
Using Boolean Circuits

by

Samuel Isaac Daitch

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2004

© Samuel Isaac Daitch, MMIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis and to

grant others the right to do so. MASSACHUSETTS INSTTE
OF TECHNOLOGY

,~ -- ~1 UL 8 2005

.~ LIBRRIESAuthor - IBRARIES
Department of Electrical Engineering and Computer Science

July 1, 2004
ARCHIVES

Certified by..t
Daniel Jackson

Associate Professor
........ . .Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

Translating Alloy

Translating Alloy Using Boolean Circuits

by

Samuel Isaac Daitch

Submitted to the Department of Electrical Engineering and Computer Science
on July 1, 2004, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract
Alloy is a automatically analyzable modelling language based on first-order logic. An
Alloy model can be translated into a Boolean formula whose satisfying assignments
correspond to instances in the model. Currently, the translation procedure mechani-
cally converts each piece of the Alloy model individually into its most straightforward
Boolean representation.

This thesis proposes a more efficient approach to translating Alloy models. The
key is to take advantage of the fact that an Alloy model contains patterns that are
used repeatedly. This makes it natural to give a model a more structured Boolean
representation, namely a Boolean circuit. Reusable pieces in the model correspond
to circuit components. By identifying the most frequently used components and
optimizing their corresponding Boolean formulas, the size of the overall formula for
the model would be reduced without significant additional work. A smaller formula
would potentially decrease the time required to determine satisfiability, resulting in
faster analysis overall.

Thesis Supervisor: Daniel Jackson
Title: Associate Professor

3

4

Acknowledgments

I am tremendously grateful to Prof. Daniel Jackson for his encouragement and pa-

tience during the process of writing this thesis. The abundance of advice that he has

dispensed to me over the past several years has been quite helpful, and his confidence

in me has been a great source of motivation.

I thank Ilya Shlyakhter for suggesting the idea that led to this thesis, and for

discussing with me various issues that arose over the course of my research.

The kindness and generosity of all my friends at MIT are what have made my stay

at this institute so enjoyable. I am indebted to them for being a source of comfort

during stressful times.

Finally, I would like to thank my parents and my sister for their constant, uncon-

ditional love and support. It is a great blessing to have such a wonderful family. All

that I have accomplished, I owe to them.

5

6

Contents

1 Introduction 13

2 Alloy

2.1 Relations

2.2 Operators

2.3 Quantifiers

2.4 Abstract Syntax Tree

3 Boolean Circuits

3.1 Constants

3.2 Variables.

3.3 Compound Circuits and Gates

3.3.1 Connector Gates . . .

3.3.2 Simple Gates

3.3.3 Compound Gates . . .

3.4 Variable Setters

4 Translation Strategies

4.1 Basic Idea

4.1. 1 Variables

4.1.2 Constant Expressions .

4.1.3 Operators

4.1.4 Quantifiers

15

. 15

. 17

. 18

. 19

21

. 22

. 2 2

. 23

. 24

. 24

. 26

. 28

31

31

32

32

32

33

7

.

.

.

.

.

.

.

.

.

.

.

..

....................

....................

....................

4.2 Optimized Gates 34

4.3 Combined Gates .. 36

5 Implementation 39

5.1 Creating the Circuit 39

5.2 Simplification .. . 40

5.3 Converting into CNF 45

6 Results 47

7 Conclusion 55

7.1 Future Work 55

A Standard Translations 57

A .1 O perators . 57

A.2 Constants . 66

A.3 Quantifiers .. 66

B BLIF-MV 69

8

List of Figures

2-1 An Alloy model 16

2-2 An Alloy AST 19

3-1 A compound gate 27

3-2 Desugaring a circuit containing a variable setter 29

4-1 Translating an quantified Alloy expression 34

4-2 Optimizing a gate for a specific configuration of inputs 36

4-3 Combining multiple Alloy operations into a single gate 36

4-4 Combining a gate node with two of its child nodes in the circuit . . . 38

5-1 The procedure printBlifMVTables() 42

5-2 The procedure constructGate() 44

9

10

List of Tables

6.1 Gate simplification times for individual Alloy operators 50

6.2 Gate simplification times for combined gates 51

6.3 Results for dijkstra model . 52

6.4 Results for handshake model 52

6.5 Results for stable-mutex-ring model 52

11

12

Chapter 1

Introduction

The uniqueness of the Alloy modeling language is that it can be automatically ana-

lyzed. The Alloy Analyzer tool can definitively disprove a property of an Alloy spec-

ification by generating a concrete counterexample (or alternatively, it can illustrate

a property by generating a concrete example). The analysis works by translating an

Alloy specification into a Boolean formula whose satisfying assignments correspond

to an Alloy instance that fulfills the specification.

The main computation involved in the analysis of an Alloy model is the search for

satisfying assignments of the Boolean formula, which is accomplished by converting

the formula to CNF form and feeding it to any of a number of off-the-shelf SAT

solvers. Any technique that translates an Alloy model into a simpler Boolean formula

is potentially helpful, in that it results in faster analysis, and even may enable analysis

of models that were previously intractable.

This thesis describes a system for translating Alloy models using a specially de-

signed Boolean circuit representation. This representation reflects the design of the

Alloy language, in that it is separable into components that correspond to individual

or small groups of Alloy operators. Just as Alloy operators are reused many times

throughout an Alloy model, so too do the Boolean circuit components representing

these operators reappear many times within the circuit translation of an Alloy model.

The advantage of such a system is the possibility of simplifying the Boolean rep-

resentation of these frequently used circuit components, resulting in a smaller overall

13

Boolean translation of the Alloy model. Experiments using the MVSIS logic analysis

tool to simplify components yielded moderate success in creating improved transla-

tions and demonstrate the potential of using this method.

The remainder of this thesis will be organized as follows: Chapter 2 will give an

overview of the Alloy language. Chapter 3 will introduce our concept of Boolean

circuits. Chapter 4 will describe the natural translation of an Alloy model into a

Boolean circuit, and paradigms for creating useful circuit components. Chapter 5

will fill in the details of implementing a system that uses Boolean circuits to translate

Alloy models, simplifies circuit components using the MVSIS tool, and finally pro-

duces a useful formula. Chapter 6 will present the experimental results of translating

Alloy models with this system, using various implementation choices. Chapter 7 will

conclude and suggests avenues for further work.

14

Chapter 2

Alloy

2.1 Relations

The universe of an Alloy model is organized around a set of basic types which are

defined in the model. Each type is essentially a set of elements, or "atoms". Other

than booleans and nonnegative integers, the value of every expression in Alloy is a

relation between these basic types. Each relational expression has a specific relational

type, which indicates the arity of the relation and the basic types of the atoms that

may appear in each column of the relation.

Consider the model in Figure 2-1, inspired by the Simon and Garfunkel song "One

Man's Ceiling is Another Man's Floor". This model describes a group of men located

in rooms that have ceilings and floors. Each man is standing on exactly one floor and

is directly under exactly one ceiling. The same building platform can serve as one

man's ceiling and another man's floor.

There are two basic types defined in the model: Man and Platform. In addition,

there are two relations defined: ceiling and floor. These are each binary relations that

have type Man->Platform, and they indicate which Platform serves as the ceiling and

which serves as the floor of each Man. Man itself can be used as an expression in

Alloy, and it is considered to be a unary relation of type Man, containing a tuple for

15

sig Platform {}
sig Man {

ceiling: Platform
floor: Platform

}

fun someonelsAtTheBottom() {
some x:Man I x.*(ceiling.floor) - Man

}

run someonelsAtTheBottom for 3 Man, 4 Platform

Figure 2-1: An Alloy model

each Man atom that is present.

To automatically analyze a model, we write an Alloy formula that expresses con-

ditions on the values of the relations defined, e.g. someonelsAtTheBottom() in the

above example. In this formula, the expression ceiling. floor has type Man->Man

and relates Man a to Man b iff the ceiling of a is the floor of b. x.*(ceiling.~floor) is

then the set of Man atoms reachable from x by following the ceiling.-floor relation

zero or more times. Thus, our formula expresses the condition that there is some

man such that the set of men zero or more floors above him is the entire set of men.

The analyzer converts this Alloy formula into a Boolean formula, which is true ex-

actly when the Alloy formula is true, and furthermore in which a satisfying Boolean

assignment directly corresponds to a particular set of values for the Alloy relations in

the model that satisfy the formula.

In order for an Alloy model to be convertible into a finite Boolean formula, a scope

assigning a finite bound to each type must be specified. This indicates the maximum

number of atoms that may belong to a basic type. In the example above, the command

specifies that the scope of Man is 3. This allows us to allocate 3 Boolean variables

to represent all possibilities of the value of the type Man. Each variable indicates

whether one of the three potential Man atoms actually exists in the model.

16

Similarly, we can allocate Boolean variables to represent all possible values of each

relation in the model. For example, the possible values of the relation floor are all

sets of tuples of atoms with type Man->Platform. There are 3 4 = 12 such tuples, so

we can represent floor with 12 Boolean variables, each one to indicate whether one of

the tuples is contained in the relation.

