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Abstract

The focus of this paper is a comprehensive case study of the fundamental limitations
of and controller design for the ill-conditioned high purity distillation column problem. As
a result of the work on this problem, general ideas are presented concerning the design of
robust controllers using norm-based methods.

The case study of the distillation column problem includes three main components. The
first component is a study of the physical plant including performance objectives, singular
value analysis, and uncertainty description. It is shown that the relationship between the
plant singular value directions and the input uncertainty makes this control problem dif-
ficult. The second component is the application of i-synthesis, a design methodology for
robust performance incorporating the concept of structured uncertainty in an H, setting,
on the distillation column. The results of the designs are analyzed and conclusions are made
concerning tradeoffs for controller design and frequency domain characteristics of the re-
sulting controllers. The third component of the study is the application of the 4f design
methodology. Since only within the past year was a computationally stable algorithm for
4t designs developed and implemented, a study of minimizing the weighted sensitivity and
mixed sensitivity/KS problem is completed. The results of this preliminary work are used
to solve El structured uncertainty problems for the distillation column. The results of the
designs are used to analyze the system. Comparisons are made with discrete time A designs
generated in this paper.

The design work on the distillation column problem resulted in an increased understand-
ing of the general procedure of designing robust controllers using H, and fl design method-
ologies. First the effect of varying parameters of a first order frequency domain performance
weight is studied to determine the effect on the time domain behavior of the resulting sys-
tem. Second, directional information about the plant is included in the design procedure
to increase the level of robust performance. Third, comparisons of the advantages of each
methodology are made.
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1 Introduction

Recently, the high purity distillation column has been a benchmark problem for many control

design methodologies. A series of papers presented at the 1991 Conference on Decision and

Control was devoted to controller designs for this system [15], [11], [21]. It is the goal of this

paper to study the limits to controller design of this system using current state of the art norm-

based robust control methodologies. The goal is not simply to design controllers, but to analyze

the inherent limitations of the system and the characteristics of the resulting controllers.

Contributions are made in this paper toward better understanding the 4l structured uncer-

tainty and pl design methodologies and the controller design limitations of this ill-conditioned

plant. First, the concept of structured uncertainty for robust performance design and analysis

is applied to the distillation column problem in the 4l setting. While the concept of structured

uncertainty applied in an Ha setting (y) has been studied previously for this an other non-

academic problems, the results of this paper provide one of the first applications of this concept

in an 4l setting. Second, information is presented on the selection of weights for performance

specifications in norm-based controller designs. The effect of varying parameters in a first order

performance weight on the sensitivity is investigated and related to time domain characteristics

such as rise time and overshoot. Also, it is shown that adding directional information to the

performance weight in both the f 1 structured uncertainty and / design procedures increases the

level of robust performance. Third, a comprehensive study of the distillation column control

problem is presented. One aspect of the study is an analysis of the difficulties in controller

design for the system including a concise review of previous work on the problem. The second

aspect of the study is the analysis and comparison of the results of the 4l structured uncertainty

and / designs for the system in terms of robust performance in the time domain and controller

characteristics in the frequency domain.

2 Background

2.1 Distillation Column

The goal of the distillation column (see Figure 1) is to separate the feed mixture into its light

and heavy components with a desired degree of purity. For more detailed description of column

operation see [17] and [18]. The system inputs are the reflux (L) and the boilup (V). The
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F. 

Figure 1: High Purity Distillation Column Model

. ___ , -
Gain Input Direction: Output Direction: [YD

0.7075 0.7744
0.7067 -0.6328

0.7067 0.6328
-0.7075 0.7744

Table 1: Singular Value Analysis of LV Configuration

measured outputs are the composition of light component in the top and bottom products.

There are two sources of input uncertainty which are present. The first is the up to 20%

uncertainty in actuator gain. The second is the up to 1 second time delay due to the flow

dynamics. See Appendix A and B for a description of the plant and uncertainty models.

There are three main requirements which should be met by the controller. The first is robust

stability for uncertainty mentioned above. The second is robust performance with respect to

the time domain specifications of [15]. (These can also be found in Appendix B). Finally, as

described in [19] the system should achieve robust disturbance rejection.

The high degree of plant directionality and the resulting difficulties of controller design have

a direct physical interpretation which can be inferred from the singular value decomposition

shown in Table 1. The nominal high gain direction corresponds to increasing the light component

composition in both top and bottom products and results from increasing reflux while decreasing

boilup. The low gain direction corresponds to increasing the light component composition in

the top component while decreasing the light component in the bottom product and results

from increasing both the reflux and boilup. With this physical interpretation, we can now see

how difficulties would arise in controlling this system. If the goal was to make both products
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more pure (a move in the low gain direction), we would attempt to greatly increase the refliux

and boilup equally. As a result of actuator gain uncertainty, reflux may be raised more than

boilup. This difference results in a command with a component in the high gain direction. The

effect of this high gain direction error will overshadow the intended command component in the

low gain direction. As a numerical example, assume, for the sake of simplicity, that v,maLv =

[1 -1]' /v and VminLV = [1 1]' /vJ. Assume that the command v = avma,,,,x + /3 Vminx is

applied to the system. The actual command entering the nominal plant, after passing through

the actuator with the uncertainty given in Appendix A can be shown to be vact = tv + Av with

[( ) + (6162 ) /3] VmaLV + [( 2' +6 ) p + ( 62 ) ] VminLv (1)

Thus it is possible (when 62 = -61 ) that a command with a large component in the low plant

gain direction will have an error term with a large component in the high gain direction,

Av = 6 1v,,a,Lv + 6 laVminLv for 62 = -61 (2)

Note that if each gain direction was associated with an independent set of input variables, the

problems described above would not occur.

2.2 Previous Research

Recently, several design methodologies have been applied to this problem in an attempt to

provide robust stability and robust performance for the strict time domain specifications; how-

ever, little effort has been made to quantitatively state the limits to performance based on the

model uncertainty. Also, several of these methods do not explicitly incorporate known model

uncertainty and performance constraints.

In [19] Skogestad, Morari, and Doyle study an inverse based controller (high condition num-

ber) and a diagonal controller (low condition number) for the high purity distillation column.

A slightly different set of specifications, model, and uncertainty than that found in Appendix A

were used in this paper. Nominal performance is found to suffer with the use of the diagonal

controller since due to plant directionality more gain is needed in low plant gain directions which

this controller cannot provide. Robust performance is found to suffer with the use of the inverse

controller since there is uncertainty as to the actual direction of low plant gain.

Skogestad, Morari, and Doyle also apply pi synthesis (D-K iteration) to the distillation col-
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W 1: Model Uncertainty Weight
W 2: Performance Weight

Figure 2: A Block Structure used in / synthesis

umn. / analysis and synthesis techniques were developed to address the issues of robust per-

formance. More detail on D-K iteration and iL can be found in [10], [8], [9], [20]. The A block

structure for the uncertainty and performance blocks can be seen in Figure 2 with Al and A2

linear, time-invariant, I1 A IIo< 1. Note that W2 is not unique in its representation of the

desired time domain performance specifications. In fact W 2 contains little information to limit

overshoot. The effect of this lack of information becomes apparent when observing that a value

very close to one (1.06) is achieved for p, yet the overshoot in the time domain simulations does

not meet the robust performance specifications.

