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ABSTRACT

The Infinitesimal Perturbation Analysis (IPA) is applied to the queue admission con-

trol problem for a system modeled by tandem queues. The control takes the form

of holding a customer in a controller buffer with a low holding cost until admitting

that customer to the main queueing system with a high holding cost. An open-loop

dynamic admission control policy simple to implement is proposed for a control of the

queueing system. The basic idea of this policy is to ensure minimal interadmission

time, 0, in order to prevent congestion in the main queueing system; 0 is left as a

design parameter. A simple gradient estimate of the total steady state holding cost

with respect to 0 is derived using Infinitesimal Perturbation Analysis techniques. A

stochastic gradient-like algorithm based on this estimate is studied for optimizing 0,

and convergence is proven under certain conditions.

Key words: perturbation analysis, stochastic gradient-like algorithm, open-loop ad-

mission control, minimal interadmission time
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Figure 1: System model

1 Introduction

Perturbation analysis has been recently studied actively due to its efficiency in esti-

mating performance sensitivity with respect to a parameter in discrete event simu-

lation [1] - [15]. The control of a queueing system under imperfect information has

recently received significant attention [16]-[20]. This paper illustrates the use of the

infinitesimal perturbation analysis for the control of a queueing system with imperfect

information.

The system model studied in this paper is depicted in Figure 1; it consists of a

controller and a main system. Customers arrive and get queued initially at the

controller buffer and are eventually admitted to the main system. The holding cost of

the main system is more expensive than that of the controller buffer. The controller

decides the time that these customers are admitted into the main system without

knowledge of the state of the main system's queue. The primary motivation of this

model is the flow control of high-speed communication networks [16] [18] [19].

In this paper, an admission control policy that is very simple to implement is pro-

posed. The essential idea of this policy is to ensure minimal interadmission time, 0,

in order to prevent congestion in the main queueing system with a high holding cost;

0 is left as a design parameter. Most of this paper is devoted to the perturbation

analysis technique for estimating the sensitivity of the holding cost with respect to

0 and stochastic optimization based on this estimate. Due to special aspects of the

system model and the proposed control policy, the gradient estimate based on the

1



Infinitesimal Perturbation Analysis has a simple and interesting form. In section 3,

the IPA estimator will be derived, and its properties ( such as strong consistency )

will be proven. In section 4, a stochastic gradient-like algorithm for tuning 0 based

on this estimate is studied in order to minimize the holding cost, and a convergence

of this algorithm is proven under certain conditions.

2 Ensured Minimal Interadmission Time Policy

The performance measure considered in this paper is a weighted sum of the steady-

state queueing delays of a customer in the controller and in the main system. A

more generalized version of this queue control problem has been studied [16] using

the theory of dynamic programming. However, the results are very limited: they

might specify some properties of an optimal policy but this is not necessarily of any

use in designing an optimal or near optimal policy. The exact specification of the

optimal policy seems very difficult. For this reason, we bypass dynamic programming

techniques in this paper and concentrate instead on whatever progress is possible in

approximating optimal policies.

Suppose the service time is deterministic, for example 1//A. If the time since the last

admission is more than 1/1t, one can be sure that the main system is empty; therefore,

a customer, if there is any, in the controller must be admitted. If the time since the

last admission is less than 1//, one can be sure that the main system is busy, so

a customer in the controller must wait until 1/it time units have elapsed since the

last admission. In other words, the controller admits customers as soon as possible,

subject to the constraint that the time between consecutive admissions is no less than

1/t. We suggest applying such a simple scheme to the general case of random service

time. We designate this scheme as Ensured Minimal Interadmission Time (EMIT) .

In the case of random service time, however, the average service time 1/it may not

be the best minimal ensured time between admissions. This ensured minimal time

between admissions is left as a design parameter that is to be tuned according to the

the holding cost C and the statistics of the service time in the main system. This

parameter is denoted by 9.

3 An IPA-based Estimator

In this section, the sensitivity of the performance measure to the parameter 9 will

be estimated through the technique of infinitesimal perturbation analysis (IPA) [8].
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Properties such as unbiasedness and strong consistency of this IPA estimator will also

be established. The motivation of perturbation analysis is that only one sample path
is used to estimate the gradient instead of two; computation is thereby reduced by

roughly a factor of two. Also, more significantly, the variance of the gradient estimate

is reduced as a result of using only one sample path; therefore faster convergence is

expected for the stochastic optimization algorithm based on this gradient estimate.

