
Twisted Stable Homotopy Theory

by

Christopher Lee Douglas

Bachelor of Science, Massachusetts Institute of Technology, June 1999
Master of Science, Oxford University, June 2001

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLO

MASSACHUSETTS INSffTIE
OF TECHNOLOGY

JUN 2 8 2005

GY LIBRARIES

June 2005

) Christopher L. Douglas, 2005. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author ........................................
Department of Mathematics

IYp1,2f2905

Certified by .....................................
Mihal JKpkins

Professor of Mathematics
Thesis Supervisor

Accepted by.Accepte d by ............................. I. ............ -- ' ........
Pavel Etingof

Chairman, Department Committee on Graduate Students

ARCHIVES

I .~ -11 





Twisted Stable Homotopy Theory
by

Christopher Lee Douglas

Submitted to the Department of Mathematics
on April 29, 2005, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract
There are two natural interpretations of a twist of stable homotopy theory. The first
interpretation of a twist is as a nontrivial bundle whose fibre is the stable homotopy
category. This kind of radical global twist forms the basis for twisted parametrized
stable homotopy theory, which is introduced and explored in Part I of this thesis. The
second interpretation of a twist is as a nontrivial bundle whose fibre is a particular
element in the stable homotopy category. This milder notion of twisting leads to
twisted generalized homology and cohomology and is central to the well established
field of parametrized stable homotopy theory. Part II of this thesis concerns a com-
putational problem in parametrized stable homotopy, namely the determination of
the twisted K-homology of the simple Lie groups. In more detail, the contents of the
two parts of the thesis are as follows.

Part I: I describe a general framework for twisted forms of parametrized stable
homotopy theory. An ordinary parametrized spectrum over a space X is a map from
X into the category Spec of spectra; in other words, it is a section of the trivial Spec-
bundle over X. A twisted parametrized spectrum over X is a section of an arbitrary
bundle whose fibre is the category of spectra. I present various ways of characterizing
and classifying these twisted parametrized spectra in terms of invertible sheaves and
local systems of categories of spectra. I then define homotopy-theoretic invariants of
twisted parametrized spectra and describe a spectral sequence for computing these
invariants. In a more geometric vein, I show how a polarized infinite-dimensional
manifold gives rise to a twisted form of parametrized stable homotopy, and I discuss
how this association should be realized explicitly in terms of semi-infinitely indexed
spectra. This connection with polarized manifolds provides a foundation for applica-
tions of twisted parametrized stable homotopy to problems in symplectic Floer and
Seiberg-Witten-Floer homotopy theory.

Part II: I prove that the twisted K-homology of a simply connected simple Lie
group G of rank n is an exterior algebra on n - 1 generators tensor a cyclic group. I
give a detailed description of the order of this cyclic group in terms of the dimensions
of irreducible representations of G and show that the congruences determining this
cyclic order lift along the twisted index map to relations in the twisted Spinc bordism
group of G.

Thesis Supervisor: Michael J. Hopkins
Title: Professor of Mathematics
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Chapter 1

Introduction

Despite its widespread use and compelling application to problems in symplectic

topology and gauge theory, Floer homology remains rather a mystery. The very exis-

tence of the Floer homology of an infinite-dimensional manifold depends on delicate

and haphazard properties of the manifold and of the flow associated to a Floer func-

tion; moreover, it is completely unknown how the Floer homology depends on the

choice of Floer function. Confronted with this situation, Cohen, Jones, and Segal [8]

asked whether it would be possible to build a Floer homotopy type encoding the rele-

vant data from the manifold and the function in such a way that a homology functor

would recover Floer homology. Besides elucidating the structure of Floer theory and

clarifying its dependence on the Floer function, such a Floer homotopy type would

immediately provide other invariants such as Floer K-theory and Floer bordism. Co-

hen, Jones, and Segal suggested that prospectra might encode some of the Floer data;

though this thought proved useful, in retrospect it is clear that prospectra can only

account for the Floer homotopy types of trivially polarized manifolds-this restriction

on the polarization accounts for the difficulty Cohen, Jones, and Segal had finding

examples of Floer prospectra.

The purpose of this paper is not to answer the Floer homotopy question, but to

introduce a framework, namely twisted parametrized stable homotopy theory, that

is a necessarily component of any description of Floer homotopy. That some twisted

form of homotopy theory was needed to account for nontrivial polarizations was first

15



realized by Furuta 1211, and it will turn out that the twisted space he wrote down

(as a conjectural model for the Seiberg-Witten-Floer homotopy type of T3 ) is a very

specialized example of our twisted parametrized spectra. A twisted parametrized

spectrum is a section of a bundle whose fibre is the category of spectra, and as such

it has the same relationship to an ordinary parametrized spectrum that a section

of a line bundle has to a function. A polarized infinite-dimensional manifold has

a naturally associated bundle of categories of spectra, and the fundamental ansatz

is that geometric information about such a manifold (its Floer homotopy type, for

example) involves this bundle and its sections. In this paper, we present the theory

of twisted parametrized spectra, including various definitions, characterizations, and

classifications of them, a thorough description of their homotopy-theoretic invariants,

and an overview of their relationship to infinite-dimensional polarized manifolds. The

specific association of a twisted parametrized homotopy type to a manifold with Floer

function is the subject of ongoing work with Mike Hopkins and Ciprian Manolescu

and will appear elsewhere [9, 10].

I would like to thank especially Mike Hopkins for insightful and inspiring questions

and indispensable pointers, Bill Dwyer for fruitful suggestions and encouraging words,

and Jacob Lurie for technical help and much headache-saving advice.
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Chapter 2

Invertible Sheaves of Categories of

Spectra

Let X be an algebraic variety over a ring R. The structure sheaf Ox can be described

as the sheaf of R-valued functions on X. The most fundamental Ox-modules are the

invertible or locally free rank-one modules. These modules, which we will often think

of as line bundles, are classified by the first cohomology group of X with coefficients

in the units of R; denote by £(c) the line bundle associated to the cohomology class

c E Hi(X; RX). A global section of L(c) is determined by a 0-cochain on X whose

coboundary is c, that is by an element f E Co(X; R) such that 6f = c.

Twisted parametrized stable homotopy theory is a precise analog of these alge-

braic concepts: the ring R is replaced by the category Sp of spectra, a "categorical

semi-ring" under the wedge and smash products. The set of Sp-valued functions on

a space X is naturally interpreted as the category of parametrized spectra on X,

and the structure "sheaf" is therefore the structure stack Ox of parametrized spec-

tra. There is a notion of locally free rank-one module over the structure stack of

parametrized spectra and we refer to such modules, briefly, as haunts. Haunts are

classified by the first cohomology group of X with coefficients in the so-called Picard

category Pic(SO) of units of Sp. The fundamental objects of twisted parametrized

stable homotopy theory are the global sections of a haunt; these global sections are

the twisted parametrized spectra or specters for short. Thus, a specter has the same

17



relationship to a parametrized spectrum as a section of a line bundle has to a function.

Moreover, a specter for the haunt £(c) associated to a class c E H 1(X;Pic(S 0 )) is

determined by a O-cochain with coboundary c, that is by an element f E Co(X; Sp)

together with an identification 6f ~ c.

This fundamental analogy is summarized in table 2.1 and is explained in detail in

the following sections.

2.1 The Structure Stack of Parametrized Spectra

We begin by describing the category of parametrized spectra and its associated ho-

motopy theory. A spectrum E is, most naively, a series Ei of based spaces equipped

with structure maps EEi - Ei+l from the suspension of one space to the next. Sim-

ilarly, we can describe a parametrized spectrum over X by giving a series Ei of based

spaces over X together with structure maps EXEi -- Ei+l from the fibrewise sus-

pension of one space to the next. (A based space over X is a space together with

a projection map to X and a section of this projection.) This naive viewpoint is

sufficient for many purposes, including taking the homology and cohomology of a

base space X with coefficients in a parametrized spectrum, but it fails to provide a

foundation for a good smash product on the category of parametrized spectra. As

we are interested in considering this category to be a semi-ring, it is essential that

we have a highly associative and commutative smash product. We therefore work

with the category of orthogonal parametrized spectra. An orthogonal parametrized

spectrum on X is a diagram spectrum in the category of based spaces over X, where

the diagram category is finite dimensional inner product spaces and their isometries.

See Mandell, et al. [34] for a description of diagram spectra and May-Sigurdsson [37]

for an extensive discussion of orthogonal parametrized spectra. In keeping with our

sheaf-theoretic philosophy, will we let Ox(U) denote the category of (orthogonal)

parametrized spectra on the open set U c X.

We have selected a model for parametrized spectra because we need to ensure

that we have a well behaved smash product, but we are not of course interested

18
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in the point-set-level peculiarities of this particular model. As such, we need to

keep in mind a homotopy theory, that is a model structure or at least a notion

of weak equivalences, on the category Ox(U) of parametrized spectra; we should

consider a category C equivalent to Ox (U) not if there is an equivalence of categories

between them, but if there is a functor inducing an equivalence of homotopy theories.

We will focus on the homotopy theory on Ox(U) associated to the stable model

structure defined in [371. Suffice it to say that the fibrant objects in the stable

model structure are, in particular, quasi-fibrations of spectra over X, and the weak

equivalences between fibrant objects are maps that induce weak equivalences on each

fibre. We can think of this as a homotopy theory of quasi-fibrations of spectra, rather

than of all parametrized spectra; this reduction will be important in our consideration

of local systems of categories of spectra in section 3. As an aside, we note that there

may be other interesting model structures on parametrized spectra, for example ones

in which there is a much larger class of fibrant objects; the formulation of twisted

parametrized spectra in section 2.2 will work for these alternate model structures,

producing a very different and perhaps even more intriguing theory.

Remark 2.1.1. We have fixed a notion of homotopy theory on the category of parametrized

spectra, namely the one coming from the stable model structure. The concept of an

oc-category conveniently encodes the notion of a category together with an associ-

ated homotopy theory. An oo-category is, roughly speaking, a category together with

2-morphisms, 3-morphisms, and so on, such that all the n-morphisms are invertible

for n > 1. Though oo-categories are as yet little utilized, many familiar structures,

including simplicial categories, Segal categories, Segal spaces, and quasi-categories,

give models for oo-categories; see Lurie [31, 32] for a thorough treatment. The pairing

of a category and a notion of homotopy theory will be so pervasive that in this sec-

tion and in section 2.2 we will frequently use "category" to mean "-category" and

implicitly take associated notions, such as equivalence, monoidal structure, module,

and so forth, to refer to their oo-categorical analogs. The reader who is bothered by

the resulting inexplicitness should defer to section 3 where haunts and specters are

recharacterized in more traditional terms. (Model-theoretically inclined readers may
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want to take "category" to mean "model category" and this will be perfectly suit-

able by way of understanding, but we will be utilizing categories of categories (read

oo-categories of oc-categories) and the category of model categories is not known to

have a mode]. structure.)

The association to an open set U C X of the category Ox(U) of parametrized

spectra over U is meant to function as a "sheaf of rings" analogous to the structure

sheaf of R-valued functions on an algebraic variety. First we consider the ring-like

structure on Ox(U) and then proceed to the sheaf- or stack-like properties of (x.

The category (9x(U) of parametrized spectra is a symmetric bimonoidal category

in the sense of Laplaza [28]; that is, it comes equipped with two symmetric monoidal

functors (wedge and smash) and natural distributivity isomorphisms satisfying various

coherence relations. In fact, the category is better behaved that the average symmetric

bimonoidal category because the wedge product is the categorical coproduct; the

additive associativity isomorphisms and the distributivity isomorphisms are therefore

canonically defined. Of course, there is a rigidification functor [18, 12] that replaces

a symmetric bimonoidal category with an equivalent bipermutative category (where

the associativity isomorphisms are identity transformations). We will frequently and

implicitly use the bipermutative category associated to Ox(U), particularly when

discussing modules in the next section. This symmetric bimonoidal or bipermutative

structure makes Ox(U), for all intents and purposes, into a semi-ring.

Philosophically, a stack C is a presheaf of categories satisfying descent up to equiv-

alence of categories; (see, for example, Moerdijk's treatment in [40]). That is, the

category C(U) living over a large open set U is determined, up to equivalence, by

the categories C(V) living over small open subsets V C U, in the same way that

the value of a sheaf is determined by its local behavior. Note that these categories

C(U) need not be groupoids (as is usually assumed) and that both "presheaf" and

"equivalence" can be freely interpreted. For example, "presheaf" might mean literal

presheaf, presheaf up to coherent natural isomorphism, or presheaf up to coherent
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natural homotopy equivalence; similarly, "equivalence of categories" might mean or-

dinary equivalence of categories, Quillen equivalence of model categories, homotopical

equivalence of oo-categories, or something analogous. In general, we take presheaf to

mean presheaf up to coherent natural isomorphism, and equivalence of categories to

mean homotopical equivalence of oo-categories.

As the notation suggests, we have restriction functors i* : Ox(U) -* Ox(V)

associated to inclusions i: V c U. Because these restrictions of parametrized spectra

boil down to literal restriction functors in categories of topological spaces over the

base X, these functors give Ox the structure of a presheaf of categories on X. This

presheaf Ox is a stack. Though it is a stack in the usual, literal sense that it satisfies

descent up to equivalence of categories (as can be checked using the prestack gluing

condition given in [40, p.11]), we are only concerned with the fact that it is a stack

in the sense that it satisfies descent up to homotopical equivalence of categories.

Summary 2.1.2. The association Ox to an open subset U C X of the category

Ox(U) of orthogonal parametrized spectra on U is a stack of symmetric bimonoidal

(oo-)categories.

2.2 Modules over the Structure Stack

We have replaced an ordinary ring R by the semi-ring category Sp of spectra and

we are investigating invertible sheaves in this new context. We have introduced our

basic "sheaf of rings" Ox, namely the structure stack of parametrized spectra. In

this section, we describe and classify locally free rank-one modules over this structure

stack-we refer to these modules, briefly, as "haunts"-and we study their cate-

gories of global sections. These global sections are the fundamental objects of twisted

parametrized stable homotopy theory and we call them "twisted parametrized spec-

tra" or "specters" for short.
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2.2.1 Haunts

A module over a stack 7Z of symmetric bimonoidal categories is a stack M of sym-

metric monoidal categories together with an action R x M -A M appropriately

compatible (by analogy with a module over a ring) with the monoidal structures.

We do not spell out this compatibility; see Dunn [12] for an extensive discussion of

modules over semi-ring categories, Lurie [32] for some of the technicalities involved in

semi-ring oo-categories and their modules, and remark 2.2.2 below for an explanation

of why we do not attend to the details of these compatibility relations. Such a module

M over a symmetric bimonoidal stack RZ is locally free of rank one if for all points

x E X there exists an open set U C X containing x and an object S E M(U) such

that the map 7lZv - Mlu determined for V c U by

1Z(V) - M(V)

A A Sv

is an equivalence of symmetric monoidal stacks.

Definition 2.2.1. A haunt on a space X is a locally free rank-one module over the

structure stack Ox of parametrized spectra on X.

Remark 2.2.2. Because the additive monoidal structure in the category Ox of parametrized

spectra is given by the categorical coproduct, most of the compatibility conditions [12]

for Ox-modules are automatically satisfied, provided the monoidal structure on the

module is also the coproduct. Indeed, it is generally sufficient to treat Ox as a mul-

tiplicative monoid and study stacks with an action of this monoid. As a point of

philosophy, though, it is important to keep in mind that we are really dealing with

modules over ring stacks.

Remark 2.2.3;. We limit our attention to locally free rank-one modules over parametrized

spectra, but we imagine that there may be quite interesting and intricate homotopy-

theoretic information in the structure of higher rank modules.

In doing geometry over an ordinary ring R, we think of invertible sheaves as
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line bundles. Such a line bundle is most easily and explicitly described by taking

trivial R-bundles over an open cover {Ui} and specifying appropriate gluing data

rij : R x Uij - R x Uj on the two-fold intersections Uij = Ui n Uj. By analogy, we

think of haunts as bundles whose fibre is the category Sp of spectra. To specify such

a bundle, we can take a trivial Sp-bundle over an open cover and give gluing data

rij: Sp x Uij -- Sp x Uij on the intersections; more precisely, this gluing data amounts

to automorphisms rij : Ox(Uij) -+ Ox(Uij). Before formalizing this viewpoint, we

give two examples.

Example 2.2.4. Cover the base space X = S1 by two open semicircles U0 and U1 and

denote by V and W the two components of the intersection U0 1. Glue Oxluo and

Ox xlu together along V by the identity map on Ox(V) and along W by the map

ox(W) - O(W)

THT AW (Sn X W)

In other words, the monodromy around the circle is the map Sp -- Sp given by

suspension by S. Schematically the resulting haunt appears as in figure 2-1. As we

will see, every haunt over S1 is equivalent to this suspension haunt for some integer

n.

Figure 2-1: A bundle over the circle with fibre the category of spectra
Sp

Asn (

Example 2.2.5. Now take the base space X to be S3 with its usual hemispherical cover

by two open sets D3 and D'; the intersection of these open sets is the equatorial band

S2 x (-e,e). Let S2>XS2 denote the nontrivial S2 bundle over S2. We can define a
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haunt over X by gluing the trivial bundles Sp x Do and Sp x D3 as follows:

Ox(S2 x (-E, )) Ox(Ss x (-e E))

T - T As2X(-E,E) ((S2 > S2) x (-E, e))

This gluing produces the only nontrivial haunt over S .

Line bundles are built by gluing together trivial R-bundles over intersections. At

a point, this gluing is determined by an R-module automorphism of the ring R, that

is by an element of AutR R. Of course, any such automorphism is multiplication by

a unit of R; in other words, AutR R - RX. The gluing data for a line bundle is

therefore a 1-cocycle with values in R x or more precisely, with values in the sheaf

Ox of RX-valued functions. Up to equivalence, these bundles are classified by the

cohomology group H1 (X; Ox).

Appropriately interpreted, all these facts remain true when R is replaced by the

category Sp of spectra-see table 2.1. Any automorphism of Sp as a module over itself

is given by smashing with an invertible spectrum; moreover, there is an equivalence

of categories Autsp Sp - SpX. Here the objects of SpX are the invertible spectra and

the morphisms are weak equivalences of spectra. This category is denoted Pic(S °)

in the literature and we will use that notation to refer to both the category and its

realization. The gluing data for a haunt is a 1-cocycle with values in Pic(S°), by which

we mean a cocycle with values in the associated sheaf Pic(S ° ) of "Pic(S°)-valued

functions". This "sheaf" is a stack of monoidal categories; the category Pic(S°)(U)

has objects invertible parametrized spectra on U and morphisms weak equivalences.

The classification is as expected:

Proposition. 2.2.6. Haunts on X are classified up to equivalence by the cohomol-

ogy group H1 (X; Pic(S0 )) or equivalently by the group of homotopy classes of maps

[X, B Pic(SO°).

Remark 2.2.7. The reader who (sensibly enough) grimaces at the prospect of coho-

mology with coefficients in a stack of monoidal categories can happily focus on the

25



latter characterization in terms of homotopy classes of maps, which will be established

in detail in section 3.2.1.

Any invertible spectrum is weakly equivalent to a sphere of some integer dimen-

sion, so B Pic(S ° ) has the homotopy type of B(Z x BGL 1(S°)) where GLi(S ° ) de-

notes the module automorphisms of the sphere spectrum, also known as the group

of stable self equivalences of the sphere. In particular, 7r(BPic(S°)) = Z and

7r3(BPic(S°)) = Z/2, explaining the classifications mentioned in examples 2.2.4

and 2.2.5. We will discuss the homotopy groups of B Pic(S ° ) in more detail in the

context of specter invariants in section 4.

2.2.2 Specters

As previously mentioned, specters generalize parametrized spectra in the same way

that sections of line bundles generalize functions:

Definition 2.2.8. A twisted parametrized spectrum or specter on X is a global section

of a haunt over X. That is, it is an object S E M (X) of the category of global sections

of a locally free rank-one module M over the structure stack Ox of parametrized

spectra on X.

An ordinary R-valued function on X is determined by a 0-cocycle with values in

R, that is by a 0-cochain f C°(X; R) := C°(X; Ox) such that the coboundary

vanishes: f = 0. Suppose c E Z 1 (X; RX) := Z'(X; O) is a 1-cocycle defining a line

bundle L(c) with fibre R. A section of L(c) is presented by a 0-cochain f E C°(X; Ox)

cobounding the cocycle c, which is to say such that f = c. This section need not

trivialize the line bundle because it is allowed to take non-invertible values, unlike

the defining cocycle for the bundle.

Analogously, a parametrized spectrum on X can be described by a 0-cocycle with

values in the stack of parametrized spectra. This amounts to giving a 0-cochain

f E C°(X; Sp) := C°(X; Ox), namely a parametrized spectrum on each open set of a

cover, together with a compatible system of equivalences on intersections; this system

of equivalences is concisely encoded in the equation 6f O. Let c E Z'(X; SpX)
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Z1(X; Pic(S)) denote a 1-cocycle defining a haunt L(c); concretely, this means that

for a cover {Ui } we have invertible parametrized spectra cij E Pic(S°)(Uij) on two-fold

intersections together with fixed weak equivalences /ijk : cij Au2 jk cjk -- Cik satisfying

the obvious coherence relation on four-fold intersections. A specter for this haunt,

that is a section of L(c), is most easily presented by a 0-cochain f C(X; Ox)

together with an identification f = c of the coboundary of f with the cocycle c.

What this means is that on two-fold intersections compatible equivalences are given

between fi Aurj cij and fj. This cochain presentation is well suited to giving explicit

examples of specters.

Example 2.2.9. Let Ln denote the haunt over S1 whose monodromy is suspension by

Sn. This haunt is depicted in figure 2-1 and can be presented, roughly speaking, as

follows: take two copies of the stack of parametrized spectra on an interval, that is

of OD1, and glue them together at the two pairs of endpoints by the maps Sp -* Sp

and Sp Sn Sp respectively. We now define a specter T for L. Over the first

interval Do the specter is a trivial parametrized spectrum with fibre Sn; that is

TID1 = Sn x DO. Over the second interval D1 the specter is a cone on S U S°; that

is, writing DI = C(* I *), we have TD 1 = C(S n U SO). See figure 2-2.

Figure 2-2: A twisted parametrized spectrum over the circle
Sn

Asn( Id

SO

Example 2.2.10. Let Ls3 denote the nontrivial haunt over S3 described in exam-

ple 2.2.5. Roughly speaking, Ls3 is constructed using the equatorial gluing function

· OS2 -- (S2 given by (P) = P AS2 (S2 S2 ). Define a specter T for Ls3 by

T = (S° x .)3) Us C(S 2>S 2 ); that is, on one hemisphere the specter is a trivial
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parametrized spectrum with fibre S ° and on the other hemisphere (thought of as the

cone C(52)) the specter is the cone on the bundle S2>xS2 .

Remark 2.2.11. The procedure (illustrated in these examples) of piecing together

parametrized spaces to give a global geometric object has also appeared in a preprint

by Furuta [21] under the rubric "prespectra with parametrized universe". Furuta's

viewpoint is similar to ours in spirit, but his 'parametrized prespectra' are sub-

stantially more rigid than specters; in particular, few specters can be realized as

'parametrized prespectra'. It would therefore seem to be difficult to develop a reason-

able homotopy theory of twisted spectra (which is essential for applications to Floer

homotopy) using the rigid geometry of 'parametrized prespectra'.