We see now that a Boolean translation of the above Alloy model will contain a

minimum of 31 variables: 3 to represent the possible values of Man, 4 to represent

Platform, and 12 each for ceiling and floor. The Boolean formula may contain other

variables as well, but only these 31 variables determine the Alloy instance that a

particular satisfying assignment represents.

2.2 Operators

The Alloy language contains operators whose inputs and output are either relation-,

boolean-, or integer-valued, allowing the formation of compound expressions. For

example, the union operator (+) takes in two relations, and produces a new relation

containing all tuples that are in either of the two input relations. As another exam-

ple, the cardinality operator (#) takes a relation as input, and produces an integer

indicating the number of tuples in the relation.

Alloy's static typing rules define a type for every compound relational-valued

expression. For example, the expression ceiling+floor has the type Man->Platform,

because that is the type of the subexpressions ceiling and floor. Thus, when translated

tlo Boolean, the value of expression ceiling+floor can be represented by a finite number

of bits, as many as are necessary to represent a relation of type Man->Platform. In

particular, each of these bits is a Boolean formula whose value depends on the Boolean

variables assigned to represent the basic types and relations in the model.

Similarly, every compound integer-valued expression has a maximum size. For

17

example, assuming Man has scope 3, the expression #Man can take on values between

0 and 3 inclusive. Thus, again, this expression can be represented by a finite number

of bits, 2 bits in this case, since the integers from 0 to 3 can be represented with 2

bits. Each bit is a boolean formula containing the variables assigned to represent the

type Man.

2.3 Quantifiers

Alloy also has constructions that introduce quantified variables. For example, the

expression

some x:Man I x.*(ceiling.~floor) = Man

introduces the variable x and is true iff there is some atom of type Man such that if

x has this atom as its value then the expression x.*(ceiling.~floor) - Man is true.

An expression containing quantified variables, such as x.*(ceiling.~floor) = Man in

the above example, cannot be translated directly into Boolean formulas because the

value of the expression does not depend solely on the values of the relations defined

in the model; it also depends on the value of x. The quantified formula must be

"grounded out" in order to give definite value to its subexpressions. In other words,

if we call the possible atoms of type Man by the names ManO, Man 1, and Man_2,

then

some x:Man I x.*(ceiling.~floor) = Man

is equivalent to

(ManO.*(ceiling.~floor) = Man)

or (Man-l.*(ceiling.~floor) = Man)

or (Man2.*(ceiling.~floor) = Man)

18

Figure 2-2: An Alloy AST

This grounded out formula can now be directly translated into a Boolean formula as

described above.

2.4 Abstract Syntax Tree

An Alloy model can be parsed into an abstract syntax tree (AST) whose internal nodes

are either operators or quantifiers. Every leaf is either the name of a relation declared

in the model, or the name of a quantified variable introduced by one of the leaf's

ancestors, or a constant-valued expression. Every node in the AST can be thought of

as having either a boolean, relational, or integer value. The value of the root node of

the AST is always a boolean, so that the model corresponds to single boolean formula

indicating the presence (or absence) of the property described in the model. As an

example, Figure 2-2 gives the AST for the formula someonelsAtTheBottom() from the

19

model in Figure 2-1.

Note that in an Alloy model, the same name may be used for different quantified

variables introduced in different locations in the model. We will assume that pars-

ing the model into the AST includes giving unique identifications to every distinct

variable, even if they were referred to by the same name in the model.

20

Chapter 3

Boolean Circuits

Let us now formalize the concept of a Boolean circuit. We shall model a Boolean

circuit as a rooted directed acyclic graph. Each edge of the graph can be thought of

as a bundle of wires, where each wire carries a single Boolean value. Thus, the edge

itself holds a list of Boolean values. We will refer to the number of values in this list

as the width of the edge.

All the nodes in the graph, with the exception of the root node, have at least one

output edge, and zero or more input edges. For nodes with more than one input edge,

we must specify an ordering of the input edges, so that it is possible to refer to the

first input, second input, and so on.

Each node has a list of Booleans as its output value, which is a function of the

values from the input edges. This output value is carried by all of the node's output

edges. Thus, all output edges from a particular node must have the same width, as

determined by the node.

The output value of the root node is considered to be the output value of the

entire circuit.

Note that each node in the graph defines a Boolean sub-circuit, which consists of

the subgraph rooted at that node.

21

The leaf nodes are themselves Boolean circuits. These simple circuits come in one

of two types: constants and variables.

3.1 Constants

A constant-valued node always emits the same list of Boolean values. We use the

notation

CONSTANT(b0 , ... , bn-x)

where bi C {TRUE, FALSE}, to define C to be a constant circuit with output width

n, whose ith output is the value bi.

We also use the notation

CONSTANTINT(n, K)

as an equivalent to CONSTANT(ko, ..., kn_ 1), where 0 < K < 2n and kn-lkn-2 ... ko is the

binary representation of K.

3.2 Variables

A variable-valued node emits values determined by a list of Boolean variables. Each

of these variables may independently take on the value TRUE or FALSE. We use

the notation

X := makeVariable(n)

to define X to be a variable circuit with output width n.

In general, a Boolean circuit can be seen as defining a function whose inputs are

all the variable-valued circuits found in the graph.

22

3.3 Compound Circuits and Gates

Circuits consisting of multiple nodes are called compound circuits. The root node of a

compound circuit represents a Boolean gate. A Boolean gate calculates some function

which has a list of Boolean values as input and a list of Boolean values as output.

For a gate G, we use the notation G.eval to refer to the function which G calcu-

lates.

A gate's input list of Boolean values is assembled by concatenating the lists of

Boolean values coming in from all its input edges. For example, consider a gate with

three input edges, where the first edge has width 5, the second has width 7, and the

third has width 9. This forms a list of 21 Boolean values as input to the gate. We

assign these values indices starting with zero. Thus, if the gate's Boolean function

makes reference to input value 0, it would use the first Boolean value in the first input

edge. A reference to input value 13 would use the second Boolean value in the third

input edge.

In this way, a particular Boolean gate does not require a specific number of input

edges with specific widths. Rather it only requires some lower bound on the total

width of all its input edges. For example, if the highest-indexed input value that a

gate makes reference to is that with index 24, then to use this gate the sum of the

widths of the input edges must be at least 25. We call this minimum total width of

the input edges the input size of the gate. If gate G has input size n, then for all

Um > n:

G.eval(bo, b1, ...bmi-l) = G.eval(bo, bl, ...bn-)

That is, G ignores all inputs beyond its input width.

On the other hand, every gate does produce an output edge of a specific width,

which we call the output size.

Let us sharpen this model by examining specific types of Boolean gates.

23

3.3.1 Connector Gates

The simplest type of Boolean gate is a connector gate which does nothing more than

route values from particular input wires directly to particular output wires. No actual

Boolean calculation is performed by such a gate.

We will denote a connector gate using the notation C0NNECT(io, i, ..., in-). This

represents a gate with n outputs, where the value of the kth output is the value of

the ikth input. Thus we have:

CONNECT(io0, il, ... , inl)eval(bo, b, ... , bm-l) = (bio, bil, ... bin-)

A common use of connector gates will be of the form CONNECT(O, 1,..., n -1). Such

a gate takes its (first) n input wires and bundles them into a single edge. We will use

BUNDLE(n) as a shorthand name for this gate.

More generally, we will have need for a gate that selects a certain range of in-

put wires and bundles them together. We will use RANGE(n, i) as a shorthand for

CONNECT(i, i + 1, ..., i + n - 1), which bundles together n consecutive input wires,

starting with the ith input wire.

3.3.2 Simple Gates

Our most basic nontrivial gates will calculate a disjunction of conjunctions of the

inputs and/or negations of the inputs. These simple gates will have an output width

of 1. We will specify such a gate by its on-set, i.e. a set of lists of input values that

suffice to make the output true. In particular, we denote an on-set as a matrix with

entries in the set {1, 0, -}, with the number of columns equal to the number of input

values. Each row designates an input configuration sufficient to make the output true,

where the symbol in the ith column indicates the required value for the ith input. 1

indicates a required true input, 0 indicates false, and - indicates no requirement.

24

This is best illustrated with an example. The following notation:

0 -
ONSET 0 - 1

represents a gate with 4 inputs, which calculates the function:

eval(bo, bl, b2 , b3) = (bo A -b 1) V (-,bo A b2) V (bl A b3)

where bi is the value of the ith input.

Note that any Boolean function can be specified by its on-set. For a function

with n inputs, there are 2' possible lists of input values, so one valid on-set is simply

the set of all the input lists that make the function true. Of course, such an on-set

representation is not likely to be the most compact way to represent the function.

We may also specify a Boolean function by its off-set, i.e. a set of lists of inputs

that make the function false. By the same reasoning as above, any Boolean function

can be represented by its off-set. Thus every on-set has an equivalent off-set, and

vice-versa.

