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Abstract
In an online decision problem, an algorithm performs a sequence of trials, each of
which involves selecting one element from a fixed set of alternatives (the "strategy
set") whose costs vary over time. After T trials, the combined cost of the algorithm's
choices is compared with that of the single strategy whose combined cost is minimum.
Their difference is called regret, and one seeks algorithms which are efficient in that
their regret is sublinear in T and polynomial in the problem size.

We study an important class of online decision problems called generalized multi-
armed bandit problems. In the past such problems have found applications in areas as
diverse as statistics, computer science, economic theory, and medical decision-making.
Most existing algorithms were efficient only in the case of a small (i.e. polynomial-
sized) strategy set. We extend the theory by supplying non-trivial algorithms and
lower bounds for cases in which the strategy set is much larger (exponential or infinite)
and the cost function class is structured, e.g. by constraining the cost functions to be
linear or convex. As applications, we consider adaptive routing in networks, adaptive
pricing in electronic markets, and collaborative decision-making by untrusting peers
in a dynamic environment.
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Title: Professor of Mathematics
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Chapter 1

Introduction

How should a decision-maker perform repeated choices so as to optimize the average
cost or benefit of those choices in the long run? This thesis concerns a mathematical
model for analyzing such questions, by situating them in the framework of online
decision problems. An online decision problem involves an agent performing a series
of trials, each of which requires choosing one element from a fixed set of alternatives,
in a time-varying environment which determines the cost or benefit of the chosen
alternative. The agent lacks information about the future evolution of the environ-
ment, and potentially about its past evolution as well. This uncertainty, rather than
limitations on computational resources such as space and processing time, is typically
the main source of difficulty in an online decision problem.

Most of the online decision problems we consider here are generalizations of the
multi-armed bandit problem, a problem which has been studied extensively in statistics
and related fields, and more recently in theoretical machine learning. The problem is
most often motivated in terms of a gambling scenario, which also explains the deriva-
tion of the name "multi-armed bandit." (A slot machine is sometimes whimsically
called a "one-armed bandit.") Imagine a casino with K slot machines. Each of these
machines, when operated, produces a random payoff by sampling from a probabil-
ity distribution which does not vary over time, but which may differ from one slot
machine to the next. A gambler, who does not know the payoff distribution of each
machine, performs a series of trials, each of which consists of operating one slot ma-
chine and observing its payoff. How should the gambler decide which slot machine to
choose in each trial, so as to maximize his or her expected payoff?

While gambling supplies the clearest metaphor for stating the multi-armed ban-
dit problem, the original motivation for studying such problems came from medicine,
specifically the design of clinical trials [18]. Here, the decision-maker is an exper-
imenter who administers one of K experimental treatments sequentially to a pop-
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ulation of patients. How should one decide which treatment to administer to each
patient, so as to maximize the expected benefit to the population, given that the effi-
cacy of each treatment is a random variable whose distribution is initially unknown?

The problems introduced above assume that the decision-maker has a fixed, finite
set of K alternatives in each trial. But if we consider the problem of designing
clinical trials more closely, it is clear that many of the natural questions involve an
underlying decision-making problem with a very large (possibly even infinite) set
of alternatives. For example, suppose that the question facing the experimenter in
each trial is not which treatment to prescribe, but what dosage to prescribe. In
this case, the underlying set of alternatives is more accurately modeled as a one-
parameter interval rather than a discrete, finite set. One can easily imagine multi-
parameter decision problems arising in this context as well, e.g. if the experimenter
is administering a treatment which is a mixture of several ingredients whose dosages
may be adjusted independently, or if there are other variables (frequency of treatment,
time of day) which may influence the outcome of the treatment.

Online decision problems with large strategy sets arise naturally in many other
contexts as well. The work in this thesis was motivated by applications in economic
theory, electronic commerce, network routing, and collaborative decision systems. We
will say much more about these applications in subsequent chapters.

The preceding examples illustrate that there are compelling reasons to study gen-
eralized multi-armed bandit problems in which the decision-maker has a large (poten-
tially even infinite) set of strategies. In this work, we will develop the theory of such
decision problems by supplying new algorithms and lower bound techniques, in some
cases providing exponential improvements on the best previously-known bounds. The
theoretical portion of this thesis is organized into three parts:

Online optimization in one-parameter spaces: We study online decision prob-
lems with a one-parameter strategy space, in which the cost or benefit of a
strategy is a Lipschitz function of the control parameter.

Online optimization in vector spaces: We study online decision problems with
a multi-parameter strategy space, in which the cost of benefit of a strategy is a
linear or convex function of the control parameters.

Online optimization in measure spaces: Here we assume no special structure
for the strategy set or the cost functions, only that the set of strategies forms
a measure space of total measure 1, and that the cost functions are measurable
functions.

In parallel with these theoretical contributions, we will illustrate the usefulness of
our techniques via three concrete applications:
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Adaptive pricing strategies: We study mechanisms for setting prices ill a se-
quence of transactions with different buyers, so as to maximize the seller's
expected profit.

Online routing: We study online algorithms for choosing a sequence of routing
paths between a, designated pair of terminals in a network with time-varying
(edge delays, so as to minimize the average delay of the chosen paths.

Collaborative learning: We study algorithms for a community of agents, each par-
ticipating in an online decision problem, to pool information and learn from each
other's mistakes in spite of the presence of malicious (Byzantine) participants
as well as differences in taste.

The rest of the introduction is organized as follows. In Section 1.1 we present a
precise mathematical formulation of online decision problems. We review some of the
prior literature on multi-armed bandit problems and other online decision problems
in Sections 1.2 and 1.3, followed by an exposition of our main theoretical results in
Section 1.4. Turning to the applications, we discuss adaptive pricing in Section 1.5,
online routing in Section 1.6, and collaborative learning in Section 1.7.

1.1 Problem formulation

1.1.1 Basic definitions

Definition 1.1 (Online decision domain). An online decision domain is an or-
dered pair (S, F) where S is a set and r is a class of functions mapping S to I. We
refer to elements of S as strategies and elements of F as cost functions.

Definition 1.2 (Feedback model, full feedback, opaque feedback). A feedback
model for alln online decision domain (S, F) consists of a set and a function F :
S x -- . We refer to elements of as feedback values, and we refer to F(x, c) as
the feedback received when playing strategy x against cost function c.

For any online decision domain (S, F), the full feedback model is defined by setting
· = F and F(x, c) = c. The opaque feedback model is defined by setting b = R11 and
F(x, c) = c(x).

Definition 1.3 (Online decision problem). An online decision problem is a
quadruple II = (S, r, , F) where (S,F) is an online decision domain and (, F)
is a feedback model for (S, F).
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Classically, online decision problems were studied for the online decision domain
(S, [0, 1]S) where S is a finite set and F = [0, 1] is the set of all mappings from
S to [0,1]. For the full feedback model, the resulting online decision problem is
commonly known as the "best-expert" problem, owing to the metaphor of choosing
an alternative based on expert advice. For the opaque feedback model, the resulting
online decision problem is commonly known as the "multi-armed bandit" problem,
owing to the metaphor of choosing a slot machine in a casino.

Definition 1.4 (Generalized best-expert, generalized multi-armed bandit).
An online decision problem I = (S, F, 4), F) is called the generalized best-expert prob-
lem for (S, F) if (4), F) is the full feedback model for (S, F). It is called the general-
ized multi-armed bandit problem for (S, F) if (), F) is the opaque feedback model for
(s, ).

Definition 1.5 (Algorithm). An algorithm for an online decision problem H =
(S, F, 4), F) consists of a probability space Qalg and a sequence of functions Xt

Qalg x t - 1 S for t = 1, 2, .... We interpret Xt(r, Yi, . , Yt-l) = x to mean that
the algorithm chooses strategy x at time t if its random seed is r and the feedback
values for trials 1, 2, ... , t - 1 are Yi, . . ,Yt- , respectively.

Note that Definition 1.5 doesn't place any limitations on the computational re-
sources which the algorithm may use in computing the functions Xt. However, all of
the algorithms introduced in this thesis will be computationally efficient, in that they
require only polynomial computation time per trial.

Definition 1.6 (Adversary, oblivious adversary, i.i.d. adversary). An adver-
sary for an online decision problem II = (S, F, ), F) consists of a probability space

Qdv and a sequence of functions Ct : Qadv S t - - F for t = 1, 2,.... We interpret
Ct(r ',X1 . , Xt-1) = c to mean that the adversary chooses cost function c at time t
if its random seed is r' and the algorithm has played strategies xl,..., xt- in trials
1,..., t - 1, respectively.

A deterministic oblivious adversary is an adversary such that each function Ct

is a constant function mapping Qadv x S t - l to some element ct r. A randomized
oblivious adversary is an adversary such that for all t, the value of Ct(r', x1,... , t_)

depends only on r', i.e. Ct is a random variable on Qadv taking values in F. An
i.i.d. adversary is a randomized oblivious adversary such that the random variables
C1, C2,... are independent and identically distributed.

Definition 1.7 (Transcript of play). If ALG and ADV are an algorithm and ad-
versary for an online decision problem HI then we may define a probability space

Q = Qalg X Qadv and sequences of random variables (xt), (t), (Yt) (1 < t < oc) on Q
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representing the strategies, cost functions, and feedback values, respectively, that are
selected given the random seeds used by the algorithm and adversary. These random
variables are defined recursively according to the formulae:

.rt(r, r') = Xt(r, y(r, r')7. yj-l(r, r'))
Ct(T,T') = Ct(r'.x(r,r')... .. rt (r r'))
yt(r, r') = F(xt(r, r'), C1(r, 7r')).

We refer to the probability space Q and the random variables (t), (t), (t) (1 < t <
o) collectively as the transcript of play for ALG and ADV.

1.1.2 Defining regret

Definition 1.8 (Regret, convergence time). Given an algorithm ALG and adver-
sary ADV for an online decision problem (S, F, P, F), a strategy x C S, and a positive
integer T, the regret of ALG relative to x is defined by:

R(ALG, ADV; x, T) = E [i Ct(Xt) - ct()]

If A is a set of adversaries, the regret of ALG against ADV is defined by:

R(ALG, A; T) = sup{R(ALG, ADV; x, T) : ADV A, x C S}

and the normalized regret is defined by

R(ALG, A; T) = ,R(ALG, A;T).

If r is a function from (0, oc) to N, we say that ALG has convergence time if
there exists a constant C such that for all > 0 and all T > Tr(),

R(ALG, A; T) < C6.

Definition 1.9 (Ex post regret). Given an algorithm ALG and a set of adversaries
A for an online decision problem (S, F, 4(, F), and given a positive integer T, the ex
post regret of ALG against A at time T is defined by

R(ALG, A; T) = sup E sup ct(xt) - ct(xz)] 
ADVEA XES t

When we wish to distinguish the notion of regret defined in Definition 1.8 from the
ex post regret, we will refer to the former as ex ante regret.
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Note that the two definitions of regret differ by interchanging the sup,,S with the
E[-] operator. Hence it is always the case that

R(ALG, A; T) > R(ALG, A; T),

with equality when A consists of deterministic oblivious adversaries.

1.1.3 Maximization versus minimization

In defining online decision problems, and particularly in formulating the definition
of regret, we have implicitly assumed that the underlying optimization problem is a
minimization problem rather than a maximization problem. In many applications, it
is most natural to formulate the objective as a maximization problem. For example,
we will consider an adaptive pricing problem where the objective is to maximize
revenue.

There is quite often a close correspondence between the maximization and mini-
mization versions of an online decision problem, so that the difference between max-
imization and minimization becomes immaterial from the standpoint of formulating
definitions and theorems about algorithms for such problems. The details of this
correspondence are usually fairly obvious; our goal in this section is to make these
details explicit for the sake of mathematical precision.

Definition 1.10 (Maximization version of an online decision problem). If
(S, F, , F) is an online decision problem, the maximization version of (S, F, 1D, F)
has exactly the same notions of "algorithm", "adversary", and "transcript of play".
However, we redefine "regret" and "ex post regret" as follows.

R(ALG, ADV; x, T) =E E ct(x)-ct(xt)

R(ALG,A;T) sup{R(ALG, ADV;x, T): ADV C A, x C S}

R(ALG, A;T) = sup E sup ct(x)-ct(xt)
ADVcA xES tl

Definition 1.11 (Mirror image, mirror symmetry). If Hl = (S, F, , F) and
H2 = (S, F', ', F') are two online decision problems with the same strategy set, we
say that H2 is a mirror image of H1 if there exists a constant C and one-to-one
correspondences T : F -- F', ua: -I+ , such that

Vc e F c + (C) = C

Vx c S, C r u(F((x,)) = F'(x, 7(C)).
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If A is a set, of adversaries for Ill, then T(A) is the following set of adversaries for H2:

T(A) = {(QvT(i, 7(C2), . . ) : (av, C1, C2,. . .) C A}.

We say that HI has mirror syrrmetry if it is a mirror image of itself. If Hl has mirror
synlmetry and A is a set of adversaries for H1 , we say A has mirror symmetry if
T(A) = A.

Lemma 1.1. If Il1 and H2 are online decision problems such that 2 is a mirror
image of fll via mappings T, O( and if ALG is an algorithm for HI1 achieving regret
R(T) against a set of adversaries A, then there exists an algorithm ALG' for the

lmaximization version of II2 achieving regret R(T) against adversary set T(A).

Proof. Algorithm ALG' operates as follows. It initializes an instance of ALG and plays
the strategies xt selected by that algorithm. When it receives a feedback value yt, it
passes the feedback value a-l(yt) on to ALG. The verification that

R(ALG', T(ADV); x, T) = R(ALG, ADV; x, T)

is straightforward. []

Corollary 1.2. If an online decision problem HI and an adversary set A have mirror
symmetry, and if there exists an algorithm ALG for H achieving regret R(T) against
A, then there exists an algorithm ALG' for the maximization version of H achieving
regret R(T) against A.

Many of the online decision problems and adversary sets studied in this work have
mirror symmetry. For example, if S is any set and I C l is either IR or a bounded
subinterval of I, then the best-expert and multi-armed bandit problems for (S, Is)
have mirror symmetry, as do the sets of adaptive, deterministic oblivious, randomized
oblivious, and i.i.d. adversaries for these problems.

1.2 Prior work on multi-armed bandit problems
The earliest work on the multi-armed bandit problem assumed that the strategy set
was finite and that the sequence of cost functions came from a prior distribution
known to the decision-maker. In other words, one assumed a randomized oblivious
adversary whose cost functions Ct are random variables whose joint distribution is
known to the algorithm designer. (For a concrete example, it may be known that there
are two slot machines, one of which always produces a payoff of 0.5, and the other of
which generates {0, 1}-valued payoffs according to independent Bernoulli trials with
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success probability p, where p is a random parameter uniformly distributed in [0, 1].)
The goal of this work was to characterize the optimal algorithm, i.e. the algorithm
which precisely minimizes the expected cost or maximizes the expected payoff.

The most influential result in this area is a theorem of Gittins and Jones [35] on
the existence of dynamic allocation indices for multi-armed bandit problems with ge-
ometric time-discounting. To state the theorem, let us make the following definitions.

Definition 1.12 (geometrically discounted adversary). Given an i.i.d. adver-
sary ADV specified by probability space Qadv and cost functions Ct (1 < t < oc),
and given a positive constant a < 1, let ADV, denote the adversary specified by
probability space Qadv and cost functions Ct = atCt. We say that ADV, is a geo-
metrically discounted adversary with discount factor a. A geometrically discounted

adversary ensemble with discount factor a is a probability distribution P on the set
of geometrically discounted adversaries with discount factor a. An optimal algorithm
for P is an algorithm which minimizes limT,oo EADVP[R(ALG, ADV; T)] where the
expectation is over the choice of a random adversary ADV sampled from P.

Definition 1.13 (dynamic allocation index, index policy). For a multi-armed
bandit problem with strategy set S, a dynamic allocation index is a rule for assigning
a real-valued score to each strategy x C S depending only on the feedback observed
in past trials when x was selected. More formally, it is a sequence of mappings

It: S x S t x t R for 1 < t < o, such that It(x, , ) = It(x,:',') if xi = x'i
and yi = y' for all i such that xi = x. We interpret It(x, 7, y) as the score assigned to

strategy x after trial t, if the strategies and feedbacks in trials 1, 2,.. ., t are designated
by x, y, respectively.

An algorithm ALG is an index policy if there exists a dynamic allocation index

{It} such that ALG always chooses the strategy of maximum index, i.e. for every
adversary ADV, the transcript of play for ALG, ADV satisfies

Xt+1 = argmaxIt(x, (x 1, ... xt), (Y, ... ,t))
zxCS

for all t > 1.

Theorem 1.3 (Gittins-Jones Index Theorem [35]). Given a multi-armed bandit
problem with a geometrically discounted adversary ensemble, the optimal algorithm is
an index policy.

Subsequent authors found simpler proofs [69, 70, 71] and studied methods for
calculating dynamic allocation indices [34, 47]. A partial converse to the Gittins-
Jones Index Theorem is proved in [17]: if the discount sequence is not geometric,
there exist adversaries for which the optimal algorithm is not an index policy. A
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very entertaining and lucid exposition of some of these topics can be found in [28],
which explains Gittins index policies in terms of the metaphor of playing golf with
more than one ball. (In this context the dynamic allocation index assigns a score to
each golf ball which quantifies the desirability of hitting that ball, given its current
position on the golf course.)

The work discussed above assumed a randomized oblivious adversary with a known
prior distribution. For an i.i.d. adversary with an unknown distribution, Lai and
Robbins [52] determined that the optimal multi-armed bandit algorithm has regret
0(logT) as T - oc. Auer, Cesa-Bianchi, and Fischer [3] sharpened this asymptotic
result by supplying a precise upper bound that holds for finite T. (Interestingly,
although the input distribution is unknown and the adversary is not geometrically
discounted, the algorithms achieving this upper bound in [3] are index policies.) A
treatment of Auer, Cesa-Bianchi, and Fischer's upper bound is presented in Sec-
tion 2.4 of this thesis. Mannor and Tsitsiklis [56] similarly sharpened the Lai-Robbins
asymptotic lower bound by supplying a precise lower bound that holds for finite T.

Bandit problems with an infinite number of arms have received much less con-
sideration in the literature. Banks and Sundaram [13] study properties of Gittins
index policies for countable-armed bandit problems with geometrically discounted
adversaries. For a very large class of such problems, they demonstrate several coun-
terintuitive facts about the optimal algorithm:

* When a strategy x is chosen, there is a positive probability that x will be
chosen forever thereafter. In particular, there is a positive probability that the
algorithm only samples one strategy during the entire infinite sequence of trials.

* For some problem instances, the strategy which is optimal (under the adver-
sary's cost function distribution) is discarded by the algorithm in finite time,
with probability 1.

An excellent, survey of these and related results appears in [67]. Berry et. al. [16]
consider a bandit problem with a countable set of arms and {0, 1}-valued reward
functions; the objective is to maximize the long-run success proportion, i.e. the
quantity limT, I t=l1 Ct(Xt).

For multi-armed bandit problems with an uncountable strategy set, the only prior
work we are aware of is by R. Agrawal [2], who introduced the continuum-armed
bandit problem. In Agrawal's formulation of the problem, the strategy set S is a
subinterval of RI and the adversary is an i.i.d. adversary who samples from a prob-
ability distribution on cost functions c : S - IR such that the expected cost (x)
is uniformly locally Lipschitz with exponent a > 0. Agrawal presents an algorithm
whose regret is o (T(2a+ 1)/(3a+1) + ) for all > 0.
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The study of multi-armed bandit algorithms for stronger adversarial models was
initiated by Auer et al. in [4]. They presented a randomized algorithm Exp3 which

achieves regret O(/TK log(K)) against adaptive adversaries. They also supplied a
lower bound which proves that no algorithm can achieve regret o(vT), even against
oblivious adversaries.

1.3 Prior work on other online decision problems

The work reviewed in Section 1.2 exclusively concerned multi-armed bandit problems,

i.e. online decision problems in the opaque feedback model. There is also a rich body

of literature on online decision problems in the full feedback model, e.g. the so-called

"best expert" problem and its generalizations. (See [20] for an excellent survey of this

literature.) Work in this area began with the study of mistake-bound learning and

online prediction problems, in which a learning algorithm is required to repeatedly

predict the next element in a sequence of labels, given access to a set of K "experts"
who predict the next label in the sequence before it is revealed. An archetypical

example of such a problem is discussed in Section 2.1: the input is a binary sequence

bl,..., bbT and each expert i makes a sequence of predictions b (i),..., bT(i). At time
t, the predictions bt(i) are revealed for each expert, then the algorithm predicts the

value of bt, then the true value of bt is revealed. The goal is to make nearly as few

mistakes as the best expert. To understand the relevance of this problem to machine

learning, imagine that we are solving a binary classification problem in which each

element of a set X is given a label in {0, 1}, and that we are trying to perform nearly

as well as the best classifier in some set C of classifiers. The algorithm is presented

with a sequence of elements xt E X and can compute the output of each classifier i

on example t (i.e. the prediction bt(i)); it must then predict the label of xt before
the true label is revealed.

In Section 2.1 we will present two closely related algorithms for this binary predic-

tion problem. The first, due to Littlestone and Warmuth [54], is called the weighted

majority algorithm, while the second, due to Freund and Schapire [33], is called

Hedge. Both are based on the principle of maintaining a weight for each expert which

decays exponentially according to the number of mistakes the expert has made in the

past. These techniques yield an algorithm which makes at most O(/Tlog(K)) more
mistakes than the best expert.

The best-expert problem is closely related to the binary prediction problem. Sup-

pose that instead of assigning a cost of 0 or 1 to each expert at time t according to
whether or not it correctly predicted a binary label bt, we simply have a sequence of

cost functions ct (t = 1, 2,.. ., T) which assign real-valued scores between 0 and 1 to
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each expert. We now require the algorithm to specify an expert xt at tinle t; after the
algorithmlll chooses t. the cost function ct is revealed and the algorithmlll is charged a
cost of c (rx). The reader will recognize this as the full-feedback online decision prob-
le1m with S = {1.2,..., K} and F = [0, 1]S . It turns out that the Hedge algorithm
can also be applied to this problem, again with regret O( /Tlog(K)). Using the
ternminologv of Section 1.1, we can express this by saying that Hedge has convergence
tinme O(log K).

Because the best-expert problem has algorithms with convergence time O(log K),
it is possible to achieve rapid (i.e. polynomial) convergence time even when the size of
the strategy set is exponential in the problem size. (For a concrete example, consider
the plroblem of choosing a route to drive to work each day. Here, the number of strate-
gies --- i.e. paths from home to work - may be exponential in the size of the network
of roads.) However, a naive implementation of Hedge with an exponential-sized set
of experts would require exponential computation time. In many cases, this difficulty
ca.n be circumvented using other algorithms. For example, when the set of strategies,
S, can be embedded in a low-dimensional vector space in such a way that the cost
functions are represented by linear functions, then there is an elegant algorithm for
the generalized best-expert problem, originally due to Hannan [39], which achieves
polynomial convergence time and polynomial computation time, assuming there is
a polynomial-time algorithm to optimize linear functions over S (as is the case, for
example, when S is the solution set of a polynomial-sized linear program). This al-
gorithm was rediscovered and generalized by Kalai and Vempala [44]. When S is a
convex set and the cost functions are convex, an algorithm called Greedy Projection,
due to Zinkevich [75], solves the generalized best-expert problem with polynomial
convergence time and polynomial computation time, assuming there is a polynomial-
time algorithm which computes, for any point x in Euclidean space, the point of S
which is closest to x in the Euclidean metric. The algorithms of Kalai-Vempala and
Zinkevich will be presented and analyzed in Sections 2.2 and 2.3.

1.4 Our contributions

Our contributions to the theory of online decision problems involve studying general-
ized multi-armed bandit problems at three progressively greater levels of generality.

* Chapter 4 concerns generalized bandit problems in which the strategy set is a
bounded interval. Such problems are called continuum-armed bandit problems.

* Generalizing from a one-dimensional to a d-dimensional strategy set, in Chap-
ter 5 we consider generalized bandit problems in vector spaces.
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* Generalizing still further, Chapter 6 concerns generalized bandit problems in

measure spaces.

Below, we give a detailed explanation of our results in each of these areas.

1.4.1 Continuum-armed bandit problems

Recall from Section 1.2 that there is an exponential gap between the best known

bounds for the continuum-armed bandit problem and those for the K-armed bandit

problem against i.i.d. adversaries. More specifically, for i.i.d. adversaries the best

K-armed bandit algorithms have regret 0(log T) and it is not possible to improve the

dependence on T [52], whereas the best previously known continuum-armed bandit

algorithm [2] has regret O (T(2a+1)/( 3a+l)+E), for arbitrarily small positive , when

a is the exponent of Lipschitz continuity of the mean reward function. It was not

known whether or not this exponential gap is inherent, i.e. whether the regret of the

optimal continuum-armed bandit algorithm (against i.i.d. adversaries) is polynomial

or polylogarithmic in T. In Chapter 4 we settle this question, by supplying nearly

matching upper and lower bounds for the continuum-armed bandit problem with

respect to i.i.d. adversaries as well as adaptive adversaries. The main theorem of

Chapter 4 may be summarized as follows.

Theorem 1.4. Let S be a bounded subinterval of R and let F denote the set of func-

tions S - [0, 1] which are uniformly locally Lipschitz with exponent a, constant L,

and restriction 6. Let Aadpt(F) and Aiid(F) denote the sets of adaptive and i.i.d. ad-

versaries, respectively, for (S, F); note that Aiid(F) c Aapt(r). There exists an
algorithm CAB satisfying

a+1 2___

R(CAB, Aadpt(F); T) = O(T2a1+ log 2a+ (T))

For any p < A+1 , there is no algorithm ALG satisfying R(ALG, Aiid(F); T) = O(T3).

The theorem demonstrates that there really is a qualitative gap between the K-

armed and continuum-armed bandit problems with an i.i.d. adversary: for the former

problem, the regret of the best algorithms grows logarithmically with T; for the latter,

it grows polynomially with T.
Independently and concurrently with our work, Eric Cope [25] also demonstrated

that the regret of the optimal continuum-armed bandit algorithm grows polynomially

with T. In fact he proved that no continuum-armed bandit algorithm can achieve

regret o(T) against i.i.d. adversaries provided that:
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* Tile cost function class F contains a function fJ(x) with a unique global maxi-
ntim at x = 0 satisfying

f(0)-f(x) > Cu - . '
for sone constants C < oc and p > 1;

* F also contains a continuum of functions "close" to f in a sense made precise
in [25].

The paper also presents a matching upper bound of 0(vT) for the regret of the
optimal algorithm when p = 2, using a modified version of Kiefer-Wolfowitz stochas-
tic approximation [48]. In comparison with these results, our Theorem 1.4 makes
a weaker assumption about the cost functions i.e. Lipschitz continuity -- and
achieves a weaker upper bound on regret, i.e. O(T(a+l)/(2 a+l) log/( 2 + 1) T) rather
than O(/T).

1.4.2 Bandit problems in vector spaces
Let us consider the prospect of generalizing Theorem 1.4 to a d-dimensional strategy
set. The upper bound in Theorem 1.4 is proved using a trivial reduction to the
K-armed bandit problem: for an appropriate value of , one selects a finite subset
X C S such that every element of S is within E of an element of X, and one runs
the IXl-armed bandit algorithm with strategy set X. When we try to use the same
reduction with a d-dimensional strategy set, we run into a problem: the size of the set
AX must be exponential in d, resulting in an algorithm with exponential convergence
time. In fact, it is easy to see that this exponential convergence time is unavoidable,
as is demonstrated by the following example.

Example 1.1. If the strategy set is [-1, 1]d then it may naturally be partitioned into
2' orthants depending on the signs of the d coordinates. Suppose we choose one of
these orthants O at random, choose a Lipschitz-continuous cost function c satisfying
c(x) = 1 for x and c(x) = for some x C , and put c = 2 = .. = CT. For any
algorithm, the expected number of trials before the algorithm samples an element of
( is Q(2 d), and it follows that no algorithm can achieve convergence time (2 d).

While Example 1.1 illustrates that it is impossible for the convergence time of
an algorithm to be polynomial in d when the cost functions are arbitrary Lipschitz
functions, one can hope to achieve polynomial convergence time for generalized bandit
problems in d dimensions when the class of cost functions is further constrained. The
next two theorems illustrate that this is indeed the case.
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Theorem 1.5. If S is a compact subset of Rd and F is the set of linear func-
tions mapping S to an interval [-M, M], then there exists an algorithm achieving
regret O(T2/ 3Md513) against oblivious adversaries in the generalized bandit problem

for (S, F). The algorithm requires only polynomial computation time, given an oracle

for minimizing linear functions on S.

Theorem 1.6. IfS is a bounded convex subset of Rd and F is a set of convex functions

mapping S to an interval -M, M], and if the functions in F are twice continuously
differentiable with bounded first and second partial derivatives, then there is an al-
gorithm achieving regret O(T3 /4dl7 /4 ) against oblivious adversaries in the generalized

bandit problem for (S, F). The algorithm requires only polynomial computation time,

given an oracle for minimizing the Euclidean distance from a point x C Rd to S.

In proving both of these theorems, we introduce the notion of a barycentric span-

ner. This is a special type of basis for the vector space spanned by S, with the

property that every vector in S may be expressed as a linear combination of basis
vectors with coefficients between -1 and 1. (If we relax this condition by allowing the

coefficients to be between -C and C, we call the basis a C-approximate barycentric
spanner.) We demonstrate that every compact subset of Rd has a barycentric span-
ner, and that a C-approximate barycentric spanner may be computed in polynomial

time, for any C > 1, given access to an oracle for minimizing linear functions on

S. Barycentric spanners arise naturally in problems which involve estimating linear

functions based on noisy measurements, or approximating arbitrary functions on a

compact subset of Rd with linear combinations of a finite number of basis functions.

We will sketch one of these applications in Section 5.3.
Subsequent to our work on online linear optimization, McMahan and Blum [58]

strengthened Theorem 1.5 to hold against an adaptive adversary, with a slightly

weaker upper bound on regret, using a modified version of our algorithm. Indepen-

dently and concurrently with our work on online convex optimization, Flaxman et.

al. [32] obtained a stronger version of Theorem 1.6 which allows an adaptive adver-

sary, requires no smoothness hypothesis on the cost functions, and achieves a stronger

regret bound of O(dT3/4 ). In Section 5.4.1 we elaborate on the comparison between

these two algorithms.

1.4.3 Bandit problems in measure spaces

The lower bound in Example 1.1 demonstrates that if the cost functions are uncon-

strained and an exponentially small fraction of the strategy set achieves an average

cost less than y, it is unreasonable to expect an algorithm, in a polynomial number of

trials, to also achieve an average cost less than y. But if a polynomially small fraction
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of the strategy set, achieves an average cost less than y, one can hope to design an
algorithm which achieves an average cost less than y + (for some snmall > 0) in a
polynomial number of trials. In order to make this idea precise, it must l)e possible
to specify what fraction of the strategies ill S are contained in a given subset X, i.e.
S must be a measure space of finite total measure.

In considering generalized bandit problemls whose strategy set is a measure space
(S, IL) of total measure 1, we are led to the notion of an anytime bandit algorithm;
the name "anytime" refers to the fact that the algorithm satisfies a non-trivial perfor-
mance guarantee when stopped at any time T > 0, and the quality of the guarantee
improves as T oc, eventually converging to optimality. Let us say that ALG is an
anytime bandit algorithm for (S, ,u) with convergence time Tr(, 6) if it satisfies the
following guarantee for all £, 6 > 0 and for all T > T(E, 6): if S contains a subset X
of measure at least E such that every x E X satisfies

1
E et (27 < y,T t=l

then the sequence of strategies Xl, x2, . .. XT chosen by ALG satisfies

Et=lt (xt) < y + .

Theorem 1.7. For any measure space (S, ) of total measure 1, there is an anytime
bandit algorithm for (S, ) whose convergence time is O((1/E)l+poly(1/6)). No
anytime bandit algorithm achieves convergence time O((1/E)polylog(1/E)poly(1/6)).

An anytime bandit algorithm is applied in the collaborative learning algorithm of
Chapter 7.

1.5 Adaptive pricing
The rising popularity of Internet commerce has spurred much recent research on mar-
ket mechanisms which were either unavailable or impractical in traditional markets,
because of the amount of communication or computation required. In Chapter 3 we
will consider one such mechanism, the on-line posted-price mechanism, in which a
seller with an unlimited supply of identical goods interacts sequentially with a pop-
ulation of T buyers. For each buyer, the seller names a price between 0 and 1; the
buyer then decides whether or not to buy the item at the specified price, based on
her privately-held valuation for the good. This transaction model is dictated by the
following considerations:
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* Following earlier authors [14. 31, 36, 65], we are interested in auction mech-

anisms which are strategyproof meaning that buyers weakly maximize their
utility by truthfully revealing their preferences. As shown in [14], this require-
ment in the on-line auction setting is equivalent to requiring that the seller

charge buyer i a price which depends only on the valuations of previous buyers.

* Given that the price offered to buyer i does not depend on any input from that
buyer, it is natural for the seller to announce this price before the buyer reveals

any preference information. In fact, for reasons of trust, the buyers may not

want to reveal their preferences before an offer price is quoted [21].

* For privacy reasons, the buyers generally do not wish to reveal any preference
information after the price is quoted either, apart from their decision whether

or not to purchase the good. Also, buyers are thus spared the effort of pre-

cisely determining their valuation, since the mechanism only requires them to

determine whether it is greater or less than the quoted price.

The seller's pricing strategy will tend to converge to optimality over time, as

she gains information about how the buyers' valuations are distributed. A natural

question which arises is: what is the cost of not knowing the distribution of the buyers'

valuations in advance? In other words, assume our seller pursues a pricing strategy $

which maximizes her expected revenue p(S). As is customary in competitive analysis

of auctions, we compare p(S) with the revenue p(§opt) obtained by a seller who knows

the buyers' valuations in advance but is constrained to charge the same price to all

buyers ([14, 21, 31, 36]). While previous authors have analyzed auctions in terms

of their competitive ratio (the ratio between p(S) and p(SOPt)), we instead analyze

the regret, i.e. the difference p(S) - p(SOPt). This is a natural parameter to study

for two reasons. First, it roughly corresponds to the amount the seller should be

willing to pay to gain knowledge of the buyers' valuations, e.g. by doing market

research. Second, it was shown by Blum et al in [21] that there are randomized

pricing strategies achieving competitive ratio 1 + E for any E > 0; thus it is natural to

start investigating the lower-order terms, i.e. the o(1) term in the ratio p(S)/p(SoPt)
for the optimal pricing strategy S.

