called a potentially vulnerable interval. Note that this spatial

interval does not exist if the position of the receiving station, yE [0,1], falls

outside the following range.

Ya ) (x ) (- (, x + + 1) ]r[O,1] for xe[0,1] (5)

where x is the position of the transmitting station (See Figure 3).

In Figure 4, we show a typical transmission, and its corresponding totally

and potentially vulnerable regions, which are respectively specified by the

totally vulnerable interval, [XL, XR], and the potentially vulnerable interval,

[ZL, ZR], where

XR= +a) (6)a 
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xL = max a + ,0 (7)

ZR = max a ' 0 (8)

ZL = max{ z - ,O (9)

and z = 2y - x.

Let Xa(x) denote the length of the totally vulnerable interval, and Za(x,y)

that of the potentially vulnerable interval. Then, it can be verified that

Xa(x) = XR - xL < for xE[0,1] (10)

and

Za(X,y) = ZR - ZL •< for xe[0,1] and yeYa(x) (11)

Note that for a>>l, end effects are negligible, and the above relations hold

with equality (See Figure 5). From (5), we see that for a>> 1,

Ya(x) - [x/2,(x+l)/2] and the length of Ya(x) is approximately 1/2.

We refer to the union of the vulnerable intervals as the vulnerable

interval-set, and the union of the vulnerable regions as the vulnerable

union. The larger the size of the vulnerable union, the smaller is the

maximum throughput of the slotted ALOHA protocol.

2.3 Maximum Point-to-Point Throughput

We consider two kinds of station configurations. In the probabilistic

station configuration, each station, except for the end-stations, is

independently located at a uniformly distributed point on the bus. In the
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deterministic station configuration, the positions of the stations on the bus

are fixed. A special case of the deterministic configuration is the regular

bus network, in which the distance between any two adjacent stations is a

constant.

2.3.1 Probabilistic Station Configuration

We first examine a bidirectional bus network with probabilistic station

configuration. We show below that unslotted ALOHA is more efficient than

slotted ALOHA for point-to-point communications in a very high speed

bidirectional bus network.

Theorem 1

Consider a bidirectional bus network with a probabilistic station

configuration. Given a large number of stations, the point-to-point

throughput of the slotted ALOHA protocol is given by
1 -(l+a)Fa(xy)G

Sa(G)=G fdx Jdy {e )a( Y) for a>0 (12)
0 0

where

Fa(x,y) = max(xR,zR)-min(xL,zL) 1

- max (max(xL,zL)-min(xR,zR)) , 1 for a >0 (13)

The maximum throughput, Sa*, obtained from maximizing Sa(G) with

respect to G, decreases with a to an asymptotic value of 0.1304, which is

greater than 1/(3e) (See Figure 6).
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Proof of Theorem 1

Consider a transmission from a station located at x [0,1] to a station

located at ye[0,1]. Let Fa(x,y) be the fraction of the bus that is within the

vulnerable interval-set. The potentially and totally vulnerable intervals

may overlap each other or be disjoint. Moreover, one of them may be on

either side of the other. It follows that there are four cases to consider in

order to obtain Fa(x,y).

Let's refer to the location x=O as the left end of the bus, and the location

x=1 the right end of the bus. The right-most edge of the vulnerable

interval-set is max(xR,zR), and the left-most edge is min(xL,zL). Thus, the

length of the vulnerable interval-set including possibly a gap in between is

tmax(xR,zR) - min(xL,zL)j. It can be verified that the length of the gap is

given by max[(max(xL,zL) - min(xR,zR)), 0). Hence, we obtain Fa(x,y).

When there are N stations, the probability of success is

Pa(G) = Jdx fdy I - (1+a)Fa(xy) N - 1 4)
0 0 -(1yN

For large N,

11 1 +a)Fa(x,y)G
Pa(G) = Jdx Jdy {e( )a(,y)G (15)

0 0

The throughput, Sa(G), is simply G.Pa(G). Sa*, can be derived numerically

from (12), and its asymptotic behavior can be verified.
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As Sa* decreases monotonically with a, its asymptotic value is a lower-

bound. We recall from Section 2.2 that when a>>l, Fa(x,y) = 2/a in half of

the relevant space of x and y, and Fa(x,y) = 4/a in other half.

For a>>l, (12) simplifies to

a>>li {Sa(G)} 2G + e-4G) (16)

whose maximum with respect to G is 0.1304.

