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Abstract. Significantly non-normal noise, and particularly the presence of
outliers, severely degrades the performance of the Kalman Filter, resulting in
poor state estimates, non-white residuals, and invalid inference. An approach
to robustifying the Kalman Filter based on minimax theory is described. The
relationship between the minimax robust estimator of location formulated by
Huber, its recursive versions based on the stochastic approximation procedure
of Robbins and Monro, and an approximate conditional mean filter derived
via asymptotic expansion, is shown. Consistency and asymptotic normality
results are given for the stochastic approximation recursion in the case of
multivariate time-varying stochastic linear dynamic systems with no process
noise. A first-order approximation is given for the conditional prior
distribution of the state in the presence of e-contaminated normal observation
noise and normal process noise. This distribution is then used to derive a
first-order approximation of the conditional mean estimator for the case where
both observation and process noise are present.

1. Introduction

Kalman Filtering has found an exceptionally broad range of
applications, not only for estimating the state of a dynamic system in the
presence of process and observation noise, but also for simultaneously
estimating model parameters, choosing among several competing models, and
detecting abrupt changes in the states, the parameters, or the form of the
model. It is a remarkably versatile estimator, originally derived via orthogonal
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projections as a generalization of the Wiener filter to non-stationary processes,
then shown to be optimal in a variety of settings: as the weighted least-
squares solution to a regression problem, without regard to distributional
assumptions; as the Bayes estimator assuming Gaussian noise, without regard
to the cost functional; and as the solution to various game theoretic problems.

Nevertheless, the Kalman Filter breaks down catastrophically in the
presence of heavy-tailed noise, i.e. outliers. Even rare occurrences of
unusually large observations severely degrade its performance, resulting in
poor state estimates, non-white residuals, and invalid inference. A robust
version of the Kalman Filter would have to satisfy two objectives: be as
nearly optimal as possible when there are no outliers (under "nominal"
conditions); and be resistant to outliers when they do occur (track the
underlying trajectory without being unduly affected by spurious observations).

Below, the notation L(s) denotes the probability law of the random
vector x, N( Lt, F ) denotes a multivariate normal distribution with mean tg
and covariance l, and N( x; t, F ) is the corresponding probability density
function.

Consider the model

a, = /II Q + D,, , (1.1)

where

.i = F,, , + , (1.2)

n = 0, 1, ... denotes discrete time; , E Re is the system state, with a
random initial value distributed as L(Co) = N(&, 7-); ZL E RP is the
observation (measurement): w, E Re is the process (plant) noise distributed
as L(w) = N(Q, Q.); y E RP is the observation (measurement) noise
distributed as L(_) = F, with E ] = 0 and E L[ vT] = R; (F,, H. },
(D. ), {Q, }, X0 and R are known matrices or sequences of matrices with
appropriate dimensions; 00 e Rq is a known vector; and finally 00, w_, and
,, are mutually independent for all n.

The Kalman Filter is the estimator Q, of the state Q, given the
observations z, · · · , and obeys the well-known recursion

A_+, = Fo QF + Kn+, Y_+i, (1.3)

where

Y.+. = L+1 - H,+, F., Q (1.4)

is the innovation at time n+l and

r.+, = H,+, M,,+ H,,T1 + D,+l R D,.i1 (1.5)

is its covariance,
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K,+, = Mn,1 HT+1 Fr,+ (1.6)

is the gain,

M,,+ = F,, E,, FT + Q, (1.7)

is the a priori estimation error covariance at time n+l (i.e. before updating
by the observation z+,), and

,,+, = ( I - K,,+ H,+l ) M,,+ (1.8)

is the a posteriori estimation error covariance at time n +l (i.e. after
updating). The inital condition is

_o = 0. (1.9)

As is clear from (1.3)-(1.4), the estimate is a linear function of the
observation, a characteristic that is optimal only in the case of normally
distributed noise (Goel and DeGroot [4]). Similarly, (1.6)-(1.8) show that the
gain and covariance are independent of the data, a property related once again
to the assumption of normality. Finally, in the Gaussian case F = N( 0, R ),
the residual (innovation) sequence ( Yl , , y,, is white and is distributed
as L(yi) = N( 0, F, ). When F is not normal, on the other hand, the state
estimation error can grow without bound (since the estimate is a linear
function of the observation noise), the residual sequence becomes colored,
and residuals become non-normal. Thus, not only is the estimate poor, but
furthermore invalid inference would result from utilizing the residual
sequence in the case of significant excursions from normality.

Past efforts to mitigate the effects of outliers on the Kalman Filter
range from ad hoc practices such as simply discarding observations for which
residuals are "too large," to more formal approaches based on non-parametric
statistics, Bayesian methods, or minimax theory. The purpose of this paper is
to review robust recursive estimation in the context of Huber's theory of
minimax robust estimation. The relationship between robust point estimation,
recursive robust estimation by means of stochastic approximation, and
approximate conditional mean estimation based on asymptotic expansion, is
described. This provides a rigorous basis for sub-optimal filtering in the
presence of non-Gaussian noise.