In section 2.1 we emphasized the fact that the homotopy theory of parametrized

spectra should be conceived as a homotopy theory of fibrations of spectra. The

above examples of specters have singularities and are therefore not locally fibrations

of spectra. There is a fibrant replacement functor which takes such a singular specter

and returns a locally fibrant specter with the same "global homotopy type"; (see

section 4 for a discussion of global homotopy invariants of specters). On the one

hand, it is easier to explicitly describe and compute invariants of singular specters;

on the other hand, it is easier to characterize and classify specters using fibrant

presentations.

The following model for fibrant replacement of specters bears close resemblance to

the one May and Sigurdsson use for parametrized spectra; a more thorough technical

treatment of the replacement functor can be found in their manuscript [37]. Suppose

S is a specter over the base X. Let PX denote the path fibration on X and s and

t the source and target maps PX - X. A fibrant model F(S) for the specter S is

very roughly given by s!(t*(S))-here S! denotes integration over the fibre in a sense

analogous to that given for parametrized spectra in [37]. In other words, the points

of the fibre F(S)x at a point x E X are pairs consisting of a path in X from x to y

and a point of the fibre Sy. We proceed to some examples of fibrant specters.

Example 2.2.12. As before, let L denote the haunt over S whose monodromy is

suspension by Sn. Define a specter T for Ln as follows: the fibre Tx of T at every

28



point x S1 is ViEZ S n i and the monodromy operator is the natural equivalence

En(V Sni) - V Sni. This is a model for the specter in example 2.2.9 which is locally

a fibration of spectra. More generally, any specter for the haunt Ln on S1 can be

described by giving a spectrum A together with an equivalence of A with its n-th

suspension:

{Specters/(Ln, S')} em {Spectra A with : En(A) - A}

Example 2.2.13. There is only one nontrivial haunt over S2; call it Ls2. Let U and V

denote the two hemispheres of S 2. The haunt LS2 is constructed, roughly speaking,

by gluing Ou1 and Ov along the equatorial S1 using the function : sOsl Osl

given by O (') = P Asi (S0>xS1); here S°>4S1 denotes the nontrivial SO bundle over

S1. Suppose we want to construct a specter T for LS2 that is locally a fibration of

spectra. The restriction Tju of the specter to one hemisphere U will be equivalent to

the parametrized spectrum A x U, for some spectrum A. On the boundary of U, the

specter is A x OU = A x S1 , and therefore on the boundary of V the specter must be

ip(A x S1 ) =: (A x S1 ) AS1 (S 0>xS1)-let us denote this last parametrized spectrum

by Atw(- 1). As Atw(- 1) is a fibrant parametrized spectrum over S1 with fibre A, it is

constructed by gluing together two copies of A x D1 along the boundaries A x S °.

Such a gluing is determined by a map S - Aut(A), where Aut(A) denotes the

homotopy automorphisms of the spectrum A. In the case of Atw(-1) this gluing is the

map -1A : SO - Aut(A) taking one point to idA and the other point to -idA. The

specter T restricts on the hemisphere V to a fibrant parametrized spectrum Tlv with

boundary AtW(-l)-this parametrized spectrum defines a nullhomotopy of the gluing

map - 1A Of Atw (- 1). In summary:

{Specters/Ls2} <- {Spectra A with : D1 - Aut(A) s.t. o = idA, 1 = -idA}

Example 2.2.14. Recall the nontrivial haunt Ls3 over S3 determined by the equatorial

gluing function 4(P) = P AS2 (S2 S 2). Note that this haunt is isomorphic to the

haunt determined by the gluing function '(P) = P AS2 (S0 >XS2), where SO>S2 is
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the unique nontrivial SO-spectrum bundle over S2 . Suppose T is a specter for Lsa3

that is locally a fibration of spectra. Then, as in the previous example, T restricted

to one hemisphere U is a trivial bundle with fibre spectrum A. The boundary TIau

of this restriction is A x AU = A x S2 and the boundary Tlav of the other restriction

must therefore be 0'(A x S2) = (A x S2) As2 (S >S 2 )-denote this last parametrized

spectrum by Atw(7). The fibrant parametrized spectrum Atw() over S2 is determined

by the gluing function A : S1 - Aut(A); here 7rA is the function rAA where r/: S1

Aut(S ° ) is the nontrivial element of the first stable stem. The restriction Tlv of the

specter to the second hemisphere constitutes a nullhomotopy of the gluing function

TA for the boundary parametrized spectrum Atw(n). Again we have a classification:

{Specters/Ls3} +-, {Spectra A with 4: D2 --+ Aut(A) s.t. sl = r7A}

We have seen a variety of examples of specters and have described all the specters

associated to a few particular haunts. We now systematically investigate the equiv-

alence classification of specters, giving a homotopy-theoretic description of specters

that naturally parallels the characterization of haunts in proposition 2.2.6.

Ordinary line bundles with flat connection on X are classified by maps X - BRX.

There is a universal RX-bundle ERX over BRX and an associated R-bundle P(R) :=

ERX XRX R. A section s of the line bundle L(c) associated to a map c: X -÷ BRX

is determined by a lift of c to a map s: X --+ P(R):

R - P(R)

/ I
' 1

X C-- ' BRX

We describe the parametrized stable homotopy analog of this description. Haunts (the

line bundles over the structure stack) on X are classified by maps X -- B Pic(S°);

as before Pic(S °) denotes the realization of the category of invertible spectra. Let

Sp, denote the realization of the subcategory of weak equivalences of the category
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of spectra, and note that Pic(S ° ) acts on Spw. There is a universal Pic(S°)-bundle

EPic(S °) over B Pic(S°) and an associated Spw-bundle P(Spw) := EPic(S °) XPic(O)

Spw. We can consider lifts of the classifying map c: X - B Pic(S° ) to P(Spw):

SpW ' P(Spw)

X B Pic(S°)

Indeed, such lifts classify specters:

Proposition 2.2.15. Let c: X B Pic(S° ) be the classifying map for a haunt L(c).

Weak equivalence classes of specters for the haunt L(c) are in one-to-one correspon-

dence with homotopy classes of lifts of c to maps X P(Sp).

That there should be such a homotopy-theoretic classification of specters was sug-

gested to us by Bill Dwyer. A proof of a slightly stronger result will appear in

section 3.2.2.

We conclude our discussion of haunts and specters with a few remarks about

products. Given two ordinary invertible sheaves (line bundles) L and L' over X we

can form their tensor product L ox L'. Analogously, given two haunts we should be

able to form their tensor product. Making sense of tensoring two modules over a stack

of semi-ring categories would require a bit of doing; (see Dunn [12] for a definition of

the tensor product of modules over a bipermutative category). Using the classification

of haunts in proposition 2.2.6 we can side step this categorical tensor construction:

define the product L L' of two haunts to be the haunt classified by the product

(in the group structure on B Pic(S°)) of the classifying maps c, c' : X - B Pic(S°).

There is a product of specters covering this tensor product of haunts. The classifying

projection P(Spw) - B Pic(S° ) for specters is a map of multiplicative monoids.

Given two specters T and T' classified by lifts s, s' : X P(Spw) of the haunt maps

c, c' : X B Pic(S°), we simply define the product T A T' to be the specter (for the

haunt L L') classified by the product lift s s' : X -- P(Spw).
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Chapter 3

Local Systems of Categories of

Spectra

In section 2, we described haunts as invertible sheaves, or more specifically as locally

free rank-one modules over the structure stack of parametrized spectra; specters, the

twisted parametrized spectra, were global sections of these modules. In this section,

we leave behind that sheaf-theoretic approach and reformulate haunts as local systems

of categories of spectra. Such a local system is determined by assigning to each open

set in a cover a category equivalent to the category of ordinary, not parametrized,

spectra and to the two-fold intersections in the cover compatible equivalences of these

categories of spectra.

In order to formalize this local systems viewpoint, we need a clear notion of

equivalence between two categories of spectra, which is to say we need a "category of

categories of spectra"-such a category is typically referred to as a homotopy theory of

homotopy theories. We chose to work with the model category of simplicial categories,

which contains in particular the subcategory of simplicial categories weakly equivalent

to the simplicial localization of the category of spectra. When the base space B has

the structure of a simplicial complex, and the open sets of the cover of B are the

stars of the simplicies, then the data of a local system amounts to a functor from the

diagram category of simplicies of B into (a subcategory of weak equivalences in) the

category of simplicial categories. This diagram functor approach has the disadvantage
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that it clouds the conceptual simplicity and the geometry of haunts and specters, but

it has the advantage that it avoids the technicalities of stacks of 00oo-categories and

thereby eases the proofs of propositions 2.2.6 and 2.2.15.

After proving those propositions, we give another reformulation of haunts and

specters: haunts are precisely A, ring spectra arising as Thom spectra of multiplica-

tive stable spherical fibrations on loop spaces, and the associated specters are simply

modules over the ring spectrum. This last description has the advantage of being

entirely elementary-it avoids both modules over stacks of parametrized spectra and

diagrams in the model category of simplicial categories-but it thoroughly obscures

various constructions with and applications of specters, and so in section 4 we return

to our original sheaf-theoretic perspective.

3.1 The Homotopy Theory of Homotopy Theories

As it will play a central role in our discussion of local systems in section 3.2, we

recall what is known about the homotopy theory of homotopy theories. In recent

decades, model categories have been the predominant notion of abstract homotopy

theory. However, there is not known to be a model structure on the category of model

categories, and this is a huge impediment to constructing (as we are doing in this

paper) bundles of homotopy theories. We must consider a weaker notion of abstract

homotopy theory in order to have a decent homotopy theory of homotopy theories.

There are various options, including the model category of Segal categories (due

to Hirschowitz-Simpson 231), the model category of complete Segal spaces (due to

Rezk 142]), and the model category of simplicial categories (due to Dwyer-Hirschhorn-

Kan [13j and Bergner [4]). Which we pick does not matter because all three model

categories are Quillen equivalent (a result due to Bergner [41); we work with the model

category of simplicial categories, as this is the simplest to describe.

By a 'simplicial category' we will mean a category enriched over simplicial sets.

Dwyer and Kan [15] realized that to a model category M there is canonically associ-

ated a simplicial category LHM, the hammock localization of M, which encodes all
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of the homotopy-theoretic information contained in M. This is the sense in which

simplicial categories are a faithful representation of abstract homotopy theories. In

particular, the homotopy category Ho(M) of M is recovered as the category of compo-

nents 7ro(LHM) of the hammock localization; here the category of components 7ro(C)

of a simplicial category C (also called the homotopy category of C) has the same

objects as C', but has morphisms Hom,,(c)(x,y) = ro(Homc(x,y)). A morphism

f x -+ y in a simplicial category C is called a homotopy equivalence if it becomes

an isomorph:ism in ro(C).

The model structure on the category of simplicial categories is as follows. A map

¢: C D of simplicial categories is a weak equivalence if it is a Dwyer-Kan equiva-

lence, namely if 0 is a weak equivalence on Hom sets and an equivalence on homotopy

categories; that is, 0 is a weak equivalence if : Homc(x, y) - HomD(q(x), 0(y) ) is a

weak equivalence of simplicial sets for all objects x, y E C, and if 0 : 7ro(C) - 7wo(D)

is an equivalence of categories. A map : C -- D is a fibration if it is a fibration on

Hom sets and if all homotopy equivalences in D lift to C; that is, is a fibration if

: Homc(x, y) -- HomD(O(x), 5(y)) is a fibration of simplicial sets for all x, y E C,

and if for all objects x E C and all homotopy equivalences h: (x) - z in D, there

exists a homotopy equivalence h x - y in C such that 0(h) = h. Cofibrations

of simplicial categories are determined, as usual, by the left lifting property. These

define a model structure on the category of simplicial categories [4]. Given an object

in a model category, there is a good notion of the space of automorphisms of that

object, and in the following we will be focused on the automorphisms of the category

of spectra (thought of as a simplicial category via its hammock localization).

Remark 3.1... Considering that our objection to model categories as a representation

of homotopy theory was that there is no obvious model category of model categories,

it seems odd to have insisted on having a model category of simplicial categories

rather than merely a simplicial category of simplicial categories. Of course, we can

recover a simplicial category of simplicial categories as the hammock localization of

the model category of simplicial categories, but it would be better not to have to rely

on the crutch of a model structure. The real solution to this and many other problems
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is to work directly in the c0-category of c0-categories. We do not do this because the

details of such an oc-categorical theory are not yet fully in place; see Lurie [31, 32],

though, for substantial progress in that direction.

3.2 Diagrams of Simplicial Categories

We described haunts as locally free rank-one modules over the structure stack of

parametrized spectra. We now reinterpret this notion in terms of diagrams of sim-

plicial categories weakly equivalent to the hammock localization of the category of

spectra. We then express the category of specters for such a haunt as a homotopy

limit in the model category of simplicial categories.

3.2.1 Haunts

Let H be a haunt on the space X. By definition, if U is a sufficiently small open

set in X, then the category H(U) is homotopy equivalent to the category Ox(U) of

parametrized spectra on U. If the subspace U is moreover contractible, then Ox(U)

is homotopy (indeed Quillen) equivalent to the category Sp of spectra. (Roughly

speaking, this follows because a fibrant parametrized spectrum is a quasifibration

and any quasifibration over a contractible space is trivializable--see [37].) Let {Ui}

denote a contractible cover of X; to specify a haunt on X it will be sufficient, by the

above remarks, to assign to the subsets Ui categories Ci that are each appropriately

equivalent to the category of spectra and to the two-fold intersections {Uij) a col-

lection of compatible equivalences Ci Cj. We formalize these compatibilities using

diagram functors into the category of simplicial categories.

First we fix some notation. The space X is homotopy equivalent to the realization

of a simplicial set B; let s(B) denote the category of simplicies of B, that is the

category whose objects are the simplicies of B and whose morphisms are the face

and degeneracy maps. Let sCat denote the model category of simplicial categories,

and let Sp now denote the object of sCat given by the hammock localization of the

category of spectra. Let w(sCat, Sp) denote the weak equivalence component of sCat
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containing Sp; that is, the objects of w(sCat, Sp) are simplicial categories that can

be connected to Sp by a zig-zag of weak equivalences, and the morphisms are weak

equivalences of simplicial categories.

Remark 3.2.1. We pause to consider a few set-theoretic issues. The category sCat is

really the category of small simplicial categories. The hammock localization of the

category of spectra is not only not small, it need not even have small Hom sets; we

therefore chose a small simplicial category homotopically equivalent to that hammock

localization--by the notation Sp we will implicitly refer to that small replacement. In

a similar vein, the weak equivalence component of Sp in sCat is not a small category;

we will need to use it in constructions that only apply to small categories, so we

chose a small. subcategory of this weak equivalence component that is homotopically

equivalent to the full component-we implicitly refer to that small replacement by the

notation w(sCat, Sp). We will not henceforth distinguish between such (simplicial)

categories and their small replacements.

Recharacterization 3.2.2. A haunt over a simplicial set B is a functor from s(B),

the category of simplicies of B, to w(sCat, Sp), the weak equivalence component of

the category of simplicial categories containing the category of spectra. The category

of haunts over B, denoted HauntB, is the full diagram category w(sCat, Sp)s(B).

We immediately have a notion of the space of haunts, namely the realization

IN. HauntB I of the nerve of this diagram category. Note that we will not in general

distinguish between simplicial sets and their realizations. There is a natural candi-

date for a classifying space for haunts, namely N.w(sCat, Sp). The idea that a weak

equivalence component of an object of a model category can function as a classify-

ing complex is of course due to Dwyer and Kan [16]. Indeed, there is a suggestive

homotopy equivalence N.w(sCat, Sp) _ B haut(Sp). Here B haut(Sp) is the nerve of

the simplicial category with one object and with morphisms the simplicial monoid

haut(Sp) of homotopy automorphisms of the category of spectra; (this simplicial

monoid is defined to be the sub-simplicial monoid of HomLH(sCat)(Sp , Sp) consist-

ing of the components projecting to isomorphisms in Hom,o(LH(scat))(Sp, Sp)). The
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classification of haunts can therefore be expressed as follows.

Theorem 3.2.3. The space N. HauntB of haunts over a simplicial set B is weakly

homotopy equivalent to the (derived) mapping space Hom(B, B haut(Sp)). In other

words, B haut(Sp) is a classifying space for haunts.

Remark 3.2.4. We adopt the convention that all mapping spaces are implicitly de-

rived unless otherwise noted. We will also take "holim" and "hocolim" to refer to the

homotopically invariant homotopy limit and colimit functors; these are sometimes

referred to as the corrected homotopy limit and colimit and can be defined respec-

tively by composing functorial objectwise fibrant or cofibrant replacement with the

Bousfield-Kan holim or hocolim functor.

Before proving the theorem, we state one lemma:

Lemma 3.2.5. Suppose M is a model category that is Quillen equivalent to a cofi-

brantly generated simplicial model category. Let B be a simplicial set and let s(B)

denote the category of simplicies of B. For any object X of M there is a weak homo-

topy equivalence

N.(w(M, X)S(B )) m holim N.w(M,X)
s(B)

Dwyer and Kan prove this for M equal to the category of simplicial sets [16, Thm

3.4], but their proof works for any cofibrantly generated simplicial model category.

Moreover, both sides of the equivalence are weakly homotopy invariant under Quillen

equivalence between not-necessarily-simplicial model categories; this follows using

various results from [14, 15].

Proof of Theorem 3.2.3. We have the chain of equivalences:

N. HauntB - N.(w(sCat, Sp)S(B)) holim N.w(sCat, Sp)
s(B)

_ Hom(N.s(B), N.w(sCat, Sp))

_ Hom(B, B haut(Sp))
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The category of simplicial categories is Quillen equivalent to the category of complete

Segal spaces [4] which is a cofibrantly generated simplicial model category [42]; the

first equivalence therefore follows from the above lemma. The second equivalence is

a consequence of [22, Prop 18.2.61, and the third is immediate. []

3.2.2 Specters

We now discuss specters in this new context of diagrams of simplicial categories. In

the sheaf-theoretic framework of section 2 a specter was a global section of a haunt. A

haunt is now a functor H from the category of simplicies s(B) into the category sCat of

simplicial categories. Naturally enough, a "section" of such a diagram H of simplicial

categories should be some appropriately consistent choice of objects {xb E H(b))bes(B)

of the simplicial categories H(b) in the diagram-we can think of an object Xb H(b)

as a locally constant section of the haunt H restricted to the simplex b. It would

be too much to ask that the collection of objects b be strictly compatible with the

morphisms in the diagram H. Instead, we merely demand that there be chosen

homotopies to "glue the objects together"-this gluing data is formally encoded in a

homotopy limit.

Recharacterization 3.2.6. Let H be a haunt over B, that is a functor from the

category of simplicies s(B) to the category of simplicial categories that lands in the

weak equivalence component w(sCat, Sp) of the category of spectra. The (simplicial)

category of specters for the haunt H, denoted SpecterH, is defined to be the homotopy

limit holim H.
s(B)

Of course, this homotopy limit is only defined because we have a model structure

on the category of simplicial categories, and as usual we mean the homotopically

invariant homotopy limit. We also have an associated space of specters for the haunt

H, namely N.w(SpecterH). Here w(C) denotes the sub-simplicial category of the

simplicial category C whose objects are the same as those of C but whose mor-

phisms Homv,(c) (a, b) are the components of Homc(a, b) projecting to isomorphisms

in Homo(c)(a, b); note that N.w(C) is, a priori, a bisimplicial set and we implicitly
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take its diagonal.

There isn't a classifying space for specters, per se, but there is a classifying fibra-

tion; that is, there is a fibration 4: Uhaut(Sp) - B haut(Sp) such that the space of

specters for a fixed haunt H : B -- B haut(Sp) is homotopy equivalent to the space

of lifts of H along 4. The fibre of 4 should be the "space of spectra" and we think of

the total space Uhaut(Sp) as the "universal haunt". In fact, this classifying fibration

comes from a fibration of simplicial categories, which is defined as the diagonal map

in the following diagram:

hocolim (-)c -, hocolim (-)
w(sCat,Sp) w(sCat,Sp)

hocolim *
w(sCat,Sp)

That is, we factor the left hand map by a weak equivalence followed by a fibration I;

this fibration is the desired specter classifying fibration of simplicial categories. Here

hocolim(-) refers to the homotopy colimit of the inclusion w(sCat, Sp) - sCat.
w(sCat,Sp)

The analogous specter classifying fibration of spaces is the right hand vertical

arrow in the diagram

N.w hocolim(-)) c Uhaut(Sp)
w(sCat,Sp)

I

N.w (hocolim *) - ~ N.w(sCat, Sp) -- B haut(Sp)
w(sCat,Sp)

The fibration factorization here defines the space U haut(Sp). Note that the fibre of

0 over the point X E w(sCat, Sp) is weakly equivalent to N.w(X) which is in turn

weakly equivalent to the space of spectra N.w(Sp). Morally speaking, the bundle

Uhaut(Sp) is the bundle Ehaut(Sp) Xhaut(p) N.w(Sp) associated to the tautological

bundle Ehaut(Sp) -- B haut(Sp). However, on its face the action of the simplicial

monoid haut(Sp) on N.w(Sp) is only defined up to weak homotopy, which is insuf-

ficient for defining the associated bundle; presumably the action can be made strict,
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but we do not pursue that here.

We now state the simplicial-category-level classification result for specters:

Theorem 3.2.7. Let H : s(B) - w(sCat, Sp) be a functor defining a fixed haunt

on the simplicial set B. This functor determines an associated map h : hocolim * -
s(B)

hocolim * classifying the haunt. The category of specters SpecterH for this haunt
w(sCat,Sp)

is weakly equivalent, as a simplicial category, to the category of lifts of h along the

specter classifying fibration:

hocolim (-)
w(sCat,Sp)

hocolim ·* hocolim *
s(B) h w(sCat,Sp)

In other words the category of specters is weakly equivalent to a (derived) mapping

space in the overcategory of hocolim *, namely
w(sCat,Sp)

SpecterH ~ Horn hocolim (hocolim *, hocolim(-))
w(sCat,Sp) s(B) w(sCat,Sp)

Proof. The first step in the proof is a consequence of the following general lemma:

Lemma 3.2.8. Let M be either an oo-topos (such as simplicial sets or spaces) or

a model category of homotopy theories (such as simplicial categories, complete Segal

spaces, or quasi-categories). Let D be a small category and F : D - M a func-

tor. Denote by 4: hocolim F -- hocolim * the natural projection. Provided F takes
D D

all morphisms in D to weak equivalences in M, the homotopy limit of F is weakly

equivalent to the object of derived sections of the map 0; that is

holim F Homhocolim * hocolim *, hocolim F)
D D D D

In the case of specters, we therefore have the equivalence

SpecterH - holim H _~ Homhocolim * hocolim *, hocolim H
s(B) s(B) s(B) s(B)
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We want to translate this mapping space into a space of lifts of the classifying map

h : hocolim -* hocolim *. We begin by rewriting one of the homotopy colimits in
s(B) w(sCat,Sp)

terms of a larger indexing category:

hocolim H _ h* (hocolim(-)
s(B) \w(sCat,Sp) /

Here h* denotes the derived pullback from the overcategory in sCat of hocolim * to
w(sCat,Sp)

the overcategory of hocolim *. Next, we have a Quillen adjunction
s(B)

sCat/ (hocolim*) * sCat/ (hocolim 
s(B) hi w(sCat,Sp)

where the pushforward h! is given by precomposition with the map h. This adjunction

leads to an equivalence of function complexes

HOmhocolim * (hocolim *, h* (hocolim (-)) ) Hom hhocolimocolim *, hocolim(-))
s(B) s(B) w(sCat,Sp) s(B) w(sCat,Sp)

as desired. a

Not surprisingly, the analogous result at the level of spaces is the following.

