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Abstract

This thesis examines the problem of clustering multiple, related sets of data si-
multaneously. Given datasets which are in some way connected (e.g. temporally)
but which do not necessarily share label compatibility, we exploit co-occurrence in-
formation in the form of normalized multidimensional contingency tables in order to
recover robust mappings between data points and clusters for each of the individual
data sources.

We outline a unifying formalism by which one might approach cross-channel clus-
tering problems, and begin by defining an information-theoretic objective function
that is small when the clustering can be expected to be good. We then propose
and explore several multi-source algorithms for optimizing this and other relevant
objective functions, borrowing ideas from both continuous and discrete optimization
methods. More specifically, we adapt gradient-based techniques, simulated annealing,
and spectral clustering to the multi-source clustering problem.

Finally, we apply the proposed algorithms to a multi-source human identification
task, where the overall goal is to cluster grayscale face images according to identity,
using additional temporally connected features. It is our hope that the proposed
multi-source clustering framework can ultimately shed light on the problem of when
and how models might be automatically created to account for, and adapt to, novel
individuals as a surveillance/recognition system accumulates sensory experience.

Thesis Supervisor: Tomaso Poggio
Title: Eugene McDermott Professor
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Notation

2, y, 2 Clusters, defined as either collections of original data points or as

prototypes where appropriate.

C, Cy, C, Mappings from sets of points {x}, {y}, {z} to clusters {4}, {y}, {2},

resp.

m, n Number of rows (m) and columns (n) in a co-occurrence matrix.

Also, the number of VQ-prototypes (codewords) defining the corresponding

datasets {x}, {y} resp.

m', n' Desired number of row and column clusters, resp.

J(C, Cy) An objective function J: (Cx, Cy) -- R relating cluster mapping functions

to a real-valued quantity indicating the quality of the clustering.

J(wr, wc) An objective function J: (R""' ", R"'Xn) -- R relating real-valued row and

column weights to a real-valued quantity indicating the quality of the

clustering.
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Chapter 1

Introduction

This thesis is primarily concerned with unsupervised learning, and in particular,

clustering of multiple connected feature sets. Historically, the majority of research

involving unsupervised clustering has been directed mainly towards single-source ap-

plications. That is, applications which involve a single set of unlabeled data and a

single desired target function to be recovered. Both hard membership techniques,

such as K-means clustering or hierarchical agglomerative clustering, as well as soft

assignment statistical models such as mixtures of Gaussians, have been successfully

applied in the course of solving single channel clustering tasks [12, 18].

However, many real-world problems to which one might want to apply unsuper-

vised methods are inherently multi-source. For such "multimodal" applications, there

are typically two or more distinct sets of measurements which describe the same un-

derlying physical processes, but which do not necessarily cluster according to similar

labels or even represent the same number of underlying clusters. The main challenge

that we will consider then is how one might recover a specified target function using

as much available data as possible, regardless of how that data might be organized.

Assuming that the modalities are relatively decorrelated-redundant data will clearly

not help-it is not immediately clear how any of the time-honored methods mentioned

above can be applied to multiple datasets, designed as they were, for single-source

circumstances. The main contribution of this thesis, therefore, will be in the form of

clustering algorithms designed specifically for multi-source applications. As we will
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discuss in subsequent chapters, the core aim of each algorithm will be to take advan-

tage of multiple datasets and the interactions between them, in order to recover one

or more mappings from examples to clusters.

1.1 Road Map

The format of Chapter 1 is as follows: we first describe with broad strokes how and

where our clustering problem fits within the general machine learning process. The

second section discusses why the standard methods for single-source clustering can

be expected to fail when applied to multi-source datasets. We then formally state

the multi-source clustering problem, and introduce an objective function that can

be applied to a broad range of clustering scenarios in which datasets from multiple

sources are available. Finally, we conduct a brief review of previous work concerning

clustering with multiple sets of features.

Beyond the current chapter, we will describe two classes of algorithms for cluster-

ing multi-source data: one in which we optimize over spaces of discrete, integer-valued

solutions, and another based on continuous optimization with gradient-based meth-

ods. We then apply the proposed methods to a human identification task involving

multiple high-dimensional databases of audio-visual features. Using multimodal clus-

tering algorithms, we argue that an unsupervised solution to this traditionally super-

vised problem is both feasible and tractable. We finally compare the strengths and

weaknesses of the proposed algorithms and discuss the applicability of multi-source

clustering to other problem domains.

1.2 Characterization of the Clustering Problem

Consider the generalized machine learning formulation shown in Figure 1-1, adapted

from [31]. Here, an observational generator (the underlying physical phenomena)

produces independent samples x from an unknown distribution P(x), an oracle pro-

vides output labels y for each input x according to the unknown distribution P(ylx),

20



f
Generator x Learning Machine

P(x) f(x,w)

Oracle y
P(xIy)

Figure 1-1: The generalized machine learning problem.

and a learning machine implements collections of abstractly parameterized functions

f (xlw E Q). The variable w might function as an explicit model parameter, or as an

index into a class of functions. In a supervised learning setting, the learning machine

observes the example-label pairs (xi, yi), . . , (xn, yn), and attempts to approximate

as best as it can the output of the oracle given previously unseen examples. Given

a loss function L(f(x, w), y) > 0 that measures how good of an approximation f is

to the oracle's outputs y, we can calculate the average amount of loss the learning

machine will incur for a given w via the expected risk:

R(w) = JL(f(x, w), y)P(x, y) dx dy.

The learning task is then to find the approximation f* (x, w) that minimizes this risk

functional.

In the unsupervised learning setting, the labels yj are not observed and we must

find an approximation f given only the data examples xi. The learning goal in this

case is to find the best mapping function or from examples to clusters. In the signal

processing literature, the mapping function is often interpreted as a vector quantizer

or "codebook" mapping data points to cluster prototypes or "codewords". As one

21



possible choice of loss function for clustering problems, we could summarize distortion

(energy loss) in going from points to cluster center coordinates:

L(f (x, w)) = lix - f (x, w) 1,

where fl is a suitably chosen norm. Indeed, most implementations of the K-means

clustering algorithm [12] attempt to minimize the following risk functional:

R(w) = J x - f(x, w) 12p(x) dx dy.

For most of the algorithms presented in this thesis however, we will attempt to min-

imize a risk functional based on an information-theoretic loss that is better suited

to clustering applications than the energy loss. Within this context, we discuss the

nature of the function f(x, w) and loss L(.) in sections 1.4.1 and 1.4.2 below, and in

section 1.4.3 compare the information-theoretic loss to the more common distortion-

based loss function just described.

1.3 Difficulties in Applying Classical Clustering

Techniques

A note concerning terminology and assumptions: we will use the terms "mul-

timodal", "multi-source", and "multi-channel" to refer to multiple sets of distinct

features, all describing the same underlying physical process. We will further assume

that the sets of features are connected in at least one dimension (e.g. space or time),

and suppose that the overarching goal is to recover the target function that clus-

ters one of the datasets. We thus assume the presence of a "primary" data channel,

supplemented by other data channels that describe the same physical process, but do

not necessarily share label compatibility. The hope is that, by somehow incorporating

additional related data, the primary channel can be clustered better than if we had

only the primary channel to work with (e.g. a single set of data).

We'll now consider the obstacles that arise when applying traditional clustering
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methods to multi-source datasets. But if we want to somehow graft existing single-

source methods onto multimodal problems, the definitions above immediately create

several substantial difficulties. If the modalities are connected temporally, for ex-

ample, then we must ensure that the samples in each channel are aligned in time

or suitably binned. Furthermore, it is not clear how to normalize each channel or

how to choose a distance/similarity measure such that direct comparisons between

points from separate channels can be made. For most non-generative hierarchical or

partitional methods (e.g. K-means or agglomerative clustering), this question is of

central importance.

In most cases, it is not feasible to concatenate together features from the modali-

ties and run either hard or soft membership clustering algorithms out of the box. In

high-dimensional feature spaces the data requirements for generative algorithms can

quickly become impossibly large. In addition, for models based on statistical mixture

densities, computation of the parameterized distributions can become unwieldy. In

the case of a Gaussian mixture model, computing the determinant or inverse of a

1500x1500 covariance matrix, even if constrained to be diagonal, is neither straight-

forward nor speedy.

Similarly, in the case of distortion-based hard membership algorithms, many

choices for the distance measure have poor discriminability in high dimensions due

to averaging effects. The Minkowski metrics are particularly susceptible to this prob-

lem [1]. Even with prior dimensionality reduction (and the associated loss of infor-

mation), it is not clear how to appropriately weight each dimension a priori. As an

example of this predicament, consider an application where we have scalar measure-

ments of an individual's height in one channel, and 50x50 pixel face images in another.

Concatenating the two into a single long feature vector would effectively erase the

influence of the height measurement. Concatenating features is also not necessarily

guaranteed to give a better clustering with respect to the primary modality's target

function either; we could simply be better off using only the primary dataset. Thus,

we can reasonably assume that combining features and clustering the resulting vectors

is not in general a viable option, given the limitations of most popular single-source
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clustering algorithms.

In the following section, we will propose a clustering framework that can avoid

most of these difficulties by, in a nutshell, focusing not on the data itself but on the

frequency of co-occurrences among observations.

1.4 The Co-Clustering Paradigm

To summarize our goal, we want to treat features jointly and cluster simultane-

ously in order to take advantage of interactions between datasets. To that end, we

consider the space of co-occurrences between data points in each modality along the

shared dimension. This particular formulation of the clustering problem will form the

basis for several algorithms proposed in later sections.

1.4.1 Co-Clustering Formulation

Assuming that the data points in each of the N modalities have been suitably

quantized, we define the N-variable joint probability distribution P(x, y, z, ...) to be

the normalized N-way contingency table over all (connected) modalities. Let the row

and column dimensions m, n of the co-occurrence distribution equal the number of

bins resulting from quantization of two datasets, and let m', n' denote the desired

number of row/column clusters respectively. For simplicity (and without loss of gen-

erality), from here on we will consider clustering 2-way co-occurrences resulting from

intersections of points falling into each row and column quantization bin. Follow-

ing [11, 18], the multimodal clustering problem can be formally stated as follows:

Definition 1. Given the joint distribution P(x, y), we wish to cluster the distinct

feature sets {x} and {y} into clusters {4} and {} via the separate mappings Cx and

CY:

CX : i, X 2 , ... , Xm} - {Xi, X2, ... , Xm'}

CY, : Y, Y2, ..., Yn} -) {1,2, ..., Yn'}

where it is assumed that m' < m and n' < n.
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Given this definition, the joint probability distribution over clusters can be written

as:

P(,)= P (x, y).(.)

Because the mappings Cx and C, operate along a single dimension, note that

the joint cluster distribution corresponds to sums over "blocks" of the original joint.

The blocks are comprised of cells which are at the intersection of sets of rows and

columns: a given "joint" cluster (1, y) cannot simply claim arbitrary cells from the

original joint.

1.4.2 A Co-Clustering Objective Function

In order to evaluate the quality of a given assignment of data points to clusters, we

choose an information-theoretic objective function that measures the loss of mutual

information between the original (unclustered) modalities and the resulting clustered

form. This particular objective has been used in recent unsupervised learning re-

search, including document classification and other clustering applications [11, 28, 13].

Let X, Y be random variables describing the original data points, and let X, Y

describe the clusters (that is, the empirical data and resulting clusters are samples

from the unknown distributions governing these random variables). The objective

function is then,

J(C , CY) = I(X; Y) - I( ; Y). (1.2)

We want to minimize this objective with respect to the mappings Cx and Cy, which

corresponds to maximizing just I(X, Y), since I(X; Y) is fixed for a given P(x, y)

and I(X, Y) < I(X, Y) by Theorem 1 below. We now show that this objective can

be written concisely as a Kullback-Leibler divergence:

Theorem 1. The objective (1.2) can be written as the KL-divergence between the orig-

inal joint probability distribution P(x, y), and a "compressed" approximation Q(x, y)

resulting from clustering.
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Proof. (see e.g. [11, 8]):

I(X; Y) - I(X; Y) = P(x, y) log

x~ xES,y~y

- P(X, y) log P:7

P(x,y) log P(x7y)

J4 P(x) P(y)',9 xES 'yE9 P (.) P (9)

DKL(PIjQ)

where the approximation distribution Q(v, y) = P(±, y) P(x) P(y) Dl

As [11] points out, from the decomposition

DKL(P| Q) = H(X, Y) + H(X|Z) + H(Y| ) - H(X, Y),

we can see that this objective function explicitly takes advantage of row/column

interactions via the joint entropy term H(X, f).

Unfortunately, the objective function (1.2) does not depend smoothly on the map-

pings Cx and Cy, making direct continuous optimization difficult. We will address this

problem and explore a reworked version to which continuous optimization methods

can be applied in Chapter 3.

1.4.3 Co-Clustering as a Low-Rank Approximation

For a large majority of clustering problems, the desired number of clusters is

significantly smaller than the number of original data points. Given that we are

concerned here with 2-way joint co-occurrence matrices, it is helpful and informative

to think of co-clustering as a process by which to obtain low-rank approximations

to a given contingency matrix. Indeed, the approximation Q(x, y) = P(2, 9) P(x) P(s)

discussed in the previous section will have rank less than or equal to min(in', n').
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If we take the singular value decomposition of the rank r matrix P so that

r

P = UEVT = >-Tiv[,
i=1

then the best approximation of P by a rank v < r matrix P, is

V

P > o-inuiv. (1.3)
i=1

This approximation is optimal in the sense that it minimizes the quantity liP - P 112,

and thus preserves as much of the energy in P as possible (we could have just as easily

used 11 - |IF here as well, see e.g. [30] for details and a proof of the above statement).