One can envision several variants of this problem, depending on what assumptions

are made about the buyers' valuations. We will study three valuation models.

Identical: All buyers' valuations are equal to a single price p C [0, 1]. This price is
unknown to the seller.

Random: Buyers' valuations are independent random samples from a fixed proba-

bility distribution on [0, 1]. The probability distribution is not known to the
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seller.

Worst-case: The model makes no assumptions about the buyers' valuations. They
are chosen by an adversary who is oblivious to the algorithm's random choices.

Our results are summarized in the following three theorems. In all of them, the
term "pricing strategy" refers to a randomized on-line algorithm for choosing offer
prices, unless noted otherwise.

Theorem 1.8. Assuming identical valuations, there is a deterministic pricing strategy
achieving regret O(log log T). No pricing strategy can achieve regret o(log log T).

Theorem 1.9. Assuming random valuations, there is a pricing strategy achievling
regret O(/T log T), under the hypothesis that the function

f(x) = x. Pr(buyer's valuation is at least x)

has a unique global maximum x* in the interior of [0,1], and that f"(x*) < 0. No
pricing strategy can achieve regret o(/T), even under the same hypothesis on the
distribution of valuations.

Theorem 1.10. Assuming worst-case valuations, there is a pricing strategy achieving
regret O((T 2 /3 (logT)1/ 3 ). No pricing strategy can achieve regret o(T2 /3 ).

The lower bound in the random-valuation model is the most difficult of the re-
sults stated above, and it represents the most interesting technical contribution in
Chapter 3. Interestingly, our lower bound does not rely on constructing a contrived
demand curve to defeat a given pricing strategy. Rather, we will show that for any
family D of demand curves satisfying some reasonably generic axioms, and for any
randomized pricing strategy, the probability of achieving regret o(T) when the de-
mand curve is chosen randomly from D is zero. Note the order of quantification here,
which differs from the Q(/T) lower bounds which have appeared in the literature on
the adversarial multi-armed bandit problem [4]. In that lower bound it was shown
that, given foreknowledge of T, an adversary could construct a random sequence of
payoffs forcing any strategy to have regret Q(T). In our theorem, the demand curve
is chosen randomly without foreknowledge of T or of the pricing strategy, and it is
still the case that the pricing strategy has probability 0 of achieving regret o(vT) as
T --+ oo.

We should also point out that in Theorem 1.9, it is not possible to eliminate the
hypothesis that f has a well-defined second derivative at x* and that f"(x*) < O0. The
proof of Theorem 1.4 - which demonstrates that continuum-armed bandit algorithms
can not achieve regret o(T 2/3 ) against Lipschitz cost functions - can be modified to
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yield an explicit example of a demand curve family such that the function f(x) has a

singularity at x* and such that no pricing strategy can achieve o(T2/ 3 ) in the random-

valuations model. This example illustrates that the distinction between the O(T)

bounds in Theorem 1.9 and the O(T2/3 ) bounds in Theorem 1.10 is primarily due

to the distinction between smooth and singular demand curves, not the distinction
between random and worst-case valuations.

1.5.1 Related work in computer science

There have been many papers applying notions from the theory of algorithms to the

analysis of auction mechanisms. While much of this work focuses on combinatorial
auctions a subject not touched on here-- there has also been a considerable

amount of work on auction mechanisms for selling identical individual items, the

setting considered in Chapter 3. In [36], the authors consider mechanisms for off-
line auctions, i.e. those in which all buyers reveal their valuations before any goods

are sold. The authors characterize mechanisms which are truthful (a term synony-

mous with "strategyproof", defined above), and show that no such mechanism can

be constant-competitive with respect to the optimal single-price auction, assuming

worst-case valuations. In contrast, they present several randomized off-line auction

mechanisms which are truthful and constant-competitive with respect to the optimal

auction which is constrained to set a single price and to sell at least two copies of the

good.

On-line auctions were considered in [14, 21], in the posted-price setting considered
here as well as the setting where buyers reveal their valuations but are charged a price

which depends only on the information revealed by prior buyers. In the latter paper,

techniques from the theory of online decision problems are applied to yield a (1 + e)-

competitive on-line mechanism (for any E > 0) under the hypothesis that the optimal

single-price auction achieves revenue Q(h log h loglog h), where [1, h] is the interval

which is assumed to contain all the buyers' valuations. In Section 3.3.1, we use

their algorithm (with a very minor technical modification) to achieve expected regret

O(T2/3 (log T)/ 3 ) assuming worst-case valuations.
An interesting hybrid of the off-line and on-line settings is considered by Hartline

in [40]. In that paper, the mechanism interacts with the set of buyers in two rounds,

where prices in the second round may be influenced by the preferences revealed by
buyers in the first round. Assuming the set of buyers participating in the first round

is a uniform random subset of the pool of T buyers, the paper exhibits a posted-price

mechanism which is 4-competitive against the optimal single-price auction.

On-line multi-unit auctions (in which buyers may bid for multiple copies of the
item) are considered in [12], which presents a randomized algorithm achieving com-
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petitive ratio O(log B) where B is the ratio between the highest and lowest per-unit
prices offeredl. This result is sharpened in [53], where the optimal competitive ratio
(as a function of B) is determined exactly.

1.5.2 Related work in economics

The preceding papers have all adopted the worst-case model for buyers' valuations,
as is customlary in the computer science literature. The traditional approach in the
economics literature is to assume that buyers' valuations are i.i.d. samples from a
probability distribution which is either known to the seller or which depends on some
unknown paralneters sampled from a Bayesian prior distribution which is known to
the seller. Rothschild [63] introduced multi-armned bandit techniques into the eco-
nomics literature on optimal pricing, in a paper which studies the optimal pricing
policy of a monopolistic seller in an idealized model in which the demand curve de-
pends on unknown parameters governed by a known Bayesian prior, the seller is
constrained to choose one of two prices P1,P2, and the seller's revenue is geometri-
cally discounted over time. Rothschild exhibited instances in which a seller using the
optimal pricing policy has a positive probability of choosing just one of the two prices
after a finite number of trials and charging this price forever thereafter; moreover,
there is a positive probability that this price is the inferior price, i.e. it would have
the smaller expected revenue if the demand curve were revealed. This pathology is
referred to as incomplete learning; as we have seen in Section 1.2 it is a phenomenon

associated with online decision problems that have a geometrically discounted adver-
sary. Subsequent papers on optimal pricing in economics focused on the incomplete
learning phenomenon revealed by Rothschild. McLennan [57] considers a model in
which there is a one-parameter continuum of possible prices (rather than only two
possible prices as in Rothschild's work); even if there are only two possible demand
curves, McLennan demonstrates that incomplete learning may occur with positive
probability. Easley and Kiefer [30] generalize these results still further, examining
general online decision problems in which the strategy set S and feedback set are
compact and the adversary is geometrically discounted. They characterize conditions
under which the optimal algorithm for such problems may exhibit incomplete learning
with positive probability. Aghion et. al. [1] focus on online decision problems in which
the payoff functions are geometrically discounted but do not vary over time, i.e. in our
terminology, they study randomized oblivious adversaries satisfying Ct(r') = atC(r)
for some constant 0 < a < 1 and some F-valued random variable C. They explore
the role of smoothness, analyticity, and quasi-concavity of the payoff function C in
determining whether the optimal algorithm may exhibit incomplete learning.

A recent; paper by Ilya Segal [65] considers optimal pricing by a monopolistic seller
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in an off-line auction. As in the other economics papers cited above, Segal assumes
that the seller's beliefs about the buyers' valuations are represented by a Bayesian
prior distribution. In Section V of [65], Segal compares the expected regret of the
optimal strategyproof off-line mechanism with that of the optimal on-line posted-price
mechanism (which he calls the "optimal experimentation mechanism") under three

assumptions on the space D of possible demand curves:

*· is a finite set ("Hypothesis testing");

* D is parametrized by a finite-dimensional Euclidean space ("Parametric esti-

mation");

* D is arbitrary ("Non-parametric estimation").

In this terminology, our Chapter 3 is concerned with bounding the expected regret of
the optimal experimentation mechanism in the non-parametric case. Segal explicitly
refrains from addressing this case, writing, "The optimal experimentation mechanism
would be very difficult to characterize in [the non-parametric] setting. Intuitively, it
appears that its convergence rate may be slower [than that of the optimal off-line
mechanism] because the early purchases at prices that are far from p* will prove

useless for fine-tuning the price around p*." This intuition is partly confirmed by the
lower bound we prove in Section 3.2.2.

1.6 Online routing

Consider a network G = (V, E) with a designated source s and sink r, and with edge

delays which may vary over time. In each trial a decision-maker must choose a path

from s to r with the objective of minimizing the total delay. (One may motivate this

as the problem of choosing a route to drive to work each day, or of source-routing
packets in a network so as to minimize the average transmission delay.) It is natural

to model this problem as an online decision problem; in this case the strategy set

is the set of paths from s to r and the cost functions are determined by specifying

real-valued edge lengths and assigning to each path a cost equal to the sum of its edge

lengths. Note that the strategy set is finite, but its size may be exponential in the

size of G, in which case a naive solution based on the multi-armed bandit algorithm
would have exponential convergence time.

If we allow non-simple paths, then the online shortest path problem becomes a
special case of online linear optimization, hence our online linear optimization algo-

rithm from Section 5.2.3 may be applied to yield an online shortest path algorithm
with polynomial convergence time.
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Theorem 1.11. Let G = (V. E) be a directed graph with two distinguished vertices
.Y. Let S denote the set of (not necessarily simpl') directed paths from s to r of

yi-v.th at most H, and let F denote the set of all functions from S to R+ defined by
a.sszgn.ng a cost between 0 and 1 to each edge of G and defining the cost of a path to
bc the sum of its edge costs. Let A denote the set of all oblivious adversaries in the
gcnetralized bandit problem for (S. F). There is an alqorithm ALG whose regret and
convergence time satisfy

R(ALG, A; T) = O(T2/ 3Hm 'n5/3)

T(6) = O(H3m-5/3)

1.6.1 Related work

The online shortest path problem has received attention in recent years, but algo-
rithms prior to ours either assumed full feedback or they assumed a feedback model
which is intermediate between full and opaque feedback. Takimoto and Warmuth [68]
studied the online shortest path problem with full feedback, demonstrating that the
best-expert algorithm [33, 54] in this case can be simulated by an efficient (polynomial-
time) algorithm in spite of the fact that there are exponentially many "experts", cor-
responding to all the s - r paths in G. Kalai and Vempala [44] considered online
linear optimization for a strategy set S C R d , presenting an algorithm which achieves
O( /Tlog d) regret, as discussed earlier. (Note that this bound depends only on the
dimension d, hence it is applicable even if the cardinality of S is exponential or infi-
nite.) One may interpret this as an algorithm for the online shortest path problem,
by considering the set of s - r paths in G as the vertices of the polytope of unit flows
from s to r; thus Kalai and Vempala's algorithm also constitutes a online shortest
path algorithm with regret O(N/T log m) in the full feedback model.

Awerbuch and Mansour [8] considered an online path-selection problem in a model
where the edges have binary costs (they either fail or they do not fail) and the cost of a
path is 1 if any edge fails, 0 otherwise. They consider a "prefix" feedback model, where
the feedback in each trial identifies the location of the first edge failure, if any edge
failed. Using the best-expert algorithm [54] as a black box, their algorithm obtains
regret O (H(n log(nT))1/2 T5 /6 ) assuming an oblivious adversary. The algorithm was
strengthened to work against an adaptive adversary in subsequent work by Awerbuch,
Holmer, Rubens, and Kleinberg [5]. These algorithms are structurally quite different
from the online shortest path algorithm presented here in Section 5.2.4. Rather than
treating the shortest path problem as a special case of a global linear optimization
problem in a vector space determined by the edges of G, the algorithms in [5, 8] are
based on factoring the problem into a set of local optimization problems, in which
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each node v uses a best-expert algorithm to learn which of its incoming edges lies on

the shortest s -v path. A similar approach can be used to design an online shortest
path algorithm in the o)aque-feedback model against all adaptive adversary; see [6]
for details.

Our approach to the online shortest path problem, which relies on estimating the

length of a small number of paths and using linear algebra to reconstruct the lengths

of all other paths, is strongly reminiscent of linear algebraic approaches to network

tomography (e.g. [24, 66]), in which one attempts to deduce link-level or end-to-end

path properties (e.g. delay, delay variance, packet loss rate) in a network by making
a limited number of measurements. One of the conclusions which can be drawn from
our work is that the output of these algorithms may be very sensitive to measurement

errors if one does not use a carefully-chosen basis for the set of paths; moreover, good

bases (i.e. approximate barycentric spanners) always exist and may be computed

efficiently given knowledge of the network layout.

1.7 Collaborative learning

It is clear that leveraging trust or shared taste enables a community of users to
be more productive, as it allows them to repeat each other's good decisions while

avoiding unnecessary repetition of mistakes. Systems based on this paradigm are

becoming increasingly prevalent in computer networks and the applications they sup-

port. Examples include reputation systems in e-commerce (e.g. eBay, where buyers

and sellers rank each other), collaborative filtering (e.g. Amazon's recommendation
system, where customers recommend books to other customers), and link analysis

techniques in web search (e.g., Google's PageRank, based on combining links- i.e.

recommendations - of different web sites). Not surprisingly, many algorithms and

heuristics for such systems have been proposed and studied experimentally or phe-

nomenologically [23, 49, 55, 60, 72, 73, 74]. Yet well-known algorithms (e.g. eBay's

reputation system, the Eigentrust algorithm [45], the PageRank [23, 60] and HITS [49]

algorithms for web search) have thus far not been placed on an adequate theoretical
foundation.

In Chapter 7 we propose a theoretical framework for understanding the capabilities

and limitations of such systems as a model of distributed computation, using the
theory of online decision problems. Our approach aims to highlight the following

challenges which confront the users of collaborative decision-making systems such as
those cited above.

Malicious users. Since the Internet is open for anybody to join, the above systems
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are vulnerable to fraudulent. manipulation by dishonest ("Byzantine") partici-
pants.

Distinguishing tastes. Agents' tastes may differ, so that the advice of one honest
agent may not be helpful to another.

Temporal fluctuation. The quality of resources varies of time, so past experience
is not necessarily predictive of future performance.

To account for these challenges, we formulate collaborative decision problems as a
generalization of the multi-armed bandit problem in which there are n agents and m
resources with time-varying costs. In each trial each agent must select one resource
and observe its cost. (Thus, the multi-armed bandit problem is the special case
n = 1.) Assume that among the n agents, there are h "honest" agents who obey
the decision-making protocol specified by the algorithm and report their observations
truthfully; the remaining n - h agents are Byzantine and may behave arbitrarily.
Assume moreover that the honest agents may be partitioned into k coalitions with
"consistent tastes," in the sense that agents in the same coalition observe the same
expected cost for a resource y if they sample y in the same trial. In Chapter 7 we
formalize these notions and also extend the definitions of "regret" and "convergence
time" to this setting to obtain the following theorem.

Theorem 1.12. Assume that the number of honest agents, h, and the number of
resources, m, are comparable in magnitude to the number of agents, n, i.e. there
exist positive constants cl, c2 such that h, m both lie between c1n and c2n. Then there
exists an algorithm TrustFilter for the collaborative learning problem whose regret R
and convergence time T(6) satisfy

R =o(k log n l og T ) (1.1)

T(6) = O(k3 log 3 nlog 3 (k log n)). (1.2)

While our online learning paradigm is different from prior approaches to collab-
orative decision systems, the resulting algorithms exhibit an interesting resemblance
to algorithms previously proposed in the systems and information retrieval literature
[23, 45, 49, 60] indicating that our approach may be providing a theoretical frame-
work which sheds light on the efficacy of such algorithms in practice while suggesting
potential enhancements to these algorithms.

1.7.1 Related work

The adversarial multi-armed bandit problem [4] forms the basis for our work; our
model generalizes the existing multi-armed bandit model to the setting of collabora-
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tive learning with dishonest users. Our work is also related to several other topics
which we now discuss.

Collaborative filtering - spectral methods:

Our problem is similar, at least in terms of motivation, to the problem of design-
ing collaborative filtering or recommendation systems. In such problems, one has a

community of users selecting products and giving feedback on their evaluations of

these products. The goal is to use this feedback to make recommendations to users,

guiding them to subsequently select products which they are likely to evaluate pos-

itively. Theoretical work on collaborative filtering has mostly dealt with centralized

algorithms for such problems. Typically, theoretical solutions have been considered

for specific (e.g., stochastic) input models [11, 29, 37, 41, 61], In such work, the goal

is typically to reconstruct the full matrix of user preferences based on small set of

potentially noisy samples. This is often achieved using spectral methods. In con-

strast, we consider an adversarial input model. Matrix reconstruction techniques do

not suffice in our model. They are vulnerable to manipulation by dishonest users, as

was observed in [9, 10]. Dishonest users may disrupt the low-rank assumption which

is crucial in matrix reconstruction approaches. Alternatively, they may report phony

data so as to perturb the singular vectors of the matrix, directing all the agents to a

particularly bad resource.
In contrast, our algorithm makes recommendations which are provably good even

in the face of arbitrary malicious attacks by dishonest users. To obtain this stronger

guarantee, we must make a stronger assumption about the users: honest users are

assumed to behave like automata who always follow the recommendations provided

by the algorithm. (The work on collaborative filtering cited above generally assumes

that users will choose whatever resources they like; the algorithm's role is limited to

that of a passive observer, taking note of the ratings supplied by users and making

recommendations based on this data.)

Collaborative filtering - random sampling methods:

The only previous collaborative filtering algorithm which tolerates Byzantine behavior

is the "Random Advice Random Sample" algorithm in [9, 10]; it achieves a logarith-
mic convergence time, assuming the costs of resources do not vary over time. (The

only changes in the operating environment over time occur when resources arrive or

depart.) This assumption of static costs allows the design of algorithms based on a

particularly simple "recommendation" principle: once an agent finds a good resource,
it chooses it forever and recommends it to others. The bounds on regret and conver-
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gence time in [9] are analogous to ours, and are in fact polylogarithliically superior,
to those in our Theorem 7.1. However, [9] does not handle costs which evolve dynam-
ic(ally as a function of tinle, and is limited to 0, 1}-valued rather than real-valued
costs.

Reputation management in peer-to-peer networks:

Karmvar et al [45] proposed an algorithm, dubbed EigenlTrust, for the problem of
locating resources in peer-to-peer networks. In this problem, users of a peer-to-peer
network wish to select other peers from whom to download files, with the aim of min-
ilnizing the number of downloads of inauthentic files by honest users; the problem
is made difficult by the presence of malicious peers who may attempt to undermine
the algorithm. Like our algorithm, EigenTrust defines reputation scores using a ran-
dom walk on the set of agents, with time-varying transition probabilities which are
updated according to the agents' observations. Unlike our algorithm, they use a
different rule for updating the transition probabilities, and they demonstrate the al-
gorithm's robustness against a limited set of malicious exploits, as opposed to the
arbitrary adversarial behavior against which our algorithm is provably robust. The
problem considered here is less general than the peer-to-peer resource location prob-
lem considered in [45]; for instance, we assume that in each trial, any agent may select
any resource, whereas they assume that only a subset of the resources are available
(namely, those peers who claim to have a copy of the requested file). Despite these
differences, we believe that our work may shed light on the efficacy of EigenTrust
while suggesting potential enhancements to make it more robust against Byzantine
malicious users.

1.8 Outline of this thesis

The rest of this thesis is organized as follows. In Chapter 2 we present and analyze
some algorithms from the prior literature on online decision problems; we will fre-
quently rely on these algorithms when presenting our own algorithms later in this
work. Chapter 3 presents upper and lower bounds for adaptive pricing problems.
These problems are a special case of "continuum-armed bandit problems", in which
the strategy space is a one-parameter interval; we consider the general case more
fully in Chapter 4. In Chapter 5 we progress from one-parameter to multi-parameter
optimization problems, presenting algorithms for generalized bandit problems in vec-
tor spaces with linear or convex cost functions. As a concrete application of these
techniques, we specify an online routing algorithm with polynomial convergence time.
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Chapter 6 passes to a still greater level of generality, in which we consider the strat-
egy space to be a measure space and the cost functions to be measurable functions,
and we design "anytime bandit algorithms" which have polynomial convergence time
with respect to suitably relaxed definitions of regret and convergence time. One of
these algorithms is applied in Chapter 7, which presents an algorithm for the collab-
orative bandit problem. In Chapter 8 we present some concluding remarks and open
problems.

1.9 Bibliographic notes

The material in Chapter 3 is based on joint work with Tom Leighton which appeared
in [51]. Chapter 4 and Section 5.4 are based on the extended abstract [50]. The
remaining material in Chapter 5 and all of the material in Chapter 7 are based on
joint work with Baruch Awerbuch; this work appeared in the extended abstracts [6, 7].
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Chapter 2

Background material

2.1 The weighted majority and Hedge algorithms

The problem of predicting based on expert advice was the impetus for much of the
early work on the worst-case analysis of online decision problems. Such problems are
known as "best-expert" problems; they correspond to the full feedback model defined
in Section 1.1. Here we present two best-expert algorithms: the weighted majority
algorithm WMA [54] and the closely-related algorithm Hedge [4].

Suppose that we wish to predict a binary sequence bh, b2, . . ., bT, given access to a
set S of K experts each of whom makes a sequence of predictions bi(i), b2(i), .. ., bT(i).

At the start of trial t, each expert i reveals its prediction bt(i), the algorithm makes
a prediction bt(ALG) based on this advice, and then the true value of bt is revealed.
The algorithm and the experts are charged a cost of 1 for each mistake in predicting
bt (1 t < T), and the algorithm's regret is measured by comparing its charge with
that of the best expert. Note that this problem doesn't quite fit the formulation of
online decision problems specified in Section 1.1: the algorithm has only two choices
in each trial. but its regret is measured by comparing it against K experts. In an
online decision problem as formulated in Section 1.1, these two sets the set of
alternatives in each trial, and the set of strategies against which the algorithm is
compared when evaluating its regret would be identical. Nevertheless, the binary
prediction problem considered here clearly bears a close relation to online decision
problems as formulated in Section 1.1, and the algorithm WMA which we will analyze
is important both historically and as an aid in developing intuition about online
decision problems.

The weighted majority algorithm is actually a one-parameter family of algorithms
parametrized by a real number E > 0. We will use the notation WMA(e) to denote the
algorithm obtained by choosing a specific value of e. This algorithm is presented in
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Algorithm WMA(E)

/* Initialization */

wo(i) 1 for i = 1,2,...,K.

/* Main loop */
for t= 1,2,...,T

/* Make prediction by taking weighted majority vote */

if E i:b,(i)=o t-l(i) > i: bt(i)=l Wt-l(i)
predict bt = 0;

else
predict bt = 1.

Observe the value of bt.

/* Update weights multiplicatively */
Et {- experts who predicted incorrectly}

Wt(i) - (1 - c) wt(i) for i Et.
end

Figure 2-1: The weighted majority algorithm

Figure 2-1. The idea of the algorithm is quite simple: its prediction of bt is based on
taking a majority vote among the experts, where each expert is given a vote weighted
according to its past performance. After the true value of bt is revealed, we reduce
the weight of each expert who made a mistake by a multiplicative factor of 1 - ,
where E > 0 is a parameter specified when the algorithm is invoked.

In the following theorem, and throughout the rest of this thesis, "log" refers to
the natural logarithm function, unless otherwise noted.

Theorem 2.1. For any sequence of bits bl, b2,. . , bT and any j c {1, 2,..., K}, let

bt(j), bt(WMA) denote the predictions made by expert j and by algorithm WMA(E),
respectively, in trial t on input sequence b, b2, . . , bT. Then

2 T 2logK
l bt(WMA) - btl < 1 e bt(i)-btl + e

t=l t=l

Proof. The analysis of WMA(c) is based on the parameter Wt = EK 1 Wt(i). When-
ever the algorithm makes a mistake, the value of Wt shrinks by a constant factor.

40



On the other hand, T14t is bounded below by wtu(i). These two bounds on Wlt, taken
together, will lead to the desired result.

If the algorithm makes a mistake at timhe t, then the set Et of experts who made
a mistake at time t accounts for a weighted majority of the votes at time t, i.e.

E wt- () > Vt- I
iCEt

and consequently

iGE 
1Vt =(1 - E Wtl() + Wt- lI(Z) Wt- E z ( Wt-iEEt iVEt iEEt

Let A= 't=1 Ibt(WMA) - btl be the number of mistakes made by WMA(E), and let
B j= Ibt(j)- btl be the number of mistakes made by expert j. We have

(1- -) = WT(j) < wT < (1- 2)AW0 < e 2 A
2

Substituting Wo K and taking the logarithm of both sides, we obtain

EA
B log(1 - ) < + log(K)

2

and upon rearranging terms this becomes

-2log(I - E) 2 og K) 2 log K)A < (2 (1 ))B+ < (7 B 

using the inequality log(i-x) < l, valid for x > 0. [1

The mistake bound in Theorem 2.1 is essentially the best possible such bound for
deterministic algorithms, in a sense made precise by the following theorem.

Theorem 2.2. Let ALG be any deterministic algorithm for the binary prediction
problem with K > 2 experts. Suppose that for every input sequence bl,..., bT and
every expert j C {1, 2,. . ., K}, the number of mistakes made by ALG satisfies a linear
inequality of the form

T T

iE bt(ALG) -btl < a2 E lbt(j) - bt + 3 (2.1)
t=l t=l

'where ar is a constant and depends only on K. Then ca > 2 and P > log2 (K).
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Proof. To prove ca > 2, suppose there is at least one expert i who always predicts

bt(i) = 0 and at least one expert j who always predicts bt(j) = 1. Since ALG is
deterministic, it is possible to construct an input sequence b, b2, .. , bT such that

ALG makes T nmistakes: always choose bt to be the opposite of ALG's prediction at

time t. Since i and j always make opposite predictions, one of them is correct at

least half the time, i.e. makes at most T/2 mistakes. Thus T < aT/2 + . Letting

T - o, this proves that > 2.
To prove > log2 (K), suppose K = 2 T and suppose that for each binary sequence

of length T, there is one expert who predicts that sequence. As before, since ALG is

deterministic we may construct an input sequence b, ... , bT such that ALG makes T

mistakes. By construction there is one expert who makes no mistakes on bl,..., bT,

hence T < . Since T = log2(K) we have /3 > log2 (K) as desired. l

To obtain significantly better performance in the binary prediction problem, we

must use a randomized algorithm. The next algorithm we will present, Hedge(c),

achieves a mistake bound of the form (2.1) with a =1 + 0(E) and /3 = O(log K/E).

In fact, Hedge(e) is actually a randomized algorithm for an online decision problem

with strategy set S = {1, 2,..., K}, cost function class [0, 1]S, and full feedback. The

binary prediction problem reduces to this online decision problem by defining a cost

function ct(i) = bt(i) - btl, i.e. the cost of an expert at time t is 1 if it makes a

mistake, 0 otherwise. In each trial, Hedge(£) designates an expert xt S based on

its random seed and on the data observed in past trials, but not on the predictions

of the experts in the present trial.

Theorem 2.3. Let S = {1, 2,..., K} and F = [0, 1]S, and let A denote the set of all
adaptive adversaries for (S, F). Then

R(Hedge(E), A; T)< ( ) T± log(K)

Proof. Let Wt = iEs wt(i). The convexity of the function (1- )Y implies that

(1 - )Y < 1 - cy for y E [0, 1], from which we obtain the bound:

Wt EicS(l - )ct(i)Wtl(i)
Wt-1 KiCs Wt- (i)

< ies( 1 - Ect(i))wt-i(i)

ics Wt-l(i)
= -E Y Ct(i)pt(i) =1 - EE(Ct(xt))

iES
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Algorithm Hedge(c)

/* Initialization */

wo(i) 1 for i C S

/* Main loop */
for t = 1, 2,..., ,T

/* Define distribution for sampling random strategy */
for i C S

Pt(i) t-i (i)E(iJS llwtl())
end
Choose xt C S at random according to distribution Pt.
Observe feedback ct.

/* Update score for each strategy */
for i C S

wt(i) wt-(i) ' (1 - )t(i)

end
end

Figure 2-2: The algorithm Hedge(E).

hence

log(Wt/Wt_,) < log(1 - EE(ct(xt)) -E(ct(xt))

and

log(WT)
T 

t=l

< log(K) - E 
t=1

Ct(xt)

But for any x C S, WT > WT(X)= (1- )Z-1 ct(x), hence

log(WT) > log(1 -
T

t=l
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Combining (2.2) and (2.3) and rearranging terms we obtain

E ( ct(xt) < Elog(-t(X) g
t= t=l

1 T log K
< 1 Zct(x) + (2.4)

t=l

using the inequality - log(l- < _ , valid for x > 0. The theorem now follows by
subtracting >T1 ct(x) from both sides of (2.4) and using the trivial upper bound

Et=l t(z) < T. ]

2.2 The Kalai-Vempala algorithm

Figure 2-3 presents an algorithm of Kalai and Vempala [44] which solves online de-
cision problems in which the strategy set is a compact set S C Rd and the cost
functions are linear functions on S. We identify elements of the cost function set F
with vectors in Rd.; such a cost vector c defines a function from S to R according to
the rule x - c x.

Given a sequence of cost vectors co, c1,..., CT E Rd, we will use the notation ci..j,
for 0 < i < j < T, to refer to the vector

Ci..j = Ci + Ci+l + ... + j,

and we will also define

xi..j = arg min(ci..j x)
xES

with the convention that if the function ci..j x x is minimized at more than one point
of S, then xi..j is an arbitrary point of minimization.

Theorem 2.4. Let F denote the class of all linear functions x - cx on S represented
by cost vectors c satisfying Icil < 1. Let A denote the set of all oblivious adversaries
for F. Assume that the L1-diameter of S is at most D, i.e. flx - yl < D for all
x, y S. Then

D
R(KV(e), A; T) < - + DeT.

The proof of the theorem rests on the following lemma, which says that an
algorithm which always picks xi*j has non-positive regret on the input sequence
Ci, Ci+l .· · Cj.
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Algorithm KV(E)

/* Initialization */

co f- a uniforml random vector in [- , ]d
/* Main loop */

for t= 1,2 .. ,T
Choose strategy xt = xo..t_-l

elnd

Figure 2-3: The Kalai-Vempala Algorithm

Lemma 2.5. For 0 < i < j < T, if x is artny element of S,

J J

Ct xit < C t X.
t=i t=i

Proof. The proof is by induction on j - i, the base case j = i being trivial. If j > i,
then by the induction hypothesis

j-1 j-1
iCt
t=it=i

Xi..j - (2.5)

Adding cj xi*.j to both sides we obtain

J

5 i..t •
t=i t-

and the lemma follows because for all x C S,

j

J

d Ct

=i

X*
i..j3 (2.6)

J

Ct X* j Ct - X.

t=i t=i

E

Proof of Theorem 2.4. Suppose we are given an oblivious adversary ADV C A rep-
resented by a sequence of cost functions C1 ,... , CT. For any x S we may use
Lemma 2.5:

T

Ct Xo..t -

t=O

T

- Ct X < 0,
t=O

45



hence
T T D

E C. o Z C,. < Co(X- S..o) < -. (2.7)
t=1 t=l

This proves that if the algorithm always chose xt = x..t its regret would be at most
DE. However, instead the algorithm chooses t = x..t-l, incurring an additional
regret equal to -Tl [E(ct x .t-,l)- E(ct x..t)] . To finish proving the theorem, it

therefore suffices to prove that

E(ct o..t-l) < E(ct O..t) + DE (2.8)

for 1 < t < T. To prove (2.8) we will produce a random variable Ix..t with the same
distribution as xO..t, but coupled to x..t-l_ in such a way that Pr(x -.. t-l= ) > 1-c.
Let

-= {C - t if co - t E [-1/c, 1/]d
-co otherwise

The reader may verify that co has the same distribution as co and that Pr(co + t =

co) > 1 - . Now let *..t = arg minxes{(o + Cl..t) x}. From the properties of co it
follows immediately that i*.t has the same distribution as x..t, hence

E(ct - ..t) = E(ct x ..t), (2.9)

and that Pr(i5..t = ..t,_l) > 1 - E, hence

E(ct (x..t- 1 - :r,..)) < c sup {Ct (x - y)} = ED. (2.10)
x,yES

Together, (2.9) and (2.10) establish (2.8) as desired. LI

2.3 Zinkevich's algorithm

An online convex programming problem is an online decision problem in which the

strategy set S is a convex subset of Rd (for some d > 0) and the cost function
class r is a subset of the set of real-valued convex functions on S. In this section,

following Zinkevich [75], we make the following assumptions about S and F. Define

Ijxl = v/x and d(x, y) = lx - ylI.

1. S is a nonempty, closed, bounded subset of Rd. Let ISII = maxx,yes d(x, y).

2. The cost functions in F are differentiable convex functions, and their gradients
are uniformly bounded. Let

llVcll = max{Vc(x) I c C F, x C S}.
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3. There exists an algorithm which computes. for any C Rd, the vector

P(y) = arg nin d(x. y).
xCS

Zinkevich. in [75], defines an algorithm called Greeidy Projection for online convex
p)rogramming problems with full feedback. The algorithm is invoked with a strategy
set S and a sequence of learning rates r11, 2 . . .IT R+ . Greedy Projection operates
as follows: it selects an arbitrary x C S. In time step t, after learning the cost
function Ct, the algorithm updates its vector by setting

Xt+ = P(Xt - 1t(at ))

Theorem 2.6. If l > rT/2 > ... > Th, thn ththe regret of the Greedy Projection
algorithm GP satisfies the bound

R(GP, A; T) < A + 2 t,
t=l

where A denotes the set of all oblivious adversaries for (S, F).

Proof. We will make use of the inequality

IIP(Y) - X112 < IY - 112 , (2.11)

valid for any y C R d, x E S. To prove this inequality, assume without loss of generality
that P(y) = O, so that the inequality reduces to

x x < (y - x) = (y - ) = (y) - 2(y x) + (x x). (2.12)

Clearly (2.12) will follow if we can prove that y x < 0. Consider the function
f(A) = d(y, Ax) 2 for A C [0, 1]. Since Ax S for all A e [0, 1], and 0 = P(y), we know
that the minimum of f on the interval [0, 1] occurs at A = 0; hence

< fxo
Oh>J A=0

A [(y y) - 2A(y- x) +A2 (x -x)] 0=O
-2y x

which establishes that y - x < 0 as desired.
Consider an oblivious adversary ADV defined by a sequence of cost functions

Cl,., CT, and let x* = arg minXES Et=l1 ct(x). Following [75], we define the potential
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function J1(t) = lt -. r* 2. To estimate the change in potential 1((t + 1) - (b(t), we

define Yt+l = xt - rtVCt(Xt), so that xt+ = P(yt+]). Now

lP(yt+l) - * 12- t - xl 2

<IYt+l - *112 - ljt - X*1l2

= Il(X - x*) - rtVct(xt)112 - l't - :*112

= -2r 1tVct(t) ). (Xt - *)+ 12 IVCt(X,) 12,

Vct(xt) (Xt - 1*) (4(t) - (t + 1)) + - Vct(xt) 2
- 2rt 2

< 2r((t - (t + 1)) + 2

By the convexity of ct we have

Ct(x) > Ct(xt) + Vct(xt). ( - t)

for all x C S, i.e.

ct(xt) - ct(x) < Vct(xt) (t - ).