In [11] Hoyle, Hyde, and Limbeer design a two degree of freedom controller for the distillation

column using Ho theory. The presence of uncertainty is modeled using coprime factorization;

however, bounds on the actual plant uncertainty are not included in the design procedure.

Instead, they are used as a robust stability check after the design is complete. The time domain

specifications are also handled indirectly. The quantity II Ryb - AMo II is minimized over all

stabilizing compensators where Ryb is the weighted closed loop transfer function and AMo is a

transfer function with a step response that meets the desired specifications. Note that due to

the reliance of performance on the prefilter, the good robust performance characteristics do not

apply to output disturbance rejection; the need for which was discussed in [19]. Also, it is very

difficult to make any general statements on the system limitations since little information on

the plant or specifications were used directly in the design procedure.

In [21] Zhou and Kimura apply the robust stability degree assignment procedure to the

distillation column. A robustness function, which is nothing more than a weighting matrix, is

used to model uncertainty. From the analysis of [19] Zhou and Kimura hypothesize that by

matching controller singular values in the middle frequency range (10-1 - 10° rad/sec) robust

performance will be achieved. Very complicated, high order, rational weighting functions with
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directional properties consistent with plant directionality are introduced into the robustness

function. While the general concept used to choose the weights is clear, the procedure used

to choose these specific values is not. The time domain specification of rise time is met by

forcing all closed loop poles to be less than some -3 where l3 > 0. This forcing of closed

loop pole location is accomplished by performing the design in a space with a shifted jw axis.

Overshoot specifications are treated by iterating over 3i until an acceptable level is found. Time

domain and frequency domain simulations show that the singular value matching does produce

consistency in the level of performance over possible plants in the model set; however, this level

of performance is not very good with respect to the specifications (Appendix A). Concerning the

ability to determine system limitations, some information can be obtained from this procedure

through the tradeoffs between overshoot and achievable /3.

3 Analysis and Synthesis Using p

The complex structured singular value, p, provides a good theoretical framework for analyzing

and synthesizing systems for robust performance ([16], [8], [9], [20]). The following sections

contain the results of applying p to the distillation column, the limitations of the system based

on these results, and finally the application of p for the distillation column in discrete time.

3.1 p-Synthesis for the Distillation Column Problem

The following subsections describe the rationale for the specific weighting functions which are

used in this design. The structure shown in Figure 2, with Al and A 2 linear, time-invariant,

11A / oo__ 1 is used in these designs; however the choice of weighting functions is unique to this

paper. Both of the weights chosen to model the performance objectives and uncertainty were

first order. Large order weights always add to controller order and can obscure the intuition

behind the choice; therefore. since the complexity of the model uncertainty did not warrant a

high order weight for accurate modeling, first order weights will be used.

3.1.1 Uncertainty Modeling

A technique similar to that used in [11] is used to bound the uncertainty; however, unlike the

design procedure in [11] this bound will be used in the actual design method. The uncertainty
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described in Appendix A will be modeled as a multiplicative norm bounded input perturbation.

GLV (S) = GnLV (s) (I + A) (3)

(1 + bl)e --l - 1 0(4)

0 (1 + 62 )e - 2' - 1 

Through algebraic manipulations similar to those in [11] a bound on the maximum singular

value of this perturbation is obtained. Also, a first order transfer function is found to bound

this function.

oma, (A (jw)) < v2.44 - 2.4 cosw < 2.3123 (s + .09)) (5)

It can be shown analytically that the magnitude of this function does indeed bound the uncer-

tainty. Therefore in Figure 2 Wi(s) = wl(s)I. Obviously this model will produce a conservative

design since the physical uncertainty is known to be diagonal and a full A block is used to model

it. The degree of conservatism, however, is not great [19]. Note that the norm bounded weighted

perturbation used in [19] does not bound Equation 4.

3.1.2 Performance Weight

In this paper a more systematic approach to choosing a performance weight is used than in

the previous work discussed in Section 2.2. Qualitatively, the time domain design specifications

that were given in Appendix B require good nominal and robust disturbance rejection and

command following. It is a difficult task to directly translate time-domain specifications into

frequency-domain specifications on the sensitivity of the form

II IW(S)S() I1o< 1 (6)

through the choice of W2. Some time-domain specifications are easier to translate than others.

For example, the specification of the absolute value of steady state error to step inputs < 0.01

can be translated directly into a specification on the sensitivity: S(jO) < 0.01 = -40dB.

The performance constraints in Appendix B require for each input given that I e(30) [ = I
r(30) - yg(3 0) I < 0.1, where e is the error, r is the reference command and yg is the measured

output of the plant, G. This implies a time constant of 1676 since e- 07676x30 = 0.09998. This0.07676
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indicates that most dominant poles of the sensitivity should he less than -0.07676. The overshoot

constraints are the most difficult to quantify in the frequency-domain in terms of Equation 6.

The high frequency gain of the sensitivity should be limited to decrease overshoot somewhat.

There is really no qualitative way of choosing a weight that incorporates time-domain overshoot

specifications.

From the results of the previous paragraph, loop shaping ideas in Hoo designs were used to

arrive at the performance weight of

W 2(s) = 0.8 + .072 12x2 = w2 (s)12x2 (7)
s ± .0005

where W2'1(s) has characteristics discussed in the previous paragraph. Note that the zero of

W 2(s) is greater that -0.07676. By performing several designs in which this and other parameters

were modified, it was found that this weight produced the best time response results with respect

to the given specifications. Therefore the numbers calculated in the previous paragraph are only

starting points and not necessarily hard constraints on weighting function parameters. It will be

shown in Section 3.1.3 that adding directionality to this performance weight can improve robust

performance.

3.1.3 Directionally Weighted Design

While the robust performance of the pL design with the weights described in the previous para-

graph was good, improvements can be made. The directionality of this plant has been discussed

in detail. It has been shown that system performance is strongly dependent on command input

direction. It is therefore unrealistic to believe that any control system can provide identical levels

of performance to inputs in different directions; however, it may be possible that the responses

resulting from inputs in different directions all meet a given set of specifications. The goal is to

translate this concept into p design format.

Consider the singular value decomposition for the sensitivity resulting from the pL design

with diagonal performance weight at low frequencies. The singular value directions are complex

and the magnitude of the directions (and accompanying sign) associated with the maximum

and minimum singular values at low frequencies are shown in Table 2. Note that the complex

directions change slightly as a function of frequency; however, the change in magnitude is not

great. Note that the input directions correspond to the maximum and minimum plant gain
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Gain I Input Direction: Output Direction: |

High 0.7745 0.7955High -0.6326 -0.6060

-0.6326 -0.6060
Low -0.7745 -0.7955

Table 2: Low Frequency Directionality of the Sensitivity

output directions. If the high gain direction of the sensitivity were weighted more than the low

gain direction then the resulting closed loop sensitivity condition number should be lower. This

would result in less deviation among time responses. Also, it was shown in [19] that achieving

robust performance for commands in the low plant gain direction is more difficult than for

commands in the high plant gain direction. Thus this type of directional weighting makes sense.

From the preceding analysis, a new performance weight of

0.9036 -0.1512
W 2 ,, (s) = W2(S) (8)

-0.0920 0.8454

where

0.9036 -0.1512 0.7955 -0.6060 1 0 [ 0.7745 -0.6326
-0.0920 0.8454 1 -0.6060 -0.7955 0 0.7500 -0.6326 -0.7745 

Several variations on this weight were tried; however, this particular weight produced the best

results in terms of the time-domain specifications on the plant.