The information-theoretic objective (1.2), however, does not seek to capture in

Q as much of the energy of P as possible! This objective instead seeks to empha-

size low-rank approximations which maximize the mutual information between the

variables upon which P depends. Thus, an energy preserving approximation will

not necessarily correspond to a good clustering: we can make it our primary goal

to minimize the loss in overall energy, but if the loss in mutual information is sub-

optimal, then the resulting clustering will be suboptimal as well. We can conclude

then that an objective which attempts to minimize the loss in mutual information

directly will be more effective for clustering than distortion based objectives. Because

distortion-minimizing objectives typically summarize the distances between observa-

tions and cluster prototypes, such objective functions amount to a form of energy

maximization and are therefore suboptimal for co-clustering.

Consider the following concrete example. We are given the rank 4 matrix P along

with an optimal co-clustering satisfying (1.2), yielding the rank 2 approximation Q:

.1 .1 0 0 .08 .12 0 0

.1 .2 0 0 .12 .18 0 0

0 0 .05 .05 0 0 .04 .06

0 0 .15 .25 0 0 .16 .24
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Define P 2 to be the rank 2 maximum-energy approximation of P defined by (1.3).

That the co-clustering approximation Q is better than P 2 in terms of loss in mutual

information, but worse in terms of energy preservation, can be seen from the following

computations:

DKL(P||Q) = 0.0137b DKL (PIP2 ) - 0.0154b

|P - Q112 = 0.0400 as compared to 11P - P2 112 = 0.0382.

Thus it is not generally the case that energy minimization will give a good co-

clustering as defined by equation (1.2), or conversely that the best cluster assignments

will give an optimal approximation in terms of an energy-based criterion.

1.5 Previous Work

Little work has been done to address multimodal clustering as a general learning

problem, however researchers have thus far tackled a host of closely related issues

arising in several specific problem domains. We give a brief summary of research

with connections to the thesis problem, and assess the applicability of the techniques

to clustering multi-modal data.

1.5.1 Simultaneous Clustering

Simultaneous clustering concerns the concurrent clustering of related but separate

datasets through the cross-modal exchange of information in one form or another.

That is, over the course of a given simultaneous algorithm, information regarding

the current state of a clustering process in one dataset is passed to and utilized by

another. It is then a matter of how to represent this cross-modal information, how

to exchange it, and then what to do with it.

Ivanov and Blumberg [16] indirectly provide a framework for incorporating knowl-

edge about one EM-based mixture model clustering process into another by setting

posterior class membership probabilities proportional to a Boltzmann distribution
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over possible pairings of observations and their memberships. This approach presents

an opportunity for information exchange via the free Boltzmann parameter 3, which

one might vary according to another clustering process.

Other simple schemes involving the EM algorithm exist, whereby at each iteration

the posterior class membership distribution for each point is taken from one of the

clustering processes and used for all of the respective maximization steps. Approaches

where posterior probabilities are taken from the clustering process which has recently

given the largest gain in likelihood (e.g. "follow-the-leader"), or where the posterior

distribution with maximum entropy is chosen, are examples of such schemes.

Experiments with the multimodal datasets used in Chapter 4 showed that these

methods unfortunately allow weaker channels to corrupt stronger ones. That is, if

a "strongly clusterable" dataset is combined with a "weakly clusterable" dataset,

the results are somewhere in between for both datasets: the strong channel is worse

off than if we had clustered it alone, while the weak channel clusters better than if

considered alone. Thus in this situation the question of which channel to trust more is

of central concern. Unfortunately, it is not always the case that a priori information

to this extent is available or generally trustworthy.

1.5.2 CoTraining

First introduced by Blum and Mitchell [4], cotraining combines ideas from semi-

supervised learning and simultaneous clustering. In [4] the authors consider the task

of learning to classify web pages described by separate sets of features: word fre-

quencies from the page itself, and words occurring in links to that page. The goal of

cotraining is then to use both sets of web page features to learn strong classifiers from

relatively few "expensive" labeled examples augmented by many "inexpensive" unla-

beled examples. The suggested strategy trains separate classifiers for each modality,

but uses predictions on new unlabeled data in one channel to modify the training set

for another. Other researchers have pointed out the complication that some applica-

tions require far more labeled data than others in order to achieve reasonably small

classification error rates. Typically problems for which simple clustering methods
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fare poorly fall into this category. Pierce and Cardie [25] report difficulty applying

cotraining to natural language processing tasks, and resort to a more supervised vari-

ation in which a human corrects mistakes during the "automatic" labeling phase.

Nevertheless, Nigam and Ghani [24] provide a theoretical analysis of cotraining, and

justify the intuition that, under suitable conditions, one clustering process will be

able to benefit another.

Unfortunately, cotraining rests on two critical assumptions. The first requires

target function compatibility. That is, the target functions corresponding to each

set of features must predict roughly the same labels. The second assumption re-

quires conditional independence of the feature sets. Even assuming the availability

of partially-labeled data, the features available in many applications (e.g. to an iden-

tification system) are radically different in both scale and dimensionality, and often

do not cluster according to a single universal target set. Cotraining is therefore only

appropriate for certain classes of problems that satisfy the above assumptions. Con-

versely, the information-theoretic co-clustering objective, coupled with an appropriate

optimization algorithm (as we shall see), is applicable under a much wider range of

conditions, and does not require target function compatibility.

1.5.3 Information-Theoretic Clustering

Tishby et. al. [29] have proposed an general information-theoretic method for

single-source data clustering which attempts to maximize the mutual information be-

tween clustered and unclustered variables I(X; k), using an intermediate "auxiliary"

variable which generates soft partitions over a dataset X subject to another infor-

mative variable Y. The tradeoff between clustering (compression) and maximization

of the relevant information I(X; Y) is controlled by a positive Lagrange multiplier /

giving the Lagrangian L = I(X; X - 03I(Z; Y). The authors propose a deterministic

annealing procedure for optimization of this Lagrangian.

Dhillon et. al. [11] have proposed an iterative algorithm based on the information-

theoretic framework due to Tishby et. al. that monotonically decreases the objective

function (1.2), but is restricted to the 2-channel case and relies on explicitly repre-
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senting the entire joint distribution. By expressing the loss in mutual information in

terms of Kullback-Liebler divergence, the authors alternate between assigning rows

and columns of a contingency matrix to clusters on the basis of (KL-)distance to

row/column prototypes. The method generally converges quickly and is computa-

tionally efficient, but is substantially susceptible to local minima in that the set of

random initial mappings leading to a "good" minimum is small (if not null). In

practice the algorithm must be run over many trials and averaged to obtain a single

"average" clustering, which is often inadequate. Empirically, there is also large vari-

ability in the quality of the results. For the human identification problem explored

later in this thesis, however, Dhillon's algorithm offers moderately good performance

and we will use it as a standard to which the performance of other algorithms based

on the same objective can be compared.

Optimization of various information-theoretic quantities has recently become pop-

ular in other learning domains as well. Jaakkola et. al. [17] have attempted to merge

the accuracy of discriminative classifiers with the flexibility offered by generative

models, while Viola et. al. [32] apply maximization of mutual-information to image

alignment problems. We will, however, restrict our attention to clustering applica-

tions only.
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Chapter 2

Algorithms Involving Discrete

Solution Spaces

In this chapter we will primarily discuss algorithms for multi-source clustering that

search over solution spaces of discrete-valued cluster membership functions. The first

of which will borrow ideas from simulated annealing, a technique based on the pro-

cess by which physical systems settle into stable low energy configurations. This algo-

rithm attempts to directly optimize the information-theoretic objective function (1.2),

while avoiding poor local minima. The second algorithm clusters data points in an

embedding resulting from the process by which contingency matrices are built, and

represents the application of a traditionally single-source tool (spectral clustering) to

a multi-source problem. Before discussing these algorithms however, we first offer

a general technique by which arbitrarily large multimodal joint distributions can be

clustered by considering only 2-dimensional marginals.

2.1 Clustering N-way Multimodal Datasets

In this section we will describe a flexible framework for handling the general

multimodal case of N datasets and the associated N-variable co-occurrence matrix.

For most of the algorithms presented in this thesis, the full joint distribution must

be stored in order to conduct co-clustering on all sets of features simultaneously. But
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since storage space requirements grow exponentially as we consider more modalities,

it would be desirable to instead work with smaller, more manageable subsets. One

possible technique is summarized in Algorithm 1. We assume that each given feature

set D', ... , DN is represented by codebooks {z}", . . .,{z }IN (respectively), and

denote by {D'} the set of points in DA assigned to codeword z/'. The size of a set is

denoted by - I, and COCLUSTER represents any 2-way co-clustering algorithm that

requires initial mappings in some form or another.

Algorithm 1 Generalized N-way Co-Clustering

1. Randomly initialize Ci(xi) E {1,... , m'1} VXi,... , CN(XN) e {1, .V. . , m' XN,

where mT', ... , m' are the desired number of clusters for each modality.

2. Given N quantized sets of features, form contingency matrices for

all (N) unique pairs of datasets:

P " = I{f} O {jD } , p = I,... N - 1, v = p + I,-.., N, ViJ.

3. Normalize: PG" < - L VP1, V.

4. do
5. for p ,. N - 1

6. for v =p+ I,-. , N
7. C,, C, <- COCLUSTER(PpU, C,, CV)
6. until convergence criterion met, or maximum iterations reached

The idea behind this algorithm is to take advantage of interactions of order 2 at

the most (and ignore higher order information) by performing interleaved clustering

on 2-way marginals of the full N-variable joint distribution. Figure 2-1 illustrates

the concept in the three-dimensional joint case, where we assume three hypothetical

datasets A, B, and C. Each left-hand cube in the figure represents the 3-way, rank 2

co-occurrence tensor rotated to show summation along each of the dimensions. After

summing out one of the three variables in each case, we are left with the three 2-way

marginals shown respectively on the right-hand side. The example 2-way distributions

illustrated in the figure were borrowed from the human identification dataset discussed

in Chapter 4.

Ultimately, by interleaving clustering processes we aim to realize an improvement

by biasing the solution of a given clustering sub-problem towards a specific part of the

solution space. In Algorithm 1, biasing is accomplished by initializing each subprocess
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with shared partitions from previous clusterings. It can immediately be seen that this

particular approach eliminates the exponential storage requirement that would other-

wise be necessary (and eventually intractable) with a full joint. A given single, large

clustering problem is thus made into a set of small tractable sub-problems that can

be handled faster and more efficiently by a wide range of clustering algorithms. The

division of an N-way problem into smaller self-contained tasks also opens the door

to parallelization or network distribution in the case of massive data sets with many

samples and/or hundreds of modalities. Lastly, interleaving of clustering processes

also suggests a host of hybrid algorithms that could be tailored to the specific interac-

tive nature of each marginal, and the corresponding manifolds on which the rows and

columns live. We might choose one algorithm for clustering the first marginal, an-

other for the second, and so on. For many application domains, it is not unreasonable

to assume that different modalities interact differently with one another.

There are, however, two major drawbacks to the proposed scheme. Firstly, we

do not take advantage of possibly informative higher order interactions and instead

try to do our best with the set of all 2-way co-occurrences. Second, because each

sub-problem can only influence the others through initial conditions, there is the

possibility that one clustering process can corrupt another depending on the nature

of the particular problem.

2.2 Stochastic Simulated Annealing

In this section we describe an iterative algorithm for direct optimization of the

co-clustering objective (1.2) described in Chapter 1. Based on stochastic simulated

annealing, the algorithm seeks to reduce the sensitivity to initial conditions exhibited

by Dhillon's algorithm [11], and it is easily applied in the general case to problems

with N modalities. Despite the fact that the algorithm can handle an arbitrary

number of modalities, in situations where N is large the algorithm can be also used

within a framework such as Algorithm 1 to avoid problematic storage requirements

or to capture interactions up to a specified order only. Most importantly however,

the annealing approach poses an attractive optimization tool for multi-source clus-
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Figure 2-1: A 3-dimensional joint distribution resulting from the three hypothetical datasets
A, B and C, is broken down into three 2-variable marginals to which a 2-way co-clustering
algorithm can be applied. Interleaving repeatedly clusters each 2-way distribution in suc-
cession.
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tering because it does not require that the optimization variables depend smoothly

on the objective. In the formulation that follows, we directly search over the space of

mappings C_, C by stochastic sampling.