The off-set notation for a gate equivalent to the on-set gate above is:

0 0 0 -

OFFSET 0 - 0 0

1 1 - 0

which calculates the function:

eval(bo, b:[, b2 , b3) = -((-bo A -b 1 A -b 2) V (bo A -b 2 A b3) V (b0 A b A -b 3))

25

3.3.3 Compound Gates

Compound gates are constructed by combining simpler gates together. The notation

Gc := Gtop(G0, G1, ... , Gn 1) defines Gc to represent the gate which computes its

function by taking its input list, feeding that same list into each of the gates Gi,

concatenating the outputs from these gates into a single list, feeding this list of values

into the gate Gtop, and returning the output from Gtop. Thus, the output width of

this gate is the output width of Gtop, and the input width is the maximum of the

input widths of all the Gi.

Formally, the gate GC calculates the following function:

Gc.eval(B) = Gtop.eval(Go(B); GI(B); ... ; Gn_ 1(B))

where B is a list of inputs and; represents list concatenation.

We introduce some definitions which will assist in reasoning about compound

gates. Using the above notation, we define the top gate of a compound gate G to

be the gate Gtop and the bottom gates to be the set of gates Gi. For convenience,

we extend this definition to all gates by saying that non-compound gates have no

bottom gates. With this in mind, we define the sub-gates of a gate G to be the set

that includes G and the sub-gates of all bottom gates of G.

Our definitions stipulate that to compute the function of any gate G, we use the

input list of G as the input list of all bottom gates of G. Inductively, when we feed

a list of inputs into the gate G, the computation involves feeding this same list of

inputs into all the sub-gates of G. Thus, if a particular sub-gate G' occurs several

times within the gate G (i.e. G' is a sub-gate of several different bottom gates of

G), the same inputs are being fed into each of these occurrences of G', so it is only

necessary to perform this G' computation once.

This allows us to think of a compound gate as a rooted DAG, where the root node

26

Figure 3-1: The compound gate G4 (G2, G4, G4), where G 4 = G1(G2, G3)

represents the top gate, and the DAGs rooted at the children of this node represent

the bottom gates. If there are multiple occurrences of a sub-gate, they can all be

represented by a single subgraph.

For example, consider the compound gate G5 = G4(G2, G4, G4), where G4 =

Gl(G 2 , G3) is itself a compound gate, while G1, G2, and G3 are not compound. Thus

G1, G2, G3 have no sub-gates but themselves. G4 's sub-gates are G4, G2, G3. G5 's

sub-gates are G5,G2,G3 ,G4.

We can consider G5 as the DAG depicted within the outermost trapezoid shape

in Figure 3-1. The root of the DAG is the top gate of G5, namely the compound gate

G4, represented as a single node (the inner bold trapezoid). The input edges to G4

come from DAGs representing the bottom gates, G2, G4 , and 4. G2 is a sub-gate

of G5 in three ways, once directly as a bottom gate of G5 and twice within G4, but

G2 only appears as a single node in the G5 graph. Similarly, G4 is twice a bottom

gate of G5, but only appears as a single subgraph in the graph of G5 . However, this

is distinct from the single node in the graph of G5 which represents G4 as a whole as

the top gate of G5.

27

3.4 Variable Setters

As a convenience, we provide an additional type of internal circuit node called a

variable setter. A variable setter node has exactly one input edge and has an output

width the same as its input width. However, unlike a gate node, the output value of

a variable setter is not directly the result of computing a function of the input values.

In this respect, a variable setter is not a true circuit component. It is only provided

as a convenience, allowing a compact representation for a group of circuits that differ

only in the value of certain constant-valued sub-circuits.

The output of a variable setter is what the output value of its input circuit would

be if a particular variable were replaced with a particular constant. We use the

notation

SETTER(X, K)

for a variable setter node that replaces the variable circuit X with the constant circuit

CONSTANTINT(n, K), where n is the output width of X.

Any circuit containing variable setters can be desugared into a circuit free of

variable setters by applying the following replacement algorithm for each sub-circuit

rooted at a variable setter. Let C be the input circuit to the variable setter. Simply

replace the sub-circuit with a copy of C that has the variable being set replaced with

the appropriate constant, if the variable appears in the sub-circuit. To make a copy

of C, we copy all the internal nodes, but use the same variable leaf nodes (with the

exception of the variable being set). See Figure 3-2 for an example of desugaring a

circuit containing a variable setter.

28

Figure 3-2: Desugaring a circuit containing a variable setter

29

30

Chapter 4

Translation Strategies

The basic strategy for translating an Alloy AST into a Boolean circuit is very straight-

forward. Recall the structure of an Alloy AST. The leaves represent either variables

or constant expressions, and the internal nodes represent operations or quantifiers.

We will examine each of these types of nodes in turn, and show how they can be

directly mapped to nodes of a Boolean circuit. We can thus create a Boolean circuit

with a structure roughly isomorphic to the AST that it translates.

4.1 Basic Idea

Let us first keep in mind that all nodes in the AST have either relational, integer,

or Boolean values. The Boolean circuit model described in Chapter 3 requires that

every node have a list of Boolean values as its output. A Boolean value in Alloy

can trivially be represented as a list of a single Boolean value. Relational values and

integer values can also both be represented by lists of Boolean values, as mentioned

in chapter 3

In particular, an n-ary relation with column types To, ..., Tn_i where type Tk has

scope Sk, can be represented by an so x ... x sn-1 array of Boolean values. The value

with index (ioN, ... ,in- 1) indicates whether the tuple (o,...,xn_ 1) is in the relation,

31

where k is the ikth element of type Tk. We can organize an n-dimensional array

into a list in a canonical way. For example, we can define the following function to

give the canonical list index of the element indexed by I = (io, ..., in-1) in an array of

dimensions S = (o,..., n-)

n-1 n-1 \

flatlndex(I, S) = ik k1 Sk')
k=O k'=k+l

The relational value can thus be represented as a list of n-kO Sk Boolean values.

4.1.1 Variables

Every Alloy variable has a particular relational type. Thus for each variable we

encounter in the AST we create a variable-valued circuit of the size necessary to

represent this relational type. For a variable x whose relational type has column

· f n-1
scopes So , S... , s-l we create the circuit Cx := makeVariable(Hk=O Sk). Every time

we encounter a particular variable in the AST, we use this same circuit.

4.1.2 Constant Expressions

Constant-valued Alloy expressions such as 5, and such as none, are translated as

constant-valued circuits. The details of translating such expressions are described in

Appendix A.

4.1.3 Operators

In the Alloy AST, an operator has a list of Boolean, relation, or integer values as

inputs, and a Boolean, relation, or integer value as output. Naturally, we will translate

an Alloy operator as a gate in the Boolean circuit. The only complication is that an

Alloy operator can be used on inputs of various sizes, whereas a Boolean gate expects

32

inputs of specific sizes. In particular, we must specify the scopes of all columns of

relation-valued inputs, and the number of bits of all integer-valued inputs.

As an example, consider Alloy's union operator +. This operator takes two rela-

tions of the same type as input, and produces another relation of this same type as

output. The output relation contains exactly those tuples that are in at least one of

the input relations. To translate the union operator into a gate, we must create a gate

with a specific input and output size, which of course depends on the column scopes

of the input and output relations. Since the inputs and output of the union operator

all have the same relational type, the design of the gate only actually depends on the

column scopes of this one type. Thus, we actually need a family of gates parameter-

ized by this list of scopes. We use the notation UNION(so, si, ..., Sn-1) for a gate that

calculates the union of relations whose type has column scopes (o, ..., Sn-1).

We similarly need a family of gates to translate Alloy's integer addition operator

(which also looks like +). SUM(n, m) is the gate that adds an n-bit integer and an

mrn-bit integer.

Precise gate translations of all Alloy operators can be found in the appendix.

4.1.4 Quantifiers

Trhe most straightforward Boolean circuit translation of quantifiers involves the use of

variables setters. For example, consider a quantified expression of the form

some x: Foo I F, where F is any Boolean-valued expression. Let n be the scope of

Foo, Cx be the circuit representing the variable x, and CF be the circuit translation

of F. To obtain the value of the quantified expression, we must take the disjunction

of the values given by F when x takes on every atomic value of type Foo.

Recall that an atomic value in Alloy is really a unary relation containing a single

element. Thus, as a Boolean circuit, an atomic value is represented by an n-bit

constant with exactly one TRUE bit. We can set x to have all such values by using

33

: F

CF

Figure 4-1: Translating an quantified Alloy expression

the variable setters of the form SETTER(CX, 2 i), for 0 < i < n. The circuit representing

the entire quantified expression is then constructed by applying these variable setters

to the circuit CF and taking their disjunction using the gate OR(n). This example is

depicted in Figure 4-1.

Descriptions of how to translate all Alloy quantified expressions into Boolean

circuits can be found in the appendix.

4.2 Optimized Gates

One way to create gates that may have more room for simplification is to make

gates that translate Alloy operators under specific assumptions about the inputs. In

particular, we may make gates that assume that certain of their inputs are identical.

For example, consider a gate C with 3 inputs of width n1, n2 , and n3 respectively.

