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ABSTRACT

The goal of this thesis is to develop software under the SpecTRM software package for
the partial automation of tasks associated with reusing SpecTRM-RL component models.
The automation software is designed to aid the application of component-based system
engineering in SpecTRM, mainly by reducing the amount of manual work necessary in
setting up component models for simulation. My thesis will examine the properties of
component models, and the common tasks associated with component-based system
engineering, so as to identify areas where automation is possible, and then present the
user interfaces and algorithms necessary to achieve automation. The automation software
will be implemented in Java under the Eclipse platform, in order to be seamlessly
integrated into the SpecTRM software package.
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Chapter 1
Introduction

In this thesis, I will discuss the design and implementation of automation software

for automating user tasks related to setting up simulations in the SpecTRM software

package. This is done in the larger context of practicing component-based system

engineering, an approach to engineering complex systems that promotes safe reuse of

engineering development efforts.

1.1 What is SpecTRM?

Decomposition

Refinemen

Environment Operator Svstem Components

Figure 1: The structure of an intent specification, from [1].

SpecTRM is a software environment built around a systems engineering methodology of

the same name, namely Specificiation Tools and Requirements Methodology. Invented

by Professor Nancy Leveson, this methodology revolves around the construction of intent

specifications, a format of writing specifications that strives to promote the recording of
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decisions at every step and level of system design [1]. As shown in Figure 1, the

structure of an intent specification consists of a number of different levels, which

represents different perspectives on a system, such as system purpose, system design

principles, blackbox behavior, design representation, and physical representation (code).

The primary objective for using intent specifications in system development is to help

catch errors early in system design, particularly for systems with software components.

Generally speaking, software errors result either from an incorrect implementation that

fails to meet specification, or from a correct implementation of a specification in which

the behavior specified has unexpected and undesirable consequences, particularly when

in interaction with the rest of the system [11, pg. 157]. For safety-critical systems such as

airplane autopilots, satellite controllers, and nuclear power plant automations, such

software errors may result not only in substantial loss of money, but also something more

catastrophic such as loss of life or environmental disaster. Through various organization

principles backed by diverse research in systems theory, cognitive psychology, and

human-machine interaction, the format, structure and content of intent specifications

strive to promote better human reasoning on the system being specified, in an effort to

make the aforementioned types of errors easier and earlier to catch [ 1 ].

Of particular interest for this thesis proposal is the blackbox behavior level of an

intent specification. In order for the description of the desired blackbox behavior of the

system to be both precise yet human-readable, this level is constructed in SpecTRM using

a formal specification language called SpecTRM-RL (SpecTRM Requirements

Language). Using this language, the behavior of a system is described via one or more

connected models, where each model can be thought of as a state machine with inputs,

either received from an external source or from other models within the system, and

outputs to the external environment or to other models. One advantage of using

SpecTRM-RL to describe system blackbox behavior is that because the semantics of the

language is based on Mealy finite state machines [3, pg. 8], certain types of analysis and

simulation can be run on the resulting system models. This allows the behavior

specification to be verified for a number of correctness and safety related features, such

as robustness and completeness [2], before actually implementing a prototype in

hardware and/or software.
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1.2 What is Component-Based System Engineering (CBSE)?

As we have just stated, SpecTRM-RL models are used to document a system or

system component's blackbox behavior. However, for complex systems such as those

found in spacecraft controllers, airplane autopilots, etc., the precise blackbox behavior

can be very complex, which makes the construction of SpecTRM-RL models a time-

consuming process. To gain more value out of SpecTRM-RL models, one solution is to

follow a system engineering methodology called "component-based system engineering"

(heretofore referred to as CBSE), as proposed in Weiss et al [4]. The methodology is

similar to "component-based software engineering"; however, whereas in component-

based software engineering the aim is to promote reuse of software code to lower

software development costs and shorten development cycles, component based system

engineering takes a step further, and attempts to promote the reuse of specifications of the

individual components that can be used to build up a system in some particular domain

architecture [5].

As a concrete example, consider the application of component-based system

engineering to the domain of spacecraft design, as described in Weiss's master thesis on

SPHERES [5]. Despite the myriad variations in the detailed design of spacecraft, all

spacecrafts have similar subsystems, such as attitude determination and control, power,

thermal, guidance and navigation, communications, and propulsion [4]. Component-

based system engineering starts off with such a top-down decomposition of the system

being built, then apply system engineering methodologies to the development of the

individual components. For example, under SpecTRM, this would include the

construction of generic intent specifications for each system component, along with their

respective SpecTRM-RL models. Once these components are built, the system as a

whole is modeled by connecting the component SpecTRM-RL models together

appropriately and running a simulation on them. Because the generic components are

fully encapsulated, they can be interconnected differently to yield different designs.

Alternatively, for the same particular generic component in a generic spacecraft design,

there might be a family of different specific components with similar interface to the
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system, but have different underlying behavior model. By creating intent specifications

and SpecTRM-RL models for each of them, these different alternatives of system design

can be examined by replacing one component in the family with another and running

simulations to test the system, all before the building of actual prototypes for these

components.

1.3 Motivation and Goal of This Thesis

Currently, SpecTRM has enough functionality to support component-based

systems engineering; however, some tasks can be tedious to perform. In particular, to

setup a simulation of the system, one must first manually create all the input-output

connections between the component models, and then connect all the inputs and outputs

that interface with the external environment with the appropriate input data files and

output data files. The need to connect component models together of course stems from

the system being decomposed into component models during the application of

component-based system engineering. Now, since each component is represented by an

intent specification and a SpecTRM-RL model, both of which are capable of capturing a

rich variety of information useful for system engineering, it was thought that perhaps one

can somehow make use of that information to create the appropriate inter-component

connections automatically. This way, the system can be assembled by simply selecting

the components, and they will be able to connect themselves automatically, leading to a

more efficient "plug-and-play" environment for building simulations of the system.

Thus, automating the task of connecting component models together will be the

main focus of this thesis. Chapter 2 will examine the task of setting up simulations in

detail, in order to come up with the general algorithm and software framework for

automating connections. Chapter 3 will explore other aspects of simulation setup that can

be automated, mostly based on variations of connecting models together. Finally,

Chapter 4 will examine the issues involved in implementing the software automation

described in chapters 2 and 3.
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Chapter 2
Automation of Blackbox Model

Connections Setup

From the start, one major task that occurs in applying CBSE in SpecTRM was

identified: setting up the input-output connections between component blackbox models.

This task is necessary setup work for simulation of the system as a whole. As such, the

ability to automate it would be a great timesaver. This chapter will examine this task in

detail, determine the feasibility of automating it, and from there present a framework and

algorithms for achieving automation.

2.1 Overview of Simulation Configuration in SpecTRM

As stated earlier, SpecTRM-RL blackbox models are based on Mealy state

machines [3]. Structurally, a SpecTRM-RL model is a named collection of model

elements. Currently there are six major types of model elements: inputs, outputs, states,

modes, macros and functions [6]. Similar to Mealy state machines, in a typical

SpecTRM-RL model, the arrival of input data may trigger a series of state transitions, in

some cases ultimately leading to the triggering of one or more output elements, which

results in the output of data. (Modes, macros and functions are outside the scope of this

document as they are not relevant to this thesis.) All valid SpecTRM-RL models are

required to have at least one output [6], and most also have at least one input.

Each model element in a SpecTRM-RL model has a name unique and scoped to

that entire model. In addition, each model element has various attributes associated with

it, as well as a definition. The specific forms of both depend on the kind of model

element. Figure 2 below shows an example of the attributes and definition for an input

element. The values of most attributes of a model element are not actually used during

simulation, but they record important information about the component being modeled,

especially ones that are often missing in incomplete specifications [ 1 ]. (Promoting the

availability of such information for human reviewers is a major motivation behind intent
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specifications.) [1,6] On the other hand, the definition of a model element is crucial for

simulation, as they define precisely how the model element is to behave. For example, an

input element's definition will include conditions for declaring the input data obsolete,

while an output element's definition will include conditions for when to generate output

and what values to generate.

{Input Va!lueJ

Analog Altimeter Status
Source: Analog Aitmneter

Type: Valid, Invalid?

Possible Values (Expected Range): Any
Exception-Handling: None

Timing Behavior:
Load. Unknown

Mi-Time-Between-Inputs:
hMax-Time-Between-nputs:

Obsolescence: 2 seconds

Exception-Handling: Assumes the value Obsolete.

Description: The Analog Atimeter Status input represents the stalus provided by the analog altimeter
regarding the validity of ts value.

Comments: The analog a:timeer reading s eithef valid or invalid.

References: Analog Altimeter Data, Analog Altimeler

Appears In: An aue Analog Altimeter

DEFINITION

z New Data for Analog Altirmeter Status

nalo Altimeter Status was Received

= Previous Value of Analog Ainmeter Status

: Obsolete
Analog Altimter Status was Received

Time Since Analog Atimete Status
was Last Received 2 seconds

System Stan

Analog Af meter Status was Never Received

El

F

T

F
a - -

X

Figure 2: sample SpecTRM-RL specification for an input element, from [6]

2.1.1 The Need for Feedback Conduits

As stated earlier, the names of model elements within a model are scoped to the

model itself, so any model element can refer to any other model elements in their

12
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definitions, as long as the referent model element is within the same model [6]. However,

since CBSE involves decomposing the system into several components, with each

component going into a separate SpecTRM-RL model for modularity and reusability, a

mechanism is needed for model elements in one model to refer to model elements in

other models, so that the separate components can interact with each other as a system.

Fortunately, because components built for CBSE are supposed to be fully encapsulated

[4], it is neither necessary nor desirable for one model to have full access to every model

element of every model it is connected to. Instead, all that is necessary is a means for

data and signals to be passed from one model to another. As data and signals are

produced by a model's output elements and received by a model's input elements, this

means we just need a mechanism to transfer the value of a model's output element into

another model's input element. In SpecTRM's simulation framework, this is done via

feedback conduits' [6]. A feedback conduit tells the simulator during simulation to take

the values outputted by a specific output element, and transfer them to a specific input

element, which is precisely the mechanism needed.