In general, clustering is an NP-hard problem and a globally optimal solution can-

not be guaranteed by any algorithm that attempts to minimize distortion. Similarly,

the co-clustering objective we have chosen to optimize (1.2) is also non-convex, and is

plagued with poor local minima. Simulated Annealing is a technique borrowed from

physics that aims to avoid such local optima and settle on a solution that is close or

equal to the global optimum by allowing the solution process to jump out of local

minimums with probability determined by a time dependent "temperature" parame-

ter. If a random change causes a decrease in the objective, we keep the change. If it

increases the objective, then we still keep the change with probability

p - eJ/T

where AJ is the change in the objective due to a random modification applied to the

optimization variables. Over the course of optimization, the temperature parameter

T is slowly reduced from a large initial value to a finishing value near zero. The

effect is that the optimization process initially has a chance to explore what at the

time appears to be unfavorable areas of the search space. When the temperature

is reduced, randomness in the system is eliminated and the optimization process

converges onto a solution that could be better than what would have resulted had we

simply followed the best looking initial minimum. The interested reader is referred

to [12, 20] for further details, and the connection to physical annealing.

Because simulated annealing depends only on computing the change in the ob-

jective function, we can directly apply it to a large range of optimization problems

for which the gradient cannot be computed analytically. Thus, for the co-clustering

objective as stated in (1.2) we can apply simulated annealing without further mod-

ification; stochastic changes to the partition functions can be made directly, and we

need only evaluate the objective itself.
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2.2.1 Multi-Source Stochastic Simulated Annealing

Bearing in mind that the joint clusters (2, y) are constrained to claim only cells at

the intersection of rows and columns, in Algorithm 2 we give a simulated annealing

implementation for multi-source clustering based on reassignments of entire rows and

columns. Here, the objective J(.) can be any function which is small when the

clustering is good, however for the experiments in Chapter 4 the information-theoretic

objective (1.2) is assumed.

Algorithm 2 Multi-Source Stochastic Simulated Annealing (2-way case)

1. Randomly initialize C(x) E {1, .... , m'} Vx, C9 (y) E {1, . . . , n'} Vy.
Initialize T <- To, c E [0.8, 0.99].

2. while T > Ttop
3. while all rows and columns have not been visited several times
4. Ea <- J(C, Co)
5. r <-- rand[0, 1], C &I -CC q-C
6. ifr >1/2
7. randomly select a row u E {1,... , m}

and cluster ID v E {1, ...m'}
8. C7(u) <- v
9. else
10. randomly select a column u E {1, . n.. , r}

and cluster ID v E {1, ...n/}
11.(U) - V
12. Eb <-- J(C1, Csy)
13. if (Eb < a) OR (e-(Eb-Ea)/T > rand[0, 1])
14. C& <-CCq+ s
15. T T
16. return C&, C

Assuming a suitable N-way objective function is used, Algorithm 2 can also be

applied to the general N-dataset co-clustering problem by randomly selecting any

one of the N dimensions, changing a mapping entry in place of steps 6-11, and

appropriately updating the additional mappings in steps 5 and 14. Typically, the

closer -y is to 1, the better the results, but at an increased cost in computation time.

Fortunately, the number of inner iterations required at step 3 grows linearly as more

modalities are added, since we need only touch each entry of each mapping a fixed
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number of times (3-10 is a good rule of thumb). The algorithm does however require

evaluation of the objective, which in turn requires storage of the full joint distribution.

The space requirements thus grow exponentially. As mentioned above, we can avoid

this difficulty by compromising on higher order interactions through the application

of Algorithm 1.

Finally, we acknowledge that Friedman et. al. [13] have proposed a heuristic an-

nealing procedure to optimize a related but single-source information-theoretic clus-

tering objective. In their formulation, the objective function is optimized over an

auxiliary partitioning variable T and a Lagrange multiplier 3, which controls the

tradeoff between compression and maximization of relevant information. The anneal-

ing "temperature" in this case is characterized by 1/3. In comparison, Algorithm 2

takes a stochastic, as opposed to deterministic, approach to annealing, and directly

optimizes over the relevant mapping functions. The procedure proposed above is both

conceptually and algorithmically simpler, and is easily modified to handle multi-way

co-clustering problems, whereas Friedman's technique is designed for single-source

clustering applications. On the downside, it is more computationally intensive than

the algorithm due to Friedman et. al.

2.3 Multi-Source Spectral Clustering

Given a 2-way contingency table of the sort defined in Section 1.4.1, we can

apply spectral methods as well. If we consider the joint probability of occurrence

between two random variables to be a sort of similarity measure, then the normalized

contingency table can be clustered directly as if it were a Gram matrix. Furthermore,

for many applications we are concerned only with clustering a primary dataset using

additional sources of information (for which a target function or the correct number

of "classes" may not be known). Spectral clustering thus offers a reasonable means by

which to cluster joint occurrence data with respect to a single dimension. Following

the treatment in [23], we propose Algorithm 3 for spectral clustering of 2-way joint

distributions.
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Algorithm 3 Multi-Source Spectral Clustering (2-way case)

1. Given a contingency table P E Rmxn, compute the row sums

di = Ej Pi i = 1, . . ., Im.

2. Normalize the rows and columns so that L. = .

3. Find orthogonal eigenvectors v 1 , ... , vm corresponding to the m' largest
eigenvalues A1 > ... > A,, satisfying Lv= Aivi, i 1,... , m'.

4. Collect the embedded points Yk = (vk, ... ,Vm'k), k = 1,..., m, and cluster
them with the K-means algorithm.

5. Set the mapping entry C,(i) = j if the point yi was assigned to cluster j.
6. Repeat from Step 1 given the contingency table pT to get the mapping C, if

desired.

Note that because we perform spectral clustering on the contingency matrix, the

corresponding eigenproblem is drastically simpler than in the case where the input is

a true Gram matrix consisting of kernel products between all pairs of data points. In

that situation we require 0(n2 ) distance or kernel product computations just to get

the Gram matrix, and approximately O(n3) floating point operations to compute the

eigenvectors for an n x n matrix. If we have many high dimensional data points, as is

typically the case with, say, image features, then this difference in computation time

is enormous. The fact that contingency tables are in general non-symmetric, does

not substantially impact this computational advantage. For the human identification

experiments conducted in Chapter 4, full spectral clustering based on kernel products

is effectively intractable.

As before, we observe that the application of Algorithm 3 to N-way problems

can be approximated by interleaved clustering of the 2-way marginals of the N-way

joint. In addition, if both the row and column mappings of a 2-way marginal P are

desired, then Algorithm 3 can be carried out on both P and pT separately to obtain

C, and C, respectively. We will discuss further how one might interleave the spectral

co-clustering algorithm in Chapter 4.

The drawbacks to Algorithm 3 are few but important. Firstly, spectral clustering

embeds the training points in a space that is sensitive and specific to the chosen

kernel. If the chosen embedding cannot map the original points (ostensibly on a non-
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linear manifold) into linear subspaces, then we won't necessarily be any better off with

spectral clustering. The effectiveness thus rests on the kernel, and in particular on

any kernel parameters which must be carefully tuned. In the case of contingency data,

we do not have the option of selecting from a variety of kernels, and must therefore

ensure that the given co-occurrence matrix is suitably normalized. Secondly, it is

worth noting that Algorithm 3 applied to contingency data is an inherently 2-way

mechanism: we cannot explicitly take advantage of interactions higher than order

two.
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Chapter 3

Multimodal Data Clustering by

Continuous Optimization

In this chapter we will explore optimization of the nonlinear information-theoretic

objective function discussed in section 1.4.2, using classical multivariable techniques

which require differentiability of the problem to be solved. The goal here will not be

to propose the world's best algorithm for co-clustering, but rather, to formulate and

examine direct continuous optimization applied to co-clustering. The following anal-

ysis will provide insight into the nature of multi-source clustering, and we will make

the constraints and limitations specific to clustering of contingency data explicit. The

optimization framework presented below is noteworthy in that it facilitates the de-

velopment of tailor-made co-clustering algorithms that can incorporate almost any

problem-specific criteria. In this regard the technique is far more general than any

of the methods presented in Chapter 2. Furthermore, by formulating co-clustering

as a continuous optimization problem, we are able to additionally evaluate the ef-

fectiveness of a unique class of co-clustering algorithms that represent a departure

from the algorithmic themes which dominate classical clustering techniques. Unlike

many popular clustering methods, the optimization problem described below does

not involve cluster prototypes or minimization of a distortion metric over individual

points. In Chapter 4, we will evaluate empirically the viability of this approach, and

discuss its strengths and weaknesses therein.
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3.1 A Weight-Based Formulation

In this section we will develop a real-valued weight based approach to co-clustering,

in which we optimize the information-theoretic objective function over a factored set

of real-valued weights using standard gradient descent procedures. We will addition-

ally discuss the time and space requirements of the weight-based approach and give

matrix-vector definitions to facilitate implementation.

Because many clustering objective functions do not depend smoothly on the clus-

ter mappings, continuous optimization techniques such as gradient descent cannot

be used unless the optimization problem is appropriately reformulated. Recall that,

because I(X; Y) is fixed, minimizing (1.2) is equivalent to

max P(S., y) log ' .CXCY P( ) P QMxIy

In words, this says that a good clustering should maximize the mutual information

between the modalities. The problem, however, lies in the definition of P(J, y) (shown

in (1.1)), since we can't optimize in a continuous fashion over the integer-valued

mappings C, C,. If we can write down a definition of P(2, y) that depends smoothly

on a function from which cluster memberships can be recovered, then continuous

optimization can proceed.

We'll begin with a modification of the joint cluster distribution (1.1) involving a

weight factorization that allows recovery of individual modality mapping functions:

P(,,, y)= W ,w ,VP(X, y). (3.1)
x~y

The summations are now over all rows x and columns y in the joint distribution

P(x, y), and the members of a given cluster (, Q) are picked out by the sets of

real-valued row and column weights {w ,} and {wq,,} respectively. Given the co-

clustering definition in section 1.4.1, the number of weights to be found given the

factorization (3.1) is equal to m -m'+n -n', as compared to m-m' -r.n -n' in the general

case. The (preliminary) continuous maximization problem can now be stated as:
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maxZ ( ,) log

SXly (3.2)

subject to 0 < w , W < 1 , V., 9, X, y.

The constraints indicated in Equation (3.2) are incomplete however: we will addi-

tionally need to further constrain the weights w' and w' in order to bias the solution

towards something from which we can recover the cluster mappings Cx and Cy. The

following clustering-specific criteria offer some clues as to what kind of constraints we

might want to include:

1. Each point can only be assigned to one cluster.

2. Each point must be assigned to a cluster.

3. Each cluster should have at least one point.

While it would seem ideal from a clustering standpoint to ensure that all of the rules

are strongly enforced, in practice we may need only one or two weakly enforced con-

straints to give sufficient interpretability of the solution. In addition, when applying

gradient methods to non-convex optimization problem such as (3.2), the introduction

of multiple constraints can at times give poorer solutions and prevent convergence.

When additional constraints are combined with the original objective via Lagrange

multipliers, we arrive at what's called the dual problem. It could also be the case

that the optimal solution to a dual program incorporating many constraints may

not correspond to an optimal solution for the original unconstrained objective due

to the existence of a large duality gap (dependent on the nature of the constraints,

see e.g. [3]). We will show how to quantify each of the clustering criteria in terms of

constraints on the row and column weights and develop the algorithm in full general-

ity. However, depending on the application, it may not be necessary or desirable to

include them all, and in those cases the unwanted constraint terms may be dropped

from the following development.

We can encode the first condition in the form of equality constraints which state

that only one weight for a given point can be non-zero across row/column clusters:
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S U iw = 0, VX (3.3)
i,j>i

S_ =0, Vy. (3.4)
i,j>i

The second condition is enforced by the previous constraints, plus the additional

requirement that the weights for a given point must sum to one across row/column

clusters:
W>,X =1, Vx (3.5)

w ' =1, Vy. (3.6)

This constraint also has the added benefit of encouraging the weights to take on binary

values since we require that the summations equal 1. Lastly, the third clustering

condition can be transformed into constraints similar to the previous set, except with

summations over the other (x,y) dimension of the weights, and the possibility that

more than one point can be assigned to a cluster:

W' > I, Vs (3.7)
x

og y > 1, V9. (3.8)
y

Combining these constraints with the original problem (3.2) gives the following La-

grangian:

L(wr/c, Ar/c er/c, (r/c r/c) P(', fl log

X=1 i,j>i y=1 i,j>i

X -1 - Y - (3.9)
x=1 y=1 Y

m' n'

x=1 x y=l y

m' n'

&=1 y=1
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which is maximized with respect to the row/column weights wr/c, and the row/column

constraint Lagrange multipliers Ar/c ,r/c Cr/c, and ar/c. A word on notation: from

here on we will drop the tedious notation x = u, x = v and simply assume that first

(hatted) subscripts index clusters and second subscripts index rows or columns.

In order to proceed with optimization, we take derivatives with respect to the row

and column weights. Focusing just on the first (risk) term in equation (3.9), if we

substitute the full definition (3.1) in for P(s, y) we see that

W,W_ _P(_', y')

I(ZJ Y)= W w w P(, y) log
) zY Wlog > ,w P(x, y') E wi,,,w ,wP(x',y')

Skipping a great deal of algebra and simplifying, the derivative of I(X, Y) with respect

to the row weights is then

SI(Z, Y) wY ,w ,P(x, Y)

aw P(iZ, y) ,P y

+ w w P(v, y) log P(it,)

- S ,yP(V, y) log P(ft)PQy)

(3.10)
- z P~ y)/XX YY W P(V, y'))

= z P~v y) log v .
y,ly y

w , P(, [ P(, )

Similarly, the derivative with respect to the column weights reduces to

aIxJY) = w P(x, v) log )- ]. (3.11)
UTV

T'urning to the constraint terms, which we will collectively denote by "C", the other
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derivatives needed for optimization are

for the weights, and

ZC C

AcECV C+(i

w 1 = w -1

y

for the clustering constraint Lagrange multipliers.