Corollary 3.2.9. Let h : B B haut(Sp) denote the classifying map for a fixed

haunt H over the simplicial set B. The associated space of specters N.w SpecterH is

weakly homotopy equivalent to the space HomBhaut(sp)(B, Uhaut(Sp)) of maps from

B to the universal haunt U haut(Sp) that commute with projection to B haut(Sp). In

other words, the space of specters for the haunt H is weakly equivalent to the space of

lifts in the diagram

Uhaut(Sp) , N.w(Sp)

B > B haut(Sp)h
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Proof. The chain of equivalences is

N.w SpectrH = N.w holim H - N.w Hom hocolim * (hocolim , hocolim(-))
s(B) w(sCat,Sp) s(B) w(sCat,Sp)

= N.w Horn hocolim * (hocolim , hocolim (-)
w(sCat,Sp) s(B) w(sCat,Sp)

N. Horn hocolim *, w hocolim, w
w(sCat,Sp) s( B) w(sCat,Sp)

- HomN.w(sCat,sp) (N.s(B), N.w (hocolim(-))
\w(sCat,Sp)

HOmB haut(Sp) (B, U haut(Sp))

The first hornotopy equivalence is a consequence of the theorem, and the second line

follows from the definition of the Hom set as a derived mapping space. Next note

that the functor w : sCat --+ hGpd from simplicial categories to homotopy groupoids

is right adjoint to the inclusion-the homotopy equivalence in the third line follows

because hocolim * and hocolim * are already homotopy groupoids. The category of
s(B3) w(sCat,Sp)

homotopy groupoids is in fact Quillen equivalent to the category of simplicial sets;

the equivalence in the fourth line follows, and the fifth line is immediate. O

3.3 A,, Thom Spectra on Loop Spaces

We begin this section by identifying the monoid haut(Sp) of automorphisms of the

category of spectra with a classifying space Z x BG for stable spherical fibrations.

Using this identification, we can associate to a haunt over X an A, ring spectrum

arising as a Thom spectrum over the loop space of X. This in turn allows us to

recharacterize the category of specters for the haunt as a category of modules over

that ring spectrum. This recharacterization on the one hand obscures the intrinsic

symmetry of specters and breaks the natural connection with parametrized homo-

topy theory, which is essential to the definition of specter invariants in section 4; on

the other hand, because module spectra are familiar objects, the change in perspec-
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tive demystifies specters and will be important in applications to symplectic Floer

homotopy [9].

3.3.1 Automorphisms of the Category of Spectra

Haunts over a space X are classified by maps from X to the space B haut(Sp), a deloop

of the simplicial monoid of homotopy automorphisms of the category of spectra. We

investigate the homotopy type of this classifying space. The category of spectra has

a natural monoidal structure, the smash product; given an invertible spectrum J, the

functor J A - : Sp -- Sp smashing with J determines a self homotopy equivalence of

the category of spectra. Roughly speaking, this association determines a map from

the category of invertible spectra (which we called Pic(S °) in section 2) to the space

of self equivalences haut(Sp). That this map is a weak equivalence is well known to

experts, but we are not aware of a statement or a proof in the literature:

Theorem 3.3.1. Let Pic(S°), the Picard category, denote the subcategory of the

category of spectra whose objects are invertible spectra and whose morphisms are weak

equivalences. There is a weak equivalence

Pic(S° ) _ haut(Sp)

from the nerve of the Picard category to the simplicial set of self homotopy equivalences

of the category Sp of spectra.

Proof. We merely sketch the proof. The category of spectra is a model category

representing a particular homotopy theory, and we can work in any of a number of

equivalent categories of homotopy theories. We have primarily utilized sCat, the

category of simplicial categories, but for this theorem it is more convenient to work in

qCat, the category of quasi-categories-there is a Quillen equivalence between sCat

and qCat [32]. Recall that a quasi-category is a simplicial set that satisfies a weak Kan

condition, namely that a horn oA\n - 1 fills in provided the missing face A\n- is

internal, that is 0 < i < n; this weak Kan condition reflects the idea that morphisms
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(edges) in a category are composable, but need not be invertible up to homotopy.

By qCat we refer, in fact, to the category of simplicial sets equipped with a model

structure in which quasicategories are precisely the fibrant objects.

Let Sp denote a quasicategory modeling the category of spectra; we presume

that Sp is equipped with a monoidal structure modeling the smash product. In this

context Pic(0S°) is a subquasicategory of Sp which is described as follows. The vertices

of Pic(S °) are the invertible objects in Sp, that is the vertices v E Sp such that there

exists a w E Sp with v A w weakly equivalent to S ° E Sp; the k-simplicies of Pic(S °)

are the k-simplicies of Sp all of whose vertices are invertible and all of whose edges

are weak equivalences. By definition, the simplicial monoid haut(Sp) has k-simplicies

the set of weak equivalences Ak x Sp * Sp. There is now a natural map

/i: Pic(S° ) -* haut(Sp)

which takes a k-simplex P in Pic(S°)k to the composite Ak x Sp Pxid Pic(SO) x Sp -

Sp x Sp - Sp. This composite is an equivalence and is therefore a k-simplex in

haut(Sp).

We would like ,u to be an equivalence. It suffices to show that any map F

(Ak, nAtk) -_ (haut(Sp), Pic(S°)) is homotopic, relative to its boundary, to a map

F' : (Ak, Ak) -- (Pic(S°), Pic(S°)). Suppose k = 0, so F is simply an equivalence

Sp -- Sp; we take F' to be the map Sp -- Sp given by smashing with F(SO), that

is, F' = F(S ° ) E Pic(S°). One extremely convenient feature of quasicategories (as

distinguished from, for example, model categories) is that one can naturally take

homotopy colimits over any simplicial set, not only over a category; this feature is

helpful in defining a comparison map between F and F'. The quasicategory Sp is

in particular a simplicial set, and given an object X E Sp, let (-/X) denote the

"overcategor-y" of X, that is the subsimplicial set of Sp whose 0-simplicies are maps

Y --* X. Moreover, denote by (-/X)sph the corresponding "spherical subcategory",

that is the full subcategory whose 0-simplicies are the maps Si --+ X. We have the
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comparison map

F(S° ) A X _- hocolim F(S ') - hocolim F(Y) - F(X)
(-/X)sph (-/X)

This map is an equivalence when X = S ° , and the left hand side preserves homotopy

colimits. It is a consequence of Lurie's extensive work on quasicategories [32] that

because F is an equivalence, it preserves homotopy colimits. The comparison map

is therefore a natural weak equivalence, as desired. The cases of higher k could be

handled similarly. D

Corollary 3.3.2. The simplicial set haut(Sp) of self equivalences of the category of

spectra has the homotopy type Z x BG where G is the space of stable self homotopy

equivalences of the sphere, that is G = haut(S) - colimhaut(Sn) where in the last
n

expression Sn denotes the ordinary n-sphere.

Proof. Given the theorem, this is a consequence of the weak equivalence Pic(SO) 

Z x BG. To see that equivalence, first note that any invertible spectrum is weakly

equivalent to some shift Sn of the sphere spectrum. Thus the category Pic(S ° ) has Z

components; the n-th component is all spectra weakly equivalent to Sn together with

all weak equivalences between them. By Dwyer and Kan's classification theorem [16],

this component has the homotopy type B haut(Sn) _ B haut(S°). O

3.3.2 Specters as Module Spectra

Armed with the identification of the classifying space Bhaut(Sp) with B(Z x BG),

we can describe the A, ring spectrum corresponding to a haunt. Let h : X -*

B haut(Sp) - B(Z x BG) be the classifying map for a haunt over the space X. The

map Qh: QX --+ Z x BG defines a stable spherical fibration, which we will denote

r(h), over QX. Because Qh is a loop map, the spherical fibration r(h) is multiplicative

and the associated Thom spectrum Th(,7(h)) is therefore an A, ring spectrum [33].

The fibration r7(h) can be thought of more geometrically as follows. The haunt is

a local system or bundle over X whose fibre is the category of spectra, and the
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monodromy of the haunt around a loop E QX is an invertible spectrum, namely

the fibre r(h)e; the multiplicative structure of the spherical fibration corresponds,

naturally enough, to the composition of the loop monodromies.

If the Thom spectrum Th(iq(h)) encodes the structure of the haunt h, we might

expect to be able to describe the associated category of specters in terms of this Thom

spectrum. Let Tr be a specter for the haunt h and suppose T is fibrant in the sense

that it is locally isomorphic to a quasifibration of spectra. Given a loop £: S 1 -+ X

in X, we can pull Tr back to a specter *TJ on S'. From example 2.2.12 we know that

this specter is determined by giving the spectrum T at the basepoint of S1 together

with an equivalence e : /(h)e A T _ T; in other words, we need to glue T back to

itself, but shifted by the monodromy sphere (h)e along the given loop. The family

of compatible equivalences {(qe}eEx amounts precisely to an action of Th(r7 (h)) on

T. To a specter for the haunt h we can therefore associate a module over the ring

spectrum Th(71(h)); indeed there is an equivalence of categories:

Proposition 3.3.3. Let H denote a fixed haunt over X with classifying map h: X

B(Z x BG). The loop map Qh determines a multiplicative stable spherical fibration

r(h) with associated Thom spectrum Th(,q(h)) an Ao ring spectrum. There is a weak

equivalence of simplicial categories

SpecterH - LH(Th(r (h))- mod )

between the category of specters for H and the hammock localization of the category

of module spectra over the Thom spectrum Th(r(h)).

That specters can be thought of as modules over a ring spectrum was also realized

by Mike Hopkins and Jeff Smith, and the formulation here owes various details to

discussions with them.

Sketch of proof. We have already done most of the work in establishing, in theo-
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rem 3.2.7, that

SpecterH _ Ho hocolim hocolim *, hocolim
wu(sCat,Sp) s(B) w(sCat,Sp)

Here B is a simplicial set with the homotopy type of X. By theorem 3.3.1 the base

space hocolim * _ N.w(sCat, Sp) has the homotopy type B Pic(SO). In particular,
w(sCat,Sp)

we can model this space by the simplicial category, also denoted B Pic(S°), with just

one object * and with morphism space the (simplicial) monoid Pic(SO). Similarly,

the total space hocolim(-) of the classifying fibration can be explicitly modeled
w(sCat,Sp)

by a simplicial category, denoted U Pic(SO), as follows. The objects of U Pic(S ° )

are ordinary cofibrant and fibrant spectra. The morphism space Homu Pic(so) (T, S) of

U Pic(S° ) is the homotopy colimit of the functor Homsp(- AT, S): Pic(S°)cf -- sSet.

Here Pic(S°)cf denotes the category of cofibrant and fibrant invertible spectra. The

idea behind this construction is that roughly speaking a morphism from T to S

in U Pic(SO) should consist of a pair (y, q) of an invertible spectrum y E Pic(SO° )

and a morphism of spectra : 'y A T - S. Because hocolim* Pic(S°)cf, the
Pic(So)cf

projection Homsp(- A T, S) - * induces a map U Pic(S° ) -* B Pic(S°). Thinking of

X - hocolim * as a simplicial category, we therefore have the reformulation:
s(B)

Hom hocolim * (hocolim *, hocolim(-)) HomBPic(So)(X, U Pic(S°))
w(sCat,Sp) s(B) w(sCat,Sp)

The final equivalence is

HomB Pic(So) (X, U Pic(S°)) - LH(Th( v(h))-mod)

On this count we merely indicate the map from the right to the left hand side.

We can model X by the simplicial category with one object and with morphism

space QX. The map h : X - B Pic(SO) corresponds to the map of morphism

spaces QX - Pic(SO) classifying the spherical fibration 7l(h). Given a Th(r(h))-

module T, one immediately has, for any k-simplex s : Ak --, X, a morphism

Th(r,(h)l,) A T -- T. By a shift in perspective, the stable spherical bundle qr(h)l,
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on \k naturally corresponds to a k-simplex in the morphism category Pic(S ° ) of

B Pic(SO), and the map Th(r/(h)ls) A T -+ T then provides a lift of this morphism

k-simplex to U Pic(S°), as desired. O

Example 3.3.4. Consider again the haunt Ln over S1 whose monodromy is suspension

by Sn. This haunt is classified by the map S1 B(Z x BG) representing n C z =

7r(B(Z x B()). The loop of this map, QS1 - , -- x BG, classifies the

fibration over Z whose fibre at i is Sn i. The associated Thom spectrum is VieZ Sn-i,

which we considered as a specter already in example 2.2.12. The set of specters for

L,, is, as we saw in that example, the same as the set of module spectra over this

distinguished specter Viez Sn i.
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Chapter 4

Invariants of Specters

A parametrized spectrum P over a space X has two naturally associated spectra,

namely the total spectrum P/X representing the homotopy type of P and the spec-

trum of sections F(P) representing the cohomotopy type of P. The generalized ho-

mology groups of these associated spectra provide invariants of the parametrized

spectrum. A specter, that is a twisted parametrized spectrum, has no globally de-

fined homotopy or cohomotopy type analogous to the total spectrum P/X or the

spectrum of sections r(P). Nevertheless, it is frequently possible to define invariants

associated to a specter by first applying a generalized homology functor and then tak-

ing an associated global spectrum, rather than vice versa as is typical in parametrized

homotopy theory.

We return to the stack-theoretic perspective of section 2. There, we treated the

category of spectra as a ring and defined haunts to be locally free rank-one modules

over a parametrized version of this ring; specters were global sections of these mod-

ules. We begin this section by describing an analogous construction where the basic

ring is the category of R-modules for a commutative ring spectrum R. This leads to

a notion of R-haunt and R-specter. We then see how to associate to a haunt H an

R-haunt HR and to a specter T for H an R-specter TR for HR; this base change is the

aforementioned "generalized homology functor". When the R-haunt HR is trivializ-

able, the R-specter TR has the form of a parametrized R-module and therefore has

a global homotopy type TR/IX. The homotopy groups of TR/X are the R-homology
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invariants of the original specter T. We describe a few examples of these specter

invariants and discuss a spectral sequence for computing them.

4.1 R-Haunts and R-Specters

The category of spectra, or equivalently the category of modules over the sphere

spectrum S, has a smash product which, roughly speaking, gives it the structure

of a commutative ring. The stack of parametrized spectra on a space X therefore

functions as a sheaf of rings, and we characterized haunts as locally free rank-one

modules over this stack. There are natural subcategories of the category of spectra

that have their own commutative products, and we study modules over the stacks

associated to these categorical rings. Specifically, if R is an A, ring spectrum, then

we have the category R-mod of modules over R. If R is moreover E,, then there

is a natural product AR which, roughly speaking, gives R-mod the structure of a

commutative ring; see Dunn [12] for a detailed discussion of the monoidal structures

on such module categories. We can associate to an open set U C X the category

OjR(U) of parametrized R-modules on U. These parametrized R-modules form a

stack, which again has a monoidal structure coming from AR. Morally, an R-haunt

is a locally free rank-one module over this structure stack O R of parametrized R-

modules. The stack O(9 is naturally a stack of oo-categories, and by a module over

this stack we refer to a stack of oc-categories with an appropriate action of O R . A

more complete definition of R-haunt is therefore as follows:

Definition 4.1.1. An R-haunt is a stack M of oo-categories on a space X with an

action of the monoidal stack of oc-categories O R of parametrized R-modules satisfying

the following condition: the stack M is locally free of rank one in the sense that for all

points x E X there exists an open set U C X containing x and an object Q E M(U)

such that the map OR(9R u - MIu given by A -+ A Q is an equivalence of stacks of

oo-categories. A twisted parametrized R-module or R-specter is a global section of

an R-haunt.

In order to make this precise, one must give a thorough treatment of stacks of
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oo-categories and of monoidal stacks of oc-categories; we do not do this, but note

that Lurie's work [32] provides key elements of such a treatment. Also note that,

as in remark 2.2.2, the additive structure on these stacks is given by the categorical

coproduct and so is justifiably ignored-this saves us the horror of contemplating

symmetric bimonoidal stacks of oc-categories.

An R-haunt is locally equivalent to the stack of parametrized R-modules and

as such can be specified concretely in terms of gluing functions. Suppose {Ui} is

an open cover of X; on an intersection Uij a gluing function is a self equivalence

of O(JRIuj as a module over itself. Such an equivalence is given by smashing with

an invertible parametrized R-module. Let Pic(R) denote the category of invertible

R-modules together with their homotopy equivalences, and let Pic(R) denote the

corresponding sheaf of invertible parametrized R-modules. The gluing data for an

R-haunt is therefore a 1-cocycle c with values in Pic(R), which is to say a compatible

system cij of R-module gluing functions on the one-fold intersections of the cover.

Sensibly enough, R-haunts on X are classified by homotopy classes of maps from X

to B Pic(R).

An R-specter looks locally like a parametrized R-module, but has a global twist

determined by the R-haunt. Such a twisted parametrized R-module can be presented

as follows: to describe an R-specter for the R-haunt associated to a gluing function

c for the cover {Ui) it suffices to give a parametrized R-module fi on each open set

Ui together with compatible equivalences between fi A(R,Uij) cij and fj. Compare

section 2.2.2.. There is a classification of R-specters analogous to that of ordinary

specters in proposition 2.2.15, but we do not go into detail.

In section 3.2.1 we formulated haunts not as stacks of oo-categories, but as di-

agrams in the category of oc-categories-or more precisely in the category sCat of

simplicial categories. The diagram had the homotopy type of the base space X,

and the functor to sCat took objects to simplicial categories weakly equivalent to

the category of spectra, and morphisms to weak equivalences. A similar approach is
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possible for R-haunts but it requires more work. Specifically, let R-mod denote the

oo-category of R-modules; this is an element of the category oo- Cat of o0-categories.

Now define (R-mod)-mod to be the subcategory of oo-Cat of modules over R-mod;

in turn w((R-mod)-mod, R-mod) denotes the subcategory of (R-mod)-mod of objects

weakly equivalent to R-mod, together with the (R-mod)-module weak equivalences

between them. Finally, an R-haunt would be a functor from an appropriate diagram

homotopy equivalent to X into w((R-mod)-mod, R-mod). The associated oo-category

of R-specters would be the homotopy limit of this functor.

There is also a Thom spectrum approach to R-haunts and R-specters. Suppose

an R-haunt HR is classified by the map hR: X --4 B Pic(R). The loop of this map

QhR : QX -- Pic(R) classifies a fibration r(hR) of invertible R-modules over QX;

(indeed, the homotopy type of Pic(R) is Pic°(R) x BGL 1 (R) where Pic°(R) denotes

the equivalence classes of invertible R-modules, and GL 1(R) denotes the R-module

self-equivalences of R). This fibration r(hR) is in particular a parametrized spec-

trum and has an associated total spectrum (hR)/X which we denote suggestively

Th(r7(hR)). This total spectrum is an associative R-algebra and it encodes the struc-

ture of the R-haunt. An associated R-specter is simply a Th(v7(hR))-module, by

which we mean an R-module M together with an appropriately compatible action

Th(7v(hR)) \R M - M.

4.2 R-Homology of Specters

We now describe how to associate to haunts and specters respectively R-haunts and R-

specters and we discuss the basic construction of specter invariants. There is a natural

map S°-mod - R-mod from the category of spectra to the category of R-modules,

given by T - T Aso R. This is a map of rings and it underlies the fundamental

base-change operation from specters to R-specters. Given a haunt, that is a locally

free rank-one module M over the stack of parametrized spectra Ox, we can form the

tensor stack M 0ox OX where (x is the stack of parametrized R-modules. This

tensor will be an R-haunt. (See Dunn [12] for a definition of tensoring over ring
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categories.) Any global section P E M(X) of M transforms to the section P 0 R;

we therefore have an R-specter associated to any ordinary specter.

In more down-to-earth terms, a haunt is presented by gluing together trivial bun-

dles using invertible parametrized SO-modules cij; the gluing functions for the associ-

ated R-haunt; are simply cij A R. Similarly, a specter is locally given by parametrized

spectra fi and the associated R-specter is presented by the parametrized R-modules

fi A R. Implicit here is the fact that the map S°-mod -* R-mod restricts to a map

Pic(S° ) - Pic(R) of Picard groups and this latter map deloops to a map B Pic(S° ) --

B Pic(R) of classifying spaces. Thus we also have the purely homotopy-theoretic char-

acterization of the haunt transformation, namely that the R-haunt associated to the

haunt X - .B Pic(S° ) is classified by the composite X --+ B Pic(S° ) - B Pic(R).

Remark 4.2.:L. The map S-mod - R-mod given by smashing with R makes sense

for any Aoo ring spectrum R. This map moreover induces a map GL1 (S° ) --+ GL1 (R)

and even a map BGL 1 (S° ) - BGL 1 (R). However, in order to build the R-haunt

associated to an ordinary haunt, we need moreover a map B(Z x BGL 1 (S°)) --

B(Pic°(R) x BGL 1 (R)). Even barring the issue of what Pic°(R) should mean, the

space BGL 1 (R) cannot deloop unless R is commutative. This provides another indi-

cation that in order to have R-homology invariants of specters, R must be a commu-

tative ring spectrum. This commutativity requirement on the generalized homology

invariants might appear surprising and like a fluke of the formulation, but in fact it

reflects an essential aspect of the mathematical structure; later on we will see that the

slogan is 'senmi-infinite homotopy types only have commutative generalized homology

invariants'.

Given a specter P for the haunt H, we have "taken its R-homology" and produced

an R-specter PR for the R-haunt HR. The essential idea behind specter invariants

is that the structure of this R-haunt HR might be substantially simpler than that of

H. In particular, if HR is trivializable, that is if the composite X -- B Pic(S° ) -*

B Pic(R) is null homotopic, then any trivialization T: HR - (X x R-mod) transforms

the R-specter PR into a parametrized R-module T(PR). The associated total spectrum

T(PR)/X represents a global R-homotopy type for the specter P, even though P
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does not itself have a global homotopy type. The homotopy groups of T(PR)/X

are what we might call the R-homology groups of P, denoted R, (P); these are the

most straightforward and most easily computable invariants of specters. Note that

these groups definitely do depend on the trivialization r, but this ambiguity can be

identified and controlled.

Summary 4.2.2. Let P be a specter for the haunt H and suppose that T is a trivi-

alization of the associated R-haunt HR. Then the R-homology groups of the specter

P are defined to be the homotopy groups of the total spectrum of the trivialization

of the associated R-specter PR:

R (P) := 7ri(-(PR)1X)

The potential ambiguity in the trivialization of a trivializable R-haunt HR is

governed by the space of automorphisms of the trivial R-haunt X x R-mod. More

specifically, the space of trivializations of HR is a torsor for Aut(X x R-mod) 

Hom(X, Pic(R)). Homotopic trivializations r and ' determine the same invari-

ants R,(P) _ R' (F), and so we need only consider the set of components of the

space of trivializations of HR-this set of components is a torsor for [X, Pic(R)] =

[X, Pic°(R) x BGL 1 R]. It often happens that [X, BGL1 R] has only one element; if X

is connected, the set of components of the space of trivializations is then a torsor for

Pic°(R). In this situation, which is to say when we have a specter P for a haunt H

with HR trivializable and [X, Pic(R)] = Pic°(R), we can describe how the R-homology

of P is affected by a change in trivialization as follows. A given trivialization r can

be modified by an invertible R-module M C Pic°(R) to the trivialization M r, and

we have

R*m(P) = T(( )(PR)/X) = 1r*((T(PR) AR M)/X) = 7*(T(PR)/X AR M).

If the ring spectrum R is such that the homotopy r,(M) of an invertible module

M is projective over R,, then we conclude that RM'"(P) = R.(P) ®R* 7r(M)-in
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other words, changing the trivialization shifts the homology of P by the homotopy

of an invertible R-module. This shift ambiguity is always present; we think of a

homology group determined up to such a shift as uniquely determined and we ignore

the r-dependency, writing simply R*(P).