3.2 Analysis of Design Results and System Limitations

In the following subsections, the results of the previous designs will be used to make statements

about the limitations on control design for robust performance for this plant. Step command

inputs will be used to analyze the system in the time-domain. The singular value plots of various

input/output maps will be examined in the frequency-domain. Finally the structured singular

value will be used to analyze the robustness and conservatism of the design.
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3.2.1 Time-Domain Analysis

The response of the system to step inputs in three directions will be studied. These input

directions were given in the specifications in Appendix B. These commands can be broken into

components based on the high and low plant gain output directions given in Table 1. The

commands AYD = 1, AXz = 0 and AYD = 0, AXB = 1 have a large component in the low plant

gain direction, with the former having a larger component than the latter. Robust performance

should be more difficult to achieve for conunands in these directions. The input direction given

by AYD = 0.4, AXB = 0.6 is almost entirely in the high plant gain direction and therefore should

have better robust performance; this is in fact the case.

Time responses of systems (nominal and perturbed) resulting from the p design with direc-

tional performance weighting for inputs in the directions AYD = 1, AXB = 0 and AyD = 0,

AXB = 1 are shown in Figures 3 and 4. It can be shown that the responses of all gain uncertainty

combinations lie within the bounds of the responses shown. Finally, it can also be shown that

responses to a step in the direction AYD = 0.4, AXB = 0.6, which as previously discussed is

in the high plant gain direction, for all combinations of uncertainty are very good. The robust

performance of this design (directional performance weight), with respect to the specifications in

Appendix B, is better than the robust performance of the /A design with a diagonal performance

weight.

Analyzing the Lt design with a directional performance weight, specifications are met for

virtually all uncertainty combinations; however, as was mentioned in the discussion of the de-

sign procedure, there are some input direction/uncertainty configurations for which the time

responses push the limits of some of the design specifications while satisfying the rest of the

specifications easily. To illustrate this point consider the command entering the nominal plant

as a function of the actual command and the uncertainty present. Thus if the command was

AYD = 1, AXB = 0 and the actual plant was G",° (I + A) where

0 1 ++2 0 0.8I±A = [l 1 +62 = [ 00 (10)

then the command entering the nominal plant would be AYD = 1.2. AxB = 0. Compare the

time responses shown in Figures 3 and 4. For the example just presented the magnitude of the

resulting command entering the nominal plant is increased (1.2 > 1). The rise time specification

(AYD > 0.9 V t > 30) is met without any problem, but the overshoot increases to push
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the limits of AyD < 1.1 V t and AXB < 0.5 V t. Similar time responses occur for all

combinations of uncertainty and nominal commands for which the magnitude of the nominal

command is increased. The opposite occurs when the magnitude of the command entering

the nominal plant is smaller than the magnitude of the original command. For example when

E1 = -0.2 and 62 = 0.2 and the nominal command is AYD = 1 and AXB = 0 as before, then

the command entering the nominal plant is AYD = 0.8, AXB = 0. In this case the overshoot

constraints (same as before) are met easily, but the rise time is much slower and the specification

of AYD > 0.9 V t > 30 is missed slightly (actual rise time is 35 seconds). Better robust

performance can be achieved by acknowledging the directionality of the plant, i.e. not requiring

that inputs in all directions for all plants in the model set produce identical responses. The

responses will be different, but they may all lie within a given band of acceptable responses.

Notice that in Figures 3 and 4 there is an initial "jump" in the high plant gain direction

which tends to increase the composition of light component in both products. This initial jump

seems to improve the robust performance. This will be related to the high frequency behavior

of the closed loop system in the next section.

3.2.2 Frequency-Domain Analysis

The closed loop frequency responses for the design with directional performance weighting are

shown in Figure 5. These responses are very similar to those from resulting from the design

with diagonal performance weighting; however, there are a few differences which should be

pointed out. The singular values of the controller are matched better around 1 rad/min for the

directionally weighted design than for the design with diagonal performance weighting. Also,

the condition number of the sensitivity at low frequency is slightly smaller for the directionally

weighted design. This indicates that the closed loop system performance should be slightly more

consistent for different inputs.

The shape and directionality of the singular values of the transfer function from the dis-

turbances to the controls (KS) provide information into the behavior of the system and are

shown in more detail in Figure 6. The dotted and dash dotted lines are the gain with respect

to the directions corresponding to the plant low gain and high gain direction respectively. For

frequencies less than about 0.05 rad/min, the transfer function from disturbances to controls is

the inverse of the plant. At approximately w = 1.474 rad/min the gain of KS in the low and

high plant gain directions cross. The transfer function from disturbances to controls has high
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gain in the direction corresponding to the high plant gain direction for frequencies greater than

the crossover frequency. In [19] inverse and diagonal controllers were studied and it was found

that neither produced good robust performance. The results of this yt design and the analysis

of Figure 6 indicate that a combination of an inverse and a diagonal controller, at low and mid-

dle frequency ranges is needed. At high frequencies, however, the directions corresponding to

the maximum and minimum controller singular values must be the opposite of what they were

at low frequencies. Note that due to the high frequency gain in the design, the resulting sys-

tem bandwidth is much higher than the bandwidth required to produce an adequate rise time.

Zhou and Kimura predicted the need for this controller singular value matching in the middle

frequency range [21]; however, they conjectured that high frequency behavior would not affect

robust performance greatly. This design indicates otherwise. The high frequency behavior could

explain the nominal performance degradation seen in their design. Note the high frequency gain

in the large plant gain direction produces the initial transient jumps seen in the time responses in

Figures 3 and 4. One could argue that the initial jump resulting from this high frequency signal

is used by the controller to test the system for uncertainty. The results of this high frequency

transient shape the resulting response.

3.2.3 p Analysis

Analyzing the D-K iterations of the , design showed that the increase in high frequency gain

which resulted from small values of d(jw) at high frequencies decreased the robust performance

curve but increased the robust stability curve. An increase in the delay would further increase

the robust stability curve thus limiting robust performance. This indicates limitations based on

the tradeoffs between robust stability and robust performance. If the delays were not present

then the uncertainty weighting would be a constant. This would allow smaller values of d(jw)

at high frequencies which would increase controller gain and produce better robust performance

with respect to the gain uncertainty.

3.3 Discrete-Time IL

All of the analysis and design work in the previous sections has been done in continuous time.

Since most controllers are implemented digitally, and since the £1 methodology which will be

investigated in Section 4 is based on discrete time systems, this section will deal with discrete-

time versions of the previous work.



3 ANALYSIS AND SYNTHESIS USING / 13

5Closed Loop Sensitivity0 '20
i , ' i! · :: , ' : : : :-::: : : ..:.:

-20
-50oli · ·!-iOo . ii~. .._ ...... !.,, ,: : : : :. _. : . :

.-. . . .5, .40 4 .. .............

-10 _ .... ........ ..... '. . ...... 6 - 0 
: ., i:i. . - i ii ! : I : ... . ..

-150 -80
10-4 10 - 102 10-4 10-1 102

rad/min rad/min

KS: Disturbance to Control Controller60 100 ,, ...................