Currently in SpecTRM, the task of setting up feedback conduits, as well as other

tasks needed to setup a simulation, are all done manually via a user interface called the

simulation configuration editor (see Figure 3 on next page), which generates simulation

configuration files recording the setup information, to be used later by the simulator.

Other tasks involved in simulation configuration include: adding models to the

simulation, setting time compression (so processes that would take hours to run in actual

time would only take seconds in the simulator, or vice versa), connecting input elements

and output elements to data files (for those elements which interact with the environment

outside the system itself, rather than with other components of the system), and setting

various miscellaneous simulation parameters.

2.2 Automating Setup of Conduits: an Analysis

Observe that, unlike other tasks in configuring a simulation, the need for setting

up conduits is a consequence of CBSE's approach of decomposing the system into

'Although the term "feedback" would imply connecting outputs back to inputs within the same model, this
name originated back in an older version of SpecTRM's simulator, which only simulates individual models.
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Visualizations
",Example Project/iAttude

More ~~~More

chars~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~.... e.. ...I....... .... ........ - -............ ...... ....................Ovrvi i odel i ons Connections

Figure 3: SpecTRM's simulation configuration editor

separate SpecTRM-RL models. Other simulation configuration tasks have to be done

whether or not the CBSE approach is taken. For example, specifying input and output

files is related to what test suite you want to simulate the system on, which is a decision

that clearly has to be made for each simulation session, no matter how the system is

modeled. Similarly, setting the various simulation parameters like time compression

relates to user preferences. But had the system been modeled as a single large SpecTRM-

RL blackbox model, it would not have been necessary to setup conduits, since model

elements within the same model can refer to each other directly. Hence, if it were

possible to somehow eliminate or ease the task of setting up conduits, simulation

configuration would then take about the same amount of effort as when CBSE had not

been used, thereby enhancing the user experience in applying CBSE.

2.2.1 A NaYve Approach

The most naive approach for eliminating conduits setup would be to eliminate the

root cause that made it necessary in the first place, namely that model elements can only
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refer to other model elements within the same model, not across different models.

However, aside from modularity and reusability issues, such an approach would require

fairly substantial changes to major parts of the SpecTRM software itself. For example,

currently all models used in simulation must be first validated by SpecTRM's validator

[6], which checks the model for various syntax and semantic errors, much like a compiler.

If we were to allow model elements in one model to have access to model elements in

other models, we would either need to modify the validator so that it can resolve

references across models, or to modify the simulator so that it can gracefully handle

models not yet validated. Moreover, the simulator would still need to be modified so that

during simulation, it can correctly interpret references across models. As SpecTRM's

validator and simulator are both complex pieces of code, the suggested approach would

be far from trivial to implement and test, even if conceptually simple. A better approach

therefore would be to keep the current system of setting up conduits, but have the

SpecTRM software itself do the task for the user, rather than leaving it for the user to

perform manually. This way, instead of having to modify any existing code of the

SpecTRM software, we only need to add new code to the software. This also makes

testing the code much easier, since regression testing (use to ensure that changes made to

some code did not affect test cases that the code had succeeded on before the changes)

[ 12] would be mostly unnecessary, as we are not modifying any existing code of the

SpecTRM software.

2.2.2 Conduit Setup as a Form of Linking

To gain further insights on how one could go about automating conduit setup, it is

helpful to look back to component-based software engineering, which is where

component-based system engineering is derived from, and examine the tasks in

component-based software engineering that resemble the task of conduit setup, which

essentially specifies how the components in the simulated system are to communicate to

each other. In other words, how do software components communicate to each other?

Well, although the details vary from programming language to programming

language, the key facilities involved are separate compilation, linking, and naming.

Separate compilation allows different parts of a program to be compiled at different times,
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even if there are references across parts. It works by producing an intermediate format

that contains both compiled code and information regarding external references, which

are references to parts of a program that are not contained in the source files being

compiled (and therefore cannot be resolved at compile time). These intermediate-format

files are then later processed by a linker, a program which looks through all the files

being linked and attempt to resolve all external references, thereby "linking" the code

together into the whole program. Finally, in most languages, external references are

resolved by some form of name-matching: the source code of each compilation unit

specifies a set of names of programming constructs (eg. classes, methods, fields,

constants) it will expose to external references (in other words, externally visible names),

as well as a set of names the compilation unit will reference externally for. These

information are retained during compilation, and the linker uses them to resolve external

references as follows: for each external reference to a name, it looks for a matching

name in the set of externally visible names in each compilation unit being linked. The

external reference is resolved if exactly one such matching name is found; otherwise a

link error occurs.

How does that compare with SpecTRM's simulation configuration? Well,

SpecTRM-RL models are already handled in a separate-compilation fashion. They are

validated individually, and various types of formal analyses, such as completeness and

robustness, are also performed on SpecTRM-RL models individually. CBSE further

enforces this notion by advocating component models to be fully encapsulated, so that the

functionality of a component model is contained completely within the model itself, with

all interactions to outside the model occurring only at the inputs and the outputs [4]. The

task of setting up conduits thus corresponds to program linking, and one can think of each

conduit being added to the simulation as an external reference being resolved.

2.2.3 The Need for A Strictly Followed Naming Scheme

This finally leaves the issue of naming. In many programming languages that

support separate compilation and linking, a strict naming scheme must be followed for

linking to succeed. For example, usually the name referred to in an external reference

must be an exact textual match of an externally visible name in order for the reference to
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be resolved, and sometimes additional information, such as type, is also considered as

well (for example, in C++ and Java's resolution of overloaded methods [8]). Now, since

currently "linking" of SpecTRM-RL models is performed by the user, no such strict

naming scheme is required or enforced. For example, in Weiss's master thesis, which

describes an application of CBSE in SpecTRM to the SPHERES experimental satellite, a

propulsion-related command signal is referred to as "PropulsionSubsystemModeOutput"

in the model for the Sphere Controller, but in the model for the Propulsion Subsystem, it

is referred to instead as "GuestScientistModelnput" [5]. In order for a human, let alone a

program, to divine that said output element in the Sphere Controller should be connected

to said input element in the Propulsion Subsystem, it would have been necessary to read

the English descriptions in each model's intent specifications, as well as to refer to

various diagrams Weiss had supplied for illustrating how the component models connect

together. Clearly such an approach to linking would not be feasible or efficient for a

computer program to carry out, so instead we must require a naming scheme at least

similar to those used by other programming languages, for the purpose of automating

conduit setup.

Establishing this naming scheme needs to be done with careful consideration,

since it constitutes rules that the user must follow in order for the automation to succeed.

The automation would not be useful or helpful if the rules are confusing or if they present

major inconveniences to the user. Note also that if the automation requires a naming

scheme to be followed by the user, then existing component models developed without

this naming scheme in mind will potentially need their input and output elements

renamed, in order for the user to be able to use the automation on those models.

Fortunately, as CBSE and SpecTRM are both fairly new and experimental

methodologies/technologies, the number of such "legacy" component models is not too

prohibitively many. Reducing the efforts needed to setup a simulation is clearly a

favorable factor for adopting the automation's required naming scheme in existing

models, and should incur little costs in future model development once the naming

scheme is clearly documented. Adhering strictly to a naming scheme for connecting

input and output elements is also in line with a recommendation outlined in Weiss at al

for creating component models under CBSE, namely that the components should have

17



well-defined interfaces, and adhere to standard naming conventions and input/output

requirements [4]. As suggested in Weiss's paper on SPHERES, "It is extremely

important that the construction of the Level 3 blackbox models follow a consistent

pattern in terms of how blackbox elements are named, in order to avoid confusion and

increase the ease with which components are combined to create subsystems...a

convention for both names and the type of information that the inputs and outputs transfer

must be defined from the beginning of development and then strictly followed." [5]

The relatively small number of existing SpecTRM-RL component models

developed for CBSE suggests two things:

1. There is some freedom in the design of the naming scheme used for automating

conduit setup, as adapting existing models to the naming scheme is not a major

concern.

2. There is not much existing (eg. naming conventions followed by existing

component models) to base the design of the naming scheme on, making it

difficult to determine what naming scheme works best for most users.

In any event, as shall be seen in the next section, decisions about the naming system

can be decoupled from the rest of the design of the automation framework, so we will

defer detailed discussion of the naming system to section 3.4.

2.3 A Framework for Automating Conduit Setup

Once we have identified the process of setting up conduits in SpecTRM as a form

of program linking, coming up with a general framework for performing this process is

straightforward.

2.3.1 Overview

Conceptually, the automation software will go through the set of models used (as

specified by the user) one by one. For each model, its set of input elements are the

potential references to output from other models, and its set of output elements are the

potential externally-visible entities that inputs of other models could reference to.

Analogous to linking, resolving these references means that for each input element of a
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model, the automation goes through every other model in the system, and tries to find a

matching output element from a model to connect to the input. There are three cases of

outcome:

1. Exactly one matching output was found. In this case we create a feedback

conduit connecting said output to the input. Note however this is only correct if

the input element is indeed supposed to receive data from within the system,

rather than from outside the system. Otherwise this would lead to a conduit

created that would have to be removed by the user later. Section 3.4 will describe

possible ways to reduce the occurrences of creating such "false" conduits (such as

the use of attributes to strengthen the matching criteria).

2. No matching output was found for the input in question. Unlike program linking

where the analogous situation would result in an unresolved external reference

error, here this could simply indicate that the input in question does not receive its

data from within the system or subsystem being simulated, but instead from the

external environment outside the system (which would be a data file for

simulation purposes). So nothing needs to be done by the automation; the user

will select the data file to feed to the input element in a separate stage of

simulation setup, or possibly to manually create a conduit if the automation

somehow made a mistake in failing to find the matching output.