2. Robust Point Estimation

Let (R, B, X ) be a measure space, where R is the real line, B the
Borel a-algebra, and X the Lebesgue measure. Let F be a zero-mean
probability measure on (R, B ) such that F is absolutely continuous with
respect to X and admits the density f (x) := dF (x) / dx a.s. in accordance
with the Radon-Nikodym theorem.
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For some positive integer n, let f v1, - , v,, ) be a sample of
independent random variates taking values in R, with common distribution F.
Let 0 E e c R be a location parameter, and define the observations zi by

zi := 0 + vi, (2.1)

for i = 1, , n. Let R be the product of n copies of R, and let
T,, R" - O be an estimator for the parameter 0.

A broad class of such estimators are solutions T,,( zl, , z, ) to
maximization problems of the form

max ; p(zi -T), (2.2)
Ted i=l

for some suitably chosen real-valued function p. For instance, if
p(x) := log f(x ), then the *solution of (2.2) is the maximum likelihood
estimate; if p(x) := - lx 112, it is the least squares estimate; if
p(x ) := - I x 1, it is the minimum modulus estimate, i.e. the median.

Robust estimation answers the need raised by the common situation
where the distribution function F is not precisely known. A class of solutions
to such problems is based on minimax theory: the distribution F is assumed
to be a member of some set of distributions, and the best estimator is sought
for the least favorable member of that set, in terms of some given measure of
performance. While this approach is pessimistic, since the true distribution
may well not be the least favorable one, it has the advantage of providing an
optimum lower bound on performance. Minimax theory has been used as a
conservative approach to hypothesis testing and decision problems in the
presence of statistical indeterminacy; the first to formulate a minimax theory
of robust estimation was apparently Huber [5]-[9].

A suitable measure of performance for the robust estimation of a
location parameter is the asymptotic variance. This choice has several
advantages. First, as is usually the case, asymptotic analytical results are
considerably easier to obtain than small sample results. Furthermore, under
certain conditions, the estimator can be shown to be asymptotically normal,
which has the added benefit of making possible hypothesis testing and the
construction of confidence intervals. Second, the sample variance is strongly
dependent on the tails of the distribution; indeed, for any estimator whose
value is always contained within the convex hull of the observations, the
supremum of its actual variance is infinite. Thus, the asymptotic variance is a
better performance measure than the sample variance. Third, the asymptotic
variance is related to the Fisher Information through the Cram&r-Rao
inequality, and the Fisher Information lends itself well to algebraic
manipulation.

The procedure, then, is as follows. It is postulated that the unknown
distribution function F is a member of a certain set P of distributions on
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(R, B ). The least favorable distribution is that member of P leading to the
largest asymptotic variance, or, equivalently (provided that the Cram6r-Rao
lower bound is achieved), the one minimizing the Fisher Information. Since
the maximum likelihood estimator is known to achieve the Cram6r-Rao lower
bound, demonstrating that the least favorable distribution and the maximum
likelihood estimator associated with it are a saddle point yields a minimax
robust estimator. (For a theorem that provides regularity conditions under
which a distribution-estimator pair is a saddle-point solution, see Verd(i and
Poor [25].)

The existence of a least favorable distribution has been investigated by
several researchers; indeed, one of the primary tasks of minimax theory is
deriving sufficient conditions for the existence of such distributions. In
general, proofs of existence involve some topological restrictions that are
problematical since in many cases the sets of probability distributions of
interest are not tight, so that their closures are not compact in the weak
topology. To circumvent this difficulty, Huber proposes to endow the set P
with the "vague" topology, defined as the weakest topology such that maps
P --) IW dP are continuous for all continuous functions W with compact
support. Let I(P) denote the Fisher Information for the distribution P, and
suppose that every P E P admits a density in accordance with the Radon-
Nikodym theorem. In this framework, the existence and uniqueness of the
least favorable distribution in P are established by the following theorem due
to Huber:

Theorem 2.1 I/f P is vaguely compact and convex, then there is a Po E P
minimizing I(P). If, furthermore, 0 < I(Po) < o and the support of the
corresponding density f o is convex, then Po is unique.

Proof See Huber [5:86-901, [6:81-85], [9:79-81]. QED

'Let p be a continuous, convex, real-valued function of a real variable,
whose derivative W exists a.e. and takes both negative and positive values. An
alternative way of stating (2.2), provided that e is an open set, is

Y(z - T ) = 0 (2.3)
i=l

at T = T,( , z , z,, ), where Wy(z-T) := ap(z-T)/ aT ae., and a
is an arbitrary constant. Choosing a = -I for aesthetic reasons, it follows that
for the case of the maximum likelihood estimator associated with the least
favorable density,

W(z -T) = - T logfo (z -T) (2.4)

f 0 '(z-T)
fo(z-T)
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a.s., provided that the derivatives exist. Let

,(T) := I W(z-T)dF(z) (2.6)

denote the expectation of W with shift T, provided that it exists. Note the
relationship between (2.3) and (2.6). The following lemma, due to Huber,
establishes the existence of the expectation in (2.6), and the fact that it
crosses zero:

Lemma 2.2 If there is a T* such that 4(T* ) < oo exists, then &(T) exists for
all T (though it is not necessarily finite), is monotone decreasing with T, and
takes both positive and negative values.