To have homology invariants of a specter P over a haunt H, we need to find a ring

spectrum R such that the composite X B Pic(S° ) -- B Pic(R) is nullhomotopic.

As such, we need a thorough understanding of the homotopy types of various B Pic(R)

and of the transformations B Pic(S° ) --+ B Pic(R). We already noted that B Pic(R) -

B(Pic°(R) x BGL 1(R)). By definition, GL 1(R) consists of the unit components of

the zero space of the spectrum R, so its zero-th homotopy group is 7ro(R)X and its

higher homotopy agrees with that of R. Barring the issue of computing Pic°(R),

which in general is a difficult problem, this allows us to write down the homotopy

groups of B Pic(R) in terms of those of R. These groups are listed for a few common

ring spectra in table 4.1.

Classifying Space Homotopy Groups
i=1 2 3 4 5 6 7 8

B Pic(S°) Z 2/2 2/2 Z/2 Z/24 0 0 2/2
B Pic(H2) 2 2/2 0 0 0 0 0 0

BPic(K) 2/2 2/2 0 Z 0 Z 0 
B Pic(MU) (2) 2/2 0 Z 0 Z2 0 23

Table 4.1: The homotopy groups 7i (B Pic(R)) of the classifying spaces for R-haunts

The parenthetical group 7r (B Pic(MU)) is conjectural. We now describe three simple

examples of specters and their potential homology invariants. The first specter has no

global homology type, the second has a uniquely determined global homology type,

and the third has a global homology type that depends on the choice of trivialization.

Example 4.2.3. Consider the specter described in example 2.2.9: the base space is

S 1, the haunt L has monodromy Sn, and the specter T is S x D1 - D1 on one

semicircle and the cone C(Sn UL S) C(* Li *) = D1 on the other semicircle. The
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classifying map of L, represents n E = 7rl(B Pic(S°)); in particular there is no

global parametrized spectrum corresponding to T and therefore no ordinary homotopy

type. Moreover, the map B(Pic(S°)) - B(Pic(HZ)) is an isomorphism on 7l, so the

homology haunt (Ln)HZ is still nontrivial; correspondingly, the homology specter THZ

is not a parametrized HZ-module and so T does not have homology invariants.

Example 4.2.4. Next consider the specter from example 2.2.10: the base space is S3,

the haunt L is the haunt determined by the equatorial transition function - AS2

(S2 X>S2 ), and the specter P is S x D3 on one hemisphere and C(S 2 XIS2 ) on the

other. On the one hand, the classifying map S3 -- BPic(S ° ) for L is nontrivial,

representing 1 E 2/2 = 7r3(BPic(S 0 )); on the other hand, there are no nontriv-

ial HZ-haunts on S3 and so LHZ is trivializable. Thus, even though the specter P

has no global homotopy type, it does have homology invariants. Moreover, Pic(HZ)

has homotopy only in degrees 0 and 1, so the set of trivializations of LHZ, namely

[S3, Pic(HZ)] _ Pic°(HZ) = {EnHZ}, is as small as possible. The homology invari-

ants of P are therefore uniquely determined up to degree shift, that is up to tensoring

with 7r,(EnHZ).

Let us calculate the homology H,(P) of the specter P. Roughly speaking, the

spectrum HZ cannot see the difference between the transition functions - A/2 (S2 > S2 )

and - AS2 (S2 x S2 ). As a result, the parametrized HZ-module PHZ is equivalent to

the one obtained by gluing together HZ x D3 and C(E 2 HZ x S2) using the map

- AS2 (S2 X S2). By desuspending the second hemisphere, this is in turn equivalent

to the parametrized HZ-module (HZ x D3 ) Us2 (C(HZ x S2 )). This last HZ-module

is simply the reduced homology of S3; thus H,(P) is Z in a single degree and zero in

all other degrees. We will formalize this sort of computation in a moment.

Example 4.2.5. Let P be the parametrized spectrum S x (S2 x S1) over S2 x S 1.

This spectrum defines a specter for the trivial haunt H and as such P has homology

invariants. However, there are two distinct trivialization T0 and T1 of HHZ. They yield

respectively the parametrized HZ-modules (PHz) = HZ x (S2 x S1) and T1(PHz) =

HZx(S 2 x S1); this last module exhibits a mobius transformation of the fibre HZ

along the S1 factor of the base. The homology groups of these two trivializations are
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H*O(P) {" : 2: Z: 2} and H1 (P) {Z/2: 0: Z/2: 0}. The difference between

these two groups is characteristic of the ambiguity involved in HZ-specters on non-

simply connected base spaces. This dependence on the trivialization indicates that

HZ-specter invariants are not naturally graded abelian groups but rather objects in

a more subtle algebraic category.

Typically specters are constructed by specifying parametrized spectra over the

open sets of a cover; these parametrized spectra do not agree on the intersections but

instead are glued together by the transition functions of the haunt. This explicit local

presentation suggests a method for computing specter invariants in terms of the local

homology invariants of the defining parametrized spectra:

Proposition 4.2.6. Suppose H is a haunt, on a connected space X, whose associated

R-haunt HR admits a trivialization : HR -% (X x R-mod). Let P be a specter for H

and let PR denote the associated R-specter. Then there is a "Mayer- Vietoris" spectral

sequence

Eq = HP(X; 71q(T(PR))) = Rp+q(P).

Here W7q(T(Pi)) denotes the cosheaf U - 7rq((T(PR)u)/U).

Suppose { Ui} is a fixed contractible cover of X, and let - AUvj Pij be transition

functions defining H. Suppose the specter P is presented by parametrized spectra Pi

on Ui together with identifications Yij : Pi uv AUj Pij - Pj I uj. Then the above spectral

sequence has the form

Ejq = 0 Rq(Pil ui... ip) = R;+q(P).
il<...<ip

If the trivial'ization is given by automorphisms ri : (Ui x R-mod) -- (Ui x R-mod)

appropriately compatible with the R-haunt transition functions (Pij)R = Pij Auj R,

then the d differential is given by the maps

Rq(P/1 Uil".iP) Rq(PiJu .... )

Rq(Pil IlUil... Rq(P I...i ip)R | ) (61)* i * °(Ti1) .( 
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Here tk : Uil......ip - Uil...i and t1 : Ui2...ip - Uil...ip denote the inclusions.

The first half of this proposition is just a statement, in ordinary parametrized

homotopy theory, about the parametrized spectrum T(PR); it is not in itself particu-

larly useful because one must expressly identify T(PR) in terms of the original specter

P in order to compute the cosheaf homology. The second half is more explicit and

addresses the situation that actually arises with twisted parametrized spectra. In

particular, the above E1 term does not depend on the trivialization T and can be

immediately computed in any given case.
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Chapter 5

Polarized Hilbert Manifolds and

Semi-Infinite Spectra

Thusfar our discussion has been purely topological: the category of spectra has a

complicated space of automorphisms and it is natural to study bundles of cate-

gories of spectra and their associated sections, namely twisted parametrized spectra

or "specters". These bundles are, however, intimately connected to the geometry

of infinite-dimensional manifolds, and homotopy-theoretic invariants of such mani-

folds often take the form of twisted parametrized spectra. In the first part of this

section, we describe the relevant geometry, namely symplectic polarizations of real

Hilbert bundles, and we show how a manifold equipped with this structure gives

rise to a bundle of categories of spectra, that is to a haunt. We also discuss a re-

lated structure, a "unitary" polarization and investigate the invariants of specters for

haunts associated to unitary polarizations; the resulting description of these invari-

ants provides an extensive generalization of the Cohen-Jones-Segal complex-oriented

Floer invariants 8]. In the second part of this section, we introduce a conjectural

construction of the category of specters, for a given polarized bundle, in terms of

parametrized semi-infinitely indexed spectra. Specifically, instead of indexing spectra

on finite-dimensional subspaces of a countably infinite-dimensional vector space, we

introduce spectra indexed on the semi-infinite subspaces of a Hilbert space that are

compatible with a fixed polarization. A parametrized version of these semi-infinite
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spectra provides an explicit geometric viewpoint on the category of specters.

5.1 The Homotopy Theory of Polarized Bundles

We describe four types of polarizations, namely symplectic and complex on a real

Hilbert space and symplectic and complex on a complex Hilbert space, and discuss

the homotopy types of the corresponding classifying spaces-it turns out that there

is no distinction between the two notions of polarization on a complex Hilbert space.

We then describe polarized bundles and note that a symplectic polarization on a real

Hilbert bundle gives rise to a haunt. We conclude by investigating the special class

of "unitary" polarized bundles, namely symplectic polarizations of a real bundle that

lift to polarizations of a complex bundle. In particular we show that under mild

conditions, a specter for a unitary polarization admits HZ-, K-, and MU-homology

invariants.

5.1.1 Polarizations of Hilbert Space

A finite dimensional vector bundle on a space X is classified by a map from X to

the classifying space BO(n). The topology of the classifying space is governed by

the (non-trivial) topology of the orthogonal group O(n) of automorphisms of R n . By

contrast, the orthogonal group 0(7-) of Hilbert space is contractible [27] and therefore

the classifying space BO(tI) carries no topological information; indeed, all Hilbert

bundles on a given space are isomorphic. In particular, if X is a Hilbert manifold, that

is an infinite-dimensional manifold whose tangent bundle is a Hilbert bundle, then

the tangent bundle of X carries no information at all about the topology of X. The

situation is not as bad as it might seem, however, because many naturally occurring

infinite-dimensional manifolds come equipped with a polarization. This polarization

is a reduction of the structure group of X from the orthogonal group O(ht) to the so-

called restricted orthogonal group 0 res(7-). This latter group does have an interesting

topology, and so we can recover information about such a polarized Hilbert manifold

X from its polarized tangent bundle.
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There are various notions that go under the name "polarization" and we spend

a moment describing and distinguishing them; references include [41, 44, 8] but the

reader is warned that the terminology and definitions in those papers disagree with

one another and at points with our treatment. We fix an infinite-dimensional sep-

arable real Hilbert space . Morally, a polarization of K is an equivalence class of

decompositions V ®3 W of H or Ktc = 0 C arising from an eigenvalue decompo-

sition of an appropriate operator J: - 7. The subspaces V and W are sums

of collections of eigenspaces of J; that the polarization is an equivalence class of de-

compositions rather than a single decomposition reflects an ambiguity over whether

to assign certain eigenspaces to V or to W. For example, if J is a self-adjoint Fred-

holm operator, then the associated decompositions V E W are roughly those in which

V contains almost all the eigenspaces for negative eigenvalues of J and W contains

almost all the eigenspaces for positive eigenvalues of J. If on the other hand J is a

skew-adjoint Fredholm operator, then the decompositions are those in which V con-

tains almost all the eigenspaces for positive imaginary eigenvalues and W contains

almost all the eigenspaces for negative imaginary eigenvalues.

In practice many polarizations arise from self- and skew-adjoint Fredholm opera-

tors as above, but we can simplify the definitions of polarizations if we restrict atten-

tion to self- and skew-adjoint orthogonal isomorphisms. That is, suppose J: - 7H

is a self-adjoint orthogonal isomorphism; in this case, J2 = 1 and so 7H is split into

the +1 and -1 eigenspaces V and V'. Of course, any orthogonal decomposition

arises as the eigenvalue decomposition of such an operator, and so decompositions

= V e VL are in one-to-one correspondence with orthogonal operators J with

j2 = 1. An equivalence class of such decompositions defines a "symplectic" polariza-

tion, as follows.

Definition 5.1.1. A symplectic polarization on a real Hilbert space KH is a collection

of orthogonal decompositions {1 = V · V'} satisfying the following conditions:

* both V and V' are infinite dimensional,

* for any two decompositions V e V' and W D W' in the collection, the projec-
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tions V -- W and V' -- W± are Fredholm and the projections V --* W' and

VI - W are Hilbert-Schmidt,

* any decomposition W ® W' satisfying the second property with respect to a

decomposition V · V' in the collection is in the collection.

From now on, whenever we mention a decomposition of a Hilbert space, we implicitly

assume that both factors of the decomposition are infinite dimensional. Correspond-

ing to the above definition we have a restricted orthogonal group:

Definition 5.1.2. Let V · V' be a fixed decomposition of the real Hilbert space

71. The symplectic restricted orthogonal group O'es(7 ) is the subgroup of the orthog-

onal group 0(7t) of operators q such that 0(V) ( O(V) is in the same symplectic

polarization class as V 0 V'.

Note that this is not the group that Pressley and Segal [41] refer to as the restricted

orthogonal group. Indeed we will see later that it has a radically different homotopy

type than their Ores(IH).

Note 5.1.3. The space of symplectic polarizations of a real Hilbert space is the

quotient O(H)/Ores().

Now by contrast, suppose we had begun with a skew-adjoint orthogonal isomor-

phism J : 'H 7i- '; in this case, J2 = -1 and so 7c is decomposed into the +i and

-i eigenspaces W and W. Indeed, for any decomposition R-c = W D W of Rc into

a subspace W and its conjugate W, the following three conditions are equivalent:

* the decomposition is orthogonal with respect to the Hermitian metric (-,-)

on 7Hc extending the inner product on 7I,

* the subspaces W and W are isotropic with respect to the bilinear form (a, b) =

(a, b) on c,

* there is an orthogonal operator J: 'H -t 'H with J2 = _1 having W and W as

its +i and -i eigenspaces respectively.
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We refer to such decompositions as "orthogonal". An equivalence class of these or-

thogonal decompositions defines a "complex" polarization:

Definition 5.1.4. A complex polarization on a real Hilbert space N is a collection

of orthogonal decompositions {c = W W} satisfying the same conditions as

in definition 5.1.1. Given a fixed orthogonal decomposition W ® W, the complex

restricted orthogonal group OrC('t) on the real Hilbert space t is the subgroup of

0(N) of operators X such that (W) e O(W) is in the same complex polarization

class as W d I'.

This complex restricted orthogonal group is what Pressley and Segal [41] refer to as

Ores (1).

Note 5.1.5. The space of complex polarizations of a real Hilbert space is the quotient

O(-H)/OrCes (H) -

There is yet another notion that goes under the name polarization. Let N now

be a complex Hilbert space. Suppose J : I - t N is a self-adjoint unitary operator;

then J2 = 1 and N is decomposed into +1 and -1 eigenspaces. Two such decompo-

sitions V ® V1 and W ® W' are considered equivalent if, as in definition 5.1.1, the

projections V -- W and V - W' are Fredholm and the other two projections are

Hilbert-Schn.idt. An equivalence class of these decompositions defines a polarization

of the complex Hilbert space -; the group of unitary operators preserving such a

polarization is called Ures(-) and the space of such polarizations is U(')/Ures(N-).

Similarly if J is skew-adjoint unitary, then J2 = -1 and NH is decomposed into +i

and -i eigenspaces. Equivalence classes of these decompositions also give a notion of

polarization, but because N is complex there is a one-to-one correspondence between

self- and skew-adjoint unitary operators and the two notions of polarization coincide.

This correspondence, which in a sense encodes the two-fold complex Bott periodicity,

can obscure the distinction between the two notions in the real case.

We briefly discuss the homotopy types of these various spaces of polarizations. As

above, the symplectic restricted orthogonal group O%(t) of a real Hilbert space is

the space of orthogonal operators : - such that the projections (V) -+ V
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and O(V') -- V' are Fredholm and the projections (V) --, VL and O(V') - V are

Hilbert-Schmidt, for a fixed decomposition V ® V. Suppose that we have chosen

0lv such that (V) - V is Fredholm and (V) - V' is Hilbert-Schmidt. Then

the subspace 0(V) is necessarily q(V)' and we can chose qlvl to be any orthogo-

nal isomorphism V' -O q(V)-the space of such choices is of course contractible.

Specifying 0lv amounts to choosing a Fredholm map V - V and a Hilbert-Schmidt

map V -+ V'. The space of Hilbert-Schmidt operators is contractible and so OrSes(7)

has the homotopy type of the space of Fredholm operators, namely Z x BO. The

associated space of polarizations O(H)/OrSes(i) therefore has the homotopy type

B(Z x BO) U/O. By contrast, Pressley and Segal [411 show that Oes (-) has

the homotopy type O/U " QO and so the space of polarizations O(T)/OCe,(i) has

the homotopy type B(O/U) - B((QO) - O. When 'H is a complex Hilbert space, the

restricted group Ures ('i) has the homotopy type Z x BU and the space of polarizations

is U(H')/Ures(H) - B(Z x BU) - B(QU) - U. The homotopy types of these various

spaces of polarizations are summarized in table 5.1.

Polarization Type Structure Group Classifying Space
symplectic on -Hs Ores - Z x BO B(7 x BO) _ U/O
complex on Tl Ores ' QO B(QO) . O

symplectic on 7Tc Ures - Z x BU B(7Z x BU) . U
complex on 1c Ures - Q U B(QU) - U

Table 5.1: The homotopy types of the classifying spaces for polarizations

We will be primarily concerned with symplectic polarizations of real Hilbert spaces

and unless otherwise indicated, "polarization" will refer to this notion.

5.1.2 Symplectic Polarizations and Haunts

A priori a Hilbert bundle E on a space X is classified by a map X -- BO(ti)-of

course this map contains no topological information. To give a polarization of this

bundle is to specify, continuously in X, a polarization on each fibre of E:

Definition 5.1.6. A polarization of the Hilbert bundle E on the space X is a reduc-

tion of the structure group of E from O(I) to Os(T). In other words it is a lift of
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the classifying map X -- BO(7) to a map X - BOSes([t[).

As there is no harm in doing so, we usually think of a polarization on the Hilbert

bundle E simply as a map X * BO re(H) - B(Z x BO). A polarization of a Hilbert

manifold is simply a polarization of its (trivial) tangent bundle. The fundamental

link between the geometry of polarizations and twisted parametrized stable homotopy

theory is the association

{ Polarized Hilbert } {Haunts

bundles on X on X

This association is determined by composing the classifying map X - B(2 x BO)

of the polarized bundle with the deloop of the J-homomorphism B(Z x BO) BJ>

B(Z x BG) ::= B(Z x BGL1 (S°)).

The basic philosophy behind this correspondence is that geometric structures on

infinite dimensional manifolds are intimately connected with polarizations and that

homotopy-theoretic information about these structures can be encoded in twisted

parametrized spectra for the haunt associated to the polarization. The specific nature

of this connection will be the subject of future work with Michael Hopkins [9] and

Ciprian Manolescu [10]. Here we record a few illustrative examples of polarized

manifolds and their associated haunts.

There are two widely utilized sources of polarized manifolds: the first is loop

spaces of symplectic and almost complex manifolds, and the second is moduli spaces

of connections in gauge theory-see for example [8]. We discuss the first source of

examples. Given a symplectic manifold M, a choice of metric determines an almost

complex structure M A BU(n) on the tangent bundle of M. The loop of this

classifying map, or indeed of the classifying map for any almost complex manifold,

can be used to determine a polarization on LM:

LM -- LBU(n) -* QBU(n) - QBU U -+ U/O c_ B(Z x BO)

This polarization and its associated haunt can be highly nontrivial.
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Example 5.1.7. Let S6 have its usual almost complex structure. The haunt associated

to the resulting polarization of the loop space LS 6 is nontrivial. Indeed, the classifying

map

LS6 - U - U/O B(Z x BG)

for this haunt restricts on S 5 LS 6 to a generator of 7r5(B(Z x BG)) = 7 3 (S° ) =

Z/24. To see this, note that because r4 (S3 ) = Z/2, the Hurewicz map 7r6(BSU(3))

H 6(BSU(3)) is multiplication by 2. Because the Euler characteristic of S6 is 2,

this implies that the almost complex structure S 6 - BSU(3) is a generator of

r6(BSU(3)) - 7r6(BSU). The loop LS6 -* LBU of this almost complex structure

therefore induces an isomorphism on 7r5 and the claim follows:

7r5(LS6) -- (LBU) - 5 (U) - r5(U/O) - 75r(B(Z x BG))

z - , 25 - >, 25 - > 2- >~ E2/24

A specter for the resulting canonical haunt on LS6 will have no global homotopy

type. We will see in a moment though that any such specter has HZ-, K-, and

MU-homology invariants.

5.1.3 Unitary Polarizations and Specter Invariants

Many examples of polarized manifolds have the property that the polarization map

X -- U/O factors through a map X - U; (this is true for instance of example 5.1.7

above). As we saw earlier, the stable unitary group U classifies polarizations on

complex Hilbert bundles E. The projection map U - U/O corresponds to viewing a

polarization of E as a symplectic polarization of the underlying real Hilbert bundle

Es; (similarly, the inclusion map U -- O corresponds to viewing the polarization of

E as a complex polarization of the underlying real Hilbert bundle ER). For lack of

better terminology, we say that a symplectic polarization X -* U/O of a real Hilbert

bundle is unitary if it lifts to a polarization X -+ U of a complex Hilbert bundle.

Haunts associated to unitary polarizations are much better behaved than arbitrary
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haunts in a sense we now describe, and as a result their specters have a much simplified

invariant theory. Suppose X -- U - U/O is the classifying map for a unitary

polarization. The associated haunt H has a corresponding HZ-haunt HHZ classified

by the composite

X - U U/O -- B(Z x BG) -- B(Z x BZ/2) - BZ x B2Z/2.

The homology group H 2 (U; Z/2) is zero, so this composite factors through BZ. Let

q E Z denote the smallest nonzero integer in the image of H1 (X; Z) -* H1 (BZ; Z), and

suppose T is a specter for the haunt H on X. The haunt HHZ is nontrivial; thus THZ

does not have the form of a parametrized HZ-module and so has no associated global

HZ-module, therefore no corresponding chain complex and no homology groups, per

se. There is nevertheless a Z/q-graded chain complex associated to THZ and therefore

T has Z/q-graded homology groups for invariants. This fact nicely explains the idea

(by now prevalent in the literature) that semi-infinite and Floer homology theories

are naturally graded not by the integers but by finite cyclic groups.

If the unitary polarization X - U - U/O is trivial on H1 , we have a more

complete description of the corresponding haunt and its associated invariants:

Proposition 5.1.8. Let X be a space having the homotopy type of a finite CW

complex and let E be a Hilbert bundle on X equipped with a unitary polarization

X -- U - U/O. Suppose the induced map H'(U; Z) -+ H1 (X; Z) is zero. Then any

specter for the haunt H associated to the polarized bundle E admits global HZ-, K-,

and MU-homology invariants.

Proof. Because of the H1 condition, the classifying map for the polarization factors

through SU, and because X is homotopy finite, this map in turn factors through some

SU(n). The haunt H is therefore classified by a map X - SU(n) -+ B(Z x BG).

Let R denote one of the spectra HZ, K, or MU. The R-haunt HR is classified by

the composition X - SU(n) - B(Z x BG) = BPic(S° ) - BPic(R). It is not

of course the case that the map B Pic(S° ) - B Pic(R) is null, but the composition

SU(n) - B Pic(S° ) -- B Pic(R) will be null for the spectra R in question. This
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we can see by considering the map from the Atiyah-Hirzebruch spectral sequence for

B Pic(SO)*(SU(n)) to the Atiyah-Hirzebruch spectral sequence for B Pic(R)*(SU(n)).