3. More than one matching output is found for the input. In this case, the only

recourse is to let the user decide what to do, since from the automation program's

point of view there is simply not enough information to unambiguously resolve

the reference. Obviously the user should be given the list of candidate outputs

that match the input, so that he/she has a starting point of where to look amongst

the models to resolve the problem.

Notice that the details of the input-output matching criteria can be decoupled from the

rest of the design of the automation. As the input-output matching criteria involves

decisions regarding the design of the naming scheme, such a decoupling is beneficial to
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current and future developments in this automation, by making it easy to test and evaluate

multiple naming schemes and matching schemes.

A final consideration is whether to perform automatic connection at once after all the

models involved in the simulation have been specified, or whether instead to do it

incrementally, with new connections added right after each model is being added to the

simulation setup. In the former case, the automation in effect has an additional piece of

information it could potentially work with, namely the precise set of models involved in

the simulation being configured. On the other hand, the incremental approach provides

more immediate feedback to the user regarding what the automation has done. As a

result this allows the user to more closely monitor and control the automation,

particularly in verifying that the correct connections have been made, and in resolving

situations in which the automation finds multiple candidate connections. These

characteristics are actually helpful for testing and debugging an implementation of the

automation, so it definitely appears beneficial to support the incremental mode of

performing automatic connections. Also, currently in SpecTRM's simulation

configuration editor, models are added to the simulation configuration one by one, rather

than in batches. So unless the user interface is extended to allow users to select multiple

models at once to be added to the simulation configuration, from the user's point of view,

the non-incremental approach involves essentially an equal amount of effort, except the

user receives less immediate feedback from the automation on what it does. Thus overall,

while it might be useful eventually to offer the option to perform automatic connections

non-incrementally, a first design and implementation of the automation should focus on

supporting the incremental mode of automatic connections.

2.3.2 A Three-Layer Design

The above discussion suggests the following three-layer design:

On the top layer, we have the user interface (UI). A user interface is necessary

because certain aspects of automatic conduit setup must be managed by user. For

example, it is up to the user to specify which component models are used in the

system being modeled. Also, as noted earlier, exceptional situations during the
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automation's attempt to connect inputs and outputs may require user intervention

to resolve the situation.

* The middle layer is the connection setup manager. It presents the automation

software's view of connection setup:

o First and foremost, the manager maintains state on how the system looks

so far, including what models have been added to the system, and what

connections have currently been created. As this state is partly

manipulated by the user (eg. adding models), the UI layer will interact

with the manager layer by translating user inputs into requests to the

manager to carry out changes to the state of the system.

o The manager also contains the basic process, as outlined in 3.3.1, of

finding candidate connections. The manager communicates the results of

this process back to the UI, and possibly adds new connections to the

system if appropriate. Since connections are to be added incrementally,

the manager can communicate results back to the UI layer in response to

each request for adding a model to the system.

o Since in some cases it is left for the user to decide what new connection to

add, the UI layer can also request the manager for explicit creation and

removal of input-output connections.

o Finally, since setting up the connections is just one task in simulation

configuration, when this task is done (as notified by the user through the

UI layer), the manager should have a way to produce a simulation

configuration file, so that further tasks on configuring the simulation can

be done by the user.

* At the bottom layer is the input-output matcher. This layer encapsulates the

criteria for whether a specific input element matches a specific output element.

The manager's algorithm for automatic connection setup makes use of the

matcher in coming up the list of candidate outputs to connect to an input in a

component model.

The pattern of interaction between the UI and the manager layer follows the well-
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known model-view-controller design pattern [9], with the manager taking the role of the

model, and the UI taking the role of view and controller. The way the manager makes

use of the matcher is an instance of the template design pattern [ 10]. Altogether, the use

of these common design patterns allows the automation software to be decomposed into

three relatively independent modules. This makes it easy to explore alternative designs

and implementations in each layer, without requiring much (if any) changes to code in

the other layers.

2.4 Criteria for Matching Outputs to Inputs

Finally, to complete our system for automating the setup of conduits, we must finish our

design of the matcher. As discussed in section 3.2, some form of naming scheme, similar

to those used by program linkers, will be needed in order for the setup of conduits to be

automated. In program linking, this usually involves an exact textual match of the

identifiers. It works well because in effect, you are giving a specific name to the entity

being referenced, and stipulating that all references to that entity must be done by that

specific name. For the task of connecting inputs to outputs, something similar should

work: one connects the output of one component model to the input of another because

there is some data or signal that needs to be shared or passed along between those two

components, so it makes sense to give both the input and the output a name related to that

shared data/signal. SpecTRM-RL's syntax, similar to that of most programming

languages, allows letters of the alphabet and numbers to be used in the names of model

elements, with no hard limit on a name's length, so using descriptive names should not be

a problem. In fact they are encouraged as SpecTRM-RL models are part of the intent

specification of the components being modeled, and intent specifications are designed

with ease of human readability in mind [ 1 ].

Two extensions on this basic naming scheme are also worth considering:

1) Fuzzy matching. There are certain aspects of text that are semantically irrelevant

in English. For example, capitalization generally does not alter the meaning of
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English words, nor does spacing. So since a human will be insensitive to those

details, it makes sense for our name matching to be insensitive to those details as

well, at least as an option.

Furthermore, some creators of SpecTRM-RL models like to add a suffix to the

name of all model elements, to reflect what type of model element it is. For

example, in Weiss's master thesis on SPHERES, she consistently tags the suffix

"input" to the names of all input elements, "output" to the names of all output

elements, etc [5]. The naive name-matching scheme will fail on such a naming

style, simply because we are connecting an input to an output, which would end

up with different suffixes even though their actual names are the same. So it is

helpful to include an option where the matcher first searches the name for a list of

known suffixes, and if such a suffix is found, strips the suffix off the name first

before matching against another name (which will also be suffix-stripped).

Finally, it turns out that in SpecTRM-RL, while the values of input elements are

of such primitive types as Integer or Real, the values of output elements are

actually structured as a set of fields, with each field being a primitive type [6]. A

feedback conduit actually connects an output field, rather than the entire output

element, with an input element. Now, it turns out that names can be given to the

individual fields of an output element as well as the output element itself. As a

result, the meaning of a field of an output element might be reflected not only by

the name of the field itself, but also together with the name of the output element.

For example, if the output is a force vector, it would need to have three fields, to

represent the x, y, and z components of the vector, since those components can be

represented via SpecTRM-RL primitive types, but not the vector itself. A human

might choose to name the output element as "ForceVector", and then simply

name the individual fields as "x", "y" and "z". If we were to match just the

output field's name with an input element's name, that could potentially lead to a

bit of extra typing. In the force vector example, it would require the fields be

renamed to something like "ForceVectorX", "ForceVectorY", etc, or to have the
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input elements' names shorten to the non-descriptive "x", "y", "z". A better

approach would be to first concatenate the output element's name with the field's

name first, and then match the resulting name with the name of an input element.

2) Use of attributes. As mentioned in section 3.1, all model elements, in addition to

a name, also has a set of attributes associated with that element. Most attributes

provides additional information about the element, even though the information is

not directly used by the simulator.

In program linking, often not only are names used as a basis for resolving external

references, but sometimes additional information about the referenced entity, such

as type, is also used as well. In some cases the additional information is

necessary, for example in Java which supports method overloading [8]. In other

cases, the additional information might not be needed to resolve the reference, but

checking that information can, as a side benefit, help catch errors (in this case, a

type error) in the pieces of code being linked.

In the same vein, although name-matching, if followed well by the user, should

suffice in directing how inputs and outputs are to be connected together, it could

be useful to have the matcher also check some of the attributes of the input and

output, and see if the values of certain attributes matches or are compatible in

some way. Just like in program linking, these additional checks may help

uncover errors in the specification of the input and output. Since actual hardware

or software will eventually be built based on the components' intent specifications

including their SpecTRM-RL blackbox model specifications, and since it is

usually more costly to find and fix errors in the stages of hardware/software

development than in the stages of specification development [1], these additional

error-checking features can help enhance the usefulness and effectiveness of

CBSE.

A quick glance at the attributes (refer back to figure 2 on page 11) of input and

output elements suggests the following attributes should be checked by the
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automation:

a. Source/Destination. Input elements have a source attribute which

specifies where the input data received by the input element come from,

and output elements have an analogous destination attribute. If an output

of model A is to be connected to the input of model B, the automation

should check that the output's destination attribute is B, and the input's

source attribute is A.

b. Type. Clearly if an input element and an output element (actually output

field) are to be connected together, they should have the same value type,

since values are transferred from the output to the input by the conduit.

c. Unit. This attribute occurs as a sub-attribute of the "Possible Values"

attribute of an input element, and as a sub-attribute of the "Acceptable

Values" attribute of an output element. It indicates the unit attached to the

values of the element, if the value is of a numeric type (typically Real). In

effect, this attribute is really an extension of the Type attribute, even

though the information (unlike Type information) is not actually used by

the simulator. Again, if an output element sends a value with wrong units

to the input element it is connected to, this is likely an error.

Checking that the units match can be slightly tricky though, because the

unit attribute is just a text string in SpecTRM, and the same unit can often

be written in a variety of ways. For example, "ft/s2" can also be written as

"feet per second squared", "ft/s/s", or "ft.s-2" . Nevertheless, there aren't

too many different kinds of units being used in the real world, so with a

little work, it is possible to create, for each unit, a set of equivalent textual

representation for that unit. Then seeing that two given units matched

simply involves checking if the units belong in the same set.

It should be noted though that because they are not used by the simulator, many

attributes in SpecTRM are not required, and so they may be deleted from the model

element, or the values may be left blank by the user. Since such cases represent
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information left out, the proper thing to would be to not use the attributes for which

values are missing in either the input or the output, since there is not enough

information on that attribute to make it useful for determining whether the input and

output match or not.