4 0 . _ ...... ........... 0_. .... X 0 i

.20 . ....... . :.. .0
10-4 10-1 102 10-4 10-1 102

rad/min rad/min

Figure 5: Max and Min Singular Values for Directionally Weighted Design

50

0 ..... .... ......

20 .. .... .. .. . ... .. .2 0 . ......... ........... .................... .... . ............ .... . ........ . . . ......... .. _ .

1 0 . .......... ......... .....

-10 .. . . ' ' ......

10-4 10-3 10-2 10-1 100 101 102 103

rad/min

Figure 6: Disturbance to Control (K-S) Maximum and Minimum Singular Values and Gains
along Maximum and Minimum Plant Directions



3 ANALYSIS AND SYNTHESIS USING ~ 14

mu

,0 ,.4 R ..... .

10- 10: 102 10' 100 10'iiii 102
0.4 .... , ...i' ,.., 1.... , ...... ... . j.; ,.,,', ..-.,'., ,. . .. ,, ,., ,.... ".- ..... ;...... '-.''

.8 :· · :::: : : . :: : ::: :: :: : ::-: : : ::: : \::: i. .'.: . .. .. ,i : ':,h '': '' ' :

Figure 7 / Nominal Performance , Robust Stability - - -

Consider first discretizing the controller obtained from the continuous time design in Section

3.1.3. The choice of discretization method is very important for obtaining good performance,

especially for long sampling periods. A standard sampled data system is implemented by aug-

menting the plant with a sampler at the output and a zero order hold at the input. An an-

tialiasing filter of ' was used to filter the measurements where a = .. and T is the sampling

period. Two sampling periods were considered. The first was T = 0.01 minutes. With this

small sampling period, the behavior of the continuous time controller was recovered. The next

sampling period was T = 1 minutes. The performance of the sampled data system is expected

to degrade with this longer sampling period. The sampling rate T = 1 minute was used in the

E1 designs; therefore, the results for this sampling will be discussed further in this section.

The best and most obvious discretization method to use is the standard bilinear transforma-

tion s = - in the sampled data system. When the controller was discretized for a sampled

data system operating with T = 1 minutes, as expected, the level of performance degraded from

the performance of the continuous time design. Figures 8 and 9 show step responses for plants

with delays of 0 and 0.5 minutes. Note that these and all other time responses for sampled data

systems are the output of the continuous time plant in the sampled data system. Discussion

and comparison of discrete time p responses to 41 designs can be found in Section 4.4.4.

Now consider designing a discrete-time controller directly, i.e. performing a discrete time p
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design. This is accomplished by discretizing the design plant model which includes the proper

continuous time weighting functions with a sampler and zero-order hold as described above (see

Figure 14). The weights used in these designs are the same as for the directionally weighted

design of Section 3.1.3; however, just because these weights produced good results for the con-

tinuous time system does not mean that other weights do not exist which will produce better

responses for the sampled data system. The actual Hoo design can be performed in continuous

time by transforming the discrete time system back to continuous time using the bilinear trans-

formation z = .1 Once the continuous time p design is completed, the discrete time controller

is recovered by taking the bilinear transformation of the resulting continuous time controller.

Consider the effect of performing the design with the sampling period, T = 1 minute. Since

the Nyquist rate corresponding to this sampling period, 3.142 rad/min occurs before the con-

troller singular values roll off in the continuous time design, one would expect performance

degradation. This is apparent in the achievable pL for this design configuration of 1.4931 (see

Figure 13) as compared to 1.0914 for the continuous time design. There is a marked degradation

in the step responses shown in Figures 10 and 11. Looking at the frequency domain, it appears

that for low frequencies the resulting design is very similar to the continuous-time design. The

bandwidth constraint imposed by the low sampling frequency forces the controller to roll off

much sooner than in the continuous-time design. The lack of high frequency activity constrains

the resulting performance.

4 Analysis and Design Using the £1 Norm

In recent years the use of the 41 system norm for control system design has been studied in

detail, [2], [3], [5], [12], [7], [6]. Recently, through the work of Diaz-Bobillo and Dahleh [7], [6], a

computational method for solving the f1 multiblock problem, the Delay Augmentation Algorithm

was developed. The t1 minimization of the weighted sensitivity of the distillation column will

be studied to learn more about nominal performance specifications. Comparisons will be made

with the results of discrete time H, minimizations of the weighted sensitivity. Next, robustness

will be added by solving the 41 problem for the mixed sensitivity, KS problem. Finally, the

41 structured uncertainty problem, which contains the two previous problems as subproblems

will be solved to obtain robust performance. It must be noted that due to the very recent

development of the Delay Augmentation Algorithm, its use is limited by the computational
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z T P(Z)

KI (z)

P(z) = Z- 115I2 2

Figure 14: Discretized Design Plant Model

difficulty of the problem.

4.1 Formulation of Design Problems

The computational algorithm for solving the 4l problem requires the problem to be in discrete

time. Since most physical systems operate in continuous time, the control problem must be

translated into a sampled data system. This is accomplished by posing the control problem in

the standard form which should include (in continuous time) all performance and norm bounded

perturbation weights. The choice of weights for El designs will be discussed in subsequent

sections. This formulation should also contain any necessary prefilters to model computational

delays and anti-aliasing filters. Once this system is formed, the entire system is transformed

into discrete time using a standard zero order hold continuous to discrete time transformation.

Other transformations, depending on the method of implementation, may also be used.

A sampling period, T, must be chosen to perform the transformation. It is important to

choose T small enough to capture the desired closed loop bandwidth; however, choosing T too

small may result in poor convergence of the Delay Augmentation Algorithm. Choosing a very

small T results in pushing the poles and zeros of the resulting discrete time system very close

to the unit circle. Thus the resulting interpolation conditions will die out very slowly resulting

in an optimal solution with large support. It was also conjectured in [7], [6] that the rate of

decay of stable zeros of U(A) (where AP = H - UQV' and the objective is to minimize 11 k 111)

can determine the rate of convergence of the upper bound, 7N, to the optimal v° in the Delay

Augmentation Algorithm.

All discrete time designs performed on the distillation column plant were performed at a

sampling rate of 1 minute with prefilter used to model delay effects of 2. It is desired to add

a precompensator to increase the low frequency gain of the plant so as to meet the steady state

error specifications. Note that existence of the 4l solution is not guaranteed when interpolations
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occur on the unit circle. The specifications of this problem do not call for zero steady state error,

so an exact integrator is not required. The precompensator P(z) = Z--1.i 5I2x2 is included as

shown in Figure 14. This figure also shows the discretization procedure. Note that as was

discussed in the previous paragraph, the steady state error specifications could have been met

by including a stable pole very close to z = 1 in the weight on the sensitivity; however, the use

of this method on the distillation column example seemed to produce slower convergence of v

and v for multiblock problems using the Delay Augmentation Algorithm. After the design is

completed, the factor P(z) is lumped with the resulting controller, i.e. let K1 (z) be the controller

resulting from the l1 minimization problem, then the actual controller to be implemented will

be K(z) = hl(z)P(z).

4.2 4l Minimization of the Weighted Sensitivity, The Nominal Performance

Problem

The results of minimizing the Ho norm for a one block problem like the weighted sensitivity are

well known. The solution is all pass in the frequency domain. Thus frequency loop shaping ideas

are very compatible with H,O minimizations. What is more difficult is translating time domain

specifications into frequency domain loop shaping ideas. When using the £1 design procedure,

little is known about how the choice of weighting functions affects the design. It is the goal of

this section to investigate the effect of varying a parameter in a first order weighting function

on the time domain and frequency domain characteristics of minimizing 1j WS ill. Comparisons

will be made with Hoo minimizations as well. The numerical results of the Ho and /l designs

performed are summarized in Table 3.