If for example R = K and n = 3 the map of E2 terms is as follows:

0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 Z 0 Z 0 0 0 0 0 Z/2 0 0 Z/2 0 Z/2 0 0 /2
2 2/2 00 2/2 0 Z/2 o o0 /2 2/2 o o Z/2 0 2/2 o o Z/2

3 Z/2 o 0o o /2 0o o /2 0 0 0 0 0 0 0 0 0

4 2/2 o o z/2 o 2/2 o o 2/2 Z o o z o z o o z

5 2/24 0 0 Z/240 /24 0 o 2/24 0 00 0 0 0 0 0 0
6 0 00 0 0 0 0 0o Z 0 0 Z 0 Z 0 0 Z
7 0 00 0 0 0 0 0 0 0 0 0 0 0 0o0 0

8 Z/2 0 o z/2 0 Z/2 o 0 z o 0 o O z o o m0 2

Total degree zero terms are boxed. The map is necessarily zero at E2 in total degree

zero and therefore B Pic(S°)°(SU(3)) - B Pic(K)°(SU(3)) is zero. The cases of

HZ and MU and of other n are similar. We therefore conclude that the R-haunt

X B Pic(R) is trivializable and so any corresponding specter has R-homology

invariants. []

The proposition says that for a large class of polarized manifolds, the associated

semi-infinite homotopy types, namely the specters, will have homology, K-theory, and

complex bordism invariants. This provides an explanation of and a substantial gen-

eralization of the remark in Cohen-Jones-Segal [8] that trivially polarized manifolds

should have semi-infinite homology, K-theory, and complex bordism invariants.

5.2 Semi-Infinitely Indexed Spectra

In section 5.1.2 we saw that the classifying space for polarizations maps to the clas-

sifying space for haunts; any polarized bundle therefore has an associated haunt and

a corresponding category of specters. In this section we will sketch, using a notion of

parametrized semi-infinitely indexed spectra, a conjectural realization of this category

of specters in terms of the geometry of the polarized bundle.

We begin by defining (non-parametrized) semi-infinitely indexed spectra. Classi-

cally a prespectrum E is presented by specifying a space E(IRn) for each integer n
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together with appropriate structure maps. This notion naturally evolved (in work of

May and company [36, 30]) into that of coordinate free prespectra; a coordinate free

prespectrum is presented by giving a space E(V) for every finite dimensional sub-

space V of a fixed countably-infinite dimensional inner product space ROO, together

with appropriate structure maps EW - VE(V) -- E(W) for each inclusion V C W.

A prespectrum is a spectrum if the adjoint structure maps E(V) - QW-VE(W)

are homeomorphisms. Such a spectrum has the property that if V and W have

the same dimension, then E(V) and E(W) are homeomorphic, and moreover E(V)

varies continuously with V. This can be seen by noting that for any compact family

{Vt} of finite-dimensional subspaces of RI, there is a finite-dimensional subspace W

such that W contains all the subspaces of the family; the spaces E(Vt) are therefore

determined as QW-VtE(W), which is evidently a continuous family. Later on, Elmen-

dorf [17] included as part of the definition of a spectrum the requirement that the

spaces E(V) vary continuously in V.

The fundamental idea behind semi-infinitely indexed spectra is that the natural

subspaces of a polarized Hilbert space H are not the finite dimensional subspaces but

the "negative energy" or "semi-infinite" subspaces, that is the subspaces V such that

V ® V' is a decomposition of 7' in the given polarization class. A semi-infinitely

indexed spectrum is then roughly an assignment of a space E(V) to each such semi-

infinite V, together with appropriate structure maps. It is not the case that given a

compact family {Vt} of semi-infinite subspaces, there exists a semi-infinite subspace

W containing all the Vt; indeed, there exist decompositions V ® V' and W e W in

the same polarization class such that V and W span the whole Hilbert space 7H. As

such, it is important that we impose a continuity condition on the spaces E(V)-we

do so roughly along the lines of [171 and we thank Mike Hopkins for bringing that

reference to our attention.

Definition 5.2.1. Let X be a space together with a distinguished subset X(2) of

X 2 and a finite dimensional vector bundle y on X(2). Define X(3) to be {(a, b, c) E

X 3 l(a, b), (a, c), (b, c) E X(2 )}. Let P12, P13, and P23 denote the projections X ( 3)

X (2) to the indicated factors, and similarly denote by Pi, P2, and P3 the projections
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X(3) X. Suppose there is an identification p1 3y = P127 E P23. Then an X-

prespectrum is a bundle T on X together with a map : Sy AX(2) p1T - p2T such

that the diagram

Sp 23" Ax(3) SP12Y Ax(3) pT -SP13y Ax(3) p*T

SP23y Ax(3) p*T T piT

commutes. This data forms an X-spectrum if the adjoint of u is a homeomorphism.

Suppose is equipped with a fixed polarization. Let Grres(7H) denote the grass-

mannian of decompositions V $ V' in the polarization class. The space Gr(/) is

the set of pairs of decompositions (V ® V', W ® W') such that V C W, and the

vector bundle y is the orthogonal complement VIW.

Definition 5.2.2. A semi-infinitely indexed (pre)spectrum, or "semi-infinite (pre)spectrum"

for short, is a Grre(H)-(pre)spectrum.

We bother with the abstract definition 5.2.1 because it facilitates comparisons

between X-spectra as X varies. In particular, fix a decomposition 1 = 7-- H® -t+ in

the polarization class and let Gr('7+) denote the grassmannian of finite dimensional

subspaces of 'H+. We will refer to Gr(7t+)-spectra as Hilbert spectra. Furthermore,

denote by RIR a countably-infinite-dimensional dense subspace of 'H+ and let Gr(RW° )

be the grassmannian of finite dimensional subspaces of IR0 . We now have natural

restriction maps

Grres(R)-spectra - Gr('H+)-spectra

(V C - E(V)) (W C W+ E(.. - f W))

Gr('H+)-spectra - Gr(R)-spectra

(W c + F(W)) - (U c i F(U))

A detailed treatment of the theory of semi-infinitely indexed spectra and their rela-

tionship to ordinary spectra will appear elsewhere-in particular one must construct
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a semi-infinite spectrification functor and semi-infinite sphere spectra (leading to a

semi-infinite notion of stable weak equivalence) and one must build left adjoints to

the two restriction maps above. For now we leave as a conjecture the following:

Conjecture 5.2.3. There is a notion of weak equivalence of semi-infinite spectra and a

notion of weak equivalence of Hilbert spectra such that the above restriction map from

Grres('H)-spectra to Gr(H+)-spectra induces an equivalence of (simplicial) homotopy

categories. Similarly the restriction map from Gr(H+)-spectra to Gr(R°-)-spectra

induces an equivalence of homotopy categories.

Parametrized semi-infinite spectra are no more difficult to define than semi-infinite

spectra. The idea of parametrized universes (of the countably-infinite variety) for

spectra first appeared in Elmendorf [17]. Though we were not aware of this refer-

ence during our development of parametrized semi-infinite spectra, it is a very clean

presentation of the classical case and we follow it in spirit. Elmendorf's real insight

was not so much the use of parametrized universes, per se, as the realization that one

could build a category of spectra on all (parametrized) universes at once and that

this larger category was substantially better than the category of spectra indexed on

a single universe. Unfortunately, basic facts about countably-infinite universes that

made this possible fail to be true of semi-infinite universes, and so we necessarily shy

aware from this aspect of Elmendorf's treatment.

Let E be a polarized Hilbert bundle on a space X. The restricted grassmannian

Grres(E) of this bundle is the space of semi-infinite subspaces V of fibres Ep, p E X, of

E; that is, the subspaces V are such that VDV' is a decomposition in the polarization

class of Ep. The space of pairs Grre2s(E) and the finite-dimensional bundle -y are

defined as before. We immediately have

Definition 5.2.4. A parametrized semi-infinite spectrum for the polarized bundle E

is a Grres(E)--spectrum.

Granting conjecture 5.2.3, the claim is quite simply that the category of parametrized

semi-infinite spectra for the polarized Hilbert bundle E on the space X is homotopi-
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cally equivalent to the category of specters (twisted parametrized spectra) for the

haunt on X associated to the polarized bundle. Thereby, semi-infinite spectra provide

a geometric realization of the homotopy-theoretic correspondence, via the classifying

map B(Z x BO) --> B(Z x BG), between polarizations and haunts.
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Chapter 6

Introduction

By way of motivation we present six interpretations of twisted K-theory. These

interpretations inform the methods and perspectives adopted in the paper but are

otherwise unnecessary for what follows. We then summarize our results on the twisted

K-homology of simple Lie groups and overview our main techniques, namely the

twisted Rothenberg-Steenrod spectral sequence, Tate resolutions, Bott generating

varieties, and twisted Spinc bordism.

6.1 Six Interpretations of Twisted K-Theory

6.1.1 1-Dimensional Elements in Elliptic Cohomology

A twisting on a space X of a cohomology theory represented by a spectrum R is a

bundle of spectra on X with fibre R and the associated twisted cohomology of X is

given by the homotopy classes of sections of this bundle. Such twistings are classified

by maps from X to the classifying space B Aut R of homotopy automorphisms of the

spectrum R. If R is an A, ring spectrum, the classifying space BGL 1R of homotopy

units in R maps to B Aut R and thereby classifies a subset of the twistings-we refer

to these twistings as elementary.

The classifying space BGL 1HC for elementary twistings of ordinary cohomology

with complex coefficients is BC*; (here HC denotes the Eilenberg-MacLane spectrum
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for C). There is a map BC* --* Z x BU of this classifying space into the representing

space for K-theory; any twisting X -* BGL 1HC for the ordinary cohomology of X

therefore determines a K-theory class on X. Of course, there is a natural geomet-

ric interpretation of the K-theory classes arising in this way, namely as the classes

represented by flat line bundles on X. The twisted cohomology of X is simply the

cohomology of X with coefficients in the line bundle, reinterpreted as the homotopy

classes of sections of an associated HC bundle.

The classifying space BGL 1 K for elementary twistings of complex K-theory splits,

as an infinite loop space, as T x S. The factor T is a K(, 3) bundle over K(Z/2, 1)

which splits as a space but has nontrivial infinite loop structure classified by PSq 2 E

H3 (H(Z/2);Z). There is a natural infinite loop map T -* TMF from T to the

representing space for topological modular forms, and so by projecting through T

a map BGL 1K - TMF. In particular an elementary twisting of K-theory for X

determines a TMF-class on X. (Notice that TMF is the analog of real K-theory,

that is of KO, and so the map BGL 1K - TMF corresponds to the composite

BGL 1HC -+ Z x BU -/ Z x BO; it is not known whether there exists an appropriate

factorization BGL 1K - E -, TMF for every elliptic spectrum E.) The geometric

interpretation of these TMF classes is simplified if we restrict our attention to those

classes coming from twistings involving only the K(Z, 3) factor of T. Such a twisting

is determined by a map X -+ K(Z, 3) or equivalently by a BS 1 bundle on X. We

think of this bundle as a stack locally isomorphic to the sheaf of line bundles on X

and as such as a 1-dimensional 2-vector bundle on X. In this sense we imagine the

TMF classes coming from K-theory twistings as 1-dimensional elliptic elements and

twisted K-theory as K-theory with coefficients in this "elliptic line bundle".

6.1.2 Projective Hilbert Space Bundles

There is a very simple and well-known reformulation of twistings of K-theory as

projective Hilbert space bundles and of the corresponding twisted K-theory groups

as families of Fredholm operators on these bundles. Indeed, the space of unitary

operators on Hilbert space is contractible, so the group of projective unitary operators
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has the homotopy type of BS 1. As such a twisting a : X - K(, 3) of K-theory

determines a, projective bundle N(a) of Hilbert spaces on X. The space of Fredholm

operators on a Hilbert space has the homotopy type of Z x BU and depends only on

the projectivization of the Hilbert space. Sections of the x BU bundle associated

to the twisting a can therefore be thought of as Fredholm operators on the projective

bundle 7-(ca). It remains to develop a general index theory for elliptic operators on

these projective bundles, but substantial progress has been made by Mathai, Melrose,

and Singer [35], who prove an index theorem in the case that the twisting a is a torsion

class in H3 (X; Z).

6.1.3 K(Z, 2)-Equivariant K-Theory

We would like to discuss an algebro-geometric model for twisted K-theory, and the

proper formulation is suggested by reinterpreting twisted K-theory as a K(Z, 2)-

equivariant theory; this formulation will also hint at connections with the representa-

tion theory of loop groups. As before, a twisting is a map a: X + BK(Z, 2) defining

a principal K(Z, 2)-bundle P(a) on X. The set of sections of the associated bundle

P(a) XK(Z,2) ( x BU) is the same as the set of K(Z, 2)-equivariant maps from P(a)

to Z x BU; that is, the twisted K-theory of X is the "K(Z, 2)-equivariant" K-theory

of P(a). In particular, elements of the twisted K-theory of X are represented by

virtual vector bundles on the total space P(a) of the K(Z, 2)-principal bundle asso-

ciated to the twisting; these vector bundles V are required to be K(Z, 2)-equivariant

in the sense that for a line L K(Z, 2), the virtual vector space VL.I at the point

L X C P(a) is equal to L V, for all points x P(ca).

6.1.4 Perfect Complexes of a-Twisted Sheaves

Our 'space' X will now be a scheme, and a twisting of K-theory is a Gm-gerbe on

X. These gerbes are classified by H 2 (X; Gm) and can be thought of as stacks locally

isomorphic to the category of invertible sheaves. Elements of the twisted K-theory

of X for a twisting gerbe oa should be virtual sheaves of locally free O,-modules on a
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that are B(Gm-equivariant in an appropriate sense. More precisely an element of the

twisted K-theory of X is a perfect complex of a-twisted sheaves on the gerbe a, that

is a complex of a-twisted sheaves locally quasiisomorphic to a finite length complex of

free finite rank 0s-modules. In the topological situation the analogue of the perfect

complex on a is a two term complex of bundles on P(a), each of countably infinite

rank, with a differential that is locally an isomorphism off of a finite rank subbundle.

We would like to emphasize that this notion of a-twisted K-theory elements on the

scheme X does not depend on the class a E H 2 (X; Gm) being torsion.

6.1.5 Central Extensions of Loop Groups

We now specialize to the case (which indeed will be our primary focus in this paper)

that our space is a connected simply connected compact Lie group G. A twisting

map a : G - K(Z, 3) gives a map from the free loop space LG to the classifying

space BS 1 by the composition LG -+ LK(Z, 3) - QK(Z, 3) _ BS1, and thereby

gives a principal S'-bundle on LG. The total space LG of this principal bundle can

be given a group structure as an S1-central extension of LG. The classifying space

BQG of the based loop central extension Q1G C LG is precisely the total space P(a)

of the principal K(Z, 2) bundle over G. Moreover, to an irreducible highest-weight

representation of LG one can associate an equivariant map from P(a) to Z x BU and

thereby an element of the twisted K-theory of G [38]. The precise relation between

the representation theory of loop groups and twisted K-theory is described by Freed,

Hopkins, and Teleman 19]--they prove that the group of positive energy unitary

representations of LG is the twisted G-equivariant K-theory of G.

6.1.6 B-Fields and D-Branes

A great deal of the limelight focused on twisted K-theory has come from the widespread

realization that certain boundary conditions in string theory naturally represent el-

ements in the twisted K-theory of spacetime. In this context the twistings are rep-

resented by nontrivial Neveu-Schwarz B-fields; the elements of twisted K-theory are
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D-branes, submanifolds of spacetime with a twisted Spinc structure on their normal

bundles. More generally, such a submanifold M may be equipped with a vector bun-

dle V and the class represented by the pair (M, V) is the pushforward of V to the

twisted K-theory of the ambient spacetime X. When the space X is a Lie group,

as in this paper, the twisted K-theory can be thought of as a topological model for

the space of D-branes in a Wess-Zumino-Witten model for conformal field theory.

Frequently the spacetime X is itself a Spinc manifold; the D-branes are then twisted

Spinc submanifolds and represent elements in the twisted K-homology of X. In this

case, a D-brane M naturally represents a class in a more refined group, the twisted

SpinC bordism of X, and there is a twisted index map that recovers the twisted K-

homology class of M. This perspective guides the discussion of the twisted Spinc

bordism of Lie groups in the last section of this paper.

6.2 Results

We prove that the twisted K-homology ring of a simple Lie group is an exterior algebra

tensor a cyclic group, we give a detailed description of the orders of these cyclic groups

in terms of the dimensions of irreducible representations of related groups, and we

show that these orders originate, via a twisted index map, from relations in the twisted

SpinC bordism group.

Theorem 6.2.1. Let G be a compact, connected, simply connected, simple Lie group

of rank n. The twisted K-homology ring of G with nonzero twisting class k E

H3(G; Z) ' Z is an exterior algebra of rank n - 1 tensor a cyclic group:

KTr(k)(G) A[xl,.. ,Xn-l] 2/c(G, k).

Here c(G, k) is an integer depending on the group and the twisting.

This fact was first noticed in the case of SU(n) by Hopkins. The proof is in section 8

for groups other than Spin(n), and in section 9.4 for Spin(n).
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Theorem 6.2.2. For the classical groups, the cyclic orders c(G, k), k > O, of the

twisted K-homology groups of G are:

c(SU(n + 1), k) = gcd

c(Sp(n), k) = gcd

{(k+i) 1: 1 < i < n}

{k (2j+2(i-1)) : < i < n}
-kYj]l ~2(/-1) - -

c(Spin(4n - 1), k) = gcd {{(k)

+ 1),k) =

+ 2), k) =

gcd

gcd

c(Spin(4n), k) = gcd {{ (k)

: 1 <i < 2n-2}

U{2( 2 n-1)} {2 (2i+1) +

: 1 < i < 2n - 1} U 2(i1

: I <i <2n}

U{2 (2n1) } U {2(2i+ 1) +

: I < i < 2n- 1} U {2(2i+1)

(2k) n < i <

+ () n < i

(2i) n + 1 <

+ (2k) 'n < i

2n - 2}}

< 2n - 1}}

i < 2n-1}}

< 2n - 2}}.

(Note that c(G, -k) = c(G, k). The formulas for c(Spin(4n-1), k) and c(Spin(4n), k)

exclude the degenerate case n = 1.) The proofs for SU(n), Sp(n), and Spin(n)

occur respectively in sections 9.2, 9.3, and 9.4. A general method for computation,

applicable to the exceptional groups, is discussed in section 9.5, and the cyclic order

for G 2 is given in section 9.2.

Proposition 6.2.3. Let G be as in Theorem 6.2.1. Suppose Mi is a collection of

Spinc manifolds over QG whose fundamental classes generate K.QG as an algebra.

Then there are twisted SpinC structures on the bordisms Wi = Mi x I such that the

cyclic order of the twisted K-homology of G is gcd(ind(0Wi),..., ind(0Wn)), where

ind: MSpinc* -4 K.* is the index map from Spinc bordism to K-homology.

The proof of this proposition is the focus of section 10.2.
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6.3 Techniques and Overview

The primary tool for calculating twisted K-homology rings is the twisted Rothenberg-

Steenrod spectral sequence; this is the original method used by Hopkins in the case

G = SU(n). The spectral sequence is:

E2 = TorK'nG(Z, ZT(k)) = K(k)(G),

where Z(k) is the integers with a twisted K.QG-module structure depending on k.

In section 7.1L we present various generalities about twisted homology theories; then

in section 7.2! we use a method of Segal [43] to construct this Rothenberg-Steenrod

spectral sequence in twisted K-homology.

As the K-homology rings of loop spaces of simple Lie groups are known, our pri-

mary task is computing the Tor groups over these rings. Remarkably, for G $7 Spin(n)

this can be done without identifying the twisted K.QG-module structure on Z. These

Tor groups are calculated in section 8 by an iterated series of filtration spectral se-

quences applied to a judiciously chosen Tate resolution. The spectral sequences are

seen to collapse and to be extension-free, completing the proof of Theorem 6.2.1 for

G #: Spin(n).

The Tor computation for Spin(n) requires a detailed knowledge of the twisted

module structure on ; this module structure is also precisely what is needed to

identify the cyclic orders of the twisted K-homology groups. The best way to identify

this module structure is via generating varieties for the loop space of the group, and

this is the subject of section 9. Sections 9.2, 9.3, and 9.5 describe generating varieties

for various groups, compute the cyclic orders in the corresponding cases, and discuss

a general method for determining the cyclic order. Section 9.4 describes the twisted

module structure for Spin(n) and presents the belated Tor calculation for this group.

The computation in section 9 of the cyclic order in terms of the dimensions of

irreducible representations does not give much geometric insight into these torsion

groups. We give, in section 10, an interpretation of these orders in terms of relations

in the twisted SpinC bordism group of G. The main tool, presented in section 10.1, is
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a cocycle model for twisted Spin c bordism. This model allows explicit descriptions of

nullbordisms of particular Spin c manifolds over G corresponding to relations in the

twisted K-homology of G-see section 10.2. We conclude in section 10.3 by discussing

potential representatives in MSpinC'T (G) for the exterior generators of KT (G).
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Chapter 7

Twisted K-Theory and the

Rothenberg-Steenrod Spectral

Sequence

7.1 Twisted Homology Theories

We review the definitions and basic properties of twisted homology and cohomol-

ogy theories. There are by now various models for these theories, but the following

perspective owes as much to Goodwillie as to folklore.

For a spectrum F, the cohomology of a space X with coefficients in F can be

defined as

F"(X) := colim rh(X,X x Fi+n);

here Fh(X, E;') refers to homotopy classes of sections of the (here trivial) bundle E

on X. The maps in the colimit are induced by applying the usual structure maps

iFi+n -- 1i'lZFi+n - Q+lZFi+l+n fibrewise to the bundle X x Q'Fi+, - X. Now

let E be a bundle of based spectra over X, with fibre spectrum F; this means in

particular that for each i we have a fibration Ei - X, a section X --+ Ei, and a

fibrewise structure map ExEi --- Ei+l. (Note that Ex denotes fibrewise suspension

and Qx will denote the fibrewise loops.) The cohomology of X with coefficients in E
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is defined to be

En(X) colim rh(X, Q2 Ei+,)

where the colimit maps are, as expected, induced by Q' Ei+n Q- +l xEi+n >

QX Ei++ n '

The parallel in homology is similar. The homology of X with coefficients in F is

Fn(X) := colim[Si+n, (X x Fi)/X],

with maps induced by Z((X x Fi)/X) = (X x EFi)/X -- (X x Fi+)/X. As above,

when E is a bundle of based spectra, we have a 'base point' section X -- Ei for all i.

The homology of X with coefficients in E is

En(X) := colim[Si+n, Ei/X];

the colimit maps are induced by E(Ei/X) = (ExEi)/X -- E+l/X.

For completeness we also mention the reduced analogs of homology and cohomol-

ogy with coefficients in a bundle of spectra. The reduced cohomology with coefficients

in a trivial F bundle can be given as

F(X) := colimrip(X, X x Fi+),

that is as the colimit of homotopy classes of sections taking the base point of X to

the basepoint of QiFi+n. The reduced cohomology with coefficients in E is then

En(X) := colim r (X Qx Ei+n);

the maps are induced as before. Similarly, the reduced homology with coefficients in

a trivial bundle is

F,(X) := colim[Si+n, (X x Fi)/(X V F)].
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The twisted reduced homology is finally

E,(X) := colim[Si+n, Ei/(X V Fe)];

the maps are induced by E(Ei/(X V Fl)) = (ExEi)/(X V EF) Ei+1 /(X V Fi+l).

Of course, these reduced groups are special cases of the relative groups:

En(X,A) : colim rh(X, A; QEi+n, s(A)),

where s is the distinguished base point section; similarly,

En(X, A) := colim[Si+" , (Ei/X)/((Ei IA)/A)].

The most; important fact about twisted homology theories is that they are honest

homology theories in an appropriate category. Indeed, consider the category of pairs

(X,A) of spaces, where A is a closed subspace of X and X is equipped with a

bundle E of based spectra with fibre spectrum F. From the above description of the

homology E,,(X, A), it is immediate that twisted homology on this category of pairs

is a homology theory in the classical sense.