On the average, the space-time area of the vulnerable union tends to 3

when a>>l. From (12) and by Jensen's Inequality, we obtain the following

bound.
lim
a>>l { Sa(G) } > G e-3G (17)

It follows that the maximum throughput cannot degrade below 1/(3e).

Q.E.D.

Note that for 0<a<l , there is no channel reuse, and the maximum

throughput of slotted ALOHA is the same as in (3). For a >1,

Sa*<S 1 *=1/(2e). It is well known that the maximum throughput of

unslotted ALOHA is 1/(2e). We have thus shown that slotted ALOHA is

less efficient than unslotted ALOHA for point-to-point communications in a

very high speed bidirectional bus network.

2.3.2 Deterministic Station Configuration

We now examine a bidirectional bus network with deterministic station

configuration. In Lemma 1 and Lemma 2, we derive bounds on the

maximum point-to-point throughput achievable by the slotted ALOHA
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protocol. These bounds are valid for any deterministic station

configuration. In Theorem 2, we present bounds on the same maximum

throughput in a bidirectional bus network with regularly spaced stations.

Lemma 1

The maximum point-to-point throughput, Sa*, achievable with slotted

transmissions, is bounded as follows.

Sa* <s ( s 1 for a 20 (18)

Proof of Lemma 1

The bound is derived by considering only the totally vulnerable regions.

For successful synchronous transmissions, no two packets may originate

from stations that are less than (1/a)- units of distance apart. Otherwise,

there is a totally destructive collision. Let M 1 be the maximum possible

number of successful synchronous transmissions on the bus.

For 0 a<l, the totally vulnerable region covers the entire slot, and thus

M S 1. For a 21, we have
1

(M-l) -
< 1 (19)

It follows that

M < (l+a) for a >0 (20)

And, we have
M

Sa* < +a < 1 for a >0O (21)- +a
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Since there are N stations, and M<N, we obtain the upper bound on Sa*.

Q.E.D.

Note that the above upper bound on Sa* is valid for any slotted protocol

without carrier sensing, and for any station configuration.

Lemma 2

The maximum point-to-point throughput of slotted ALOHA in a

bidirectional bus network with a deterministic station configuration

satisfies the following bound.

Sa* >{ C(N)+I }l+) e for a >0 (22)

where Ca(N)<(N-1) is the maximum number of stations which can be

located within the vulnerable interval-set associated with any given

transmission.

Proof of Lemma 2

The probability of success is lower bounded as follows.

Pa(G) 1- (l+a) N for a20 (23)

The throughput is then Sa(G) = G.Pa(G). Maximizing Sa(G) with respect to G,

we obtain

Sa* l+ { Ca(N)+} afor a >0 (24)It can be verified tCa(Nhat+

It can be verified that
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1 }Ca(N) 1
1- Ca(N)+l1 e for Ca(N)20 (25)

Hence, we have
NSa Ž { Ca(N)1 } l+aJe for a >0 (26)

Q.E.D.

For 0 a 1, there is no channel reuse. Hence, Ca(N) = (N-1), and the bound

in (26) is satisfied with equality.

For a bus network with regularly spaced stations, one can verify that

Ca(N)= min{ (N-1) 4 0a ]3 ) for a 2O (27)

Ca(N) is a monotonically decreasing function of a. For 0<a<(N-1), it

decreases from (N-l) to 1.

For a (N-1), no stations are sufficiently close to each other to allow any

simultaneous transmissions that are totally destructive. Moreover, there

can be at most one station located within the potentially destructive

interval of any transmission. Hence, Ca(N) = 1 for a >(N-1). An example of

such a very high speed bidirectional bus network with N=8 stations is

shown in Figure 7.

Theorem 2

In a bidirectional bus network with N equally spaced stations, the

maximum point-to-point throughput of slotted ALOHA is bounded as

follows.
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For 0 < a<(N-1),
N 1 N 1 28

Ca(N)+1 l+ae N- + e (28)

where

(*)+ = max(*,1) (29)

For a >(N-1),

l+a Sa < l+a 1 (30)

Note that the first factor in the lower bound for 0< a <(N-1) represents the

gain of maximum throughput over that of slotted ALOHA without channel

reuse. The gain increases from 1 at a=0 to N/2 at a =(N-1), and then

remains to be N/2 for greater values of a. For a >2, the upper bound in

(28) remains below 1/(2e). Also note that the lower bound on Sa* for

a>(N-1) can be as large as 1/2. This is the case when a=(N-l).