Denote by Xi the service time of the i-th customer. Denote by Ai the interarrival

time between the i-th and the (i + 1)-st customer. Both {Xi} and {Ai} are sequences

of independent and identically distributed random variables, and these two sequences

are independent. We assume that both Xi and Ai have an absolutely continuous

probability distribution and that E(Xi) < E(Ai). We will denote a particular real-

ization of arrival and service processes by . E Q?, where 2 is the sample space. A
sequence X 1(~),A 1((),X2 (4),A 2(~),... completely specifies ~. Denote the i-th cus-

tomer's waiting time in the controller by Wi(9, ~), and the response time in the main

system by T?(O, $). Denote by W(O) the steady-state waiting time in the controller.

Denote by T(O) the steady-state average response time in the main system. The ex-
pected cost function, which is a typical performance measure in this paper, is denoted

by

J(O) - EW(O) + CET(O) (1)

We assume that the system is initially empty, and that the first arrival is admitted

to the main system immediately. For a finite number, L, of customers, the sample

performance function can be naturally defined as

GL(0, ) = L[ W(s,) + CT(o,) ] (2)
i=l

From this sample function, we derive a sample derivative with respect to 6, and use it

as an estimate of the derivative of our performance measure. The next lemma shows

that the sample performance function is continuous and piecewise linear in 0.

Lemma 1 Both functions Wi(O, ) and Ti(O,~ ) are continuous and piecewise linear

functions of 0 for any sample path $ for a finite number of customers.

Proof:

.W1(, ) = 0

Wi+l(,() _ max[ 0, Wi(,) + 0 -Ai() ]
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By induction, Wi(O, ~) is a continuous and piecewise linear function of 0 for any sample
path ~. Denote the difference between the admission time of the (i + 1)-st customer

and the i-th customer by Bi(O, ~). Then

i i-1

B;(9, ) = { Z Aj() + Wi+l(9,}) } - E Aj(>) + Wi(9, ) }
j=l j=1

= Aj(f) + Wi+(O,(,)- Wi(O,)

Therefore, Bi(, ~) is also a continuous and piecewise linear function of 0 for any

sample path ~. Note that

T 1(9, ) = 0

Ti+l(O,~) = max[ 0, Ti(0, )-Bi(9,t) ]+ Xi+l(()

Again by induction, Ti(9, l) is continuous and piecewise linear function of 9 for any

sample path ~. Q.E.D.

Since GL is piecewise linear, its sample derivative is merely its slope, except at the
point at which the slope changes. The derivative does not exist for those values of 9

at which the slope changes. It will become clear later that for a fixed 0, the sample

performance function is differentiable at d with probability 1. We now discuss a

technique to calculate and simply represent the sample derivative °0- (9, ).

1. The admissions into the main system can be partitioned according to the inter-

admission times. Interadmission times strictly greater than 9 are demarcations

of this partition. Each segment is comprised of a train of admissions separated

by length 0 in time. The admissions in a segment of size m can be chronologi-

cally labeled as 0, 1, 2,. - , m - 1. Each admission belongs to a segment and can

be labeled as above. We define a mapping I from the set of admissions to the

set of nonnegative integers representing such labels. We denote the admission

label of the n-th admission, or the n-th customer, by In,(9, ).

2. For a finite number of customers, we can perturb 0 with probability 1 by a

sufficiently small A/ without changing the admission label of any customer.

If 0 is increased by a sufficiently small AO, the n-th admission is delayed by

In(9, ) /A. The reason is that a sufficiently small change of 0 does not affect

the admission time of the first customer in a segment and delays successive

admissions within a segment by successive multiples of AO. ( See Figure 2. )

3. The queue size of the main system is governed by the service times of customers

as well as the admission times. With probability 1, there is a sufficiently small
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AO such that changing 0 by AO neither merges any two busy periods into one,

nor separates any single busy period into two.

4. The change of the response time of a customer is equal to the change of its
service completion time minus the change of its admission time.

5. If the admission that initiates a busy period is delayed by a sufficiently small
6 > 0, all the service completions in that busy period are delayed by S. If the
busy period initiating admission is not delayed, ( i.e. if this admission has label

1 = 0 ), the service completion times remain unchanged.

6. Denote by b,(O, 4) the label of the admission that initiates the busy period in
which customer n is served. The change of the response time of customer n is

(bn(0, 4) - ,(0, ) )A0 (3)

Note that for GL to be nondifferentiable at 0, the service completions or admissions
must coincide in time at least once among L customers in the sample path. This

event has probability 0. The total change is linear in AO for a sufficiently small range

of LA. Therefore, the derivative of the sample performance function is

i9GL ,a(,) = -E[ [l(,) + C bC(, ) -,(0, ) ] a.s.

