
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2006-038 May 27, 2006

What the Assassin’s Guild Taught Me
About Distributed Computing
Jacob Beal

Chapter 1

What the Assassin’s Guild

Taught Me About

Distributed Computing

Jacob Beal

MIT Computer Science and Artificial Intelligence Lab

jakebeal@mit.edu

Distributed computing and live-action roleplaying share many of the same fun-
damental problems, as live-action roleplaying games commonly include simulations
carried out by their players.

Games run by the MIT Assassin’s Guild are particularly illustrative of distributed
computing issues due to their large scope and high complexity.

I discuss three distributed computing issues addressed by Assassin’s Guild game
design—information hiding, error correction, and liveness/consistency tradeoffs—and
the relevance of the solutions used by game writers to current problems in distributed
computing.

1.1 Introduction

I am a computer science researcher, and one of my hobbies is writing and play-
ing live-action roleplaying games with the MIT Assassin’s Guild. Historically, it
seemed clear to me that these were very different types of nerdy pursuits. Re-
cently, however, I began to notice connections between problems in game design
and distributed computation.

This paper is an attempt to set down those connections clearly and to begin
a discussion between the two fields. Game design can clearly benefit from a
precise understanding of the problems it engages. Perhaps less obviously, the

2 What the Assassin’s Guild Taught Me About Distributed Computing

study of distributed computation can benefit from understanding the methods
employed by game designers.

I will begin by explaining why it is reasonable to think about live action role-
playing games in terms of distributed computing, and how this is particularly
the case for games run by the MIT Assassin’s Guild. I will then give three exam-
ples from game design that illustrate the connection well: the tea impossibility
result, recovery of destroyed state in tunnel systems, and liveness/consistency
tradeoffs in ranged combat. Finally, I will discuss the lessons for distributed
computing that can be drawn from these examples.

1.2 Why is LARP Distributed Computing?

In a roleplaying game, each player takes on the persona of a character in the
imaginary world of the game. In live-action roleplaying (LARP), the game world
is projected into the real world and some types of game action are physically
acted out by the players. For example, if a classroom is used to represent a
building, then a player moves her character into the building by walking into
the classroom.

This is an example of physical embodiment, where the real world directly
represents the game world. Other aspects of the game world may not be repre-
sented in the real world at all, or may be represented as information managed
by a single player, or by the game masters (GMs) who are running the game.

Most LARPs also involve simulations whose execution is distributed across
many different players. The economy of the game world, for example, may be
simulated by players exchanging cards representing quantities of trade goods.

Distributed simulations are not rare. It is difficult for players to maintain
suspension of disbelief (the feeling of immersion in the game world) when they
have to pause for more than a few seconds in the real world while what happened
in the game world is sorted out. As a result, every simulation involving time
scales shorter than a few hours tends to be distributed.1 In a complex game,
many simulations will be taking place simultaneously, as the characters fight with
guns and swords, command armies, explore ruins, seduce each other, influence
public opinion, and so on.

A group of players carrying out a distributed simulation is equivalent to a
network of devices executing a distributed algorithm: each player is a device,
and two players capable of interacting are connected by a link in the network.

This network is a challenging environment for distributed algorithms:
• Small computational capacity: although players are intelligent, faithful exe-

cution of rules is slow, no more than a few operations per second.
• Small working memory: players can remember only a few digits accurately,

plus a somewhat larger amount of context-cued rules. Much more can be
stored unreliably, or reliably on high-latency storage (e.g. paper).

1The exceptions tend to be in games with only a few players and where all of the players
are confined to a small space.

What the Assassin’s Guild Taught Me About Distributed Computing 3

• Slow communication: information exchange between players is limited by the
rate at which humans act and interpret sensory information.

• Partially synchronous execution: even with watches, it is futile to try to
synchronize players tighter than a few seconds.

• Changing network topology: as players move through physical space, their
ability to interact with one another changes.

• Poor network connectivity: it is rare for the network of a game to not be
partitioned if there is any significant amount of space available to players.
Cliques of players wishing to act privately will regularly move out of contact
with the rest of the game, partitioning the network. In a large game space,
a clique working secretly may not come into contact with any other players
for hours or even days.