Lastly, we enforce the inequalities 0 K wi,, wg, 1, Vs, y, x, y by setting each

weight (generically denoted by w) equal to the logistic function,

1

1± en

and performing unconstrained optimization over the alternate logistic variables 7y.

Given the above derivatives, we can now define the gradient descent optimization

procedure shown in Algorithm 4, where we have noted with "r/c" that the row and

column versions of the update rules are separate but similar. As mentioned before, it

should be noted that although the algorithm shows updates for each of the constraints,

in practice some may be unnecessary or even counterproductive.

For the convergence criterion, one reasonable rule might simply terminate the

iteration when the absolute improvement in the objective is less than a prespecified

tolerance value, e.g. when

J(wr(n + 1), w(n + 1)) - J(w(n), wc(n)) < .
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Algorithm 4 Gradient Descent for Weight-Based Multi-Source Clustering (2-way
case)

1. Randomly initialize the weights and Lagrange multipliers. Set n <- 0.
2. do
3. for all weights and Lagrange multipliers

r/c(n + 1) = (n) + ' w (n)(1 - wc(n))

A n+ 1) = A () +r~ c

(+ 1) = (/C() + c

(± 1) = (/C() + c

A/c(n + 1) = c"(n) +
1'

(n + 1) ( + e- n+)

4. n<-n+ 1
5. until convergence or n > nmax

In terms of time requirements, the weight based algorithm is relatively tractable.

Because the gradient greatly simplifies, each gradient descent iteration in the 2-way

case requires (9((M' - M) 2 + (n' -n)2 ) operations. The time requirements of the al-

gorithm thus grows essentially quadratically as we increase the number of rows and

columns or as we increase the number of desired clusters. As we add more modalities,

the time requirements grow linearly. Unfortunately, storage requirements grow expo-

nentially with higher order co-occurrences since the full joint must be represented.

In the case of many modalities, the algorithm could possibly operate on a limited

number of dimensions at a time via an interleaving scheme such as Algorithm 1, but

where successive applications of the algorithm inherit initial weights from previous

runs in place of mappings. As we will see empirically in Chapter 4 however, the

performance of weight-based clustering is somewhat sensitive to the size of the input

matrix, and it is likely that results would be unacceptably poor if the input matrix

came close to exhausting the memory capabilities of most modern desktop computers

anyhow. The algorithm is not particularly sensitive to the desired number of clusters

along any dimension or to the number of original data-points used to construct the

co-occurrence matrix. In the latter case however, for a fixed number of prototype
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vectors, quantization distortion is likely to increase as more data is used to build the

contingency matrix.

3.1.1 Matrix-Vector Definitions

Computation of the update rules is dominated by the derivatives (3.10) and (3.11),

while evaluation of the Lagrangian (3.9) is dominated by computation of the primal

objective (3.2). We give the relevant equations in matrix-vector form to facilitate

efficient computation with a software package such as MATLAB. First, define the

weight vectors

w,(, ) = [W ' .. -- W ~],V

wc(y) = [w ... W ,]T, Vy

so that the matrix W(±, ) E R"xn is the outer product W(1, y) ='(±)wc(y)T. For

the development to follow, 11 -F denotes the Frobenius norm, o denotes elementwise

multiplication (Hadamard product), and the square-root and log operations are to be

taken elementwise as well. The joint m x n distribution matrix is denoted P.

We can express the the joint cluster distribution terms as:

P('-, yi) =w (")Pw (yi)

p(.)p(S) = (P Twr(_)(Pwc(_))T) _ (p W fpT
2,3 i~j

1 PTW(-, Q)PT I = trace( PW(,, y)TP V/PTW(, Q)PT).

If we then define

P =F P(i, =j) and

Uij = trace (V/PW( = i, - j)TP\/PTW( = i, y = j)PT),

the primal objective can be written as

I(X;Y) = Nijlog =/ Polog N - olog U 2
Uij F F
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which can be also be computed as a difference of traces if desired. Lastly, using these

definitions, the derivatives (3.10) and (3.11) can be expressed similarly. First, form

the matrices W' E Rm'Xm and Wc E R n'xf by inserting as rows the weight vectors

wr(-) Vs and wc(y) Vy respectively. Then,

OI(X Y) - wrTpj. (log OT - log uT - 1)

I(X, Y)
Y W p - (log pf - log uf - 1),

where pi denotes the i-th column of P, p7 denotes the i-th row, and a similar con-

vention is followed for U and P. We finally note that since the matrices P and W

are typically small, the matrix products, matrix-vector products, and norms above

are all relatively cheap computationally.
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Chapter 4

Experimental Application to

Multi-Source Human Identification

4.1 Motivation

The application of co-clustering to human identification is motivated by the obser-

vation that many machine systems for human identification (e.g. [22]) suffer from the

significant limitation that they rely on human "experts" to label descriptive training

data for the subjects to be identified. While a supervised approach allows for accurate

detection and classification from the onset, it also necessarily hinders the system's

ability to accommodate new individuals and adapt to changing world conditions au-

tonomously. For many realistic applications, subjects may not be known to a system

prior to deployment, while the pool of individuals we might want to recognize is often

in a constant state of flux. It would thus be highly desirable for a system to be able to

independently learn separate subject models from little or even zero prior knowledge,

and to additionally recognize when incoming measurements correspond to a hitherto

undiscovered class (e.g. a new person).

Here, we will cast multi-source human identification as an unsupervised co-clustering

problem that can contribute to the larger goal of classification and autonomous con-

struction of subject models in the absence of data normalization. More specifically,

by applying multi-source clustering we hope to identify coherent structures in the
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data that could be used to assign labels according to distinct groups which, ideally,

correspond to subject identities. The automatic construction of user models and

subsequent classification of unseen data is then made possible: after augmenting the

original data with labels returned by the co-clustering process, we can simply train

classifiers using a broad range of supervised learning methods.

If the particular application requires the labels to be semantically grounded in the

real world, the system can ask a human expert a small set of "questions" in order

to attach meaning to the labels. When the data is accurately clustered according to

subject and the number of desired clusters is either known or close to the true value,

the number of questions will be small. Conversely, if we are forced to overestimate

the number of subjects because the true number is not known, or if the clustering

does not bear sufficient correspondence to the true classes, then more cluster labels

will need to be tied to (possibly repeated) physically significant descriptions. In

general, multi-source clustering can facilitate active learning by significantly reducing

the number of questions put to a human supervisor, as compared to simply labeling

an entire dataset.

In the section that immediately follows, we will describe the identification system

that served as the experimental platform in this chapter. We then discuss briefly

the difficulties one faces in identifying individuals from multi-source features. Our

description of the experimental setup is concluded with a discussion of multi-source

clustering within the context of human identification. Finally, and most importantly,

we conduct several experiments which compare and analyze performance of the algo-

rithms outlined in Chapters 2 and 3, as applied to clustering tasks of varying difficulty

and complexity. We provide a comparison to the co-clustering algorithm proposed by

Dhillon et. al. [11], and finish with an evaluation of how noise affects the performance

of contingency-based clustering.
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4.2 Experimental Platform

The experiments to follow make use of multi-source sensory data collected by an

identification system designed by Kim, Ivanov, and Poggio [19]. The data is organized

according to four audio and visual sensory channels:

" Subject's height: measured using a single stationary, calibrated color camera.

" Subject's clothing preferences: accumulated by computing separate 16x16x3

color histograms from the top and bottom halves of body images within each

day. We will refer to these data channels as the upper and lower modalities,

respectively.

" Subject's face: 50x50 grayscale patches detected and extracted when available

using a technique proposed by Heisele et. al. [14].

" Subject's voice: recorded with a stationary microphone array and encoded

by MEL-scale frequency cepstral coefficients (MFCCs) in order to capture the

defining frequencies of each subject's voice. Because voice information is not

always present, and can be unreliable due to background interference, we will

not use this channel in the experiments to follow.

At each sampling step, the system computes and records upper/lower histograms and

height measurements as long as a person is present and unobscured. If the subject's

face is detected (that is, the face is visible and the pose is sufficiently frontal), a patch

is extracted, normalized to a canonical scale, and stored. As a rudimentary form of

temporal alignment, we take samples from only those time steps where all modalities

are present. The data available to be clustered can therefore be organized into four

distinct subsets, each specific to a sensory channel, but related by time step. A subset

of the dataset along with examples from each audio/visual modality is illustrated

diagrammatically in Figure 4-1. The time steps t = 0, 1, 2, ... shown correspond to

temporally aligned intervals resulting from the alignment process described above,

while heights along the last row represent single calibrated measurements taken at
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that instant. Columns in the figure have been partitioned according to sequences

which were known to have been recorded at different times, and bright patches seen

in the example histograms correspond to clothing colors that particularly dominated

the subject's wardrobe that day. The fact that two visibly different subjects are shown

in the sequences is coincidental; it is almost always the case that multiple sequences

describe the same person and we could have easily shown two sequences of the same

person taken from two separate days.

Time Step t=O t=1 t=2 t=3 t=4 t=5

Face
Samples

Color
HistogramsU.

Audio
MFCCs

Meaements <187.8> <186.2> <188.1> <176.8> <178.4> <177.2>

Sequence 1 Sequence 2

Figure 4-1: Examples of audio and visual feature channels are shown temporally aligned
and partitioned into sequences corresponding to two different individuals presented before
the identification system.

4.2.1 Challenges

Several potential difficulties immediately stand out: many of the modalities we

wish to cluster cannot be expected to naturally group according to subject, and

include overlapping or oddly shaped clusters. For example, clothing histograms may

not cluster according to individual as we would expect faces to. Furthermore, data

recorded from the surveillance system tends to include a certain degree of noise in

the form of errors in the sensory measurements: heights can be inaccurate due to
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camera calibration issues, while spurious patches are occasionally extracted as faces.

In addition, the presence of multiple individuals in a single frame can incorrectly

commingle modalities during a given sampling interval, while subjects holding objects

such as papers or cups effectively cause corrupting noise to be added to clothing

histograms. We have attempted to minimize such sources of noise somewhat, but do

not systematically weed out every error. It is our hope to approximate a reasonably

authentic surveillance scenario, and we thus allow some noise to remain.

A final difficulty worth considering is the problem of "who to trust." A priori,

we cannot rule out the possibility that weak channels might corrupt stronger ones

when clustered simultaneously. Knowing precisely when to trust or distrust a given

modality is a challenge that is beyond the scope of this thesis. However, the empirical

results to follow suggest that, as far as co-clustering is concerned, this knowledge may

not be as critical as one might expect.

4.2.2 Multi-Source Clustering and Human ID

Without doing any experiments, we can reasonably expect that clustering mas-

sive collections of high-dimensional video features will be difficult using almost any

method. It is therefore critically important that we exploit all available information

regarding the circumstances under which the data was collected, as well as from the

data itself. We therefore aim to include two additional pieces of information:

e All data points (regardless of sensory channel) belong in the same respective

cluster if they are from the same temporal sequence. For example, if we extract

100 faces over two minutes of video, then all of those faces ought to be part

of the same cluster since we assume that there can only be one subject under

surveillance at a time. Examples of such sequences are marked near the bottom

of Figure 4-1. In practice, we would not know that two sequences correspond

to two separate individuals per say, however information designating prelimi-

nary partitionings of temporally aligned features into sequences is available and

exploited in the experiments that follow.
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e We allow information from strong channels to help weaker ones by allowing

modalities to interact during clustering (thanks to multi-source clustering). This

concept is illustrated in Figure 4-2.

Clustering by sequence also has the important added benefit that it avoids fea-

ture resolution and temporal alignment difficulties which would arise in a joint feature

space, or if all data points were simply clustered together without regard to temporal

co-occurrence. Experiments in which faces alone were hierarchically clustered by se-

quence showed a dramatic improvement in accuracy (and speed), compared to simply

clustering a giant pool of individual faces.

"Clothing Space" "Face Space"

2
subject A

0 r3 32
2

subject A
5

--... - - * subject B

6

subject B

Figure 4-2: In this idealized example, sequences 4,5, and 6 in the space of clothing histograms
provide information about how faces ought to be clustered. The dashed lines indicate
temporal correspondences between modalities, and suggest that the large cluster enclosing
all of the face sequences should be split and re-labeled into two smaller clusters.

4.3 Experiments

In the present section we show the results of the algorithms discussed in this the-

sis when applied to several human identity mining tasks of varying difficulty, and
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additionally compare performance to Dhillon's algorithm [11]. The goal of the exper-

iments that follow will be to realize an encoding of the data that groups points into

classes which correspond to the true subject classes. For simplicity we will assume

that the correct number of subjects is known a priori, and will not address cluster

selection or investigate algorithms for determining the number of clusters. Because

faces can reasonably be assumed to group according to subject, we will evaluate the

accuracy of a given encoding by calculating the extent to which clusters in the face

channel represent subject classes. The reported "error" incurred by a clustering will

therefore summarize the fraction of points known to represent a particular subject

that are grouped together by the encoding.