In this paper we will only be concerned with bundles of spectra associated to

principal K(,2Z, 2) bundles over our space X. As usual, we fix a model for K(Z, 3) and

select a particular universal K(Z, 2) bundle on it. A map a : X - K(Z, 3) gives a

principal K(2E, 2) bundle P(a) on X, classified up to isomorphism by the homotopy

class of the map. For any basepoint-preserving action of K(Z, 2) on a spectrum F,

we can form the associated F bundle to P(ca). The resulting bundle P(a) XK(Z,2) F is

a bundle of based spectra on X, as above. Note that on the level of spaces, the action

of K(Z, 2) on F is given by maps K(Z, 2)+ A F = (K(, 2) x Fi)/(K(Z, 2) x *) -, Fi,

and we often denote the spectrum action simply by a map K(Z, 2)+ A F -+ F.
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Our primary examples are twisted SpinC-bordism and twisted K-theory. The

K(Z, 2) bundle

K(Z, 2) = BU(1) -+ BSpinc - BSO

is principal, with classifying map BSO ;2) BBU(1) = K(Z, 3) classifying the inte-

gral Bockstein of the second Stiefel-Whitney class. In particular we have an action

K(Z, 2) x BSpinc -- BSpinC; on Thom spaces this action is K(Z, 2)+ A MSpinc -+

MSpin, that is, a based action of K(E, 2) on the Spinc Thom spectrum. The

a-twisted SpinC-bordism groups are then, of course, the stable homotopy groups

7ri((P(oa) XK(Z,2) MSpin)/X).

The K-theory spectrum K is a module over SpinC-bordism by the usual index

map MSpin c in d K. Taking the above based action K(Z, 2)+ A MSpinc 0+ MSpinc

and smashing over MSpin c with K, we have a compatible based action on K-theory:

K(Z, 2)+ A MSpinc -, MSpinc

idAind ind

K(Z, 2)+ A K ^SPCd K
OAMSpnc (id)

The corresponding map on associated principal bundles P(a) XK(Z,2) MSpin c

P(a) xK(Z,2) K induces a map from twisted Spinc-bordism to twisted K-theory which

we call the twisted index map. This map will be important in section 10.

Twisted K-theory can be defined more directly by choosing an explicit model

for Z x BU (typically the space of Fredholm operators on a fixed Hilbert space

7l) that admits an explicit action by some model for BU(1) (typically the space

of projective unitary operators on 7-); see, for example, Atiyah [3]. Whatever the

formal definition, the geometric action being modeled is the following: a complex line

L (representing a point in BU(1)) acts on a virtual-dimension-zero (or stable) vector

space V (representing a point in BU) by tensor product, that is, V - L 0 V.

It is worth noting, though, that this heuristic action of tensoring a vector bundle

with a line can be misleading if we pay insufficient attention to the virtual dimension

zero condition. It is tempting to think of elements of a-twisted K-cohomology as
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sections of an a-twisted gerbe of rank n, for some sufficiently large n; (such a section

is locally a rank-n vector bundle, twisted globally by a). However, in this paper we are

dealing with non-torsion twistings, and therefore no nontrivial element of twisted K-

cohomology is representable by a section of any finite rank gerbe. We are inescapably

in either a virtual-dimension-zero or an infinite-dimensional situation-which would

seem to be a matter of personal penchant.

7.2 The Twisted Rothenberg-Steenrod Spectral Se-

quence

The "twisted" Rothenberg-Steenrod spectral sequence computing the twisted K-homology

of a space is in fact the ordinary Rothenberg-Steenrod (a.k.a. homology Eilenberg-

Moore) spectral sequence in an appropriate category, and as such requires little com-

ment. We briefly recall the spectral sequence in generality, then describe its applica-

tion to the geometric bar complex on the loop space of a simple Lie group.

We work in the category KC of pairs (X; E), where X is a space and E is a bundle

of based spectra on X with fibre the K-theory spectrum; the morphisms are those

bundle maps that are homotopy equivalences on each fibre. Similarly, we have a

category of triples (X, A; E) where A is a closed subspace of X and E is again a

bundle on X. As mentioned in the last section, the functors

(X, A; E) - E (X, A) = colim[Si+n, (Ei/X)/((EilA)/A)]

form a homology theory in the classical sense. In particular, for any simplicial object

S. in IC, there is a spectral sequence a la Segal [43] with E2 term Hp(Eq(S.)) converging

to the homology of the realization Ep+q(I S. I).
Let G be a simple, simply connected Lie group and k G H2 (QG; Z) = Z an integer

describing a line bundle L - k on the loop space QG. On the one hand there is the

trivial projection map in IC from (QG; QG x K) to (*; K). On the other hand, there is

a twisted map -r(k): (QG; QG x K) - (; K) given by QG x K X K(Z, 2) xK - K,
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where the last map is the K(Z, 2) action on the spectrum K described in section 7.1.

The geometric bar construction BrQG = B.(*, QG, *,) is a simplicial object in IC. To

describe the corresponding spectral sequence we need only compute the effect of T(k)

in homology and identify the realization BTQGL.

Given a class in the K-homology of QG the image of 0 under r(k) is evidently

equal to the evaluation (T(k)*(1), ), where (-,-) denotes the Kronecker pairing.

The pullback r(k)*(1) is Lk, and the resulting map K.QG ) K.* defines a module

structure on K.* which we denote (K.*),. The E2 term of our spectral sequence is

therefore TorK aG (K.*, (K.-*)).

As a space the realization of BTQG is evidently BQG _ G; we identify the K-

bundle. The K-bundle on the realization is defined by a 1-cocycle T(k) with values

in K(Z, 2) and as such is classified by the image of T(k) in H3 (BQG; Z). We have

H3(BQG) r H3(EQG) and it is enough to identify the restriction of T(k) to the 1-

skeleton EQG of BQG. It is, however, immediate that this cocycle on the 1-skeleton

of the geometric bar construction BTQG has homology invariant k E H3 (EQG). In

summary:

Proposition 7.2.1. There is a spectral sequence of algebras with E2 term

Ep2q = TorKqG (K.*, (K.*)T)

converging as an algebra to the twisted K-homology Kp+q(G).
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Chapter 8

Tate Resolutions and TorK.QG(z, ZT)

for G Spin(n)

For each group G, we describe the K-homology of the loop space of G, give an

appropriate rate resolution of K.* = Z over K.QG, and compute the torsion group

using a series of filtration spectral sequences.

We recall Tate's main result on algebra resolutions over a commutative Noetherian

ring R. An ideal I c R is said to be generated by the regular sequence al,..., ar E R

if I = (al,..., ar) and ai is not a zero-divisor in R/(al,..., ai-1) for all i.

Theorem 8.0.2 (Tate [461). Let A c B be ideals of R generated respectively by the

regular sequences (Sl,...,sm) and (tl,..., t). For any choice of constants cji E R

such that sj := Yi2l cjiti, the differential graded algebra

n

D (R/A(T,..., Tn){Sl,..., Sm}; d(Ti) = [ti], d(Sj) = [cji]Ti)
i=l

is a resolution of RIB as an R/A-module. Here the Ti are strictly skew commutative

generators o degree 1, and the Sj are divided power algebra generators of degree 2.

In particular., TorR/A(R/B, Q) will be given as the homology H(D OR/A Q). In our

applications, R will be a polynomial ring [xl,..., ,], the ideal A will depend on the
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group, the ideal B will be (xl,..., x,n), and Q will be an Rt/A-module Zg on which xi

acts by an integer ci depending on the group and the twisting class.

8.1 Tor for SU(n + 1) and Sp(n)

Elementary calculation shows that the integral cohomology rings of SU(n + 1) and

Sp(n) are exterior algebras on n generators. Application of the spectral sequence

ExtH'(G;k)(k, k) H.(QG; k), k a field, then implies that the integral Pontryagin

rings H.(QSU(n + 1)) and H.(QSp(n)) are both polynomial on n generators, all in

even degree. In each case the Atiyah-Hirzebruch spectral sequence for K-theory then

collapses, and the K-theory Pontryagin ring is again polynomial.

The Tate resolution in this case is especially simple, as the ideal A is trivial. Let

G denote either SU(n+ 1) or Sp(n) and k E Z - H3 (G; 2) the twisting class. Choose

reduced generators xi of K.QG, so that K.QG Z[x,... ,x1]. (Note that, unless

otherwise noted, we treat K-theory as E/2-graded.) The K.QG module structure on

Z, is given, as in section 7.2, by the map K.QG -- K.* sending a class x to (Lk, x),

where L is a generating line bundle. We defer the explicit evaluation of these maps

to section 9. For now, we denote by ci the image of xi in Z,; of course this constant

depends on both the group and the twisting, but we tend to omit both dependencies

from the notation. By Tate's theorem,

TorK (Z, Z,) = H(Z[xl,.. .., xn](Ti,... , T) ®z[xI,...,xn Zr; d)

= H(Z(T 1 ,..., Tn); dTi = ci).

To evaluate this homology group we employ the following general procedure. Suppose

we know the homology of the subalgebra generated by T1,..., Ti. We filter the subal-

gebra generated by T1,..., Ti+1 by powers of T+l and look at the associated spectral

sequence. The only differential is dl , which is given by multiplication by ci+, and by

induction we can thus compute the homology of the original algebra.

We assume for now that c is not zero; this is indeed the case (see sections 9.2
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and 9.3). The homology of (Z(T1 ), d) is Z/c1 . The, quite degenerate, spectral sequence

of the filtration of (Z(T1 , T2), d) by T2 is therefore

Z/cl 4 Z/cl.

The homology is Z/g12(Y2), where g12 = gcd{cl, c2} and Y2 is an exterior class. More

generally we will denote by gl..i the greatest common divisor gcd{c1, c2,..., ci}. The

induction step is, as expected, the homology of

Z/91g..i(Y2, , Yi) Z/9g..i(Y2 ., Yi),

and the Tor groups are given by

rorKs vU(n+l)(z, 27) = Z/( 1.. n(SU(n + 1), k))(y 2 ,..., Yn-1)

TorKQSp(n) (Z, 2) = Z/(g1..n(Sp(n), k))(y2, ... , Yn-1)

We belabor this calculation only because, when we come to more complicated exam-

ples, especially Spin(n), it will help to have a clear model.

8.2 Tor for the Exceptional Groups

The exceptional Lie groups are nature's best attempts to make a finite dimensional

Lie group out of K(E, 3). In particular they are homotopy equivalent to K(Z, 3)

through a range of dimensions, and so their loop spaces are homotopy equivalent to

K(Z, 2) through a similar range. The K-homology of K(Z, 2) is the subalgebra of

Q[a] generated by {a, (2), (), .. .}; see [1]. Extensive computations by Duckworth [11

show that for G exceptional, the K-homology K.QG differs from a polynomial ring

only in the aforementioned low-dimensional flirtation with K(Z, 2). For example,

Duckworth proves that K.QE8 is a polynomial ring on seven generators tensor the

subalgebra of Q[a] generated by the elements {a, (2), (), (), ()}. In order to use

Tate resolutions, we must give explicit algebra presentations of these K-homology
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rings:

Proposition 8.2.1. The K-homology rings of the loop spaces of the exceptional Lie

groups are given by

Z[a, b, x 3]
K.G2 (a(a- 1)- 2b)

FZ[a, b, c, X4, X5, 6 ]
(a(a - 1) - 2b, b(a - 2) - 3c)

K.E6 = Z[a, b, c, X 4 , X5, X 6 , X7 , X8]
K.QE6 = (a(a - 1) - 2b, b(a - 2) - 3c)

Z[a, b, c, d, x 5, x 6, x 7, 8, xg, x 10 ]
(a(a - 1) - 2b, b(a - 2) - 3c, b(b + 1) - a(b + c) - 2d)

Z[a, b, c, d, e, x 6, X7, xs, g, X10, X11, X1 2]

(a(a - 1) - 2b, b(a - 2) - 3c, b(b + 1) - a(b + c) - 2d, d(a - 4) - 5e)

Note that the unsightly third relation in the rings for E7 and E8 is essential and cannot

be replaced by the more sensible relation c(a - 3) - 4d. We remark that, because the

'lettered' generators in these K-homology rings come from corresponding generators

in K.(K(Z, 2)), the twisted pushforwards of these elements are easily computed. In

particular, the twisted pushforward of a, denoted again by cl, is just k, the twisted

pushforward of b is c2 = (), of c is c3 = (k), and so on, with each generator mapping

to its respective binomial coefficient.

As always, our starting point is the Tate resolution:

Tor K*G2(Z, Z-) = H(Z(Ti,T 2 , T3 ){SI}; dTi = i, dS1 = (c1 - 1)T1 - 2T2).

Consider the subalgebra generated by T1, T2, and S1. If k is even, we can rewrite this

DGA as
k

(Z(Th1, T2){ S1; dT = O. dT2 =2 , dS1 = Ti),

where T = (k- 1)T - 2T2 and T = kT1 - T2. The Kunneth theorem immediately

shows that the homology of this DGA is /(k). If k is odd, we instead change the
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basis to T1 =: k-iT 1 - T2 and T2 = kT1 - 2T2. The algebra then takes the form

(2(T~, T2){S1}; dT = 0, dT = k, dS = 2T),

and by the Kunneth theorem its homology is Z/k. In other words, the homology of

the subalgebra in question is, in any case, Z/91 2 , where as before 912 = gcd{cl, c2}.

Filtering as in section 8.1 we see that the full Tor group is /9 1 23 (Y 3 ).

The Tate resolution for F4 gives

TorKQF4 (z,7,) = H(Z(T 1 , T2 , T, T4 , T, T6){S, S2};

dTi = ci, dS 1 = (ci - 1)T1 - 2T2, dS2 = (c - 2)T2 - 3T3 ).

We focus on the subalgebra generated by {T 1, T2 , T3, Si, S2 }. The method used for

G2, of chang:ing basis to split the algebra into simpler pieces, works here as well; the

basis change now depends on k modulo 6. We spell out only the case k = 1 (mod 6).

As basis change for the Ti's we take

C

k-1
2

k-1
6

3k-1
2

-1
k-i

3

-1-k

o

--1

3 

The algebra then has the form

(Z(T, 172, T3){S1, S2}; dT1 = dT2 = 0, dT3 = k, dS1 = 2T, dS2 = 3T2 + T-).

The spectral sequence associated to the filtration of the {T,, T2, S1, S2} subalgebra by
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powers of S2 is

2/2
2' ) (s S(2)T{)

z/2
(S 2S1TI T2

Z/2
2 ) (S2 SI T )

Z/2
(S2 TT2 )

(1,1) E/2 2
(S2 T, S2 TI

Z (1,3) Z
(S2)

2/2
(S 2) S 1 T2 )

2/2
(S(2 ) SITI)

E/2
(S(2)TlT)

(1,1) 2/2 Z
(S(2)T S (2).)

5 (1,3) Z

(s(2))

There are, of course, no differentials beyond d' and the homology of the T, T2, S1, S2}

subalgebra is therefore Z/6 in odd degree, 0 in positive even degree, and Z in degree

zero; consequently the homology of the {T, T2, T3, S1, S2} subalgebra is 2/k concen-

trated in degree zero. In general, ie for k not necessarily congruent to 1 modulo 6,

this Z/k is replaced by Z/9123 and the full Tor group for F4 is /9g1..6(Y4, Y5, Y6). The

computation for E6 is identical, but for two additional exterior generators in the final

Tor group.

This basis change approach quickly becomes impractical: for E8 the congruence

of k modulo 60 determines the structure of the basis change and of the subsequent

homology computation. If we are willing to give up our ability to write down explicit

generators for the Tor groups, we can do the computation without such a case by

case analysis. We briefly reconsider the groups G2 and F4 . For G2 the main step was

computing the homology of the DGA

D = (Z(T1,T 2){S1}; dTi = ci, dS1 = (cl - 1)T1 - 2T);

recall that cl = k and c2 = (k). The homology of the {T1 , T2} subalgebra is 2/912 (Y2),
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where the generator Y2 can be taken to be -(c/9gl 2)T 2 modulo terms involving T1;

(we will refer to terms with lower indices, sensibly enough, as 'lower terms' and so

say, for example, that "Y2 is -(Cl/g 12)T 2 modulo lower terms"). Thus, when we filter

D by powers of S1, the homology of D becomes the homology of

(2/g 1 2 (Y2){S1 }; dS = (2g12/Cl) 2 ).

Note that 2 12/cl is an integer, so this expression makes sense. We observe that

2g12 /C1 is actually a unit in Z/912; indeed g12 = c1/gcd(2, cl) so

gcd(2g12 /cl, g912) = gcd(2/gcd(2, ci), cl/gcd(2, ci)) = 1.

The homology of D is therefore simply Z/912, as previously noted, and thus the full

Tor group is again an exterior algebra tensor a cyclic group.

The case of F4 (and therefore of E6) is again similar. The main step is the

computation of the homology of the DGA

D = (z(T 1, T', T3){S1, S2}; dTi = ci, dS1 = (cl - 1)T1 - 2T2, dS2 = (c1 - 2)T2 - 3T3).

(Here again cil = (k).) Using the G2 result we see that the homology of the {T1 , T2, T3, S1}

subalgebra is 2/9123 (3) where Y3 is -(g912/g123 )T3 modulo lower terms. As above the

homology of D is thereby reduced to the homology of

(Z/912 3 (y3 ){S2}; dS2 = (39123 /912 )Y3).

Again, this differential is an isomorphism, ie 39123/912 is a unit in 9123. The trick is

the same: observe that 9123 = g12/gcd(3, 912) = cl/(gcd(3, c1) gcd(2, cl)); from this

we have

gc(d(3g12 3 /gl 2 , 9123) = gcd(3/gcd(3, c1), c1/(gcd(3, c1) gcd(2, c1)))

= gcd(3/gcd(3, c1), ci/gcd(3, ci)) = 1.
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The homology of D is thus, again, Z/9 1 23. The full Tor group follows.

Despite the increased complexity of the K-homology rings of QE7 and QE8, the

Tor calculations in these cases are no more elaborate than for the other exceptional

groups. The presentation in Proposition 8.2.1 suggests an appropriate Tate resolution

and the Tor group over K.QE 7 is given by the homology of the DGA

(Z(T 1,... ,To){S, S2, S3 }; dTi = ci, dS1 = (c1 - 1)T - 2T2 ,

dS2 = (cl - 2)T2 - 3T3, dS3 = (c2 + 1)T2 - (c2 + c3)T1 - 2T4).

Using the F4 computation, we see that the homology of the {T1, T2, T3, T4, S1, S 2 ) sub-

algebra is Z/91234(Y4), where y4 is -(912 3/91 2 34)T4 modulo lower terms. The homology

of the {T1, T2, T3, T4, S1, S2, S3 subalgebra is therefore the homology of

(2 /g1234 (4) {S3}; dS3 = (2 g1234/9g123)Y4).

We observe that 291234/9123 is a unit in Z/91234 and so the homology of this subalgebra

is /91234 concentrated in degree zero. The full Tor group is finally 2 /g..lO(Ys, Y6, ' , Y10)-

In this calculation it is critical that the third relation in the presentation of K.QE 7

is b(b + 1) - a(b + c) - 2d and not the expected c(a - 3) - 4d. The latter relation

would produce a differential dS3 = (4 91234/g123)Y4 and thereby (because 491234/9123 is

not always a unit in Z/91234) a plethora of nontrivial higher torsion.

The Tor computation for E8 is entirely analogous. The Tate resolution is dictated

by the presentation in Proposition 8.2.1 and the necessary combinatorial fact is that

5912345/91234 is a unit in /912345.

8.3 Proof of Theorem 6.2.1

We can now establish the bulk of our main theorem. We assume the computation of

the torsion group for Spin(n), which is carried out in section 9.4:

TorKQSpin(n)(K.*, (K.*)T) = A[x,... , Xn-1] 0 Z/c(Spin(n), k).
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Though we have treated K-homology as Z/2-graded in our Tor computations,

properly it is Z-graded, and the E2 term of the Rothenberg-Steenrod spectral sequence

has the appearance:

TorKnoQG(Z, Z) Tor KOQG(2, 2 ) Tor°oQG(Z, Z) .

0 0 0

TorK°QG (Z, 2Z) TorKOQG(Z, Z2) TorK°QG(Z, Z) .

0 0 0

T (Z ) TorOK°G(Z, Z) Tor) T QG(Z, ZT)Toro X Z') 1 2~~~~~~~~~~~~..
In our cases these torsion groups are generated in Tor-degree 1; the (homological)

differentials vanish on the generators and thus the spectral sequence collapses at the

E2 term.

We show that there are no additive extensions. We have established that the E°

term of the spectral sequence is a cyclic group, say Z/c, tensor an exterior algebra.

The filtration is homological, so the subgroup (Z/c){1} C E generated by the

identity element of the torsion group TorK.' G = E 2 = E'c is actually a subgroup

of the K-hornology KT (G). The construction of the spectral sequence shows that

this identity element in the torsion group corresponds to the identity element in the

K-homology. The identity element 1 E KT (G) is therefore killed by multiplication by

c, and so the entire K-homology ring is c-torsion, as desired.

For degree reasons, the only possible multiplicative extension is y2 = d C Kr(G);

that is the square of the K-homology class represented by an exterior generator

yi E Torl could be a constant integer, an element of Toro. However, by construction

the exterior classes yi are represented by reduced classes in KT(G) and so their squares

are also certainly reduced, eliminating the possibility of multiplicative extensions. 
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Chapter 9

Generating Varieties, the Cyclic

Order of KTG, and

TorK.'QSpin(n) (Z Z)

The twisted K-homology of a simple Lie group is an exterior algebra tensor a cyclic

group. The order of this cyclic group depends on the twisting class and is, as yet,

determined by a mysterious set of constants. We will see that this cyclic order of

the twisted -homology K'G is the greatest common divisor of the dimensions of a

particular set of representations of G. The main ingredient in computing the cyclic

order is a detailed understanding of the twisted module structure of Z,, that is of

the twisting map K.QG ) K.*. Bott's theory of generating varieties allows us to

produce explicit representatives of classes in K.QG, as fundamental classes of complex

algebraic varieties, and thereby to describe the twisting map.

9.1 Generating Varieties and Holomorphic Induction

9.1.1 Bott Generating Varieties

A generating variety for QG is, for us, a space V and a map i : V -- QG such

that the images i,(H.V) and i,(K.V) of the homology and K-theory of V generate
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H.Q'G and K.Q'G, respectively, as algebras, where Q'G is the identity component of

QG. In [6], Bott produced a beautiful, systematic family of generating varieties of

the form G/H, as we now describe; these particular homogeneous spaces are better

known as coadjoint orbits and as such are smooth complex algebraic varieties with

an even-dimensional cell decomposition.

We briefly review Bott's construction. Let G be a compact and connected but

not necessarily simply connected Lie group. Denote by FG = ker(exp: t -- T) the

coweight lattice of G; we do not distinguish between a coweight and the corresponding

circle in G. A coweight e rFG is called generating if for every root r E t* of G, there

is an element w of the Weyl group such that r(w * ) = 1. Note that the coweight

lattice rG of the group is contained in the coweight lattice Fw of the Lie algebra,

which is also the coweight lattice of the adjoint form of G. A coweight is generating

if, roughly, it is as short as possible in rw; thus, even if a group does not have a

generating coweight, its adjoint form will. The simple rank 2 groups with generating

coweights, namely PSU(3), PSp(2), and G2, are illustrated in Figure 9-1.