• Byzantine failure: although cheating is virtually non-existent, honest mis-
takes and confusion about the rules can cause arbitrary failures in communi-
cation and computation. These failures are most likely to occur when they
matter most because the players are awash in adrenaline during critical mo-
ments in the game.

• Differing incentives: games usually involve competition between players, cre-
ating groups of players with the incentive to manipulate the simulation to
benefit themselves at the expense of others. Although cheating is virtually
nonexistent due to social pressure, players will happily abuse one another
within “the spirit of the rules.”

Most games also encode part of the simulation in inanimate objects, such as
a sign or an envelope taped to the wall. Viewed from a distributed computing
perspective, these are shared storage devices with no computational capability.
These storage devices experience arbitrary stopping failures when destroyed by
janitors, disgruntled grad students, etc.

This environment is a fierce stress-test for distributed computing
algorithms—almost unrealistically so for many current networking problems.
Future computer networks, however, may have much more in common: as com-
puters become smaller, it is more difficult to make them error-free; as they
become faster, communication delays become relatively longer; as they become
more embedded in our environment, energy concerns limit their processing ca-
pability and they become more mobile; as our networks span larger areas, they
contain more groups with competing interests.

1.2.1 A Brief History of the MIT Assassin’s Guild

The MIT Assassin’s Guild is of particular interest to our examination of the
connection between LARP and distributed computing due to the large scope of
its games and its long history of a highly active design and analysis community.

Founded at MIT in 1982, the Assassin’s Guild is a student group that runs
LARPs. A typical game involves 20 to 60 people—a few extreme examples had
under 10 or over 100. The length of a game ranges between 2 hours and 10 days
of continuous play—the shortest known game ran for 7.5 minutes[2], and the

4 What the Assassin’s Guild Taught Me About Distributed Computing

longest continuously for a full month[10].
Games often run throughout a large fragment of the MIT campus, covering

areas 1 kilometer or more in diameter. MIT’s unique architecture of intercon-
nected buildings and tunnels further increases the effective distance between
game areas, particularly since many parts of campus used in games have no
radio or cell-phone reception.

The Assassin’s Guild has a strong tradition of gamewriting and analysis:
unlike many LARP groups, most Guild games are only run once, and almost all
Guild games are written by Guild members using a set of rules customized for
that particular game. As a result, over 300 unique games have been run since
the founding of the Guild. The culture of the organization encourages research
and development as well: it is traditional to open a game for dissection on the
Guild mailing list after it finishes, explicit gaming experiments are often run,2

and the Guild holds a yearly workshop, “The Ides of March,” on the subject of
gamewriting.

In the past 10 years or so, this trend has intensified, with a heavy focus
on infrastructure to support gamewriting. Although not official, the Standard
Rules[9] have gained general acceptance, providing a well-tested base set of game
rules which most players are familiar with. On the more technical side, two
competing software packages, GameTeX[8] and Template[7] provide suites of
tools for development, production, and typesetting of games.

All of these combine to produce a community engaged in research and devel-
opment of LARP technology. The distributed simulation rules we are interested
in are a major area of investigation, due to the difficulty of the issues involved.

1.3 The Tea Impossibility Result

The tea impossibility result is what first caused me to realize that LARP writing
and distributed computing shared some of the same problems. We were engaged
in writing Xiaolong[4], a game set in mythic China, so drinking tea was an
important element of the game—for example, every meeting had to have tea
served, and no contract could be signed without drinking tea. Since the game
involved lots of politics and intrigue, it was possible for people to poison one
another, and tea was a natural vehicle for poison and other drugs.

This seemed simple enough. There is a standard method used for dealing
with ingestibles in the Guild: the substance is represented by a folded slip of
paper, with a visual description on the outside, and the effects of ingestion
hidden on the inside. When somebody commits to ingesting the substance, they
open the slip, read the effects, and destroy the paper. Thus, only the person
who drinks “a clear, odorless liquid” knows whether it was water or LSD.