2.5 Summary

In this chapter, we've seen that the process of automating conduit setup is useful, and

resembles a form of program linking. Following well-established design patterns, a

three-layer architecture was proposed for the automation software, in order to decouple

three relatively independent aspects of the automation, allowing each layer to be

modified with little changes required on the other layers. The three layers consist of the

user interface layer, a "manager" layer for the creation and maintenance of the system

being assembled and its conduit connections, and finally the matcher layer for

determining whether a given input and output should be connected together with a

conduit. Finally, a combination of name-matching and attribute-matching is proposed as

the mechanism for determining whether a conduit should be created to connect a given

input to a given output.
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Chapter 3
Additional Automation Possibilities

In Chapter 2 we have successfully designed a method for automating the setup of

conduits to connect component models together for simulation in SpecTRM. We have

argued that the setup of conduits is a task especially suitable to automation, because it has

more to do with the system being simulated than properties of any individual simulation

session. As a result, with the cooperation of the user, it is possible to include information

about conduit setup within the SpecTRM-RL component models themselves in a mostly

transparent manner, and have the automation make use of the information to create the

appropriate conduits. In contrast, most other tasks in simulation configuration, such as

specifying input and output data files, are specific to a particular simulation session. If

we were to automate any of those tasks, the information the automation would base its

actions on would not be stored in the component models, since those models specify only

information about the system components, which are independent of any specific

simulation session. It would be the user who would then have to go through a new task

of supplying the files with information about the simulation session, and so the

automation would only replace one existing user task with a new one.

However, that is not to say there are no other opportunities in simulation

configuration for automation. It just means that the best targets for automation should be

related to the conduit setup task. Notice that the automation described in Chapter 2

concerns only with connecting models together, and is especially useful when the user is

creating a new simulation configuration from scratch. What about scenarios where the

user might want to make use of existing, already-built simulation configurations? In the

following sections, we will see two ways in which an already-built simulation

configuration, in addition to individual component models, may be useful during a user's

simulation configuration tasks. They point to ways in which simulation configurations,

in addition to individual component models, may be reused, resulting in potential further

reduction in the user's time and effort, and thereby further enhancing the component-

based system engineering approach to building complex systems.
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3.1 Simulation Configuration as a Blackbox Model

As introduced in Chapter 1, the first step in component-based system engineering

involves a decomposition of the system. But decomposition can be carried out to

different depths, depending on what level of abstraction one wishes to view the system at

[ 1 ]. Thus, what is seen as one blackbox component at one level of decomposition, may

be seen as an assembly of interconnected sub-components at a lower level of

decomposition. Both levels may be useful depending on the task at hand.

Now, keep in mind that in SpecTRM, the smallest unit that can be simulated is an

individual SpecTRM-RL model. What that means for very complex systems is that when

working in SpecTRM, one should decompose the system down to the lowest useful level

of decomposition, and then gradually move back up to higher levels. That is, start with

low-level components, then simulate larger and larger subsets of them, until at the end the

entire system is being simulated. For example, a typical spacecraft controller has a

number of high-level subsystems such as attitude control and determination (ADCS),

power, thermal, communications, etc [4,5]. ADCS in turn may be composed of some

sensors for attitude determination, some actuators for attitude control, and a controller for

coordinating the two. When modeling the system in SpecTRM, one might start off with

the low-level components corresponding to the sensors, actuators and controllers for the

ADCS subsystem as well as the other subsystems. Then, instead of putting all the

component models together at once to form the spacecraft, one might instead first

assemble, say, just the components involved in ADCS, and then simulate that portion of

the system to verify that the ADCS subsystem being specified will function as expected.

Similar procedures are carried out with the other subsystems of the spacecraft, and then

finally all the components are connected together to form the spacecraft that is the

ultimate target for simulation. This approach is not unlike the recommended approaches

to software testing, where one would start with unit testing individual modules, then

begin to test larger and larger assemblies of modules, and eventually end with doing a

system test of the entire software.

Currently our automation as stated deals only with connecting an individual

model to other models within the system being assembled. The above discussion
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however suggests that it might be useful to take an assembly of already-connected

models, and be able to connect this assembly with the other parts of the system. In the

above example, after having already done work connecting components together to form

the ADCS subsystem, wouldn't it be nice to be able to just take that assembly of

components, and incorporate it into the whole spacecraft simulation configuration,

without repeating the work of connecting the ADCS components together, as was already

done when only the ADCS was being simulated? Our automation can do this if it can

recognize the assembly of connected components in one simulation configuration, and be

able to treat that assembly as just another single blackbox component in another

simulation configuration.

3.1.1 Design Changes

The first thing we should do is to check whether the feature suggested above can

already be done with our automation without any changes. In a way, the answer is yes.

Since the point of our automation is to be able to setup conduits as automatically as

possible, one could simply take the components inside the simulation configuration we

wish to incorporate, add them into our new larger simulation configuration one by one,

and our automation should be able to take care of all the relevant connections involving

those components, including the connections amongst themselves. However, this

assumes that the automation works flawlessly and without user intervention on those

components in the smaller configuration that we were incorporating. If that is not the

case, if the automation needs the user to resolve certain connections back when the

smaller configuration was built, then those user efforts would need to be repeated now if

we rely on the automation to repeat setting those same connections in the larger

configuration. Moreover, it may be the case that the smaller configuration we wish to

incorporate was hand-configured, because it was built before the automation software

was available. In that case, the user would have to rename all the input and output

elements in all the components of the smaller configuration, just so the automation can

correctly rebuild those connections that are amongst the components, in addition to

creating the connections to components in the other, larger simulation configuration. If

instead our automation can simply directly import those existing connections in the
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smaller configuration, then the user would only need to rename the input and output

elements that interface with the larger simulation configuration.

Fortunately, being able to incorporate an existing simulation configuration, and

have the connections within that configuration be directly imported into the larger

configuration, does not require many changes in our automation design. There are

certainly no changes required on the matcher level, since the manager level supplies the

input and output element the matcher is to check for being a match. The changes to the

UI level is also minimal, basically just the ones needed to allow the user to add a

simulation configuration in addition to a single model. Most of the changes therefore

occur in the manager level, which has to handle the actual process of incorporating the

specified simulation configuration into the larger configuration it is managing.

One good way to implement this change is to create an abstract class that

represents a "model" as a collection of input and output elements. Then derive two

subclasses, one for representing the regular SpecTRM-RL models, and the other for

representing a simulation configuration being treated as a blackbox model. This way,

parts of the manager which doesn't care about the difference between the two types of

"models" will only need to work with the abstract base class. Indeed, most of the

differences have to do with how to retrieve the list of inputs and output elements for each

(different SpecTRM API calls would be involved, with the simulation configuration

requiring an extra step to first parse it into its component models). Having an abstract

class helps isolate this detail from the rest of the manager layer, which simply treats both

types of "models" as a collection of inputs and outputs.

There are actually two slightly different ways to incorporate a simulation

configuration into a larger configuration. In the first way, the smaller simulation

configuration is truly treated as a blackbox, and only the inputs and outputs that do not

already have connections within the smaller configuration are ever considered whenever

the automation tries to connect the smaller configuration with the components in the

larger configuration. In the second way, we also make available all the outputs in the

smaller configuration to be connectable to inputs in the larger configuration, even if that

output is already connected to some input in the smaller configuration. The first way of

incorporation is probably more common, but the second method may also be useful if the
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smaller configuration being incorporated will not be used as-is in the larger configuration,

but slightly reconfigured with certain connections changed to go to components in the

larger configuration. In both cases, the existing connections within the smaller

configuration are imported (carried over) to the larger configuration.

3.2 Replacing One Model by Another

Another automation possibility concerns taking an existing, complete simulation

configuration, and making certain modifications to yield a slightly different configuration.

In particular, a simple yet potentially useful configuration modification would be to

replace one component model in the configuration with another component model, a

model which interfaces with the rest of the system in similar ways as the replaced model,

but has different underlying behavior. This would be done if, for example, the model

being replaced only models the behavior of the component it specifies in a coarse manner,

and the replacement model specifies a more detailed, refined, and accurate behavior for

the component. This is not unlike computer programming, where sometimes it is helpful

to first create a stub for certain parts of the program, which has the necessary interfaces

but lacks a full implementation, so that certain tests can still be run on the program before

the full implementation of that part is available [ 12]. Another possibility is that we have

a family of components that all serve the same overall function or purpose, but each

component achieves its functionality via different underlying mechanisms. For example,

in Weiss et al, it was mentioned that there are several types of sensors that could be used

for attitude determination, including star trackers, sun sensors, GPS, and more [4].

Someone interested in evaluating the use of different types of sensors for a spacecraft

design may wish to run several simulations, with each simulation configured identically

except for the sensor being used for attitude determination. The quickest way to setup

such simulations would be to configure one for a specific sensor type, then for each

subsequent simulation, replace the SpecTRM-RL model of the sensor with a model of a

different sensor.

Again, the first thing to check is whether the above task could already be done as

a combination or sequence of tasks in the existing automation design, and again, the
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answer is yes. Replacing one model with another could be done by deleting the replaced

model and any conduits the model has with the rest of the system, then add the

replacement model into the system, and let the automation re-establish the necessary

conduits. But again, this only works without user intervention if the components

involved in the simulation configuration followed the input-output naming schemes the

automation expects. That may not be the case if the simulation configuration is created

before the automation software is available.