Before the specific results of the distillation column are discussed consider what can be

inferred about the solution of the weighted sensitivity problem from the fact that the solution

of the one-block problem is polynomial in A, [7] [6]. Let the finite pulse response of the optimal

closed loop in the SISO case be given by 0o(A) = W(A)S(A) = ao + al A +... + a, A". This implies

that the standard z-transform of · where z = A-1 is O°(Z) = I (z)S(z) = a'-" +al-' +...+a

Suppose

W(z) - ;ov0 1 (11)
i=l p i z - 1

then
p( z =-1 az a (12)

5(Z) = (W(Z))'(z) = (1i=)Z - 1 
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Thus the poles of W(z) will appear as zeros of the sensitivity and unless zeros of W(z) occur

naturally as zeros of the optimal FIR solution, they will appear as poles in the optimal sensi-

tivity. The optimal sensitivity contains the inverse of the weight; however, unlike the solution

of the Hoo problem, it is multiplied by the optimal FIR system which can strongly affect the

characteristics of the optimal sensitivity.

Consider now the results of the example problems given in Table 3, specifically, W 2'. Note

that this weight is nearly the identity. (Due to computational difficulties W3 was used as an

approximation of an identity weight.) Aside from the discrepancies due to the discretization

process, the Ho, solution tries to invert the weight. Note that minimizing 1[ S IlIo does not

produce a reasonable sensitivity function. In fact, including the multiplicative input perturbation

with 61 = 0.2 and 62 = -0.2 results in an unstable system. Minimizing 11 S 111, however

does produce a reasonable sensitivity function. The results of this minimization can best be

interpreted in the time domain using the fact the el norm is the induced to norm. It is possible

to show that

I[ S II,> 2 + 2e1 + 2e2 (13)

where el > 0 and e2 > 0 are the overshoot and undershoot of the step response of the closed

loop system to a unit step. As a result of this, minimizing the 4l norm of the sensitivity will

tend to minimize the overshoot and undershoot of the resulting system. At the same time, the

integrator is trying to force the output of the system to a step command to its final value as

fast as possible.

Consider next the results of the minimizations for the weight W1
1, a low pass function. As

expected, the result of the H<, design is a sensitivity function that inverts the weight. The

results of the El designs were dramatically different from the Ho, design. The response is much

quicker and overshoot is now present. This can be explained via frequency domain and time

domain arguments. Consider the frequency content of the weight. The larger magnitude of the

weight at low frequencies results in a sensitivity with lower magnitude at these frequencies and

therefore a closed loop with a larger bandwidth. This produces the fast rise time. Extending

the time domain interpretation of minimizing the £1 norm of the sensitivity discussed in the

previous paragraph, one can explain the results of this minimization. Weighting the sensitivity

can be interpreted as filtering the output. The filters (weights) being considered here are low

pass and will therefore attenuate overshoot. It is therefore reasonable to expect that the step
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Minimization of W ...
Weight Hoo D esig Design

_ - 11 LWe 11 11 WS 11 max
.H _ £1 ord(K) Hoo _ : ord(K) supp

W 1 (s) = + 0.0 1.0373 4.2327 10 1.8760 2.0748 10 4

W2'(s) = 1.0080 5.5262 10 1.8369 2.0040 10 4

W(s) = 1.8 1.6682 8.4548 10 1.6861 2.0009 10 4

Table 3: Comparison of Hoo and el Minimizations of 1[ WS II

response of the actual closed loop systems resulting from these minimizations will have more

overshoot and faster rise times since it is the filtered sensitivity on which the minimization is

performed. Note that the closed loop sensitivities do contain a pole at e-0.08 as a result of the

zero of the weights. The effect of this pole can be seen in the decay rate of the overshoot.

Finally consider the results of the minimizations for the weight W1, a high pass function.

The result of the Ha minimization with this weight does not produce a desirable sensitivity

function (see Figure 17). The result of the 4l minimization shows an effect opposite to that seen

for an 4l minimization with a low pass weight. Rise times increase and overshoot decreases as

the magnitude of the pole increases. The increase in rise time is limited by the rise time of a

system with a dominant pole at e-0.08 resulting from the zero of the weight. Duals of the ideas

presented in the previous paragraph for low pass weights as filters can be used to explain this

behavior. It is very interesting to compare the similarities of this design with the Hoo design for

the weight HVF. Also note the frequency response of the sensitivity for the 4l design (Figure 16;

it looks nothing like the inverse of the weight.

4.3 Minimization of W1 KS
W 2S

It is desired to add robustness to the weighted sensitivity minimization designs. Recall that by

using a high pass weighting function in the sensitivity minimization, the overshoot is decreased

and the rise time is increased. While the resulting nominal design was good, the effect on

the robustness was to dramatically increase the time to reach steady state for plants other

than the nominal in the model set. In this section a high pass weight on the transfer function

KS, 2.3123(s+.09)I from Section 3.1.1, will be used to limit high frequency gain and a low pass

weighting function, (.5 s+.01) I will be used to weight the sensitivity. This low pass function

should result in a design with a fast nominal and robust rise and settling times and the weight
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on KS should reduce the amount of overshoot.

Minimizing| W KS for the choice of weights described in the previous paragraph results

in the one-block partition W 1KS being totally dominant as defined in [7], [6]. This means the

controller that solves this one block problem, also solves the column problem. The support

of W 1KS is small (support of each entry less than 4) and the resulting controller is also of

low order (10). Physically, this means that W 1KS is strongly restricted; this also limits the

controller action. Since the elements of W 2S do not factor into the minimization at all, the

performance of the resulting system is poor with very long modes.

The weight on KS will be scaled so as to obtain more interaction between the partitions. It

is hoped that this interaction will result in a system with the nominal performance specified by

the choice of 1V2 and with increased robustness due to the constraint on KS. Many choices of

scaling factors, y, were tried and the final choice was y = 0.0007. Values of y much smaller than

this did not produce significant improvements in robustness with respect to overshoot. Values

of y larger than 0.0015 produced systems with poor robustness with respect to the time for a

step response to reach steady state. Figures 18 - 20 show time responses of the resulting closed

loop system (nominal and perturbed). Note that the robust performance of the system is better

than for the unscaled problem (WlKS totally dominant) and for weighted sensitivity problem

(y = 0, W 2S totally dominant). The response of the system to inputs in some directions and

uncertainty combinations are better than others.

Consider next the support structure of the problem, Table 4.3. Even though the weight on

KS is very small, the structure of the solution of the column problem is very different from

the structure resulting from minimizing 1I W 2S 11, or 11 W 1 KS Ill. The support is much longer.