4.3.1 Datasets

For most of the experiments in this chapter we have used the same two datasets.

The first represents features corresponding to 10 different subjects, and consists of

19,136 points divided into 32 sequences, while the second is a smaller, 5 subject

database consisting of 7,379 points and 27 sequences. The data occurs in three

channels: faces, upper-body histograms, and lower-body histograms. In the future

will simply refer to them as the "10 subject dataset" and the "5 subject dataset".

4.3.2 Seeded Agglomerative Clustering

As a helpful basis for comparison, we attempted to cluster faces into both 5 and

10 categories using single-source techniques, while working in knowledge of the se-

quences. Before we even begin clustering, we know from the sequences that certain

collections of points belong together. Hierarchical agglomerative clustering provides

a natural interface for incorporating exactly this sort of information: we can simply

start the agglomeration process from initial clusters that correspond to the sequences.

In this case, most of the clustering has already been done for us, and it is as if we

are only performing the last few merges of a clustering process that begins with indi-

vidual points and ends with clusters that hopefully correspond to subject identities.
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Figure 4-3 illustrates the process schematically, where we show the agglomeration

process starting with 6 initial sequences, and ending at 2 desired clusters. Because

the seeded agglomerative procedure is top-down, this method rigidly enforces the se-

quence groupings in the sense that points from the same sequence will always be in

the same final cluster together. In addition, it is usually the case that the number of

sequences is far less than the number of original datapoints - for these experiments,

approximately 100-1500 points fall into each sequence. This fact implies that the

seeded agglomerative clustering technique is markedly faster than simply clustering

the individual data points without any initial groupings. In general, if we have N

points and K desired clusters, then hierarchical clustering will require N - K merg-

ings. Thus, the computation time is reduced by a factor roughly equal to the ratio of

original points to sequences.

Start: sequences as
initial clusters

agglomerative
clustering

End: final clusters

O~00 0~000 ooo8o 8ooo 0C
0~~o 0 08 0 0 0O 0 0 0% 0 0 O0 8O

0~ 0cJ0 0~%~ 0 &Q06 0 O00 0

0 00 00 0 0000

0 00o~o 00000 8 dl 000 0 0 0

0o c0 0000 00

0 0000

0 0

Figure 4-3: Illustration of seeded agglomerative clustering. In the example shown, we start
with 6 initial clusters corresponding to sequences, and merge until finishing with 2 final
clusters.

In Table 4.1 we show the results of several agglomerative clustering trials applied

to face images. The first section reports the results when applied to the 10 subject

database, where each data point was reduced from 2500 to 30 features with Principal

Components Analysis (PCA). The clustering process was seeded with all 32 sequences

as the initial clusters. The second section shows performance when applied to the 5
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5 subject single (min) 59.1% (4359)
5 subject complete (max) 36.2% (2668)
5 subject average (mean) 13.1% (963)

10 subject single (min) 22.8% (4359)
10 subject complete (max) 57.0% (10900)
10 subject average (mean) 30.7% (5868)

Table 4.1: Seeded agglomerative clustering applied to PCA face components (N = 30)
alone. Performance is shown for both the 5 and 10 subject datasets, and for three common
choices of the distance metric.

subject database, where we now have 27 initial sequences. From the results shown,

the average-distance metric fared the best for the 5 subject dataset with approxi-

mately 13% error, while the minimum point-to-point distance (single linkage) gives

the smallest number of assignment mistakes, at 22.8% of the total, on the 10 subject

dataset. Interestingly, in the single-linkage case the same errors are made on both the

10 and 5 user databases, indicating that some of the sequences are much more prone

to grouping by subject identity than others when using this linkage. In addition, it is

worth noting that the best linkage choice is different for the two datasets, and that

there is no clear best distance one can choose a priori. Because labels are rarely avail-

able in practice, the experimenter might thus investigate the resulting intra-cluster

distortion or a similar cluster coherence measure in order to determine which linkage

is giving better results for a given dataset.

4.3.3 Pre-Processing, Post-Processing, and

Error Accounting

Quantization and Construction of the Contingency Matrix

Unfortunately, for the co-clustering algorithms discussed in this chapter, valuable

sequence information cannot be explicitly incorporated as is possible with agglomer-

ative clustering. To see why, recall that the normalized contingency table functions

as a discrete approximation to the joint distribution over random variables describing

the input feature sets. If we simply built a table of co-occurrences between sequences
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(a diagonal matrix in the 2-way case), then we would not have an even-handed dis-

cretization of the space in which the input points lie. Counting co-occurrences between

sequences alone says nothing about how the feature sets are distributed. As an ex-

ample, consider two sequences that "sit" almost on top of one another in the space of

faces, but are cleanly "separated" in the height space. When we go to count the num-

ber of co-occurrences involving each of the height sequences, we compare intersections

only between full sequences, resulting in values of zero for every comparison that does

not involve the same sequence and the number of points in the sequence otherwise.

In doing so, we neglect the information that the two sequences overlap in space and

thus do not provide an accurate characterization of that space. In building the joint

probability distribution, we must therefore tradeoff sequence knowledge against cov-

erage of the input spaces. On the other end of the spectrum, we could simply perform

K-means clustering with K chosen large as a means by which to discretize a feature

space.

With this tradeoff in mind, we incorporate sequence knowledge into the clustering

process in two "implicit" ways, and emphasize that this difference should be remem-

bered when comparing co-clustering results to seeded agglomerative performance fig-

ures. Firstly, when building the contingency matrix, we organize each set of features

into temporal sequences as described above, and take the mean of points within each

sequence to be the set of vector prototypes or "codebook" for that modality. Each

point, irrespective of sequence membership, is then assigned to the prototype that

is closest in Euclidean distance. Because we are using 30 PCA components and not

the full high-dimensional points, the Euclidean distance is a reasonable choice here.

In the 2-way case, the input joint distribution matrices will thus be square and will

have dimensions m and n equal to the number of sequences. Each entry in the co-

occurrence matrix is then the number of points lying at the intersection of the two

sets of points assigned to each corresponding pair of prototypes, for all pairs of row

and column prototypes. The table of co-occurrences is then normalized to unity in

order to become an admissible probability distribution.

It should be noted that, because each point is associated with a prototype regard-
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less of sequence membership, we will incur quantization error: whenever sequences

overlap, there is an increased possibility of quantization mistakes in the form of points

assigned to the wrong sequence prototype. Despite the addition of these quantization

effects, we have found that this technique yields better results empirically compared

to either performing vector quantization on the original data using no sequence in-

formation, or compared to using sequence correspondences alone. This indicates that

we have indeed struck a balance between accurate discretization of the input spaces,

and utilization of sequence knowledge.

Post-Processing with Sequences

The second way in which sequence information is exploited comes after clustering

of the co-occurrence matrix. When co-clustering has completed, we reassign each

point to the cluster containing the majority of samples from the sequence to which

the point belongs. In the case where quantization as described above misdirects less

than half of the points in a sequence, reassignment will effectively "undo" each of

those mistakes. If more than half of the points have been assigned incorrectly, then

reassignment will only make matters worse. In practice, however,this post-processing

step often greatly reduces the error initially incurred via quantization rather than

exacerbate it.

Error Definitions

In the trials that follow, we will incur four kinds of "error", where error is loosely

defined as the extent to which points group according to subject:

1. Before we cluster anything we will see error due to quantization alone, or quan-

tization error (QE). This error is defined as the number of points that have

been assigned to the wrong sequence prototype (i.e. to a prototype that does

not correspond to the sequence from which a given point came from).

2. After clustering, but before reassignment post-processing, we will observe the

total error (TE). The total error is derived from a "confusion matrix" where
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entry (i, j) corresponds to the number of points from class i assigned to class j by

the clustering. Because the actual numerical value of the cluster IDs is irrelevant

and typically out of alignment, we need only ensure that this confusion matrix

resemble a permutation of a diagonal matrix. If we reorganize the columns so

that the largest counts are on the diagonal, then the total error is defined as

the sum of all the off-diagonal elements.

3. The total error can also be broken down into the sum of the error due to

quantization and the error due to what we will call the raw error (RE): TE =

QE + RE. Here, the raw error summarizes the additional error (as a count of

incorrect assignments) due to clustering alone. This error captures how well the

clustering algorithm has performed, regardless of quantization effects, sequence

knowledge, or the current application in general.

4. After clustering and after reassignment post-processing, we arrive at the final

error (FE). This error represents the final tally of errors assuming sequence

post-processing, and summarizes the number of original data points which have

been assigned to incorrect subject classes by again summing the off-diagonal

entries of a confusion matrix that is generated after reassignment has been

performed.

At times, the final error will be greater than the raw error, indicating that

sequence-based reassignment after clustering was unable to erase the initial quanti-

zation error, or even incurred additional error. However, for this application domain,

the final error is always less than the total error (FE < QR + RE), demonstrat-

ing that the sequence information utilized during post-clustering reassignment is still

beneficial, even if it cannot improve on the raw clustering performance RE.

4.3.4 Multi-Source Spectral Clustering

We now apply the spectral co-clustering algorithm (Algorithm 3) described in sec-

tion 2.3 to both the 5 and 10 user datasets. For the generic single-source clustering
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step of the algorithm, we perform K-means clustering 5 times with random initial

conditions. The final clustering is returned as the best of the 5 replicates. The re-

sulting performance, averaged over 100 trials, is shown in Table 4.2 for three different

configurations of feature co-occurrences: the face channel vs. upper body histograms,

faces vs. lower body histograms, and faces vs. height measurements.

Figure 4-4 gives a more detailed picture of performance over the trials, where we

show boxplots for both the raw clustering error and the final error resulting from all

three feature relations. In the case of faces vs. lower-body histograms from the 10

subject dataset, the solutions typically took on only one out of a handful of possible

forms, giving many repeated error counts and a multi-modal distribution of errors.

Though the boxplots do not capture this kind of behavior accurately, they do tell us

more than the sample mean and variance, and we have opted to show them in these

circumstances anyhow. In the case of faces vs. upper-body histograms applied to

the 5 subject dataset, the variance was zero (every trial incurred the same number of

mistakes), and the "boxes" have become single lines at the respective error counts.

These results collectively say that the nonlinear transformation spectral co-clustering

applies to the space of input points is better suited to some co-occurrence matrices

than others. Faces vs. upper histograms data gives the best results after sequence

information is used for both 10 and 5 subject scenarios, whereas other co-occurrence

configurations do not become sufficiently separated in the embedding to give as im-

pressive results. We might further conclude that the raw error is also lowest when

using faces vs. upper-body histogram features, since the advantage of lower- over

upper-body histograms in the 10 subject case is statistically insignificant.

Interleaved co-clustering in the spirit of Algorithm 1 was also evaluated using the

multi-source spectral algorithm as the generic 2-way co-clustering scheme. Unfortu-

nately, spectral clustering is not easily biased since the initial conditions do not take

on the form of partitioning functions. Thus, to facilitate interleaving we attempted to

influence the behavior of successive applications of the algorithm via the initial clus-

ter coordinates required during the single-source clustering step. Given a mapping

function resulting from a previous clustering and using K-means as the single-source
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Input Matrix I Avg. Raw Error (RE) Avg. Final Error (FE)

5 subject face/upper 8.5% (627) o = 0 1.2% (88) o = 0
5 subject face/lower 16.9% (1246) -= 274 24.9% (1839) a = 411
5 subject face/height 18.2% (1346) -= 309 21.8% (1610) c-= 723

face/upper

face/lower
face/height

7.4% (1412) a = 1034
7.2% (1387) o- = 599
13.8% (2643) -= 556

Table 4.2: Spectral clustering applied to three 2-way joint
formation, for both 10 and 5 subject datasets.

Face/Upper, Face/Lower, Face/Height, 5-User 2-Way Spectral Clustering Spectral Clusterin

8.4% (1602) -= 1163
9.2% (1756) -= 617
15.0% (2877) - 603

distributions involving face in-

g: Face/Upper, Face/Lower, Face/Height, 10-User 2-Way Clustering

1 2 3
face-upper face-upper fao-lower
sequence clustering sequence

4 5
face-lower face-height
clustering sequence

6
acoe-height
clustering

1 2 3
face-upper face-upper face-lower
sequence clustering sequence

4 5
face-lower face-height
clustering sequence

Figure 4-4: Two-way multi-source spectral clustering. (Left) Performance on the 5 subject
dataset, and (Right) performance on the 10 subject dataset. Along the horizontal axis,
"sequence" refers to the final error, computed using sequence knowledge, while "clustering"
refers to the raw clustering error alone.
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Figure 4-5: Illustration of the spectral clustering seeding process. A mapping Cx from a

previous clustering process selects rows from a matrix of stacked eigenvectors corresponding

to another contingency configuration. The averaged rows become initial cluster coordinates

during the K-means clustering step of the multi-source spectral clustering algorithm.

clustering algorithm, we set the initial cluster coordinates for K-means to the average

of the rows of the eigenvector matrix assigned to the same cluster according to the

previous mapping. The idea is illustrated in Figure 4-5, where the clustered left-hand

co-occurrence matrix generates the row mapping Cx (center). The mapping is shown

selecting rows of a hypothetical eigenvector matrix from a subsequent clustering trial,

on the basis of cluster membership. The rows are then averaged to give the initial

K-means seeds Pi, ... , p4 . For the interleaving experiments we conducted, each itera-

tion of the interleaving algorithm sequentially clusters all three of the co-occurrence

configurations mentioned in Table 4.2, while passing the mapping from rows (faces)

to clusters as initial conditions to subsequent clusterings. The algorithm was run for

15 iterations, and 100 trial runs of the algorithm were recorded.