Proof of Theorem 2

From Lemma 1 and Lemma 2, we have

( C N)+1 Sa* <+ e < 1 for a 20 (31)
Ca(N)+ - e -a +a

These bounds are valid for any station configuration. When the stations

are regularly spaced, we can tighten the bounds as follows.

The upper bound in (28), for 0'a<(N-1), is derived as follows. As in

Lemma 1, we consider only the totally vulnerable regions. Let Ma(N) be
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the number of stations located in the totally vulnerable region of a given

transmitting station, not including the transmitting station itself.

Without accounting for end effects, the length of a totally vulnerable

interval is (2/a)-. Given that adjacent stations are separated by a distance

of 1/(N-1), we have

Ma(N) > (N-i) -1 (32)

Then, the probability of success is bounded as follows.

Pa(G) < 1- (l+a) for 0 < a<(N-l) (33)

For fixed a and large N, we obtain the following bound on throughput.

Sa(G) < G e-{(2/a)-+a)G(N- for a<(N-l) (34)

whose maximum with respect to G gives the upper bound in (28).

The lower bound in (30), for a >(N-1), is derived, as follows, by taking into

consideration the absence of the potentially destructive regions for some

transmissions. For large a, many stations fall outside the vulnerable

interval-set. In the network of interest, a transmission can result in a

destructive collision only if it is overlapped by another transmission at the

receiving point in space and time. For each transmission,' there are (N-l)

potential receiving points. For each transmission, at least half of the

potential receiving points are not vulnerable to any collision (See Figure 7).

Any of the remaining receiving points will suffer a destructive collision

only if the one and only one station within the corresponding potentially

vulnerable region is also transmitting a packet during the slot. By

symmetry, each station is active during a slot with probability (1+a)G/N.

Thus, the probability of success is
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Pa(G) > + 1- (l+a) for a >(N-1) (35)

It follows that

Sa(G) >{-1- (1+a)2N}G for a >(N-l) (36)

Maximizing with respect to G, we obtain the lower bound in (30).

Q.E.D.

When the stations are not regularly spaced, the maximum throughput for

a (N-1) may be even higher because a smaller fraction of the potential

receiving points are vulnerable to collisions. In Figure 8, we show a

network, in which the fraction of potentially destructive collisions is small.

It is obvious from the figure that the maximum throughput for slotted

ALOHA in this network is very close to the upper bound in (30). It is

natural to wonder, for a given number of stations on the bus, which station

configuration offers the maximum throughput. We leave this open question

for further research.

3 UNSLOTTED ALOHA

In this section, we study the unslotted ALOHA protocol in a bidirectional

bus network. Let positions on the bus be specified with respect to the

center of the bus, so that any position x must fall within the range [-1/2,

1/2]. We let all functions of distance be defined for this range. We

summarize below our unslotted ALOHA model.

Asynchronous transmissions;
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* Offered traffic including retransmissions is a Poisson process;

* Statistical equilibrium;

3.1 Conventional Analysis

We review in this section the conventional analysis of the unslotted

ALOHA protocol for both broadcast and point-to-point communications.

3.1.1 Broadcast Communications

Conventional analysis of the unslotted ALOHA protocol without channel

reuse is based on the assumption that a transmission is successful only if

there are no other transmissions within a vulnerable period of 2(1+a).

This time interval is chosen for the worst case in which an end-station

broadcasts a packet to every other station. The conventional vulnerable

region for unslotted ALOHA with broadcast communications is shown in

Figure 9.

Let G be the constant offered traffic rate, in packets per second, including

retransmissions. Then, the probability of success is
Pa e-2 (l+a)G (37)

The broadcast throughput is given by
G e -2(l+a)G (38)

whose maximum with respect to G is

Sa* = (39)(l+a ) 2 e

Note that Sa* vanishes as a increases to infinity, with a factor of 2 faster

than that of unslotted ALOHA.
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When channel reuse is taken into consideration, we obtain different

results.

3.1.2 Point-to-Point Communications

Allowing for channel reuse, the vulnerable region for point-to-point

communications is actually smaller than that for broadcast

communications. As shown in Figure 10, the space-time area of a point-to-

point vulnerable region is always equal to 2, independently of a. It is well

known that the throughput of unslotted ALOHA for point-to-point

communications is Ge- 2 G, whose maximum is 1/(2e).