This is because there is not a subproblem whose solution is polynomial with small order. Since

$11 has large support, the controller, which is a function of ll, will have large order. This

increase in order also increases the numerical difficulty of solving the problem. The difficulty lies

in recovering the controller from the closed loop system resulting from the Delay Augmentation

iteration. Included in Table 4.3 is a trial with rows (WV2S) 2 and (VlKS) 1 interchanged when

applying the Delay Augmentation Algorithm. Initial iterations of the Delay Augmentation

Algorithm indicated, via the support structure ([7], [6]), that this move should be made to

improve convergence; however the row (W 1KS)1 does not retain its small support when moved

into iil, and the convergence is actually slowed. Later iterations indicate a polynomial structure

for ($l)l = (W 2S)1; however ((11)2 = (W 2S) 2 either has a very long polynomial structure or
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v = 1.0527

(W2S)1 1

I (W 2S) 2 II1 ord
k N v v ( yW1KS)l K W 2 5

-yWK'S)2 Ill W 

t 25 22 1.0527 1.0581 W 1.0549 * 51 19 20 *dsoheon is e W2S 1.0581 rl17 3
1.0016 17 3
1.0167 *,

25 22 1.0042 3.2602 (W 2 h ] 3.2602 13 3[((W1KS) 1.0073 * 22 22*
.0.5079

50 47 1.0528 W2 S 46 45 *
43 43

* indicates this row is an element of isi11
t indicates the best numerical solution of the problem

Table 4: Summary of Results of Scaled Problem: -y = 0.0007

does not have polynomial structure. As a result (11 = W 2S does not fit the definition of partial

dominance; however, convergence is faster when this choice of PIl is made. The convergence of

the Delay Augmentation Algorithm is slower and controller order is higher for problems, such

as this one where there appears to be no totally or partially dominant one-block partition.

4.4 Structured Uncertainty

Now the concept of structured uncertainty and its use in the robust performance problem that

was introduced in Section 3 in the Ho setting will be discussed in the t£ setting. The basic idea

is the same: show the robust performance problem is equivalent to a robust stability problem

then solve the robust stability problem. The difference in this section is the class of signals for

which robustness is desired, i.e. oo (bounded magnitude) instead of 12 (bounded energy). The

change in objectives results in a change in the condition (from p) for robust stability of the

modified system with respect to the structured uncertainty. Also, to obtain necessity from this

condition, the class of allowable perturbations must be enlarged from the class of LTI systems

(Section 3) to either the class of linear time varying (LTV) or nonlinear time-invariant (NL)

perturbations. The theory behind these ideas is described in detail in [12], [13], [14], [1], and [4].
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4.4.1 Application to the Distillation Column

It was not possible to produce an acceptable level of robust performance with the weighted

sensitivity (Section 4.2) and mixed sensitivity, KS (Section 4.3) designs, thus the need to use

structured uncertainty. The procedure used in these sections did not explicitly include a robust

performance objective. The A structure for this problem (as in Section 3) is shown in Figure

2 with Al and A 2 linear time varying (LTV) and iI A II,< 1. The perturbation blocks can be

pulled out to form the closed loop MA matrix,

MW 1C W 1 S 1
W 2 SG W 2S

-W 1(I + KG)-KG WK(I + GK) - 1 (14)

-W 2 (I + GK)-'G W 2 (I + GK)-'

The weight W 2 used to specify performance was given by W 2(s) = 0.5 -+0.08 We ares+0.007'

concerned with the performance of the closed loop system, specified by 1{ W 2S II1< 1, with

respect to step inputs (4,0 signals). This nominal performance problem is equivalent to the

robust stability problem formed by including the perturbation A 2, LTV with 11 A2 II,< 1 as

shown in Figure 2. Note that the discretization of the system is performed as described in

Section 4.1. The weight, W2, was chosen after analyzing the results from Sections 4.2 and 4.3.

The zero of the weight was chosen to reflect the slowest desired mode of the closed loop. As a

result of the work on the mixed sensitivity-KS problem, W2 was chosen to be a low pass function

and the pole was chosen after iterations of the design procedure to specify the resulting speed of

the closed loop step responses as discussed in 4.2. At first the function W 2(s) = 0.5n+° was

used; however, the rise times of the resulting closed loop systems for GLV E g were too slow

and reducing the magnitude of the pole decreased the rise time.

The uncertainty will be modeled as an input multiplicative uncertainty as in Section 3.1.1.

The choice W1 = 2-3223 +09 was made to reflect the frequency content of the uncertainty. The

scaling factor of 0.5 was included after several trial designs to reduce the conservatism. Note

that the possible perturbations as discussed previously are LTV while the physical uncertainty

is LTI. This will also add to the conservatism of the design.

The Delay Augmentation Algorithm was applied to the system D-1MD. This minimization

problem is a large and difficult problem. First the proper D matrix must be chosen to achieve
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the best robust performance. Currently there is no good, systematic method to jointly optimize

over D and K. The multiplication of D-1MD, where D = diag(l, 1, d2, d2 ) results in the

following matrix:

D-1MD= [ W1 C d2WKh'S (15)
W 2SG W 2 s 

From the analysis in Section 4.3 and Section 3, it is clear that the optimal d2 will be much less

than one. In fact after varying the value of d2 the value d2 = 0.018 was finally chosen. Note

that a D-K iteration procedure was not used; presumably a better design is possible. The order

of the inputs was rearranged so that ll = KS to obtain the best numerical solution with the

Delay Augmentation Algorithm.

As previously stated, this is a large problem which poses several computational difficulties.

The first difficulty is the sheer size of the problem. D-1MD is a 16 element system. Applying

the Delay Augmentation Algorithm to this system for values of k greater than 40 produces linear

programs with the number of variables on the order of 103 which must be solved to a high degree

of accuracy. The second difficulty arises from the effect of the D scalings on the problem. Recall

in Section 4.3 that including the scaling factor 7 in the mixed sensitivity-KS problem resulted

in slower convergence of the Delay Augmentation Algorithm, longer support of the optimal

solution, and increased order of the resulting controller; however, the robust performance was

improved. The D scalings in the structured uncertainty problem play a role analogous to the

scaling factor - in the mixed sensitivity-KS problem. It is conjectured that given a structured

uncertainty problem with a partially dominant subproblem (defined in [7], [6]), including D

scalings to improve robust performance can reduce the effect of the partial dominance and result

in slower convergence of the algorithm and increased order of the controller. Another possible

cause for the slow convergence of the algorithm is the inaccuracies in the computation of the

controller. These inaccuracies cause two problems. The first problem is that the upper bound

is computed from the El norm of the closed loop system containing this controller; therefore,

the upper bound is inaccurate. The second, and possibly more important problem deals with

the choice of 411 in the Delay Augmentation Algorithm. In [7] and [6], it was shown that the

choice of the elements of the multiblock problem that become All (of dimension number of

controls by number of measurements) plays an important role in the convergence properties of

the Delay Augmentation Algorithm; the order of the inputs and outputs should be arranged so

that totally or partially dominant one-block partitions of the multiblock problem are located
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W1 (.s)_= 1.156" ,+' W2(S = 0.5,+0I007 D = diag(l, 1, 0.018, 0.018)

k N v F supp(D-'MD) ord(K)
8863 

10 4 2.0890 309.2424 8 8 3 7 39

7735
22 11 10 21
18 15 11 8

25 11 2.3207 14.7542 22 22 1054
22 22 10 19
18 21 7 11
42 50 34 19

55 25 2.3778 6.0082 40 40 35 26 118
47 44 26 25

_ 29 30 25 24

Table 5: Numerical Results of t1 Minimization of D-1MD

in the jlj position. The only choice of (j11 for which the controller could be computed with a

reasonable degree of accuracy was 4ll = W 1KS. Thus it is possible that another choice of u11

could improve convergence.