Of course, the long-term solution in that case should be to rename the inputs and

outputs in the component models of the simulation configuration, so that the problem can

be taken care of once and for all. However, if the simulation configuration has many

components with many inputs and outputs to be looked over for renaming, a short-term

solution may be more desirable in the early stages. One possibility is that if we rename

the inputs and outputs of the replacement model to match some of the inputs and outputs

of the model being replaced, and if the automation can see the correspondence between

inputs in the old model and inputs in the new model (and analogously for outputs), then

the automation can use this correspondence to connect the new model to the simulation

configuration based on how the old model is connected. For example, suppose the old

model has an input A connected to output C of some other model, and the new model that

replaces the old one, the corresponding input with the same purpose is called B. Our goal

would be to rename the new model's input B as input A, and then have the automation

see that the input A in the old model corresponds to the input A in the new model, and

then during model replacement, create a conduit from the new model's input A to output

C. With this approach, only the inputs and outputs in the replacement model needs to be

renamed, as opposed to potentially all the inputs and outputs (depending on how much

the naming deviates from what the automation expects) of the entire simulation

configuration in which the replacement operation is carried out.

3.2.1 Design Changes

Since model replacement is effectively a brand new operation on simulation

configuration, there are slightly more changes involved to support it, but nothing
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complicated. Obviously, the UI layer will have to provide a means for the user to

command the automation to carry out a replacement operation. The manager layer would

be modified to provide actual support for the replacement operation, which as stated

involves removing conduits the old model has with the rest of the system, followed by

finding the corresponding inputs and outputs in the new model, and then finally using this

correspondence to re-establish the conduits we removed, but with the connection target

being the new model rather than the old model.

Notice that the automation has this new task of determining whether an input

from the new model corresponds to an input from the old model. Such a low-level task

would fall under the matcher layer; however, conceptually it is a different type of

matcher than the one we use for seeing whether an input-output pair should be connected.

So what we need is a new class of matcher, which takes either two inputs, or two outputs,

and sees if the two correspond. In terms of implementation, the new matcher will be

mostly similar to the matcher we used for automating conduits creation, as the strategy of

name matching and attribute matching works just as well here. For example, if input A in

the old model has a different value type or unit as compared with input B in the new

model, then clearly they do not correspond, in that using input B the same way input A

was used will likely result in the system not functioning correctly.

3.3 Summary

In this chapter, we have explored additional ways to automate tasks related to the

setup of conduits during simulation configuration. We have seen that it can be useful to

incorporate one smaller simulation configuration into another, larger one, in such a way

that the conduit setup work done on the smaller configuration can be carried over directly

to the larger one. We have also seen that it can be useful to take an existing simulation

configuration, and replace one component model in it with another model, a newer model

that interfaces with the system similarly and serves similar purposes as the older model,

but with different underlying behavior. For both tasks, it has been argued that although

they can be already be done within the automation framework outlined in Chapter 2,

there are ways to support those tasks such that the automation can still be applicable even
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with "legacy" component models or simulation configurations, which may not follow the

naming scheme expected by the automation as described in Chapter 2. It has been shown

that both tasks can be supported with minor changes to the automation's design; no

substantial redesign of the automation is necessary.
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Chapter 4
Implementation

Having discussed all the design issues related to our automation software, we now

turn our attention to issues and considerations that have arisen when actually

implementing this software.

4.1 Language and Platform

The first decision in implementing a piece of software is what programming

language to use, and often, one must also decide which target platform(s) to implement

the software for. Target platforms need to be considered because the program may need

to rely on supporting code from the target platform for certain aspects of the program.

For example, the implementation of a graphical user interface is usually quite dependent

on the target platform (eg. Windows vs. Mac-OS vs. Linux etc.) Fortunately, these

decisions here have been set for us from the very start. Since our automation software

needs to be integrated with the rest of the SpecTRM software, and since SpecTRM is

written in Java and operates under the Eclipse environment, our implementation of the

automation will also need to be written in Java and operate under Eclipse for seamless

integration with SpecTRM.

4.1.1 What is Eclipse?

Most programmers nowadays are aware of Java, so we will not discuss that

language in detail here. However, Eclipse may not be as familiar to everyone, so it

warrants a quick overview here. Eclipse is, in short, a highly extensible integrated

development environment (IDE) written in Java [7]. The Eclipse platform presents to the

user a standard workbench, which is a graphical user interface consisting of a number of

views such as a workspace navigator view, a document outline view, a document editor,

and a task list, as well as a menu bar and toolbar (see figure 4). What makes Eclipse

special is that its entire architecture is designed with extensibility in mind. Plug-ins are
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Figure 4: the default Eclipse IDE

the mechanism through which one can extend Eclipse's default IDE. A plug-in consists

of Java code in a JAR library, some read-only files, and resources such as images [7].

Each plug-in also has a manifest file defining its relations to other plug-ins; in particular,

the plug-in may declare in its manifest file some number of extension points, and some

number of extensions to one or more extension points in other plug-ins. Because the

platform's default IDE is itself a set of plug-ins, starting from those "build-in" plug-ins'

extension points, one can supply a new plug-ins with extensions to the build-in plug-in's

extension points, thereby extending the default IDE through its extension points. (A

concrete example of such an extension may be to supply a new menu on the menu bar, or

a new type of editor for certain types of files.) That same plug-in may also define its own

extension points, so now another plug-in may then extend those extension points, and

thereby extending the look and functionality provided by the first plug-in. As we can see,

the plug-in mechanism allows the default Eclipse IDE to be extended indefinitely,
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through various sequences of plug-ins starting with extension points in Eclipse's default

IDE.

Besides the plug-in mechanism, the Eclipse platform also provides a number of

low-level and high-level features, a notable one being the Standard Widget Toolkit

(SWT). The SWT is an API for creating and managing standard graphical user interface

elements, such as windows, buttons, etc., in the Eclipse environment. In effect, any

graphical user interfaces that appear within the Eclipse window, which would include our

automation's user interface, would be implemented using SWT. Eclipse also supports

additional features such as version control, online help, debugger support and more [7],

but a detailed discussion of Eclipse is beyond the scope of this document.

As expected from the above discussion, SpecTRM itself is really just a set of

Eclipse plug-ins. Because SpecTRM's plug-ins also have a number of extension points,

it is possible to add new user interfaces and functionality to SpecTRM in a number of

ways. For example, the portion of SpecTRM that deals with simulations, including the

simulation configuration editor, the simulator, and the menu in the menu bar to access

commands to the simulator, are all part of a single plug-in. Now, since our automation is

an enhancement on the existing simulation configuration editor, it is clearly desirable to

have the automation appear to be ideally a new part in the simulation configuration editor,

or at least a part of SpecTRM, rather than as (say) a separate program. The alternative

would force the user to switch between two programs to complete the simulation

configuration task, which is clearly inconvenient and disruptive to the user's workflow.

Hence, our automation needs to be written as a plug-in to SpecTRM, and this means we

will need to write our automation in Java, and uses as much of Eclipse as necessary in

order to integrate with SpecTRM as seamlessly as possible.

4.1.2 The SpecTRM API

In addition to the Eclipse platform, our automation software will also have to rely

on the SpecTRM API. The SpecTRM API is a set of Java packages containing Java

classes and interfaces for interacting with the SpecTRM application and SpecTRM

objects. In particular, all the documents generated by SpecTRM thus far (intent

specifications, simulation configurations, etc.) all use proprietary file formats. The
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SpecTRM API thus becomes the only way to be able to interpret and generate such files.

In particular, the SpecTRM API supplies the necessary classes or interfaces for

representing entities such as model elements and feedback conduits, and file I/O in

SpecTRM is consistently done via Java's serialization mechanism, which provides a

standardize way to convert Java objects into byte streams. These functionalities are

critical to our automation, as our automation will definitely need to parse models to get

their input and output elements, to retrieve the name and attributes of said elements,

create feedback conduits, and in the end generate a simulation configuration file for

further processing by the user. All these tasks involve interacting with SpecTRM objects

and files, and the SpecTRM API is the only way to interact with SpecTRM objects and

files. The SpecTRM API is available in the developer's edition of the SpecTRM

software, including a set ofjavadocs in the online help files.

4.2 Implementation Details and Issues

So far we have talked about the automation in a conceptual manner the design

was described in great detail and with great precision, but in terms of English. For an

actual implementation, we must translate that design from English into Java code. As is

usual, during this implementation process, additional considerations and issues have

arisen, which we will now address in this section.

4.2.1 User Interface

The design of the automation as described in chapters 2 and 3 is purposely vague

about the user interface (UI) aspect of the automation, because from a conceptual point of

view, the details of the UI does not matter as long as it fulfills some very basic

requirements. The requirements are simply that it exists and provides a means for the

user to invoke all the operations available from the manager layer to manipulate the

simulation configuration being built. Since a simulation configuration is a composite

object composed of models, input/output elements, and conduits, it is also desirable to

make some display of the current state of the simulation configuration available to the
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user, as visual feedback on the operations the user has applied to the simulation

configuration. (The same visual feedback can also be helpful for debugging.)

Originally, the plan was to make use of Eclipse's plug-in mechanism to extend the

simulation configuration editor that already came with SpecTRM. The existing

simulation configuration editor already supports many of the user operations specified by

the automation, including adding and removing models, and manual adding and deleting

of conduit connections. It also provides a display of what models are currently present in

the simulation configuration, as well as each model's input and output elements, and a list

of all conduits. In short, it already implemented much of what we desire for the UI of our

own automation. Being able to extend the simulation configuration editor via plug-ins

would then leave us with just the task of implementing the additional UI elements

necessary to support automation-specific tasks (eg. replacing a model, importing a

smaller configuration into the current configuration) and automation-specific display

feedback (eg. suggested conduit connections for inputs not successfully matched to a

single output).

Unfortunately that approach failed, because as it turned out, at the time

SpecTRM's simulation configuration editor has no extension points whatsoever.

Moreover I have no access to SpecTRM's source code. As a result, there is simply no

way to extend the existing simulation configuration editor as originally planned. This left

nme with the only alternative of designing and building all the UI elements necessary to

support the automation, and integrate it into SpecTRM by various means. For example,

one method of integration would involve creating a new menu item through one of

SpecTRM's extension points, and have the menu item present to the user a dialog box,

constructed using Eclipse's Standard Widget Toolkit (SWT). However, ultimately I was

unable to achieve this part of the implementation completely and satisfactorily, due to my

relative unfamiliarity with Eclipse and its SWT at the time, as well as a lack of time (I

was also involved concurrently with other RA work at the time of my thesis.)