We may create a version of G that works under the assumption that the first and

third inputs have the same value, and then use this version of G in any context where

the first and third inputs to G are the same circuit.

To create this version of G, we can simply have G look at its first input to obtain

both its first and third input values. In other words, we create the gate:

G(RANGE(n 1 , 0), RANGE(n2 , ni), RANGE(ni, 0))

34

This gate captures the fact that it only actually depends on ni +n 2 Boolean values,

rather than all n1 + n2 + n3 input values. In general, if a gate has several identical

input circuits, we may create an optimized version of this gate by having the gate use

the location of the first of the identical inputs to obtain the values of all the identical

inputs.

Additionally, we may create gates that assume particular inputs have constant

values. To achieve this we will need to use the notation CONST(n, K) to refer to a

constant-valued gate of output width n, whose output values are the bits representing

the integer K. (This is similar to the notation we use for constant-valued circuits.)

These constant-valued gates can be created as a bundle of simple gates with no inputs.

A precise definition can be found in Appendix A.

For an example of optimizing for constant values, here is a version of G that

assumes that its first input is the circuit CONSTANTINT(n1, K1) and its third input is

the circuit CONSTANTINT(n3, K3):

G(CONST(nl, K), RANGE(n2, i), CONST(n3, K3))

This gate may be used in the same way as the unoptimized version, but the optimized

gate ignores the actual first and third input circuit values.

Figure 4-2 shows a how a gate with 4 inputs is optimized both to expect its

first and third inputs to be identical, and also to assume that its fourth input has a

particular constant value. Note that the overall is circuit is not modified in any way

other than replacing the original gate with its optimized version. The same circuits

are fed in as inputs to the optimized gate; the difference is that certain inputs are

ignored by the new gate.

35

--l
Cl: I (Co0STA.TINT(3, 5)

C ' C 2
: . C2

!_ --- -- ' -------

Figure 4-2: Optimizing a gate for a specific configuration of inputs

SS C

C. (SA., IS8) _~

CA CB, CC

.................. :

Figure 4-3: Combining multiple Alloy operations into a single gate

4.3 Combined Gates

We may also create gates that are prime candidates for simplification by combining

multiple Alloy operations into a single gate. For example, consider the Alloy expres-

sion A.B in C, where A, B, and C are are any appropriately typed subexpressions. Let

SA, SB, and Sc respectively be lists of the finite bounds on the column types of the

relations A, B, and C.

In the Alloy AST, this expression takes the form depicted in the leftmost tree

in Figure 4-3. The straightforward circuit translation has a graph representation

isomorphic to the AST, with the gates DOT(SA, SB) performing the . operation and

SUBSET(Sc) performing the in operation. This circuit is depicted as the middle tree

in Figure 4-3. CA, CB, and Cc are the circuits representing the formulas A, B, and C,

respectively. Let nA, nB, and nc refer to output size of these circuits.

36

Alternatively, we could have a single gate perform both Alloy operations. The

following gate, also depicted as the root node of the rightmost circuit in Figure 4-3,

would perform this calculation:

SUBSET(Sc)(DOT(SA, SB)(RANGE(nA,),RANGE(nB,nA)),RANGE(nc,nA + nB))

This gate expects 3 inputs circuits of output size nA, nB, and nc. It feeds the values

from the first two of these circuits into the DOT(SA, SB), and then feeds the outputs

from this gate and the values from the third input into SUBSET(Sc).

More generally, consider a circuit containing a gate node G with k input circuits

Co,...,Ck-1 whose output widths respectively are no,...nk-1. For each Ci that is a

compound circuit, let Gi be the root gate node of Ci and let Ci0,.. .,Ci(k,-1) be the

input circuits to Gi and let nio,...,ni(k~-l) be the output widths of these circuits.

Say that we wish to combine G with certain of the Gi, and in particular let I be

the set of indices of the gates we wish to combine with G.

Let us use the notation G[A0, ...,Ak-1] to refer to the combined gate we desire,

where Ai = Gi if i E I and Ai = ni if i V I.

We create this combined gate as follows:

k --= nij if i I
Let n = { L i

ni if i ¢ I

i--1

Let N' = ni
i' =0

j--1

Let N ='j Z E i

L Gi(RANGE(nio, Ni + N , RANGEni(ki-), N + N'(ki-_))) if i I
RANGE (Ni, n) if i I

37

-- -- - --- - - -- --- - - - --- - -- -- -- -- - -- -- -- - -- - - - - - -

Coo CO C 1 Cll C20

.....................................

Figure 4-4: Combining a gate node with two of its child nodes in the circuit

Then the combined gate we desire is G(G', ..., Gk_1). We reassemble the circuit by

replacing G with this combined gate, and feeding consecutively as inputs into the

combined gate the circuits Ci0,---,Ci(kj-1) if i E I and Ci otherwise.

Figure 4-4 illustrates an example of this procedure, where G has three input

circuits and is combined with the root gates of the first and third input circuits. The

formal notation for this combined gate is G[G0 , ni1 , G2].

38

Chapter 5

Implementation

Recall that the overall goal of this thesis is to translate Alloy models into CNF

formulas. The steps involved in this process are the following:

1. Parsing the Alloy model to create an AST.

2. Converting the AST into a Boolean circuit.

3. Simplifying components of the Boolean circuit.

4. Converting the Boolean circuit into a CNF formula.

The existing Alloy framework takes care of the first step. The basics of step 2

were described in the previous chapter, but some of the details need to be filled in.

In particular, we need to decide when to create combined and/or optimized gates. In

this chapter we will fill in the remaining details of step 2 and also describe steps 3

and 4.

5.1 Creating the Circuit

Once an Alloy model has been parsed, we traverse the AST in depth-first manner,

translating variables, constant expressions, compound expressions, and quantified ex-

39

pressions as described in the previous chapter. In particular, when we translate a

compound expression, consisting of an operator and some subexpressions, we first

find the circuit translations of all the subexpressions, and we obtain the canonical

gate translation of the operator as listed in Appendix A. Next, if any of the circuit

translations of the subexpressions are compound circuits, we may choose to com-

bine the gates at the root of these compound sub-circuits with the current gate, as

described in the previous chapter. Finally, once we have optionally created the com-

bined gate and assembled the compound circuit for the current AST node, we may

check for possible gate optimizations. That is, we check to see if any of the inputs

to the gate are constant-valued circuits, or if any of the inputs are identical circuits,

and replace the gate with a version optimized for this configuration of inputs.

5.2 Simplification

As we create gates, we choose to find simplified representation for certain of them.

Circuit simplification is achieved using the MVSIS logic minimization tool [5] devel-

oped at the University of California, Berkeley. MVSIS provides a number of functions

for manipulating and simplifying logic circuits. MVSIS uses the BLIF-MV format to

specify circuits. BLIF-MV [4] is a robust format which allows for nondeterminism

and multi-valued circuit nodes. We will be using only a small subset of the BLIF-

MV format, in that we will only be dealing with deterministic circuits containing

Boolean-valued nodes.

Appendix B describes the syntax of the subset of BLIF-MV used here. Of note is

the fact that the BLIF-MV table construct describes an on-set or off-set, and thus it

is straightforward to print a simple gate as a BLIF-MV table.

Simplifying a Boolean gate requires three steps: writing the gate in BLIF-MV

format, running MVSIS simplification functions, and recreating a gate from the sim-

40

plified BLIF*-MV model.

Let us first consider writing the gate in BLIF-MV. We must list the names of

the input and output nodes, and then print all the tables that define the network

that relates the input and output nodes. To print the tables we define the procedure

printBlifMVTables, shown in Figure 5-1, that takes a gate and arrays of names to

use for input and output nodes, and prints the series of BLIF-MV tables that together

form a network that performs the gate's calculation. To allow for the procedure to

be used recursively for printing compound gates, there is an additional input, which

is a map from each previously encountered sub-gate to an array of the names used as

the sub-gates output nodes in the network. If the compound gate is not a tree (i.e.

sub-gates are reused), this map will be used by the procedure to recall the output

node names used the first time the sub-gate is encountered.

The procedure will generate fresh names for any internal nodes that are needed.

The outputVars parameter may optionally be null, in which case the procedure will

also generate fresh names for the output nodes, if necessary. However, if any of the

gate's outputs are directly connected from the inputs, as in the case of connector

gates and certain compound gates composed of connector gates, the procedure will

not generate new BLIF-MV nodes for these outputs but rather return the name

of the input node as the name of the output node. This prevents the BLIF-MV

representation of a gate from being unnecessarily large when it contains connector

gates, whose purpose is convenience rather than performing a calculation.

To invoke the printBlifMVTables procedure, we pass in arrays of canonical

names for the input and output nodes (i.e. in-0, in-1, ... and out-0, out-1, ...),

and an empty map.