Proof A proof of existence is suggested in Huber [9:48]; for the rest of the
proof, see Huber [5], [6:64-65]. QED

Given the conditions of Lemma 2.2, the following theorem, also due to
Huber, establishes the consistency and asymptotic normality of the estimator
T,,: R" O- e defined above:

Theorem 2.3 If &(T) exists and there is a T* such that 0 < &(T) for T < T*
and 0(T) < O for T* < T. and if

f I (z -T) I dF(z) < oo, (2.7)

then T,,( z I, , z, ) - Tr* as n -oo almost surely and in probability (i.e.
T, is consistent).

If, moreover, (rT*) = 0, ,(T) is continuous, differentiable and strictly
monotone in a neighborhood of T*, and if

0 < fI 2 (z -T) dF(z) < o (2.8)

is continuous in a neighborhood of T*, then

L(-nn (T[, -T*() N[ , (2.9)
( ~'(T*) )2

as n - oo (i.e. T, is asymptotically normal).

Proof See Huber [5], [6:66-721; also [9:45-50]. QED

Finally, the relationship of the results of Theorem 2.3 to the true
distribution and location parameter is established by the following corollary:

Corollary 2.4 If the conditions of Theorem 2.3 are satisfied, and if the true
underlying distribution is F = Po., then

L( n (T,-0)) N . (P ) ] (2.10)
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as n - oo i.e. T, is asymptotically efficient).

Proof See Huber [5:72-731; also Schick [22:34-361. QED

A convenient model of indeterminacy, proposed by Huber [5], is the e-
contaminated normal neighborhood

P, := ( 1-e ) N(0, 1 )+H: H E S }, (2.11)

where S is the set of all probability distributions symmetric with respect to
the origin, and 0 < E < 1 is the known fraction of "contamination." Note that
the presence of outliers in a nominally normal sample can be modeled here
by a distribution H with tails heavier than normal. The least favorable
distribution in this neighborhood is given by the following theorem:

Theorem 2.5 For the set P,e the distribution minimizing the Fisher
Information is given by

( -E ) N(k;0,1)e =+kZ x <-k

fc(x) := ( - ) N(x;0,1) -k <x<k (2.12)

( 1-c )N(k;O, l)e -+ k <x

where k is related to the fraction of contamination E by

2 N(k;O,1 - I N(x;O0,1)dx - - (2.13)
k - N~x '

Proof Outlines of a proof can be found in Huber [6:87-89], [9:84-85]. QED

It follows from (2.5) and (2.12) that

-k x <-k

e (x) = x -k <x <k (2.14)

k k<x

a.s. Thus, the transformation W,(x) leaves its argument unaffected if it is
within some predefined range, and truncates it if it goes beyond that range. It
is easy to see by integrating (2.14) that the corresponding Pc is quadratic in
the center and linear in the tails, so that the estimator defined by (2.3) and
(2.14) represents in some sense a continuum between the sample mean and
the sample median. As e -- 0, (2.13) implies that k -- a, so that PE(x) OC X2

resulting in the sample mean (the least square estimate). As e -- 1, on the
other hand, k -- 0, and for small k, p,(x) oc Ix I approximately,
corresponding to the sample median (the minimum modulus estimate).

A drawback of this approach is that solving (2.3) involves "batch"
processing with some kind of iterative procedure such as the Newton-Raphson
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method. In other words, it requires all the observations { zl, ' *, z, ) at
once. Another drawback is that it assumes that the observations are identically
distributed, i.e. that 0 is constant. The next section describes a recursive
method that updates the estimate every time an observation zi is received, and
that allows for a linear time-variant location parameter.

3. Stochastic Approximation

It is possible to recursively maximize a stochastic function like (2.2), or
find the root of a stochastic function like (2.3), by means of the stochastic
approximation procedure based on the work of Robbins and Monro [21] and
developed by many others. For general reviews of this methodology, see for
instance Wasan [26:8-351, Nevel'son and Has'minskii [19:79-83, 88-94], or
Kushner and Clark [10:19-471. The use of stochastic approximation in the
context of robust estimation was first proposed by Martin [11], Martin and
Masreliez [12], Nevel'son [18], and Price and Vandelinde [20]. See also
Englund, Holst, and Ruppert [2], who investigate the colored noise case.

For &(T) defined in (2.6), suppose that there is a T* such that 0 < &(T)
for T < T* and 4(T) < 0 for T* < T. Consider the recursion

T,+l = T, + a, W( z, -T, ), (3.1)

where n = 1, 2, , (a, is a given real-valued sequence, and T 1 is an
arbitrary (possibly random) starting point. There is a very considerable
literature investigating conditions under which T, -4 T* as n -- c, as well
as the asymptotic distribution of T,. Note that since the value of t( z,, - T, )
is random, it is necessary for the sequence (a, ) to obey certain conditions in
order to ensure convergence: it must tend towards zero at a rate sufficient for
the error variance to vanish asymptotically, yet must not reach zero for n < 0
since it must be able to compensate for any and all random perturbations due
to the observations z,, } . Indeed, there must at all times remain "an infinite
amount of corrective effort" to converge to the correct limit, no matter where
the estimate may have deviated (Young [28:34]).