1 L
-- Ll1i(,), X (4)

where the label QI(0, 4) of customer i is defined li(0, 4) = li(0, 4) + C( bi(0, 4)- - (0, 4) ).
We use this as an estimate of the gradient of the performance measure.

3.1 Performance during the Transient Period

Consider the expected value of the average cost of L customers EGL(O, 4) as a perfor-
mance measure. We claim that the estimate of A E[GL(0, 4)] given by (4)is unbiased.

The concept of dominant differentiability from [8, p64] is used for the proof.

Theorem 2 The transient performance measure EGL(O) is continuously differen-

tiable, and the estimator in formula (4) is unbiased; that is,

1 L a EGL(O)
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Proof:Define r(O, AO, ) such that

GL(o + AO, ~) = GL(O, ~) + -o (,)aO + r(O, AO, )

Since GL (9, $) almost surely exists,

lim r(O, AO,) a.s.
aO-to A0

Since both Wi and Ti are continuous and piecewise linear in 0 for any r, and labels

satisfy

li (O,),bi (O,) < L V, , WVi < L, (5)

we have IW,(O + AO,() - Wi(,()I < LAS and IT1(9 + AO,()- Ti(9,()1 < 2LAO for
all 9, AO, 5. Therefore, for all 9, AO, E, we have

IGL(0 + A0,()- GL(9, )I < (L + 2CL)AO (6)

Combining (4), (5), (6), we have

r(, as, ) | | GL( + AO, ) - GL(9, ) 8GL
( A - ,,) < 2(L + 2CL) a.s.

Hence, using Lebesgue's dominated convergence theorem [21, p44], we establish

_GL 0
E G--(@i,)= aEGL(9)09

Also, from (5) we have I L /L=1 li(O, ) < L + 2CL, so again by the dominated

convergence theorem

lim dEGL lim 1 L dEGL
dO 0-t~oL i1 dO

Therefore, dEG L(G) is continuous. Q.E.D.

3.2 Steady State Performance

In this subsection, we show that the estimator given by (4) almost surely converges

to the gradient of the steady-state performance measure as the number of customers

grows (strong consistency). Results of [10] cannot be used to establish the strong

consistency because the sample performance function (2) is not convex or concave of

0. This paper applies and extends the techniques used in [5].

The state of the system is fully specified by the number of customers in the controller,

the number of customers in the main system, the time since the last admission, and

the time since the last service completion. We define a "regenerative point" as a time

at which



* 1) Both the controller and the main system are empty.

* 2) At least time 0 has elapsed since the latest admission.

( The system exits from the regenerative point when the next customer arrives. )

Define Nk(O) to be the number of customers served between the (k - l)-th and the

k-th regenerative points. Then, {Nk(#)} is an i.i.d. process. We refer to the interval

between the (k - 1)-th and the k-th regenerative points as the k-th period. Note that

Nk(8) is a stopping time with respect to the increasing sequence of o - algebras {1Ei},

where

· ri cr(X1,A1,X 2,A 2 ,...,Xi,Ai)

Define the accumulated number of customers, Rk(8) by

k

Rk()= Nj() k > 1 Ro() = O
j=1

Note that for each k and 8, Rk(8) is again a stopping time with respect to {JFT}. The

following lemma is a key conceptual tool that allows us to remove the 8- dependency

of certain functions from our analysis. This lemma states that for each fixed sample

path, when a system with parameter m,,ac reaches a regenerative point, a system with

smaller parameter 8 < 8,Oma also reaches a regenerative point.

Lemma 3 For each sample path t, there exists a sequence {Kk} such that

Rk(max)= RKk(6)

That is, Rk(6max) is a subsequence of Rk(8).

Proof:For any realization of the random variables X 1((), A 1((), X 2((), A 2(),... each

customer is admitted earlier in the case of the parameter 8 than the case of t8m,, if

8 < 8max. As a result, each customer departs earlier for the parameter 8. It suffices to

prove that for an arbitrary $, if a system with parameter 8ma, reaches a regenerative

point at some time, a system with any 6 < 8max, is also in a regenerative point.

Suppose that at time t, a regenerative point is reached in the case of parameter amae.