Numerical results from the minimization of DMD- ' using the Delay Augmentation Algo-

rithm are shown in Table 5. The disparity in the upper and lower bounds of the norm in the

final iteration is a result of the computational difficulty of the problem discussed in the previous

paragraph. One can see, however, that the upper and lower bounds are in fact converging. Note

the very large support structure. This indicates that the optimal controller will have large order;

however, using model order reduction techniques, the order can be reduced.

4.4.2 Adding Directional Weights

Many of the time responses of the structured uncertainty design with W1 and W2 given in the

previous section meet the specifications stated in Appendix B (see Figures 22 and 23. This is

an improvement over the designs obtained from the mixed sensitivity - KS problem; however

there is room for even more improvement. Consider trying to improve the robust performance by

adding directionality to the performance weight as was done in Section 3 for Il designs. Following

a similar procedure, choose a weight which has the directionality of the sensitivity found from
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()= 1.156 2(s) = 5S D = diag(l, 1, 0.018, 0.018)

k N v M supp(D-1MD) ord(K)
38 25 46 37
42 35 35 49

55 25 2.1491 5.2906 45 45 26 25 139
45 45 26 25
47 45 25 25 

Table 6: Numerical Results of £l Minimization of D-1MD with Directional Performance Weight

the structured uncertainty design with diagonal performance weighting. Choose

W 2(s) = 0.5-- + 08 Wd (16)
+ .007

where

0.9631 -0.0776 0.9030 -0.4296 1 0 0.9030 -0.4296
Wd = (17)

-0.0776 0.8369 -0.4296 -0.9030 0 0.8 -0.4296 -0.9030

Note that as in Section 3, the effect of this directional weighting is to weight the performance in

the low plant gain direction (where robust performance is more difficult to obtain) more heavily

than in the high plant gain direction (where robust performance is more easily obtained). One

should not expect a plant with a high degree of directionality to have consistent performance in

all directions. This should be reflected in W2 which is used to specify performance.

The Delay Augmentation Algorithm was applied to this new system. Since this problem is

similar to the previous problem, it is not surprising that properties of the solution, such as the

support structure, and slow convergence have not changed, see Table 6.

4.4.3 Analysis of Results

Time responses for the £1 design with directional performance weighting are shown in Figures

24 - 25. The inclusion of directionality in the performance weight does improve the robust

performance. Comparing individual time responses shown, tradeoffs between the performance

for different combinations of uncertainty are apparent. When considering no delay. the overshoot

and rise time specifications listed in Appendix B are met for most gain uncertainty combinations

and not greatly exceeded when not met. The worst overshoot was AYD = .54 compared to the

specification of 0.5 for the command AYD = 0 AXB = 1 with an uncertainty of r = 0, 61 = -0.2,
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62 = 0.2. The worst rise time was t = 44 minutes compared to the specification of 30 minutes

for the command AyD = 1 AXB = 0 and an uncertainty of 61 = 0.2, 62 = -0.2. The overshoot

specification on the output being commanded to 1 to be less than 1.1 has been met for all

combinations of gain uncertainty. When a nonzero delay is included, the overshoot increases.

As in Section 3 some responses push the overshoot constraints and have no trouble with the rise

time constraint, while others behave in the opposite manner. Steady state error of the responses

is slightly greater than specifications (see Figure 26); however, it can be adjusted with little or

no affect on the rest of the response by making the pole of the precompensator, P(z), closer to 1.

Recall that a pure integrator could not be used in the design procedure. The increase in robust

performance can also be seen from the value of p for each of the resulting designs. Recall that

p [1], [12], [13], [14], [4], provides a necessary and sufficient test for robust stability and robust

performance of systems with LTV perturbations and signals measured by the £~ norm. The

goal of the designs is to minimize p. The value of p for the design with a diagonal performance

weight was 3.9324, while when directional information was included p = 3.5168.

The inclusion of directional information in the weight affects the frequency domain charac-

teristics of the solution as well (see Figure 28). The singular values of the controller are more

closely matched around 1 rad/min when the directional weight is used. Recall that this was also

the case when directional performance weights were used for the P design. The sampled data

systems formed with both f1 structured uncertainty designs (with and without directional per-

formance weight) were robustly stable to the actuator gain and phase perturbations described

in Appendix A. Figure 27 shows the singular values of the discrete time system seen by the

perturbation, C (resulting from the design with directional performance weighting) and the

inverse of wl which bounds the uncertainty in Equation 5. Since o,,m (w. ) _> c,,~ (C), the

sampled data system will be robustly £2 stable to the LTI perturbations described in Appendix

A. When diagonal performance weighting is used, the stability test is passed, but with a smaller

margin. Suppose we wished to consider how the system would behave if the perturbations were

actually time varying. For example, suppose that the actuator gain and delay uncertainty were

not simply an unknown constant, but varied with time. This would result in a time varying

perturbation. By applying the definition of the f1 norm to A defined in Equation 4. it is easy to

show that 11 A IjI< 2.2, For robust f£ stability to LTV perturbations, 11 C' 11< 12- is required;

however, for the design with diagonal performance weighting 11 C 1I1= 2.1434 and when direc-

tional information is included in the performance weight, [i C 111= 1.9588. Thus both systems
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are not robustly stable to time-varying or nonlinear perturbations of f, norm bounded by 2.2.

Since the both systems are stable for LTI perturbations, this indicates a sensitivity of the system

to time-varying or nonlinear perturbations

4.4.4 Comparison of Results

In this section the results of the discrete time designs, both p and t1 structured uncertainty for

T = 1 minute will be discussed. The !l structured uncertainty design with directional weighting

produced the best overall time domain responses. Comparing the time responses of this tL design

(Figures 24 and 25) with those from the discretized continuous time u controller (Figures 8 and

9), one can see that the maximum level of overshoot of the output being commanded to 0, which

should be less than 0.5 for all combinations of coummands and uncertainties shown, is slightly

greater than 0.6 in both designs. The rise times are slightly better for the discretized p design;

however, the time responses of the discretized i design are much more jagged than the responses
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for more combinations of uncertainty for the discrete time ,u design than for the 4, design. For

example, the output being commanded to 1 should never exceed 1.1. The only time response

shown for the 11 design which exceeds this specification is the case of AYD = 0, AXE = 1 with

the uncertainty combination of r = 0.5, 61 = -0.2, 62 = 0.2 for which the maximum value

of AXE was 1.2. On the other hand, the time responses for the same combinations of inputs

and uncertainty are also shown for the discrete time J design. Four of these time responses

exceed this specification with a maximum value greater than 1.35. Note that it may have been

possible to produce a better discrete time IL design with different performance weights; however,

by doing this, any intuition gained from the loop shaping used in the continuous time designs

would probably be lost.

In all discrete time designs with sampling period of T = 1 minute, the performance ofIn all discrete time designs with sampling period of T = 1 minute, the performance of
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the continuous time Ap design with directional performance weight was never recovered. It is

expected that with such a large sampling period, performance will be compromised. The use

of this sampling period, however, produces designs that are in compliance with the frequency

domain guidelines presented in Appendix B. These guidelines are important for the practical

implementation of the designs since if they are not met, the nonlinear plant is not guaranteed

to stay in the linear region of operation used for the design procedure.