Once the gate is in BLIF-MV, we can load the gate into MVSIS and apply circuit

simplification commands. The most powerful simplification method available in MV-

SIS tool is called mfs [5] which uses an algorithm created by Mishchenko and Brayton

41

String[] printBlifMVTables(Gate g,

String [] inputVars,

String [outputVars,

Map<Gate->String[]> gateVarMap) {

if (g is-a SimpleGate) {

if (outputVars == null) {

outputVars = [generate array of fresh names]

}

[print a single table representing the on-set or off-set]

return outputVars

} else if (g is-a ConnectorGate) {

[assume g has the form CONNECT<i_O,ii,...,i_{n-i}>

if (outputVars == null) {

return {inputVars[iO],inputVars[il],...,inputVars[i_{n-1}] }
} else {

for (k = 0 to n-1) {

[print a single table with a single input inputVars[k]

and output outputVars[ik], which causes the output

to have the same value as the input]

}

return outputVars

}

} else if (g is-a CompoundGate) {

[assume g has the form G_top(G_O,G_,. ..,G_{n-1})

for (k = 0 to n-1) {

if (gateVarMap.containsKey(Gk)) {

subVars[k] = gateVarMap.get(Gk)

} else {

subVars[k] =

printBlifMVTables(Gk, inputVars, null, gateVarMap)

gateVarMap.put(G_k -> subVars[k])

}

}

topInputVars = concatenate arrays subVars[0],...,subVars[n-1]

return printBlifMVTables(Gtop,topInputVars,outputVars,EMPTY-MAP)

}Figure 5-1: The procedure printBifMVTabes}

Figure 5-1: The procedure printflhifMVTables()

42

[6]. One of the main techniques used, developed by Savoj [7], is the calculation of

the flexibility of internal nodes in the form of don't care values. That is, roughly, it

finds situations for which the values of particular nodes in the circuit don't matter,

and uses this to simplify the nodes.

Unfortunately, as currently implemented, mfs times out on the BLIF networks of

some of the larger gates, particularly the combined gates. (see Chapter 6). In the

cases when mrnfs times out, we try a simpler version (fullsimp) of this algorithm, and

if this also times out, we leave the network as is.

As we simplify gates, we would like to remember the simplified representation of

each gate we simplify, so that when we encounter the same gate in the future, we can

avoid repeating the same simplification work that was already done. To this end, after

running the MVSIS simplification algorithm, we save the simplified network in BLIF-

MV format in a file whose name is taken from the Boolean gate we are simplifying.

The next time we encounter this gate, we see that a file exists containing the simplified

network, and so we skip directly to the final step of recreating a Boolean gate from

this BLIF-MV model. In this way, we actually build up a database of pre-simplified

Boolean gates that will be available not only later in the construction of the same

Alloy model, but even for future Alloy sessions.

Finally, let us consider the task of parsing the simplified BLIF-MV model to

reconstruct aL new, simplified Boolean gate. Recall that the BLIF-MV model consists

of a list of tables, one for each output node and one for each internal node. We

construct a map of node names to BLIF-MV tables. We then assemble the tables

into a Boolean gate using the procedure constructGate, shown in Figure 5-2.

In particular, we first invoke constructGate on the name of the first output

node, the map of BLIF-MV tables constructed by parsing the BLIF-MV model, and

an empty map of gates. We then proceed to invoke the procedure for the name

of each subsequent output node, passing in the same maps, the latter of which is

43

Gate constructGate(String outputVar,

Map<String->String> tableMap,

Map<String->Gate> gateMap) {

if (gateMap.containsKey(outputVar)) {

return gateMap.get(outputVar)

} else {

String table = tableMap.get(outputVar)

[parse table to produce the following values:

Gate G = simple gate based on the table's on-set or off-set

String[inputVars = list of names of input nodes

int n = number of input nodes]

for (int k = 0 to n-1) {

if (inputVars[k] is one of the network's input nodes) {

[assume inputVars[k] is the ith input node]

childGates[k] = CONNECT<i>

} else {

childGates[k] =

constructGate(inputVars[k], tableMap, gateMap)

}

}
Gate resultGate = G(childGates[0],...,childGates[n-1])

gateMap.put(outputVar -> resultGate)

return resultGate

}Figure 5-2: The procedure constructGate
Figure 5-2: The procedure construct Gate()

44

accumulating all the gates constructed for the internal nodes of the circuit. Finally,

once we have created gates for each output node, we bundle these together using a

connector gate.

5.3 Converting into CNF

Finally, we have a Boolean circuit representing the Alloy model, with various gates

having been simplified as desired. It remains to convert this Boolean circuit into

conjunctive normal form (CNF), so that it can be solved by a SAT solver tool.

One way to accomplish this would be to start by desugaring out all the variable

setters that appear in the circuit. Once the circuit contains only variables and gates,

it would be straightforward to print the entire circuit in BLIF-MV. We could then

mechanically translate the BLIF-MV network into CNF by creating CNF variables

for each node in the network, and creating clauses to establish the correct relationship

between the inputs and outputs of each table in the network.

However, if possible, it would be desirable to take advantage of other translation

optimizations that are already used in the Alloy Analyzer. In particular, the current

Analyzer tool makes use of shared sub-formulas in quantified expressions, to create

more compact CNF formulas [3]. This optimization in fact achieves a significant

reduction in CNF size, to the point of making manageable formulas out of Alloy

models that would otherwise have Boolean representations too large to be reasonably

processed by a SAT solver.

In our Boolean circuit, quantified expressions are expressed by the use of multiple

variable setters to set values in a single sub-circuit. By desugaring out the variable

setters, we would lose the opportunity to benefit from the sharing analysis. Thus,

we instead translate the circuit into a Boolean formula representation that includes a

construct equivalent to variable setters, which is used in the current implementation

45

of Alloy. By putting our circuits into this form, we can take advantage of the infras-

tructure that already exists to detect sharing in these formulas and then to create

CNF translations.

46

Chapter 6

Results

To measure the success of the proposed Boolean circuit translation system, we tested

its effectiveness on the following three Alloy models:

* dijkstra: A model that demonstrates that Dijkstra's mutex ordering criterion

prevents deadlocks. We check that the criterion succeeds in preventing dead-

locks for 5 processes and 5 mutexes in traces of up to length 5.

* handshake: A model of Paul Halmos's puzzle involving handshakes among

couples at a dinner party. We find a solution in the case of 5 couples, i.e. 10

people.

* stable-mutex-ring: A model of Dijkstra's self-stabilizing mutual exclusion

algorithm for rings. We find a non-repeating trace of the algorithm with 3

nodes and 5 time-steps.

In choosing scopes, it was desirable to keep them small enough to produce gates

that could be handled by the MVSIS simplification tools. With respect to gates rep-

resenting single Alloy operators, the (transitive closure) and * (reflexive transitive

closure) operators, which are unary operators whose input is a binary relation with

47

two columns of the same type, proved to be the most troublesome. The mfs simpli-

fication function timed out on the gates representing these operators when the scope

of the column types was 6 or higher. As a result, we avoided using scopes above 5 for

the dijkstra and stable-mutex-ring models. The handshake model does not use

either of these operators, making it possible to set a scope of 10 for the Person type

without timing out on any gates representing single operators.

We chose to simplify all gates that represented combinations of Alloy operators.

For the gates representing single Alloy operators we only simplified those that were

complex enough such that it was not obvious that the straightforward translation was

the simplest.

We tested each of the following paradigms for deciding which gates to combine:

* basic simplified: Do not combine any gates. This will illustrate the benefit

just from simplifying gates corresponding to single Alloy operators.

* unary-up: Combine each gate with any child nodes in the circuit that are

unary gates.

* unary-down: Combine every unary gate whose child node is a gate with the

child gate.

* level2: For each gate, if the sub-circuit rooted at this gate had depth 2 and

contains no variable setters, combine the gate with the other gates in the sub-

circuit.

We also performed the following additional tests, that do not make use of any circuit

simplification:

* unsimplified: Use our circuit translation, but do not simplify any Boolean

gates.

48

* no circuits: Use the preexisting Alloy translation implementation. This should

in general be very similar to the unsimplified circuit translation.

In Tables 6.1 and 6.2, we list the time taken by the MVSIS tool to simplify

the gates used in the circuit translations of the above three models. Under the

basic simplified paradigm, the only gates used are the ones in Table 6.1 and other

gates representing single operators that are too trivial to be worth simplifying. The

combined gates listed in Table 6.2 were created in accordance with one or more of

unary-up, unary-down, or level2.

In Tables 6.3, 6.4, and 6.5, we list the size of the CNF generated when using each

of the above paradigms. We also provide the time taken by two different SAT solvers,

Berkmin and Mchaff, to find solutions for the CNF formulas, or conclude that there is

no solution in the case of the dijkstra model. For each test, 5 trials were conducted

under Red at Linux 8.0, on a 2GHz Pentium IV laptop with 256MB RAM. The

times listed in the tables are the average of 5 trials. While the times are somewhat

subject to statistical variation, essentially all the trials fell within 10% of the average,

indicating that the times are fairly accurate.

We provide the results both with and without using the sharing optimization.