Then, at that time, both queues are empty, and the latest admission occurred before

t- Ama. There is no arrival between t -Omax and t. Consider 8 < m8,a for the identical

realization $. At time t, both queues are empty because each customer departs earlier

than the case of Omax. The latest admission occurs before t - 8 because each customer

is admitted earlier than the case of 8maz. Therefore, at time t, the system with

parameter 8 is at a regenerative point. Q.E.D.
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Throughout this paper we assume that the probability distributions of X and A are
such that

E[Nk(0)4] < oo, VO < E(X) (7)

The following lemma concerns the relationship between the cost function given by
(1) and the estimator. This relationship is useful in establishing strong consistency

of our estimator. Later, this lemma will be used in establishing convergence of an

IPA-based stochastic algorithm.

Lemma 4 For an arbitrary O.max < E(A), the cost function J(O) is continuously

differentiable in [0, Oma,,], and

dJ E EN(e) ,(o, )
do EN(O)

Proof:Since Rk(Oma,) is a number of customers served between certain regenerative

points for the case of 0, from the theory of regenerative systems [22],

E (, E na) W(6) ( E EN(O""') T'(6)
EN(O,) E( EN(Om8a)

With probability 1, we have

d N(Omao) N(ema.) N(0ma!,)

6~ EWi(9,) ( E i(9, ') < E •| li(0, (),) < N(Oma.) 2 (8)
i~l i=1 i=1

d N(Omae) N(mo,,.) N(ema,)

_O I Ti(9) = , {b(,)-( )} bi(- (i(,)} 
i=1 i=1 i: 1

< 2N(Omax)2 (9)

Assumption (7) gives E [N(Omaa,)2 ] < oo. Also, both Wi and Ti are continuous and

piecewise linear functions of 0 for any sample path 5. Therefore, from the dominated

convergence theorem [21, p44], and by an argument identical to the one used in

Theorem 2, we have

d N(emaa,) N(6max) d N(Om.,)

-E E W,(9, )=E E - W(o,$)=E E i(0,~)
i=1 i=1 i=1

d N(6ma.) N(Oma.) d N(Oma,)
d-E 5 Ti(9, )=E 5 d-Ti(O,e)=E E {bi(9,()- (9,~)}

dO d i=1i=1i=1
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Therefore,

J(O) = ( (10)

Lemma 3 states N(ma~,) = 1K]l1 Nk(O) = RK1 (O) for some K 1 , so the following
equations can be obtained using Wald's equality [23, p.460 ] as in [5].

E[ N(max) ] = E(K1 )E(N1 ) (11)
N(emax) N(O)

E[ E 4i(8,4) ] = E(K1)E[ E li(#,4) ] (12)
i=l i=l

(See [18] for details.) From (10), (11), and (12), we prove

d J(o)= Ei=_(,
da ( EN(#)

Also, from (8) and (9) we have |I ZN(e) 1(, 4)() < (1 +C)N(Oma")2 , so by the dominated

convergence theorem dJ is continuous in [0, 0maa,]. Q.E.D.

Now we can prove strong consistency of our estimator.

Theorem 5
]]mo I l(0,~)- - dJL
lim L 1i(, -) = d(0) a.s.

L-.oo L
i=1

Proof:Denote the number of occurrences of regenerative points until service com-

pletion of L customers by ML(O, ) = max{k = 1,2, *.. IRk(O) < L}, then we have

limL,_. ML(, 4) = oo with probability 1. Using the strong law of large numbers,

lira ML k L - RmE
lim L = ZlNk+ L-RML E(N) a.s. (13)

L-.oo ML ML

Again, by the strong law of large numbers

lim l0(9 4) li Sk-1 -RI1+1 ,i(0 , ) + RML+1 (
L-.oo ML L- 0oo ML

N(O)

= E E li(9,4) a.s. (14)
i=l

From equations (13) (14) and from Lemma 4, we have

Lim LE L N( °, ) l EN(,) dJ
-i= L EN() d

Q.E.D.
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4 A Stochastic Gradient-like Algorithm

In this section, we discuss how to optimize the introduced parameter 0. The main
difficulty in this optimization is that the cost function is not known in closed form, and
can be evaluated only through simulation. As an optimization algorithm, this paper
suggests a stochastic gradient-like algorithm [24][25], which resorts to simulation and
the IPA at each iteration to estimate of the gradient of the cost function. IPA-
based optimization algorithms have been previously studied [5] [26] [27] [28]. The
contribution of this section is to provide an example that applies the IPA-based
stochastic optimization algorithm to an open-loop admission control problem.