3.2 Space-Time Characteristics for Broadcast Communications

For broadcast communications, the vulnerable region for a transmission is

shown in Figure 11. Let Va(x) be its area. It is easy to verify that

Va(x) = 2 + a/2 + 2ax 2 (40)

Va(x) is symmetric about, and minimized at, x=0. Hence, we could expect

the throughput performance to be a function of x, and to be largest in the

middle of the bus. Since Va(x) increases with a, and is less than

(2+a)-2(1+a), the broadcast throughput of the unslotted ALOHA protocol

indeed degrades as a increases, but more slowly than that under the

conventional assumption.

3.3 Maximum Broadcast Throughput

We show that, if the offered load density is uniform along the bus, the

maximum throughput density depends on the location along the bus. To
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achieve a uniform throughput density, the offered load density has to vary

along the bus. In any case, the maximum aggregate throughput degrades

with the ratio of end-to-end propagation delay to packet transmission

time.

In Theorem 3, we show a differential equation relating the throughput

density to the offered traffic rate density. We then obtain complete

solutions for two special cases.

Theorem 3

Consider unslotted ALOHA in a bidirectional bus network. Let g(x) be

the offered traffic rate density at location x [-1/2, 1/2], in packets per

second. The throughput density at location x for broadcast

communications is

Sa(x) = g(x) Pa(x) for xe[-1/2, 1/2] (41)

where Pa(x) is the spatial density of the probability of success.

Sa(x) is the solution to the following differential equation.

Sa'(x)g(x) = Sa(x) { g'(x) - g(x)ha(x) } (42)

where
x 1/2 

ha(x) = 2a g(z) dz (z)dz (43)
- 1/2 x

and f(x) denotes the derivative of a function, f(x), with respect to x.
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Proof of Theorem 3

Let ka(x,z) be the temporal length of the vulnerable region at location z

when the transmission originates at location x. For broadcast

communications, as shown in Figure 11,

ka(x,z) = 2(1+aiz-xl) (44)

The spatial density for the probability of success is

Pa(x) = exp - Jka(x,z) g(z) dz (45)
-1/2

Taking the derivative of (41), multiplying each side by g(x), and using (45),

we obtain
1/2

Sa'(x)g(x) - g'(x)Sa(x) = g(x)Sa(x) f ka'(x,z)g(z) dz (46)
-1/2

It is easy to verify that

ka'(x,z) = +2a if x>z (47)

It follows that (42) holds with ha(x) defined below.

ha(x) J= ka'(x,z) g(z) dz = 2a . g(z) dz - J g(z) dz (48)
-1/2 - 1/2 x

Q.E.D.

We apply the above theorem to two special cases, as Abramson did in [8]

for a packet radio broadcasting network with capture.
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3.3.1 Case #1: Constant Offered Load Density

Suppose that g(x) is constant, such that

g(x)= G for xe[-1/2, 1/2] (49)

From (43), we have

ha(x) = 4a Gx (50)

From (42), (49), and (50), we obtain the following differential equation.

Sa'(x) = -4aGxSa(x) (51)

Solving (51), we obtain the broadcast throughput density of the unslotted

ALOHA as follows.

Sa(x) = G e -(2+a)G { e-2aG(x 2 -l/4) } (52)

Note that for a given G, Sa(x) is minimized at the ends and maximized at

the center of the bus. It follows from (52) that

G e -(2+a)G < Sa(x) < G e -(2+a/2)G (53)

The aggregate throughput is
1/2

Sa(G)= JSa(x) dx (54)
-1/2

Note that we have explicitly indicated in (54) the dependence of the

aggregate throughput on G.

We can write

Sa(G) =G e -(2+a/2)Grf 2G aG I 2(55)

where erf(*) is the following standard error function:
y

erf(y) = e 2 dw (56)

For any given a >0, we can determine the maximum throughput Sa*,

defined as follows.



Lee & Humblet 23

max
Sa* = G {Sa(G)} (57)

From (53) and (54), we obtain the following bounds.

1 l+a/ 2e (58)
+a/2) 2e a +a/4 2e(8

Note that for large a, the lower bound is twice the maximum broadcast

throughput derived by conventional analysis.