Keep in mind that in the basic simplified trial, all occurrences of a particular Alloy

operator (with particular input sizes) have the same translation. However, when

gates are combined, this is no longer the case, so the opportunities for sharing are

reduced. Thus, combining gates is only worthwhile if the gain from the additional

simplification outweighs the loss of sharing.

The results in the tables correspond to performing the translation without opti-

mizing any gates. Unfortunately, optimizing gates did not generate any change in

CNF size on any of the examples used here. It seems likely that optimizing gates to

expect constant inputs would not generally result in much improvement in CNF size,

since the presence of constants will reduce CNF size anyway. Optimizing gates to

49

Table 6.1: Gate simplification times for individual Alloy operators

expect certain inputs to be identical seems more promising, although this might only

be helpful on gates that were too large to be simplified by our use of MVSIS.

Overall, the results here are promising. In every case when sharing is not used,

simplifying only the gates for basic Alloy operators results in a CNF size reduction of

10% or more. The unary-up paradigm produces a further small improvement. How-

ever, the unary-down and level2 paradigms unfortunately did not generate further

improvement. This is due in part to the fact that a number of the combined gates

created by the level2 paradigm caused MVSIS to time-out. With a more robust sim-

plification method that could handle large gates, it is quite possible that a significant

improvement could be obtained.

The timing benefits are not as apparent in these results. It should be noted that

in the model that yields no instance (dijkstra), there is generally a direct correspon-

dence between CNF size and solution time, since the SAT solver must always search

through the entire space of possible boolean assignments. However, the solution time

is less predictable for the other two models, since the solver stops as soon as it finds

the instance.

Also, it is important to realize that time taken to simplify the Boolean gates, as

listed in Tables 6.1 and 6.2, are not negligible relative to the solution time. Thus, if

we were to perform the simplifications anew during each Alloy translation run, any

50

gate simplification time (sec)
ATMOST(3,2) 0.10
CARDINALITY(10) 0.92
CARDINALITY(3) 0.24
CARDINALITY(4) 0.10
CARDINALITY(5) 0.10
REFLEXIVETRANSITIVECLOSURE(5) 5.31
SOLE(1) 0.09
SOLE(3) 0.21
SOLE(4) 0.10
SOLE(5) 0.11
SOLE(10) 0.22
TRANSITIVECLOSURE(3) 0.13
TRANSITIVECLOSURE(4) 0.33
TRANSITIVECLOSURE(5) 6.02

gate simplification time (sec)~~~~~~~~~~~~~~~~

ATMOST(3,2)[CARDINALITY(4), CARDINALITY(3)]
AND(2)[AND(1), AND(5)]
AND(2)[NOT, 1]
AND(2) [NOT, SLE(1)]
AND(2) [NOT, S0LE(3)]
AND(2) [NOT, SOLE(4)]
AND(2) [NOT, SOLE(5)]
AND(2)[NOT, SOLE(10)]
CARDINALITY(10)[DOT((10), (10, 10))]
DIFF(5)[5, DOT((1), (1,5))]
DIFF(5)[5, DOT((5), (5,5))]
DOT((3), (3,4))[3,DOT((5), (5,3,4))]
DOT((3), (3,3))[3, TRANSITIVECLOSURE(3)]
DOT((3), (3,4))[DOT((3),(3, 3)),DOT((5),(5,3,4))]
DOT((4), (4,4))[4, TRANSITIVECLOSURE(4)]
DOT((5), (5,5))[5,DOT((1),(1, 5,5))]
DOT((5), (5,5))[5, DOT((5), (5,5,5))]
DOT((5), (5,5))[5, REFLEXIVETRANSITIVECLOSURE(5)]
DOT((5), (5,5))[5, TRANSITIVECLOSURE(5)]
DOT((5), (5, 5))[5, TRANSPOSE(5, 5)]
DOT((5), (5,5))[DOT((1), (1, 5)), DOT((1), (1,5,5))]
DOT((5), (5, 5))[DOT((5), (5, 5)), DOT((5), (5, 5, 5))]
DOT((5), (5,5, 5))[DOT((1), (1,5)), 125]
DOT((10), (10, 10))[DOT((10), (10, 10)), 100]
EQUALITY(5)[5, DOT((1), (1, 5))]
EQUALITY(10)[10, DOT((10), (10, 10))]
EQUALITY(10)[DOT((10), (10, 0)), 0]
EQUALITY(10)[DOT((10), (10, 10)),DOT((10), (10, 10))]
EQUALITY(12)[DOT((5), (5, 3, 4)), DOT((5), (5, 3, 4))]
EQUALITY(25) [25, TRANSPOSE(5, 5)]
EQUALS(4, 4)[CARDINALITY(10), 4]
EQUALS (4, 4)[CARDINALITY(10), CARDINALITY(10)]
NOTIEQUALITY(3)]
NOT[EQUALITY(4)]
NOTIEQUALITY(10)]
NOTISUBSET(1)]
NOT|SUBSET(3)]
NOT[SUBSET(4)]
NOT[SUBSET(5)]
NOT[SUBSET(10)]
OR(2) [NOT, 1]
OR(2) [NOT, NOT]
REFLIEXIVETRANSITIVECLOSURE(5)[DOT((1), (1,5, 5))]
SUBSET(3) [3, DOT((5), (5,3))]
SUBSET(3)[DOT((3), (3,3)), 3]
SUBSET(3)[DOT((5), (5,3)),3]
SUBSET(4)[DOT((4), (4,4)),4]
SUBSET(5)[DOT(1), (1,5)), 5]
SUBSET(5) [DOT((5), (5,5)), 5]
SUBSET(5) [INTERSECTION(5), 5]
SUBSET(10)[10, DIFF(10)]
SUBSET(10)[10,DOT((10), (10, 10))]
SUBSET(10)[DOT((10), (10, 10)), 10]
SUBSET(10)[INTERSECTION(10), 10]
SUBSET(12)[DOT((5), (5,3,4)), ARROW(3,4)]
SUBSET(25)[DOT((1), (1, 5,5)), ARROW(5, 5)]
SUBSET(25)[DOT((5),(5,5,5)), ARROW(5,5)]
TRANSITIVECLOSURE(5)[DOT((1), (1,5,5))]
TRANSPOSE(5, 5)[DOT((1), (1,5,5))]
TRANSPOSE(5,5)[DOT((5), (5,5, 5))]
UNION(10) [10, DOT((10), (10, 10))]

0.12
0.34
0.10
0.09
0.10
0.10
0.10
0.98
mfs and
0.21
0.16
0.39
0.14
0.99
0.59
0.182
0.521
4.07
7.87
0.11
0.35
3.10
0.235
mfs and
0.22
48.5
100.13

fullsimp timed out

fullsimp timed out

mfs and fullsimp timed out
mfs and fullsimp timed out
0.27
0.20
0.53
0.10
0.1
0.13
0.09
0.09
0.10
0.09
0.16
0.09
0.09
4.89
0.15
0.10
0.26
0.17
2.68
0.17
0.16
0.16
9.63
14.32
0.17
209.55
mfs timed out; fullsimp time: 12.5
mfs and fullsimp timed out
9.04
0.11
0.23
D0.28. _

Table 6.2: Gate simplification times for combined gates

51

gate simplification time (sec)
_ A x A

_
. . .

no sharing sharing

________ CNF size solution time (sec) CNF size U solution time (sec)
vars | clauses Berkmin | Mchaff vars | clauses Berkmin Mchaff

| no circuits 27984| 73076| 33.4 | 56.9 | 15347 42281 33.4 56.9

unsimplified 29367 76975 35.6 244.3 16557 45480 7.7 46.9

basic simp. 26104 69194 23.1 153.6 13278 37659 9.5 31.1

unary-up 25972 68960 30.1 884.4 13162 37465 6.2 23.2

unary-down 26104 69194 21.8 552.9 13278 37659 9.5 34.4
level2 26104 69194 30.0 1241.9 13343 37789 6.9 48.8

Table 6.3: Results for dijkstra model

.__________ -no sharing sharing
C__NF size U solution time (sec) II CNF size solution time (sec)

var-s--Tclauses B --- T~chaff vars clauses Berkmin | Mehaff
no circuits 15846 | 53395 251.8 192.2 6977 19261 11.5 187.2

unsimplified 14467 43157 9.7 timeout 7313 17589 1.57 10.1

basic simp. 12141 32768 198.7 15.6 10849 25781 18.3 23.2

unary-up 12135 32763 153.4 49.3 12035 32753 127.9 165.2

unary-down 13669 40323 40.5 timeout 6605 14755 1.68 20.3
level2 12141 32768 93.6 16.0 10849 25781 34.6 23.2

Table 6.4: Results for handshake model

no sharing sharing
_ _ CNF size || solution time (sec) CNF size [solution time (sec) |

__ _ fi vars clauses Berkmin Mchaff vars clauses Berkmin Mehaff

no circuits 7600 20614 I 0.56 0.12 [5606 [13898 U| 0.49 0.09 [

unsimplified 8312 22927 0.87 0.27 6105 15624 0.53 0.10

basic simp. 6637 18907 0.57 0.13 4422 11584 0.43 0.10
unary-up 6570 18787 0.55 0.11 4363 11484 0.39 0.08
unary-down 6637 18907 0.57 0.14 4422 11584 0.43 0.10
level2 f 6636 18904 0.59 0.12 4441 11621 0.43 0.08

Table 6.5: Results for stable-mutex-ring model

52

timing benefits from the shorter solution time might be canceled out by the time taken

by the MVSIS tool for simplification. Fortunately, as described in Chapter 6, as we

perform simplifications, we create a database of pre-simplified BLIF-MV networks. By

providing users of the Alloy tool with a database containing pre-simplified versions

of commonly used gates, we can avoid losing time to simplification. In fact, even

providing pre-simplified gate representations only of individual Alloy operators, such

as those listed in Table 6.1, would be useful, since much of the CNF size reduction

exhibited in these experiments came just from simplifying these gates.