5 Methodology Analysis

Now that the design work has been completed and the analysis of the distillation column per-

formed, it is time to analyze the methodologies implemented in this paper. In this section,

information is brought together concerning how the distillation column problem fits into the

framework of the H, and £1 structured uncertainty problems and how one can intelligently

choose performance and uncertainty weights in both problems.

An inherent difficulty of this problem is that it does not fall nicely into the framework

of either p or the structured uncertainty El problem. The plant uncertainty is linear time

invariant which suggests an Ha stability robustness criterion. The performance specifications

are given in terms of templates for the closed loop responses to 4e signals which suggests

an e, performance criterion. A time-varying (or nonlinear) "fictitious" perturbation must be

included to transform this performance problem into a stability robustness problem. The robust

performance problem is equivalent to the robust stability problem formed by combining this

"fictitious" LTV perturbation and the LTI perturbation representing the plant uncertainty. As

of today, there does not exist a nonconservative test for the robust stability of a system with

respect to this type of mixed LTI/LTV structured uncertainty. The only way to design controllers

for a system such as this is to treat the two perturbations as either both LTI or both LTV.

The selection of frequency domain performance weights for this problem is very difficult due

to the fact that the performance specifications were given in the time domain. It is possible,

however, to make statements concerning the effect on time responses of varying parameters in

a stable minimum phase first order weight for both 4l and Ha, structured uncertainty designs.

The performance weight for the Ha structured uncertainty designs was chosen using fre-

quency domain loop shaping ideas. By decreasing the magnitude of the zero of the weight the

rise time of the resulting closed loop system increased. Since the structured uncertainty problem
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is a multiblock problem, the Ha optimal solution is not exactly all-pass: therefore, it is difficult

to predict the exact value to use for the zero of the weight for a desired rise-time. Assuming an

inversion of the weight and iterating a few times on the initial value of the zero chosen produced

desirable rise times for the distillation column. Using the Hoo norm as a performance measure,

there is no direct way for one to specify or change overshoots. This is due to the lack of a direct

relationship between overshoot and frequency domain behavior.

The effect of the performance weight in the £1 structured uncertainty problem is different

from that of the Ho problem. This was shown in the work on minimizing the weighted sensitivity

(Section 4.2) for both the Ho and £l problem. The trends shown in this section apply also to

the structured uncertainty problem. Interestingly, it is the pole of the performance weight which

affects the rise time in an 1i problem, not the zero as was the case in the Ho problem. This

was apparent in the weighted sensitivity problem as well. Also as in the weighted sensitivity

problem, the relationship between the pole and the zero of the weight affects overshoot. As

the difference between the pole and the zero becomes more negative, the overshoot increases.

Thus the use of the li norm appears to provide a more direct way of affecting the time domain

characteristics of the resulting system.

Since the uncertainty present in the distillation column problem is linear time-invariant, it

is not surprising that this part of the problem is easiest to model in the H, problem. The

frequency domain information can be incorporated into the E1 problem; however, since the £t

robustness criteria is only sufficient for LTI systems, the approach taken in this paper was to

tradeoff "robustness" for performance until good robust performance was achieved.

It is very difficult to make a judgment on which procedure is actually "best" for controller

design for this type of mixed problem. The pros and cons of the methods have been outlined. In

both methods a fair amount of iteration on the weights is necessary to obtain the final design.

Both methods provide different but useful information about the limitations of the system with

respect to various types of uncertainty and the desired performance.

6 Conclusion

A comprehensive study of controller design for the high purity distillation column problem was

presented in this thesis using the results from several structured uncertainty designs using the

eL and Hoo norm. All designs indicate that including information about the plant directionality
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in the performance weight can improve robust performance. Also, the singular values of the

the resulting transfer function from the disturbances to the controls should match those of the

inverted plant at low frequencies and cross in the frequency range 10-1 - 2 rad/min for robust

performance. The results of the continuous time p design show that the high frequency behavior

of the system is important, thus the frequency domain specifications and the bandwidth limits

imposed by discretizing the system limit the level of robust performance. The results of the

41 structured uncertainty design with a directional performance weight show, however, that a

reasonable level of robust performance can be achieved with a sampling rate of T = 1 minute.

The methods used for controller design in this thesis were also analyzed. Translating time

domain performance specifications to frequency domain performance weights is a difficult prob-

lem for both Ho, and tl designs. The effects on time domain behavior of varying parameters of

a first order performance weight using both 4l and Ho methodologies was presented. Both a

frequency domain and time domain interpretation of the results of the 41 designs was presented.

While still a difficult problem, it appeared to be easier to directly affect the rise time and over-

shoot to a step more easily by adjusting a first order weight using the 4t methodology than using

the H, methodology. Since the physical uncertainty was LTI, it was more natural to model

the uncertainty as a norm bounded perturbation using the Ho norm than using the 4l norm;

however, it was possible to obtain designs with good robustness from the {1 methodology. The

effects on time domain behavior of varying parameters of a first order performance weight for

both 4t and H., designs was presented. It was also found that while this problem does not fit

either of the categories for which p or the 41 structured uncertainty problem can provide a non-

conservative test for robust performance, both methodologies can be used to design controllers

for this system.
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Appendix

A Distillation Column

A.1 Plant and Uncertainty Models

The following describes the model for the LV (reflux/boilup) configuration of the high purity

distillation column. (15]

(1 + 61)e-'r' 0
GLV ()= GL ()) (18)

0 (1 + 62)e - r2

0 < r, r2 < 1 -0.2 < 61,62 < 0.2

where G" (s) =

-0.0052 -0.0018 0.0039 -0.0024 0.0714 -0.0716

-0.0036 -0.1221 0.1693 0.2462 0.0044 -0.0451

0.0047 0.1175 -0.3941 0.0332 -0.0362 0.0285
(19)

0.0067 0.2222 -1.1254 -3.9872 -0.0534 0.0393

0.0636 -0.0217 -0.0040 0.0629 0 0

0.0786 0.0399 -0.0459 -0.0209 0 0

The above is in the standard form: G = C(sI - A)-'B + D

A BG =
C D

The uncertainty will be handled as a multiplicative input uncertainty:

GLV () = GL"Z (s) (I + ) (20)

(1 + 6)e-' -1 0
A = 0_< r1,rT2 < 1 (21)

0 (1 + 62)e- ' - 1

]~ ~ ~~S~~i:· I ,
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B Performance Specifications

These time domain performance specifications are taken from [15]

The following specifications are given for a step input in the direction [ (the low gain

direction).

* AYD (t) < 1.1 V t and AYB (t) > 0.9 in no more than 30 minutes

* AX(t) < 0.5 V t

* 0.99 < AyD (00) < 1.01

· -0.01 < AB (o00) < 0.01

The following specifications are given for a step input in the direction [ 0 (the low gain

direction).

* AXB (t) < 1.1 V t and AXB (t) > 0.9 in no more than 30 minutes

· yD (t) < 0.5 V t

* 0.99 < AXB (oo) < 1.01

-0o.o01 < AyD (oo) < 0.01

0.4
The following specifications are given for a step input in the direction (the high gain

0.6
direction).

AYD (t) < 0.5 V t and AYD (t) > 0.35 in no more than 30 minutes

· XB (t) < 0.7 V t and zB (t) > 0.55 in no more than 30 minutes.

* 0.39 < AYD (oo) < 0.41

* 0.59 < AXB (00) < 0.61
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