In place of screenshots of an actual implemented UI, I shall simply describe what

had been planned for the automation's UI. There are to be four UI sets, perhaps with

each set on its own tabbed sheet or window. The first set concerns with the operations

regarding models on the simulation configuration. This includes adding models,
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removing models, importing a configuration, and replacing a model. These four

operations would each be assigned to a clickable button, and there would also be a list of

all models currently included in the simulation configuration, which the user can view,

and can select a model from the list for certain operations (remove, and replace).

The second set, which probably should appear visually in close proximity to the

first set, simply has a list of all inputs and another list of all outputs of the currently

selected model from UI set #1. It basically provides to the user additional details on the

model the user has selected.

The third set has a list of all input elements in all the models of the current

simulation configuration. The user can select any one of them, and the automation

software will either display the output it is currently connected to by a conduit (which

was either added by the automation or explicitly by the user), or display a list of

suggested connection targets (which could be empty) based on the matcher's results.

With the list of suggested targets, there can also be an optional "make conduit" button,

where the user select the suggest target, and a conduit would be created connecting the

selected input with the selected target output. It might also be helpful to have the UI set

#2 be displayed simultaneously with this UI set.

Finally, the fourth set simply has a list of all conduits that are currently in the

configuration being built. These conduits include those created or imported by the

automation, as well as any that are explicitly created by the user. There are two clickable

buttons, "Add" and "Remove", for the user to add a new conduit and remove an existing

one from the list.

It should be mentioned that had the simulation configuration editor been

extendable, UI sets #2 and #4, as well as most of UI sets #1 (except for the buttons to

carry out the "import" and "replace" operations) would not have needed to be

implemented, as they are already available in some form in the simulation configuration

editor.

4.2.2 The Manger and Matcher Layers

Implementing the other two layers of the automation design proved more

successful, partly because they more directly correspond to the conceptual design
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outlined in the previous chapters. However, some low-level intricacies not apparent in

the conceptual design did surface during implementation. The most crippling issue is that

as it turned out, the SpecTRM API is a bit inconsistent when it comes to how entities

such as models and model elements are treated in the simulation configuration API.

In particular, there are two main perspectives (term used here in a general rather

than technical sense) the SpecTRM API offers for a model: the "content" perspective,

corresponding to the IModelContent interface in package com.spectrm.core.api.document.

content; and the abstract syntax tree "node" perspective, corresponding to the

IModelNode interface in package com.spectrm.core.api.rl.ast. To further complicate

matters, in the classes and interfaces for representing simulation configuration as used by

SpecTRM, models and model elements are represented instead as references to the actual

entites, via interfaces such as IModelConfiguration (reference to a model),

I[SimulationReference (reference to an input element), and IOutputFieldReference

(reference to a field of an output element). Conduits in particular expects inputs and

outputs to be represented via ISimulationReference and IOutputFieldReference.

There are probably good reasons for having these separate interfaces for

representing different aspects of what is conceptually the same object. For example,

since SpecTRM mainly relies on serialization for file I/O, by using references to models

mand model elements instead of the actual model/model element objects, it avoids having

the actual objects being written into the file containing the simulation configuration

information. Having multiple interfaces would not be so bad if there is a single concrete

class of objects that implements (in the technical, Java sense) a few of those interfaces at

once, but that is not the case. Instead, the separate interfaces amounts to separate classes

in separate object hierarchies. Worse, there are only a very limited number of ways to

convert from one class type to another. For example, you cannot go from an

IModelNode back to an IModelContent, and to go from IModelContent to IModelNode

requires parsing, which can be a slow operation (on the order of minutes for medium-

sized models).

Since our automation software implicitly assumes a more uniform view of entities

such as models, inputs and outputs, ultimately this would necessitate the creation of our

own wrapper classes to represent the SpecTRM entities. These wrapper classes objects
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will need to include all the different classes of objects needed to represent the same

conceptual object (eg. IModelContent and IModelNode for a model), since there are

essentially no ways to efficiently go from one class to another. The wrapper class then

supplies the appropriate methods to present a single interface to the automation for

accessing the various properties of the underlying SpecTRM entity. These methods

would of course need to translate to one or more method calls on one or more of the

underlying SpecTRM API objects to carry out such a method's functionality.

In the end, again partly due to a lack of time, some sacrifices were made to avoid

having to wrap every necessary SpecTRM classes and interfaces involved in configuring

a simulation. A bare-bones SpecTRMModel class was implemented as a way to

represent the IModelContent and IModelNode together as one class, and for input and

output elements, I wound up using the ISimulationReference and IOutputFieldReference

interfaces used by the SpecTRM's simulation configuration API. Using

I[SimulationReference and IOutputFieldReference however does mean that it is not

possible to implement the more sophisticated attribute-matching criteria mentioned in

section 2.4, because only the model element's name and value type are provided by the

said interfaces.
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Chapter 5
Conclusions

In this thesis, the rationales, concepts and practices behind component-based

system engineering (CBSE) were introduced. The software package SpecTRM was

introduced as a platform under which the methodologies and recommendations of CBSE

can be carried out. Intent specifications were introduced as the language for specifying

the components in a CBSE approach to a system being built. SpecTRM-RL blackbox

models were introduced as a way to capture the precise behavior of a component in a

formal yet human-readable manner. Finally, SpecTRM's simulator and simulation

configuration editor were introduced as a means of performing tests and reviews of the

system based on the behavior specified in the SpecTRM-RL models. It was pointed out

that a number of tasks must be carried out manually by the user to set up the components

into a simulation configuration, in particular the task of connecting them together.

The thesis then began exploring ways to automate the connecting of component

models. This task was identified as being closely related to the task of program linking in

computer programming. From there, a detailed design for the automation software was

fleshed out. It was separable into three layers: the top layer deals with the user interface;

the middle layer deals with maintaining the state of the configuration being built, and

with searching the models' inputs and outputs for possible connections; and finally, the

lowest-level layer captures the criteria on whether an input and output should be

connected. Careful consideration was given to the criteria to be used for matching an

input to an output, which ended up using names and attributes matching. Finally, two

additional useful operations related to connections setup were considered, and

incorporated into the design of the automation software.

At the final stage, the thesis looked into the details concerning an actual

implementation of the proposed software. It was quickly identified that the software

must be written in Java, so that it can run under the Eclipse platform, in order to be

seamlessly integrated into the SpecTRM software package. Unfortunately, SpecTRM's

lack of providing extension points in its simulation configuration editor added much extra
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work required in completing an implementation of the automation's user interface. That

ultimately led to the user interface not being completely implemented. As for the other

portions of the proposed design, they were implemented with a better degree of success,

though some characteristics of the SpecTRM API ultimately interfered with the goal of

implementing the design cleanly.

5.1 Future Directions

The most immediate and obvious improvement of the work done here is to

complete the implementation of the user interface to the automation software. This

would allow more extensive testing of the software to be performed, as well as more

extensive studying of the effectiveness of the software in aiding simulation configuration.

It could also be useful in the future to focus on other method for the automation to infer

the necessary connections amongst the models.

More generally, it is worthwhile to continue exploring additional ways to enhance

the experience of applying component-based system engineering in SpecTRM, not just

within the context of simulation configuration as is done here, but also in other parts of

SpecTRM. For example, some of the discussions in chapter 3 hinted that a simulation

configuration really consists of two classes of information, one class being specific to

individual simulation sessions, and another class being more related to the structure of the

system being simulated. It might be useful to revamp SpecTRM so that the two aspects

of simulation configuration are separated, and make the system-structure information

available in other contexts, such as inside an intent specification. And as one goal of

CBSE is to promote reuse of system engineering efforts, ideas such as software for

maintaining a database/library of reusable component models also seem worthwhile to

consider.
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Appendix A
Code

A. 1 ConnectionManagerjava
// note: code developed under Java API version 1.4.2

package chibong.mengthesis.core;

import java.util.*;
import java.io.*;
import com.spectrm.core.api.document.content.*;
import com.spectrm.core.api.document.reference.*;
import com.spectrm.core.api.rl.ast.*;
import com.spectrm. simulator.*;
import com.spectrm.simulator.api.*;
import com.spectrm.simulator.api.configuration.*;
import com.spectrm.simulator.configuration.document.*;

// This class implements the manager layer of the design as described in chapters 2 & 3
public class ConnectionManager {

// internal list of models (of type AbstractModel), and an unmodifiable list view of
// the very same list for external view
private List models = new ArrayList();
private List modelsview = Collections.unmodifiableList(models);

private Set availableInputs = new HashSet();
private Collection availableInputsView = Collections.unmodifiableSet(availableInputs);

private Set blackboxedOutputs = new HashSet();

private Set conduits = new HashSet();
private Collection conduitsView = Collections.unmodifiableSet(conduits);

// matchers used
private IIOMatcher iomatcher;
private IReplaceMatcher rmatcher;

// CONSTRUCTORS
public ConnectionManager (IIOMatcher iom, IReplaceMatcher irm) {
this.iomatcher = iom;
this.replacematcher = irm;

)

// ACCESSORS
public List getModelList() {
return modelsview;

}

public Collection getAvailableInputs() {
return availableInputsView;

}

public Collection getConduits() {
return conduitsView;

}

// MUTATORS

// note: the model here may be an scf configuration file instead
public Map addModel(AbstractModel model) {
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Map connectResult = makeConnections(model);
models.addAll(model.getRLModels());
return connectResult;

private Map makeConnections(AbstractModel newmodel) 
Collection connectedInputs = new HashSet();

// first, if model is a configuration, immediately start off by adding all the
// existing conduits into our configuration
if (newmodel instanceof SCFModel) {
SCFModel m = (SCFModel)newmodel;
Iterator conduitIter = newmodel.getConduits() .iterator();

while(conduitIter.hasNext()) {
IConduitConfiguration icc = (IConduitConfiguration)(conduitIter.next());
conduits.add(icc);