Combining (2.13) and (2.14) we obtain

R(GP, ADV; T)
T

= E t (Xt)- t(x*)
t=l
T

< E Vt(xt) (Xt - *)
t=l

t=1

1T

=2r/r )->( 

+ 1) + lcIIC12

2

1)) -+ IlCl=
2 z

t

T

Z 7t
t=l

T

L,=t
=1

< Sll12 IClVc 2
T

+ -7tI't t=l

using the fact that (t) = lt - x*112 < ISI 2 for all t.

2.4 Multi-armed bandit algorithms I:
The UCB1 algorithm

In this section we review an algorithm of Auer, Cesa-Bianchi, and Fischer [3]
the maximization version of the multi-armed problem with an i.i.d. adversary.

for
We
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i.e.

(2.13)
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assume that the strategy set S is {1. 2,... K} for some K and that the set of cost
functions. F, is equal to the set [, 1I1] of all real-valued functions on S taking values
ill the interval [0, 1].

In fact, we will prove that the algorithnl works under a somewhat llore general
adversarial nlodel defined in [2]. and we will require this more general resullt later on.
To state the generalization, we make the following definition.

Definition 2.1. Let F = Rs. For a probability distribution P on functions c F,
we define C RSE to be the function (x) = Ep(c(x)), where Ep(.) denotes the
expectation operator defined by P. For positive real numbers , so, we say that P is
((, so)-bounded if it is the case, for all s C [-so, so] and all x C S, that

E (( <( )-C())) e5252/2

We assume that there exist positive constants (, so such that the set of A of
adversaries is a subset of the set. of all i.i.d. adversaries defined by a ((, so)-bounded
distribution P on F = RK. The following lemma justifies our assertion that this
assumption generalizes the assumption that A is a set of i.i.d. adversaries for cost
function class [0, 1]K

Lemma 2.7. If P is a probability distribution on functions c C [0, 1]K then P is

(1, 1)-bounded.

Proof. The lemma is equivalent to the following assertion: if y is a random variable
taking values in [0, 1] and = E(y), then E(es( - 9)) < e 2/ 2 for Isl < 1. The random
variable z = y - takes values in [-1,1]. Let A = +1 so that A [0,1] and
z = AX (-1) + (1 - ) 1. By Jensen's inequality,

eSZ < e- S + (1- - A)es,

SC)

E(esz) < e-E(A) + es(1 - E(A)).

We have E(A) = 2(E(z) + 1) = 2, since E(z) = 0. Thus E(esz) < (e- + e), and the
lemma reduces to proving

(es + eS) < es2/2.
2

This is easily verified by writing both sides as a power series in s,

(X S2n oo 2n

r (2 n)! 2 2n (n!)'

and observing that the series on both sides converge absolutely for all s E IR and that
the series on the right dominates the one on the left term-by-term. [O
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Algorithm UCB1

/* Initialization */

z(i) - 0 for i C S
n(i) 0 for i C S

/* Main loop */
for t = 1,2,...,T

if 3j C S such that n(j) < 32(so()-2 log(t)
then

i - arg minj n(j)
else

i arg maxi + 2( -- ))
fi
Play strategy xt = i.
Observe feedback Yt.

z(i) z(i) + yt
n(i) n(i) + 1

end

Figure 2-4: The UCB1 algorithm

The algorithm UCB1 is defined in Figure 2-4. To bound its regret, we define
the following notations. Suppose given a probability distribution P on F = R K .

We define i* to be any element of the set argmaxl<i<K c(i). For any i C S we let
Ai = (i*)- c(i). Given E > 0 we let S,(ADV) = {i C S : Ai > , and we let
Z,(ADV) = 1 if S,(ADV) $ S, 0 otherwise.

Theorem 2.8. LetS = {1, . . ., K}. Let P be a (, so)-bounded probability distribution
on Rs, and let ADV be the i.i.d. adversary with distribution P. For all E > 0, the
regret of UCB1 in the maximization version of the multi-armed bandit problem with
adversary ADV satisfies

R(UCB1,ADV;T) < Z,(ADV)eT+ 32i 322 log T
iES, (ADV) 

4~ ~ s5 r-<
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Corollary 2.9. Let S = {1,..., K} and let A denote the set of all i.i.d. adversaries
for the ma:iizatiori version of the multi-armed bandit problem on (S, Rs ) defined by

(. so)-boundecd probability distributions on RS . Then for all ADV A

R(UCB1, ADV; T)lir sup < oc. (2.15)
T- oc log(T)

Also,

R(UCB1, A; T) = O(K + KTlog(T)). (2.16)

Proof. Taking = 0 in Theorem 2.8 gives (2.15), and taking = /g gives
(2.16). ]

The proof of Theorem 2.8 depends on the following tail inequality which general-
izes Azuma's martingale inequality [59]. Recall that a sequence of random variables
X0, X1, ... , X is a martingale sequence if it satisfies

E(Xi X1,..., Xi-) = Xi-

for 1 < i < n.

Lemma 2.10. Suppose that XO, X1,. . ., Xn is a martingale sequence satisfying Xo =
0 and

E(e(X'- x i-1) 11 X,. Xi_l) < e( 2S2/2

for Isl < So and 1 < i < n. Then

X
2

Pr(X,, > A) < e 22,,

for A < o2(n.

Proof. Let z, = Xi- Xi_1 for 1 < i < n, so that X = Y~Z Zi. Put s = , and
note that Is < so. We have

E (eXn) = E (esznexn-l)

E (E (e z 11 X,..., Xn_) e x n- l )

< e (2s2/2E (esXn-1).

By induction,

E (esXn) < en 2s2/ 2 = es / 2
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By Markov's inequality,

Pr(X,> A) < Pr(cSX, > e)

< e-SAE(eSXn)

< e-sA/2
<2

- e 2 2n.

The following proof of Theorem 2.8 is a modification of the proof of Theorem 1
in [3].

Proof of Theorem 2.8. For a strategy i C S and for 1 < t < T, let zt(i), nt(i) denote
the values of the variables z(i), n(i) in Algorithm UCB1 at the start of trial t, i.e. zt(i)
is the sum of feedback values received for trials prior to t in which i was selected, and

nt(i) is the number of such trials. Let t(i) = z + 2( (t)nt(i) y nt(i)
For k > 0 let k(i) = max{t : nt(i) < k}, i.e. k(i) equals the number of the

(k + 1)-st trial in which UCB1 selected strategy i if there is such a trial, otherwise

k (i) = T. Let

Xk(i) ZTk (i)(i) - nr-T(i)(i)C(i),

i.e. Xk(i) is the amount by which the total feedback observed for strategy i exceeds
its expected value (conditional on the number of times i has been selected) after the
k-th trial in which i is selected, or at time T if i is selected fewer than k times. For
any i, the sequence 0 = Xo(i),Xl(i),... ,XT(i) is a martingale sequence satisfying
the hypotheses of Lemma 2.10. This leads to the following claim.

Claim 2.11. For any t > 0 and k > 32(so() - 2 log(t),

Pr (Xk(i) > 2( < t and Pr (Xk(i) <-2( < t-

Proof. The hypothesis that k > 32(so()-2 log(t) ensures that 2(/2klog(t) < so(2k.

Applying Lemma 2.10 with A = 2 log(t), we obtain

8(2 k log(t)
Pr (Xk(i) > 2V2 klog(t) < e 2(2k I t - 4

which proves the first half of the claim. The second half follows by applying the same
argument to the martingale -Xo(i), -Xi(i),..., -XT(i). I
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The following manipulation allows us to reduce the theorem to the task of proving
a bound on 'T(i) for each i S.

T

E ,('/ ( ) - c((i*)
t=1

= E t,(';i)
iES t: t=i

T-ct(*)
t=l

T

- E n T(l)C(1) + E > (c (i) c(i)) - > CtQ(Z)
iES iES It:xt=i

T

- XnT(i)A +Y XT(i) + Z(ei -,(,:))
iES icS t=l

(2.17)

When we take the expected value of both sides of (2.17), the second and third terms
on the right side vanish and we are left with:

R(ALG, ADV; T) = Y E(nT(i))Ai.
iES

We may split the sum on the right side into two sums according to whether or not
i E S (ADV) to obtain:

R(UCB1, ADV; T)
iSE, (ADV)

E(nT(i))Ai +
icES (ADV)

E(nT(i))Ai

< Z,(ADV)ET + iC E(nT(i))Ai
icS, (ADV)

so the theorem reduces to proving

E(nT(i

Let

[32 log T
i)) < [(So()2

= 32 log(7

(So()2

322 log(T)] 1 72
+_ 3

1) 32$2 log(T) 1
A2 
Ai

Observe that

T

= > Pr(3t nt(i) = k A Xt = i)
k=Qi

T t t

t EPr(nt() = k A nt(i1) = e A x = i)
t=1 k=Qi e= 1

Let (t, k, ) denote the event "(nt(i) = k) A (nt(i*) = e)

(2.19)

A (Xt = i)" for 1 < t <
T, Q < k < T, 1 < < T. We claim that Pr(S(t, k, )) < 2t- 4. Since k > Qi >
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32(so()-2log(T), event £(t,k, ) implies that UCB1 chose, at timle t, a strategy i

satisfying nt(i) > 32(so()-2 log(t). Due to the structure of the algorithm, this implies
that vt(i) > vt(i*) and also that ?.t(i*) > 32(so)-2 log(t). Assuming £(t, k, f),

Zt(i) 2 log(t) 1 - / 2 log(t)
Vt(i) = (+ 2- -Xk(i) + C(i) + 2(

and similarly

vt(i*) = Xe(i*) + C(i*) + 2,2 log(t)

Hence the inequality vt(i) - vt(i*) > 0 implies

[Xk(i) + 2 2log(t) A + X(i*) - 2 2log(t) > 0. (2.20)

The fact that k > Qi > 3221og(T)/A 2 implies that Ai > 4 2 g, so Claim 2.11

implies that the first term on the left side of (2.20) has probability less than t-4 of
being non-negative. Likewise, Claim 2.11 also implies that the second term on the
right side of (2.20) has probability less than t-4 of being non-negative. But S(t, k, e)
implies that at least one of these two terms is non-negative, so we conclude that
Pr(£(t, k, f)) < 2t -4 as claimed.

Plugging this estimate back into (2.19) one obtains

T t t T 2

E(nT(i)) - Qi < E 2t- z 2 2 3' 
t=l k=Qi =1 t=l

which confirms (2.18) and completes the proof. []

2.5 Multi-armed bandit algorithms II:
The Exp3 algorithm

This section introduces an algorithm of Auer, Cesa-Bianchi, Freund, and Schapire [4]

for the multi-armed bandit problem with an adaptive adversary. As before, we assume
that the strategy set S is {1, 2,..., K} for some K and that the set of cost functions,
F, is equal to the set [0, 1]K of all real-valued functions on S taking values in the
interval [0, 1]. The algorithm uses, as a subroutine, the algorithm Hedge presented in
Section 2.1.

The regret of Exp3 satisfies an upper bound specified in the following theorem.
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Algorithm Exp3

/* Initialization */

by ramin 1, T

Initialize an instance of Hedge('y/K) with strategy set S = {1, 2,..., K}.

/* Main loop */
for t = 1, 2,...,T

Let pi be the probability distribution on S reported by Hedge(7y/K).

Pt (i) - (1 - 'y)pt(i) + /K for i S.
Sample :rt C S using distribution Pt.
Observe feedback yt.

/* Create simulated cost function t to feed back to Hedge. */

e't(Xt) Yt/pt(Xt)
t(i) 0() for i C S \ {xt}

Present C!t as feedback to Hedge(-y/K).
end /* End of main loop */

Figure 2-5: The algorithm Exp3

Theorem 2.12. The algorithm Exp3 satisfies

R(Exp3, A; T)= O(vTK log K),

where A denotes the set of all adaptive adversaries for the multi-armed bandit problem
with strategy set S = 1, 2,..., K}.

Before proving Theorem 2.12, we will need the following lemmas.

Lemma 2.13. For x > 0 and 0 < < 1,

(1 - )x < 1 + log(1 - )x + log 2(1 - )X 2 .

Proof. Let f(x) = (1 - )x and g(x) = 1 + log(1 - )x + log2(1 - )X2. We have

f(O) = 1 = g(0)

f'(0) log(1 - ) = g'.(0)

f"(0) = log2(1 - c) < 2log2(1 - ) = g"(O)
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which demonstrates that f(x) < g(x) for sufficiently small positive x. If f(x) > g(x)

for some x > 0, then by the intermediate value theorem there exists x > 0 with
f (xo) = g(xo). By the mean value theorem applied to the function f-g, we conclude
that there exists xl (0, xo) such that f'(xl) = '(xl). By the mean value theorem
applied to the function f'-g', there must exist X2 E (0, xl) such that f"(X2) = 9"(X2)

But this is impossible, since g"(x2 ) = 2 log2 (1-e) while f "(X2) = (l-e)x2 log2 (1-e) <
2 log2 (1 - ). O

Lemma 2.14. The probability distributions Pt() computed by Hedge(E) satisfy the

following inequality for all x S:

T T T

> Ct(i)ct(i) < E ct((X) - log(1 - ) pt(i)ct(i)2 + log K.
t=l i t=l t=l iES

Proof. The proof is parallel to the proof of Theorem 2.3. Let Wt = jiS Wt(i). Using
Lemma 2.13 we obtain the bound:

Wt _ 'KiES(1 - )ct(i)Wt-(i)

Wt_-1 iES Wt-(i)

iES[1 + log(1 - )ct(i) + log2(1 - )ct(i)2]wtl(i)
EiES Wt-(i)

1 + log(1 - ) pt(i)ct(i) + log2(1 - ) pt(i)ct(i)2
ieS iES

hence

log(Wt/Wt-1) < log(1 - E) pt(i)ct(i) + log2(1 - ) pt(i)c(i)2

iES iES

and
T

log(WT) = log(W) +Zlog( Wt-1)
t=l

T

< log(K) + log(1 - ) E pt(i)ct(i)
t= iS

T

+ log2 (1 - e) pt(i)t(i) (i ) (2.21)
t= iS

But for any x E S, WT > WT(X) = (1- E)Et= 1 t(x), hence

T

log(WT) > log(1 - ) E ct(x). (2.22)
t=l
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Combining (2.21) and (2.22) and rearranging terms we obtain

T T

< e Ct(X) -log(1 - ) pt(i)ct()
t=l t=1 iS

log K
log(1 - )

and the lenmila now follows using the inequality log(l-x) < valid for < < 1.

Proof of Thlleorem 2.12. If T < 4K log K then the theorem follows fronl the trivial
ol)servation that R(Exp3, A;T) < T < 2TKlogK. So assume from now on that
T > 4K log K and, consequently, = /K log(K)/T. We have

E 1
EE t(xt)

t=-]

= E EEpt()ct(i)
_t=] ics

(1 - y)E pt(i)ct(z)]

and T , so it sffies to prov that

and yT = V/TK log K, so it suffices to prove that

E l Pt
t= iS t=1

K tl Z
t =1 iES

= (TKlogK)

for every x E S. Let <t denote the o-field generated by the random variables
x, . . , xt-1 and cl,..., ct. The reader may verify, from the definition of ct, that

E[ct(i) I F<t] ct(i)

and therefore,

= E[pt(i)t (i)]

= E[Ct(x)].

E[pt ()ct (i)]

E[ct (x)]

Hence, to prove (2.23) it suffices to prove that

= (TKlogK) (2.24)

- T

E t()ct(i)
_t= iS

By Lemma 2.14, the left side of (2.24) is bounded above by

t lg O -E log t K
K _(at=1 iES +
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The second term is /TKlogK, and the factor -log(1 - /K) in the first term is
bounded above by 2 log(2) ?y/K using the inequality - log(1 - x) < 2 log(2) x· , valid
for 0 < x < 1/2. Thus it remains to prove that

E [ pt(i)Ct(i)2] (/TKlog K).
t= 1 iES

We have

p<t, P1ct(i)
iES ·2E> t(i)

i s[E E t ()]2TKog(K)
iES

and, consequently,

R(Exp3,A;T)(2+4og2) TKlogK< TKlogK.

-2.6 Known versus unknown time horizon
In designing algorithms for online decision problems, there is a simple but powerfulThe reader who wishesand track ofnsform the constants in the proof of Theorem 2.12
will see that they are not bad: the proof actually establishes that

R(Exp3, A; T)_< (2 + 4 1og 2)v/TKlogk < 5TKlogK.

2.6 Known versus unknown time horizon

In designing algorithms for online decision problems, there is a simple but powerful
doubling technique which usually enables us to transform algorithms which have fore-
knowledge of the time horizon T into algorithms which lack such foreknowledge, at
the cost of only a constant factor in the regret bound. In other words, the technique
allows us to take statements of the form, "For every T there exists an algorithm
with regret R(T)," and transform them into statements of the form, "There exists an
algorithm such that for every T, the regret is O(R(T))."
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Theorem 2.15. Let (S, F, ~, F) be an online decision problem. A a set of adversaries.
and T a non-negative integer. Suppose that for every T > T there is an algorithm7
ALG(T) satisfying R(ALG(T). A;T) < R(T). If R is non-decreasing and satisfies
R(2T) > C. R(T) for sonf constant C > 1 and for all T > To, then there exists an
algorithm. ALG such that

R(ALG, A;T) < (C ) R(T)

for all T.

Proof. The algorithm ALG operates as follows. Whenever the time t is a power of
2, say t = 2, it initializes an instance of ALG(t) and runs this instance for the next
t trials. Let T be a positive integer and let = log2 (T)j. For any ADV C A and
x C S, we have

R(ALG, ADV; x,T) E [ ct(xt)-ct()

EE ct(x)-ct(x)

k=O [2k<t<min{2k+ 1,T+1 }

< E R(ALG(2k) ADV; x, 2k )

k=O

< E R(2 )
k=O

< E Ck-eR(2f)
k=O

C
< C 1R(T).

2.7 Kullback-Leibler Divergence

The Kullback-Leibler divergence (also known as "KL-divergence" or "relative en-
tropy") is a measure of the statistical distinguishability of two probability distri-
butions. For probability distributions on finite sets, an excellent treatment of the
Kullback-Leibler divergence can be found in [26]. In this work, we will have occasion
to work with the Kullback-Leibler divergence of distributions on infinite sets. While
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the relevant definitions and theorems do not differ substantially from the finite case, it
is difficult to find an adequate exposition of such topics in the literature. Accordingly,
we present here a self-contained treatment of the relevant theory.

2.7.1 Review of measure and integration theory

We first present some definitions from measure and integration theory. A more
leisurely exposition of the same definitions may be found in [19] or [64].

Definition 2.2 (Measurable space, measure space, probability space). A
measurable space is an ordered pair (Q, F), where Q is a set and F is a collection of
subsets of Q satisfying:

1. QcF.

2. If A c E then \ A c F.

3. If {Ai: i E N} is a countable collection of elements of F then UiCN Ai c F.

If TF satisfies these properties, we say it is a a-field on Q.

A measure space is an ordered triple (Q, F, u) where (Q, .F) is a measurable space
and : - [0, o] is a real-valued set function satisfying

(UAi) =El (Ai)

when {Ai : i E N} is a countable collection of disjoint sets in F. We refer to ,u as a

measure on (Q, F). If (Q) = 1 then we say that u is a probability measure and that

(Q, , A,) is a probability space.

Definition 2.3 (Measurable mapping, induced measure). If (Q, F) and (Q', F')
are measurable spaces, a function f : -Q Q' is called a measurable mapping if
f-(A) C F for every A c F'. If ,a is a measure on (Q,F) and f : Q - Q' is a

measurable mapping, then there is a measure fp, defined on (Q', F') by

(fll) (A) = (f- (A)).

We refer to f,/p as the measure induced by f : Q -- Q'.

Definition 2.4 (Borel measurable function, simple function, a-simple func-
tion, random variable). The Borel algebra on R U {±oo} is the unique minimal
a-field 9i containing all closed intervals. If (Q,.F) is a measure space, a function
f : - R U {±oo} is Borel measurable if f is a measurable mapping from (Q, F)
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to (R, 9). A Borel measurable function f is a .simple function if its range is a finite
subset of R. It is a -simple function if its range is a countable subset of IR U {+±oc}.
Whel (. . It) is a probability space, we refer to a Borel measurable function f as a
ra ndom, Ivaia ble defined on Q2.

Definition 2.5 (Lebesgue integral). If f is a simple function then it may be
expressed as a finite sum

f = aiXA,
i=l

where A1. A2 .... , A, are disjoint sets in ¶ and XA, is a function which takes the value
1 on Ai, 0 elsewhere. For a measure ,u on (2, f), we define the integral of such a
function f b

] f idji ai/i(Ai)
i=1

For a non-negative Borel measurable function f, we define the Lebesgue integral by

/ f d = sup / gd,

where the supremum is over all simple functions g satisfying 0 < g < f. For a Borel
measurable function f which assumes both positive and negative values, we set

f+ = max{0,f}
f- = max{0,-f}

f fdt = Jf+d-Jf-di

The integral is well-defined as long as at least one of f f +dj, f f-du is finite.
When f is a Borel measurable function on (Q,.F) and A C T, we will use the

notation fA f dy to denote f fXA di-.

We will need the following characterization of the Lebesgue integral in terms of
a--simple functions.

Theorem 2.16. I f is an R-valued Borel measurable function whose integral f f du
is well-defined, then

J fdi = sup/gdp,

where the supremum is over all a-simple functions g satisfying g < f.
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Proof. It suffices to prove that

f dl < sup g di, (2.25)

since the reverse inequality is clear from the definition of the Lebesgue integral. If
f f d = -oc then (2.25) is obvious. If f du > -oc then we will construct a
sequence of u-simple functions g,, < f (n = 1, 2,...) such that f gy, d - f f dlu. Let

G(x) i -2lo° g
2 (-f(x)) l if f (x) < 0

(x -lif f(x) > 0,

i.e. -G(x) is the smallest power of 2 in the interval [-f(x), oc) if f(x) < 0, otherwise
-G(x) = 0. Let

G,(x) = 2- L2f (x),

i.e. G(x) is the largest multiple of 2-n in the interval (-oo, f(x)]. Finally, let

gn(x) = max{G(x),Gn(x)}. Note that gl < 92 < ... < f and that gn converges
pointwise to f. It follows, by Lebesgue's monotone convergence theorem [64], that

gd gd/u - f f +dL. Moreover, we have

0 < g (x) < -G(x) < 2f-.

By assumption f f d/ > -oo so S f -d/ < oo. This implies, by Lebesgue's dominated
convergence theorem [64], that f g d -- f f- d/p. E

Definition 2.6 (Absolutely continuous). If (Q, T) is a measurable space and jt, v
are two measures on (Q, pT), we say that v is absolutely continuous with respect to /u,
denoted by v < ji, if v(A) = 0 whenever A E F and /t(A) = 0.

Definition 2.7 (Radon-Nikodym derivative). If , v are two measures on a mea-
surable space (Q, F), a measurable function p : Q -- [0, oc] is called a Radon-Nikodym
derivative of v with respect to u if v(A) = fA djl for all A C F.

Theorem 2.17 (Radon-Nikodym Theorem). If v < f, then v has a Radon-
Nikodym derivative with respect to ft. If p, T are two Radon-Nikodym derivatives of v
with respect to u then p = - almost everywhere, i.e. t({x : p(x) # T(x)}) = 0.

2.7.2 Definition of KL-divergence

Our definition of Kullback-Leibler divergence parallels the definition of the Lebesgue
integral.
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Definition 2.8 (Simple measurable space, simple probability space). For
any set X, the set 2x of all subsets of X is a (-field on X. If X is a finite set, we

refer to the measurable space (X, 2 X) as a simple measurable space. A probability
space (Q2, , i) is a simple probability space if (Q. F) is a simple measurable space. If
(Q2, , p,) is a simple probability space and x C Q. we will sometimes write L(x) as a

slhorthand for ,u({x}).

Definition 2.9 (Kullback-Leibler divergence). If (X, 2X) is a simple measurable
space and p,, v are two probability measures on (X, 2 x), satisfying v < /t, their simple
Kullback-Leibler divergence is the sum

ICL(l 11 v) = E log /(V() I(x)
XEX (X)

Here, we interpret the term log ( ) u(x) to be equal to O if ,u(x) = v(x) = 0, and

to be equal to +oo if ji(x) > 0, (x) 0.
If (Q, F) is a measurable space and t, v are two probability measures on (Q, F)

satisfying v < , their Kullback-Leibler divergence is defined by

KL( II ) = sup C(f, I fv),
(f,X)

where the supremum is taken over all pairs (f, X) such that X is a finite subset of
N and f is a measurable mapping from (Q,.T) to (X, 2 X). (The stipulation that
X C N is necessary only in order to avoid set-theoretic difficulties, by ensuring that
the collection of such pairs (f, X) is actually a set.)

The following lemma is sometimes referred to as the "data processing inequality
for KL-divergence," since it may roughly be interpreted as saying that one cannot
increase the KL-divergence of two probability measures by throwing away information
about the sample points.

Lemma 2.18. Suppose that (Q, F) and (Q', F') are measurable spaces and that f
Q -- Q' is a measurable mapping. If ia, v are probability measures on (Q, .F) such that
v << then KL(a II ) > KL(f.A IIt fv).

Proof. If (X, 2X) is a simple measurable space and g : Q' - X is a measurable
mapping, then the composition g o f Q: -÷ X is a measurable mapping and

g(fX1) = (g o f)l
g*(f*v) = (gof)*v.

The lemma now follows immediately from the definition of KL-divergence. El
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Some authors define the differential Kullback-Leibler divergence of two distribu-
tions on R with density functions f, g to be the integral

KL(f 11g) = log (- )) f(x)dx,

when this integral is well-defined. We relate this definition to ours via the following
theorem.

Theorem 2.19. If i, v are two probability measures on (Q, Y) satisfying v << and
p is a Radon-Nikodym derivative of v with respect to l, then

KL( Iu vi) =- log(p)du. (2.26)

Proof. Let f = log(p). We will first establish that f fdu is well-defined by proving
that ff+dL < oc. Let A = {x : p(x) > 1}. Using the fact that log(x) < x -1 for
x > 0, we find that

J f+du= jA log(p)dz < r (p -1)dt = (A) - (A) 1,

so f f +d/ < oc as claimed.
If ,u 4t v then there exists a set B such that (B) > 0 and v(B) = 0. For almost

every x C B we have p(x) = 0 and log(p(x)) = -oc, hence -flog(p)d/u = o. To
confirm that KL(I/ 11 V) = oc, observe that the function XB is a measurable mapping
from Q to {0, 1} and that it satisfies IC1(f,/ 11 f,v) = oo.

It remains to verify (2.26) when /i < v. We will first prove

KL(,u vi) < -/ log(p)d/, (2.27)

and then prove the reverse inequality. To prove (2.27) it suffices to show that
/IC(f~/ II fv) < -f log(p)dLt whenever f : Q - X is a measurable mapping from
(Q, F) to a simple measurable space (X, 2 X). Given such a mapping f, define a
function

p(X)= i(f l(f(x)))

Note that 0 < (x) < oc for all x outside a set of it-measure zero, and that the
definition of /CL(f, 11 fv) is equivalent to the formula:

/C£(f/ II fv) = - log()da,
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so it, remains to prove that

-log(S)d/lp < -jlog(p)di.,
i.e.

0 < log (L) du.

Let A be the measure defined by A(A) = fA (P/P) dl. We claim fs dA = 1. To prove
this, let. J:, 2, . . , , be the elements of X and let Ai = f-l(xi) for 1 < i < rn. Note

that (:(x) = (Ai)/1i(Ai) for x C Ai, so if (Ai) > 0 then

A(Ai) P d(A lt(A) pd, - (Ai) v(Ai)= L(A)).
(Ai) pd v =(Ai)

Hence

jdA= S p(Ai)
i i:(Ai)>O

as claimed. Now we may apply Jensen's inequality [64] to the convex function (x) 
x log(x) to conclude that

| dlog (pPJ )log() dA

>

as desired.
We turn now to proving the reverse of (2.27), i.e. KL(,u I v) > - f log(p)dg when

/u << v. By Theorem 2.16 and Lemma 2.18, it suffices to prove that

KL(s, l sv) > / sd

whenever s is a -simple function satisfying s < - log(p). Represent s as a countable
weighted sum of characteristic functions: s = EiC1 aiXAj, where the sets A1, A 2,...
are disjoint measurable subsets of Q and ai aj for i j. We have

ai < inf{-log(p(x)) : x c A),

hence

e-ap(Ai) = j e-i dtu > pdu = (Ai),
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i.e. i < log ((A) ) (yK~ v(A2 ) / Hence

s d/i = - i/(Ai) < log (v(Ai) p(Ai)
4-1I

It remains to prove that
00

KL(s,, sv) > E log
i=l

(2.28)

For N > 1 let BN = Ui>NAi, and let t : Q- {1,2,...,N} be the measurable
mapping which sends Ai to {i} for i < N and sends BN to {N}. We have t = g o s
for some measurable mapping g R -t {1, 2,..., N}, so by Lemma 2.18,

,i(Ai) + log

> KL(t,I tv)

i<N

> log I(Ai))
i<N

where the last inequality follows from the fact that

log ((BN) _ log
( (BN)
tU(BN) J

> V(BN)
(BN)

Letting N -- o, both I(BN) and v(BN) converge to zero, proving (2.28). []

2.7.3 Properties of KL-divergence

Definition 2.10. If (Q, ) is a measurable space and /z, v are two probability mea-
sures on (Q, T), we define their L 1-distance by

(2.29)I - 1i = 2 sup(/p(A) - v(A)).
AEcF

When (Q, F) is a simple measurable space, this definition of I u- vlll is related to
the more conventional definition (i.e., E lp(x) - v(x)l) by the following observation.
If A C Q then

2(/(A)- v(A)) = (A) - v(A) + (1 - v(A)) - (1 -/1(A))

= E it(x) - (x) + E v (Y) - (Y)
xEA y(A

< E I.(x) - V(x)I,
Qwith equality when A = 

with equality when A: {x ' /i(x) > v(x)}. Hence I I- v I = px)- v(x)1.
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Theorem 2.20. If (2, F) is a measurable space and It, v are two probability measures

on (Q, F) satisfying It << v, then

2KL(i 11 V) > Ii - v:'. (2.30)

Proof. For A cE with t(A) = p, v(A) = q, the function f = XA is a ieasurable
Iapping fromn Q to {0, 1} and we have

KL(/,I v) > ICL(fll fv)

log (P) p+log(1 P' (I -p)

= Ix(l dx

> 4(x - p) dx (2.31)

while

[2(,u(A) - (A))] 2 = 4(p - q) 2= 8(x - p) dx. (2.32)

If q > p this confirms (2.30). If q < p, we rewrite the right sides of (2.31) and (2.32)
as P 4(p - ) dx and f 8(p - x) dx to make the intervals properly oriented and the
integrands non-negative, and again (2.30) follows. O

Theorem 2.21. Let (Q, F) be a measurable space with two probability measures , v
satisfying v < ,u, and let p be the Radon-Nikodym derivative of v with respect to ,a.
If 0< E < 1/2 and 1- < p(x) < 1 + E for all x G Q, then KL(a 1 v) < 2.

Proof. Let

X(x) = P() -(1 -)
2E

and note that

JA dh= 2 [Jpd- (1 -£)JdI] 2 [v(Q) - (1 - )(Q)] =

(1 - A)d = d- JAd = 2 2

WTe have

p(x) = A(x)(1 - E) + (1 - A(x))(1 + E).
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Since 1 - E < p < 1 + E this implies 0 < A < 1 and, by Jensen's inequality,

log 1 < (x) log + (1-A(x))log .

Thus

KL(, log( ) d

1 5
= 2 2

2 lo1- -lo
1 I I 2

2 g 1 - E2 < 2 1 E21) < 2

since E < 1/2.

2.7.4 The chain rule for KL-divergence

We assume the reader is familiar with the definition of conditional probabilities for

probability spaces (Q, F, ,u) in which Q is either finite or countable. When Q is an

uncountable set it is necessary to formulate the definitions much more carefully. We

briefly review the necessary definitions here; the reader is advised to consult Chapter

33 of [19] for a more thorough and readable account of this topic.

Definition 2.11 (Conditional expectation, conditional probability). Suppose
given a probability space (Q, F, /i) and a sigma-field g C F. If A , a function

Pr(A II ) : Q -- R is called a conditional probability of A given g if it is G-measurable
and satisfies

j Pr(A 11 g)d/ = Pr(A n G) (2.33)

for all G GE . Similarly, given a random variable X: Q - R which is F-measurable

and integrable, we say that a G-measurable function E[X 11] :Q -* IR is a condi-
tional expectation of X given if

JE[X l ]dp = XdL (2.34)

for all G E g.
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Note that when X is a non-negative integrable S-measurable random variable, the
function (G)= kI Xdll constitutes a measure on (2, G) which satisfies v << It. Te
Radonl-Nikodynm Theorem thus guarantees that a conditional expectation E[X g1]
exists, and that two such functions must agree almost everywhere.

The following theorem is proved in [19].

Theorem 2.22. Let (Q, F, p) be a probability space, C F a a-field, and X a
random variable defined on Q. There exists a function ILx(H, w), defined for all Borel
measurable sets H C R U {±oc} and all points w C Q2, satisfying:

* For each sw E Q, the function tx(, w) is a probability measure on (R, 9).

* For each H E , the function px(H, ) is a conditional probability of X E H
given g.

We call px a conditional distribution of X given g.

The function Ix(, w), mapping points w E Q to probability measures on (R, 9),
will be denoted by X/u. This notation is justified by the fact that when G is the
o-field {O, Q), XU(w) = X*, for all w C Q.

The following theorem is called the "chain rule for Kullback-Leibler divergence."
It is analogous to Theorem 2.5.3 of [26].