Let 6* be a minimizer of J(0) defined in (1). As 0 approaches E(A), W(O) grows
to infinity; therefore, we can pick some m,,, < E(A) such that we can be sure that
6* C [0,6ma] through crude analysis. We simulate customers until a regenerative
point is reached and we denote the numerator of the IPA estimate in equation (4)
by

N(6,C)

h(o) _- ,
i=1

We apply the stochastic optimization algorithm in [5] with this gradient estimate.

Algorithm 6

On+l = rn+1 [ On + anh(6(n) 

where 7r is a projection operator defined by

Tn+l[] =X { 6 if x E [0, max]{n otherwise

As for the step size an, the following restrictions are imposed:

Sequence {an} is adapted to the sequence of o - algebras

Gn(O) {Rn(O) -A E FT I A n {Rn(O) = I} E Tj, V1} where F = nflFi

and

E an = oo a.s. (15)
n=l

E an < oo a.s. (16)
n=l

( A typical example is an = 1/n. )

~~ --~~~--·-·--~~~~-~~ I I1



The conditions for a convergence of this algorithm is specified in the following lemma
along with assumption (7).

Theorem 7 If J has a unique minimum, 0 in [0, Omax], and

dJ
2~( ) # 0 VA #8 ,

then, Algorithm 6 converges with probability 1 to the minimum; that is,

On --+ 9* a.s.

Proof:Algorithm 6 can be written as

,n+l =rn+l [n + anE{N(9n)} EhN(On)} ]

Define the error of the estimate by

En h(On) - dJ(

E- {N(n))j dO()

Then, from Lemma 4

E[En+lgn,] = 0 (17)

Using Lemma 4 and a few lines of algebra, we can easily derive

E[6n2+Iagn] < E[ N(Omax )4] < 00 (18)

Also,

00 00

E anE{N(On)} > an = oo a.s. (19)
n=l n=l

oo ao

Ea 2[E{N(On))]2 < E a2[E{N(Oma.))]2 < 00 a.s. (20)
n=l n=l

Lemma 4 ensures that J(O) is continuously differentiable in [0, 9max], and implies that

the derivative of J is bounded in [0, max,]. Therefore, relations (17), (18), (19), (20)

guarantee almost sure convergence ( see [3] for standard conditions for convergence

). Q.E.D.

12



5 Discussion

The optimal admission scheme bases its admission decision on the number of cus-
tomers in the controller buffer and the contemporary probability distribution of the

main system's queue size. On the other hand, the EMIT scheme introduced in this

paper makes the admission decision without considering the number of customers in

the controller buffer. The EMIT scheme can be improved by also using information

on the controller's queue size. We can keep track of the time elapsed since the latest

admission as in the EMIT scheme, but apply a different threshold depending on the

controller's queue size. That is, at each moment, if the controller queue size is n, we

admit a customer only if the time since the latest admission is more than a certain

threshold 0(n) that depends on n. The set of 0(n) is to be tuned according to the cost

C and the statistics of the service time. For example, we can truncate the set of 0(n)
( if the controller queue size is N or more, apply a threshold 8(N) ), and optimize

the vector,

(8(1), e(2),..., @(N)).
The study of an N-dimensional stochastic algorithm that optimizes this vector pa-

rameter is left for future work.

13



References

[1] G. Bao and C. G. Cassandras, "First and second derivative estimators of a
closed queueing network throughput using perturbation analysis techniques,"
in Proceedings of the 31st IEEE Conference on Decision and Control, (Tucson,
Arizona), pp. 3197-3202, December 1992.

[2] C. G. Cassandras and J. Pan, "Perturbation analysis of queueing systems with
a time-varying arrival rate," in Proceedings of the 30th IEEE Conference on
Decision and Control, (Brighton, England), pp. 1159-1160, December 1991.

[3] E. K. P. Chong, On-line Stochastic Optimization of Queueing Systems. PhD
thesis, Princeton University, Princeton, NJ, June 1991.

[4] E. K. P. Chong, "On distributed stochastic optimization of regenerative systems
using IPA," in Proceedings of the 31st IEEE Conference on Decision and Control,

(Tucson, Arizona), pp. 3203-3208, December 1992.

[5] E. K. P. Chong and P. J. Ramadge, "Optimization of queues using an IPA based
stochastic algorithm with general update times." to appear in SIAM Journal of
Control and Optimization.

[6] M. C. Fu and J.-Q. Hu, "Extensions and generalizations of smoothed perturba-
tion analysis in a generalized semi-markov process framework," IEEE Transac-

tions on Automatic Control, vol. 37, pp. 1483-1500, October 1992.