A rather more general result than those in the literature is proven
below, extending consistency and asymptotic normality results to the
multivariate, time-varying case where the location parameter does not
necessarily approach a limit.

For some integer p, let ( RP, B, X ) be a measure space, where R is the
real line, B the Borel a-algebra, and X the Lebesgue measure. Let F be a
zero-mean probability measure on ( RP, B ) such that F is absolutely
continuous with respect to X and admits the density f in accordance with the
Radon-Nikodym theorem.
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For some positive integer n, let ( vl , , ,v ) be a sample of
independent random variates taking values in RP, with common distribution
F. Define the transformation

z,, = ti t, + D,, , (3.2)

n = 1, 2, , where (H, } and D,, } are known sequences of matrices with
D, E RPXP and Hn E RPxq, and Q E Rq obeys the recursion

Q+,, = F, Q, (3.3)

n = 1, 2, , where (F, } is a known sequence of matrices with
F, E Rq Xq , and 0o is an unknown (but finite) parameter.

Consider the recursion

Tn+i = F,, - T + ( Dn-l It+ )T ( Dn+l H+l )

( D,,-, "I+i T)T A, q [D -il (i+l- H,,+ F,, L ) 3 (3.4)

(provided that all inverses exist), where n = 1, 2, , T_ E Rq , {A,} is a
given matrix sequence with A, E Rqxq, To is an arbitrary (possibly random)
starting point, and v is related to the least favorable distribution by

(z_ -T ) = - VT log fo(z -T) (3.5)

= = Vr f0(Z-_T) (3.6)
fo Z_ -_)

a.s., within an arbitrary multiplicative constant. Furthermore, let

(_(T) := E [( z_-T) ] (3.7)

as before. Let

£(I) := E [( (Z )(T)) ((Z -T) - (T) )T (3.8)

and define

J(T) :=i ati ) (3.9)

to be the Jacobian of ( T ), provided it exists.

Note that finding the least favorable distribution in the multivariate case
is not trivial. The usual ordering of matrices (given X, Y E R"", Y > X if
and only if Y - X > 0, i.e. their difference is positive definite) is not a lattice
ordering. Practically, this means that (in contrast to numbers on the real line)
two non-equal matrices need not have an ordered relationship. Thus, finding
the member of a class of distributions that minimizes the Fisher Information
is not generally possible in the multivariate case. In the special case of
spherically symmetric distributions, the multivariate extension is of course
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trivial: the least favorable distributions and influence-bounding functions are
found coordinatewise, and everything else follows immediately.

The asymptotic behavior of the recursion L, is established by the
following theorem:

Theorem 3.1 Let 4(T ) exist for all T, and for any 8 > 0 and all q x q
matrices M > O., let

sup TT M (_T) < 0. (3.10)
6s iiTll

Assume there exists an So < o such that

E [W(z T) T(z-T) < SO (3.11)

for all T, and let (A, ) be a sequence such that A, > Ofor all n,

An., = 00, (3.12)
n=-

and

E ,TA A < °° (3.13)
4=l

If there is an a < o such that for all n and all m, with 0 < m < n,

i I F] 1 T Fj 1 < atI (3.14)

(where products are ordered by descending index), if there is a 1 > 0 and a
2 < 00 such that

P I < D, < P2 I (3.15)

for all n , and finally if there is a yl > 0 and a y2 < oo such that

yj I < HT H,, < Y2 / (3.16)

for all n, then, given any To < o T_,, - 0 as n -*-- a.s. (i.e. , is
consistent).

If, moreover, 5(0)= 0, ,(T ) is continuous, differentiable and strictly
monotone in a neighborhood of 0 with I I J(0) < , if Z(O) > O, E(T ) is
continuous and bounded in a neighborhood of 0, and finally if

lim sup n A,, < oo, (3.17)

then

L( 7,- ~2 ( L_ _ ) ) -- N( 0,I ), (3.18)

where
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= ( D - ) T ( Di H ) ( D l H., ) T

[I + A,_, J(0) 3 ( D,-' H, F,, ) E.-i

( D ltI, F,,_ )T I+ A,,_i J(O)

(D 1,,- ) [(D'l H,, ) T (D-H i )

+ [(D' t,, )T ( D- H, )) A.,, l ,(0)Afl

[ ( D " H,, )T ( DC' H,, ) 3 (3.19)

with

Z;= 0 (3.20)

(i.e. ,, is asymptotically normal).

Proof For the sake of legibility. the case H, = D, = I for all n is treated
below. The extension to the general case is straight-forward.