Figure 9-1: Generating Coweights for Rank 2 Lie Groups

* Root lattice

o Coweight lattice

- Generating coweight

PSU(3) PSp(2) G2

Suppose £ E rG is a generating coweight for G, and let C(£) c G denote the

pointwise centralizer of the corresponding circle; note that C(e) can also be described

as the image under the exponential map of the subalgebra of g generated by the root

spaces associated to roots r perpendicular to e, that is to roots where r(f) = 0. The
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map

G -QG

g 9 gg-le-l

descends to a map on cosets G/C(f) -+ QG. The main theorem, which is due to Bott

in homology and to Clarke [7] in K-theory, is that G/C(f) is a generating variety for

QG.

Suppose G is simply connected and is a generating circle for PG, the adjoint

form of G. Then PG/CpG(f) = G/CG(L) where denotes a loop in G covering e.

The composite

GICG(e) PGICPG(f) -+ QPG = G/p =

is therefore a generating variety for QG. For example, the generating varieties cor-

responding to the marked coweights in Figure 9-1 are SU(3)/U(2), Sp(2)/U(2), and

G2/U(2) respectively. In general there may be more than one Bott generating variety

for a group; we list a Bott generating variety for each of the classical groups in the

following table:

Group

SU(n + 1)

Spin(2n + 1)

Sp(n)

Spin(2n)

Generating Variety

SU(n + 1)/U(n)

Spin(2n + 1)/(Spin(2n - 1) xz/2 Spin(2))

Sp(n)/U(n)

Spin(2n)/(Spin(2n - 2) XZ/2 Spin(2))

Here the 2/2 action on Spin(n) is the one whose quotient is SO(n).

We need to compute the twisted map K.QG -( K.*. To this end we want

to represent the algebra generators of K.QG in a way that allows us to compute

their twisted images. In our computations we utilize generating varieties to represent
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algebra generators in three independent ways; we refer to these briefly as representing

them via subvarieties, via an evaluation dual basis, and via a Poincare dual basis.

In some cases we have a sufficiently explicit handle on the generating variety V for

QG that we can describe a collection of maps Wi - V --* QG such that Wi is a K-

oriented manifold and the images in K.QG of the K-homology fundamental classes of

the Wi are the desired algebra generators; frequently, though not always, the Wi are

subvarieties of the generating variety V. Variants of this 'subvariety' representation

are used for SU(n), G2, and Sp(n) in sections 9.2 and 9.3.

The K-cohomology of the Bott generating variety V is easily determined from

the representation theory of G. Specifically, if the Bott generating variety V is the

quotient G/H with G simply connected, then K' V = R[H]/i*(I[G]), where i: H -+ G

is the inclusion and I[G] is the augmentation ideal of the representation ring R[G].

If there is a minor miracle and we can write down a clean basis for this ring, then we

can take an evaluation dual basis for the K-homology K.V; the image of this basis

in K.QG will generate as an algebra and the twisting map will be easily computable.

This is the approach taken for Spin(n) in section 9.4.

More commonly, any apparent basis for the K-cohomology of the generating va-

riety is quite haphazard. In this case we consider the Poincare dual basis (to some

chosen basis) for the K-homology K.V. Again the images of these classes in K.QG

will generate, but computing their twisted images requires a bit more work. Specifi-

cally, we use holomorphic induction to write these images in terms of the dimensions

of irreducible representations of G, as described in detail in the next section. This

Poincare dual approach is the one that provides a general procedure and is the subject

of section 9.5.
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9.1.2 The Twisting Map via Holomorphic Induction

In section 7.2 we described the K.QG-module structure on Z, by the twisting map

K.QG r) K.*

X (Lk, X),

where L E A' QG is a generating line bundle. The purpose of this section is to outline

the computation of the twisted image (Lk, x) when x is represented as the image of

the Poincare dual of a bundle on some K-oriented manifold.

Let i: W - QG be a map from a K-oriented manifold W to QG and let r E K W

be a bundle on W such that i(Dr/) = x E K. QG; here, D denotes the Poincare duality

map. We first translate the evaluation (Lk, x) into a pushforward on W:

(Lk. i*(D?1)) = (i*(Lk), Dr) = (i*(Lk), 71 n []) = (i*(Lk) U , [w]).

The third equality is simply

(i*(L), 7 n []) = *(i*(Lk) n (n [W])) = 7*((i*(Lk) r) n [W]) = (i*(L)U rU, [W]),

where 7r: W - * denotes projection. We are thereby reduced to computing K-theory

pushforwards (, [W]) = 7r!().

We can translate this K-theory pushforward to a cohomology pushforward using

the Chern character. Multiplicative transformations of cohomology theories do not

commute with pushforward, and the discrepancy in the case of the Chern character

is the Todd genus. The Chern character is the identity on a point, and so we have

(ll, [W]K) = ch(7Tr(p/)) = l7.(ch(p) U Td(W)) = (ch(a) U Td(W), [W]H).

Next we reduce this cohomology pushforward to a calculation in sheaf cohomology.

We always work with manifolds W that are smooth projective complex algebraic

105



varieties, and as such the Hirzebruch-Riemann-Roch theorem applies:

(ch(/u) U Td(W), [W]H) = Z(-l)iHi(W; p/) =: X(H).

Here of course Hi(W; At) denotes the cohomology of the sheaf of holomorphic sections

of the bundle p.

In some cases, this reduction is sufficient, as we can use Serre duality and related

techniques to compute the sheaf cohomology groups. If, as in our computations it

always is, W is a homogeneous space G/H which is a Kihler manifold, and / is

pulled back along G - BH from an irreducible representation of H, then we can

take advantage of Bott's theory of holomorphic induction [5]. (If our original p is not

irreducible, we simply decompose it into irreducible components and apply holomor-

phic induction to each component.) To avoid reviewing the whole of Bott's theory,

we describe holomorphic induction procedurally as it will arise in our computations.

Let G be a compact connected simply connected Lie group and H a centralizer

of a circle in G; in particular H and G share a maximal torus and their weight

lattices coincide. In this situation, as remarked earlier, the K-theory of the quotient

G/H is simply the quotient of representation rings: K (G/H) = R[H]/i*(I[G]). We

may further assume that we have chosen an order on the roots of G such that H is

generated by a subset of the simple roots of G; in particular this determines standard

Weyl chambers for G and H. (That there is such a choice of order is the content of

Wang's theorem and depends on H being the centralizer of a torus in G; see Bott [5].)

Let t denote simultaneously a weight in the Weyl chamber of H, the corresponding

irreducible representation of H, and the associated bundle on G/H. Let p denote

half the sum of the positive roots of G, and let S denote the union of the hyperplanes

perpendicular to the roots of G. Further, for a weight w of G, let T(w) denote the

unique weight in the Weyl chamber of G that is the image of w under an element of the

Weyl group. The index ind(w) of a weight w not in S is the number of hyperplanes of

S intersecting a straight line connecting w and T(w). Bott's theorem is the following:

Theorem 9.1.1 (Bott [5]). In the above situation,
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* if u + p E S then H' (G/H, A) = 0;

* if p + p , S then H (G/H, p) is nonzero only in dimension ind(j + p);

* in this case, Hind(C,+P)(G/H,) is isomorphic to the irreducible representation

of G with highest weight T(u + p) - p.

When /a + p e S we say that p is singular. Thus, when p is singular, X() = 0, and

otherwise

X() - (_)id(I+ P) dim([T(p/ + p) - PIG),

where [-]G denotes the irreducible representation of G with the specified highest

weight.

In any given case, the dimension of this irreducible representation is easily com-

puted using the Weyl character formula, and so the preceding method provides a

systematic approach to computing the twisting map on a class represented by the

image of the Poincare dual to a K-cohomology class of an appropriate homogeneous

space. We proceed to specific examples.

9.2 Subvarieties of QSU(n + 1) and QG2

A generating variety for QSU(n + 1) is SU(n + 1)/U(n) = CPn - QSU(n + 1), and

the induced map in homology is

H.CP = Z1,...,z } --*- Z[wl,..., w,] = H.QSU(n + 1)

Zi w i .

Here the classes zi are represented by the fundamental homology classes of the sub-

varieties CP i C CP'. The Atiyah-Hirzebruch spectral sequence collapses for both

QSU(n + 1) and CPn and there are no extensions. In particular K.QSU(n + 1) is

polynomial on n generators, as previously noted, and K.CP n is free abelian of rank

n.
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Lemma 9.2.1. The set {[CPi]}Il1 of fundamental K-homology classes of the subva-

rieties CPi C CPn forms a basis for K.CP n.

Proof. By induction it is enough to show that under the projection K. CPi - K. (CPi , CPi-l) =

Z the fundamental class of CPi maps to a generator. This follows immediately from

the naturality of Poincare duality,

K. CPi - K. (CPi, Cpi- l)

K'CPi - K (CPi - cpi-1)

because the unit in K CPi certainly maps to a generator of K (CPi - CPi-l) . [

The images i,([CPi]) generate K.QSU(n + 1) as an algebra and we may therefore

take {xi = i([CPi]) - 1} to be the reduced polynomial generators.

We now have to evaluate the pushforward (Lk, [CPi]), where we use L to denote

the generating line bundle on CPi = SU(i + 1)/U(i); this L is of course the pullback

of the generating line bundle on QSU(n + 1). The bundle L corresponds to an

irreducible representation of U(i), thus to a weight of U(i) and so a weight, also

denoted L, of SU(i + 1); this weight L is in the Weyl chamber of SU(i + 1). The

irreducible representation of SU(i + 1) corresponding to L is the dual of the standard

representation; (that it is the dual of the standard representation and not the standard

representation is the effect of a sign choice-see the remark at the end of this section).

It happens that the k-fold symmetric power of this representation is irreducible, and

so the dimension of the irreducible representation corresponding to Lk is (k+i). The

image of xi = i,([CPi])- 1 E K. QSU(n + 1) in Z, is therefore ci = (k+i) _ 1, and the

cyclic order of K T (SU(n + 1)) is

c(SU(n + 1), k) = gcd {(k+1) ( k+)-, .. . (+ )-} .
1 ' 2 ' n

The procedure for calculating the cyclic order of KTG2 is similar: we find funda-

mental class representatives for algebra generators of the homology of QG2 and then
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show that the corresponding K-homology fundamental classes also generate. The

map QG2 --* CP classifying the generating line bundle is a homology equivalence

through degree 4. Using this, the Serre spectral sequence for QSU(3) -+ QG2 -- QS6

shows that

H.QG 2 Z[a2, a4, alo]/a2 = 2a4.

The composition

CP2 -+ QSU(3) -- G2 - CP'

is simply the inclusion and as such, a2 and a4 in H.QG 2 are represented respectively

by the fundamental classes [CP1] and [CP2]. The Bott generating variety for QG2

is G2 /U(2), where the U(2) in question is included in G2 along a pair of complex-

conjugate short roots. The manifold G2 /U(2) has dimension 10 and the image of

its homology generates H.QG 2; we may therefore choose a10o to be the image of the

fundamental homology class [G2 /U(2)].

The Atiyah-Hirzebruch spectral sequence for QG2 collapses, and the low-degree

equivalence between QG2 and CP° resolves the extension. The K-homology K.QG 2

is thereby isomorphic to Z[a, b, x3 ]/(a2 + 3a = 2b).

Lemma 9.2.2. The reduced algebra generators of K.QG 2 Z[a, b, x 3/(a2 + 3a = 2b)

may be taken to be the reduced fundamental K-homology classes [CP1] - 1, [CP2] _ 1,

and [G2/U(2)]- 1 respectively.

Proof. Let (G 2 /U(2))8 denote the 8-skeleton of the generating variety, that is every-

thing except the top cell. As in Lemma 9.2.1, the fundamental K-homology class of

G2/U(2) maps to a generator of K.(G2/U(2), (G2/U(2))8). Comparing the Atiyah-

Hirzebruch spectral sequences for G2/U(2) and QG2 we see that [G2 /U(2)] lives in

filtration 10 in K.QG2 and projects to the generator alo in H1oQG2. The fundamen-

tal K-homology classes [CP1] and [CP2] certainly project to the generators a2 and a4

respectively in the appropriate filtration quotients, and this completes the proof. 

We remark that these algebra generators differ by a change of basis from those im-

plicitly chosen in section 8.2 and this explains the difference in the relation; the Tor
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computation and the cyclic order is not affected by the change.

We need only compute the pushforward (Lk, [G2 /U(2)]). The bundle L corre-

sponds to the shortest weight p, perpendicular to the roots of U(2); as a weight of

G2, ,u is the long root of G2 in the Weyl chamber. The pushforward is therefore the

dimension of the irreducible representation of G2 with highest weight k. By the

Weyl character formula (see for example [20]) this dimension is

dim([ku]G2) = (k + 1)(k + 2)(2k + 3)(3k + 4)(3k + 5)
120

The cyclic order of K-G 2 is finally

c(G2, ) = gcd{(k ) _ 1(k +2) 1, (k + )(k + 2)(2k + 3)(3k + 4)(3k + 5) 1}
1 2 - '120

A remark on signs is in order. If we have chosen a generating line bundle L on

QG2 a priori, the weight corresponding to L may be -p instead of /u as claimed above.

The dimension resulting from holomorphic induction on the weight k(-t) is wildly

different from the dimension associated to k(Lt), and this might be cause for worry.

However, the greatest common divisor is in all cases unaffected by the change. The

easiest way around this ambiguity is to chose L such that the corresponding weight

is pt and not -t; we must then pick the generating variety CP2 for QSU(3) in such

a way that the given L corresponds there to the dual of the standard representation

(and not to the standard representation) as described in the discussion of SU(n + 1)

above-this is easily accomplished. Similar remarks apply to all our computations

and we make convenient sign choices without comment.

9.3 Generating Varieties for QSp(n)

The homology and K-homology of QSp(n) are polynomial in n generators. The

natural Bott generating variety for QSp(n) is Sp(n)/U(n), which has homology and
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K-homology of rank n2 + n. Identifying the n elements which generate therefore

requires more doing-we return to this question later. Luckily, QSp(n) has smaller

generating varieties-see [24, 39]; in particular we work with (C2n- 2)L2, the Thom

complex of the square of the tautological bundle.

Let Pi(V) or P(V) denote the projectivization of the bundle V on CPi; note that

we can rewrite our generating variety V(n) = (Cp2n-2)L 2 as P2n_2(L2 + 1)/P2n2(L2).

We think of' the quotient map P(L2 + 1) -+ P(L 2 + 1)/P(L2) as a resolution of

our (quite singular) generating variety, and we represent homology and K-homology

classes in V(ln) (and thus in QSp(n)) as the images of fundamental classes of subva-

rieties of P(L 2 + 1). The reduced homology of V(n) is free of rank one in each even

degree between 2 and 4n - 2, and the degree 2i group is generated by the image of

the fundamental class [Pi_1(L2 + 1)]. In particular, the algebra generators {a4i-2}

of H.QSp(n) = [a2, a6, a, , a4n_2] are represented by the fundamental classes

[P2(i_i)(L2 + 1)], for 1 < i < n.

The K-homology situation is the same.

Lemma 9.3.1. The reduced polynomial generators of the K-homology K.QSp(n) 

Z[Xl,..., Xn] can be taken to be the reduced K-homology fundamental classes f.[P2(il)(L 2+

1)]- 1, 1 < i < n; here f is the composite

P2 (il)(L 2 + 1) --+ P2(n-2)(L 2 + 1) -- P2( 2)(L2 1)/P2(n-2 )(L2) --+ QSp(n).

The K-homology fundamental classes map, in the appropriate filtration quotients, to

the homology fundamental classes; the proof is the same as for SU(n + 1) and G2.

To evaluate the twisting map, specifically to calculate (Lk, f[P 2(i_l)(L2 + 1)]),

we need to identify the bundle f*(Lk). We do this by writing down a bundle on

P(L2 + 1) = P2(i_l)(L2 + 1) that is trivial on P(L2) = P2(il)(L 2), and show that

the corresponding bundle on the quotient V(i) is the pullback f'*(L) where f' is the

inclusion V(i) --+ V(n) - QSp(n). Let y be the tautological bundle on the total

space P(L 2 +- 1) and let 7r : P(L 2 + 1) -+ CP 2(i -1) be the bundle projection. The
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subspace P(L2 ) is of course just the base Cp 2(i- 1) and so y restricts to r*(L2)lp(L2)

on P(L 2 ). In particular then, the bundle y 0 7r*(L-2) is trivial on the subspace

P(L2 ) and so pulls back from a bundle on V(i). To see that 0 is equal to f'*(L)

(up to our usual sign ambiguity), and therefore that y 0 7r*(L-2) = f*(L), it is

enough to check that the first Chern class of y 0 7r*(L-2 ) is a module generator of

H 2(P(L 2 + 1)) = Z{c 1(), 7r*(cl(L))}; this much is clear.

We now compute the pushforward

(Lk, f,[P 2(i-l)(L 2 + 1)]) = ((t 7r*(L-2 ))k, [P2(il)(L 2 + 1)]).

First pushforward along the fibres:

(yk 7r*(L-2 k), [P2 (i_l)(L2 + 1)]) = (Symk(L 2 + 1) 0 L -2 k, [Cp2(i-1)])

This is a parameterized version of the pushforward

(a, [(P]) = (taut, [P(Cn+)]) = dim(Symk(C+l)) = + n)

used in the preceding section. Next

Symk(L2 + 1) 0 L - 2 k = L-2 k + L -2 k+2 + ... + 1

and so

(Symk(L2+1)L2k,[C2(i) (-2k+ 2(i-1) + (-2k+2+2(i-1))+
(m L2(i - 1) (2(i - 1)

Here we use (a+b) to denote (a+b)(a+b-1)...(a) even when a + b is negative; we implicitly

observe that this expression does give the correct pushforward even when the bundle,

as in the case of L-2 k+2 1 , corresponds to a weight that is not in the Weyl chamber of
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SU(2(i - 1) + 1). This finishes our calculation of the cyclic order of KT Sp(n):

c(Sp(n), k) = gcd <J_ ( 2(i - 1) : }.

It would be more natural to express the cyclic order of KTSp(n) in terms of the

dimensions of irreducible representations of symplectic groups. This is possible if we

work with subvarieties of the Bott generating variety V = Sp(n)/U(n). There is a

natural collection of n subvarieties of V, namely {Sp(i)/U(i)}. It is not the case that

the fundamental homology classes of these subvarieties represent algebra generators

for H.QSp(n); indeed, the algebra generators are in dimensions {4i - 2}, while these

subvarieties have dimensions {i2 + 2}. It is therefore remarkable that the K-homology

fundamental classes of these subvarieties do appear to generate the K-homology of

QSp(n).

Conjecture. The K-homology ring K.QSp(n) is polynomial on the classes represented

by the reduced K-homology fundamental classes [Sp(i)/U(i)] - 1, for 1 < i < n.

Using the Weyl character formula, this immediately gives a description of the cyclic

order:

( (11 (l-j)(2k+2i+2-(j+l)))(H (k+i+l-j)) 
c(Sp(n).Jlc) gcd I<.j<i~ g(2i-1)!(2i-3)!...3!1! · 1< i < n

These gcd's agree with those determined using the generating variety (Cp 2 n-2)L 2 .

9.4 The Tor Calculation for Spin(2n + 1)

We now pay our debt to the proof of Theorem 6.2.1 by calculating TorK.QSpin(2n + l ) (Z, Z7);

in the process we determine the cyclic order of Kt Spin(2n + 1). (The computations

for the even Spin groups are similar and the resulting cyclic order is recorded in
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Theorem 6.2.2.) For the other simple groups, we were able to calculate the Tor

group without knowing the map K.QG - (K.*)T and we determined, after the fact,

the structure of this twisting map. The ring K.QSpin(2n + 1) is too complicated

to permit this a-priori Tor calculation; we must first identify algebra generators of

K.QSpin(2n + 1) and compute the twisting map. It happens that the K-cohomology

of the Bott generating variety V = Spin(2n + 1)/(Spin(2n - 1) xz/2 Spin(2)) ad-

mits a particularly simple representation-theoretic basis, and an evaluation dual basis

maps to a set of algebra generators in K.QSpin(2n + 1). Once we know the twisted

pushforwards of these algebra generators, the Tor computation becomes tractable.

The structure of the K-homology ring of QSpin(2n+1) was described by Clarke [7]:

K.QSpin(2rn + 1) [= I[, 02, ' , Uan-l, 20n, 2 2n+1 + Un,..., 2 92n-1 + 0r2n-2]

(P,... ,Pn-1)
k-1 2k-i-1

Pk = Sk + Z(_)kiu - (k 1) (2 + ).
i=O j=k

One can see why the a-priori Tor calculation is unlikely to be fruitful. The K-

cohomology of the Bott generating variety is simply the quotient of the representation

ring of Spin(2n - 1) X/ 2 Spin(2) by the image of the augmentation ideal of the

representation ring of Spin(2n + 1). Clarke writes this quotient in a convenient form:

K V = [/t, (un- 2 - Ly,y2);

here ,u = L - 1 where L is the generating line bundle whose k-th power determines

the twisting. Note that /2n = 0 in this ring, and so (, /U2, . .. t 2n-1) is a basis for

K (V) 0 Q. Letting ( 1 ,..., . , 2n 1 ) be the evaluation dual basis of K.(V) 0 Q, we see

that

(O, ·- , Un-, 2on, 2u$+1 + ' ... , 2U2n-1 + U2n- 2)

is a basis for K.V; these elements map, respectively, to the given generators of

K.QSpin(2n + 1). The twisting map K.QSpin(2n + 1) --+ (K.*), takes a genera-
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tor g to (Lk. g) E Z. Because 12n = 0, we have

(Lk,a) = ((+ 1)k ') = k

and the images of our integral generators are respectively

- + .· · I · .2 + (()' (2) "' (n- 1)n n 2 1) + (2n-2)

We can now prove that TorK.QSPin(2n+l) (Z, Z,) is an exterior algebra on n-1 gener-

ators tensor a cyclic group. We first rewrite the above presentation of K.QSpin(2n+1)

in a way that suggests a propitious choice of Tate resolution. Let (a,..., a2n-l) de-

note the given generators of K.QSpin(2n + 1). For i sufficiently large, the relation Pi

expresses the generator a2i in lower terms; in particular

K.QSpirn(4n - 1) = Z[al, a2 ,..., a2n-2, a2n-1, a2n+l, a2n+3,. , a4n-5 a4n-3]
(Pi, P2, , Pn-1)

K.QSpzinri(4n + 1) = Z[al, a2,., a2n-2, a2n-1, a2n+l, a2n+3,.. , a4n-3 , a4n-1]
(P1, P2, ·,Pn-1)

The remaining relations can be written

Pi = 2a2i + ria2i- + ,

with ri odd and all unspecified monomials containing some aj with j < 2i - 1,

except for pl which is 2a2 + al - a. If we can show that Tor over the subring

Rn = Z[al,..., a2n-2/(Pl,.. , Pn-1) is exterior on n- 2 generators, the desired result

follows. Rathler than presenting the general induction immediately, we discuss the

first few cases explicitly.

The case nr = 1 corresponding to Spin(3) requires no comment. The ring K.QSpin(7)

is Z[a, a2, a32 , a3,a 5 ]/(2a 2+a 1 -aL2). This is reminiscent of K.QG2 and indeed the Atiyah-

Hirzebruch spectral sequence for the fibration QG2 - QSpin(7) - QS7 collapses;

there are no possible multiplicative extensions and so this confirms that K.QSpin(7)

is K.QG2 adjoin a generator in degree 6. As in section 8.2, the Tor group in question
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is

TorR (, tZ) = TorZ [a1a2] /( 2a2b- a)(Z, ZT_) = Z/g12 .