Dataset Input Matrix Avg. Raw Error (RE) j Avg. Final Error (FE)

5 subject face vs. up./lo./ht. 8.5% (627) a = 0 1.2% (88) a = 0
10 subject face vs. up./lo./ht. 1.7% (323) a = 0 0.9% (165) a = 0

Table 4.3: Interleaved multi-source spectral clustering applied to the 5 and 10 subject
datasets. The marginals faces vs. heights, faces vs. lower histograms, and faces vs. upper
histograms were clustered sequentially at each iteration.
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The results of the technique are shown in Table 4.3. For the 5 subject dataset, each

of 100 trials gave performance equal to the best average 2-way co-occurrence error

shown in the bottom half of Table 4.2: that of faces vs. upper body histograms. Thus,

while interleaved clustering of the different co-occurrence matrices did not improve

on the best we could do with any single co-occurrence matrix, it did not allow weaker

configurations to corrupt the strongest one. When applied to the 10 subject data,

interleaving helped steer the solution towards the best mapping observed among all

the trials conducted for the top half of Table 4.2. Each of the 100 trials gave the same

answer: 323 raw clustering mistakes, and 165 total mistakes. This particular solution

was found during only a handful of the trials where we applied spectral clustering

without interleaving to faces vs. upper-body co-occurrences, as can be verified from

Figure 4-4. In this case, interleaving thus served to guide our solution towards the

best possible solution over the various feature combinations, and eliminated much of

the variation seen in the figures reported in the top section of Table 4.2.

4.3.5 Weight-Based Clustering

We next applied the weight-based algorithm (Algorithm 4) described in section 3.1

to three different datasets. In addition to the 10 and 5 person datasets defined

above, we also tested the algorithm on a simpler 3 subject dataset described by 3610

points and 13 sequences. For the datasets examined in this chapter, the weight-based

algorithm generates results that are typically more sensitive to the desired number

of clusters or the size of the contingency matrix than the other methods. In general,

it behooves the experimenter to have fewer sequences with more points, rather than

many small sequences, and this is particularly true for weight-based co-clustering.

The smaller 3 subject dataset will therefore serve to better illustrate how the present

algorithm scales with problem complexity.

In each of the experiments, we included only the constraint stipulating that each

"point" (row or column) can be assigned to at most one cluster. The weight-based

scheme was tested with additional constraints, but typically showed poor convergence

and gave inferior results, even for the 3 category problem. We believe that the two
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3 subject face/upper 22.6% (815) a = 218 30.0% (1080) a = 389
3 subject face/lower 23.0% (830) a = 222 29.9% (1076) o = 380
3 subject face/height 21.7% (782) o = 237 27.6% (997) -= 400
5 subject face/upper 28.8% (2067) o= 287 34.7% (2559) o 576
5 subject face/lower 29.5% (2117) or 332 35.5% (2616) u 631
5 subject face/height 28.8% (2072) o 283 33.9% (2503) o = 587
10 subject face/upper 30.2% (5772) a 975 35.0% (6681) a = 1175
10 subject face/lower 31.1% (5954) a 948 36.1% (6899) a 1189
10 subject face/height 32.0% (6124) a = 1079 37.4 % (7164) a = 1352

Table 4.4: Weight-based clustering applied to all 2-way co-occurrence configurations, with 3,
5, and 10 subject datasets. (First section): Performance on the 10 subject dataset, (Middle
section) Performance on the 5 subject dataset, and (Bottom section) Performance on the 3
subject dataset.

clustering-specific constraints (3.3) and (3.5) either cause conflicts during the (non-

convex) optimization, or impose too many additional variables over which to optimize.

If we remove the constraints which enforce the condition that every point is assigned

to a cluster (3.5), the algorithm does significantly better and usually assigns a great

majority of the points to a cluster anyhow since the main objective (3.2) weakly

enforces this condition. Whenever a row or column was left unassigned (e.g. all

weights for the point were identically zero), we simply assigned it to a randomly

selected cluster. The constraint enforcing the rule that each cluster should get at least

one point was largely unnecessary here, since the unique assignment constraint (3.3)

effectively forces at least one point into all clusters. This behavior was empirically

observed in all trials, and third constraint (3.7) was left out entirely. Finally, we

did not use an adaptive rate parameter or conduct line searches for the optimal step

size, but instead simply chose a single crude value (7o = 10 for the 10 and 5 subject

datasets and io = 20 in the 3 subject case) that was applied to all gradient update

rules in Algorithm 4. Updating was performed in an online fashion for 1800 epochs,

and the distribution P(., ) was recomputed after each weight adjustment.

The resulting performance averaged over 100 trials for each of the datasets is

shown in Table 4.4. In each case, clustering was performed on the same three feature

co-occurrence configurations as before: faces vs. upper body histograms, faces vs.
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Figure 4-6: (Left) Weight-based performance on a 3 subject dataset with 3610 points,
and 13 sequences. Middle: Weight-based performance on the 5 subject dataset. (Right)
Performance on the 10 subject dataset. Along the horizontal axis, "sequence" refers to

the final error, computed using sequence knowledge, while "clustering" refers to the raw

clustering error alone.

lower body histograms, and faces vs. height measurements. In Figure 4-6 we show

boxplots for each configuration and each dataset, summarizing performance in terms

of raw error and final error tallies, marked "clustering" and "sequence" respectively

along the horizontal axes. Unfortunately, for these datasets weight-based clustering

is not as competitive as the other methods investigated in this chapter. However,

the trend among errors over the different datasets suggests that the weight-based

approach is viable for small problems with fewer sequences that have been balanced

in size, and for such clustering tasks we have found that the approach is competitive

with Dhillon's algorithm. In addition, the algorithm is a true co-clustering technique

in that it optimizes and returns both row and column mapping functions. For applica-

tions where all mappings are desired, weight-based clustering might be an attractive

solution.

Interestingly, the results summarized in Table 4.4 show that for smaller prob-

lems the height channel was most informative. In light of the feature preferences of

the spectral algorithm above, this suggests that different algorithms might exploit

co-occurrence information in distinct ways. Despite the fact that the weight-based

scheme does not offer particularly stellar results, weight-based clustering might prove

helpful when used in concert with other algorithms that exploit different structures in

the data. The large standard deviations in the final error are not entirely surprising,
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Figure 4-7: (Left) Typical converged row weights for the 3 subject case, where cluster indices

run along the vertical axis and joint distribution row indices run along the horizontal axis.

Dark cells denote weights near 1, while bright cells indicate weights near 0. Where a given

column has no dark areas, the corresponding row was not assigned to any cluster by the

algorithm. (Right) Typical converged column weights.

given that we reassign possibly large groups of points during the sequence-based post-

processing, and variance in the raw errors were, on average, smaller with weight-based

clustering in comparison to the spectral method.

For each trial we initialized the weights and constraint Lagrange multipliers to

random values in the interval [0, 1]. Figure 4-7 shows sample converged row (left)

and column (right) weights after a typical run of the weight-based algorithm on the

3-class problem, where dark patches correspond to values near unity. Each row in

the plots correspond to a cluster, while the columns are the original row/column co-

occurrence matrix indices. Brighter areas denote weights near zero, and indicate that

the corresponding rows or columns are not members of the cluster. The mappings

are thus recovered from the weights by recording the index of the largest weight for

that row or column:

Crow(v) = argmaxw , v =1,...

C (v) = argmaxw , v = 1,...,n'.
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From the weight patterns, it can also be seen that the unique assignment constraint

was successfully enforced, as was the third constraint (3.7) implicitly. Since we chose

to omit the second clustering condition, not all points were assigned to clusters by

the algorithm.

As was the case with spectral co-clustering, the weight-based algorithm is not eas-

ily interleaved since initial mappings tell us nothing about how to set initial weights.

We therefore attempted to perform interleaved clustering by saving either the row or

the column weights w', w' from a previous clustering with overlapping modalities,

and passing those weights as an initial starting point for a subsequent trial. While this

technique ought to bias the new weights towards a portion of the solution space de-

rived from previous results, in practice interleaving did not cause successive clustering

runs to escape inherited local minima. Thus, once a set of weights had converged to

a local-optimum, later applications of the algorithm did not significantly improve the

objective function. Interleaving with weight-based clustering was thus unsuccessful

in improving performance.

4.3.6 Annealing Methods

Turning to the stochastic simulated annealing algorithm (Algorithm 2) described

in section 2.2.1, we attempted to label faces given both 2-way and 3-way joint distri-

butions generated from the 5 and 10 user datasets. For the 2-way trials, we tested

the algorithm on the same set of feature co-occurrence configurations as before: faces

vs. upper-body histograms, faces vs. lower-body histograms, and faces vs. heights.

The two 3-way contingency tensors were generated by looking at faces vs. upper vs.

lower histograms, and faces vs. upper histograms vs. heights. In all 2-way cases we

applied multi-source annealing to the information-theoretic objective function (1.2)

discussed in Chapter 1. The three-source optimization objective takes on a similar

form: we simply extended the relevant distributions to three variables, and optimized
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5 subject face/upper 6.3% (463) a = 60 8.2% (603) o = 206
5 subject face/lower 8.5% (621) a 170 14.7% (1081) a = 230
5 subject face/height 7.8% (572) a 200 10.6% (781) a = 269
5 subject face/upper/lower 6.7% (494) o= 130 10.1% (742) a = 286
5 subject face/upper/height 7.1% (523) a = 110 9.6% (708) a = 284
10 subject face/upper 1.2% (221) a = 335 1.6% (313) a = 361
10 subject face/lower 4.1% (781) a 219 6.6% (1264) a 406
10 subject face/height 12.3% (2347) a = 434 13.3% (2552) a = 381
10 subject face/upper/lower 5.2% (989) a 319 6.2% (1186) a 518
10 subject face/upper/height 4.5% (861) a= 261 5.7% (1087) a = 484

Table 4.5: Multi-source simulated annealing applied to three 2-way joint distributions and
two 3-way configurations. (Top section) 2-way trials using the 5 subject dataset, (2nd
section) 3-way trials using the 5 subject dataset, (3rd section) 2-way trials using the 10
person dataset, (Last section) 3-way trials using the 10 person dataset.

over the mapping functions C2, C., and C,:

J(C, CV, C) I(X; Y; Z) - I(Z; Y; Z)

P(x, y, z) log P)(y) P(z)9,9,z' E'yy PW P( PW

SDKL(P(X, y, z) IQ(X, y, z)),

For each trial, the mappings functions were randomly initialized to integers in the

range 1, ... , Nsubjects. The temperature was initialized to To = 5, and was reduced after

completion of each outer iteration according to the update rule T" <- 0.98 -Tn 1 . The

number of inner iterations at step 3 of the algorithm was chosen such that each entry

of the mapping functions would be touched approximately 5 times on average. The

algorithm was stopped when the temperature dropped below Ttp0 = 0.005.

The resulting performance over 55 trials for each of the clustering problems is

shown in Table 4.5, while Figures 4-8 and 4-9 show boxplots summarizing the raw

and final error counts for all 2- and 3-way configurations respectively. As was the case

with the spectral clustering experiments, for some configurations the multi-source an-

nealing algorithm gave error counts which mainly took on only a handful of values,

and disregarding outliers, gave an effective variance smaller than the values reported
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1 2 3
face-upper face-upper face-lower
sequence clustering sequence

4 5 6
face-lower face-height face-height
clustering sequence clustering

1 2 3
face-upper face-upper face-lower
sequence clustering sequence

4 5 6
face-lower face-height face-height
clustering sequence clustering

Figure 4-8: Multi-source simulated annealing applied to three 2-way co-occurrence matrices.
(Left) Performance on the 5 subject dataset, and (Right) performance on the 10 subject
dataset. Along the horizontal axis, "sequence" refers to the final error, computed using
sequence knowledge, while "clustering" refers to the raw clustering error alone.
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Figure 4-9: Multi-source simulated annealing applied to two 3-way joint distributions. (Left)
Performance on the 5 subject dataset, and (Right) performance on the 10 subject dataset.
Along the horizontal axis, "sequence" refers to the final error, computed using sequence
knowledge, while "clustering" refers to the raw clustering error alone.
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in Table 4.5 (which includes outliers). Considering the fact that annealing is in

part designed to reduce variability of the solution, this behavior is desirable. Un-

fortunately, it makes for poor looking box-plots. Nevertheless, we feel that these

"degenerate-looking" box-plots still offer useful information, in the form of outlier

counts and range statistics, and we include them anyhow. Looking at these results,

we can see that annealing gives the best clusterings when applied to faces vs. up-

per body histogram data, but does not sufficiently exploit third order interactions

to give lower error rates in the 3-way case on average. However, over the trials we

conducted, there was at least one case where performance on the 3-way co-occurrence

tables gave the minimum error, while for the 2-way examples this minimum was not

always reached. This implies that we are likely to find the best possible clustering by

conducting several 3-way trials and taking the one for which the objective is smallest

as the final mapping. For the 2-way configurations however, the results suggest that

we cannot always be sure we are finding the best clustering: faces vs. upper-body

histograms is clearly the strongest combination of features, but in the absence of such

knowledge we would not know to prefer this particular set of co-occurrences over the

others. Clustering all of the modalities together while paying no attention to which

are "strong" and which are "weak" can possibly find the best mapping automatically,

but at the expense of increased computation time.