The proof of consistency is a generalization of Blum [1]. Defining

Y, := E [(7T, - . ) T ( L, - + )

- (1 - )T (7L-9 ) T 1, ,L ]. (3.21)

it can be shown that the sequence

(T - Q)T( T ) -_ Yj (3.22)
j=(3.22)

is a martingale. Establishing first that the expectation of the absolute value of
(3.22) is bounded for all n, it follows by virtue of a martingale convergence
theorem that the sequence (3.22) converges almost surely. It is then shown
that each of the two terms in (3.22) does so as well, by using monotonicity
and boundedness to prove that

lim [ (L +1 0+ ) T ( T+ _ .+ )
Il _....I.IT

- ( T Fr F ( L -F )

+ 2 (F. L ,, _+i) TA, _(F LT - _,+i) 

= 0 (3.23)

w.p.1. Some manipulation and the Chebychev inequality then imply that there
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exists a subsequence (n, ) such that

T nlir (F,,. T-,. 0, +)T F1 EkkI ~k=n~ +1

= 0 (3.24)

w.p. 1, whence it follows that

lim ( T - 0 ) = 0 (3.25)

w.p.l. Substitution into (3.23) then generalizes (3.25) to all n, proving
consistency.

The proof of asymptotic normality is a generalization of Fabian [3], and
is based upon the convergence of the characteristic function. From the
continuity and differentiability of ,(T ) in a neighborhood of 0 by hypothesis,

rCT) = J(0) T + O( II T112 ) (3.26)

for small enough II T 11. By virtue of consistency, (3.4) may thus be rewritten
as

i'+i +i =[I +A,, J(O)+A, OA ( IIFL +iIi ) ]

F, ( , - )

+ A, [_(z+,-F )

F.- (( F ,L1 - , + 1 )3 ) (3.27)

w.p. 1 for large enough n. It is first established that, defining

A( n, 62, ', 0 )

{:= {_z I lW(z-T)-_(T-0) l 2 2 82Pn } (328)

for some 62 > 0,

lim I ( z - F,, L)
~" A(,,.&. F,T4 ,.p)

- (F. L -Q+ ) 11 2 d ) = O (3.29)

w.p. 1, which is analogous to Lindeberg's condition for asymptotic normality.
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Taylor approximations are then constructed for the characteristic
functions of the terms in the recursion (3.27), and it is shown that the
characteristic function of Z, - 0, approaches that of a normal distribution as
n - ~o. This is aided by constructing the recursion

,+(s..)= C [F, ,T(I + A, J(O)+ op(n ) )T s 3
[- S T A, Y(0) Aj ], (3.30)

subject to the initial condition

;o~_) e e(To- ) (3.31)

and showing that C,, is asymptotically equivalent to the characteristic function
of L - Q. Finally, it is shown that the limiting variance is given by (3.19)
by constructing a recursion that yields the variance in the exponent of the
limiting characteristic function, and proving that it is asymptotically
equivalent to the asymptotic variance of T - Q. (For a more detailed
proof, see Schick [22:92-1061.) QED

It is clear that one can do no better recursively than in batch mode; in
other words, it is not possible to do better by considering the observations one
at a time than by considering them all at once. Thus, the asymptotic variance
of the recursive estimator Is no smaller than that of the Huber estimator of
Section 2, but it can be shown that the two are asymptotically equivalent for
the right choice of gains (A,, ). (See for instance Schick [22:67].) Note in
passing that if the true distribution is the least favorable one, then this choice
of gain sequence results in an asymptotically efficient estimator.

This section shows the relationship between robust point estimation and
robust recursive estimation. However, the estimator of Theorem 3.1
corresponds to a linear dynamic model with no process noise. In other words,
it is an estimator of a location parameter that varies in a deterministic and
known manner. While there may be instances that require such models, the
absence of process noise makes this a special case of limited application. Not
only is process noise often physically present, but it is also a useful
abstraction that compensates for small and unsystematic modeling errors. The
following section addresses the case where process noise is present.

4. Conditional Mean Estimation

As before, let

, = r., + D, (4.1)
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but let the location parameter now be random and obey the recursion

0_ +I = F,, ,, + w, , (4.2)

n = 1, 2, , with all parameters and distributions as specified in Section 1.
Again, let { vl, -- , v,, } be a sample of independent random variates
taking values in RP , with common distribution F e PE (a multivariate version
of (2.11)) having positive and bounded variance R.

In this case, asymptotic variance (or alternatively the Fisher
Information) is not a meaningful measure of performance. The conditional
mean estimator, on the other hand, is well known to have several desirable
properties, such as unbiasedness and minimum error variance. The first
derivation of a robust approximate conditional mean estimator in the present
context is due to Masreliez and Martin [15]-[16], and is based on Masreliez
[13]-[141; some generalizations are provided by West [27].

A key assumption made by these and other authors is that at each n,
the conditional probability distribution of the state Q, given past observations

zo0 , 'z ) is normal. This assumption allows some algebraic
manipulations that yield an elegant stochastic approximation-like estimator.
However, while it has been shown in simulation studies to be a good
approximation of the true conditional density, it is only strictly correct for
finite n in the special case where F is normal (see Spall and Wall [24]),
which is clearly of no interest here.

In this section, a first-order approximation of the conditional
distribution prior to updating, p ( 0Q I zo, · , ,_1 ), is derived for the case
where F is known. (The extension of this result to the least favorable
distribution remains an open problem at this writing.) Although conditional
normality is never exactly satisfied in the presence of non-normal noise, it is
shown that the zeroeth-order term in a Taylor series representation of the
distribution is indeed normal. The small parameter around which the Taylor
series is constructed involves a, the fraction of contamination. This
approximation is then used, in an extension of Masreliez's theorem, to derive
a first-order approximation of a robust conditional mean estimator.