In Figure 12, we show Sa* and its bounds. We have included the result of

Case #2 and that of conventional analysis for comparison.

3.3.2 Case #2: Constant Throughput Density

Suppose that Sa(x) is independent of location, such that

Sa(x) = Qa for xE[-1/2, 1/2] (59)

This corresponds to the interesting case where all stations have the same

throughput. We assume that g(x) is symmetric about the center of the bus.

Thus,

g(x) = g(-x) (60)

Taking the derivative of (43) and using (60), we obtain

ha'(x) = 4ag(x) (61)

From (42) and (59), we have

g'(x) = ha(x)g(x) (62)

Taking the derivative of (62), multiplying each side by g(x), and using (61),

we obtain

g"(x)g(x) = 4ag 3 (x) + {g'(x)) 2 (63)

Solving the above differential equation, using (60), we obtain

g(x)= 2a cos2 (bx) 2a sec2 (bx) (64)

for some constant b.
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Define R as follows.

R = r/(2b) (65)

Note that g(x) is unbounded if

Ixl > R (66)

If b > 7r, then R < 1/2, and (45) implies that Pa(x) = 0 for x e[-1/2, 1/2].

It follows that Sa can only be zero. For a given b, [8] defines the Sisyphus

Distance as the value of x with which g(x) in (64) becomes unbounded. It

does not appear to have any physical meaning in this case (without

capture), as b is an arbitrary parameter. In the analysis below, b is always

smaller than x, so that R > 1/2 > x.

To evaluate Pa(x), we make use of the following indefinite integral, which

can be derived by means of integration by parts.

=bX 4ln {cos(bx)} (67)fx sec2(bx) dx= b tan(bx) +b2 In {cos(bx)} 

Using (44), (45), (64), and (67), we obtain

Pa(x) = exp {-btan(b/2)} (I + )-lnsec2(bx)} (68)

From (41), (64), and (68), one obtain

Sa(b) = Qa = 2a exp - [tan(b/2)(a+2) (69)

where Sa(b) is the aggregate throughput as a function of b.

For any given a20, we can determine the maximum aggregate throughput,

Sa*, defined as follows.
max

Sa* = b {Sa(b)} (70)

Taking the derivative of (70) with respect to b, and setting it to zero, we

obtain
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(b 2 tan2 + (b tan(b) j(b J2 ( (71)

Equation (71) can be solved numerically to determine the value of b which

maximizes Sa(b) in (69).

Making use of the fact that tan(b/2) > (b/2), we obtain from (69) the

upper-bound in the following expression.

(l+a ) 2 2e (72)

The: lower-bound in (72) follows from the fact that the vulnerable region

considered in the analysis is smaller than that assumed in the conventional

analysis.

We show in Figure 12 the behavior of Sa* as a function of a. The optimal

offered load density, g*(x), which is obtained from (64) with the optimal

value of b, is shown in Figure 13. Note that g*(x) decreases with increasing

value of a. As g*(x) is proportional to the number of retransmissions, this

confirms the observation in [11].

4 CONCLUSION

Channel reuse is part and parcel of many contention-based multiple access

protocols. In this paper, we have evaluated the throughput performance

of slotted and unslotted ALOHA in a bidirectional bus network by giving

special attention to the inherent channel reuse characteristics of the

protocols. We have particularly examined the behavior of the ALOHA

protocols when propagation delays are much larger than the packet
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transmission time. We have shown that conventional analysis sometimes

overestimates the maximum throughput by neglecting the effect of

propagation delay, and sometimes underestimates the maximum

throughput by not considering channel reuse.

For point-to-point communications in a bidirectional bus network with

probabilistic station configuration, the maximum throughput for slotted

ALOHA degrades below that of unslotted ALOHA when propagation delay

is large, but remains above 1/(3e). When the station configuration is

deterministic, the maximum throughput for slotted ALOHA can exceed the

classic limit of 1/e.

For unslotted ALOHA with broadcast communications, we have shown that,

if the offered load density is uniform along the bus, the maximum

throughput achievable by a station varies along the bus, and is maximized

at its center. To achieve a uniform throughput density, the offered load

density has to vary along the bus. We have derived the optimal profile of

the offered load density. The maximum throughput of unslotted ALOHA is

higher for the case with constant offered load density than for the case

with constant throughput density. The latter case is the one of practical

interest.
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