Theorem 2.23. Suppose (Q, F) is a measurable space. Let (Q x R, x 9i) denote
the product of the measurable spaces (Q, F) and (R, 9i), and let p : Q x R -- Q, q
Q x R -- R denote the projection mappings (w, x) -* w and (w, x) F- x. Let C Fx M
denote the a-field consisting of all sets A x R where A C F. Suppose /l, v are two
probability measures on Q x R satisfying v << . Then

KL( 11 VI) = KL(p, | pv) + j KL(q,°t(w) q11 v())d.u

Proof. Let p be a Radon-Nikodym derivative of v with respect to u, let T be a Radon-
Nikodym derivative of p,v with respect to p,*t, and let (w, x) be a Radon-Nikodym
derivative of qv(w) with respect to qft(w) for each w E Q. We claim

U(w, x)T(w) = p(w, x) (2.35)

almost everywhere in Q x IR. To verify this, it suffices to verify that for all ( x 9)-
:measurable. integrable functions f defined on Q x R,

xR R)T(
69



Let us prove the following property of q5u(w): for any ( x 9)-measurable, integrable
function f,

(2.36)

When f is the characteristic function of a set A x H, where A E T, H E 9,

= |Pr(q(w, x) C H )dp.

jA Pr(q(w,x) H 11)d.
AxR

= /i(A x H)

I XR
f(w, x) d.

The sets A x H (A C F, H E 9i) generate the a-algebra F x 9, so (2.36) holds
whenever f is the characteristic function of a measurable subset of Q x R. By linearity,
(2.36) holds whenever f is a simple function. Every integrable function is a pointwise
limit of simple functions, so by dominated convergence (2.36) holds for all integrable

f. Of course, by the same argument (2.36) also holds with v in place of /P.

Applying (2.36), we discover that

Ix f(Lo, x)(w, x)T()du
QxER

= j [/i( , x)a(w, x)dq()] 7(w)dp*

= j [jf (wx)dqlv(w)] dp*v

LXR

fxR

f(w, x)dv

f(w, x)p(w, x)dy,

as claimed. Hence a(w, x)r(w) = p(w, x), and

log(p(w, x)) = log((w, x)) + log('(w)).
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Now by Theorem 2.19,

KL( v ) : -/ log(p(, x))dl, (2.38)

KL(ppJp, J * ) - log(T())dp*1t

- log(-T(L))d/ (2.39)

jKL( q*p (w) 1lq*v(w))dp*l j [ log(o(w, x))dq*5(w)] dp*p

=- ~ | log(u(W, x))du. (2.40)

The last equation follows using (2.36). Combining (2.38)-(2.40) with (2.37), we obtain

KL( 11 v) = KL(p*, p* ) + j KL(qp:(w) 11 q1v(o))dp*..

When Q = R n and F is the Borel a-field 9 n, let us define Tk C_ F (for 0 < k < n)
to be the -field consisting of all sets of the form A x Rn-k, where A C 9lk . Let
Pk S - R be the mapping which projects an n-tuple (xl,...,xn) onto its k-th
coordinate k, and let P..k : 2 IRk be the mapping (xI, ... ,x) - (x1 ,. .. ,k).
Given a probability measure ft on (Q, F) we will use Ilk as notational shorthand for

p;Fk-l /. Note that k is a measure-valued function of n-tuples (x1,..., x) which only
depends on the first k - 1 coordinates; accordingly we will sometimes interpret it as
a measure-valued function of (k - 1)-tuples (xI,... ,xk-l). Conceptually one should
think of Lk(Xi,..., Xk_-) as the marginal distribution of the coordinate xk conditional
on the values of xi, ..., xk-1. By iterated application of Theorem 2.23 one obtains
the following theorem.

Theorem 2.24. If /L, v are two probability measures on (Rn, t9), then

n-1

KL( 11 V) = f KLftk+l 1H Mk±+)dl..k*
k=O

2.8 Lower bound for the K-armed bandit problem

In this section we present a proof, adapted from [4], that any algorithm for the K-
armed bandit problem must have regret Q(TT-K) against oblivious adversaries. The
proof illustrates the use of KL-divergence in proving lower bounds for online decision
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problems. We will use similar techniques to prove the lower bounds in Theorems 3.20
and 4.4.

Theorem 2.25. Let A be the class of oblivious adversaries for the multi-arned bandit

problem with strategy set S = {1, 2,..., K} and cost function class F = [0, 1]s . For
any algorithm ALG,

R(ALG, A; T) = Q(TK).

Proof. Let = vK/8T. Our lower bound will be based on an i.i.d. adversary who
samples {0, 1}-valued cost functions which assign expected cost to all but one

1
strategy i E S, and which assign expected cost - c to strategy i. The idea of the
proof will be to demonstrate, using properties of KL-divergence, that the algorithm is
unlikely to gain enough information to distinguish the best strategy, i, from all other
strategies before trial T.

Let a denote the uniform distribution on the two-element set {0, 1}, and let a'

denote the distribution which assigns probability 2 - to 1 and probability 2 + 

to 0. For i = 0, 1, 2,..., K, define a probability distribution Pi on cost functions
c E F by specifying that the random variables c(j) (1 < j < K) are independent
{0, 1}-valued random variables with distribution a for j f i, a' for j = i. (Note that
Po is simply the uniform distribution on the set {0, 1 }S, while for i > 0, Pi is a non-
uniform distribution on this set.) Let ADVi E A denote the i.i.d. adversary defined
by distribution Pi, for i = 0, 1,..., K. Note that the expectation of the random cost
function sampled by adversary ADVi in each trial is

I -Eifx=i

if x i.

We will prove that R(ALG, ADVi; T) = Q(VTK) for some i E {1, 2, ... , K},

For a strategy i E S and an adversary ADV, let Xi(xt) denote the Bernoulli random
variable which equals 1 if xt = i, 0 otherwise, and let

Qi(ALG, ADV; T) = E [iE xi(xt)]

denote the expected number of times ALG selects strategy i during the first T trials,
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when playing against ADV. Note that,

R(ALG, ADV; T) = E ct (x -ct ()](

= [T - Qi(ALG, ADVi; T)].

Recalling that. E = K/8T, we see that the theorem reduces to proving that there
exists i C {I,..., K} such that, T - Qi(ALG, ADVi; T)= Q(T).

We have EI 1 Qi(ALG, ADVo; T) = T, hence there is at least one i C {1 ... K}
such that Qi(ALG, ADVo; T) < T/K. We claim that this implies

Qi(ALG, ADV-;T) < 2 + T, (2.41)

from which the theorem would follow. The transcripts of play for ALG against
ADVo, ADVi define two probability distributions /u, v on sequences (xl, Yl, ... , XT YT),

where xl, ..., XT denote the algorithm's choices in trials 1, . . ., T and yl, . , YT denote
the feedback values received. We see that

T

Qi(ALG, ADVi;T) - Qi(ALG, ADVo; T) = v({xt = i}) - ({t = i})
t=l

< T ' )

From Theorem 2.20 we know that

v- -H < KL(pI v)
2 - 2

so we are left with proving KL(Ip 1I ) < .

Using the chain rule for Kullback-Leibler divergence (Theorem 2.24) we have

2T-1

KL(/ 1 v)= / KL(i+ 1li+l)dpl..ji
i=O

Now if i = 2j is an even number, li+l(xl,1,... ,xj, yj) = i+l(Xi,yi,. ,Xj, yj)
because both distributions are equal to the conditional distribution of the algorithm's
choice xj+, conditioned on the strategies and feedbacks revealed in trials 1, ... , j. If

= 2j - 1 is an odd number, then vi+(Xl, ,. .. , ,j-, Yji_, j) is the distribution
of yj = cj(xj) for adversary ADVi, so vi+l(x,y, .. ,xj) = o if xj = i, (a otherwise.
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Similarly lti+l1(xl, Y . .. , xj) is the distribution of yj = cj(xj) for adversary ADVo, so

/i+l (x1, Y, ... , j) = a. Therefore KL(/i+, vi+l) = 0 if xj f i, and by Theorem 2.21
KL(Iti+l 11 vi+l) < 4 2 if xj = i. In other words,

KL(]li+l || Vi+,) < 4 2Xi(xj).

Letting E, denote the expectation operator defined by the measure , we find that

| KL(Pi+l 1vi+l)dpl..i* < 42E~,[Xi(xj)]

and therefore

T

KL(t 1 v) < E 4 2Ey,[Xi(xj)
j=l

= 4E2Qi(ALG, ADVo; T)

which completes the proof. 

which completes the proof. Cl
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Chapter 3

Online pricing strategies

In this chapter we study online pricing strategies, motivated by the question, "What
is the value of knowing the demand curve for a good?" In other words, how much
should a seller be willing to pay to obtain foreknowledge of the valuations held by a
population of buyers, if the alternative is to attempt to converge to the optimal price
using adaptive pricing? The study of these questions will serve as an introduction
to the applications of online decision problems, while also highlighting many of the
main technical themes which will reappear throughout this work.

Recall the pricing problem defined in Section 1.5. A seller with an unlimited
supply of identical goods interacts sequentially with a population of T buyers. For
each buyer, the seller names a price between 0 and 1; the buyer then decides whether
or not to buy the item at the specified price, based on her privately-held valuation
for the good. We will study three versions of this problem, which differ in the type
of assumption made about the buyers' valuations:

Identical: All buyers' valuations are equal to a single price p C [0, 1]. This price is
unknown to the seller.

Random: Buyers' valuations are independent random samples from a fixed proba-
bility distribution on [0, 1]. The probability distribution is not known to the
seller.

Worst-case: The model makes no assumptions about the buyers' valuations. They
are chosen by an adversary who is oblivious to the algorithm's random choices.

In all cases, our aim is to derive nearly matching upper and lower bounds on the
regret of the optimal pricing strategy.
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3.1 Identical valuations

3.1.1 Upper bound

When all buyers have the same valuation p [0, 1], every response gives the seller
perfect information about a lower or upper bound on p, depending on whether the
buyer's response was to accept or to reject the price offered. A pricing strategy 5 which
achieves regret O(log log T) may be described as follows. The strategy keeps track of
a feasible interval [a, b], initialized to [0, 1], and a precision parameter 8, initialized to

1/2. In a given phase of the algorithm, the seller offers the prices a, a + E, a + 2,....

until one of them is rejected. If a + k was the last offer accepted in this phase,

then [a + k, a + (k + 1)E] becomes the new feasible interval, and the new precision

parameter is 82. This process continues until the length of the feasible interval is less

than 1/T; then the seller offers a price of a to all remaining buyers.

Theorem 3.1. The regret of strategy S is bounded above by 2[log2 log2 T] + 4.

Proof. The number of phases is equal to the number of iterations of repeated squaring

necessary to get from 1/2 to 1/T, i.e. log2 log2 T] + 1. Let p denote the valuation
shared by all buyers. The seller accrues regret for two reasons:

* Items are sold at a price q < p, accruing regret p - q.

* Buyers decline items, accruing regret p.

At most one item is declined per phase, incurring at most one unit of regret, so the

declined offers contribute at most log2 log2 T] + 1 to the total regret.

In each phase except the first and the last, the length b - a of the feasible interval

is E (i.e. it is the value of E from the previous phase), and the set of offer prices

carves up the feasible interval into subintervals of length . There are 1/VE such

subintervals, so there are at most 1/v/E offers made during this phase. Each time

one of them is accepted, this contributes at most b - a = xE to the total regret.

Thus, the total regret contribution from accepted offers in this phase is less than or

equal to (1/V/) vE = 1. The first phase is exceptional since the feasible interval

is longer than /. The accepted offers in phase 1 contribute at most 2 to the total
regret. Summing over all phases, the total regret contribution from accepted offers is

< log2 log2 n] + 3.
In the final phase, the length of the feasible interval is at most 1/T, and each offer

is accepted. There are at most T such offers, so they contribute at most 1 to the total
regret. °
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iRemark 3.1. If the seller does not have foreknowledge of T, it is still possible to
achieve regret O(log log T) by modifying the strategy. At the start of a phase in which
the feasible interval is [a, b], the seller offers price a to the next L1/(b - a)] buyers.
This raises the regret per phase from 2 to 3, but ensures that the number of phases
does not exceed Flog2 log2 T] + 1.

3.1.2 Lower bound

Theorem 3.2. If S is any randomized pricing strategy, and p is randomly sampled
from the uniform distribution on [0, 1], the expected regret of S when the buyers'
valuations are p is Q(log log T).

Proof. It suffices to prove the lower bound for a deterministic pricing strategy S, since
any randomized pricing strategy is a probability distribution over deterministic ones.
At any stage of the game, let a denote the highest price that has yet been accepted,
and b the lowest price that has yet been declined; thus p C [a, b]. As before, we will
refer to this interval as the feasible interval. It is counterproductive to offer a price
less than a or greater than b, so we may assume that the pricing strategy works as
follows: it offers an ascending sequence of prices until one of them is declined; it then
limits its search to the new feasible interval, offering an ascending sequence of prices
in this interval until one of them is declined, and so forth.

Divide the pool of buyers into phases (starting with phase 0) as follows: phase k
begins immediately after the end of phase k - 1, and ends after an addtional 22k - 1
buyers, or after the first rejected offer following phase k - 1, whichever comes earlier.
The number of phases is Q(log log T), so it suffices to prove that the expected regret
in each phase is Q(1). This is established by the following three claims. D

Claim 3.3. Let Ik denote the set of possible feasible intervals at the start of phase k.
The cardinality of Ik is at most 22k, and the intervals in Ik have disjoint interiors.

Proof. The proof is by induction on k. The base case k = 0 is trivial. Now assume
the claim is true for a particular value of k, and let Let Ik = [ak, bk] be the feasible
interval at the start of phase k. Let xl < 2 < ... < xj denote the ascending
sequence of prices that S will offer during phase k if all offers are accepted. (Here
.j = 22 _ 1.) Then the feasible interval at the start of phase k + 1 will be one
of the subintervals [ak, xi], [Xl, x2], [2, X3], ... , [Xjl, Xj], [j, bk]. There are at most

= 22k such subintervals, and at most 2 2k possible choices for Ik (by the induction
hypothesis), hence there are at most 22k+l elements of k+l. Moreover, they all have
disjoint interiors because we have simply taken the intervals in k and partitioned
them into subintervals. ]
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Claim 3.4. Let I denote the length of an interval I. With probability at least 3/4,

Proof. The expectation of l/Ikl may be computed as follows:

E(1/lIk ) = Pr(p C I)(1/I[)= E I /HI < 22k,
IElk JEak

where the last inequality follows from Claim 3.3. Now use Markov's Inequality:

Pr(IIJl < 22k) :Pr(1/Ikl > 4 2k) < 1/4.
4

Claim 3.5. The expected regret in phase k is at least 128'

Proof. By Claim 3.3, with probability 1, p belongs to a unique interval Ik = [a, b] C k.

Let k denote the event that b > 1/4 and Ikl > 1 2 -2k This is the intersection of

two events, each having probability > 3/4, so Pr(Ek) > 1/2. It suffices to show that
the expected regret in phase k, conditional on £k, is at least 1/64. So from now on,
assume that p > 1/4 and Ikl > 22 . Also note that, conditional on the events k

and p C Ik, p is uniformly distributed in Ik.
Let m = (a+b)/2. As before, let j = 2 2 k -1 and let xl < x2 < < xj denote the

ascending sequence of prices which $ would offer in phase k if no offers were rejected.
We distinguish two cases:

Case 1: xj > m. With probability at least 1/2, p < m and the phase ends in a
rejected offer, incurring a regret of p, whose conditional expectation a+m is at
least 1/16. Thus the expected regret in this case is at least 1/32.

Case 2: xj < m. The event {p > m} occurs with probability 1/2, and conditional on
this event the expectation of p - m is Ik1/4 > 2- 2 k/16. Thus with probability
at least 1/2, there will be 2 2k - 1 accepted offers, each contributing 2 -2k/ 1 6 to
the expected regret, for a total of (1/2)(22k - 1)(2-2k)/16 > 1/64.

3.2 Random valuations

3.2.1 Preliminaries

In this section we will consider the case each buyer's valuation v is an independent
random sample from a fixed but unknown probability distribution on [0, 1]. It is
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customary to describe this probability distribution in terms of its demand curve

D(x) = Pr(vl > x).

Given foreknowledge of the demand c(lnve, but not of the individual buyers' valua-
tions. it is easy to see what the optimal pricing strategy would be. The expected
revenue obtained from setting price :r is xD(x). Since buyers' valuations are inde-
pendent and the demand curve is known, the individual buyers' responses provide
no useful information about future buvers' valuations. The best strategy is thus to
compute

x* = arg max xD(x)
x [0,1]

and to offer this price to every buyer. We denote this strategy by S*, and its expected
revenue by p(S*). There is also an "omniscient" pricing strategy SOPt, defined as the
maximum revenue obtainable by observing the valuations of all T buyers and setting
a single price to be charged to all of them. Clearly, for any on-line pricing strategy
S., we have

p(S) < p($*) < ApOt),

and it may be argued that in the context of random valuations it makes the most sense
to compare p(S) with p(S*) rather than p(Sopt). We address this issue by proving a
lower bound on p(S*) - p(S) and an upper bound on p(SOPt) - p(S).

A deterministic pricing strategy can be specified by a sequence of rooted planar
binary trees T1 , 72, ... , where the T-th tree specifies the decision tree to be applied
by the seller when interacting with a population of T buyers. (Thus ITT is a complete
binary tree of depth T.) We will use a to denote a generic internal node of such a
decision tree, and f to denote a generic leaf. The relation a -< b will denote that b
is a descendant of a; here b may be a leaf or another internal node. If e is an edge
of IT, we will also use a -< e (resp. e -< a) to denote that e is below (resp. above) a

in Ti, i.e. at least one endpoint of e is a descendant (resp. ancestor) of a. The left
subtree rooted at a will be denoted by l7(a), the right subtree by Tl(a). Note that
Ti(a) (resp. I¶r(a)) includes the edge leading from a to its left (resp. right) child.

The internal nodes of the tree are labeled with numbers Xa E [0, 1] denoting the
price offered by the seller at node a, and random variables Va C [0, 1] denoting the
valuation of the buyer with whom the seller interacts at that node. The buyer's choice
is represented by a random variable

1 if Va > Xa

X=a{ 0 if Va < Xa

In other words, Xa is 1 if the buyer accepts the price offered, 0 otherwise.
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The tree TT specifies a pricing strategy as follows. The seller starts at the root
r of the tree and offers the first buyer price xr. The seller moves from this node to
its left or right child depending on whether the buyer declines or accepts the offer,
and repeats this process until reaching a leaf which represents the outcomes of all
transactions.

A strategy as defined above is called a non-uniform deterministic pricing strategy.
A uniform deterministic pricing strategy is one in which there is a single infinite tree
T whose first T levels comprise TT for each T. (This corresponds to a pricing strategy
which is not informed of the value of T at the outset of the auction.) A randomized
pricing strategy is a probability distribution over deternlinistic pricing strategies.

As mentioned above, the outcome of the auction may be represented by a leaf
e C TT, i.e. the unique leaf such that for all ancestors a < , EC Tr(a) X X = 1. A
probability distribution on the buyers' valuations va induces a probability distribution
on outcomes . We will use PD(f) to denote the probability assigned to under the
valuation distribution represented by demand curve D. For an internal node a, pD(a)
denotes the probability that the outcome leaf is a descendant of a. We define pD(e)

similarly for edges e E iT.

3.2.2 Lower bound

A family of random demand curves

The demand curves D appearing in our lower bound will be random samples from
a space D of possible demand curves. In this section we single out a particular
random demand-curve model, and we enumerate the properties which will be relevant
in establishing the lower bound. The choice of a particular random demand-curve
model is done here for ease of exposition, and not because of a lack of generality in
the lower bound itself. At the end of this section we will indicate that Theorem 3.14
applies to much broader classes D of demand curves. In particular we believe that
it encompasses random demand-curve models which are realistic enough to be of
interest in actual economics and e-commerce applications.

For now, however, D denotes the one-parameter family of demand curves {Dt
0.3 < t < 0.4} defined as follows. Let

Dt(x) = max { 1-2x, 2t-2 x 2- }

In other words, the graph of Dt consists of three line segments: the middle segment is
tangent to the curve xy = 1/7 at the point (t, 1/7t), while the left and right segments
belong to lines which lie below that curve and are independent of t. Now we obtain Dt
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by smoothing Dt. Specifically, let b(x) be a non-negative, even C' function supported
on the interval [-0.01 0.01] and satisfying j0.01 b(x) = 1. Define Dt by convolving

Dt with b, i.e.

Dt (x) = (y)b(x - y)dy.

We will equip D = Dt: 0.3 < t < 0.4} with a probability measure by specifying
that t is uniformly distributed in [0.3, 0.4].

Let x* = argnaxxc[0.l] xDt(x). It is an exercise to compute that * = t. (With
Dt in place of Dt this would be trivial. But Dt(x) = Dt(x) unless x is within 0.01 of
one of the two points where D' is discontinuous, and these two points are far from

maximizing xDt:(x), so jXDt(x) is also maximized at x = t.)
The specifics of the construction of D are not important, except insofar as they

enable us to prove the properties specified in the following lemma.

Lemma 3.6. There ex:ist constants a, > 0 and y < oc such that for all D = Dto E
D and x C [0, 1]:

1d (Xt) lIt=to > ,

2. x*D(x) - xD(x) > 3(x*- x)2;

3. ID(x)/D(x)l < -yx* - x and ID(x)/(l - D(x))l < yx*- xl;

4. D(k)(x)/D(x)l < y and D(k)(x)/(1 - D(x))l < y, for k = 2, 3, 4.

Here x* denotes xt*, D(k)(x) denotes the k-th t-derivative of Dt(x) at t to, and
D(x) denotes D(1)r().

The proof of the lemma is elementary but tedious, so it is deferred to Section 3.4.

High-level description of the proof

The proof of the lower bound on regret is based on the following intuition. If there
is uncertainty about the demand curve, then no single price can achieve a low ex-
pected regret for all demand curves. The family of demand curves exhibited above is
parametrized by a single parameter t, and we will see that if the uncertainty about
t is on the order of £ then the regret per buyer is Q(E2 ). (This statement will be
made precise in Lemma 3.12 below.) So to avoid accumulating Q(/T) regret on the
last Q(T) buyers, the pricing strategy must ensure that it reduces the uncertainty to
O(T -/ 4 ) during its interactions with the initial O(T) buyers. However -and this
is the crux of the proof we will show that offering prices far from x* is much more
informative than offering prices near x*, so there is a quantifiable cost to reducing the
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uncertainty in t. In particular, reducing the uncertainty to O(T- 1/4 ) costs Q(T) in
terms of expected regret.

To make these ideas precise, we will introduce a notion of "knowledge" which
quantifies the seller's ability to distinguish the actual demand curve from nearby ones
based on the information obtained from past transactions, and a notion of "condi-
tional regret" whose expectation is a lower bound on the pricing strategy's expected
regret. We will show that the ratio of conditional regret to knowledge is bounded
below, so that the strategy cannot accumulate Q(/T) knowledge without accumu-
lating Q(T) regret. Finally, we will show that when the expected knowledge is less
than a small constant multiple of T, there is so much uncertainty about the true
demand curve that the expected regret is Q(vT) with high probability (taken over
the probability measure on demand curves).

Definition of knowledge

In the following definitions, log denotes the natural logarithm function. T1 denotes a
finite planar binary tree, labeled with a pricing strategy as explained in Section 3.2.1.
When f is a function defined on leaves of 7, we will use the notation EDf to denote
the expectation of f with respect to the probability distribution PD on leaves, i.e.

EDf = PD(f)f ().
ee7

For a given demand curve D = Dto, we define the infinitesimal relative entropy of
a leaf e E I by

d
IRED(f) = (- logpo ()) It=to,

and we define the knowledge of e as the square of the infinitesimal relative entropy:

KD () = IRED(f)2.

Readers familiar with information theory may recognize IRED(f) as the t-derivative
of 's contribution to the weighted sum defining the Kullback-Leibler divergence

KL(PDoPDot), and KD(e) as a random variable whose expected value is a general-
ization of the notion of Fisher information.

An important feature of IRED(f) is that it may be expressed as a sum of terms
coming from the edges of T leading from the root to . For an edge e = (a, b) c T, let

ire(e) (log D(xa)) if e C T,(a)
D d (log(1 - D(xa))) if e C TI(a)

f D(Xa)/D(xa) if e C I7(a)

-D(xa)/(1 - D(Xa)) if e c 71P(a)
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'Then

IRED() = ZirTeD(e).
e<£

Definition of conditional regret

For a given D, the conditional regret RD(f) may be informally defined as follows. At
the end of the auction, if the demand curve D were revealed to the seller and then she
were relquire(d to offer the same sequence of prices {(a: a - } to a new, independent
randomll )oplllation of buyers whose valuations are distributed according to D, then
RD (f) is the expected regret incurred by the seller during this second round of selling.
Formally. RD(C) is defined as follows. Let

TrD(X) = x*D(x*) - xD(x),

where * = argmaxx[0,l]{xD(x)} as always. Note that if two different sellers offer
prices :r*. x, respectively, to a buyer whose valuation is distributed according to D,
then rD(x) is the difference in their expected revenues. Now let

RD(f) = ErD(Xa).
a-4

Although RD(f) is not equal to the seller's actual regret conditional on outcome ,
it is a useful invariant because EDRD(C) is equal to the actual expected regret of
S relative to $*. (It is also therefore a lower bound on the expected regret of S
relative to S)Pt.) This fact is far from obvious, because the distribution of the actual
buyers' valuations, conditioned on their responses to the prices they were offered,
is very different from the distribution of T new independent buyers. In general the
expected revenue of S or * on the hypothetical independent population of T buyers
will not equal the expected revenue obtained from the actual population of T buyers,
conditioned on those buyers' responses. Yet the expected difference between the two
random variables, i.e. the regret, is the same for both populations of buyers. This
fact is proved in the following lemma.

Lemma 3.7. Let S be a strategy with decision tree 7, and let S* be the fixed-price
strategy which offers x* to each buyer. If the buyers' valuations are independent
random, samples from the distribution specified by D, then the expected revenue of S*
exceeds that of S by exactly EDRD(f).

Proof. Let
1 if va > x*
0 if va <x*
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At a given point of the samrnle space, let denote the outcome leaf, and let the
ancestors of be denoted by (a2. . .. , aT. Then the revenue of S* is ET Xz*,
and the revenue of S is Z7=1 k?:ra. It follows that the expected difference between
the two is

-PD(a)[ED(XX*) - E(XaXa)] = PD(a)[x*D(x*) - XaD(Xa)]
aCT aET

Z PD()TD(Xa)
aET e-a

ZPD) (ZrD(Xa))
£ET a

= EDRD (-).

Proof of the lower bound

In stating the upcoming lemmas, we will introduce constants cl, c2, .... When we
introduce such a constant we are implicitly asserting that there exists a constant
o < ci < oc depending only on the demand curve family D, and satisfying the
property specified in the statement of the corresponding lemma.

We begin with a series of lemmas which establish that EDKD is bounded above
by a constant multiple of EDRD. Assume for now that D is fixed, so x* is also fixed,

and put

ha = Xa - X*.

Lemma 3.8. EDRD(f) > cl EaCTPD(a)ha.

Proof. Recall from Lemma 3.6 that

(x* + h)D(x* + h) < x*D(x*) -h2,

hence

rD(Xa) = x*D(x*) - XaD(Xa) > 3h2a.
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Now we see that

EDRD() = - pD() ( 7D(xa))

S (ZPD()) D(Xa)
aEcT ea

- 5PD(a)rYD(7a)
aCT

> /3 PD (a)h .a

so the lemma holds with cl = d. 

Lemma 3.9. EDKD(e) < c2 ,acT PD(a)ha.

Proof. As in the preceding lemma, the idea is to rewrite the sum over leaves as a sum
over internal nodes and then bound the sum term-by-term. (In this case, actually
it is a sum over internal edges of T.) A complication arises from the fact that the
natural expression for EDKD(£) involves summing over pairs of ancestors of a leaf;
however, we will see that all of the cross-terms cancel, leaving us with a manageable
expression.

E'DKD() = PD(f)IRED (f)
e

P= D(e) ireD(e))

EPD(f) ireD(e)2 + 2 ireD(e)ireD(e')
e e-< e-e'-<

P D())i reDf ) D + 2 ZreD (e) z PD (e)ireD(e))

[-PD(e)ireD(e) ] + 2 [E reD(e) (EPD(e')ireD (e))] . (3.1)

For any e G i, the sum Ee, >epD(e')ireD(e') vanishes because the terms may be
grouped into pairs pD(e')ireD(e') + PD (e")ireD(e") where e', e" are the edges joining
a node a E I to its right and left children, respectively, and we have

pD(e')ireD (e') + PD(e")ireD(e")

pD(a) D(xa) D(Xa) -( - D(xa) ) ) .DI Xa I 1 DX) 1- DXa
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Thus

EDKDM() = EPD(e)irD(e)
cET

ZPD(a) D(Xa) D(x.) +(1-D(x)) ( D() ) I< D() 1 (- D) j

< EPD(a) (_(2h + 
a

so the lemma holds with c2 = 2y2. [

Corollary 3.10. EDKD(f) < C3EDRD(f).

The relevance of Corollary 3.10 is that it means that when EDRD is small, then

PDt (e) cannot shrink very rapidly as a function of t, for most leaves e. This is made
precise by the following Lemma. Here and throughout the rest of this section, D
refers to a demand curve Dto C D.

Lemma 3.11. For all sufficiently large T, if EDRD < T then there exists a set
S of leaves such that PD(S) > 1/2, and PDt() > c4pD(f) for all e C S and all
t [to, to + T-/4] .

The proof is quite elaborate, so we have deferred it to Section 3.5.
We will also need a lemma establishing the growth rate of RD, (f) for a fixed leaf

e, as t varies.

Lemma 3.12. RD(e) + RDt(e) > cs(t-to) 2T for all leaves £ E Tn and for all Dt E D.

Proof. We know that

RD(t) = ZrD(Xa)

RD () = ZrDt (Xa)
a-e

so it suffices to prove that rD(x) + rD(x) > c4(t - to)2 for all x [0, 1]. Assume
without loss of generality that t - to > 0. (Otherwise, we may reverse the roles of
D and Dt.) Let x* and x* denote the optimal prices for D, Dt, respectively. (Recall
that D = Dto.) Note that x* - x* > a(t - to), by property 1 of Lemma 3.6.
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Let h = .- *, ht = - xt , all(l note that Ihl + htl > a(t - to). Now

'1i)-, (.r) > l h 2t 2

rD((X) + D(.l) > Cl(lh.12 + ( ht 2)

1 12

> 2 cl t,
2

so the lemma holds with C5 = 2lc2. 2

We now exploit Lemmas 3.11 and 3.12 to prove that if EDRD is less than some
small constant multiple of vT when D = Dto, then EDRDt = (T) on a large frac-
tion of the interval [to, to + T- /4 ] . The idea behind the proof is that Lemma 3.11 tells
us there is a large set S of leaves whose measure does not vary by more than a constant
factor as we move t across this interval, while Lemma 3.12 tells us that the regret con-
tribution from leaves in S is Q(n) for a large fraction of the t-values in this interval.
In the following proposition, c(M) denotes the function min {1, .c 4c5(1 + c4)-lM-2}.

Proposition 3.13. For all M and all sufficiently large T, if EDRD < c(M)VT, then
ED,RD, > c(M)v/T for all t C [to + (1/M)T-/ 4, to + T-/ 4 ] .

Proof. If EDRD < c(M)/T, we may apply Lemma 3.11 to produce a set S of leaves
such that PD(S) > 1/2 and PDt(e) > c4pD(e) for all e E S and all t C [to, to + T-/ 4 ].
Now,

EDRD > PD,(e)RD(e)
eES

and, for all t C [to + (1/M)T- 1/4 , to + T-1/4],

ED, RDt > ZE PDt(e) RDt(e)
ES

> C4 Z PD (e)RD ()
ecs

> C4 XpD()(5 (t - to) T- RD())

> C4PD(S)C5 T/M2 - C4EDRD

> (c4 5/2M2 ) T- C4(M) T

> c(M)T

where the fourth line is derived from the third by applying Lemma 3.12. El
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Theorem 3.14. Let 5 be any randomized non-uniform strategy, and let RD(5, T) de-
note the expected ex ante rgret of S on a population of T buyers whose valuations are
independent random samples from the probability distribution specified by the demand
curve D. Then

Pr (li D(, T)p > 0= 1
D-D Toc VT

In other words, if D is drawn at random from D, then almost surely RD(§, T) is not

o( T) .

Proof. It suffices to prove the theorem for a deterministic strategy 5, since any ran-
domized strategy is a probability distribution over such strategies. Now assume, to
the contrary, that

Pr lim sup R(! = 0) > 0. (3.2)

and choose M large enough that the left side of (3.2) is greater than 1/M. Recall
from Lemma 3.8 that EDRD = RZD(S, T). We know that for every D = Dto E D such
that EDRD < c(M)T,

EDtRDt > c(M)/-T Vt E [to + (1/M)T- 1/ 4, to + T-1/4]. (3.3)

Now choose N large enough that the set

XN = DED: sup RD(S, T) <(M)}
T>N VT<

has measure greater than 1/M. Replacing XN if necessary with a proper subset still
having measure greater than 1/M, we may assume that {t: Dt E XN} is disjoint from
[0.4- , 0.4] for some > O0. Choosing T large enough that T > N and T- 1 /4 < ,

equation (3.3) ensures that the sets

X = D,: s = t + (k/M)T-1 4, Dt E XN}

are disjoint for k = 0, 1,..., M- 1. But each of the sets XN, being a translate of
XN, has measure greater than 1/M. Thus their total measure is greater than 1,
contradicting the fact that D has measure 1. L

General demand-curve models

The methods of the preceding section extend to much more general families of demand
curves. Here we will merely sketch the ideas underlying the extension. Suppose that D
is a compact subset of the space C4([0, 1]) of functions on [0, 1] with continuous fourth
derivative, and that the demand curves D D satisfy the following two additional
hypotheses:
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* (Unique global max) Tile function f(x) = xD(:r) has a unique global maxi-
mul ::* E [0() 1]. and it lies in the interior of the interval.

* (Non-degeneracy) The second derivative of J is strictly negative at x*.

Suppose D is also endowed with a probability measure, denoted p/. The proof of
the lower bound relied heavily on the notion of being able to make a "one-parameter
family of perturbations" to a demand curve. This notion imay be encapsulated using a
flow O(D, t) mapping an open set U C D x R into D, such that {D E TD: (D, 0) C U}
has measure 1, and (D, 0) = D when defined. We will use the shorthand Dt for
<(D, t). The flow must satisfy the following properties:

· (Additivity) (D,.s + t) = /(¢(D, s), t).