Note first that the Kalman Filter recursion is exponentially
asymptotically stable under certain conditions. This property ensures that the
effects of past outliers are attenuated rapidly enough as new observations
become available. The stability of the Kalman Filter recursions has been
studied by several researchers; the following theorem is due to Moore and
Anderson:

Theorem 4.1 Let the matrix sequences (F,), (H,), (Q,}, and (D,) be
bounded above, and let D,, ) also be bounded below. Let there exist positive
integers t and s and positive real numbers ac and 3 such that for all n,
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E | F[ t , T ( D, R Di T )-1 Hi Fj > al (4.3)

(i.e. the system is completely observable) and

E rl F) Qiu F i > PI (4-4)

(i.e. the system is completely controllable).

Then, given any %0 < o . and defining the closed-loop recursion

Q+l = ( I - K,,+ H,,.+ ) F., Q0. (4.5)

(where K,, is the Kalman gain defined in equation (1.6)), there exist X > 0
and 0 < 6 < I such that

II 0 ,,iI < X 6", (4.6)

(i.e. the filter is exponentially asymptotically stable).

Proof See Moore and Anderson [171. QED

This result is used in the following, slightly different form.

Corollary 4.2 Let the conditions of Theorem 4.1 be satisfied, and let a
0 < ¢ < oo exist such that for all n.

Ft Fr < (4.7)

(i.e. the system is uniformly stable). For i = 1, 2, let

~,, = F, __ + K'+ 1 ( + - H,,+ F, Q ) (4.8)

K' ,T( = S M,t, HT + D,, R DT )1 (4.9)

M',, = F,, PF,T + Q, (4.10)

P' = (1 - K', H, )M' (4.11)

be two Kalman Filters with respective initial state means jO and covariances
Mb, i = 1, 2. Then, there is a 0 < 6 < 1 such that for any finite 0,

N( 0;, Ma) = N(8;0_2, M ,2 ) + O(6" ). (4.12)

Proof Since N( x; I, Y ) is everywhere continuously differentiable with
respect to _g and £ except at F = 0, and moreover since it can be shown that
M' is bounded away from 0 for all n, it is possible to write a first-order
Taylor series expansion of N( 0; Q, M,, ) around 02 and M,2 . But Theorem
4.1 implies that the respective differences between M, and between W for
i = 1, 2 are each 0 (6 ) or less. The result follows immediately. (For a
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detailed proof, see Schick [22:122-124].) QED

A first-order approximation of the conditional probability distribution
p ( Q, I _zo *, .) of the state Q given past observations
( Zo, ' · , z- is given by the following theorem:

Theorem 4.3 Let the conditions of Theorem 4.1 and Corollary 4.2 be satisfied
for the system given by equations (4.1)-(4.2), and let 8 be a real number for
which (4.6) holds. Let co be the smallest integer such that

6S < E. (4.13)

If

cO < 1 (4.14)

and if the distribution H has bounded moments, then

P(Q0, I zo, - , )

I( 1 - £ )" K / N( Q; Q°,M M )

+ E l-£)^-1 C 'N( O.; QM')
i=l

f N( Z,-i; H_ +Hi-v V' (O -+)'

f,_ - W' Hi T- _HiI V' ' Vi THHi )

h(t) d5

+ Op( n2 ) (4.15)

for all n < co, and

P(f I Zo, . ''-1 )

= ( 1 -E )O KO N( ; Q, M ° )

+ E( l-Et)°K- C K' N( 0; O, M )

f N( z.,_1 - 4; Hi-, v + Hi-, V' ( 0 - , ),

h(t) dt
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+ Op ( co2 2 ) (4.16)

for all n > o, where, for i = 1, 2, and n > i,

~+ F~, -I~M.~'-_, H~-I ,(4.17)
M' = F,_,1P,_- F., + Qp,- (4.18)

P = M - M' II T t' H, M (4.19)

rF = H,, M, H,T + D D, r (4.20)

V' = V',,- P',- F,, (4.21)
Wz= W i- It ZU H ^,r H_ ,_,,-, (4.22)

K =K'-l N( mz; Il- _0' ,,F , (4.24)

subject to the initial conditions

' = F_, 0, (4.25)

M' = F, -1 M,°1 F. T _ (4.26)

1','=M1 F. Tl (4.27)

v' = -' , (4.28)

Wi' = MA_- (4.29)

,' = t0_1 (4.30)

for i > 0, and

0loo = iQt (4.31)

M = Mo (4.32)

Ko = 1 (4.33)

The normalization constant satisfies

,' = (1 -E )t K

+ ,(I - = )_ f °N( _ - ,_; Hi-l.V'

Hi-_ W'HiT )h(4)d4 (4.34)

for all n < o, and
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~;'I = ( 1 - £ )"' KO

+ £( 1-£ )1 E Ki I N(._-,; H-i_,<.,

H, _, W H,_ ) h (_) d _ (4.35)

for all n > 0.