Sitting down to write the poison rules, however, we came across a curious
dilemma. No matter how we arranged them, we couldn’t create a distributed
simulation satisfying these four constraints:

2For example, the X-Games[3, 1] and Guild Camp[5, 11, 6] series

What the Assassin’s Guild Taught Me About Distributed Computing 5

• Any number of players can secretly add a substance to a teapot.
• Every cup of tea poured from a pot contains the same mixture
• The effects from drinking can be written legibly on a slip of paper that fits

under a teacup.
• Nobody can know what a teapot contains without drinking from it.

Frustrated, I proposed that it was provably impossible, and indeed it is. To
see why, let’s formalize the system slightly. Since every cup of tea has to be
identical, the teapot needs to have one or more distinct collections of identical
slips, each folded so as to hide one or more sets of information. We can thus
represent a teapot as a set of k shared read-modify registers. The registers are
initially blank, and modifying the contents involves first reading then replacing
the contents (because you can see what’s already written on the hidden spot
you’re writing on, and we’re assuming that the modification is carried out by a
player).

Drinking a cup of tea is equivalent to an atomic read from all k registers.
Adding a substance is equivalent to a modify operation on a register. In order to
keep the contents of the teapot secret, modify operations must happen only in
blank registers (otherwise one or more substances are revealed without drinking).

The register a player modifies must be independent of the contents of the
teapot—otherwise, it would be possible to test whether a teapot has been mod-
ified by attempting to add a new substance. Collisions can therefore only be
prevented if there is one register per player—hashing isn’t a reasonable approxi-
mation because game dynamics are strange and there is no good way to predict
which players are unlikely to modify the same teapot.

The problem thus hinges on the physical size of the slips of paper imple-
menting each register. Past experience has led the Guild to use slips no smaller
than 0.75cm by 8.5cm, folded in half to conceal the contents. With a minu-
mum of 6.375 cm2 of paper per register, ensuring no collisions in a 40 person
game (as ours was) would require a minimum of 255 cm2 of paper—nearly half
a US standard sheet—folded intricately to allow each register to be accessed
independently. That much folded paper does not fit under a teacup.

In the end, we did an ecological analysis of the role of tea and poison in the
game to determine which constraint to weaken. We then solved the problem
by changing the read-modify register to a read-write register: teapots could
be dumped and refilled, but not added to. Of the many possible solutions
considered, this was one which provided the best tradeoff between function and
cost given the relative importance of poison tea in the game.

Although tea is a special case, similar problems are encountered any time
players need to jointly modify hidden information. The solution in each case is
different. For example, competitive puzzle solving generally weakens the igno-
rance constraint, allowing a player to know whether another player has already
accessed a register, but not what they have done with it.

6 What the Assassin’s Guild Taught Me About Distributed Computing

1.4 Recovery of Destroyed Tunnel State

A tunnel system is a common feature of Guild games: a network of difficult
to access locations including distant parts of campus, usually filled with useful
items and dangerous traps. Tunnels have wildly varying purpose, contents, and
rules, and can be instantiated in the game world as anything from secret passages
in a castle to a radioactive jungle.

All tunnel systems, however, share the problem of conservative transactions
in the face of error. Because the tunnels are far-flung, the items they contain are
stored in envelopes taped to the wall which occasionally go missing (thrown out
by janitors, etc). When, for example, a player trying to steal the Maltese Falcon
finds out that the envelope representing its display case has gone missing, he
informs the GMs and has them recreate it. The problem is determining whether
the Maltese Falcon was in the envelope when the envelope was destroyed, or
whether somebody else already stole it.

More formally, the distribution of items in the game is manipulated through
transactions that conserve their number.3 When an envelope disappears, it is
equivalent to the device experiencing an error that zeroes its state. The GMs
need to reconstruct the destroyed state using information from the rest of the
game.

The usual method is to poll the game to gather the transaction history of
the device, which allows the GMs to reconstruct its pre-error contents. The poll
must be executed quickly—detection of an error generally implies that players
are waiting to interact with the device. At the same time, it must not interfere
with the progress of the game or reveal secret information (such as its contents
or sometimes even its existence).