* (Measure-preservation) If X C D and (D, t) is defined for all D C X, then
((X, t)) = (X)

* (Smoothness) The function g(t, x) = Dt(x) is a C4 function of t and x.

* (Profit-preservation) If xt denotes the point at which the function xDt(x)
achieves its global maximum, then x*Dt(x*) = xDo(x*) for all t such that Dt
is defined.

* (Non-degeneracy) (xt) 0.

* (Rate dampening at 0 and 1) For k = 1, 2, 3, 4, the functions D(k) and D(|k)D 1-D
are uniformly bounded above, where D(k) denotes the k-th derivative of D with
respect to t.

Provided that these axioms are satisfied, it is possible to establish all of the
properties specified in Lemma 3.6. Property 1 follows from compactness of D and
non-degeneracy of , property 2 follows from the compactness of D together with
the non-degeneracy and "unique global max" axioms for D, and property 4 is the
rate-dampening axiom. Property 3 is the subtlest: it follows from the smoothness,
profit-preservation, and rate-dampening properties of A. The key observation is that
profit-preservation implies that

x*Dt(x*) < xt*Dt(xt*) = x*D(x*),

so that x*Dt(x*), as a function of t, is maximized at t = 0. This, coupled with
smoothness of 0, proves that D(x*) = 0. Another application of smoothness yields
the desired bounds.
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The final steps of Theorem 1 used the translation-invariance of Lebesgue measure
on the interval [0.3, 0.4] to produce M sets whose disjointness yielded the desired
contradiction. This argument generalizes, with the flow X playing the role of the
group of translations. It is for this reason that we require X to satisfy the additivity
and measure-preservation axioms.

3.2.3 Upper bound

The upper bound on regret in the random-valuation model is based on applying
the multi-armed bandit algorithm UCB1 [3] which was presented and analyzed in
Section 2.4 of this thesis. To do so, we discretize the set of possible actions by
limiting the seller to use pricing strategies which only offer prices belonging to the
set {1/K, 2/K,..., 1- 1/K, 1}, for suitably-chosen K. (It will turn out that K =
0((T/ log T)1 /4 ) is the best choice.)

We are now in a setting where the seller must choose one of K possible actions on
each of T trials, where each action yields a reward which is a random variable taking
values in [0, 1], whose distribution depends on the action chosen, but the rewards for
a given action are i.i.d. across the T trials. This is the scenario studied in Section 2.4.
There, we defined c(i) to be the expected reward of action i, i* = arg maxl<i<K c(i),
and

Ai = (i*) -c(i). (3.4)

We also defined the notion of a "((, so)-bounded adversary"; in the present context,
the random payoff distribution represents a (1, 1)-bounded adversary according to
Lemma 2.7, since all payoffs are between 0 and 1. Applying Theorem 2.8 and using
the fact that ( = so = 1, we find that the regret of UCB1 satisfies

32 7T2

Regret(UCB1) < ET+ (3 i log)] ( ) i (3.5)Ai 3
i:Ai >e iES

for any E > 0.

To apply this bound, we need to know something about the values of A1,..., AK

in the special case of interest to us. When the buyer's valuation is v, the payoff of
action i/K is

x { i/K if v > i/K (3.6)
I0 otherwise.

Hence

c(i) = E(Xi) = (i/K)D(i/K). (3.7)
Recall that we are making the following hypothesis on the demand curve D: the
function f(x) = xD(x) has a unique global maximum at x* E (0, 1), and f"(x*)
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is defined and strictly negative. This hypothesis is usefill because it enables us to

establish the following lemma, which translates directly into bounds on Ai.

Lemma 3.15. There exist constants C1, C2 such that

Cl(* - )2 < f(.*) - (X) < C2(* _ )2

for all x C [0, 1].

Proof. The existence and strict negativity of f"(x*) guarantee that there are constants
Al ,A 2, > 0 such that Al(x* - x)2 < f(x*) - f(x) < A2(x* - )2 for all x C
(x* - , x* + ). The compactness of X = x [0,1]: x* - x >E }, together with
the fact that f(x*) - f(x) is strictly positive for all x e X, guarantees that there are
constants B1, B2 such that Bl(x* - )2 < f(x*) - f(x) < B 2(x* - )2 for all x e X.
Now put C = min{A,, B1} and C2 = max{A 2, B2} to obtain the lemma. LO

Corollary 3.16. If A/ < A/l ... < A/K-1 are the elements of the set {A1, ... , AK}
sorted in ascending order, then Aj > Cl(j/2K) 2 - C2/K 2 .

Proof. We have

Ai = c(i*) - (i) = f(i*/K) - f(i/K) = (f(x*) - f(i/K)) - (f(x*) - f(i*/K))

We know that f(x*) - f(i/K) > C(x* - i/K) 2. To put an upper bound on f(x*) -
fl(i*/K), let io = LKx* and observe that x* - io/K < 1/K and f(x*) - f(io/K) <
C2/K 2. Thus

Ai > Ci(x* - Z/K)2 - C2 K2 .

The lower bound on Aj follows upon observing that. at most j elements of the set
{1L/K, 2/K,..., 1} lie within a distance less than j/2K of x*. E

Corollary 3.17. /a* > x*D(x*) - C2/K 2 .

Proof. At least one of the numbers {1/K, 2/K,...,1} lies within 1/K of x*; now
apply the upper bound on f(x*) - f(x) stated in Lemma 3.15. O

Putting all of this together, we have derived the following upper bound.

Theorem 3.18. Assuming that the function f(x) = xD(x) has a unique global max-
imum x* (0, 1), and that f"(x*) is defined and strictly negative, the strategy UCB1
with K [(T/ log T)/41 achieves expected regret O( T log T).

Proof. Consider the following four strategies:

* UCB1, the strategy defined in [3].
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*· Opt, the optimal fixed-price strategy.

· *, the fixed-price strategy which offers x* to every buyer.

· SK, the fixed-price strategy which offers i*/K to every buyer, where i*/K is the
element of {1/K, 2/K,..., 1} closest to x*.

As usual, we will use p(.) to denote the expected revenue obtained by a strategy. We
will prove a O( /TlogT) upper bound on each of p(S ) - p(UCB1), p(S*)- p(S),
and p($opt) _ p(5 *), from which the theorem follows immediately.

We first show, using (3.5),

2C2 /K2 = O( /log(T)/T), and
jo = V12C 2/C 1, so that Aij > 

Ai>E

Also,

that p(S*) - p(UCB1) = O( TlogT). Let E =
let o0 < ... < AK-_ be as in Corollary 3.16. Let
when j > jo. By Corollary 3.16,

+
E

Ki C1 (j/2K) 2

j=jo+1

<K 2 12
2C2 C1

3 i 2
1C2- 

4K2 
C1 Ej=1

2r2 K2

3C,/
= O((T/logT)1/ 2).

T = 2C2TKT= O(TlogT)

and

K

E Aj log T
j=l

< KlogT

= O(T1/4 log T) 3 /4 )

Plugging these estimates into 3.5, we see that the regret of
O((Tlog T)1/ 2), as claimed.

UCB1 relative to S isK

Next we bound the difference p(S*) - p($§). The expected revenues of S* and
SK are Tx*D(x*) and T,*, respectively.
relative to S* is bounded above by

C2T < C2T
K2 - (T/ log T) 1/2

Applying Corollary 3.17, the regret of SK

= O((T log T)1/2).
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Finally, we must bound p(SOpt) - p(S*). For any C [(), 1], let p(x) denote the
revenue obtained by the fixed-price strategy which offers price x, and let. xApt =

arg maxxc[Oi] p(x). We begin by observing that for all x < xopt,

p(xr) > p(xoPt) - T(xo t - ).

This is simply because every buyer that accepts price :/opt would also accept x, and
the amount of revenue lost. by setting the lower price is xopt _ x per buyer. Now

Pr(p(x) - p(x*) > A)dx j Pr (p(xoPt) - p(x*) > 2 A Pt - x < dx

= A Pr(p(x °Pt ) - p(x*) > 2),

so a bound on Pr(p(x) - p(7*) > A) for fixed x translates into a bound on Pr(p(x°oPt) -
p(x*) > A). But for fixed x, the probability in question is the probability that a sum
of T i.i.d. random variables, each supported in [-1, 1] and with negative expectation,
exceeds A. The Chernoff-Hoeffding bound tells us that

Pr(p(x) - p(x*) > A) < e-X2/2T

SO

Pr(p(xzPt) -

E(p(xOpt ) - p(x*))

p(x*) > 2A) < min{l, e-X2/2T}.
A

D
O

< Pr(p(x Pt) - p(x*) > y)dy/o2T
min{ I, 2 T e-y2/2T}dy

Y

isl-09T 2T at

= 0T log T)
:O(x/TlogTr).

Remark 3.2.
achieve regret

If the seller

O( TlogT)
does not have foreknowledge of T, it is still possible to
using the doubling technique introduced in Section 2.6.

3.3 Worst-case valuations
In the worst-case valuation model, we assume that the buyers' valuations are chosen
by an adversary who has knowledge of T and of the pricing strategy, but is oblivious
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to the algorithm's random choices. This means that the pricing problem, in the
worst-case valuation model, is a special case of the adversarial multi-armed bandit
problem [4]. and we may apply the algorithm Exp3 which was presented and analyzed
in Section 2.5. This algorithm was first applied in the setting of on-line auctions by
Blum et. al. [21], who normalize the buyers' valuations to lie in an interval [1, h] and
then prove the following theorem:

Theorem 3.19 ([21], Theorem 5.). For all > 0, there exists a pricing strategy
Exp3 and a constant c(e) such that for all valuation sequences, if the optimal fixed-
price revenue p(5ot) satisfies p(SOpt) > c(e)hloghloglogh, then Exp3 is (1 + )-
competitive relative to p(SOPt).

Our upper and lower bounds for regret in the worst-case valuation model are
based on the techniques employed in [4] and [21]. The upper bound in Theorem 1.10 is
virtually a restatement of Blum et. al.'s theorem, though the change in emphasis from
competitive ratio to additive regret necessitates a minor change in technical details.
Our worst-case lower bound (Theorem 3.20) is influenced by Auer et. al.'s proof of
the corresponding lower bound for the adversarial multi-armed bandit problem in [4].

3.3.1 Upper bound

Following [21], as well as the technique used in Section 3.2.3 above, we specify a finite
set of offer prices X = {1/K, 2/K,. . ., 1} and constrain the seller to select prices from
this set only. This reduces the online pricing problem to an instance of the multi-
armed bandit problem, to which the algorithm Exp3 of Section 2.5 may be applied.
Denote this pricing strategy by . If SOpt denotes the fixed-price strategy which
chooses the best offer price i*/K from X, and opt denotes the fixed-price strategy
which chooses the best offer price x* from [0, 1], we have the following inequalities:

p(SKt)-p(S) = O(V/TK log K)

p(S*)-p(s' t) < T(1/K) = TIK

where the first inequality is derived from Theorem 2.12 and the second inequality
follows from the fact that opt is no worse than the strategy which offers KLKx*J to
each buyer.

Setting K = FT/ logT] 1/3, both /TK log K and T/K are O(T2/3(logT)1/3). We
have thus expressed the regret of Exp3 as a sum of two terms, each of which is
O(T 2/3 (logT)1 /3 ), establishing the upper bound asserted in Theorem 1.10.

Readers familiar with [21] will recognize that the only difference between this
argument and their Theorem 5 is that they choose the prices in X to form a geometric
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progression (so as to optimize the competitive ratio) while we choose them to form
an arithmetic progression (so as to optimize the additive regret).

3.3.2 Lower bound

In [4], the ault hors present a lower bound of TK for the multi-armed bandit problen
with payoffs selected by an oblivious adversary. Ironically, the power of the adversary
in this lower bound comes not from adapting to the on-line algorithm ALG, but from
adapting to the number of trials T. In fact, the authors define a model of random
payoffs (depending on T but not on the algorithm) such that the expected regret of
anly algorithm on a random sample from this distribution is Q( TK). The idea is
select one of the K actions uniformly at random and designate it as the "good" action.
For all other actions, the payoff in each round is a uniform random sample from { 0, 1 },
but for the good action the payoff is a biased sample from 0, 1}, which is equal to
1 with probability 1/2 + E, where E = K(/T). A strategy which knows the good
action will achieve expected payoff (1/2 + E)T = 1/2 + ( TK). It can be shown,
for information-theoretic reasons, that no strategy can learn the good action rapidly
and reliably enough to play it more than T/K + O(eVT 3 /K) times in expectation,
from which the lower bound on regret follows. Our version of this lower bound proof

adapted from the proof in [4] - was presented earlier, in Section 2.8. There we
proved a slightly weaker result, in that the payoff distribution was allowed to depend
on the algorithm in addition to depending on T.

A similar counterexample can be constructed in the context of our online pricing
problem, i.e. given any algorithm, one can construct a probability distribution on
buyers' valuations such that the expected regret of the algorithm on a sequence of
independent random samples from this distribution is Q(T2/3). The idea is roughly the
same as above: one chooses a subinterval of [0, 1] of length 1/K to be the interval of
"good prices", and chooses the distribution of buyers' valuations so that the expected
revenue per buyer is a constant independent of the offer price outside the interval
of good prices, and is higher than this constant inside the interval of good prices.
As above, there is a trade-off between choosing too large (which makes it too
easy for strategies to learn which prices belong to the good interval) or too small
(which leads to a negligible difference in revenue between the best strategy and all
others), and the optimal trade-off is achieved when = ( /-T). However, in our
setting there is an additional constraint that E < I/K, since the expected payoff can
grow by no more than 1/K on an interval of length 1/K. This leads to the values
K = O(T/ 3). E = O(T-1 /3 ) and yields the stated lower bound of Q(T2 /3 ).

There are two complications which come up along the way. One is that the seller's
algorithm has a continuum of alternatives at every step, rather than a finite set of
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K alternatives as in Section 2.8. This can be dealt with by restricting the buyers'
valuations to lie in a finite set V = {vl,'t2, . VK}. Then the seller can gain no
advantage from offering a price which lies outside of V, so we may assume the seller
is constrained to offer prices in V and prove lower bounds for this restricted class of
strategies.

The second complication which arises is that the adversary in Section 2.8 was
more powerful: it could specify the reward for each action independently, whereas our
adversary can only set a valuation v, and this v determines the rewards for all actions
simultaneously. While this entails choosing a more complicated reward distribution,
the complication only makes the computations messier without introducing any new
ideas into the proof.

Theorem 3.20. For any T > 0 and any pricing strategy 5, there exists a probability
distribution on [O, 1] such that if the valuations of T buyers are sampled independently
at random from this distribution, the expected regret of S on this population of buyers
is Q(T2 /3 )

Proof sketch. For simplicity, assume T = K 3 , and put = . The valuations will
be independent random samples from the set V = {0, , + , + 2, ... , 1 - e, 1}.

A "baseline probability distribution" Pbase on V is defined so that

1
Pbase({V > 1 - }) = ( ) (0 < i < K).

2

A finite fiamily of probability distributions {p"j~=TjK is defined as follows: to generate
a random sample from pT, one samples v V at random from the distribution Pbase,

and then one adds E to it if and only if v = 1 - jE.
If v1, v2 are consecutive elements of V and S offers a price x such that v1 < x < v2,

then S could obtain at least as much revenue (against buyers with valuations in V)
by offering price v2 instead of x. Thus we may assume, without loss of generality,
that never offers a price outside of V.

Our proof now parallels the proof of Theorem 2.25 given in Section 2.8. One
defines a Bernoulli random variable Xj(xt) which is equal to 1 if xt = 1 - (j - 1)E,
and 0 otherwise, and one defines

Qj (, p; T) = E [ Xj (xt)1

to be the expected number of times S offers price 1- (j- 1)E to a sequence of
buyers whose valuations are independent samples from distribution p. Note that the
expected revenue per transaction at this price is at least (1+e), whereas the expected2\~j vllw I~~r~~
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revenue at ally other price in V is at most 2. Coiseqielitly, the regret of 5 is at least
1,-[T- Qj(S, pT; T)]. Recalling that E = Q2(T-'/3 ), we see now that it suffices to prove
that there exists a j such that Qj(S,p.'; T) < T + o. This is accomplished using
exactly the same steps as in the proof of Theorem 2.25. First. one finds j such that

Qj(, pbas; ') < T/K, then one proves that

Q3(, pT) - Qj(,Pbase; T) < T/2

with the aid of Theorem 2.20 and an upper bound on the KL-divergence of two
distributions on transcripts: one defined by using strategy 5 against T samples coming
from distribution Pbase, and the other defined by using S against T samples from p7T

'The key observation is that if one offers a price x C V \ {1 (j - 1)4} to a buyer
whose value is randomly sampled from v, the probability that the buyer accepts price
.r does not depend on whether the buyer's value was sampled according to Pbase or
p,. On the other hand, if one offers price 1 - (j - 1)E to a buyer whose value is
randomly sampled according to Pbase or pi, these define two different distributions
on single-transaction outcomes, and the KL-divergence of these two distributions is
at most 1662. Summing over all T transactions- and recalling that at most T/K
of these transactions, in expectation, take place at price 1 - (j - 1) - we conclude
that the KL-divergence of the two transcripts is at most 16e2(T/K) = T/K 3 < . As
in the proof of Theorem 2.25, this upper bound on the KL-divergence is enough to
finish the argument. D]

3.4 Proof of Lemma 3.6

In this section we restate and prove Lemma 3.6.

Lemma 3.21. There exist constants , /3 > 0 and by < oc such that for all D = Dto C
D and x E [(), 1]:

1. t(xt) It=to > a;

2. x*D(x*) - xD(x) > 3(x* - x)2;

3. ID(x)/D(x)l < ylx* - xl and ID(x)/(l - D(x))l < yl* -x

4. D(k)(x)/D(x)l < y and ID(k)(x)/(1 - D(x)) < y, for k 2, 3,4.

Here x* denotes xto, D(k)(x) denotes the k-th t-derivative of Dt(x) at t = to, and
D(x) denotes D(1)(x).
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Proof. We begin with some useful observations about the relation between Dt and
Dt. The function Dt is piecewise-linear, and linear functions are preserved under
convolution with an even function whose integral is 1. Recall that the bump function
b is an even function supported in [-0.01, 0.01] and satisfying 001 b(x)dx = 1; hence
Dt(x) = Dt(x) unless x is within 0.01 of one of the two points where the derivative
of Dt is discontinuous. The x-coordinates of these two points are given by

7t2 - 2t
14t2 -1
7t2 - 4t
7t2 - 2

For t in the range [0.3,0.4] this means that x0 E (0.115,0.259), xl E (0.416,0.546).
Recalling that b is a C°o function, we find that t H-4 Dt is a continuous mapping from
[0.3, 0.4] to Co([0, 1]). Hence {Dt : 0.3 < t < 0.4} is a compact subset of Co([0, 1]),

and consequently for 1 < k < oo, the k-th derivative of Dt is bounded uniformly in t.
We now proceed to prove each of the properties stated in the Lemma.

1. First we verify that x* = t, as stated in Section 3.2.2. If x lies in the interval

It = [x0 + 0.01, xl - 0.01] where Dt(x) = 2/7t - x/7t2, then xDt(x) = 2x/7t -
x2/7t 2 = [1 - (1 - x/t)2 ], which is uniquely maximized when x = t and
xDt(x) = 1/7. Note that the estimates given above for x0 and x ensure that
[x0 + 0.01, xl - 0.01] always contains [0.3, 0.4], so t always lies in this interval.

If x lies in the interval where Dt(x) = 1 - 2x or Dt(x) = (1 - x)/2, then xDt(x)
is equal to 2(1/16 - (x - 1/4)2) or (1/2)(1/4 - (x - 1/2)2), and in either case
xDt(x) can not exceed 1/8. It is straightforward but tedious to verify that
xDt(x) is bounded away from 1/7 when Ix - x0ol < 0.01 or Ix- x1 < 0.01;
this confirms that x = t is the unique global maximum of the function xDt(x).
Having verified this fact, it follows immediately that d/dt(x*)t=to = 1.

2. On the interval It where Dt(x) = 2/7t - x/7t2 , we have

1 1
xDt(x) = 1/7 - 7t2 (t - X)2 = Dt(x*) - 7t2 ( X)2

1

xtDt(xt) - xDt(x) = 7( t -x) 2 . (3.8)

We have seen that for t [0.3,0,4], xDt(x) attains its maximum value of 1/7
at a point x'* E It and is strictly less than 1/7 at all other points of [0, 1]. By
compactness it follows that there exist £, 6 > 0 such that

x - x~* > => xDt(xt) - xDt(x) > , (3.9)II' ̀tI> ZDt"
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for all :r C [0, 1], t C [0.3, 0.4]. Combining (3.8). which holds when x C I, with

(3.9), which holds when x ¢ (x* - 6, xT + 6), we obtain

r*Dt(x) - xDt(x) > min{1/7t2, /6 2}(x- Xt) 2

for all :: E [0, 1].

3. If x < 0.1 or :x > 0.6, then Dt(x) is idep)endent of t, so D(x) = 0. which
establishes the desired inequality. If x [0.1,0.6], then D(x) and 1 - D(x)

are both bounded below by 0.2, so it remains to verify that sup{lDt(x)/( t -
x)l} < oc. The function IDb(x)l is a continuous function of t and :r, so by
compactness it is bounded above by a constant. It follows that for any constant.
c > 0, sup{lt(x)/(x* - X) : s < *L1 - :rI} < oc. Choose E small enough that
[I - . Xt + E] is contained in the interval It where Dt(x) = 2/7t - x/7t2 for all
t C [0.3, 0.4]. Then for x - x < ,

2
Dt(x) = -2/7t2 + 2x/7t3 = 2(x - t)/7t3 7t3 (x - ),

so sup{lDt(x)/(xt - x)l} < oc as claimed.

4. As before, if x [0.1,0.6] then D(k)(x) = 0 so there is nothing to prove. If
x E [0.1,0.6] then D(x) and 1 - D(x) are both bounded below by 0.2, and
D(k) (x) is uniformly bounded above, by compactness.

DO

3.5 Proof of Lemma 3.11

In this section we restate and prove Lemma 3.11.

Lemma 3.22. For all sufficiently large T, if EDRD < T then there exists a set
S of leaves such that PD(S) > 1/2, and pD,(e) > c4pD(f) for all C S and all
t [to, to + T-/4] .

Proof. It suffices to prove that there exists a set S of leaves such that PD(S) > 1/2
and Ilog(pD()/pD(f))I is bounded above by a constant for e C S. Let F(t,) )
log(pDt(e)). By Taylor's Theorem, we have

F(t, )-F(to: ) = F'(to, )(t - t+ F"(to) +(t to)2 +
2

-F"'(to, )(t - to) + F"(t 1, i)(t - t)4 ,
6 24
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for some t E [to, t]. (Here F', F", F"', F"" refer to the t-derivatives of F. Throughout
this section, we will adopt the same notational convention when referring to the t-
derivatives of other functions, in contrast to the "dot" notation used in other sections
of this chapter.) This means that

log ( < IF'(to, )lT/ 4 + +TIF"(to,j) T-1/2+
2

- F"'(to, i)T-3/ 4+ 1 F""(t, i)T-'. (3.10)
6 24

We will prove that, when e is randomly sampled according to PD, the expected value
of each term on the right side of (3.10) is bounded above by a constant. By Markov's
Inequality, it will follow that right side is bounded above by a constant for a set S of
leaves satisfying PD(S) > 1/2, thus finishing the proof of the Lemma.

Unfortunately, bounding the expected value of the right side of (3.10) requires
a separate computation for each of the four terms. For the first term, we observe
that F'(to, 4) 12 is precisely KD(f), so ED (IF'(to, e)12) < C3gT by Corollary 3.10. It
follows, using the Cauchy-Schwarz Inequality, that ED (IF'(to, e)IT-1/4 ) < / 3

To bound the remaining three terms, let a0 , al,...,an = e be the nodes on the
path in T from the root a0 down to the leaf . Let

{ (a O D(Xai) if X(ai) 1

{ 1- D(Xai) if X(ai) 0.

We have
T-1

PD() = rI q(ai),
i=O

so

T-1

F(to,£) = E logq(ai) (3.11)
i=o0

F'(to, ) E= : q(ai) (3.12)

T- 1 /"(ai) q'(ai)F( q(ao) (j=) Y) (3.13)
i=0 q(a) q(ai)

(to, T- q"'(ai) 3 (q(ai)qI(ai) + 2 (q(ai )\ (3.14)
)q(a 2 T-1 (q(m' (ai)W

To prove that ED(lF(to, )) = O(,v), we use the fact that the random variable
F"(to,£) is a sum of two random variables T-l q(a)) and _ ET-l (Q(ai!) We
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bound the expected absolute value of each of these two terms separately. For the

second term, we use the fact that Iq'(aj)/q((a)l = O(h,i), which is property 3 from
Lemmnna 3.6. Thus

( = EPD (a)h 2

and the right side is 0(T) using Lemma 3.8 and our hypothesis that EDRD < T.
To bound the first term, ET-o q"(1 ), we start by observing that, conditional on the

value of ai, the random variable q((a') has mean zero and variance 0(1). The bound

on the conditional variance follows from property 4 in Lemma 3.6. The mean-zero

assertion follows from the computation

ED q"(ai) = (Xa) D(Xa ) + (1 - D(Xa)) - D(Xai )
(ai ) YD( /.

This means that the random variables q"(aj)/q(ai) form a martingale difference se-

quence, hence

T-I 21 T-I 2

q(ai) q(ai)ED[( ())= E [ q(a) i- = 0(T)

The bound ED ( i=0-l q(ai)) = (/-T) follows using the Cauchy-Schwarz Inequal-
ity, as before.

We turn now to proving that ED(IF"'(to, t)) = O(n3/4 ). As before, the first step

is to use (3.14) to express F"'(to, g) as a sum of three terms

T-1 q

t= q'(ai)

Y = -3 2(ai)q(ai)
t=O q(ai)

Z a te (q'(ai) ) 

and then to bound the expected absolute value of each of these terms separately.
Exactly as above, one proves that the random variables q"'(ai)/q(ai) form a martingale
difference sequence and have bounded variance, and consequently ED(IXI) = O(vT).

Recalling that q'(a)/q(ai)J = O(ha~) and q"(ai)/q(ai)l = 0(1) (properties 3 and 4
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from Lemma 3.6, respectively) we find that

T-1

< ED E
i=O

T-1

< ED 
i=o

T-1
= ED E

i=O

= ED E
,aT

q'(ai)q"(ai)
q(ai)

Aq,(ai ) 28

q(ai) )

O(h ) 1/20(ha ))

1/2

PD (a)h2)

where the last line follows from Lemma 3.8. Finally, we have

2ED(ZI)
2 T-1i=o q (ai)< ED ( q (ai )

= ED ( O(h3i)

ED PD (a) ha)

<ED (, PD (a)h 
aET

0(T)
Combining the estimates for ED(IXI), ED(IYI), ED(IZI), we obtain the bound

ED(IF .(to, ) I)= (T3/4 )

as desired.
Finally, to prove F""(t1, e)l = O(T), we use the formula

T- q"" (a)

E q(ai)i=Oqa)
q'(ai) q'(ai)
q(ai) q(ai)

12 q(ai ) 1kq-ai) 

q (ai)2
- 3' .q(i) +

q'(ai) q(ai)
(3.15)
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-ED (I)
3

)

ED (i= q(ai)

1/2T-

ED( 
i=O

0(1))

*0( T)

F"(tl, )

q11 (ai)



Each of the randoml variables q(k)(ai)/q(ai) for k = 1,2.3.4 is 0(1), hence each

summand on the right side of (3.15) is 0(1). Sumnming all n terms, we obtain
F"" (tl, ) I == O(n) as desired. O
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Chapter 4

Online optimization in
one-parameter spaces

A generalized bandit problem whose strategy set is [0, 1] is called a continuum-armed
bandit problem [2]. The online pricing problems considered in the preceding chapter
were continuum-armed bandit problems with a cost function class F whose elements
were all functions of the form

(x)= x if < ,
0O otherwise

for v [0, 1]. This chapter further pursues the study of continuum-armed bandit
problems, deriving nearly matching upper and lower bounds on the regret of the
optimal algorithms against i.i.d. adversaries as well as adaptive adversaries, when
the cost function class F is a set of uniformly locally Lipschitz functions on S. (See
Definition 4.1 below.) The upper bounds are derived using a straightforward reduction
to the finite-armed bandit algorithms presented in Chapter 2. The lower bounds are
also inspired by lower bounds for the finite-armed bandit problem (e.g. [41) but require
more sophisticated analytical machinery.

One of the surprising consequences of this analysis is that the optimal regret
bounds against an i.i.d. adversary are identical (up to a factor no greater than
o(log T), and possibly up to a constant factor) with the optimal regret bounds against
an adaptive adversary. This contrasts sharply with the K-armed bandit problem, in
which the optimal algorithms have regret 0(log T) against i.i.d. adversaries and O(vT)

against adaptive adversaries. This qualitative difference between the finite-armed and
continuulm-armed bandit problems may be explained conceptually as follows. In the
finite-armed bandit problem, the instance which establishes the Q(vT) lower bound
for regret against adaptive adversaries is actually based on an i.i.d. adversary whose
distribution depends on T. In other words, the power of adaptive adversaries in the
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finite-armed case comes not from their adaptivity or their nonstationarity, but only
from their foreknowledge of T. In the continuum-armed case, we can construct an
i.i.d. adversary based on a cost function distribution which "embeds" the worst-case
distribution for the K-armled bandit problem (for progressively larger values of K
and T) into the continuous strategy space at progressively finer distance scales.

4.1 Terminology and Conventions

Throughout this chapter, S denotes the set [0, 1].

Definition 4.1. A function f is uniformly locally Lipschitz with constant L (0 <
L < oc), exponent a (0 < a < 1), and restriction 6 (6 > 0) if it is the case that for
all u, u' ES with Ilu- u'll <6,

If(u) - f(u') < Lju - u'.1

The class of all such functions f will be denoted by ulL(a, L, 6).

We will consider two sets of adversaries. The set Aadpt is the set of adaptive
adversaries for (S, ulL(a, L, 6)), for some specified values of a, L, 6 which are known
to the algorithm designer. The set Aiid is the set of i.i.d. adversaries defined as follows:
an i.i.d. adversary ADV governed by a distribution P on functions c: S -- is in

Aiid if:

* P is a (, so)-bounded distribution.

* The function c(x) = Ep[c(x)] is in ulL(a, L, 6). Here Ep[.] denotes the expec-
tation operator defined by the distribution P.

Note that neither of the sets Aadpt, Aiid is contained in the other: our i.i.d. adversaries
(unlike our adaptive adversaries) are not required to choose continuous cost functions
nor are these functions required to take values between 0 and 1.

4.2 Continuum-armed bandit algorithms

There is a trivial reduction from the continuum-armed bandit problem to the K-
armed bandit problem: one limits one's attention to the strategy set

SK= {1/K,2/K,...,(K-1)/K, 1} C S

and runs a K-armed bandit algorithm with strategy set SK. In this section we analyze
algorithms based on this reduction.
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Theorem 4.1. Let A denote either of the adversary sets Aadpt or Aijd. There exists
an algorithm CAB satisfying

R(CAB A; T) = O(T " log2 1 (T))

Proof. Let K = (T/log T) a2+o±, and let SK = 1/K, 2/K. . ., 1}. Let MAB denote
a nmulti-armed bandit algorithm with strategy set SK; MAB is either the algorithm
UCB1 if A = Aiid, or it is the algorithm Exp3 if A = Aapt.

For any adversary ADV A, there is a well-defined restriction ADVIsa whose

cost functions ct are the cost functions selected by ADV, restricted to SK. We claim
that R(MAB, ADVIs,; T) = O(v/TK log K). If A = Adpt this follows directly from
Theorem 2.12. If A = Aiid then we have R(MAB, ADVIsK; T) = O(K + /TK log K)
by Corollary 2.9. Also R(MAB, ADVIsK; T) = O(T) because c(x)- c(y) = 0(1) for
ADV Aiid and x,y S. The bound R(MAB, ADVIsK.;T) = O( TKlogK) now
follows from the fact that

inn{T, K + TK logK} < 2 TK logK.

Let c denote the function c(x) = E [T ZtT=i ct(x)] (If ADV C Aiid this coincides

with the usage of defined earlier.) We have E ulL(a, L, 6). For any x E S, there
exists a strategy y C SK such that x - yl < 1/K, and consequently,

(y) - (x) < LK - - < LT-2a-- log 2a+ (T).

We have

t=:l

Ct (X)] < E c t( xt) - Ct(
t=l

+ T(c(y) - (x))

< R(MAB, ADV sK; T) + LT1- o- logA- (T)

= 0 (v/TK log K + T a+ log2a1 (T)) .

The theorem now follows from the fact that

/TK logK O (VT.
( 2a+ T 8>1

log T)
* log T) O (T2a log (T))

n
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4.3 Lower bounds for the one-parameter case

There are many reasons to expect that, Algorithm CAB is an inefficient algorithm for
the continuum-armed bandit problem. Chief among these is that fact that it treats the
strategies {1/K, 2/K,. . ., 1} as an unordered set, ignoring the fact that experiments
which sample the cost of one strategy j/K are (at least weakly) predictive of the costs
of nearby strategies. In this section we prove that, contrary to this intuition, CAB
is in fact quite close to the optimal algorithm. Specifically, in the regret bound of
Theorem 4.1, the exponent "2+ is the best possible: for any < 2+1, no algorithm
can achieve regret O(n 3). This lower bound applies to both Aadpt and Aiid

The lower bound relies on a function f : [0, 1] - [0, 1] defined as the sum of a

nested family of "bump functions." The details of the construction are specified as
follows.

Construction 4.1. Let B be a C° bump function defined on the real line, satisfying
0 < B(x) < 1 for all x, B(x) = 0 if x < 0 or x > 1, and B(x) = 1 if x E [1/3,2/3].
(For a construction of such functions, see e.g. [22], Theorem 11.5.1.) For an interval

[a, b], let B[a,b] denote the bump function B(`_-), i.e. the function B rescaled and
shifted so that its support is [a, b] instead of [0, 1]. Define a random nested sequence
of intervals [0, 1] = [ao, bo] [a,, bl] ... as follows: for k > 0, the middle third of

[ak-l, bk-l] is subdivided into intervals of width

w 3- k!

and [ak, bk] is one of these subintervals chosen uniformly at random. Now let

f ( ) W B[ak bkl ().

Finally, define a probability distribution on functions c: [0, 1] [0, 1] by the following
rule: sample A uniformly at random from the open interval (0, 1) and put c(x) = Af(x).
Observe that the expected value of c(x) is

c(x) = ~ Af(x) dx - 1

The relevant technical properties of this construction are summarized in the fol-
lowing lemma.