Proof Equation (4.15) is first established by induction. There remains to show
that (4.16) holds for n > w, i.e. that the number of terms in (4.15) does not
increase without bound as n - o. Corollary 4.2 and the Chernoff bound are
used to demonstrate that terms in (4.15) for j < n - o are "absorbed" into
the zeroeth-order term with an exponentially vanishing error term. Finally, a
combinatorial argument establishes that the order of the error term is o2E2.
(For a detailed proof, see Schick (22:130-1441; in addition, an abbreviated
proof is given in Schick and Mitter (231.) QED

It is interesting to note that Equations (4.17)-(4.20) are a bank of
Kalman Filters, each starting at a different time i = 0, 1, 2, · · · : the cases
i > 0 correspond to Kalman Filters skipping the i th observation, while the
case i = 0 is based on all observations. Equations (4.21)-(4.23) are a bank of
optimal fixed-point smoothers, each estimating the state at a different time
i = 0, 1, 2, --. , based on all preceeding and subsequent observations.
Thus, each term in the summations on the right-hand sides of (4.15)-(4.16) is
a Kalman Filter that skips one observation, coupled with an optimal smoother
that estimates the state at the time the observation is skipped.

Loosely defining a random variable distributed as H as an "outlier," the
first term in (4.15)-(4.16) corresponds to the event that "there has been no
outlier among the first n observations," and each term in the summation to
the event "there has been exactly one outlier among the first n observations,
at time i - 1." Higher-order terms correspond to the occurrence of two or
more outliers, and are absorbed into the error term.

Evidently, as n --> o, the probability of the event that only a finite
number of outliers occur vanishes for any e > 0. That the density can
nevertheless be approximated by the first-order expression in (4.16) is due to
the exponential asymptotic stability of the Kalman Filter: o represents a
"window size" beyond which the effects of older observations have
sufficiently attenuated.

The approximate conditional prior probability distribution given by
Theorem 4.3 is now used in an extension of a theorem due to Masreliez,
resulting in a first-order approximation of the conditional mean estimator.

Let h denote the Radon-Nikodym derivative of the contaminating
distribution H with respect to the Lebesgue measure, provided it exists. Let
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Z. := E [0 I zo, ''', ] (4.36)

and

1,, := E [(Q-L)(-L,)T I o, ,,, ] (4.37)

respectively denote the a posteriori conditional mean and conditional variance
of Q. In addition, let the score function (the additive inverse of the gradient
of the logarithm) for the conditional probability of z, given that no outliers
occurred during the first n-l observations be denoted by

° () - log p ( I Z 0 , -1

T0=O, , l,,_1 =0 ). (4.38)

Similarly, for i = 1,2, and all n > i, let

}(z,_} ) := ~- __, logp(L ,- I z0, '',_2,, - -,'',

lo=O, ,Tl,_=l , -,n,,=0) (4.39)

denote the score function for the conditional probability of z_,. given that no
outliers occurred among the remaining n-2 observations. Finally, for
i = 0, 1, 2, and all n > i, let

-" (z_ ) := V~ ' T~(! ) (4.40)

denote the additive inverse of the Hessian of the logarithm of the conditional
probability, i.e. the Jacobian of Mr.

A first-order approximation of the conditional mean estimator L, of the
state ,, given past and present observations f z0, z , zL ) is given by the
following theorem:

Theorem 4.4 Let the conditions of Theorem 4.1, Corollary 4.2, and Theorem
4.3 be satisfied for the system given by equations (4.1)-(4.2). If h exists and is
bounded and differentiable a.e., then

(1 -E )n" K:i, lt° 7 °0 + E (1-e)P `c.+i1 X c,
i=l

+ Op(n 2 E2 ) (4.41)

for all n < o, and

Ta = (l -E )cl. Io Tr + ( 1-E )"1 K+1I E aT

+ O ( o2 2 ) (4.42)
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for all n > to, where

, ° = Q + M °H T n °( - H Q ) (4.43)

= Q + M H,,T rF -'( -H, Q )

+ P v' TV,_, HT ' ( z-' - Hi-, +,i ) (4.44)

Tro ( -E) KO
+ £ Ko, I N( , -; H, . I MO HT) h(_) d, (4.45)

IT' =( - ) K, I N( H-l -; H,_L+,

Hi-, Wi+l HiT )h( ) d (4.46)

and the score functions are given by

(Zn -H. Q°0) -Vog[( -) N( z; H. Q°, r°

+ E I N( z -4; H,_, Qi

,n ) h(_) d .H MOH)( +)d 1=, (4.47)

y (z l-Hi_1 v+ ) = - VZ log N( z -; Hi_1 v+i

Hi, W'W +l Hi-, ) h( ,) d4 , (4.48)

with Q M, P, r, vy, w,, , and ,, as defined in equations (4.17)-
(4.24) and (4.34)-(4.35), subject to the initial conditions (4.25)-(4.33).
Furthermore,

£n = (1-H)n _,,+I =t -£° + 1 ( 1-e)N K_,+1 T_ f °

i=l

+ Op( n2 £2 ) (4.49)

for all n < _, and

= (1£-E)(o Kc+l Ito £2, + £ (I-E)A1 L r £

+ O (co2e2) (4.50)

for all n > w, where

£n = MO - M- ) H_ Mn,

+ (L Tn) (T )_ .T (4.51)
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I = pi - Pi V TH. PA(_i H_1- + 1 )Hil Vn P,

+ (L - L ) (LT _ (4.52)

and IO' is given by equation (4.43), subject to (4.47)-(4.48).