Dataset Input Matrix Avg. Raw Error (RE) I Avg. Final Error (FE)
5 subject face vs. up./lo./ht. 7.0% (513) o = 60 7.8% (574) a = 200
10 subject face vs. up./lo./ht. 1.1% (216) o = 216 1.3% (247) a= 295

Table 4.6: Interleaving of the multi-source annealing algorithm applied to the 5 and 10
subject datasets. The marginals faces vs. upper histograms, faces vs. lower histograms,
and faces vs. heights were clustered sequentially at each iteration.

Interleaving of the 2-way co-occurrence configurations can give improved results

when using the annealing algorithm as well. Faces vs. heights, faces vs. lower

histograms, and faces vs. upper histograms were sequentially clustered (in that order)

5 times for each interleaving trial, while directly passing previous mappings as initial

conditions. Table 4.6 shows the average performance over 50 such trials. For the

10 subject dataset, interleaving gave groupings which reduced the best 2-way final
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error count by about 0.3%, or 66 errors, and gave a lower variance. The raw error

performance remained about the same. For the 5 subject dataset, interleaving also

reduced the final error count, resulting in 29 fewer errors, or a 0.4% reduction. While

these margins may not be large, the experiments do suggest that interleaving with

annealing can give results equal to or better than any single 2-way result.

4.3.7 Dhillon's Algorithm

In order to help evaluate the performance of the techniques proposed in this thesis,

the information-theoretic co-clustering algorithm due to Dhillon et.al. [11] discussed

in section 1.5.3 was also applied to the 5 and 10 subject datasets. The algorithm was

started with random initial mappings, and allowed to run until the objective improved

by less than 10 0 bits. The results from 100 trials are summarized in Table 4.7 and

Figure 4-10. For the 5-subject clustering task, Dhillon's algorithm performed equally

well (a statistical tie) given faces vs. upper-body histograms and given faces vs.

heights. In the 10-subject case, faces vs. upper-body histograms proved to be the

most informative co-occurrence configuration as well.

Following Algorithm 1, we also interleaved clustering of the 2-way co-occurrence

configurations. In this case, the initial mappings passed to Dhillon's algorithm cor-

responded to the results from previous applications of the algorithm. Each trial

iterated over all three feature configurations 15 times, and we again terminated each

sub-clustering process when the objective improved by less than 1010 bits. The

average performance over 100 trials is shown in Table 4.8. Comparing these error

counts to those obtained from the individual 2-way matrices in Table 4.7, we can see

that, for this problem, interleaving all available 2-way marginals yields a substantial

improvement. For the 5 person dataset, the final error drops by approximately 3

percentage points, while for the 10 subject data the final error is reduced by about

2 percentage points. The variance of the error increased slightly for the 10 subject

dataset, but was roughly the same for 5 people.
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Input Matrix Avg. Raw Error (RE) Avg. Final Error (FE)

5 subject face/upper 15.0% (1075) o = 413 20.3% (1460) a = 650
5 subject face/lower 18.7% (1346) a = 448 27.9% (2003) a = 697
5 subject face/height 15.1% (1084) a 368 19.2% (1379) o- = 638

face/upper

face/lower

face/height

13.3%
14.2%
18.8%

(2538) a = 966
(2708) a = 1093
(3588) a 941

17.0%
18.9%
22.2%

(3249)
(3610)
(4247)

a-
a-
a

= 1089
= 1210
= 1075

Table 4.7: Performance of Dhillon's algorithm applied to the 5 subject (Top section) and

10 subject (Bottom section) datasets.

1 2 3
face-upper face-upper face-tower
sequence clustering sequence

4 5
face-lower face-freight
clustering sequence

face-height
clustering

1 2 3
face-upper face-upper face-lower
sequence clustering sequence

Dhillon's Alg.: Face/Upper, Face/Lower, Face/Height, 10-User 2-Way Clustering
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Figure 4-10: Boxplots showing performance of Dhillon's algorithm on the 5 subject (Left)

and 10 subject (Right) datasets. Along the horizontal axis, "sequence" refers to the final

error, computed using sequence knowledge, while "clustering" refers to the raw clustering

error alone.

Dataset j Input Matrix Avg. Raw Error (RE) I Avg. Final Error (FE)

5 subject face vs. up./lo./ht. 12.2% (893) a = 405 16.3% (1194) ar = 660
10 subject face vs. up./lo./ht. 12.7% (2433) a = 1259 15.3% (2928) a = 1370

Table 4.8: Interleaved Dhillon's algorithm applied to the 5 and 10 subject datasets. The
marginals faces vs. heights, faces vs. lower histograms, and faces vs. upper histograms
were clustered sequentially at each iteration.
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Figure 4-11: (Left) An example 12x12 unclustered joint probability distribution P(x, y) over
faces and upper-body histograms. Bright areas indicate larger entries. (Right) A typical
approximation Q(x, y) after clustering has been performed.

4.4 Discussion

As a brief visual example of the clustering occurring above, in Figure 4-11 we

show the original distribution P(x, y) of faces vs. upper histograms and a typical

compressed approximation Q(x, y) resulting from a clustering, where larger proba-

bility values are indicated by brighter areas. Note that we observe in Q(x, y) the

block-like structure discussed in Chapter 1. On the left, this figure shows both the

form of most of the input matrices used in the experiments above, and on the right,

also illustrates pictorially the sort of clustering results we would like to obtain in the

form of the approximation matrix Q(x, y). We also take this opportunity to note

that the quality of the clustering resulting from any optimization process based on

the information theoretic-objective is immediately available during the optimization

itself. If, for a given trial the loss in mutual information is large, then it might make

sense to adapt algorithm parameters or restart from different initial conditions.

In Tables 4.9 and 4.10 we compare the algorithms and feature sets respectively.

The former table gives the best feature configuration and error percentage for each

algorithm, along with approximate running times for each of the methods, while

the latter table shows the best algorithm and the best error percentage for each co-
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5 subject spectral seconds face vs. upper 1.2% o- 0
5 subject annealing hours face vs. upper 8.2% o- 206
5 subject Dhillon seconds face vs. height 19.2% o- 638
5 subject wt-based minutes face vs. height 33.9% o = 587

annealing
spectral
Dhillon

wt-based

hours
seconds
seconds
minutes

face
face
face
face

vs.
vs.

vs.

vs.

upper
upper

upper
upper

1.6% o = 361
8.4% -= 1163
17.0% - 1089
35.0% - = 1175

Table 4.9: For each dataset and over all feature sets, we show the best performance for each
algorithm. The fourth column corresponds to the particular 2-way matrix which gave the
best error listed in the final column. Approximate running times for the algorithms are
given for reference in column three.

2-way Feature Set I Best Avg. Final Error (FE) Algorithm
5 subject face vs. upper 1.2% o- =0 spectral
5 subject face vs. lower 14.7% o- = 230 annealing
5 subject face vs. height 10.6% o-= 269 annealing

face
face

face

vs.
vs.

vs.

upper
lower

height

1.6% o = 361
6.6% U = 406
13.3% o = 381

annealing
annealing
annealing

Table 4.10: For each data set and over
each feature set. The last column shows
listed in column three.

all algorithms, we show
the particular algorithm

the best performance for
which gave the best error

Dataset Algorithm Avg. Raw Error Std. Dev. (%)
5 subject annealing (o) = 2.0%
5 subject spectral (o) 2.7%
5 subject wt-based (o) 4.1%
5 subject Dhillon (o) = 5.6%

10
10
10
10

subject
subject
subject
subject

annealing

spectral
wt-based

Dhillon

(U)
(U-)

(U-)

(U-)

= 1.7%
= 3.8%
= 5.2%
= 5.2%

Table 4.11: Variability in the results from each algorithm. The final column lists the
standard deviation of the raw error as a percentage of the total number of points in the
datasets, averaged over all 2-way feature configurations for each respective algorithm.
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occurrence configuration. Out of the algorithms tested above, the data presented in

these tables indicate that multi-source spectral clustering applied to faces vs. upper-

body histograms gave the best performance on the 5 subject dataset, while annealing

applied to the same set of features gave the best results for the 10 person dataset.

Overall, the multi-source annealing algorithm gives the best results on both datasets,

followed by the spectral algorithm. Annealing and spectral clustering also give su-

perior results for all feature configurations compared to seeded agglomerative clus-

tering for the 10 subject dataset, while for the 5 person problem, spectral clustering

gave better mappings only for faces vs. upper-body histograms. The annealing al-

gorithm was always better than seeded agglomerative clustering for the 5 subject

dataset. Weight-based clustering and Dhillon's method were both always worse than

the agglomerative algorithm, for all datasets. It must be remembered however, that

comparing co-clustering algorithms to any single-source clustering scheme is a bit like

comparing "apples to oranges": the seeded agglomerative algorithm, for instance,

does not provide multiple mappings, and exploits sequence knowledge to a greater

extent than the multi-source algorithms.

We can also conclude that faces vs. upper-body histograms was the most in-

formative co-occurrence relation for all algorithms in the case of 10 subjects. For

the 5 subject dataset, faces vs. heights proved to be the most useful for Dhillon's

algorithm and the weight-based approach. The other two methods preferred faces

vs. upper-body histograms again. Faces vs. lower-body histograms gave the worst

results for all algorithms and all datasets, but still gave results far lower than random

assignment: the largest difference in error between these features and the best feature

combination was only about 11 percentage points in the worst case. It is not surpris-

ing however that lower-body histograms were relatively uninformative, as most of the

subjects wore jeans of one shade or another. The results therefore collectively suggest

that faces, upper-body histograms, and heights are all good features to include in a

recognition or surveillance system.

It is also helpful to look at the variability of the results shown in the preceding

section. That variance figures for the raw error are typically large is unsurprising;
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the sequence-based post-processing step reassigns great numbers of points, and can

easily change the final error count by hundreds of points. If a clustering puts just a

bare majority of points from a sequence into a cluster, then all points go into that

cluster. Likewise, if a slight minority are placed into a cluster, then all points are

removed. The standard deviations corresponding to the raw clustering error thus give

a far better measure of the variability among results for a given algorithm, and in

Table 4.11 we give standard deviations as a percentage of the total number of points

in the datasets for each algorithm, averaged over the raw error results for all 2-way

feature configurations.

These variance data show that the annealing algorithm gives the most "stable" re-

sults, as would be expected given the nature of the technique. While the weight-based

algorithm gives the worst clusterings, the variance of the error incurred by the map-

pings is comparatively small. Conversely, Dhillon's algorithm performed somewhere

in the middle of the pack error-wise, but shows the largest variability.

On average, the annealing algorithm was not able to take significant advantage of

three-way interactions when clustering the two 3-way joint distributions. It is possible

that when all modalities are clustered jointly, weaker datasets corrupt stronger ones.

In this case, it could be that lower body histograms tend to reduce discriminability

in other channels when clustered together. While the average performance of 3-way

clustering was below the best 2-way average, clustering of the 3-way co-occurrences

did at times give the lowest observed error count. This indicates that we can ensure

a good clustering by repeating the algorithm several times, and taking the mapping

giving the smallest corresponding objective value. In addition, clustering multiple

sources at once does not require prior knowledge of strong and weak modalities. Thus,

3-way clustering is one possible way to obtain good results given ample computational

resources and very little prior information.

Interleaving, however, seemed to promote the exchange of 2-way information while

preventing significant cross-corruption. In most cases where we applied interleaving,

some benefit was realized-up to several percentage points at times. However, it should

be noted that when there are substantially weaker modalities combined with strong
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ones, the effectiveness of interleaving can be dependent on the order in which the

marginals are clustered. If the weakest 2-way configuration is clustered last, some

corruption is possible. On the other hand, if the strongest 2-way co-occurrence table

is the final matrix to be clustered, the results can be better than of any individual

2-way configurations alone. In this sense, weaker channels are more likely to help

stronger ones, but stronger channels are less likely to help weaker ones.

Overall, for this particular problem, the simulated annealing algorithm appears

to be the most powerful of the methods. The technique combines high raw clustering

accuracy and low variance, to give generally good results for all of the clustering prob-

lems. The benefits of annealing however must be weighed against the computational

requirements. For all datasets, the algorithm took longer than any other method.

Considering running time then, spectral clustering and Dhillon's algorithm are com-

petitive options, as they are both computationally fast, and offer similar performance.

In summary, the experiments conducted in this chapter collectively suggest that a re-

liable recognition system with autonomous training and model building capabilities

is a very real possibility.

4.5 A Final Noise Tolerance Experiment

In practice, data collected automatically by surveillance and recognition systems

are often substantially noisy. It is not unreasonable to expect that on occasion mul-

tiple people might appear in front of the camera simultaneously, contaminating a

sequence of recordings with ambiguous information. In addition, face detection algo-

rithms will always have some probability of error, and it is likely that a few random

spurious patches in an image will be extracted as faces. There are many possible

sources of "noise" that the experimenter can encounter, and in most real-world sit-

uations we can expect that all modalities will sustain some amount of corruption.