Conducting a rapid poll of all the players in the game is often prohibitively
expensive. Instead, game designers act preventatively and use a layered defensive
design to minimize the likelihood that they will ever have to conduct a rapid poll
of the entire network. A typical game employs the following layers of defensive
design:
• Long-Term Prevention: the base error rate is reduced by building awareness

and goodwill with the community. For example, envelopes say when they
will be removed, and careful post-game cleanup helps prevent envelopes from
being torn down during future games.

• Short-Term Prevention: the particulars of item and device deployment affect
error rates. Error is reduced by deploying envelopes with smaller siszes, away
from doors, in areas with stable temperature, etc. Using items with physical
representations (as opposed to just a paper description) also reduces error
rate.

• Error Tolerance: item economies are generally designed to tolerate some vari-
ance in number of items, so correct reconstruction of pre-error state matters
only for a small number of key items. Building redundancy into player plots
also reduces the impact of errors.

3Allowing players to create or destroy items does not affect the problem.

What the Assassin’s Guild Taught Me About Distributed Computing 7

• Monitoring: Players like to tell stories to the GMs during the game, and items
with low error tolerance are often important to their characters and will turn
up in the stories. A few critical items may explicitly require transactions to
be logged with the GMs in advance or following completion.

• Narrowed Scope: the GMs can exploit access controls, group structure, and
other information to narrow the set of players polled for a given error cor-
rection.

This layered design, while not affecting the worst case cost, lowers the amor-
tized cost and can often prevent an worst cast execution from ever occurring.

1.5 Liveness and Consistency in Ranged Com-

bat

Combat between characters is usually the most time-sensitive simulation in a
game. A group of players fighting must be able to establish consensus on the
sequence of operations carried out, despite the fact that the battle may include
many people spread over a large area of space. This is not a simple problem.
A combat-intensive game can easily develop a battle involving dozens of people
spread through several buildings and lasting for many minutes. Worse yet, the
use of semi-automatic and fully-automatic toy weapons means a single partic-
ipant can easily be involved in the resolution of a dozen or more concurrent
operations.

At the same time, resolution of each individual operation must be rapid and
wait-free: otherwise a player can end up “stuck” resolving one action while other
players act to put him at a disadvantage. The problem is further intensified by
the tendency of some players to panic and forget rules during a stressful situation,
essentially causing them to freeze up while they re-read the pertinent section of
the rules.

This boils down to a classic distributed computing problem of tradeoffs be-
tween liveness and consistency, since stress-induced errors mean that we cannot
guarantee both liveness and consistency. Impairing liveness leads to “stuck”
players being unfairly disadvantaged because of the failure of an opponent. Im-
pairing consistency leads to disputes between combatants about what happened,
which may also impair liveness!

Guild designers have settled on a set of rules for ranged combat4 which
guarantees neither liveness nor consistency, but delivers consistently satisfactory
results by managing the conditions under which failures can occur.

The rules are simple: attacks are represented by projectiles from a toy gun or
harmless thrown objects such as ping-pong balls. The first object the projectile
contacts is hit by the attack: if it hits a player, the player hit secretly calculates
its effect based on projectile type. Shots that hit long hair or loose clothing
don’t hit; shots that hits an item the player is carrying hit the player. In case of

4Hand-to-hand combat is still a matter of active debate.

8 What the Assassin’s Guild Taught Me About Distributed Computing

question, attacker calls the shot; in case of a serious dispute, all action is halted
while things are sorted out.

Considered from the perspective of distributed computing, it is surprising
that these rules work at all, since there is barely any attempt to assure liveness
or consistency. Yet they do work: disputes of any sort are rare, and disputes
that interfere with the game (e.g. by forcing a halt) are essentially non-existent.

To understand why this is, we must carefully examine how inconsistency
leads to the adverse consequence of disputes between players. We will start with
the empirical observation that disputes over combat arise when a player believes
the outcome of combat is affected by an opponent’s unfair advantage.