(Note that the generator ai of the subring Rn has image under the twisting map

i = (ki) and as before we abbreviate gcd{cl, c2, ... , ci} by g..j.)

The relevant subring of K.QSpin(11) is

R3 = Z[al, a2, a3, a4]/(pl, 2a4 + 3a3 + (a2 + 1)a2 + (-2a 3 - a2)al).

This presentation suggests the Tate resolution

TorR3 = H(Z(T, T2, T3, T4){S1, S2};

dTi = Ci, dSl = 2T2 + (1 - cl)Tl, dS2 = 2T4 + 3T3 + (c2 + 1)T2 + (-2c3 - c 2)T1).

The E1 term of the spectral sequence associated to the filtration of this complex by

S2 is

Z/g Zig Z/g Z/g

Z/g Z/9 g Z/g Z/g

Zi/g /9 g

z/g

where g = 91234 and the generator in degree (1, 1) is S2. At first blush the generators

in degree (0, 1) have the form t3 = (g1 2/g123)T3 + 0(2) and t4 = (g123/91234)T4 + 0(3),

where the omitted terms contain only terms involving (T2 and T1) and (T3 , T2, and

T1) respectively. In order to determine the differential on S2 we need control over the

T3 term in the generator t4. The basic observation is that if there exists a cocycle t of

the form (9123/91234)T4 + 0(2), then some linear combination t4 + ct3 is cohomologous

to t and so we may take the generators in degree (0, 1) to be t4 and t3 . The existence

of this cocycle is ensured by the fact that (91 2 3/91 2 3 4 )94 is divisible by 912, as is easily

checked. The differential on S2 is therefore (291234/g123)t4 + (3g1 23/g12)t3 . Because the

greatest common divisor of 291234/9123 and 391 2 3/91 2 is always 1, the torsion group is
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finally

TorR3 = Z/91234 (x4 );

here we can choose the generator x4 to be (9123/91234 )T4 + 0(3).

The case of Spin(15) proceeds similarly. The relevant subring of K.QSpin(15) is

R4 = 2[al, a2, a3, a4, a5, a6]/(pl1, P2, 2a6 + 5a5 + 4a4 + 0(3)),

and we take the corresponding Tate resolution. Filtering by S3 we have the spectral

sequence (here condensed)

Z/g(X4, X5,5, 6 ) Z/9g( 4, X5, x6) Zlg(X4,s, X6)

The torsion !7 is g1..6 and the generators in degree (0, 1) are

X4 = (91 23 /g12 3 4 )T4 + 0(3)

X5 = (g1234/91..5)T5 + 0(4)

x6 = (g1..5/91..6)T6 + 0(5).

It happens that (91234/91..5)95 and (91g..5/91g..6)96 are both divisible by 9123; we can

therefore adjust our generators so that they are

X4 = (9123/91234)T4 + 0(3)

X5 = (g123 4/91..5 )T5 + 0(3)

X6 = (91..5/g1..6)T6 + 0(3).

The differential on S3 is thus (291..6 /g1..5)x6 +(5g..5/g 1 234)X5+(4g1 234/g12 3)x4 . Because

2 91..6/g1..5 and 591..5/91234 are relatively prime, there exist constants z and z 2 so that
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if we set

Y6 = X6 + Z1X4 = g1..5/g1..6T6 + 0(4)

Y5 = X5 + Z2X4 = 91234/91..5 T5 + 0(4),

then {dS3, y6, y5} forms a basis for the degree (0, 1) group. Finally, then, the Tor

group is

TorR4 = Z/g 1.. 6(Y5, Y6)

as desired.

The general case is now clear. Suppose we know that

TorRn = Z/91..(2n-2)(Xn+l,. X2n-2),

where xi = (gl..(i-l)/gl..i)Ti + O(i - 1). The ring Rn+1 has two additional generators

a2n-_ and a2n and one additional relation Pn. Filter the appropriate Tate resolution

by powers of Sn, then adjust the generators of the degree (0, 1) group in the spectral

sequence so that the single generator x2n involving T2n does not contain any terms

involving T2n- 1. This is possible because g9..(2n-2) divides (gl..(2n-1)/91..( 2n))9 2n. The

differential of S, then has the form

dSn = (2g1..(2 n)/gl..(2 n-1))X2n + (rgl..(2n-1)/gl..(2n-2))X2n-1 +....

As those two leading terms are relatively prime, this ensures that TorRn+l again has

the desired form. Note that in theory there could be multiplicative extensions in the

filtration spectral sequence calculating the Tor group, but the above procedure gives

a sufficiently explicit handle on the generating classes as to eliminate this possibility.

This completes the proof of Theorem 6.2.1 for the odd Spin groups and also

establishes the odd Spin cyclic orders given in Theorem 6.2.2. The Tor calculation

for the even Spin groups is analogous and the resulting cyclic orders are also given

in Theorem 6.2.2.
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9.5 Poincare-Dual Bases and the Cyclic Order of

K`G

We describe a general procedure for computing the cyclic order of KTG for any simple

G and illustrate the method with the group G2.

Let V = G/H denote the Bott generating variety for QG; recall that the K-

cohomology of V is R[H]/i*I[G] where i: H - G is the inclusion. Pick a module

basis {wi} for this ring and consider the Poincare-dual basis {Dwi} of K.V. The

image of this basis in K.QG, which we also denote by {Dwi}, is a set of algebra

generators for K.QG. Note that for any set {yi} of algebra generators for K.QG, the

cyclic order of KTG is given by gcd{rk(yi) - T(yi)}, where Tk and T0 are respectively

the twisted and untwisted maps from K.QG to K.*. In section 9.1.2 we saw that

-rk.(Dwi) = (LkUwi, [V]) where L denotes the generating line bundle on V. Decompose

wi into a sum of irreducible representations E vij, and let h(vij) denote the highest

weight corresponding to vij. The product Lk U vij is again irreducible, with highest

weight kL+h(vij), and Bott's theorem (9.1.1) therefore applies: the pushforward (LkU

vij, [V]) is either 0 or is (plus or minus) the dimension of the irreducible representation

of G with highest weight T(kL + h(vij) + p) - p, where T reflects a weight into the

fundamental Weyl chamber. This procedure expresses the cyclic order of KTG as

the greatest common divisor of a finite set of differences of dimensions of irreducible

representations of G.

Recall that the Bott generating variety for G2 is G2/U(2) for the short-root in-

clusion of U(2). Let a and b denote the fundamental weights of G2 corresponding

to the 7 and 14 dimensional representations; in particular R[G2] = 2[a, b]. Similarly

R[U(2)] = Z[f, t, t-l], where f and t are respectively the standard representation and

the determinant representation. The restriction map is

i*(a) = f + f 2t-1 _- 1 + ft - 1

i*(b) = t + f3t-1 - 2f + f2t-1 + f3t-2 - 2ft-1 + t- 1
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Figure 9-2: The Weight Lattice of G2

* Weights

Q Weights under consideration

Weyl walls

Singular locus

Let s = t-; the K-cohomology of the generating variety is then

K'V = Z[f, s]/(f + f 2 - 1 + f, 1 + fs2 2f + f f22 + f3 3 _ 2fS2 + S2).

(Note that the description of K'V in Clarke [7] omits certain relations, as the ring

given there is not finitely generated.) An integral basis for K' V is then {1, s, s 2, f, fs, f 2}.

These representations of U(2) are irreducible except for f 2 which splits as (f 2 -t) +t.

Consider the diagram of weights in Figure 9-2. The solid lines are the Weyl walls,

the dotted lines describe the set of singular weights, and the seven highest weights hi

under consideration, namely {0, s, 2s, f, f + s, 2f, t}, are circled. Note that L = t and

as such, for k > 0, the weight kL+hi is either singular or is already in the fundamental

Weyl chamber. The basis for K.V is of course {D1, Ds, D(s 2 ),Df,D(fs),D(f 2 )}

and we are interested in the differences k(Dw) - To(Dw). Letting F(n,m) denote the

dimension of the irreducible representation of G2 with highest weight na + mb, the

six differences are respectively
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F(o,k) - F(o,o)

F(O,k-1) - 0

F(o,k-2) - 0

r(1,k) - (1,0)

F(1,k1) - 0

r(2,k) + r(O,k+l) - r(2,0) - r(0,1).

Applying the Weyl character formula, we arrive at the cyclic order

c(G2, k) = gcd{k(422 + 585k + 400k2 + 135k3 + 18k4)/120,

k(2 + 15k + 40k2 + 45k3 + 18k4 )/120,

k(2 - 15k + 40k2 - 45k3 + 18k4 )/120,

k(601 + 660k + 350k2 + 90k3 + 9k4 )/30,

k(16 + 60k + 80k2 + 45k3 + 9k4 )/30,

k(2867 + 2550k + 1090k2 + 225k3 + 18k4 )/30}.

Indeed, this agrees with the result from section 9.2.
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Chapter 10

Twisted Spinc Bordism and the

Twisted Index

The ordinary K-homology of a space X is entirely determined by the Spinc bordism

of X; see [251. This suggests that much of the structure in twisted K-homology ought

to be visible in twisted Spinc bordism. In section 8 we saw that the cyclic order of

the twisted K-homology of a group G is determined by a collection of relations of

the form -k() - To(X) = 0, where j is the j-twisted map from K.QG to K.*. When

the class x C K.QG is represented as the image of the fundamental class of a SpinC

manifold M, there is a natural Spinc manifold M(j) such that the fundamental class

[M(j)] E MMSpinc* maps via the index to the element Tj(x) E K.*. Moreover, there is

an explicitly identifiable twisted SpinC nullbordism over G of M(k)- M(0). In short,

the relations determining the cyclic order of twisted K-homology have realizations

in twisted Spinc bordism. The construction of these nullbordisms is the focus of

sections 10.1 and 10.2. Section 10.3 discusses the possibility of representing the

exterior generators of the twisted K-homology of G by twisted Spin' manifolds.

10.1 A Cocycle Model for Twisted Spinc Bordism

In order to describe twisted Spinc manifolds explicitly, we need a more geometric, less

homotopy-theoretic description of twisted Spin' structures; in particular we present a
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cocycle model for twisted Spinc bordism. This model is presumably well known and in

any case takes cues from the Hopkins-Singer philosophy of differential functions [26].

Recall that Spine is the total space of a U(1)-principal bundle over SO. Corre-

spondingly there is a principal bundle BU(1) BSpinC --> BSO which is classified

by /3w2 : BSO -- BBU(1), the integral Bockstein of the second Stiefel-Whitney class.

A SpinC structure on an oriented manifold M is a lift to BSpin c of the classifying

map v : M -- BSO of the (stable) normal bundle of M. Such a lift is determined by

a nullhomotopy of the composite Pw 2(v): M -+ BSO -- BBU(1). Specifying such a

nullhomotopy is equivalent to choosing a 2-cochain c on M such that the coboundary

of c is 3w2 (v(M)); (note that we have chosen once and for all a 3-cocycle g repre-

senting the generator of H 3 (BBU(1);Z), and the condition on the cochain c is that

5c = v*((3w 2)*(g))). Ordinary SpinC bordism of X is therefore equivalent to bordism

of oriented manifolds M over X equipped with a 2-cochain c on M such that

6c = pw2(V(M)).

The model for twisted SpinC bordism is similar. We first recall the homotopy-

theoretic definition of twisted SpinC bordism from section 7.1. Given a twisting map

T: X -- K(Z, 3), we have a K(Z, 2)-principal bundle P on X and so an associated

BSpinC bundle Q = P xK(z,2) BSpin c. More particularly we have a series of bundles

Qn = P xK(z,2) BSpinC(n)

and universal vector bundles

UQn = (P XK(,2) ESpinc(n)) XSpinc(n) IR.

The corresponding Thom spectrum

Th(UQ) = P+ AK(z,2)+ MSpinc
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has as its homotopy groups the twisted Spinc bordism groups of X. The twisted index

map to twisted K-homology is induced by the map id A ind: P+ AK(Z,2)+ MSpin c -+

P+ AK(,2)+ K.

The principal bundle P and the associated BSpin c bundle Q are defined by the

pullbacks

P - )- EK(Z, 2) Q -- EK(Z, 2) x K(Z,2) BSpin

X -- K(Z, 3) X - K(Z, 3).

On the other hand BSO is precisely the quotient * XK(z,2) BSpin, and the diagram

Q --- BSO

4 4 /3W2

X -- > K(Z, 3)

is therefore a homotopy pullback. Twisted SpinC bordism is the homotopy of Th(UQ);

a map from a sphere into Th(UQ) transverse to the zero section Q determines a

manifold M equipped with a map M -* Q. This map M --+ Q specifies maps

i: M - X and v: M -+ BSO (classifying the normal bundle of M) and a chosen

homotopy between i and Pw2v. The choice of this homotopy is equivalent to the

choice of a 2-cochain c with coboundary equal to the difference v*((pw 2)*g) - i*(T*g),

where g is as before a 3-cocycle representing the generator of the third cohomology

of K(Z, 3). In summary, the T-twisted Spinc bordism of X is bordism of oriented

manifolds M equipped with a map i: M - X and a 2-cochain c such that

Jc = p3w2(v(M)) - i*(T),

where P(M) is the stable normal bundle of M.
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10.2 Twisted Nullbordism and the Geometry of the

Cyclic Order

In section 8 we saw that the cyclic order of the twisted K-homology of G is the greatest

common divisor of the collection of differences {Tk(xi) - ro(xi)}, where {xi} is a set

of algebra generators for K.QG and Tj denotes the j-twisted map from K.QG to K.*.

Frequently, these generators {xi} can be described as the images of the fundamental

classes of Spine manifolds Mi; (for example, we gave such a description for SU(n + 1),

Sp(n), and G2 in sections 9.2 and 9.3). In this case the manifolds Mi admit modified

SpinC structures Mi(j) and the index of Mi(j) is j(xi) K.*. Moreover, there is a

twisted Spine structure (over G) on Mi x I cobounding the difference Mi(k)- Mi(O);

the relations Tk(xi) - To(xi) = 0 determining the cyclic order of twisted K-homology

therefore have realizations in twisted Spin' bordism.

Before constructing these twisted Spinc bordisms, we recall that a Spinc structure

can be altered by a line bundle and we discuss how this alteration affects the push-

forward of the fundamental class. A twisted Spinc manifold is, as before, an oriented

manifold M together with a 2-cochain c such that c = pw 2 (v(M)) - i*(T). In the

examples we consider, the underlying manifold M is almost complex and so has a

canonical ordinary Spinc structure; in particular M comes equipped with a 2-cochain

b such that b = Pw2(v(M)). A twisted structure on M is then given by a choice

of 2-cochain d such that d = -i*(T). If the twisting class T is zero on M, then the

'twisted' Spinc structure corresponding to the cochain b + d is of course ordinary, but

it nevertheless differs from the Spin c structure determined by the original cochain b.

We denote by M(d) this modification of the canonical Spin' structure on M by the

2-cocycle d; we also refer to the alteration as a modification by the corresponding

line bundle L(d). Let r : M - * be the projection to a point; the pushforward in

K-theory depends on the Spinc structure on M as follows:

(M(d)) ( 1 ) lr(M)(L(d)).
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This relation follows more or less immediately from the fact that the Thom class

defined by the Spin c structure on M(d) is L(d) tensor the Thom class defined by

the structure on M; see [29]. In terms of our Rothenberg-Steenrod spectral sequence

approach to twisted K-homology, this tells us that the twisted image k([M]) =

(L(k), [M]) of the fundamental class [M] is reinterpretable as the ordinary image

To([M(k)]) =:- (1, [M(k)]) of the fundamental class [M(k)].

We present twisted Spinc bordisms realizing the relations in the twisted K-

homology of SU(n + 1). In section 9.2 we saw that the fundamental classes {[CPi]}

are algebra generators for K.QSU(n + 1), and the relations determining the cyclic

order of K TSU(n + 1) are

0 = (Lk, [pi]) - 1 = (Lk, [CPi]) - (1, [CPi]).

(These classes take values in the twisted K-theory of SU(n + 1) via the inclusion

CP i -+ CPi - CP - SU(n + 1), which is of course nullhomotopic.) By the

above remarks we can rewrite the relation as

0 = (1, [CPi(k)]) - (1, [Cpi]) = (1, [Cpi(k) - CP]).

If we can produce a nullbordism of CPi(k) - CPi , we will have pulled the given relation

back to twisted Spin' bordism.

Write ECp i = ([-2,2] x Cpi)/({-2, 2} x CPi U [-2, 2] x *) and consider the

inclusion i : CP -* ECP -p SU(n + 1). Choose a 3-cocycle representing the

twisting T on SU(n+ 1) such that i*(T) is k times the cocycle locally Poincare dual to

the submanifold Pi-' x {0} in ECPi. The product CPi x [-1, 1] has a canonical Spine

structure coming from the complex structure of CPi . There is a twisted structure on

CPi x [-1, 1] defined by the 2-cochain d that is k times the cochain locally Poincare

dual to the submanifold CPi - 1 x [-1,0]; denote this twisted structure by (CPi x

[-1, 1])(klO). The coboundary of d is precisely -i*(T). Moreover, the cochain d
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restricts to k times the generator of H2 (CP i x {-1}) and to zero on CP i x 1}. The

difference CPi(k) - CP i is therefore zero in MSpinC'SU(n + 1), as desired. Notice

that the same argument shows that CPi(l+ k) - CPi(l) is null for any 1, which implies

that (l+k+i) _ (+i) is zero in K T SU(n + 1). In fact, for any sequence of integers {li},

1 <i < n, the gcd of the set (li+k+i) l+i )} is again the cyclic order of K TSU(n+1).

Whenever algebra generators of K.QG are represented as the fundamental classes

of Spin' manifolds, the same argument produces nullbordisms in MSpinC'TG realizing

the cyclic order of KT G; we forgo details. Note though that in general the twisting

cochain d will no longer be locally Poincare dual to a submanifold but merely to an

appropriate singular chain.

10.3 Representing the Exterior Generators of Twisted

K-Homology

We would like to represent the algebra generators of KTG as the fundamental classes

of twisted Spine manifolds over G. Here we merely suggest an approach for further

investigation, taking clues from the structure of the Rothenberg-Steenrod spectral

sequence; in the process we produce a candidate representative for the generator of

K SU(3). Finding representatives in general will require a more thorough investiga-

tion of MSpin,'rG and of the associated map to KT G.

The structure of the ordinary SpinC bordism group is governed by Spinc charac-

teristic numbers; we briefly recall how to compute these invariants. In section 10.1

we considered the principal bundle BU(1) - BSpin - BSO classified by P/2 :

BSO - BBU(1). There is another principal bundle BZ/2 -+ BSpinc - BSO x

BU(1) classified by (w2 x r): BSO x BU(1) -- BBZ/2, where r is the nontrivial map

BU(1) -- BBZ/2. This latter bundle is usually more convenient for computations of

SpinC characteristic classes. The relationship between the two bundles is encoded in
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the matrix

U(1) 2 (1) r Bz/2 P > BU(1)

Spinc -, BSpinc d ~ BSpinc

1 4 jlrxA lr
so o > BU(1) ' BSO x BU(1) ---- > BSO

I QwW2 iid w2xr /3W

BU(1) 2, BU(1) r , BBZ/2 > BBU(1).

Indeed this diagram shows that the total spaces of the two fibrations are the same.

Following Anderson, Brown, and Peterson [2], Stong [45] showed that a Spinc

manifold M is zero in Spinc bordism if and only if all of its rational and mod 2

characteristic numbers vanish. The map

(r- x A)* : H*(BSO x BU(1); ) -, H*(BSpin; Q)

is an isomorphism and

(r x A)*: H*(BSO x BU(1);2/2) - H*(BSpin; Z/2)

is an epimorphism. In particular a 2n-dimensional Spinc manifold M is nullbordant

if all the characteristic classes of the underlying oriented manifold vanish and the

single Spinc characteristic number (A(M)n, [M]H) is zero. The characteristic class

A depends on the Spinc structure on M as follows. Let M(d) denote as in the last

section the modification of the Spinc structure on M by the line bundle or 2-cocycle

d. The class A(M(d)) is then A(M) + 2d, as is easily checked by noting that the

composite BU(1) -* BSpinc - BU(1) is multiplication by 2.

We produce a candidate twisted Spin c representative for the exterior generator of

KT'SU(3) by investigating the corresponding class in the E2 term of the Rothenberg-
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Steenrod spectral sequence. For simplicity we assume the twisting class k is odd; the

even case is entirely analogous.

In section 8.1 we saw that the generator of KTSU(3) is represented at the E2

term of the Rothenberg-Steenrod spectral sequence by x2 - -3xl; here x2 and xl are

elements of Tor K QSU(3) (Z, ZT), therefore of the E1 term of the spectral sequence, and

their differentials are given by

d1x 2 = (1, [P 2 (k)]) - 1 = (1, [CP2 (k) _ CP2 (0)])

dlxl = (1, [CP'(k)]) - 1 = (1, [CP 1(k) - CP'(0)])

In section 10.2 we found a twisted Spin' bordism X2 = (Cp2 X I)(klO) whose boundary

has index

ind(0X 2) = dlx 2.

Because of this index property, we consider X 2 a geometric representative of the

algebraic class x2. Note that the bordism X2 is over ZCP2 and therefore over SU(3).

Similarly, we have a bordism X1 = (pl x I)(kJO) whose boundary has index

ind(0X 1) = dlxl. Given our selection of X 2, the manifold X1 is a poor choice for a

geometric representative of xl; we would like to have a five-dimensional bordism X1,

still living over ECP2, with the same index property as X1. A natural choice for the

underlying oriented bordism is P(v + 1) x I, where P(v + 1) is the projectivization of

the sum of a trivial bundle and the normal bundle of Cpl in CP 2 ; this projectivization

is a resolution of the Thom space of the normal bundle and as such the bordism maps

to CP 2 X I C ECP 2 . There is moreover a twisted Spin e structure on this bordism,

denoted X1 = (P(v + 1) x I)(klO) and produced as in section 10.2, such that

ind(0X1) = dlxl.

The linear combination C = X2- k+3X wants to be an element of MSpinC'TP 2

mapping to the exterior generator of K ' SU(3). The trouble of course is that C is not

a closed manifold and so does not properly represent an element of MSpin' TCP 2 .
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Note though that the map dC - ECP 2 is nullhomotopic by a nullhomotopy on which

the twisting class is zero. Suppose there is a nullbordism W of AC in MSpinC*; then

the union W Uac C is a closed twisted Spinc manifold over ECP2 , as desired.

The boundary of C is

00 = (CP2(k) - Cp2 ) _ 2 (P(v + 1)(k) - P(v + 1)).

All the SO-characteristic numbers of dC certainly vanish. The cohomology ring of

P(v + 1) is H' (P(v + 1)) = Z[y, x]/(y 2 , X
2 + yx), where y is the first Chern class of

the tautological bundle on the base CP 1 and x is the first Chern class of the fibrewise

tautological bundle on the total space. The tangential Spinc characteristic class of

P(v + 1)(k) is

\(T(P(v + 1)(k))) = A(Thoriz) + A(Tvert) = -(2 + 2k)y - 2x,

and the associated characteristic number is

(A(T(P(v + 1)(k)))2, [P(v + 1)]H) = 8k + 4.

Similarly the! characteristic number for Cp2 (k) is

(A(T(CP 2 (k))) 2, [CP2]H) = 4k2 + 12k + 9.

The vanishing of the SpinC characteristic number for OC follows:

(A(T(0C)) 2 , [0CIHI) = 4k2 + 12k + 9 - 9 k +(8k + 4 - 4) = 0.

Picking any SpinC nullbordism W of dC, the five-dimensional twisted Spinc manifold

W Uac C should represent the generator of KTSU(3).
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