A system's robustness to noise is thus an important quality to evaluate if we are to

have some idea of how it will perform in practice. In order gain some insight into the

extent to which multi-source clustering algorithms can handle noise, we conducted
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10 subject corrupted spectral 14.3% (2735) a = 1449
10 subject corrupted seeded agglom. (single) 58.0% (11076)
10 subject corrupted seeded agglom. (average) 30.7% (5868)
10 subject corrupted seeded agglom. (complete) 57.5% (10996)

10 subject original spectral 8.4% (1602) o- = 1163
10 subject original seeded agglom. (single) 22.8% (4359)
10 subject original seeded agglom. (average) 30.7% (5868)
10 subject original seeded agglom. (complete) 57.0% (10900

Table 4.12: Multi-source and single-source clustering performance with a noisy dataset (top
section), and on the original 10 subject dataset (bottom section).

a brief experiment in which the spectral co-clustering algorithm was applied to to a

deliberately corrupted dataset. We believe that robustness to noise depends more on

the fact that we are using contingency data than on the particular algorithm used to

cluster that data. Multi-source spectral clustering was therefore chosen to represent

co-clustering in general as a good tradeoff between speed and accuracy.

For this experiment, we started with the same 10 subject dataset described above,

but then randomly corrupted data entries in all modalities and all sequences to gen-

erate a "noisy" dataset. The noise data points were taken from actual recordings of

other subjects not among the original 10. Some are "correct" in the sense that they

accurately capture what they are supposed to (e.g. faces are faces), while others are

incorrect spurious measurements. Examples of such incorrect measurements include

images of the back of a person's head as a "face", or patches of rug as upper-body his-

tograms. The noise points were randomly distributed among sequences, and replaced

randomly selected (original) entries. In all, we corrupted 1094 points, correspond-

ing to a noise level of 5.7%, in addition to any noise already present in the dataset.

In Table 4.12 we show the results of 100 spectral clustering trials applied to faces

vs. upper-body histograms co-occurrence data generated from the corrupted dataset.

The table also shows the performance obtained on the original 10 subject dataset,

and the performance of the single-source seeded agglomerative algorithm, which is not

contingency based, on both corrupted and original data. As before, agglomerative

clustering was applied to 30 PCA components per face.
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As would be expected, both algorithms showed an increase in final error when

applied to the corrupted dataset. In the case of seeded agglomerative clustering,

however, the optimal linkage choice has changed, while the increase in error for all

linkages excepting the average linkage was far more substantial than the increase

in final error due to the spectral algorithm. These results collectively suggest that

contingency clustering is more robust to noise and other corrupting factors than

traditional single-source clustering techniques.
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Chapter 5

Conclusion

This thesis began by asking the question, "How can we best cluster multiple

connected datasets?". After arguing that classical clustering techniques were inap-

propriate, we proceeded to formally define the multi-source clustering problem, and

showed that a good clustering minimizes the loss in mutual information among data

sources between a contingency (co-occurrence) matrix and a clustered approximation.

We then went on to propose several algorithms by which one might minimize the in-

formation theoretic objective, involving both spaces of discrete mappings from data

points to clusters, and spaces of continuous, real-valued weights.

In the continuous case, we considered optimization over sets of weights designed

to pick out cells from the original joint probability matrix. Using a factored repre-

sentation involving only row and column variables, we developed a gradient descent

formulation and outlined constraints on the weights that were necessary to recover

meaningful cluster mappings. In the case of discrete solution spaces, we focused first

on a multi-source simulated annealing approach, where the information-theoretic ob-

jective was directly minimized by a stochastic sampling process applied to the point-

to-cluster mappings. We additionally gave a multi-source spectral algorithm that

performs traditional distortion based clustering, but in an embedding resulting from

co-occurrence information.

Because most of the algorithms required the full joint distribution of co-occurrences

to be explicitly stored, we also offered an algorithm for interleaved clustering of two
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dimensional marginals of an arbitrarily large joint. Any 2-way co-clustering func-

tion susceptible to biasing through initial conditions was designated as acceptable for

interleaving.

Finally, we evaluated the algorithms on a real-world human identification problem,

consisting of several large datasets of visual features. The experiments conducted

in Chapter 4 showed roughly how the algorithms compared to one another on a

moderately difficult clustering task. It was found that the annealing algorithm had

the lowest error and variance on average, but also required the most computation

time. The spectral algorithm required little computation time, but also performed

well, giving the lowest single average clustering error on a 5 person dataset. The

weight-based approach required a moderate amount of computation and gave results

that did not scale well with problem complexity, although it did boast low variability

in the results. That gradient methods gave reasonable results however, serves to

explicitly illustrate the interaction of modalities through contingencies. Whereas

other techniques might appear like black boxes, a good understanding of co-clustering

can be gleaned from the weight-based formulation. Compared to the algorithm due

to Dhillon et. al. [11], all but the weight-based approach performed better overall in

terms of raw clustering error. While Dhillon's algorithm was computationally more

efficient than annealing or gradient descent, that algorithm had the largest error

variance.

The major conclusions of this thesis can be summarized by the following bullets:

9 Multi-source co-clustering can greatly improve a mapping from points to clus-

ters (Chapter 4) by exploiting additional related data in a principled manner

(Chapter 1). This mapping can then be used to label a given dataset for sub-

sequent learning of classifiers and evaluation of unseen examples.

e Under suitable conditions, interleaved co-clustering of the 2-way marginals of an

arbitrary joint distribution (Section 2.1) can further improve a desired mapping

by utilizing all available 2-way interactions, but at the expense of increased com-

putation time. It is not clear, however, that when given one or more relatively
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uninformative feature sets among stronger feature sets, co-clustering of entire

joint distributions is as beneficial as simply interleaving with 2-way marginals

(Chapter 4).

* Clustering applied to contingency data can be more robust to noise than cluster-

ing original data points with traditional single-source algorithms (Section 4.5).

" Overall, the experiments presented in Chapter 4 suggested that it may be pos-

sible to construct a recognition system capable of training itself automatically

or with little human intervention, compared to supervised analogues. Such an

unsupervised surveillance system would better approximate identity recognition

in humans, and can additionally facilitate continual self-adaptation that would

otherwise be impossible in most supervised settings.

That multi-source clustering and labeling of faces was demonstrably successful

further suggests that the algorithms discussed in this thesis can be successfully ap-

plied to a host of other difficult problem domains. The datasets used in the preceding

chapter were hardly contrived synthetic examples; noisy samples and other difficulties

made the clustering task very real indeed. Other inherently multi-source applications

therefore have much to gain through the application of multi-source clustering meth-

ods.

In conclusion, the algorithms presented in this thesis collectively provide a frame-

work by which to approach a large range of difficult multi-source clustering tasks.

For many application domains, it is often the case that more data is better [6, 33].

Multi-source contingency clustering thus provides a powerful answer to integrating

and exploiting additional sources of information under minimal constraints.

5.1 Future Work

The work presented in this thesis is far from exhaustive, and several future direc-

tions based on both the topics discussed herein and on other ideas exist. Firstly, it

might be possible to take advantage of higher-order co-occurrences within a spectral
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clustering framework using the method of De Lathauwer et. al. [10] to compute the

spectrum of an N-dimensional contingency table. Second, the annealing approach

discussed in Chapter 2 might be extended to deterministic methods [26, 15], possibly

involving a redesigned information-theoretic objective written in terms of row and

column prototypes instead of explicit mapping functions.

In addition, there is much exploration to be done concerning clustering with func-

tions in kernel defined spaces. In particular, kernel design to enforce clustering con-

straints, regularization of factored functions for clustering, and selection of an appro-

priate clustering-specific penalty term stand out. We will therefore briefly sketch a

optimization framework for which the space of solutions of the information-theoretic

objective (1.2) is a Reproducing Kernel Hilbert Space (RKHS) [2], and discuss some

conditions that should be met in order to cast clustering as a Tikhonov regularization

problem with interpretable solutions.

5.1.1 Continuous Optimization with Regularization

Consider for a moment the continuous analog to the problem formulation given in

section 1.4.1, where all of the distributions defined are continuous functions of several

variables, and summations turn into integrals. Then one reasonable definition of

P(ii, y) could place a weighted Gaussian bump on every region in the joint distribution

corresponding to cells in the discrete case:

X xY UxV

where f(-) denotes a weighting function intended to select or deselect Gaussian bumps

for a given cluster (, y), G(.) denotes the Gaussian function with fixed variance

parameter o-, and Q is the differential volume dx dy du dv. An example shown Figure 5-

1 illustrates selection of points with Gaussians in a two dataset (2D joint) situation.
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Figure 5-1: Weighted Gaussians are shown selecting "cells" from a joint distribu-
tion matrix for a given cluster (x, i). This cluster includes the points at coordinates
(2,1),(3,1),(1,2),(2,2), and (3,3).

Using this definition for P(., ^), the objective is now

P( P( d
max J , Y) log

f I ~ P(-,p)P 9 .

The motivation behind choosing this particular representation for P(2, y) is that

we would hope to be able to recover the cluster mappings from the final solution by

simply looking at which bumps are selected by f(i, a, -, ) for a given cluster (2, P).

Alternatively, we might instead just try to learn the function

h(2, X, y) = J f(, Y, u, v) G([x y]T;,p = [u v]T, -) du dv,
UxV

and enforce smoothness with a regularization term. This regularization penalty would

then effectively constrain the optimization over a class of functions lying in a ball

within a reproducing kernel Hilbert space (RKHS) defined by an appropriate kernel

K [2, 9]. In this case P(2, y) becomes

P(P, y) = h(2, y, x, y)P(x, y)
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and we can now write the new optimization problem as

max P(2, y) log ' + A11h 2.(5.1)
h S P()P( 

We note that both the risk term in (5.1) and h(.) can be bounded below by zero, and

above by one, implying that 13 stability and the associated convergence results in [5]

may hold for this problem.

Interestingly, in the case of the weighting function f(-) above, we would not nec-

essarily want the learned function to be smooth, since the function is intended to pick

out points which are to be included in a given cluster. Function values corresponding

to cells in the joint probability distribution may rapidly step between zero or one in

the ideal case. For the function h(.) however, we can allow a great deal more smooth-

ness since in this case we are looking at block-like groups of Gaussians which may, on

the whole, be smoothed over large regions of the joint approximation. The question

of smoothness therefore seems to argue against using regularization, and considering

smoothness alone, we would not want to impose a complexity penalty. The regular-

ization term is exceedingly important, however, when viewed from the perspective of

stability: if we slightly perturb the joint distribution P(x, y) we certainly would not

want the resulting clustering to change much. Thus, we will sacrifice complexity (and

increase smoothness) in exchange for stability. In addition, it may be the case that

some degree of complexity reduction is desirable if the inherent complexity of h(.) is

actually quite low. This is indeed the case if we allow only row/column intersection

points to fall into the clusters, in which case h can be written as:

h (_, y , x, y) = hrow (-, 7X) - hco, (y,7 y).

In fact, in order to recover independent mappings along each modality's dimension of

the joint, h must factor in this way. In the absence of such a prior knowledge, however,

we would hope that this factorization could be implicitly realized by constraining the

solution to lie within an RKHS over which we have control.
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Optimization Concerns

Optimization of the functional (5.1) can be accomplished by applying Wahba's

representer theorem [21], which states that under certain conditions the solution to

a regularized risk functional can be written in terms of the data. Let us temporarily

combine the variables of interest into a vector: x =[ x x y]T. The fact that the risk

term in (5.1) admits a solution of the form

h(x) ciK(xi, x) (5.2)

can be seen a bit more clearly by bringing the I(X; Y) term in (1.2) into the summa-

tion in (5.1), and minimizing the loss in mutual information:

min (I(X; Y) - P( , y) log PP ) + A h 12
h cH \P ( ) P K

This regularized risk functional is of the generic form

c((xi, yi, h(xi)), ..., (XN, YN, h(XN))) + -(I hil),

and the Representer Theorem thus applies [27]. Substituting the representation (5.2)

into the risk functional (5.1) gives an equivalent continuous optimization problem

over the set of real-valued weights {ci}.

While the optimization may be straight forward at this point, there is one re-

maining difficulty to be addressed: in general, we cannot be sure that the solution

will allow recovery of the cluster mappings, and must use a kernel that can enforce

constraints particular to clustering. We might require that 1) each point is assigned

to one and only one cluster, and possibly, 2) each cluster must have at least one

member. For instance, given a function of the form (5.2), it could be stipulated that

the the kernel K and weights c collectively satisfy

hrow(, x) ds = f c,'K([2' x']T, [2 x]T) dI = 1, Vx,

91



with a similar constraint on h,,, ( , y). In order to cluster within a regularization

framework, we would need to choose a kernel that can sufficiently bias the solu-

tion towards enforcing clustering-specific constraints and allow for recovery of clus-

ter members from the solution itself. If the solution which minimizes the objective

is meaningless in terms of mappings from points to clusters, then that solution is

clearly useless for clustering purposes. It is therefore of paramount importance that

we choose a kernel that can enforce the constraints above to give sufficient recoverabil-

ity while maintaining acceptable performance as defined by the clustering objective

function. In the event that such a kernel cannot be found for a given problem, then

optimization over an RKHS may not be appropriate.
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