Proof From Theorem 4.3, the conditional prior is the sum of an Op( 1)
normal distribution and w O ( E) terms that each involve a normal
distribution convolved with the contaminating distribution h. Furthermore,
each term can be treated independently by virtue of linearity. Since the
zeroeth-order term is normal, the corresponding term in the expression for the
conditional mean can be found by direct application of the theorem due to
Masreliez [14], and has the form of (4.43). The product of normal
distributions in each Op (E) term can be rewritten by grouping together the
terms involving 0,, after which Masreliez's theorem can once again be
applied by changing the order of integration, yielding terms of the form
(4.44). The terms in the expression for the conditional covariance are
obtained analogously. (For a detailed proof, see Schick [22:147-157]; in
addition, an abbreviated proof is given in Schick and Mitter [23].) QED

The estimator of Theorem 4.4 is a weighted sum of terms having the
form of stochastic approximation equations. The robust filter of Masreliez and
Martin [15]-[16] is approximately equivalent to the zeroeth-order term in
(4.41)-(4.42), i.e. to T° , although the way in which they transform a one-step
estimator into a recursion is ad hoc and violates their assumption of
conditional normality at the next time step.

Note that the current observation Lz is processed by the influence-
bounding function Y° , i.e. T, ° is robust against an outlier at time n. Similarly,
each past observation z__ is processed by an influence-bounding function yt,
i.e. P is robust against an outlier at time i -1. However, 7T is linear in ,.
This is because while the Op(1) term corresponds to the event that there
were no outliers among the most recent co observations, so that the current
observation could be one with probability 0(E), the Op(e ) terms each
correspond to the event that there was an outlier among the most recent co
observations, so that the probability that the current observation is an outlier
is only O ( 2 ).

Both Theorem 4.3 and Theorem 4.4 are based on the assumption that
outliers occur rarely relative to the dynamics of the filter. In the unlikely
event that two outliers occur within less than co time steps of each other, the
estimate would be strongly affected. This implies that the estimator developed
here is robust in the presence of rare and isolated outliers, but not when
outliers occur in batches. Higher-order approximations for the conditional
prior distribution and the conditional mean could be constructed to be robust
against pairs, triplets, or higher numbers of outliers.
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Unlike the Kalman Filter, the estimation error covariance in Theorem
4.4 is a function of the observations. Note, however, that the covariance is a
function of a set of matrices {(M), {P,'}, {(r,F, (V,), and (W'), which are
themselves independent of the observations. Thus, they can be pre-computed
and stored, as is sometimes done with the Kalman Filter. This would
drastically reduce the on-line computational burden. Moreover, the banks of
parallel filters and smoothers are entirely independent of each other, so that
this estimate appears to be well suited to parallel computation.

Note finally that, as can easily be verified, for e = 0,

, z N(a;H. 0 , r 0 )
Y, ( N(- ; 0 = ) (4.53)

=°- ' ( z, -H ,° ), (4.54)

so that T, reduces to the Kalman Filter when the observation noise is
Gaussian.

5. Conclusion

This paper reviews Huber's minimax approach for the robust estimation
of a location parameter, as well as its recursive extensions inspired by the
stochastic approximation method of Robbins and Monro, and develops an
approximate conditional mean estimator by constructing an asymptotic
expansion for the conditional prior distribution around a small parameter
involving the fraction of contamination in the observation noise.

It underscores the relationship between point estimation and filtering:
both seek to obtain estimates of parameters based on observations
contaminated by noise, but while the parameters to be estimated are fixed in
the former case, they vary according to some (possibly stochastic) model in
the latter. When the "location parameter" varies randomly, i.e. when process
noise is present, the stochastic approximation technique cannot be used to
obtain a consistent recursive estimator. Moreover, asymptotic performance
measures make little sense in this case, and a conditional mean estimator is
sought instead.

The derivation of the least favorable distribution in this context remains
an open problem. The estimator presented here is therefore approximately
Bayesian but not minimax. An approximation that has been suggested is to
replace the convolution terms in Theorems 4.3 and 4.4 with Huber's least
favorable distribution given in Theorem 2.5. Although this would result in a
conservative estimator, its simplicity is quite appealing, and the results of
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simulation experiments have been favorable.

The approximate conditional mean estimator derived here is robust
when outliers occur in isolation, but not when they occur in patches. Higher-
order approximations to the conditional prior and conditional mean would
result in estimators that are robust in the presence of patchy outliers, though
at the expense of considerable additional complexity.

Other directions for future research include the application of time
scaling to the problem of patchy outliers or other colored noise; the
continuous-time case, for which the algebra promises to be more tractable;
outliers in the process noise; fault detection and identification in the presence
of outliers; and the asymptotic behavior of the approximate filters presented
in this paper.
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