Lemma 4.2. Let {u*} = nkl [ak, bk]. The function f(x) belongs to ulL(a, L, 6) for
some constants L, 6, it takes values in [1/3,2/3], and it is uniquely maximized at
u*. For each E (0, 1), the function c(x) = f(x) belongs to ulL(a, L, 6) for some
constants L, 6, and is uniquely minimized at u*. The same two properties are satisfied
by the function c(x) = (1 + f(x)) - 1.
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I'r(1: Pult Sk(x) = (31 - 3) l B[,,,bk,](x), so that f(:x) = 3 + k Sk(x). Let~~~~~~~~~~~~~~~3 E

B(x) - B(y)l/3= sup
:r.y[().1] I -

Note that < oo because B is differentiable and [0, 1] is compact. We claim that for
anl interval [a, b] C [0, 1] of width 'i1 = - a, the function w°B[a b] is in uIL(a, /3, 1).

This follows from a direct calculation:

I W B[ab] (X) - woB[a.b] (Y) I

Ix- y1a

JB ( -a) -B (Y-W) I
x -a ) 1- c)-()[

For any x [0, 1], let n(x) sup{k : x [ak, bkl}. Given any two points x, y E [0, 1],

if n1(x) = n(y) = n, then B[ak,bkl](X) = B[ak,bk](Y) for all k y4 n. (Both sides are equal
to 1 when k < n and 0 when k > n.) Consequently,

,f(X) - f(y)O. S(z - 8, ( < 3a - I 0xs(x) - n(y) < (3- 1 3Ix-yl I-vl' - 3 /
since B[a,,bl] E ulL(a,/, 1). Now suppose without loss of generality

n(y) = n -1. Then sk(y) = 0 for all k > n, so

If(x) - f(y)I
IX -- yla

that n(x) >

< n-i(x) - s- (Y)I I+ s(x) - (y)l + Sk
x l-vl ltyf`a k Ix- ya

3 [2/ +
n<k<n(x)

Wa).wX Ya (4.1)

If n(x) = n then the right side of (4.1) is 2(3'-1) SO we are done. If n(x) > n3

then x belongs to the middle third of [an, b,] while y V [an, bn], which implies that

x - Yj > wn/3. Therefore

n n k 

n<k<n(z) Y
< 3 E (- Wk

n<k<oo

< 3" 3-a00 30
k 3 -_=l_
k=l

which completes the proof that f E ulL(, L, ) with L = 2(3a--1)/+3a" and = 1.3

The verification that f takes values in [1/3, 2/3] and is uniquely maximized at u*
is routine. The first derivatives of the functions g(y) = AY and h(y) = (1 +f(y))-l are
uniformly bounded above, for y C [1/3, 2/3], by a constant independent of A; hence
the Lipschitz regularity of c(x) = g(f(x)) and of (x) = h(f(x)) follow from the
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Lipschitz regularity of f itself. The finctions c(x) and c(x) are uniquely minimized
at = u* because f is uniquely maximized at u* and g, h are decreasing functions of

y. [

The proof of our lower bound theorem will rely heavily on the properties of KL-
divergence proven in Section 2.7. Before embarking on the proof itself, which is
quite technically detailed, we offer the following proof sketch. In Lemma 4.3 we
will demonstrate that for any u, '' C [akl, bk-l], the KL-divergence KL(c(u)lc(u'))
between the cost distributions at u and a' is O(w 2a), and that it is equal to zero unless
at least one of u, u' lies in [ak, bk]. This means, roughly speaking, that the algorithm
must sample strategies in [ak, bk] at least w - 2, times before being able to identify the
interval [ak, bk] with constant probability. But [ak, bk] could be any one of Wk_1/3Wk

possible subintervals, and we don't have enough time to play W-2 trials in more than
a small constant fraction of these subintervals before reaching time Tk. Therefore,
with constant probability, a constant fraction of the strategies chosen up to time Tk
are not located in [ak, bk], and each of them contributes Q(wk) to the regret. This
means the expected regret t at time Tk is (Tkw). From this, we obtain the stated
lower bound using the fact that

-o(1)
Tk = Ta+

Lemma 4.3. For a given y (0, 1), let G : [0, 1] - [0, 1] denote the function
G(A) = Ay, let m denote Lebesgue measure on [0, 1], and let ay denote the probability
measure G,m, i.e. the distribution of the random variable Ay when A is sampled from
the uniform distribution on [0, 1]. For all x C (0, 1) and all positive e < 1/2,

KL(a(1-E)X 11 A,) = O(E ).

Proof. Let = (1 and z = For 0 < r < 1 we have(1-E)X 

a(1-E)X([O, r]) = m({q : q(-)x C [0, r]}) = m([O, r]) = r y ,

hence the probability measure (l_,)x has density function yr-l 1 . Similarly a, has
density function zr-l. Thus the Radon-Nikodym derivative of or with respect to
a(1-E,) is given by

zr Z- 1 Z
p _ rz-Y.

yr-l 1 y
By Theorem 2.19,

KL(o(r(,)z1) = -ux1 log(p)d :(l)x

-0 [log (-) + (z - y) log r] yry-ldr.
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Substitutinlg s = r, so that ds = yrY-1 dr and logs -- y log r, the integral above is
transforlmed into

- f log(i) + --log s ds = -log() - ZY logsds
· Y Y 

= -og + - -
Y Y

= -log(1- e)-.

The lenmla now follows from the power series expansion

oo n

n
n=2

Theorem 4.4. For any randomized multi-armed bandit algorithm ALG, there exists
an adversary ADV Aiid n Aadpt such that for all d < the algorithm's regret
satisfies

R(ALG, ADV; T)
lim su p = Xo.

T-cx TO

Proof. We will prove that there exists a nested sequence of intervals [0, 1] = [ao, b0] D

[al, bl] D .... defining a probability distribution on cost functions c(x) according to
Construction 4.1, such that the i.i.d. adversary ADV specified by this distribution
satisfies R(ALG, ADV; Tk)/TO -* oc when the sequence T 1,T 2, T3 ,... is defined by
Ti = [C(Wk_l/3wk)wl 2a 1 for a suitable constant C. Parts of the proof are very
similar to the proof of Theorem 2.25. We have deliberately copied the notation-
and, in some cases, the actual wording - from the proof of Theorem 2.25 to highlight
the similarity in these places.

For a set S C S let Xs denote the characteristic function

1 ifxCS
Xs(x) 0 if S

and for an adversary ADV, let

Q(ALG, ADV; T, S) = E [ Xs(Xt)

denote the expected number of times the algorithm ALG selects a strategy xt in S,
among the first T trials, when playing against ADV. (Here the random variables
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xl, x2 .. . are defined as in Definition 1.7.) Suppose an i.i.d. adversary ADV is defined
according to Construction 4.1 using a nested sequence of intervals [a0 , b0] 3 [al, bl] D
.... Then for all x V (ak, bk) we have ((x) - (*) = Q(wo). It follows that

R(ALG, ADV; Tk) E ct(xt) - ct*)

(w Q(ALG, ADV; Tk, S \ (ak, bk)))

Q(wk (Tk - Q(ALG, ADV; Tk, (ak, bk))))

Assume for now that we have an adversary such that

Q(ALG, ADV;Tk, (ak, bk)) < Tk ( + o(1)) (4.2)

for all k > 1. Then

R(ALG, ADV; Tk) = Q(wk Tk) = Q (Wk-lwk x) k

In light of the fact that Tk = Cw/k-l-2a this implies

R(ALG, ADV; Tk) = r2,+--1_ (Tk)

as desired. Thus the theorem will follow if we construct an adversary satisfying (4.2)
for all sufficiently large k (say, for k > ko). We will accomplish this inductively, using
the following induction hypothesis on n: there exist intervals [0, 1] = [ao, bo] D ... D

[an, bn] (where [aj, bj] is an interval of width wj in the middle third of [aj-1, bj_l] for
j = 1,.. ., n) such that whenever one applies Construction 4.1 using an infinite nested
sequence of intervals which extends the sequence [ao, b0] D ... D [an, b,], the resulting
adversary ADV satisfies (4.2) for ko < k < n. This induction hypothesis is vacuously
true when n = 0.

Assume now that the induction hypothesis is true for n- 1, and let [ao, bo] D ... D
[an- 1, bnl] be a sequence of intervals satisfying the induction hypothesis. Let

3 - 1
Sk W= B[ak,bk]

n-1

fn = + - Sk
k=l
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Let ADV, be thlle i.i.d. adversary determined by a probability distribution P on
the set F = [0. 1] which is defined as follows: to sample a random c C from
distribution P,,, one samples A from the uniform distribution on the open interval
(0, 1) and puts = Af' (x). Partition the middle third of the interval [a-l, bn_l] into
N = "' subintervals, and let I1, . . , N denote the interiors of these subintervals.
Since 1, .... IN are disjoint, we have

N

Z Q(ALG, ADV; T, I) < T.
i=,

so there must be at least one value of i such that Q(ALG, ADV,; T,/ Ii) < Ta/N. Let
[a, bn] be the closure of Ii. Our objective is to confirm the induction hypothesis for
the sequence [a(, bo] D ... D [an, b]. To do so, it, suffices to consider an arbitrary ex-

tension of this sequence to an infinite sequence [ao, bo] D [a, bl] D ... with bj -aj = wj
for all j, apply Construction 4.1, and prove that the resulting adversary ADV satisfies
(4.2) with k = n. In other words, we wish to prove that Q(ALG, ADVn; Tn, Ii) < Tn/N
implies Q(ALG, ADV; T, Ii) < Tn/2 provided n is sufficiently large.

The transcripts of play for ALG against ADVn, ADV define two different proba-
bility distributions i, v on sequences (, Yi, ... , xTr, YTr), where x,..., xT,, denote
the algorithml-'s choices in trials 1,... ,Tn and yi,... ,YT,, denote the feedback val-
ues received. Recalling the definition of the L1-distance between two measures from
Section 2.7, i.e.

v - il: = 2 sup(v(A) - (A)),
A

we see that

Q(ALG, ADV; I, Tn) - Q(ALG, ADVn; Ii, Tn) = E ({at C Ii})- ({Xt C I})
t=l

• I- Ui2

From Theorem 2.20 we know that

v - -lli < KL([ L v)
2 - 2

so we are left with proving KL(iL I ) < .

Using the chain rule for Kullback-Leibler divergence (Theorem 2.24) we have

2T -1

KL(gu Iv) = E KL(i+l 1 i+l)dpl..i*l'
i=o i
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Now if i = 2j is an even number, li+I(xi,yi,...,xj,yj) = i+l(Xl,yl,...,xj,yj)
because both distributions are equal to the conditional distribution of the algorithm's
choice xj+l, conditioned on the strategies and feedbacks revealed in trials 1,. . ., j. If
i = 2j - 1 is an odd number, then Iji+l(Xi, yl,..., xj-,yj-, j) is the distribution
of yj -= f"( j ), so /li+(x , .. . ., x) = fl(xj). Similarly /i+i(Xi, l,... , xj) = f(xJ).
Therefore. letting E, denote the expectation operator defined by the measure Al,

T,

KL(u L v) E [KL(of(j) Il1 f(j))]
j=l

If x3j Ii = (a,, bn) then f(xj) = f(xj) and KL(rf(2) 11 af(,j)) = 0. If xj E I then

1/3 < f(xj) < f (xj) < f(xj) + O(wn) < 2/3

which proves that f(xj)/f(xj) =1 - (w'). By Lemma 4.3, this implies

KL(afJ(x2) II f(xj)) )= O(w).

Hence for some constant C' < oc,

Tn

KL(,u || v) < C/W a E E8 (j)
j=l

= C'w Q(ALG, ADVn; Ii, Tn)

< CW 2c Tn

< CW 2 1 + C(wn_l/wn)w-2

n Wn_1/3n

C'2Wa CC'< +
N 3

Upon choosing a positive constant C < 1/C', we obtain

KL(/ II v) < (C'w2a/N) + 1/3 < 1/2

for sufficiently large n, which completes the proof. [O
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Chapter 5

Online optimization in vector
spaces

5.1 Introduction

In the preceding chapter we studied online decision problems with a one-parameter
strategy set. In this chapter we develop algorithms for online decision problems with
a d-parameter strategy set, i.e. a strategy set S C d, for d > 1. Assuming the cost
functions satisfy a Lipschitz condition, it is of course possible to design algorithms
using an approach parallel to that taken in the one-parameter case: we choose a finite
subset X C S such that every point of S is with distance E of a point of X (for some
sufficiently small s) and we reduce to a finite-armed bandit problem whose strategy
set is X. The problem with this approach, for large d, is that the cardinality of X
will generally be exponential in d, leading to algorithms whose convergence time is
exponential in d. In fact, this exponential convergence time is inherent: if F is a class
of cost functions containing all Co functions mapping S to [0, 1], then any algorithm
for the generalized bandit problem on (S, F) has exponential convergence time. (This
is demonstrated by a simple counterexample in which the cost function is identically
equal to 1 in all but one orthant of Rd, takes a value less than 1 somewhere in that
orthant, and does not vary over time.) This thesis proposes two ways of surmounting
the exponential convergence time inherent in d-dimensional online decision problems
with opaque feedback: one may consider more restrictive classes of cost functions,
or one may relax the definitions of regret and convergence time. In this chapter we
adopt the former approach; the latter approach is studied in Chapter 6.

We will present two algorithms in this chapter which achieve polynomial conver-
gence time against an oblivious adversary. The first assumes S is a compact subset
of Rd and F is the set of linear functions on S taking values in a bounded interval.

115



Apart from compactness, we assume no special structure on the set S; we need only
assume that the algorithm has access to an oracle for minimizing a linear function
on S. Our algorithm may thus be interpreted as a general-purpose reduction from
offline to online linear optimization.

The second algorithm in this chapter assumes S is a compact convex subset of Rd

and that F is a set of convex functions on S taking values in a bounded interval. (It
is also necessary to assume that the first and second derivatives of the functions are
bounded.)

As an application of the online linear optimization algorithm developed in this
chapter, we consider the online shortest path problem. In this problem the strategy
set S consists of (not necessarily simple) paths of at most H hops from a sender s
to a receiver r in a directed graph G = (V, E). A cost function c F is specified by
assigning lengths in [0, 1] to the edges of G. The cost assigned to a path 7r by such
a function is the sum of its edge lengths. We consider here the generalized bandit
problem for (S, F). The online shortest path problem may be applied to overlay
network routing, by interpreting edge costs as link delays. In formulating the problem
as a generalized bandit problem, we are assuming that the feedback from each trial
is limited to exposing the end-to-end delay from sender to receiver; this models the
notion that no feedback is obtained from intermediate routers in the network.

For the online linear optimization problem, a novel idea in our work is to com-
pute a special basis for the vector space spanned by the strategy set. This basis,
which is called a barycentric spanner, has the property that all other strategies can
be expressed as linear combinations with bounded coefficients of the basis elements.
We prove that barycentric spanners exist whenever the strategy set is compact, and
we provide a polynomial-time algorithm to compute a barycentric spanner given ac-
cess to a linear optimization oracle for S. We further demonstrate the usefulness
of barycentric spanners by illustrating how to use them in a simple algorithm for
computing approximate closest uniform approximations of functions.

5.2 Online linear optimization

5.2.1 Overview of algorithm

This section presents a randomized algorithm for online linear optimization, in which
the strategy set S is a compact subset of Rd and the cost functions are linear functions
mapping S to [-M, M] for some predefined constant M. As stated in Section 1.3, the
full-feedback version of this problem has been solved by Kalai and Vempala in [44].
We will use their algorithm as a black box (the K-V black box), reducing from the

116



opaque-feedback case to the filll-feedback case by dividing the tilmeline into phases and
using each phase to simulate one round of the full-feedback problem. We randomly
subdivide the time steps in a phase into a small number of "exploration" steps which
are used for explicitly sampling the costs of certain strategies, and a much larger
number of "exploitation' steps in which we choose our strategy according to the
output of the black box, with the aim of minimizing cost. The feedback to the black
box at the end of a phase is an unbiased estimate of the average of the cost vectors
in that phase, generated by averaging the data from the sampling steps. (Ideally. we
would also use the data from the exploitation steps, since it is wasteful to throw this
data away. However, we do not know how to incorporate this data without biasing
our estimate of the average cost function. This shortcoming of the analysis partly
explains why we are limited, in this chapter, to considering the oblivious adversary
model.)

We now address the question of how to plan the sampling steps so as to generate
a reasonably accurate and unbiased estimate of the average cost vector in a phase.
One's instinct, based on the multi-armed bandit algorithm Exp3 of Section 2.5, might
be to try sampling each strategy a small percentage of the time, and to ascribe to each
strategy a simulated cost which is the average of the samples. The problem with this
approach in our context is that there may be exponentially many, or even infinitely
many, strategies to sample. So instead we take advantage of the fact that the cost
functions are linear, to sample a small subset X C S of the strategies - a basis for
the vector space spanned by S - and extend the simulated cost function from X to
S by linear interpolation. In taking this approach, a subtlety arises which accounts
for the main technical contribution of this section. The problem is that the average
of the sampled costs at a point of X will generally differ from the true average cost
by a small sampling error; if the point set X is badly chosen, these sampling errors
will be amplified by an arbitrarily large factor when we extend the simulated cost
function to all of S. (See Figure 5-1. In that example, S is a triangle in RI2. The
point set on the left is bad choice for X, since small sampling errors can lead to large
errors at the upper left and lower right corners. The point set on the right does not
suffer from this problem.)

To avoid this pitfall, we must choose X to be as "well-spaced" inside S as possible.
We formulate this notion of "well-spaced subsets" precisely in Section 5.2.2; such a
subset will be called a barycentric spanner. Using barycentric spanners, we give a
precise description and analysis of the online linear optimization algorithm sketched
above. We then illustrate how these techniques may be applied to the online shortest
path problem.
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Figure 5-1: (a) A bad sampling set (b) A barycentric spanner.

5.2.2 Barycentric spanners

Definition 5.1. Let V be a vector space over the real numbers, and S C V a subset
whose linear span is a d-dimensional subspace of V. A set X = {xl,..., Xd} C S is a

barycentric spanner for S if every x C S may be expressed as a linear combination of
elements of X using coefficients in [-1, 1]. X is a C-approximate barycentric spanner
if every x S may be expressed as a linear combination of elements of X using
coefficients in [-C, C].

Proposition 5.1. If S is a compact subset of V, then S has a barycentric spanner.

Proof. Assume without loss of generality that span(S) = V = Rd. Choose a subset
X = {x1,. . ., Xd} C S maximizing I det(x, . .. ., Xd)I. (The maximum is attained by
at least one subset of S, by compactness.) We claim X is a barycentric spanner of S.

For any x C S, write x = 3i aixi. Then

I det(x, X2 , X3, ., Xd) = det ( I ai·x, X2 , X 3 ,**, Id)

= ai det (Xi, X2, X3,. , d)

= IaI det (X,. ,Xd).

from which it follows that laiI < 1, by the maximality of Idet(xl,...,xd)j. By
symmetry, we see that ai < 1 for all i, and we conclude (since x was arbitrary) that

X is a barycentric spanner as claimed. [
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Observation 5.1. Given a subset X = ({xl,... i ad} C S and an index i C (1...., d},

let X_i denote the (d- 1)-tuple of vectors (I. x2. .. , il, il, , Xd). The' proof of
Proposition 5.1 actually establishes the following stronger fact. If X = {x. ... , rd}
is a sl)set of S with the property that for any x in S and any i C 1, .... d}.

I det(x, X_i) < C det(xi,Z2, . , I d)[,

then X is a C-approximate barycentric spanner for S.

A consequence of Proposition 5.1 is the following matrix factorization theorem,
which was independently proven by Barnett and Srebro [15]. For a matrix Al = (mij),
let lM flo = maxi j rT1,iji

Proposition 5.2. If M i.s an rn-by-n matrix satisfying fIMII[ < 1 and rank(M) = k,

then we may write M as a product M = AB where A, B are m-by-k and k-by-n
matrices, respectively, satisfying AllOO < and BJIoO < 1.

Interestingly, Barnett and Srebro's proof of Proposition 5.2 is on-constructive,
making use of Kakutani's fixed point theorem, just as our proof of Proposition 5.1 is
non-constructive, relying on minimizing the function I det(x1,.. ., xn) on the compact
set Sd. In fact, it is an open question whether barycentric spanners can be computed
in polynomial time, given an oracle for optimizing linear functions over S. However,
the following proposition shows that C-approximate barycentric spanners (for any
C > 1) may be computed in polynomial time given access to such an oracle.

Proposition 5.3. Suppose S C Id is a compact set not contained in any proper linear
subspace. Given an oracle for optimizing linear functions over S, for any C > 1 we
may compute a C-approximate barycentric spanner for S in polynomial time, using
O(d2 logc(d)) calls to the optimization oracle.

Proof. The algorithm is shown in Figure 5-2. Here, as elsewhere in this paper, we
sometimes follow the convention of writing a matrix as a d-tuple of column vectors.
The matrix (el,...,ed) appearing in the first step of the algorithm is the identity
matrix. The "for" loop in the first half of the algorithm transforms this into a basis
(x 1, 2,... , x,j) contained in S, by replacing the original basis vectors (e,..., ed)
one-by-one with elements of S. Each iteration of the loop requires two calls to the
optimization oracle, to compute x* := argmaxes I det(x, X_i)l by comparing the
maxima of the linear functions

i( X) = de-(, Xi), -i() = - det(x, X_i)
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/* First. compute a basis of id contained in S. */

(x, ... d) (el,. . , ed);
for i = 1,2, .. ,d do

/* Replace xi with an element of S which is linearly independent from X-i. */

xi - arg maxxcs I det(x, X_i)l;
end

/* Transform basis into approximate barycentric spanner. */
while 3zx E S, i C {1,...,d} satisfying Idet(x,X_i)l > Cldet(xi, X_i)

Xi e-x;

end
return (1, X2, . ., d)

Figure 5-2: Algorithm for computing a C-approximate barycentric spanner.

This x* is guaranteed to be linearly independent of the vectors in X-i because i
evaluates to zero on X_i, and is nonzero on x*. (i is non-zero on at least one point
x C S because S is not contained in a proper subspace of Rd.)

Lemma 5.4 below proves that the number of iterations of the "while" loop in the
second half of the algorithm is O(dlogc(d)). Each such iteration requires at most
2d calls to the optimization oracle, i.e. two to test the conditional for each index
i C {1,. . ., d}. At termination, (, ..., d) is a C-approximate barycentric spanner,
by Observation 5.1. O

Lemma 5.4. The total number of iterations of the "while" loop is O(dlogc(d)).

Proof. Let Mi = (,2,...,xi, ei+l,...,ed) be the matrix whose columns are the
basis vectors at the end of the i-th iteration of the "for" loop. (Columns i + 1
through d are unchanged at this point in the algorithm.) Let M = Md be the matrix
at the end of the "for" loop, and let M' be the matrix at the end of the algorithm.
Henceforth in this proof, (l,. . ., d) will refer to the columns of M, not M'.

It suffices to prove that Idet(M')/ det(M)l < dd/ 2, because the determinant of the
matrix increases by a factor of at least C on each iteration of the "while" loop. Let
U be the matrix whose i-th row is ui := eiTMi- 1, i.e. the i-th row of Mi-1. Recalling
the linear function i(x) = det(x, X_i), one may verify that

ix = i(xi) Vx cRd, (5.1)

by observing that both sides are linear functions of x and that the equation holds
when x is any of the columns of Mi. It follows that luixl < 1 for all x C S, since
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xi = argmaxxEs i(x)l. Each entry of the matrix UMI' is equal to uix for some i C

{l,...,d}. c S, so the entries of UM' lie between -1 and 1. Hence det(UM')[ <
dd/2. (The determinant of a matrix cannot exceed the product of the L2-norms of its
colunins.) Again using equation (5.1), observe that 'uixj is equal to 0 if j < i, and is
equal to 1 if j = i. In other words UM is an upper triangular matrix with 's on the
diagonal. Hence det(UM) = 1. Now

det(M') det(UM') d/2
det (M) det(UM) -

as desired. []

5.2.3 The online linear optimization algorithm

Our algorithm will employ a subroutine known as the "Kalai-Vempala algorithm with
parameter ." (Henceforth the "K-V black box.") The K-V black box is initialized
with a parameter E > 0 and a set S c Rd of strategies. It receives as input a sequence
of linear cost functions cj : S --+ R, (1 < j < t), taking values in [-M, Mi. Given a
linear optimization oracle for S, it computes a sequence of probability distributions

pI on S, such that pj depends only on c1, c2, . cj. The K-V black box meets the
following performance guarantee: if x( ) ,..., x(t) are random samples from Pl, . . ., Pt,
respectively, and x is any point in S, then

E [ cj(x(J))1 < O(~Md2 + Md 2 /t) + cj(X). (5.2)
j=1 j=l

See Section 2.2 for a description and analysis of the Kalai-Vempala algorithm with
parameter . The assumptions in that section differ from those made here: Theo-
rem 2.4 assumes the cost vectors satisfy [jcj I1 < 1 and expresses the regret bound
as

E Cij (x O)) < D + E Cj, (5.3)it + Et )
j=l j=1

where D is the L-diameter of S. To derive (5.2) from this, let {x,...,Zd} be a
2-approximate barycentric spanner for S, and transform the coordinate system by
mapping xi to (Md)ei, for i = 1,..., d. This maps S to a set whose Ll-diameter
satisfies D < 4Md2, by the definition of a 2-approximate barycentric spanner. The
cost vectors in the transformed coordinate system have no component whose absolute
value is greater than l/d, hence they satisfy the required bound on their Ll-norms.

Our algorithm precomputes a 2-approximate barycentric spanner X C S, and
initializes an instance of the K-V black box with parameter , where = (dT) -1 /3

121



Assume, for simplicity, that T is divisible by d2 and that T/d 2 is a perfect cube.1

Divide the timeline 1, 2,..., T into phases of length T = d/6, where = d2; note
that T is an integer by our assumption on T. The time steps in phase X are numbered
7(¢- 1) + 1, T(¢- 1) + 2 ... ., To. Call this set of time steps To. Within each phase, the
algorithm selects a subset of d time steps uniformly at random, and chooses a random
one-to-one correspondence between these time steps and the elements of X. The step
in phase ¢ corresponding to xi C X will be called the "sampling step for xi in phase

4;" all other time steps will be called "exploitation steps." In a sampling step for
xi, the algorithm chooses strategy xi; in an exploitation step it samples its strategy
randomly using the probability distribution computed by the K-V black box. At the
end of each phase, the algorithm updates its K-V black box algorithm by feeding in
the unique cost vector c such that, for all i E {1, . . ., d}, co' xi is equal to the cost
observed in the sampling step for xi.

Theorem 5.5. The algorithm achieves regret of O(Md5 /3 T2/3 ) against an oblivious
adversary, where d is the dimension of the problem space.

Proof. Note that the cost vector c satisfies Ic - xil < M for all xi C X, and that its
expectation is

1
c = E [co]= Ci

jE-T

Let t = T/r; note that t is an integer by our assumption on T. The performance
guarantee for the K-V algorithm ensures that for all x C S,

I= t Md 2 - -1 

where x¢ is a random sample from the probability distribution specified by the black
box in phase . Henceforth we will denote the term O(EMd2 + Md 2/st) on the right
side by R. Now let's take the expectation of both sides with respect to the algorithm's
random choices. The key observation is that E[c -xj] = E[c¢ xj]. This is because
c¢ and xj are independent random variables: c depends only on sampling decisions
made by the algorithm in phase , while xj depends only on data fed to the K-V
black box before phase , and random choices made by the K-V box during phase .
Hence

E[co· xj] = E[co] E[xj = E[xj] = E[c- xj].

1If T does not satisfy these properties, we may replace T with another integer T' = O(T + d2 )
without affecting the stated bounds by more than a constant factor.
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Now taking the expectation of both sides of (5.4) with respect to the random choices
of both the algorithm and the black box, we find that for all x C S,

I tCj 2 ]
¢=1

t

-1 J ]

j=l

E IE Cj j

t

< R+ t ,¢ x

¢=1 jfT
T

< R+ Ecj .x
j=l
T

< RT + -cy x.
j=1

The left side is an upper bound on the total expected cost of all exploitation steps.
The total cost of all sampling steps is at most Mdt = MT. Thus the algorithm's
expected regret satisfies

Regret < RT + 6MT

= 0 (Md 2T + l + MT)

= O (5+Ed2')MT+ d .

Recalling that E = (dT)- /3 , 6 = d5/3 T -1 3, we obtain

Regret = O(T2/ 3Md5/3).

5.2.4 Application to the online shortest path problem

Recall the online shortest path problem defined in Section 1.6 of the introduction.
One is given a directed graph G with n vertices and m edges, and with a designated
pair of vertices s, r. The strategy set S consists of all (not necessarily simple) paths
from s to r of length at most H. Given an assignment of a cost between 0 and 1 to
each edge of G, one obtains a function on S which assigns a cost to each path equal to
the sum of its edge costs. Let F be the set of all such functions. The online shortest
path problem is the generalized bandit problem for (S, F).

To apply our online linear optimization algorithm to the online shortest path
problem, we take the vector space Rd to be the space of all flows from s to r in G, i.e.
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the linear subspace of RIm satisfying the flow conservation equations at every vertex
except s, r. (Thus d m - n + 2.) The set S of all paths of length at most H
from s to 7r is embedded in R d by associating each path with the corresponding unit
flow. Specifying a set of edge lengths defines a linear cost function on Rd, namely the
function which assigns to each flow the weighted sum of the lengths of all edges used by
that flow, weighted by the amount of flow traversing the edge. The linear optimization
oracle over S may be implemented using a suitable shortest-path algorithm, such as
Bellman-Ford. The algorithm in Figure 5-2 describes how to compute a set of paths
which form a 2-approximate barycentric spanner for S. Applying the bound on regret
from section 5.2.3, we obtain

Regret = O(T2/ 3 Hm5 /3 ).

Remark 5.1. In a graph G with two specified vertices s, r a maximal linearly in-
dependent set of s - r paths is not necessarily an approximate barycentric spanner.
In fact, it is possible to construct a graph of size O(n) having a maximal linearly
independent set of s - r paths which is not a C-approximate barycentric spanner for
any C = 2 (n). For instance, let G be a graph with n + 1 vertices v0, vl..., . . , Vn, and
with each pair of consecutive vertices vi, vi (1 < i < n) connected by two parallel
edges ei, e'i. Given a vector x = (x1, x2, . . , ) of length n, one can obtain a unit
flow f = F(:) from s = v0 to r = , by specifying the flow values f(ei) = xi and
f(e') = 1 - xi for i = 1, 2,..., n. (Here we allow the flow value on an edge to be
negative.) If every component of : is either 0 or 1, then F(x:) is a path from s to r.

If xl,... , x are the columns of a nonsingular matrix X with {0, 1}-valued entries,
then the paths F(O), F(xl), F(: 2 ),.. ., F(:,) are a maximal linearly independent set
of s - r paths in G. Let A = (aij) be the inverse of the matrix X, and observe that
for any j,

aiji = e,
i=l

where ej is the j-th column of the identity matrix. Now using the fact that the
function L() = F(x) - F(O) is a linear mapping, we find that

~~n n

aijL(xi) = L(J aiji) = (63)
i=l i=l

which implies that the path F(dj) can be expressed as a linear combination

F(6j) = -Eaij F(O) + aijF(xi).
i=l i=l
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Figure 5-3: A maximal linearly independent set of paths which is not an approximate
barycentric spanner.

To find a set of paths which are not a C-approximate barycentric spanner for any
C = 20(n), it therefore suffices to find an n-by-n matrix with {O, }-valued entries such
that the inverse matrix contains entries whose absolute value is exponential in n. An
example is the matrix

Xij= I ifi=j+l (5.5)1 if i is even, j is odd, and i > j
0 otherwise.

whose inverse is
rX1 -ifi --j

-1 if i j + 1Aijif =i 1 (5.6)(-1)-2Li/2J - [j/2j-1 if i > j + 1

0 otherwise.

See Figure 5-3 for an illustration of the graph G and the linearly independent set of
paths defined by the matrix X in (5.5).
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5.3 Further applications of barycentric spanners

Above, we have presented barycentric spanners as anll ingredient in an algorithnl
for reducing online linear optimization to offline linear optimization. Our aim in
this section is to demonstrate their usefulness in problems which involve uniform
approximation of functions.

Suppose we are given a compact topological space S and a set V of continuous
functions S - R which form a k-dimensional vector space under pointwise addition
and scalar multiplication. For example, S could be a closed, bounded subset of Rd
and V could be the space of all polynomial functions of degree at most n. (In this
case k < (n d), with equality if and only if there is no non-zero polynomial of degree

at most n which vanishes on S.) For a continuous function f : S -I R, the LO-normn
of f, denoted by Ifloo, is defined by

[floo = min If(x)l.
XES

(Note that Ilflloo is finite for any continuous f : S - IR, since S is compact.) For any
continuous function f : S - IR, we let doo(f, V) denote the minimum of Ilf - gI as
g ranges over V. If g e V and [lf-glo = doo(f, V), we say that g is a closest uniform
approximation to f in V. (See [62], Theorem 1.1, for a proof that every continuous
function f has at least one closest uniform approximation in V.)

Theorem 5.6. Suppose S is a compact topological space and V is a set of continuous
functions S -- IR which form a k-dimensional vector space under pointwise addition
and scalar multiplication. Then there exist points xl,x 2,..., k such that for any
continuous function f S -> R there is a unique g C V satisfying g(xi) = f(xi) for
i = 1,..., k, and If -g(o < (k + 1) d(f, V).

In other words, we may compute a (k + 1)-approximation of the closest uniform
approximation to f in V, simply by evaluating f at a suitable point set X and
interpolating an element of V through these function values. The set X does not
depend on the function f, only on S and V.

Proof. Let g1, g2,. .. ., gk denote a basis for V. Let G : S - Rk denote the mapping
G(x) = (gl(x), g2(x), . , gk(x)). Since G is continuous and S is compact, the set G(S)
is a compact subset of Rk. Note that G(S) is not contained in any linear subspace
of Rk since g1,..., 9g are linearly independent. Let 1,x2,.. .,xk be a barycentric
spanner for G(S) and let l, x 2,... , k be elements of S such that G(xi) = xi for
i= 1,2,...,k.