Iterator usedInputs = icc.inputs();
while(usedInputs.hasNext()) 

connectedInputs.add(usedInputs.next ));

}

Iterator usedOutputs = icc.outputs();
while(usedOutputs.hasNext()) {

blackboxedOutputs.add(usedOutputs.next());

}

Map results = new HashMap();
ReferenceFactory rf = newmodel.getReferenceFactory();
List unconnectedNewInputs = new LinkedList();

// try to connect inputs in new model to existing output fields in configuration
Iterator newmodelInputs = rf.getInputReferences().iterator();
while (newmodelInputs.hasNext()) 

ISimulationReference input = (ISimulationReference)newmodelInputs.next();
if (connectedInputs.contains(input))

continue;

List candidates = new LinkedList();
IOutputFieldReference matchTo = null;

// go thru all output fields of all other models in the configuration
// and see which ones match the current input
Iterator modelsIter = this.models.iterator();
while (modeslIter.hasNext()) 

SpecTRMModel m = (SpecTRMModel)models.next();
ReferenceFactory rf2 new ReferenceFactory(m.node);
Iterator outputfields rf2.getOutputFieldReferences();
while (outputfields.hasNext()) 

IOutputFieldReference outputfield = (IOutputFieldReference)outputfields.next();
if (iomatcher.match(input, outputfield)) {
matchTo = outputfield
candidates.add(outputfield);

if (candidates.size() == 0) {
unconnectedNewInputs.add(input);

}
else if (candidates.size() == 1) 

// create a conduit and add it to configuration
this.addConduitRaw(input, matchTo);

)
else { // more than one output field matches to current input
matchTo = null;

}
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results.put(input, new MatchResult(candidates, matchTo));

// now go through all unconnected inputs in current configuration, and try to
// connect them to output fields of the new model
Iterator oldInputs = availableInputs.iterator();
while(oldInputs.hasNext()) 

ISimulationReference input = (ISimulationReference)oldInputs.next();

List candidates = new LinkedList();
IOutputFieldReference matchTo = null;

// go through all output fields of new model and attempt to match to inputs
// in other models
Iterator outputfields = rf.getOutputFieldReferences.iterator();
while(outputfields.hasNext()) {

IOutputFieldReference outputfield = (IOutputFieldReference)outputfields.next();
if (blackboxedOutputs.contains(outputfield))

continue;
if (iomatcher.match(input, outputfield)) {
matchTo = outputfield;
candidates.add(outputfield);

}

if (candidates.size() == 1) {
// create a conduit and add it to configuration
this.addConduitRaw(input, matchTo);

// remove input from list of unconnected inputs
oldInputs.remove();

else 
matchTo = null;

I

results.put(input, new MatchResult(candidates, matchTo));

}

availableInputs.addAll(unconnectedNewInputs);
return results;

public void removeModel(int index) {
SpecTRMModel model = (SpecTRMModel)models.remove(index);

// update list of conduits and list of availableInputs accordingly
ReferenceFactory rf = new ReferenceFactory(model.node);
HashSet inputs = new HashSet(rf.getInputReferences());
HashSet outputfields = new HashSet(rf.getOutputFieldReferences());

Iterator citer = conduits.iterator();
while(citer.hasNext()) 

IConduitConfiguration icc = (IConduitConfiguration)citer.next();
Iterator iccInputs = icc.inputs();
Iterator iccOutputs = icc.outputs();
while(iccInputs.hasNext()) 

ISimulationReference input = (ISimulationReference)iccInputs.next();
IOutputFieldReference output = (IOutputFieldReference)iccOutputs.next();
if (inputs.contains(input) I1 outputfields.contains(output)) 

// if connection being removed involves connecting an input outside the
// removed model to an output field of the removed model, add the input back
// into list of available inputs
if (outputfields.contains(output) && inputs.contains(input)) 
availableInputs.add(input);

iccInputs.remove();
iccOutputs.remove();
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if (!icc.inputs().hasNext()) { // conduit is devoid of connections
citer.remove(); // delete conduit

}

// adds a conduit to the configuration, but does not update the availableInputs set
private void addConduitRaw(ISimulationReference input, IOutputFieldReference output) 

IConduitConfiguration icc = new ConduitConfiguration();
icc.addInput(input);
icc.addOutput(output);
icc.setTransmissionDelay(0);
conduits.add(icc);

// will return false with no conduits added if input is already connected
// to something else
public boolean addConduit(ISimulationReference input, IOutputFieldReference output) 

if (availableInputs.remove(input)) {
this.addConduitRaw(input, output);
return true;

}
else

return false;

}

// remove a conduit in the configuration and update availableInputs accordingly
public boolean removeConduit(IConduitConfiguration icc) 

if (conduits.contains(icc)) 
conduits.remove(icc);
Iterator freedInputs = icc.inputs();
while(freedInputs.hasNext()) 

availableInputs.add(freedInputs.next());

}
return true;

else
return false;

1

// note: this method currently only supports replacing one SpecTRM-RL model within
// the configuration with another single SpecTRM-RL model. It cannot support replacing
// a model by a configuration
// index = index to list of models, specifying the model being replaced
public void replaceModel(int index, AbstractModel replacementModel) 

if (!replaceModel instanceof RLModel) 
throw new UnsupportedOperationException(

"replacementModel not instanceof RLModel as expected, but rather +
replacementModel.getClass().toString());

SpecTRMModel oldModel = models.get(index);

ReferenceFactory rfnew = replacementModel.getReferenceFactory();
HashSet newInputs new HashSet(rfnew.getInputReferences());
HashSet newOutputs = new HashSet(rfnew.getOutputFieldReferences());
ReferenceFactory rfold = new ReferenceFactory(oldModel);
HashSet oldInputs = new HashSet(rfold.getInputReferences());
HashSet oldOutputs = new HashSet(rfold.getOutputFieldReferences());

Iterator conduitsIter = conduits.iterator();
List replacements = new LinkedList();
while(conduitsIter.hasNext()) {
boolean replaced = false;
IConduitConfiguration icc = (IConduitConfiguration)conduitsIter.next);
Iterator iccinputs = icc.inputs();
Iterator iccoutputs = icc.outputs();

IConduitConfiguration replacementConduit = new ConduitConfiguration();
while (iccinputs.hasNext()) 

ISimulationReference input = (ISimulationReference)iccinputs.next(;
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IOutputFieldReference output = (IOutputFieldReference)iccoutputs.next();
ISimulationReference newinput = input;
IOutputFieldReference newoutput = output;

if (oldInputs.contains(input)) {
newinput = getReplacementInput(input, newInputs);
if (newinput != input) (
newInputs.remove(newinput);
replaced = true;

}

if (oldOutputs.contains(output)) {
newoutput = getReplacementOutput(output, newOutputs);
if (newoutput != output)
replaced = true;

repla}ementConduitaddnput(newinput);

replacementConduit.addOuInput(newouinput);
replacementConduit 0addOutput (newoutput);

if (replaced) {
conduitsIter.remove();
replacements.add(replacementConduit);

}

conduits.addAll(replacements);
availableInputs.addAll(newInputs);
models.remove(index);
models.addAll(replacementModel.getRLModels());

// helper function for replaceModel
private ISimulationReference getReplacementInput(ISimulationReference oldinput,

Collection newInputs) {
Iterator iter = newInputs.iterator();
while(iter.hasNext()) {

ISimulationReference newinput = (ISimulationReference)newinput.next();
if (rmatcher.inputsMatch(oldinput, newinput))
return newinput;

)
return oldinput;

)

// helper function for replaceModel
private IOutputFieldReference getReplacementOutput(IOutputFieldReference oldoutput,

Collection newOutputs) {
Iterator iter = newOutputs.iterator();
while(iter.hasNext()) 

IOutputFieldReference newoutput = (IOutputFieldReference)newoutput.next();
if (rmatcher.outputsMatch(oldoutput, newoutput))
return newoutput;

}
return oldoutput;

// generates a simulation configuration file based on the current state
// of the configuration represented in the ConnectionManager
public void writeConfigFile(ObjectOutputStream file) throws IOException {

ISimulatorConfiguration sc = new SimulatorConfiguration();

Iterator modelsIter = models.iterator();
while (modelsIter.hasNext()) 

SpecTRMModel model = (SpecTRMModel)modelsIter.next();
IModelConfiguration modelconfig = new ModelConfiguration();
modelconfig.setModelHandle(model.content.getHandle());
modelconfig.setModelName(model.content.getName());
sc.addModel(modelconfig);

}
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Iterator conduitsIter = conduits.iterator();
while (conduitsIter.hasNext()) 

IConduitConfiguration icc = (IConduitConfiguration)conduitsIter.next();
sc.addConnection(icc);

file.writeObject(sc); // uses serialization to generate simulation configuration file
// from the simulation configuration object

// returns a string representation of the internal state of
// this ConnectionManager object
public String toString() {

StringBuffer sb = new StringBuffer();
sb.append("models: ");
sb.append(models.toString));
sb.append"\n\nconduits: ");
sb.append (conduits.toString());
sb.append("\n\navailableInputs: ");
sb.appendl:availableInputs.toString());
sb.append "\n\nblackboxedOutputs: ");
sb.append (blackboxedOutputs.toString());
return sb.toString();
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A.2 SpecTRMModel.java
// note: code developed under Java API version 1.4.2

package chibong.mengthesis.core;

import com.spectrm.core.api.rl.*;
import com.spectrm.core.api.rl.ast.*;
import com.spectrm.core.api.document.content.*;

// This class is needed mostly because SpecTRM's simulation configurator API has some
// inconsistencies, such that certain interfaces/methods expect to see a model as an
// IModelContent, while others need to see it as an IModelNode.
//
// Since it's computationally expensive to go from IModelContent to IModelNode (parsing),
// and there's not even a way to go from an IModelNode back to the IModelContent, this
// class does the parsing once and stores the result along with the IModelContent, so
// both are available at once

public class SpecTRMModel {
public final IModelContent content;
public final IModelNode node;