[7] P. Glasserman and W.-B. Gong, "Smoothed perturbation analysis for a class
of discrete-event systems," IEEE Transactions on Automatic Control, vol. 35,
pp. 1218-1230, November 1990.

[8] Y.-C. Ho and X.-R. Cao, Perturbation Analysis of Discrete Event Dynamic Sys-
tems. Boston: Kluwer Academic Publishers, 1991.

[9] J. M. Holtzman, "On using perturbation analysis to do sensitivity analysis:

Derivative versus differences," IEEE Transactions on Automatic Control, vol. 37,
pp. 243-247, February 1992.

[10] J.-Q. Hu, "Convexity of sample path performance and strong consistency of
infinitesimal perturbation analysis estimates," IEEE Transactions on Automatic

Control, vol. 37, pp. 258-262, February 1992.

14



[11] J. B. Logsdon and J. W. Gluck, "Fixed utilization perturbation analysis," in
Proceedings of the 30th IEEE Conference on Decision and Control, (Brighton,
England), pp. 116-117, December 1991.

[12] J. C. Spall, "Multivariate stochastic approximation using a simultaneous per-
turbation gradient approximation," IEEE Transactions on Automatic Control,

vol. 37, pp. 332-341, March 1992.

[13] S. G. Strickland, "Alternate representations of stochastic processes with appli-
cations to infinitesimal perturbation analysis," in Proceedings of the 31st IEEE
Conference on Decision and Control, (Tucson, Arizona), pp. 3195-3196, Decem-

ber 1992.

[14] R. Suri and M. Zazanis, "Perturbation analysis gives strongly consistent sensi-
tivity estimates for the M/G/1 queue," Management Science, vol. 34, pp. 50-63,

January 1988.

[15] Y. Wardi, W.-B. Gong, P. Glasserman, and M. H. Kallmes, "Smoothed pertur-
bation analysis algorithms for estimating the derivatives of occupancy-related
functions in serial queueing networks," in Proceedings of the 30th IEEE Confer-

ence on Decision and Control, (Brighton, England), December 1991.

[16] F. Beutler and D. Teneketzis, "Routing in queueing networks under imperfect

information: stochastic dominance and thresholds," Stochastics and Stochastics

Reports, vol. 26, pp. 81-100, 1989.

[17] P. D. Sparaggis, D. Towsley, and C. G. Cassandras, "Optimality of static rout-

ing policies in queueing systems with blocking," in Proceedings of the 30th IEEE

Conference on Decision and Control, (Brighton, England), pp. 809-814, Decem-
ber 1991.

[18] D. C. Lee, On open-loop admission control into a queueing system. PhD thesis,

Massachusetts Institute of Technology, Cambridge, MA, 1992. Dept. of Electrical

Engineering and Computer Science.

[19] D. C. Lee, "On the optimal admission schedule of a finite population to a queue."
submitted to Queueing Systems, December 1992.

[20] G. D. Stamoulis and J. N. Tsitsiklis, "Optimal distributed policies for choosing

among multiple servers," in Proceedings of the 30th IEEE Conference on Decision

and Control, (Brighton, England), pp. 815-820, December 1991.

15



[21] R. G. Bartle, The Elements of Integration. New York: John Wiley & Sons, 1966.

[22] G. S. Shedler, Regeneration and Networks of Queues. New York: Springer-Verlag,

1987.

[23] A. N. Shiryayev, Probability. New York: Springer-Verlag, 1984.

[24] H. J. Kushner and D. S. Clark, Stochastic Approximation Methods for Con-

strained and Unconstrained Systems. New York: Springer-Verlag, 1978.

[25] M. Metivier and P. Priouret, "Applications of a Kushner and Clark lemma to gen-

eral classes of stochastic algorithms," IEEE Transactions on Information Theory,

vol. IT-30, pp. 140-151, March 1984.

[26] M. C. Fu, "Convergence of a stochastic approximation algorithm for the GI/G/1

queue using infinitesimal perturbation analysis," Journal of Optimization Theory

and Applications, pp. 149-160, 1990.

[27] M. C. Fu and Y.-C. Ho, "Using perturbation analysis for gradient estimation,

averaging and updating in a stochastic approximation algorithm," in Proceedings

1988 Winter Simulation Conference, pp. 509-517, 1988.

[28] R. Suri and Y. T. Leung, "Single run optimization of discrete event simulations -

an empirical study using the M/M/1 queue," IIE Transactions, vol. 21, pp. 35-

49, March 1989.

16