Since {G(xi)}I=1 is a basis for Rk, the matrix M given by Mij = gj(xi) is non-
singular. For any real numbers y, Y2,.. . ,Yk there is a unique g C V such that
g(xi) = yi for i = 1, 2,..., k. In fact, g = ik= zigi, where z'= M-ly.
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Now suppose f is any continuous function S - IR. Let go be a closest uniform
approximation to f in V, and let g be the unique element of V satisfying g(xi) = f(xi)
for i = 1, 2,..., k. We have

Igo(xi) - g(xi) = go(xi) - (xi)I < do(f, V)

for i = , 2, .... A. (The second inequality follows from the fact that go is a closest
uniform approximation to f in V.) Now for any x C S we may write

k

G(x) = E ziG(xi)
i=1

for some coefficients zi E [-1, 1] because {G(xi)}1kI is a barycentric spanner for G(S).

Note that
k

h(x) Zzih(xi)
i-

for all h C V, as may be verified by checking that both sides are linear functions of h
and that they are equal when h is any element of the basis {gl,..., gk}. In particular,
taking h = go - g, we find that

k

go(x) - g(x)l = h(x)l < Izillh(xi)l < k. do(f, V),
i=l

since Izil < and Ih(xi)I < doo(f, V) for i = 1, . . ., k. Since x was an arbitrary point
of S, we conclude that igo - g9100 < k. do(f, V), and

If - gllo < Ilf - gollo + 11go - g 0oo < (k + 1). do(f, V),

as claimed. O]

A related theorem is the following generalization of Theorem 1.5.

Theorem 5.7. Let S, V satisfy the hypotheses of Theorem 5.6 and suppose that F C V
is a subset of V such that Ig(x)l < M for all x C S, g C F. Let A denote the set of
oblivious adversaries for online decision domain (S, F). There is an algorithm ALG
satisfying

R(ALG, A; T) = O(T2 / 3 k5 /3 M).

The algorithm ALG may be requires only polynomial computation time, given an oracle
to minimize functions in V over the space S.

Proof. Let {gl,...,gk} be a basis for V. Map S to Rk via the mapping G(x) =
(g9 (x),. .., gk(x)) and apply the algorithm of Section 5.2.3 with strategy set G(S). 
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Thus, for example, given a compact set S C Rd and a cost function class F
consisting of bounded-degree polynomials mapping S to [-M, M], and given an oracle
for minimizing bounded-degree polynomials on S, there is an efficient online algorithm
for the generalized bandit problem with strategy set S and cost function class F.

5.4 Online convex optimization

An online convex programming problem is an online decision problem in which the
strategy set S is a convex subset of Rd (for some d > 0) and the cost function class F is
a subset of the set of real-valued convex functions on S. In Section 2.3 we considered
the generalized best-expert problem for online convex programming problems with
full feedback, when (S, F) is an online decision domain satisfying:

* S is a compact convex subset of d.

* The elements of F are differentiable, and their gradients are uniformly bounded.

We presented an algorithm called Greedy Projection, due to Zinkevich, which achieves
polynomial convergence time for such problems. In this section we assume opaque
feedback i.e. the generalized bandit problem for (S, F) - and we will design
an online convex programming algorithm, based on Zinkevich's algorithm, achieving
polynomial convergence time in this more limited feedback model. To achieve this,
we must make some slightly more restrictive assumptions about the cost functions in
F. We now explain these assumptions.

Define Ixll = x.x and d(x, y) = ix - y[l. We will make the following standing
assumptions about the strategy set S and the convex functions ct.

1. The diameter of S is bounded. Let SII1 =max,ys d(x, y).

2. S is a closed subset of Rd.

3. The cost functions ct are twice continuously differentiable.

4. 0 < ct(x) < 1 for all x E S.

5. The gradient Vect is bounded. Let

IIVcil = max{Vct(x) < t < n, x E S}.

6. The Hessian matrix H(ct) = a _xit = has bounded L2 operator norm. Let

IH(c) II = max{uT H(ct)u 1I < t < n, u C Rd, . U = 1}.
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7. For all y C Rd, there is an algorithm which can produce the vector

P(y) := arg min d(x, y).
ES

In collmparison with Zinkevich's assumptions, we are making additional boundedness
assumptions about the cost functions. Specifically, we are assuming upper bounds on
the size of ct, its gradient, and its Hessian matrix, whereas Zinkevich requires only
all upper bound on the size of the gradient.

Recall the Greedy Projection algorithm from Section 2.3. Observe that this algo-
rithm is nearly implementable in the opaque feedback model: if the feedback revealed
Vct(xt), we would have sufficient information to run the algorithm. Since we instead
learn only c, (xt), our solution will be to spend a sequence of d + 1 consecutive time
steps t, t + 1, ... , t + d sampling random vectors near xt and then interpolate a linear
function through the sampled values. We will use the gradient of this linear function
as a substitute for Vc t (xt) + Vct+l(xt) +.. + Vct+d(xt). The resulting algorithm will
be called simulated greedy projection, or SGP.

Before specifying the algorithm precisely, we must make a few assumptions, def-
initions, and observations. First, we may assume without loss of generality that S
is not contained in a proper linear subspace of Rd; if it were contained in a proper
linear subspace, we would replace Rd with the lower-dimensional vector space span(S)
and conduct the algorithm and proof in that space. Second, we may assume without
loss of generality that the centroid of S is 0; if not, shift the coordinate system by

parallel translation to move the centroid of S to 0. Now, for a bounded measurable
set X C Rd of positive volume, the moment of inertia tensor is the matrix

M(X) ivol(X) LxT
This is a symmetric positive definite matrix, hence there exists a rotation matrix Q
such that II(QX) = QM(X)QT is a diagonal matrix with eigenvalues Al > A 2 >

... > Ad > 0. Note that all of our assumptions about the strategy set S and the cost
functions ct are unchanged if we rotate the coordinate system using an orthogonal
matrix Q, replacing S with QS and ct with the function x - ct(QTx). We may
therefore assume, without loss of generality, that M(S) is a diagonal matrix.

We will apply one more coordinate transformation to transform M(S) into a scalar
multiple of the identity matrix. Let P be the diagonal matrix whose diagonal entries
are 1, xA/A 2,..., A,/Ad, so that M(PS) = PM(S)PT = AlIdd. (Here Idd denotes
the d-by-d identity matrix.) Note that each diagonal entry of P is greater than or
equal to 1, so that the linear transformation x -* Px scales up each coordinate of
x by a factor of at least 1. If we change coordinates by replacing S with PS and
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replacing ct with the function x - ct(P-lx), this may increase the diameter of S

but it does not increase any of the derivatives of ct. The increase in diameter of S

is bounded above by a factor which may be determined as follows. First, we have

PS C B(O, (d + 1)/A 1) (see [46]) which implies IPSII < 2(d + 1)/A 1. Second, we
have (1/vol(S)) fxcs x2dx: A1, which implies that ISI > X1. Putting these two

estimates together, we get IHPSII/IISII < 2(d + 1). From now on, we will replace S

with PS, keeping in mind that the increase in diameter must be accounted for at the

end of the analysis of the algorithm.
Our algorithm SGP uses a sequence of learning rates mrh, 2, ... and frame sizes

V11I 2 ,..., defined by

rlk = k- 3/ 4

vlk = k-1/4/l1/ 2.

Let q =d + 1. The timeline 1, 2,.. ., T is divided into T = T/q] phases of length
q. The phases are numbered 0, 1, . .., - 1, with the time steps in phase 0 being
numbered q + 1, qu + 2,..., q¢ + q. The algorithm computes a sequence of vectors
u0, U1, .. , UT1, beginning with an arbitrary vector u0 C Rd. At the start of a phase

A, the vector u being already defined, the algorithm selects a barycentric spanner

{Y1, . . , Yd} for the set S - up. During phase , the algorithm samples the q vectors
in the set {u¢} U {uO + V ¢yk 1 < k < d} in a random order Xq¢+l,. . ., Xq+q. After
receiving the feedback values ct(xt) for q + 1 < t < q + q, it computes the unique
affine function A,(x) = ax + b satisfying 3A.(xt) = ct(xt) for q + 1 < t < q + q.

The next vector uo+1 is determined according to the Greedy Projection rule:

U0+1 = P(U - ,V,(¢)).

This completes the description of the algorithm SGP. The analysis is as follows.

Theorem 5.8. The expected regret of the simulated greedy projection algorithm sat-
isfies the bound

R(SGP, A; T) = O(d9/41 S112T3/4 + d9/4T3/4 + d17/ 411SIl lH(c)IlT3/4

+d5/4 IVc I T3/4).

Proof. Let Co = Et-q+l ct. We will consider the online convex programming pro-
gram defined by the cost functions Co, C1,..., CT-1, and we will prove that the vectors

u0, u1, . . , uT-_ are a low-regret solution to this problem with the help of Theorem 2.6.
This implies that if we use the sequence of vectors u0 , . .., uT- each repeated q times,

we obtain a low-regret solution to the original convex programming problem defined
by cl,..., CT. Finally, we will show that the algorithm's regret is not much greater
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when using the vectors x ,...,xT rather than using uO,.. .,UT- each releated q
times.

Theorem 2.6 guarantees that.

T--1 T--1

ZAhelL,) < A ,(X) + (SI12(T/q)3/4 + IIV1Af2(T/q)1/4) (5.7)

To apply this bound, we need to get an upper bound for IVA112. This is accomplished

via the following calculation:

| | | | = (VA,) T V3,

= 1(VA)TMI(S)VA,

___ l S J i (VA)T Txx VAdx
Xlvol(S) s

A . fl (S X s (V -zX)2dl

Xlvol(S) esAvol(S) es(A(x) - A ()) 2 dx

Now recall that each x E S may be expressed in the form u, + aly1 +. . + adyd where

ai, [-2, 2], and therefore A+(x)l < A(p(u)l + 211A(y)l + +... 211(yd)l for each
x E S. We have A95(uo) c [0,1] and Ap(uo + vYk) E [0, 1] by the construction of

A,. It follows that LA(uO)[ < 1 and IA+(Yk) < 1/w+ < /A(T/q) 1/4 . Putting this all

together, we have IA(x)l < 2vAq(T/q) 1 /4 for all x E S (including the case x = 0)
hence

IIvA+11 < 1( j/ 16Aq 2 (T/q)"/2dx = 16q3 /2xV/.

Substituting this back into (5.7), we obtain

T-1 T-1

Z 0 A¢(u) < A(x) + (X) S1 2(T/q) 4 + q5/4 T3/4 ). (5.8)

Let A9 be the unique affine function satisfying A95(xt) = C(xt)/q for qO + 1 < t <

qq0 + q. Note that A9 = E(Allalu), as may be verified by evaluating both sides at the

vectors Xt (qo + 1 < t < qO + q). Taking the expectation of both sides of (5.8) we

obtain

T-1 T-

qE E [Co(u)] < E [A,(x)] + O (IS112 (T/q)3/4 + q5/ 4T3/4) (5.9)
q 9=0
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Our next goal is to transform this bound so that the sum on the right side is
;--O ((x) rather than E-b-- E [A,¢(x)]. This requires estimating an upper bound

for the difference AO - C¢/q. To do so, let L be the linearization of C/q at u,
i.e. the function L(x) = [C4(u) + VC(u¢) (x - u¢)]. By convexity of Co, we
have L < CO/q and therefore A, - C/q < A- Lo. To bound AO(x) - L¢(x) for
x S, we write x = u¢ + alyl + ... + adYd with ak E [-2, 2] and use the fact that
AO(u) = L((uo) to obtain:

d

AO(x) - L¢(x) = ak[A
k=l

For s E [0, 1], let f(s) =

(Yk) - L¢(Yk)] < 2 E (VA -
k=l

AO(uO + syk) - CO(u¢ + syk). We have

f'(s) = VAO
1

q I

-Yk H(CO)y kkq

1
< -IlYkllIH(C)IIl

q
< [SI12 H(c) [].

We also know that f(O)
some t [0, vO]. Now

= f(V) = O, so by the mean value theorem f'(t) = 0 for

1

q = If'()l

= - f"(s)ds

< qtlj$S [
2 flH(c)j[

< q-U1/4;- ~l/2 , =llH(c)f1

AO(x)- C,(x)

d

k=l

1

where the last inequality used the fact that ISII 2qA 1 as was established above.
Now summing over q = 0, 1,.., T - 1, we obtain:

1 -- r-1z 11
- - -- 1

E AO(x) < E C(x) + O(q3 I}SI
_n ~ ~~ ir

jIH(c) l (T/q) 3 / 4 ). (5.10)
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F'utting together (5.9) and (5.10) and taking unconditional expectations, we have

T 7T

E [ct(til)] < E ct(x) + 0 (ql/4 S2T3/4 T3/4 q9/ + q13/4 lS IH(c) IT3/4)
t=] t=l

(5.11)
Finally, note that

T-1 qo+q T-1 qo+

E E ct(' (UO~tjq)- ) < E >iiVi: f(llyt - u01l
0=0 t=q+ 1 0=0 t=q+ 1

7--1

< flVcl lSq Ev 
0=0

= O(q VcJl [S (T/q)3/4A-1/2)

= O(q5/4 J[VcJI T3 /4).

Combining this with (5.11) we obtain

T T

E t(xt) < E f t() - O (ql/ 4
1IS112T

3 /4 + q9/4T3/4 + q13/411 ]S fH(c)JIT 3 /4

t=l t=l

+q 5/ 4 lJVcIl T3 /4)

R(ALG, A; T) = 0 (ql/4 lSll 2T3/4 + q9/4T3/4 q9/4 1lSll IIH(c)llT3 /4

+-q5/4 JVcl T3/4 ) . (5.12)

Recalling that we initially applied a coordinate transformation which potentially in-
creased the diameter of S by a factor of 2q, we replace each factor of fIS[l in (5.12)
by qJJlSl to obtain the bound specified in the statement of the theorem. O

5.4.1 The algorithm of Flaxman, Kalai, and McMahan

A different algorithm for online convex programming with opaque feedback was dis-
covered by Flaxman, Kalai, and McMahan [32] independently and simultaneously
with our discovery of the algorithm presented above. In this section we will present
this alternative algorithm, denoted by BGD. We will present two theorems from [32]
specifying upper bounds on the regret of BGD under different cost function classes,
and we will compare BGD with our algorithm SGP.

The algorithm BGD is shown in Figure 5-4. It depends on three real-valued pa-
rameters ac, , v which are specified when the algorithm is invoked. As in Section 2.3,
for a convex body S, we use the notation Ps(.) to denote the projection function

Ps(z) = arg min d(x, z)
xES
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Algorithm BGD(a, , , )

/* Initialization */

'L1 *-- 0

/* Main loop */
for t = 1,2,...,T

Select unit vector wt uniformly at random.

Xt +- ut + wt
Play strategy xt.
Observe feedback Yt

Ut+i 1- P(-)s('t - VY-,yt)
end

Figure 5-4: The algorithm BGD

where d(., ) denotes Euclidean distance.

As with our algorithm SGP, the key idea in the algorithm BGD is to reduce from
the opaque feedback model to the full feedback model, and then to use Zinkevich's
Greedy Projection algorithm. The reduction from opaque feedback to full feedback
requires estimating the gradient of a cost function at a point u C S, given the limita-
tion that the algorithm, in trial t, can evaluate ct at only one point xt C S. The two
algorithms differ in their approach to obtaining this estimate of the gradient. The
SGP algorithm chooses to estimate the gradient of the average of d + 1 consecutive
cost functions (i.e. all of the cost functions in phase 0) by evaluating them at a set of
d + 1 points near u whose affine span contains S. The BGD algorithm estimates the
gradient of a single cost function while evaluating the cost function at only one point.
This is achieved by moving a small distance v away from u in a uniformly-distributed
random direction w. The correctness of the algorithm hinges on the observation
(Lemma 2.1 of [32]) that for any integrable function c, the vector-valued function
E[(d/v)c(u + vw)w] is equal to the gradient of a "smoothed" version of c in which
one replaces the value of c, at each point, with the average value of c over a ball of
radius centered at that point.

To state upper bounds on the performance of algorithm BGD, we must make some
definitions and assumptions. Let 1B denote the closed unit ball centered at the origin
in Rd, and assume that

rlB C S C RB.

Let F denote the set of convex functions from S to [-M, M], for some constant M.
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Let FL C F denote the subset of F consisting of functions which satisfy a Lipschitz

c ondition with exponent 1 and constant L, i.e. FL is the set of all c C F satisfying

c(x) - c(y) < Ld(x, y)

for all x, y CI S. Let A(r) (resp. A(FL)) denote the set of adaptive adversaries for r

(resp. FL).

The following two theorems are stated as Theorems 3.2 and 3.3 in [32].

Theorem 5.9. For any T > () 2 and for v = /6 = rR , and 12T 

R(BGD(a, 6, v), A(F); T) < 3CT5 /6i dR/r.

Theorem 5.10. Given any L < oc, for sufficiently large T and for v = , 6

AT-1/4 / RdCr A 6
3(LrI-4M) - r

R(BGD(a, 6, v), A(FL); T) < 2T3/4 23RdM(L + M/r).

The bounds in the preceding theorems depend on the radii of the balls RB, rB,

one containing S and the other contained in S. To eliminate this dependence, we may
first apply a linear transformation to the coordinate system which puts S in isotropic
position, as above, and then we may run BGD in the transformed coordinate system.
Let us refer to the resulting algorithm as BGD'(a, 6, v). This leads to the following
bounds, stated as Corollary 3.1 in [32].

Corollary 5.11. For a, 6, v as in Theorem 5.9, and for T sufficiently large,

R(BGD'(a, 6, v), r; T) < 6T 5/6dM.

For any L > 0, if one sets a, 6, v as in Theorem 5.10 and if T is sufficiently large,
then

R(BGD'(a, 6, v), F; T) < 6T3/4d( ML + M).

Comparing Corollary 5.11 with our Theorem 5.8, we see that the analysis of BGD
is stronger in the sense that:

* It achieves a stronger upper bound on regret O(T3 /4 d) for Lipschitz cost
functions, as opposed to O(T3 /4d1 7/4).

* It applies against a stronger class of adversaries adaptive as opposed to
oblivious.
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* It requires weaker continuity and smoothness assumptions about the cost func-
tions L-Lipschitz as opposed to C2 with uniformly bounded first and second
derivatives.

One could also argue that the BGD algorithm is easier to implement, since it does
not require computing approximate barycentric spanners.
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Chapter 6

Online optimization in measure
spaces

In earlier chapters we have studied bandit problems with constrained cost functions.
What if the strategy set is exponential or infinite, but the set of cost functions is
unconstrained? Can one prove non-trivial bounds on the regret of generalized bandit
algorithms, if the sequence of trials has only polynomial length? Trivially, one can not
devise algorithms whose regret is o(T) when T is much smaller than the cardinality
of the strategy set. (For instance, there might be one strategy with cost 0, while all
other strategies have cost 1. Given significantly fewer than SI trials, an algorithm
is unlikely to find the unique strategy with cost 0.) But what if we only require
that the algorithm should have small regret relative to most strategies at time T?
For example. suppose the strategy set S is a finite set of size K. After a constant
number of trials, one might hope that the algorithm's expected cost is not much worse
than the median cost of a strategy in S, and after a larger - but still constant-
number of trials one might hope that the algorithm's expected cost nearly outperforms
all but the best K- strategies in S. More generally one might require that for all

> 0, the fraction of strategies in S which outperform the algorithm's expected
cost by more than a converges to zero as T -- o, at a rate which does not depend
on K. We call algorithms with this property anytime bandit algorithms because
they have the property that, if stopped at any time T > 0, they satisfy a non-
trivial performance guarantee which improves as T - o, eventually converging to
optimality. In this section we formulate two precise definitions of "anytime bandit
algorithm," prove these two notions are equivalent, and present algorithms satisfying
either of the equivalent definitions. We also formulate a stronger notion which we call
a "perfect anytime bandit algorithm," and we prove that no such algorithm exists.
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6.1 Definitions

Definition 6.1. Suppose we are given a strategy set S, a time horizon T, an algorithm
ALG, and a set of adversaries A. For a subset U C S, the normalized U-regret of ALG
against A is defined by:

ADVECA xEU

If U is a singleton set {x} or A is a singleton set {ADV}, we will use notations such

as R(ALG, {ADV}; {x}, T) and R(ALG, ADV; x, T) interchangeably.

Definition 6.2. Given a probability space (S,/y), an algorithm ALG is called an
anytime bandit algorithm for (S, u) if there exists a function Tr(, 6), defined for all
£, > 0 and taking values in N, such that for all oblivious adversaries ADV there exists
a subset U C S such that (S \ U) < and R(ALG, ADV; U, T) < for all T > Tr(, 6).

It is a perfect anytime bandit algorithm if Tr(, 6) < (1/E)poly(log(1/E), 1/b).

To gain an intuition for Definition 6.2, it is helpful to consider the case in which
S is a finite set of size K and /u is the uniform measure on S. Then the definition
states that for all T > T(6, 6), there are at most K strategies x S satisfying
R(ALG, ADV; x, T) > . Generalizing this to an arbitrary measure space (S, /i), Def-
inition 6.2 says that ALG is an anytime bandit algorithm for (S, /i) if the set of
strategies which outperform ALG by more than 6 shrinks to have measure zero as
T oo, and has measure less than whenever T > (, 6).

A useful alternative definition of "anytime bandit algorithm" assumes that S
is a countable set whose elements are arranged in an infinite sequence Xl, x2,....
(Equivalently, we may simply assume that S = N.) We think of an element's position
in this sequence as indicating its "priority" for the algorithm, and the algorithm's
objective at time T is to perform nearly as well as all of the highest-priority strategies
in the sequence, i.e. those belonging to an initial segment x1, x2,. . ., Xj whose length
tends to infinity with T.

Definition 6.3. An algorithm ALG with strategy set N is called an anytime bandit
algorithm for N if there exists a function r(j, 6), defined for all j E N, 6 > 0 and
taking values in N, such that R(ALG, A; {1,. ..., j}, T) < 6 for all T > T(j, 6). It is a
perfect anytime bandit algorithm if T(j, 6) < j poly(log(j), 1/6).

In both cases, the function T is called the convergence time of the algorithm. Ob-
serve that the Q( KT) lower bound for the regret of K-armed bandit algorithms
against an oblivious adversary implies a lower bound T(j, 6) = Q(j/6 2 ) for the con-
vergence time of anytime bandit algorithms for N; similarly it implies a lower bound
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T(, 6) = Q(1/F62) for the convergence time of anytime bandit algorithms for a prob-
ability space (S, pI). Hence the definition of "perfect anytime bandit algorithm" en-
siures that the convergence time of such an algorithm is optimal up to a factor of

poly(log(j), 1/6) or poly(log(1/F), 1/6)).

6.2 Equivalence of the definitions

Theorem 6.1. The following are equivalent:

1. There is an anytime bandit algorithm for N.

2. For all probability spaces (S, s/), there is an anytime bandit algorithm for (S, /).

Moreover, the two conclusions remain equivalent with "perfect anytime bandit algo-
rithm" in place of "anytime bandit algorithm".

Proof. (1) -= (2): Assume that there is an anytime bandit algorithm ALGN for N with
convergence time r(j, 6). Given a probability space (S, /t), we implement an anytime
bandit algorithm ALG for (S, ) as follows. At initialization time, the algorithm
samples an infinite sequence xl, x2, x3 ,... of elements of S by drawing independent
samples from the distribution ,. Next, ALG, simulates algorithm ALGNr, choosing
strategy xj every time ALGN chooses a strategy j N. (Of course, in an actual
implementation of ALGa, one need not perform an infinite amount of computation
at initialization time. Instead, the samples x 1,x 2 ,... can be determined by "lazy
evaluation": whenever ALGN decides to a choose a strategy j C N which has not been
chosen before, ALG draws a new sample xj C S from distribution .)

If ALGN has convergence time T(j, 6), we claim that ALG, has convergence time

1 2 5
r* (E, ) = T 0l log ) | 2)

'Ro see this, let T be any integer greater than T*(E, 6), and for 0 C [0, 1] let

Uo = zeS : 1E ct() > 0

denote the set of strategies whose average cost exceeds 0. This is a measurable subset
of S, so we may define

0* = inf{0 : (Uo) < 1- E

u= nUo
0<0*

v = UO.= UUo.
0>0*
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Note that V C U and

,,(V) < - < u(U).

Now let j = (1/E)log(2/6)] and let denote the event that {x, 2,..., . is a
subset of V. If {x,x 2, . .. ., j} is not a subset of V then for some i E {1,2, ... , j} we
have Et:Tl ct(xi) < 0* and consequently, for all x C U, ET ct(xi) < EtT= Ct(x).

Hence, for any x C U,

Ct(Xt) - t(X)1 = Pr()E 
T

E ct(xt) -
t=l

+ ( - Pr(S))E

T

< Pr(S) +maxE
i

[

Ct(xt) - Ct(x)
j

- ct(x) ]

m

T et(xt)
t=l

- ct(xi) ] (6.1)

We claim each term on the right side of (6.1) is less than 6/2, from which it follows
that ALG, is an anytime bandit algorithm for (S, ut) with convergence time T*(E, 6).
The fact that Pr(S) < 8/2 rests on straightforward calculation:

Pr(S) < (1 - e)i < e- j < 6/2.

To see that the second term on the right side of (6.1) is at most 6/2, note that by the
definition of T(j, 6/2) we have

max E [1 t(t) -
r t=l

X1, X2, x ]X< 6/2

for any values of xI,x2,..., xj. Since the event S depends only on the values of
x1, x2, . . , Xj, we conclude that

maxE I
i T

T

E ct(xt) - ct(Xi)
t=1

S <6/2,

as desired. Finally, note that

T(j, 6) < j poly(log(j), 1/6)

which confirms that (1) > (2) with "perfect anytime" in place of "anytime."
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(2) (1): Define a probability distribution iL on N by assigning to each singleton
set. {rn} a probability proportional to (n, log2 r) - l. (This is a well-defined probability
distribution because I =l(n log2 n) - = C < oc for some constant C.) Now let ALG
be an anytime bandit algorithm for (N, t) with convergence time T(E, 3). We claim
ALG is also an anytime bandit algorithm for N with convergence time *(j, ) =
T((2Cj log2.j) - , 5). To see this, let = (2Cj log2 j)-1 and observe that, observe
that Lt({x}) > for all x C {1,2,....j}. By the definition of an anytime bandit
algorithm for (N,/t), R(ALG,A;x,T) < whenever [t({x}) > E and T > (E,6).
Thus R(ALG, A; {1, 2,...,j}) < for any T > 7-*(j, ), as claimed. Finally, note that

T(E, ) < (1/E)poly(log(1/E), 1/6) -' T*(j, ) < jpoly(logj, 1/),

which confirms that (2) = (1) with "perfect anytime" in place of "anytime." O

6.3 Construction of anytime bandit algorithms
In this section we specify an anytime bandit algorithm satisfying Definition 6.3. In
fact, the definition may be strengthened by enlarging A to be the set of all adaptive
adversaries for N. The algorithm uses, as a subroutine, the adversarial multi-armed
bandit algorithm Exp3 [4] which was analyzed in Section 2.5. This algorithm achieves
regret O(TK log(K)) with strategy set { 1, 2,. . ., K} against an adaptive adversary.

Definition 6.4 (ABA(F)). For any increasing function F N --+ N, we define an
algorithm ABA(F) as follows. For each k > 0, at time F(k) the algorithm initializes
an instance of Exp3 with strategy set {1, 2,..., 2k}. From time F(k) to F(k + 1) - 1
it uses this instance of Exp3 to select strategies in N, and at the end of each trial it
feeds the cost of the chosen strategy back to Exp3.

Theorem 6.2. Let A denote the set of all adaptive adversaries for strategy set N
and cost function class F = [0, 1]F. For any k > 0 and any T < F(k), the regret of
ABA(F) satisfies

R(ABA(F), A; {1, 2,..., j}, T) = O(F(Flog2j])/T + k2k/T).

Proof. For x C {1, 2, ... , ,j} and ADV C A, we will prove that

E [L ct(xt)-ct(x)1 <F([log 2j) O( k2kT).

To do so, we make use of the fact that for i > log2 jl, strategy x belongs to the
strategy set of the Exp3 subroutine operating from time to = F(i) to time t - I =
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min(T, F(i + 1) - 1). This strategy set has cardinality K = 2, so the regret bound
for Exp3 guarantees that

Ct(Xt) - Ct(:

) -Ct()]

X)] = (/Klog(K)(tl

k-1 min(T,F(i+l)- 1)

EEL t=F(i)
i= L t=F(i)

< v
i< log2 jl

+ E[
[log2 j] <i<k

min(T,F(i+l)-1)

t=F(i)
Ct(Xt)- t(x)

k-1

< F([log2j1)+ ( iT)

F(log2j) +0 ( 2kT).

Corollary 6.3. For any a > 0, there exists an algorithm ABA which is anytime
bandit algorithm for N, with regret and convergence time satisfying

R(ABA, A; {1, 2,.. ., j}, T) +\/T1 log(T))

T(j, 6) = 0 - + /6)

Proof. Let F(k) = [2 (1+a)k], let ABA = ABA(F), and apply Theorem 6.2. 0

Corollary 6.4. There exists an algorithm ABA which is an anytime bandit algorithm
N, with regret satisfying

R(ABA, A; {1, 2,..., j}, T) = (j log(T)/T1/3) .

Proof. Setting a = 2 in the preceding corollary, we obtain an algorithm whose regret
satisfies

R(ABA, A; {1, 2,..., j}, T) = O (j3 /T + log(T)/T1/3) .
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Trivially, the regret also satisfies

R(ABA, A; {1, 2 .. , j},T) < 1.

I'o prove the corollary, it suffices to prove that for all sufficiently large j, T,

j log(T)/T '/ 3 > min{ 1, j 3/T + log(T)/T/ 3}.

Assume, to the contrary, that j log(T)/T1 /3 < 1 and that j log(T)/T'/ 3 < j3 /T +
l)g(T)/T/ 3 . Rearranging terms in the second inequality, we obtain

T2/ 3 log(T) < j-1
while the first inequality implies

log 2 (T) 1

T2 /3 j2

Multiplying these two together, we obtain

log3 (T) < 1

which is not possible for sufficiently large j, T. El

Corollary 6.5. There exists an algorithm ABA which is an anytime bandit algorithm
for N, with regret and convergence time satisfying

R(ABA, A;{1,2,...,j},T) = O(j log3(j)/T + 1/ log(T))
T(j, 6) = O (jlog3(j)/ + 20 (1/6)).

Proof. Let F(k) = k3 2k, let ABA = ABA(F), and apply Theorem 6.2. 0

6.4 Non-existence of perfect anytime bandit algo-
rithms

In the preceding section we saw that anytime bandit algorithms for N can achieve
convergence time O(jl+apoly(1/6)) for arbitrarily small positive constants ca, and
that they can also achieve convergence time O(jpolylog(j) 20°(/6)). Given these
positive results, it is natural to wonder whether one can achieve convergence time
O(j polylog(j) poly(1/5)), i.e. whether a perfect anytime bandit algorithm exists.
This question is answered negatively by the following theorem.
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Theorem 6.6. Let d be any positive integer. The7e does not exist an anytime bandit

algorithm for N achielving convergence time T(j, 6) = O(j logd(j) 6 -d)

Proof. Assume, by way of contradiction, that ALG is an algorithm with convergence
time T(j, 6) < Cj logd(j)6 -d . We will consider the algorithm's regret against an obliv-
ious adversary ADV who supplies an input instance in which all cost functions ct are
equal to a single random cost function c, defined as follows. Let rk (1 < k < oc)
be independent random variables, where rk is uniformly distributed over the set
{22k- + 1,22k +2,. . .,22k } x {0,1}. Let c(1) = 1/4, and define c(j) for j > 2

as follows: let k = log2(log2(j))] and put

c(j) { 2 - k ifrk= (j, 1)
CO1 1 otherwise.

In other words, with probability 1/2 the cost of every element in the set {2 2
k- I +

1,... ,22k } is equal to 1, and with probability 1/2 there is a uniformly distributed
random element of this set with cost 2

- k , and all others have cost 1.
Presented with this input, the algorithm ALG will select a random sequence of

strategies X1, x2,... , xT. Let us say that the algorithm performs a probe at time t
if this is the first time that it samples xt, i.e. t ¢ {xI, x2,...,xtl}. Let qt be the
Bernoulli random variable

1 if ALG performs a probe at time t
qt O otherwise

and let Q = Et=I qt denote the random variable which counts the number of probes
up to time T. We will frequently need to use the following fact.

Claim 6.7. Pr(minl<t<Trc(xt) < 2 -k 1 Q) < Q/(22k - 22k-).

Proof. For x > 0, let loog(x) = log2 (log2(x))] and let r(x) = 2 2 og() - 2 2'°g(x)-l
denote the number of strategies in the set {22 oog(x)-l + 1,..., 22100g(x)}. Let 7 < T2 <
... < TQ denote the numbers of the trials in which the algorithm performs its Q
probes. For 0 < s < Q,

Pr (C(T) > 2 1 || C(2X ) , C(1 ),. if x > 22k -
Pr (c(x,+8 ) > 2 -k c(),c( ),... c(x)) 1 r(x)-s otherwise

' -1 otherwise
1

- 2 2k _ 2 2k-1 _ S

Hence

Pr Q( ) >-( 1Pr in c(x) > 2 > 1- 22k-
l<t<T Ž 22k22- 22k-1 ' 1 22k-
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which establishes the claim. O

Resuting the proof of Theorem 6.6. put T = 22k+3dk . We distinguish two cases.

Case 1: Pr

Case 2: Pr

(Q > (22 - 22) < 3/4

(Q > (2 - 2 >)) > 3/4.

In Case 1, let j = 22k, = 2 -k-5 . For sufficiently large k,

T(j, 6) = Cj logd(j)3-d = 22k-+2dk+5d+log2(C) < T.

We will prove that, R(ALG, ADV; {1, 2, .. ,j}, T) > 6, thus obtaining a contradiction.
Consider the following three events.

{ Q < 1 (22k
2 

2 = {Tmin c(xt)
I<t<T

83 { ain c(x)
l<x<22 k

- 22k-1) }

> 2 -(k-1)

= 2 - k }

By assumption, Pr(81 ) > 1/4. Claim 6.7 establishes that Pr(82 11 £) > 1/2. Next we
argue that Pr(£3 Il £1 A £2) > 1/3. Let U = {22k-1 + 1,.. ., 22k}, and let V denote

the intersection of U with {xl, x2,..., XT}. Conditional on 8l, IV} < U]/2, and
conditional on £2, rk is uniformly distributed in the set U x {0, 1} \ V x {1}. Hence
the probability is at least 1/3 that rk (U \ V) x {1}, which implies 3.

Putting this all together,

Pr(£1 A 2 A 3)>1/24

Assuming 2 and £3, there exists a strategy x C {1, 2,. . ., j} such that

T E C(Xrt) - c(x) >
t=l

2- k = 326.