53

54

Chapter 7

Conclusion

There is certainly potential benefit to using simplified boolean representations of

various Alloy components. Simply finding reduced versions of basic Alloy operators

in models of relatively small scope led to some reduction in CNF size.

However, there is clearly more research to be done with regards to simplifying

larger-size boolean networks. The boolean gates that represent larger Alloy operators

and combinations of operators, which are produced by the circuit translation imple-

mented here., provide good benchmarks with which to challenge researchers in logic

minimization.

7.1 Future Work

Ilya Shlyakhter has developed an optimization that uses symmetry-breaking predi-

cates to reduce the CNF size for an Alloy model [8]. If certain instances of an Alloy

model are symmetric, we are only interesting discovering one of them. Given a pred-

icate that is true for one instance in every symmetry class, it is only necessary to

search for instances that satisfy this predicate. A number of such predicates can be

found by analyzing an Alloy model.

These symmetry-breaking predicates may provide another way to optimize gates

55

in our boolean circuit representation. The BLIF-MV format supports the inclusion

of don't care networks in a circuit specification. It should be possible to use the

don't care networks to indicate that we don't care about output values in situations

where the symmetry-breaking predicates don't apply. This would provide additional

flexibility in gate simplification, which could bring further reduction in boolean circuit

size.

56

Appendix A

Standard Translations

A.1 Operators

We provide standard translations of Alloy compound expressions by representing
operators as boolean gates.

We use the following shorthand notation:

GATE[io, ... , i~i] := GATE(CONNECT(io), ... , CONNECT(in_))

We also make use of the following gates:

NOT := ONSET { 0 }

k columns

AND(k)= ONSET 1 ... 1 }

k columns

OR(k) := OFFSET{ 0 0 ... 0 }

IMPLIES:= OFFSET { 1 0 }

IFF:= ONSET I }
TRUE:= OFFSET {}

FALSE:= ONSET {}

57

CONST(n, k) := BUNDLE(n)(CONSTBIT(O, k),

CONSTBIT(1, k),

CONSTBIT(n - 1, k))

CONSTBIT(i, k) :=
FALSE

TRUE

if (k mod 2i+1) < 2i
otherwise

~ CONNECT</>BITA(i, n, m) := LCONNECT(i)
FALSE

CONNECT)i + nBIT_B(i,n,m) := CFALEC

if 0 < i < n

if i >n

if <i<m
if i>m

The following functions give a canonical ordering of elements in a multidimensional
array:

flatIndex((io,
n-1 n-1

·- -,in-1), (O, --, Sn-1)) = Z ik
k=O k'=k+l

SkW)

realIndex(i, (so, ..., Sn-l))

the (io, ... ,in-1) such that flatIndex((io, ... , in_1), (so, ... , Sn-1)) = i

n-1
flatSize((so, ..., Sn-1)) = Sk

k=O

Here are the translations of Alloy operators to boolean gates:

IA && B -- AND(2) |

A and B are booleans

|A II B - OR(2)

A and B are booleans

IA <=> B - IFF I

A and B are booleans

|A => B - IMPLIES

A and B are booleans

58

[A -- NOT

A is a boolean

[A in B - S'UBSET(n)

A and B both are relations with column scopes S
n = flatSize(S)

SUBSET(n):= AND(n)(IMPLIES[O,n],

IMPLIES[I, n + 1],

IMPLIES[O, n])

IA B --+ EQUALITY(n)
A and B both are relations with column scopes S
n = flatSize(S)

EQUALITY(n) := AND(n)(IFF[0, n],

IFF[1,n + 1],

IFF[0, n])

no A --+ NO(n)

A is a relation with column scopes S
n = flatSize(S)

NO(n) := EQUALS(Llogn] + 1,)(CARDINALITY(n),CONST(l,0))

sole A -- SOLE(n)

A is a relation with column scopes S
n = flatSize(S)

SOLE(n) := ATMOST([ilognj + 1, 1)(CARDINALITY(n), CONST(l, 1))

one A -- > ONE(n)

A is a relation with column scopes S
n = flatSize(S)

ONE(n) := EQUALS(Llognj + 1, 1)(CARDINALITY(n), CONST(1, 1))

59

two A - TWO(n)

A is a relation with column scopes S
n = flatSize(S)

TWO(n):= EQUALS([logn] + 1, 2)(CARDINALITY(n), CONST(2,2))

some A --+ SOME(n1
A is a relation with column scopes S
n = flatSize(S)

SOME(n):= GREATERTHAN(LlognJ + 1, 1)(CARDINALITY(n), CONST(1, 0))

A. B- DOT(S, T)

A is a relation with column scopes S = (SO, ... , Sp-1)

B is a relation with column scopes T = (to, ... , tq-1)

k = sp-1 = to
the resulting expression has relational type R = (So ..., Sp-2, t 1 , ... , tq-1)

n = flatSize(R)

DOT(S, T):= BUNDLE(n)(DOT-COMPONENT(reallndex(O, R), S, T),

DOTCOMPONENT(realIndex(1, R), S, T),

DOTCOMPONENT(reallndex(n - 1, R), S, T))

DOTCOMPONENT(io, ip+q-2), S, T) =

OR(k)(AND(2)[flatIndex((io, ..., ip_2, 0),S),
flatIndex((O, ip, ..., ip+q-2), T) + flatSize(S)

AND(2)[flatIndex((io, ..., ip-2, 1), S),
flatIndex((1, ip_1, ..., ip+q-2), T) + flatSize(S)

AND(2)[flatIndex((io, ... , ip- 2, k - 1),S),

flatlndex((k - 1, ip_, ..., ip+q-2), T) + flatSize(S))

60

[A + B -+ UNION(n)|

A and B both are relations with column scopes S
n = flatSize(S)

UNION(n) := BUNDLE(n) (OR(2) [0, n],

OR(2)[1, + 1],

OR(2)[n - 1, 2n])

LA & B - INTERSECTION(<n)

A and B both are relations with column scopes S
n = flatSize(S)

INTERSECTION(n) := BUNDLE(n)(AND(2)[0,n],

AND(2) [1, n + 1],

AND(2)[n - 1, 2n])

A - B DIFF(r)

A and B both are relations with column scopes S

n = flatSize(S)

DIFF(n) :=BUNDLE(n)(DIFFBIT[0,n],

DIFFBIT[1, n + 1],

DIFFBIT[n - 1, 2n])

DIFFBIT := ONSET { 0 }

61

A -> B -+ ARROW(S,T)

A is a relation with column scopes S = (so,..., Sp-1)
B is a relation with column scopes T = (to, ..., tq_1)
the resulting expression has relational type R = (so, ..., Sp-1, to, ... , tq-1)

n = flatSize(R)

ARROW(S, T):= BUNDLE(n) (ARROWCOMPONENT(realIndex(O, R), S, T),

ARROWCOMPONENT(realIndex(l, R), S, T),

ARROWCOMPONENT(reallndex(n - 1, R), S, T))

ARROWCOMPONENT((io, ... , ip+q_1), 5, T) :

AND (2) [f latIndex ((io, ., /p- l), S),

flatIndex((ip, ..., ip+q_1), T) + flatSize(S)

A -+ TRANSPOSE(so,)

A is a binary relation with column scopes (so, S1)

n = flatSize((s 1, so))

TRANSPOSE(so, Si) := BUNDLE(n)(TRANSPOSEIT(realIndex(O, (Si, So)), (o, Si)),

TRANSPOSEIT(reallndex(1, (Si, So)), (o, Si)),

TRANSPOSEBIT(realIndex(n - 1, (i, So)), (So, Si)),

TRANSPOSEBIT((il, io), (So, Si)) := CONNECT(flatIndex((io, i), (o, Si)))

^A -+ TRANSITIVECLOSURE(s)]
A is a binary relation with column scopes (s, s)
n = flatSize((s, s))

TRANSITIVECLOSURE(s) := SQUARED([log sl, s)

BUNDLE(n) if i = 0

SQUAREDis) SQUARER(s)(SQUARED(i - 1, s)) if i > 0

SQUARER(s) := UNION(n)(BUNDLE(n),DOT((s, s), (s, s))(BUNDLE(n),BUNDLE(n)))

62

*A REFLEXIVETRANSITIVECLOSURE(s)