First, notice that if the target takes a hit which the attacker believes was
a miss, that is an unfair disadvantage and will not lead to a dispute. Second,
notice that a dispute arises not on the basis of fact, but on the basis of belief,
so only inconsistencies detectable by the players can lead to disputes. Finally,
notice that disputes are about outcomes, not individual projectiles: individual
projectiles only matter because of their cumulative effect in causing a player’s
defeat.

Now we can start to understand why the ranged combat rules work. The
embodiment of attacks as physical projectiles restricts the consensus problem is
to the question of where each projectile first hits, and we can consider only two
player combats without loss of generality. Most shots are clean misses or clean
hits, and the rules about hair, loose clothing, and items means that the visual
perception of the attacker is likely to match the tactile perception of the target.
Moreover, the attacker can often see the target notice a shot impacting. Thus,
disagreement is already infrequent.

There are three ways that inconsistency can occur: the attacker thinks a
projectile missed and the target thinks it hit, the attacker thinks it hit and the
target thinks it missed, or both think it hit but the target miscalculates the
effect. In the first case, the target is placed at an unfair disadvantage, and so
no dispute will arise. The other cases are dealt with by the attacker calling
the shot: because the attacker calls the shot, a few quick phrases can establish
the belief that the attacker and target agree on whether the shot hit. Usually
this leads to consistency, but errors in communication and calculation can still
lead to inconsistency. For this to lead to a dispute the inconsistency must be
detectable by the attacker, but since it is only observed as a cumulative effect in
the defeat of the target, and since the attacker generally has some uncertainty
about the target’s resources, a small rate of inconsistencies is undetectable.

Without disputes, the threats to liveness are never realized, and thus the
Guild’s ranged combat produces results equivalent to those of a consensus mech-
anism which guarantees liveness and consistency.

1.6 Conclusions

As we have seen, the rules of live action roleplaying games can be analyzed as
distributed computing algorithms. Surprisingly, however, the MIT Assassin’s

What the Assassin’s Guild Taught Me About Distributed Computing 9

Guild rules solve problems in ways that will feel rather foreign to most students
of distributed computing. Rather than provide guarantees, a Guild designer
working on an algorithm is likely to look for ways to make exception cases rare
and decrease their impact on the larger system. It is an open question whether
this sort of approach can be harnessed to help with problems in distributed
computing. Clearly, however, there is a relationship between the two fields
which invites further investigation.

Bibliography

[1] Bates, Danny, Philip Tan, Eddy Karat, and William Lowenthal, X-
Games III, MIT Assassin’s Guild (2005).

[2] Beal, Jake, “Partitioning germany: A dadaist interlude”, Guild Camp,
(J. Beal and B. Noorani eds.). MIT Assassin’s Guild (2002).

[3] Beal, Jake, Jennifer Chung, and Geoff Schmidt, X-Games, MIT Assas-
sin’s Guild (1999).

[4] Beal, Jake, Joe Foley, liz smith, and Jade Wang, Xiaolong, MIT
Assassin’s Guild (2006).

[5] Beal, Jake, and Benazeer Noorani eds., Guild Camp, MIT Assassin’s
Guild (2002).

[6] Boylan, Laura, and Beth Baniszewski eds., Guild Camp III: British
Invasion, MIT Assassin’s Guild (2004).

[7] Brown, Jeremy, and Jamie Morris, “Template”, Software Package
(2001), Version 1.5d, http://web.mit.edu/jemorris/Template/v1.5d/.

[8] Clary, Ken, “Gametex”, Software Package, 2001 version.
http://web.mit.edu/jakebeal/Public/GameTeX/.

[9] Morris, Jamie ed., Standard Rules for MIT Assassin’s Guild games (2004-
2005 edition), MIT Assassin’s Guild (2004).

[10] Soderstrom, Melanie, Midsummer Night’s Gathering, MIT Assassin’s
Guild (1998).

[11] Tan, Philip ed., Guild Camp II: This Time It’s Not Guild Camp I, MIT
Assassin’s Guild (2004).