R(ALG, ADV; {1, 2, ., j}, T) =E > 326 Pr(82 A 3) > 6,[ T (t)-()
t=l1

as claimed.
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In Case 2, let j = 22A-1 and = 2 2k- /d . Note that (j, 6) < T provided that
k is sufficiently large. Letting £ denote the complement of an event £, we have
Pr(S1 ) > 3/4 by assumption, and we have

Pr(£3) = Pr (rk C {22 + 1, .. 2 } x {})

hence Pr(S A 3) > 1/4. Let

E4- { min c(xt)
1<t<T

> 2- }.

By Claim 6.7,

Pr(&4)

so for k sufficiently large

< T (22k+ - 22k) = o(1)

Pr( A 3 A 4 ) > 1/8.

Let x = arg min<i<j c(i).
1,2,..., T.
1, SO

Assuming 3 and S4, we have c(xt)

Moreover, assuming S4, there are at least Q- k- 1
> c(x) for t =
probes with costT C(Xt) -) -k 2T

t=l

Assuming T, and assuming k is sufficiently large,

Q -k - > 2-4dk

2T

hence

R(ALG, ADV; {1, 2,..., j}, T) >

> 23- 2k- /d = 8,

2T Pr( A 3 A 4) > ,

contradicting the assumption that ALG is an anytime bandit algorithm with conver-
gence time (j, 3). Ol
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Chapter 7

Collaborative learning

7.1 Introduction

This chapter proposes and analyzes a multiple-agent version of the multi-armed bandit
problem which aims to model the challenges facing users of collaborative decision-
making systems such as reputation systems in e-commerce, collaborative filtering
systems, and resource location systems for peer-to-peer networks. As explained in
Section 1.7, our approach is motivated by consideration of the following issues which
are common to the applications cited above:

Malicious users. Since the Internet is open for anybody to join, the above systems
are vulnerable to fraudulent manipulation by dishonest ("Byzantine") partici-
pants.

Distinguishing tastes. Agents' tastes may differ, so that the advice of one honest
agent may not be helpful to another.

Temporal fluctuation. The quality of resources varies of time, so past experience
is not necessarily predictive of future performance.

We model these problems using a theoretical framework which generalizes the multi-
ar:med bandit problem by considering a set X of n agents, some of which (possibly
a majority) may be dishonest, and a set Y of m resources which agents are allowed
to choose. In each trial, each of the n agents chooses a resource, and the adversary
chooses a cost for each resource. Each agent then learns the cost of the resource it
selected, and this cost is charged to the agent. (The classical multi-armed bandit
problem corresponds to the special case n = 1.) We assume that the honest agents
belong to k coalitions, such that agents in the same coalition who choose the same
resource at the same time will perceive the same expected cost. All agents may
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communicate with each other between trials, to exchange information (or possibly
disinformation, in the case of dishonest agents) about the costs of resources they
have sampled. However, agents are unaware of which coalitions exist and which ones
they belong to.

If an agent chooses to ignore the feedback from other agents, and simply runs
the multi-armed bandit algorithm by itself, then the algorithm's convergence time is
Q(m log m), i.e. for any constant > 0, if T = Q(mn log mn), then the expected average
cost of the resources chosen by that agent will exceed the average cost of the best
resource in hindsight by no more than 6. However, it is possible that the honest agents
may require much fewer than Q(m log m) trials to achieve this goal, if they can find a
way to pool their information without being fooled by the bad advice from dishonest
agents and agents from other coalitions. Here we show that this is in fact possible, by
presenting an algorithm whose convergence time is polynomial in k log(n), assuming
that a constant fraction of the agents are honest and that m = O(n).

Briefly, our algorithm works by having each agent select a resource in each trial
by taking a random walk on a "reputation network" whose vertex set is the set of
all agents and resources. Resources are absorbing states of this random walk, while
the transition probabilities at an agent x may be interpreted as the probability that
x would select a given resource y, or would ask a given other agent x' for advice.
When an agent learns the cost of the resource chosen in a given trial, it uses this
feedback to update its transition probabilities according to the multi-armed bandit
algorithm. In this way, agents will tend to raise the probability of asking for advice
from other agents who have given good advice in the past. In particular, though the
initial transition probabilities do not reflect the partition of the honest agents into
coalitions, over time the honest agents will tend to place greater weight on edges
leading to other agents in the same coalition, since the advice they receive from such
agents is generally better, on average, than the advice they receive from agents in
other coalitions or from dishonest agents.

The rest of this chapter is organized as follows. In Section 7.2 we specify our
precise models and results. The collaborative learning algorithm, TrustFilter, appears
in Section 7.3. In Section 7.4, we analyze the algorithm, modulo a random graph
lemma which is proved in Section 7.5.

7.2 Statement of the Problem and the Results

We study a collaborative learning problem involving a set X of n agents and a set Y
of m resources. A subset H C X of the agents are honest, and the rest are dishonest.
Honest agents are assumed to obey the distributed protocol to be specified, and to
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report their observations truthfully, while dishonest agents may behave in a Byzantine
manner, disobeying the protocol or reporting fictitious observations as they wish. We
will assume throughout that the number of honest agents is at least an, where a > 0
is a parameter which may ble arbitrarily small. The agents do not initially know which
ones are honest and which are dishonest, nor are they assumed to know the value of
a.

In each of T consecutive rounds, a cost, function 't : X x Y - [0, 1] is given. We
think of the cost c (x. y) as agent :'s perception of the cost of resource y. The costs
may be set by an adaptive adversary who is allowed to choose ct based on the agents'
actions in rounds 1,..., t- 1 but not on their random decisions in the present or
future rounds; the adversary may also use randomization in determining ct. Define
two agents x:1 , 2 to be consistent if the costs ct(xl, y), ct(X2, y) are random variables
with the same expected value (conditional on the choices of all agents in all rounds
preceding t), for all y C Y, 1 < t < T. 1 We will assume that the honest agents may
be partitioned into k coalitions, such that two agents belonging to the same coalition
are consistent; the honest agents do not initially know which coalitions the other
honest agents belong to.

At the beginning of each round, each agent x C X must choose a resource y =
yt(x) C Y. Any agent is allowed to choose any resource in any round. The cost
of the choice is ct(x, y), and this cost (but not the cost of any other resource) is
revealed to :. The agents may communicate with each other between rounds, and
this communication may influence their decisions in future rounds. To simplify the
exposition we will assume all messages are exchanged using a shared, synchronous,
public channel. In any round t all agents (including the Byzantine dishonest agents)
must commit to their message on this channel before being able to read the messages
posted by other agents in round t.

The goal of the algorithm is to minimize the total cost incurred by honest agents.
Generalizing the definition of regret from Section 1.1, here the regret R is defined as
the expected difference between this cost and the cost of best fixed strategy in S, i.e.

- T T

R = E , E ct (x, yt()) - min E Ct(X, Y(z) (7.1)
EH t=l xcH t=l

The following two parameters, closely related to R, are also of interest:

* The normalized individual regret R = R/anT is the regret per unit time of the
average honest agent. For all of the algorithms we will consider, R converges to
zero as T -- oc.

tThe randomness of the variables ct(xl, y), Ct(x2,y) is due to the adversary's potential use of
randomness in determining ct.

149



The 6-convergence time of such an algorithm, denoted by T( 6), is defined as the
minimum value of T necessary to guarantee that R = 0(6). Here, 6 is a positive
constant which may be arbitrarily close to zero.

7.2.1 Our results

We present a distributed algorithm, named TrustFilter, in Section 7.3. Let /3 =
1 + mi/n. We will typically be interested in the case where a, , 6 are all positive
constants. For ease of exposition, we will adhere to this assumption when stating
the theorems in this section, absorbing such constants into the O(-) notation. See
equations (7.8),(7.9),(7.10), (7.11) in Section 7.4 for bounds which explicitly indicate
the dependence on a, /, and 6; in all cases, this dependence is polynomial.

Theorem 7.1. Suppose the set of honest agents may be partitioned into k subsets
S1, S2, . . ., Sk, such that the agents in each subset are mutually consistent. Then the
normalized regret R and 6-convergence time T(6) of TrustFilter satisfy

R O l(k log4 logT) (7.2)

Tr(6) = O(k3 log3 nlog3 ( k log n)). (7.3)

The 6-convergence time bound follows from the regret bound. Typically we are
interested in the case where a, 3, 6, k are constants, hence we will summarize this
result by saying that the algorithm has polylogarithmic convergence time.

7.3 The Algorithm TrustFilter

7.3.1 Intuition

As stated in the introduction, our algorithm is based on a Markov chain representing
a random walk in a directed graph, whose vertices represent the set of resources
and agents. We refer to this directed graph as the "reputation network." At each
time, each agent picks an outgoing edge in the reputation network with appropriate
probability, and then traverses this edge. If the edge leads to an agent, "advice" is
sought from that agent. Else, if the edge leads to a resource, this resource is selected
for sampling. Depending on the observed cost of the sampled resource, the agent
updates its transition probabilities.

As an aid in developing intuition, consider the special case when the costs of
resources are {0, 1}-valued and do not change over time. In this case, one may use a
simpler algorithm in which the Markov chain is based on a random graph. Specifically,
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each agent picks at random a small subset of other agents and a small subset. of the
resources, takes their union, and sets equal transition probabilities on all outgoing
edges leading to members of this set. All other outgoing edge probabilities are zero.
Assume that agents adopt the following simple rule for updating their transition
probabilities: if an agent chooses an outgoing edge and ends up selecting a resource
with cost 0, it assigns probability 1 permanently to that resource and probability 0
to all other edges; otherwise it leaves the transition probabilities unchanged. This
algorithm can be viewed as an alternative to the Random Advice Random Sample
algorithm in [10]. It is easy to prove that it achieves logarithmic convergence time.
The invariant used in the proof is the fact that the set of agents who recommend a
resource with cost 0 grows exponentially with time, assuming there exists at least one
resource with cost 0. This invariant is proved by induction on time. Indeed, with high
probability there is an edge in the reputation network from some honest agent to a
resource with cost 0, and in constant time that neighboring agent will either directly
sample this resource, or will stumble on an equivalent resource following the advice
of others. Consider the set S of honest agents who discovered a resource with cost
0. Note that the set N of neighbors of S (namely, nodes with outgoing edges leading
into S) satisfies N > IS 'p where p is the expansion ratio of the underlying random
graph. Note that within constant time in expectation, a constant fraction of agents
in N will also discover a resource with cost 0 by sampling nodes in S or following
advice to other equivalent resources. Thus, within logarithmic time in expectation,
all the agents discover a resource with cost 0.

Our algorithm for the case of dynamic costs looks quite different from the algo-
rithm for static costs presented in the preceding paragraph, but it is based on the same
intuition: by structuring the reputation network as a random graph, the set of honest
agents who are selecting an optimal or near-optimal resource will grow exponentially
over time. The main technical difference is that agents must update their transition
probabilities using the multi-armed bandit algorithm, rather than shifting all of their
probability mass to one outgoing edge as soon as they discover a resource with zero
cost. This modification is necessary in order to deal with the fact that a resource
which has zero cost at one time may not have zero cost at future times. More subtly,
when agents are using the multi-armed bandit algorithm to update their transition
probabilities, they must use an anytime bandit algorithm as defined in Chapter 6.
This is because the agents do not know how many other honest agents belong to their
coalition, so they must consider all n other vertices of the reputation network as
potential neighbors. (Recall from Section 7.2 that = (m + n)/n, so that 3n is the
cardinality X U Y, the vertex set of the reputation network.) Classical multi-armed
bandit algorithms, e.g. Exp3 [4], will have a convergence time of Q(n. log(n)) in such
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a scenario, whereas we seek a polylogarithmic convergence time. Accordingly, we use

an anytime bandit algorithm ABA whose salient feature is that it satisfies a signifi-
cantly better bound on regret when stopped at times T < nlog(n). The algorithm
ABA which we will use in this chapter is the one identified in Corollary 6.4.

7.3.2 The algorithm

Here we present an algorithm TrustFilter which solves the collaborative learning prob-
lem, establishing Theorem 7.1. We use, as a subroutine, the algorithm ABA whose

existence is asserted by Corollary 6.4. The internal workings of the algorithm are
unimportant for present purposes; the reader may consider it as a black box (in-
stantiated separately by each agent x) which outputs, at each time t, a probability

distribution -t(x) on the set of all agents and resources. We will use the notation
7rt(x, y) to denote the probability that 7rt(x) assigns to the element y E X U Y.

At initialization time, each agent x initializes an instance of ABA, mapping the

elements of X U Y to the first n elements of N using a random permutation, and

associating an arbitrary element of Y to each remaining element of N. At the be-

ginning of each round t, each agent x queries its local bandit algorithm ABA(x) to

obtain a probability distribution 7rt(x) on the set of agents and resources, and posts

this distribution on the public channel. This enables each agent to construct an

(m + n)-by-(m + n) matrix Mt whose rows and columns are indexed by the elements

of X U Y, and whose entries are given by:

lrt(i,j) if iX
(Mt)ij = 1 if i E Y and j = i

0 if i E Y and j = i.

We may think of Mt as the transition matrix for a Markov chain with state space

X U Y, in which elements of Y are absorbing states, and the transition probabilities

at an element x of X are determined by the bandit algorithm ABA(x). This Markov

chain corresponds to the intuitive notion of "taking a random walk by following the

advice of the bandit algorithm at each node."
The random walk starting from x X will be absorbed, with probability 1, by

some state y E Y; this enables us to define a matrix At by

(At)ij = Pr(absorbing state is j I starting state is i).

Algebraically, At satisfies the equations MtAt = At and Atl = 1, where 1 represents

a column vector whose components are all equal to 1.

To select a resource y = yt(x) E Y, x uses ABA(x) to choose a strategy s = st(x) E

X U Y. It then samples y randomly using the probability distribution in the row of At
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corresponding to s, learns the cost ct(y), and returns this feedback score to ABA(x).
The probability distribution from which y is drawn can be determined either by
computing At algebraically, or by simulating the random walk with transition matrix
AlI starting from state s until it hits an absorbing state. We call this probability
distribution on Y harmonic measure relative to x, by analogy with the harmonic
measure defined on the boundary of a bounded domain U C Rld according the hitting
probability of Brownian motion starting from a point x U.

7.4 Analysis of Algorithm TrustFilter

In this section we analyze algorithm TrustFilter by proving Theorem 7.1. Before
proving this theorem, it is necessary to extend the analysis of ABA to a more general
feedback model which we call the "noisy feedback model." This generalization is
described as follows. In each round t, instead of specifying one random cost function
Ct C F, the adversary specifies two random cost functions ct, c't G P satisfying

Vx C S E[c(x) - t(x) I <t] = 0,

where <t denotes the a-field generated by all random variables revealed by the
algorithm and adversary prior to time t. Rather than receiving ct(xt) as feedback,
the algorithm's feedback is c'(xt). However, the cost charged to the algorithm as
well as its regret are still defined in terms of the cost functions t rather than ct.

The following easy proposition demonstrates that the regret of algorithm ABA is
unaffected by the noisy feedback.

Proposition 7.2. In the noisy feedback model, the regret R experienced by algorithm
ABA relative to strategy j still satisfies

R(ABA, A; f1,2,...,j},T) = O (jlog(T)/T/ 3 ).

Proof. Applying Corollary 6.4 to the sequence of cost functions c, c2,...., cT, gives
that

IE C(t) -E ct(x)) = O(j log(T)/T1/3)
t=l t=l

for all x C {1, 2,. . To finish proving the proposition, it suffices to prove that

Etx)-E
t=l t=l

and
E - T 

E E Ct (XtEt (Xt= 0.t=l t=l
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These follow from the fact that E(c'(x)) = E(ct(x)) and E(ct(xt)) = E(ct(xt)), both
of which are consequences of the equation E(ct(x') - c(x')llxt, .<t) = ct(x'), which
holds for all x' E S. D

Proof of Theorem 7.1. For x e X, s X U Y, let

Cttl { Ct(X,'S) if s E Y
E[ct(x, yt(s))] if s E X.

From the standpoint of agent x, the bandit algorithm ABA(x) is running in the
noisy feedback model with cost functions t(x, ) and random feedback variables ct(s)

distributed according to the cost (ct(x,y)) of a random resource y E Y sampled
according to the harmonic measure relative to s. For u H, v E X U Y, define (u, v)
to be the position of v in the random permutation selected by u when initializing its
bandit algorithm ABA(u). It follows from the Proposition 7.2 that for each u H

and v C X U Y,

T

Using the fact that (u, v) = (v, v) when u, v are consistent, we may rewrite (7.4) as

E E[( (u, u)) - t(v, v))] O ((u, v) log(T)/T 1 /3), (7.5)
t=l t=l

provided that u and v are consistent. For u E H, let

Then (7.5) may be rewritten as

c() - c(v) = (u, v) O(log(T)/T'1 3). (7.6)

Note that for a resource y E Y, c(y) is simply the average cost of y, and for an

agent x E H, (x) is the average cost of the resources sampled by x. Let S be a
consistent cluster containing x, and let a(S) = SlI/n. Letting y* denote a resource
with minimum average cost for members of S, and letting P denote a shortest path
from x to y* in the directed graph with vertex set S U Y and edge lengths given by
(., ), we may sum up the bounds (7.6) over the edges of P to obtain

c(x) - (y*) = O(length(P) log(T)/T1 /3) (7.7)
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Observe that, the left side is the expected norImalized regret of agent .r. The ran-
d(lomn edge lengths t'(', v) on the m + n outgoing edges of u are simply the numbers
{ 1, 2, .. ., m + n} in a random permutation. For graphs with random edge lengths
specified according to this distribution, we analyze the expected distance between two
given vertices in Section 7.5. Applying Proposition 7.3 from that section, we may con-
clude that the expectation of the right side of (7.7) is O((3/ac(S)) log(n) log(T)/T 1 /3 ).
It follows that the normalized regret and -convergence time for agents in the cluster
S satisfy

R = O(( (S)3 log(n)log(T)) (7.8)

() : o ((y(s ) () lo g3 log n(6) =° ( S)6 log3 (S)6 (7.9)

Note that (7.9) can be interpreted as saying that the large consistent clusters learn
to approximate the cost of the best resource much more rapidly than do the small
clusters. which accords with one's intuition about collaborative learning. To obtain
Theorem 7.1, we must average over the k consistent clusters S1,..., Sk. We may
multiply the regret bound for a cluster S in (7.8) by the size of S, to obtain an upper
bound of O(/3n log n log T/T 1 /3 ) on the sum of the normalized regret of all users in S.
Summing over k such clusters, the cumulative normalized regret. of all honest users is
O(k/n log n log T/T1/ 3 ), so the normalized regret and convergence time satisfy:

R = O (k.() 3 log(n)log(T) (7.10)P \" laBc,, a~g~i a!6 (7.10)

Tr() 0 (k3 . (-) log3 (n) log3 (i n)) (7.11)

7.5 A random graph lemma
Let G = (V. E) denote a directed graph with vertex set V = X U Y, in which each
x X has outgoing edges to every other element of V, and each y E Y has no
outgoing edges. Assign random lengths to the edges of G as follows: for each x E X,
the IXl + IY-1i outgoing edges from x are assigned the lengths {1, 2,..., IX I +IY-1)
in a random permutation. Let n = IXl, = IXol/lXl, 3 = IX U Y1/IXl.

Proposition 7.3. For any x X, y E Y, the expected length of the shortest path
from x to y in Xo U Y is 0((f3/a) log(n)).
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Proof. As is common in random graph theory, we'll prove that the expected shortest
length is logarithmic in Jn by demonstrating that the size of a ball of radius r about
x grows exponentially in r. To do so, it is useful to replace the original edge lengths
f(u, v) with new random lengths f (u, v) defined as follows. For each vertex u C X,
choose an infinite sequence u1, u2 ,... of i.i.d. samples from the uniform distribution
on (X \ {tu}) U Y, and put f(u, v) = nin{j : uj = v}. These lengths stochastically
dominate the original edge lengths in the following sense. Let g(u, v) be the number
of distinct elements in the set {u1, u2, ... , uf(u,v)}, i.e. the number of distinct elements
which appear in the sequence u1 , u2,... up to and including the first occurrence of v.
Then g(u, v) < f (u, v) for all (u, v), and the lengths g(u, v) (u C X, v E (X \ {}) UY)
have the same joint distribution as (u, v): for a fixed u, as v ranges over (X \ {u})UY
the values of g(u, v) compose a random permutation of {1, 2,..., IXI + Y - 1} and
these permutations are independent for different values of u.

Let B(x, r) denote the set of all elements of Xo U Y reachable from x by a directed
path of length at most r in XoUY, and let Bo(x, r) = B(x, r)nXo. (Here, edge lengths
are defined according to f rather than . Using f rather than f can only decrease the
expected size of Bo(x, r) since f stochastically dominates .) Now define:

ro = 1

ri = min{r > r-i : Bo(x, r) > min(21Bo(x, ril)l, Xol/3)} (i = 1, 2,..., lg(n))

s = min{r > r[lg(n)] : y C B(x, r)}.

Here, lg(-) denotes the base-2 logarithm function. The expected length of the shortest
path from x to y in XO U Y is bounded above by E[s]. We'll prove the lemma by
establishing that each of the random variables ri+1 - ri (O < i < lg(n)] - 1), as well
as s - rrlg(n)l, has expectation O(P//a).

To bound the expectation of ri+l - ri, note first that ri+ - ri = 0 if Bo(x, r)l >

IXo0 /3, so assume from now on that IBo(x, r) < Xo0/3. Let r = ri + [PI/al, and
consider the size of the set A = Bo(x, r) \ Bo(x, ri). This set may be described as
follows: for each u C Bo(x, r), whose distance from x in the shortest-path metric is
ri - k for some k, the set A contains each element of {uk+l, uk+2,..., Uk+ /l} XO
which is not already in Bo(x, ri). We claim that there exists a constant c such that
[A > cBo(x, ri)l with probability at least 1/2. To prove this, consider taking an
arbitrary ordering of the vertices u e Bo(x, ri) and associating to each such u a set
Au C A of cardinality either 0 or 1, as follows. Assume A, is already defined for each
v < u, and once again denote the distance from u to x in the shortest-path metric by
ri - k. If the set

Su = {Uk+1,. , :3/.lj}}f (nX \ Bo(xri) U J A,))
V~u /
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is non-empty then A,, is defined to be an arbitrary one-element subset of S,,. else
A4, = 0. Observe that AI > fu IA, A since the sets A, are disjoint subsets of A, so it
now suffices to bound from below the expected number of u satisfying A,,I = 1. For
each ' C Bo(:r. ri), let T = Xo \ (Bo(x, ri) U U,,< AV). Observe that

ITu > Xo0 - XoJ3 - /3 > an/3.

Each of the elements uk+l, .. , uk+[f/l] is an independent random sample from a set
of size /in - 1, so the probability that. at. least one of them belongs to Tu is at least

1-(1-d /- 1) > 1-(1-3) > 1-e-/3
Thus

E[ Au I Bo(x., ri), A, (v < u)] > I - -1/3. (7.12)

]t follows that

E [ AU f Bo(x, ri) > (1--1/ 3 )1Bo (x, ri)

and that with probability at least 1/2, the random variable >d AuI is within a con-
stant factor of its expected value. (The latter statement follows from an exponential
tail inequality for ,Au IA, which is justified by equation (7.12).) Thus there exists a
constant c such that AI > cBo(x, ri) I with probability at least 1/2, as claimed.

If we consider initially setting r = ri and then raising r in increments of [/al
until IBo(x, 7r)1 > min{2 Bo(x, ri)l, Xo0 /3}, we have seen that on each such increment,
the probability of Bo(x, r)l increasing by a factor of at least (1 + c) is at least 1/2.
Hence the expected number of increments necessary to increase Bo(x, r)l by a factor
of at least (1 + c) is at most 2, and the expected number of increments necessary
before IBo(x, r) reaches min{21Bo(x, ri)l, IXol/3} is at most 2 log1 +(2) = 0(1). Thus

E[ri+l- ri] = O(f3/a) as claimed.
The claim about E[s - rFl[g(n)]] is even easier to prove. By construction, the set

B0c(x, Trlg(n)l) contains at least acn/3 elements. Each time we increment r above rlg(n)l,
the set B(x, r) gains at least an/3 new independent random samples from X U Y.
For a specified element y C Y, the probability that at least one of the new random
samples is equal to y is bounded below by

an/3
1-- ;I- 1 an > 1- e-/3 3 

Onr - 3e,3

Thus the expected number of times we must increment r before hitting y is O(/3/a).
[]
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Chapter 8

Conclusion

We have seen that online decision problems with large strategy sets arise naturally
in many application areas, including economic theory, networking, and collaborative
decision systems, yet the theoretical tools which existed prior to this thesis did not
imply the existence of rapidly converging algorithms in many cases of interest. In
this thesis, we have proposed new algorithms and lower bound techniques for dealing
with such problems, specifically generalizations of the multi-armed bandit problem.
Trivially, any multi-armed bandit problem with a strategy set of size K must have
convergence time Q(K); when K is exponential in the problem size or is infinite,
this seems to preclude the existence of rapidly converging algorithms. We have sug-
gested three approaches to circumventing this negative result, while giving sample
applications to illustrate the utility of each approach.

1. When the strategy set is a bounded one-parameter interval and the cost func-
tions (or their expected values) are Lipschitz continuous, there is an efficient
algorithm for the generalized bandit problem. Consequently, there are efficient
online l)ricing algorithms.

2. When the strategy set is a compact, convex subset of a low-dimensional vector
space, and the cost functions are linear or convex, there is an efficient algorithm
for the generalized bandit problem. Consequently, there are efficient online
shortest path algorithms.

3. When the strategy set is a measure space and the goal is to perform nearly as
well as all but a small fraction of the strategies, there is an efficient algorithm for
the generalized bandit problem. Consequently, there are efficient collaborative
learning algorithms.

We have also introduced new lower bound techniques for generalized multi-armed ban-
dit problems with large strategy sets, based on notions from statistics and information
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theory such as Kullback-Leibler divergence and Fisher information. In particular, we

introduced a definition of knowledgc in Chapter 3 which generalizes Fisher informla-

tion and supplies a quantitative measure of the trade-off between exploration and

exploitation.

These results represent first steps toward understanding the capabilities and lim-

itations of algorithms for generalized bandit problenls with large strategy sets, while

also suggesting many interesting directions for future work. In the following sections,

we survey some of the research problems raised by the work presented in this thesis.

8.1 Open questions

8.1.1 Theoretical aspects of online decision problems

We have seen that for many interesting online decision domains (S, F), if there exists

an efficient offline algorithm to maximize or minimize functions in F over S, then

this algorithm can be transformed into an efficient algorithm for the generalized ban-

dit problem for (S, F). (Examples were the online linear and convex optimization

algorithms of Chapter 5.) It would be interesting to identify other online decision

domains (S, F) where such a reduction from offline to online linear optimization is

possible. As a concrete example, let X be a finite set, let S = 2X be the set of all

subsets of X, and let F be the set of submodular functions on S. It is known that

there are efficient offline algorithms to minimize submodular functions [27, 38, 42]. Is

there an algorithm for the generalized bandit problem for (S, F) which achieves con-

vergence time O(poly(lXl))? Even in the full feedback model there open questions

concerning submodular function minimization. It is known that there is an algorithm

with convergence time O(IXl) (one simply uses the best-expert algorithm Hedge with

one expert for each subset of X), but can one achieve convergence time O([X ) or

even O(poly(lX])) using an algorithm that performs only a polynomial amount of

computation per trial?
A related question concerns online decision domains (S, F) for which one has an

approximation algorithm to optimize functions in F over the set S, but no exact algo-

rithm for this problem. Given an offline algorithm for minimizing cost functions which

achieves an approximation factor a, can one asymptotically achieve approximation
factor a in the corresponding generalized best-expert problem? In other words, can

one construct an online algorithm achieving the guarantee

lim max E ct(t) -ct(z = 0 (8.1)
T-oo zES T
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for all x C S and all cost function sequences (l, c2,... F? As a concrete example,
consider the online metric traveling salesnlan problem, in which X is a finite set
and S consists of all permutations of X. A cost function c F is specified as

follows: one defines a metric on X, and assigns a cost to each permutation of X by
computing the length of the traveling salesman tour defined by that, permutation. Is
there an algorithm for the generalized best-expert problem for (S, F) which achieves
aI guarantee of tle form (8.1) for any constant (a?

In two of our lower bound proofs (Theorems 4.4 and 6.6), the proof depended on
constructing an input, instance such that the algorithm fails to outperform the stated
lower bound at an infinite sequence of times T, T2,. . ., where Tk grows extremely fast
(doubly exponential or faster) as a function of k. One need not consider such proofs
to be strong negative results, since they leave open the possibility that there may exist
algorithms which outperform the stated lower bound at all but an extremely sparse set
of time steps. This is related to the fact that our lower bounds are stated in terms of
the lim sup rather than the lim inf of the regret sequence. Consider Theorem 4.4, for
example. The theorem says that for any continuum-armed bandit algorithm ALG and
any p < 2t+] (where a is the exponent of Lipschitz continuity of the cost functions),

R(ALG, A; T)lim sup : =o.
T-oo T 3

Because the theorem gives a lower bound on lim supT,, R(ALG, ADV; T)/T3 rather
than lim infT7 _ R(ALG, ADV; T)/TO, we can say that the regret of algorithm ALG is
not o(T 3), but we can not say that it is Q(T3). In fact, it is not necessarily true that
the regret of ALG is Q(TO). Counterintuitively, it is the case that for any function
f(T) satisfying lim infTo f(T) oc, there is an algorithm ALG satisfying

liminf R(ALG, A; T)
T-oo f(T)

where A is either of the sets Aadpt or Aiid defined in Chapter 4. This illustrates
that the lim inf is also an inadequate way of characterizing the performance of online
decision algorithms for "typical" values of T. It would be desirable to find theorems
which express the performance of continuum-armed bandit algorithms at typical val-
ues of T in a way which is both mathematically precise and conceptually satisfying.
For example, given a pair of functions f(T), g(T), let us say that a continuum-armed
bandit algorithm satisfies a bicriterion regret bound of type (f, g) if

R(ALG, ADV; T)
im sup < 
T-oo f(T)

and
R(ALG, ADV; T) Clim inf g(T)T-+cxD(T
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What bicriterion regret bounds are achievable by continuum-armed bandit algo-

rithms? Can one achieve a bound of type (o(T), O(/T4polylog(T)))?

8.1.2 Adaptive pricing

In Chapter 3 we presented nearly matching upper and lower bounds for the regret of
the optimal adaptive pricing strategy, when a monopolist sells an unlimited supply of
identical goods to a population of buyers whose valuations lie in a bounded interval.
One can imagine many relaxations of these assumptions leading to interesting open
questions:

1. What if the seller has a limited supply?

2. What if there is more than one seller?

3. What if there is more than one type of good? What if buyers request bundles
of goods rather than singletons?

4. What if the buyers' valuations come from a heavy-tailed distribution?

One can interpret our Theorem 1.9 as identifying the value of knowing the demand
curve in a particular type of market mechanism. It would be desirable to investigate
other economic scenarios in which one can quantify the value of information in this
way. Can the definition of "knowledge" given in Chapter 3 be broadened to apply in
such scenarios?

8.1.3 Online routing

In Section 5.2.4 we demonstrated that our online linear optimization algorithm could

be used as an adaptive routing algorithm with the objective of minimizing delay. But

our algorithm is far from being useful in practical contexts, e.g. as a routing protocol

for overlay networks. Can one use online decision problems as the basis for practical

overlay routing protocols? This broad question suggests several specific questions for
future research.

1. Can one devise an online shortest path algorithm which is more distributed

than the one given in Chapter 5, i.e. an algorithm in which there is an agent at
each node of the graph, and these agents select the routing paths in each trial

in a distributed manner using only local information?

2. Can one devise an algorithm which deals gracefully with nodes and edges joining

and leaving the network, i.e. an algorithm which adjusts to such events without
re-initializing its entire state?
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3. Instead of assuming a fixed sender s and receiver r. suppose the sender st and
receiver rt are specified at the start of each trial t, and that they may vary
front one trial to the next. Can one design an algorithll which converges more
rapidly than the naive algorithm which instantiates n2 independent instances
of the single-sender-single-receiver algorithm?

It is also intriguing that the complexity of computing a barycentric spanner is still
ulresolved. Proposition 5.3 indicates that a C-approximate barycentric spanner for
a compact set S can be computed in polynomial time for any C > 1, but what about
an actual barycentric spanner? If S is finite then we can compute a barycentric
spanner of S (possibly in superpolynomial time) using the algorithm in Figure 5-2
with C = 1. Since this is a local search algorithm and each iteration requires only
polynomial computation time, the barycentric spanner problem is in the complexity
class PLS defined in [43]. Is the barycentric spanner plroblem PLS-complete?

8.1.4 Collaborative learning
In Chapter 7 we introduced and analyzed an algorithm for a simple model of col-
]aborative learning. A key feature of our model is the presence of a large number
of dishonest agents who are assumed to behave in an arbitrary Byzantine manner.
However, other aspects of our model are quite idealized, and there are some very
natural extensions of the model which more closely reflect the reality of collaborative
learning systems such as eBay's reputation system and peer-to-peer resource discov-
ery systems. It would be desirable to identify algorithms for some of the following
extensions.

1. Chapter 7 was concerned with a synchronous decision-making problem in which
each agent must choose one resource in each decision round. Study the asyn-
chronous case, in which only a subset of the agents act as decision-makers in
each round and the rest are inactive.

2. We assumed that any agent could choose any resource at any time. Study cases
in which an agent x is restricted to a choose from a subset S(x, t) C Y at time
t. Useful special cases include the case in which S(x, t) does not depend on t
and the case in which it does not depend on x. (In the latter case, it is not even
clear how to formulate the proper notion of "regret.")

3. We assumed a very strict consistency condition for two agents x1, x2 in the
same cluster: at every time t, for every resource y, the random variables
Ct(XI, y), Ct(X2, y) should have the same expected value, conditioned on past
history. Consider relaxations of this criterion, for instance:
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* ICt(X1,Y) - Ct(2 Y)I < E.

* E(ct(xl, y*)) = E(ct(x 2, y*)), where y* is the best resource for both xl and
x 2. No such equation is required to hold for other resources y.

* [The mixture model] For each t, the functions f(y) = ct(x, y) belong
to a k-dimensional linear subspace of the vector of functions Y - R, as x
ranges over X.

4. Study more structured collaborative decision-making problems, e.g. selecting
routing paths in a network, some of whose nodes are identified with the agents.

Finally, it would be desirable to discover non-trivial lower bounds for the conver-
gence time of collaborative learning algorithms. At present the trivial lower bound of
Q(m/oa) - the minimum number of rounds needed to ensure that the best resource
is sampled by at least one honest agent with constant probability - is essentially the
only known lower bound.
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