A is a binary relation with column scopes (s, s)
n = flatSize((s, s))

REFLEXIVETRANSITIVECLOSURE(s) :

UNION(n)(IDENTITY(s), TRANSITIVECLOSURE(s))

IDENTITY(s) := BUNDLE(n)(IDENTITYBIT(reallndex(O, (s, s))),

IDENTITYBIT(realIndex(, (s, s))),

IDENTITYIT(reallndex(n - 1,(s,s))))

{ TRUEIDENTITYBIT((io, i1)) := FALSE
if io = il
if io~

[f A then B else C --+ IFTHENELSE(n)

A is a boolean
B and C both are relations with column scopes S
n = flatSize(S)

IF_THENELSE(n) := BUNDLE(n)(IFTHENELSEBIT[0, 1, n + 1],

IFTHENELSEBIT[0, 2, n + 2],

IFTHENELSEBIT[O, n, 2n])

IFTHEN ELSEBIT := ONSET {
11 -1
0 -

63

A = B -+ EQUALS(n, m)

A is an n-bit integer
B is an m-bit integer

EQUALS(n,m) :=

AND(max(n, m))(IFF(BITA(O, n, m), BITB(O0, n, m)),
IFF(BITA(1, n, m), BITB(1, n, m)),

IFF(BITA(max(n, m) - 1, n, m), BITB(max(n, m) - 1, n, m)))

A <= B AT MOST(n, m)

A is an n-bit integer
B is an m-bit integer

ATMOST(n, m) := COMPARATOR(mrax(n, m) - 1, n, m)

TRUE if i = 0

AND(2)(COMPARATOR(i - 1, n, m),
COMPARATOR(i, n, m) := IMPLIES(PREV EQUAL(i, n, m),

IMPLIES(BITLA(, n, m), if i >
BITB(i, n, m))))

TRUE if i = 0

PREVEQUAL(iL, n, m) AND(2)(PREEQUAL(- 1, n, m),
PREV________ n,_m_ := {IFF(BITA(i - 1, n, m), if i > 0

BITB(i - 1, n, m)))

A < B - LESSTHAN(n, mn)

A is an n-bit integer
B is an m-bit integer

LESS-THAN(n, m) := AND(2)(AT-MOST(n, m), NOT(EQUALS(n, m)))

A >= B ATLEAST(n, Im)

A is an n-bit integer
B is an m-bit integer

ATLEAST(n, m) := NOT(LESSTHAN(n, m))

64

IA > B -+ GREATER_THAN(n, m)
A is an -bit integer
B is an rn-bit integer

GREATER_THAN(n, m) := NOT(ATMOST(n,))

LA + B SUM(n,)

A is an n-bit integer
B is an m-bit integer

SUM(n, m) := BUNDLE(max(n, m) + 1) (SUMBIT(O, nm),

SUMBIT(1, n, m),

SUMBIT(rax(n, m), n, m))

SUMBIT(i, n) := SUMMER(BITA(i,n),

BITB(i,n),
CARRYBIT(, n))

CARRYBIT(i, n) :=

FALSE

CARRIER(BITA(i- 1, n),
BITB(i- ,n),
CARRYBIT(i - 1, n))

SUMMER := ONSET

CARRIER:= ONSET {

65

if i = O

ifi > O

1

0

0

1

1

1

0 0
1 0
0 1

1 1

- 1
1 1J

#A -+ CARDINALITY(n) I
A is a relation with column scopes S
n = flatSize(S)
mid=

CARDINALITY(n):=

CONNECT(O) if n = 1

SUM([log midJ + 1, log(n- mid)J + 1)
(CARDINALITY(mid)(RANGE(mid, 0)), ifn > 1

CARDINALITY(n - mid) (RANGE(n - mid, mid)))

A.2 Constants
Here are translations of constant-valued Alloy expressions into constant circuits:

none A -+ CONSTANTINT(n, 0)

A is a relation with column scopes S
n = flatSize(S)

univ A -+ CONSTANTINT(n, 2 - 1)

A is a relation with column scopes S
n = flatSize(S)

iden A -+ CONSTANTINT(s2, Ei~- Z- {2E if = j=0 if i 4j

A is a relation with column scopes (s, s)
Furthermore, an integer literal K is translated as the circuit CONSTANT(Llog KJ + 1).

A.3 Quantifiers

some x:T FI
F is a boolean-valued expression
The translation for this form of quantified expression is described in Chapter 4.

all x:T F

F is a boolean-valued expression
The translation for this form of quantified expression is the same as with the some

quantifier except that the OR gate is replaced with an AND gate.

66

sum x:T I N]

N is an integer-valued expression
The translation for this comprehension expression is the same as the expression

with the some quantifier except that the OR gate is replaced with an SUM gate, so that
the overall expression has an integer value.

[{x:T I F}|
F is a boolean-valued expression
The translation for this comprehension expression is the same as the expression

with the some quantifier except that the OR gate is replaced with an BUNDLE gate, so
that the expression has the same relational value as T.

67

68

Appendix B

BLIF-MV

This appendix describes the small subset of BLIF-MV used in this thesis. A BLIF-
MV model is a unit that represents a boolean network with any number of input and
output nodes. As such, a model captures our concept of a boolean gate.

Here is the syntax of a model in BLIF-MV:

.model <model-name>

inputs <input-list>

.outputs <output-list>

<table>

· .. ·

<table>

.end

<model-name> is a string that names the model.

<input-list> is a white-space separated list of strings that name the network's
input nodes. (If there are no input nodes, this line may be omitted.)

<output-list> is a white-space separated list of strings that name the network's
output nodes.

A <table> determines the value of a particular node from a list of other nodes
using on-set/off-set notation, just like our concept of a simple gate. The syntax for a
table is:

table <in-l> <in-2> ... <in-n> <out>
.default <default-val>
<relation>
... .

<relation>

The <in-i>s name the inputs nodes for this table, and <out> names the output
node.

69

<default-val> is either 1 or 0. It indicates what the value of <out> will be
if none of the <relation> lines hold, with 1 indicating TRUE and 0 indicating
FALSE. Thus, if <default-val> is 0, the <relation>s will specify an on-set, and
if <default-val> is 1, the <relation>s will specify an off-set.

Each <relation> is a white-space separated list of n + 1 characters. The last
character must be 0 if <default-val> is 1, and 1 if <default-val> is 0. The first n
characters must be one of 1, 0, or -.

The value of a table's output node is determined as follows: For any <relation>,
if for all i such that the ith character is 1 <in-i> is TRUE, and for all j such that the
jth character is 0 <in-j> is FALSE, then <out> takes on the value indicated by the
(n + 1)th character (i.e. the opposite of <default-val>). If none of the <relation>s
apply, then <out> takes on the value <default-val>.

A table's output node may either be one of the network's output nodes named in
<output-list> or an internal node named neither in <input-list> nor
<output-list>. In order that the network be deterministic, each of the network's
output nodes and every other internal node used in the network must be the output
of exactly one table. The network's input nodes may not be used as the output of a
table.

There may be not be any cyclic dependencies among the nodes of the network.
That is, if we define a depends-on relation that relates the output node of a table to
all input nodes of a table, this relation may not be cyclic.

70

Bibliography

[1] Daniel Jackson, Ilya Shlyakhter, and Manu Sridharan. A micromodularity mech-

anism. Proceedings of the ACM SIGSOFT Conference on the Foundations of

Software Engineering / European Software Engineering Conference (FSE / ESEC

'01), September 2001.

[2] Daniel Jackson. Automating first-order relational logic. Proc. ACM SIGSOFT

Conf. Foundations of Software Engineering, November 2000.

[3] Ilya Shlyakhter, Manu Sridharan, Robert Seater, and Daniel Jackson. Exploit-

ing subformula sharing in automatic analysis of quantified formulas. 6th Inter-

national Conference on Theory and Applications of Satisfiability Testing (SAT

2003), Portofino, Italy, May 2003.

[4] R. K. Brayton, M. Chiodo, R. Hojati, T. Kam, K. Kodandapani, R. R Kurshan,

S. Malik, A. L. Sangiovanni-Vincentelli, E. M. Sentovich, T. Shiple, K. J. Singh,

and H.-Y. Wang. BLIF-MV: An interchange format for design verification and

synthesis. Technical report, University of California, 1991.

[5] Minxi Gao, Jie-Hong Jiang, Yunjian Jiang, Yinghua Li, Subarna Sinha, and

Robert Brayton. Mvsis. In the Notes of the International Workshop on Logic

Synthesis, June 2001.

71

[6] Alan Mishchenko and Robert Brayton. Simplification of non-deterministic multi-

valued networks. IEEE/ACM International Conference on CAD, ICCAD 02,

November 2002.

[7] Hamid Savoj. Don't cares in multi-level network optimization. PhD thesis, Uni-

versity of California at Berkeley, Berkeley, CA, 1992.

[8] Ilya Shlyakhter. Generating effective symmetry-breaking predicates for search

problems. Electronic Notes in Discrete Mathematics, June 2001.

72