// according to SpecTRM API documentation, parseMonitor can be null
SpecTRMModeL(IModelContent modelcontent,

org.eclipse.core.runtime.IProgressMonitor parseMonitor) {
this.content = modelcontent;
this.node = RLFactory.getModelParser.parseModel(modelcontent, parseMonitor);

}
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A.3 MatchResultjava
// note: code developed under Java API version 1.4.2

package chibong.mengthesis.core;

import java.util.*;
import com.spectrm.simulator.api.*;

// for representing the result of the automation's attempt of finding matches for
// a particular input
public class MatchResult {
private List candidates;
private IOutputFieldReference match;

public MatchResult(List outputcandidates, IOutputFieldReference matchTo) {
if (outputcandidates == null)
throw new NullPointerException();

this.candidates = Collections.unmodifiableList(outputcandidates);
this.match = matchTo;

}

// may be null if no match
public IOutputFieldReference getMatchedTo() {

return match;

}

// result is List of IOutputFieldReference
public List getOutputCandidates() {

return candidates;

}
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A.4 AbstractModeljava
// note: code developed under Java API version 1.4.2

package chibong.mengthesis.core;

import java.util.*;
import com.spectrm.simulator.*;

// abstract class for representing an abstracted view of a "model",
// which may be either a true SpecTRM-RL model, or a SpecTRM simulation configuration
// treated as a single model
public abstract class AbstractModel {

public String getName();
public ReferenceFactory getReferenceFactory();
public Collection getRLModels(); // returns the constituent SpecTRM-RL models as

// SpecTRMModel objects
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A.5 RLModeljava
// note: code developed under Java API version 1.4.2

package chibong.mengthesis.core;

import java.util.*;
import com.spectrm.core.api.document.content.*;
import com.spectrm.simulator.*;

// a concrete subclass of AbstractModel, for representing models which are
// true SpecTRM-RL models
public class RLModel extends AbstractModel {

private SpecTRMModel realModel;

// according to SpecTRM API documentation, parseMonitor can be null
public RLModel(IModelContent modelcontent,

org.eclipse.core.runtime.IProgressMonitor parseMonitor) {
realModel = new SpecTRMModel(modelcontent, parseMonitor);

public String getName() {return realModel.content.getName();}

public ReferenceFactory getReferenceFactory() {
return new ReferenceFactory(realModel.node);

public Collection getRLModels() 
Collection c = new LinkedList();
c.add(realModel);
return c;

}
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A.6 SCFModeljava
// note: code developed under Java API version 1.4.2

package chibong.mengthesis.core;

import java.util.*;
import com.spectrm.simulator.*;
import com.spectrm.simulator.api.configuration.*;
import com.spectrm.core.api.document.content.*;

// concrete subclass of AbstractModel, for representing models which are actually
// smaller simulation configurations to be incorporated into the larger configuration
// being built
public class SCFModel extends AbstractModel {

private List models = new LinkedList();
private HashSet conduits = new HashSet);
private String name;
private SCFReferenceFactory rf;

// according to SpecTRM API documentation, parseMonitor can be null
public SCFModel(ISimulatorConfiguration scf,

org.eclipse.core.runtime.IProgressMonitor parseMonitor) {
name = scf.getName();

Iterator connections = scf.connections();
while(connections.hasNext()) {

Object c = connections.next();
if (c instanceof IConduitConfiguration)
conduits.add(c);

)

Iterator modelsIter = scf.models();
while(modelsIter.hasNext()) {

IModelContent imc = (IModelContent)modelsIter.next();
models.add(new SpecTRMModel(imc, parseMonitor));

rf = new SCFReferenceFactory(models);

public String getName() {return name;}
public ReferenceFactory getReferenceFactory() {return rf;}
public Collection getRLModels() {return Collections.unmodifiableList(models);}
public Collection getConduits() {return Collections.unmodifiableSet(conduits);}

// ReferenceFactory for our pseudo-model
class SCFReferenceFactory extends ReferenceFactory {

private Collection inputrefs = new LinkedList();
private Collection outputrefs = new LinkedList();
private Collection outputfieldrefs = new LinkedList();

SCFReferenceFactory(List models) {
Iterator iter = models.iterator();
while(iter.hasNext()) {

SpecTRMModel model = (SpecTRMModel)iter.next();
ReferenceFactory rf = new ReferenceFactory(model.node);
inputrefs.addAll(rf.getInputReferences());
outputrefs.addAll(rf.getOutputReferences());
outputfieldrefs.addAll(rf.getOutputFieldReferences());

public Collection get}nputReferences
public Collection getInputReferences() {
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return Collections.unmodifiableCollection(inputrefs);

I

public Collection getOutputReferences() {
return Collections.unmodifiableCollection(outputrefs);

public Collection getOutputFieldReferences() 
return Collections.unmodifiableCollection(outputfieldrefs);
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A.7 IIOMatcherjava
// note: code developed under Java API version 1.4.2

package chibong.mengthesis.core;

import com.spectrm.simulator.api.*;

// interface representing a matcher (see chapter 2), for determining if a given input and
// given output field matches (which means a conduit may potentially be created to
// connect them)
public interface IIOMatcher {

public boolean match(ISimulationReference input, IOutputFieldReference output);
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A.8 IReplaceMatcherjava
// note: code developed under Java API version 1.4.2

package chibong.mengthesis.core;

import com.spectrm.simulator.api.*;

// interface representing a matcher for use in the "model replace" operation (see
// chapter 3).
// has 2 methods, one for determining if an input in the old model corresponds to an
// input in the replacement model, and another corresponding method for outputs
public interface IReplaceMatcher {

public boolean inputsMatch(ISimulationReference inputl, ISimulationReference input2);
public boolean outputsMatch(IOutputFieldReference outputl,

IOutputFieldReference output2);
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A.9 DefaultIOMatcher.j ava
// note: code developed under Java API version 1.4.2

package chibong.mengthesis.core;

import com.spectrm.simulator.api.configuration.*;

// a default implementation, as described in chapter 2, of the IIOMatcher interface
public class DefaultIOMatcher implements IIOMatcher {

private boolean isCaseSensitive;
private String stripCharSet;
private String[] suffixes;

public DefaultIOMatcher(boolean caseSensitive, String stripChars, String[] suffixes) {
this.isCaseSensitive = caseSensitive;
this.stripCharSet = caseSensitive ? stripChars : stripChars.toUpperCase();
this.suffixes = suffixes;

// isField is used to suppress suffix-stripping
// useful if given name is an output field name
private String canonicalName(String name, boolean isField) {

if (!isCaseSensitive)
name = iame.toUpperCase();

// strip irrelevant characters (eg. spaces)
if (stripCharSet.length() > 0) {

StringBuffer sb = new StringBuffer();
for(int i = 0; i < name.length(); i++)
char c = name.charAt(i);
if (stripCharSet.indexOf(c) == -1)
sb.append(c);

name = sb.toString();

// strip suffixes
if (!isField) {

for(int i = 0; i < suffixes.length; i++) {
if (name.length() > suffixes[i] .length() &&

name.substring(name.length() - suffixes[i] .length()).equals(suffixes[i)) {
name = name.substring(0, name.length() - suffixes[i] .length());
break;

return name;

public boolean match(ISimulationReference input, IOutputFieldReference output) {
String inputName = canonicalName(input.getName(), false);
String outputName = canonicalName(output.getName(), false) +

canonicalName(output.getFieldName(), true);
return inputName.equals(outputName) && input.getType().equals(output.getFieldType());

}
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A.10 DefaultReplaceMatcherjava
// note: code developed under Java API version 1.4.2

package chibong.mengthesis.core;

import com.spectrm.simulator.api.configuration.*;

// default implementation, as described in chapters 2 & 3, of the
// IReplaceMatcher interface
public class DefaultReplaceMatcher implements IReplaceMatcher {

private boolean isCaseSensitive;
private String stripCharSet;
private String[] suffixes;

public DefaultReplaceMatcher(boolean caseSensitive, String stripChars,
String[] suffixes) {

this.isCaseSensitive = caseSensitive;
this.stripCharSet = caseSensitive ? stripChars : stripChars.toUpperCase();
this.suffixes = suffixes;

}

// isField is used to suppress suffix-stripping
// useful if given name is an output field name
private String canonicalName(String name, boolean isField) {

if (!isCaseSensitive)
name = name.toUpperCase();

// remove irrelevant characters (eg. spaces)
if (stripCharSet.length() > 0) {
StringBuffer sb = new StringBuffer();
for(int i = 0; i < name.length(); i++)
char c = name.charAt(i);
if (stripCharSet.indexOf(c) == -1)

sb.append(c);

name = sb.toString();

}

// strip suffixes
if (!isField) {

for(int i = 0; i suffixes.length; i++) {
if (name.length() > suffixes[i] .length() &&

name.substring(name.length() - suffixes[i] .length()).equals(suffixes[i)) {
name = name.substring(0, name.length() - suffixes[i] .length());
break;

}
}

return name;

}

public boolean inputsMatch(ISimulationReference inputl, ISimulationReference input2) {
String inputNamel = canonicalName(inputl.getName(), false);
String inputName2 = canonicalName(input2.getName (), false);
return inputNamel.equals(inputName2) && inputl.getType().equals(input2.getType());

}

public boolean outputsMatch(IOutputFieldReference outputl,
IOutputFieldReference output2) {

String outputNamel = canonicalName(outputl.getName(), false) +
canonicalName(outputl.getFieldName), true);

String outputName2 = canonicalName(output2.getName(), false) +
canonicalName(output2.getFieldName(), true);

return outputNamel.equals(outputName2) &&
outputl.getFieldType().equals(output2.getFieldType());
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