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Abstract

We consider an extension of the proximal minimization algorithm where only some of the minimization

variables appear in the quadratic proximal term. We interpret the resulting iterates in terms of the iterates of

the standard algorithm and we show a uniform descent property, which holds independently of the proximal

terms used. This property is used to give simple convergence proofs of parallel algorithms where multiple

processors simultaneously execute proximal iterations using different partial proximal terms. We also show

that partial proximal minimization algorithms are dual to multiplier methods with partial elimination of

constraints, and we establish a relation between parallel proximal minimization algorithms and parallel

constraint distribution algorithms.
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1. INTRODUCTION

Let us consider the proximal minimization algorithm defined by

Xk+1 = arg min f(x)+ L- xlii2. (1)

Here c is a positive constant, 1-l1 denotes the standard Euclidean norm on "n, and f: n -- (-oo, oc]

is a closed proper convex function [Roc70], that is, an extended-real-valued, lower semicontinuous

convex function on Rn, which is not identically +oo. It is well known that, starting from an arbitrary

x0 CG n, the sequence {xk} converges to a minimizer of f if there exists at least one minimizer, and

diverges otherwise.

The algorithm, originally proposed by Martinet [Mar70], [Mar72], and further refined and ex-

tended by Rockafellar [Roc76], is useful for "regularizing" the minimization of f, through the addi-

tion of the strongly convex term lix - zk][2. The algorithm is also useful in a dual context, where

f is the dual function of a constrained nonlinear programming problem and x is a vector of La-

grange multipliers. Then, by using the Fenchel duality theorem, the proximal iteration (1) can be

interpreted as an augmented Lagrangian iteration, that is, a minimization of a quadratic augmented

Lagrangian function associated with the primal problem, followed by a Lagrange multiplier update.

This interpretation, first given by Rockafellar [Roc73], can be found in several sources, e.g. [Ber82],

[BeT89].

In this paper, we focus on a variation where the vector x is partitioned in two subvectors xi and

X2

= (Xl, X2)

with x1 CE nl, X2 E Rn2, nl + n2 = n, and the proximal term lix - xkll 2 is replaced by the portion

involving only the subvector xi, that is,

(Xl+ ,X2i) E arg min {nf(xl,2) + - ixI - xki2}. (2)

We call this the partial proximal minimization algorithm, but hasten to observe that it can be viewed

as a special case of the ordinary algorithm (1) with f(xz, X2) replaced by

fi(x) = min f(xl,x2),
x2Egin2

assuming that the minimum of f above is attained for all x2 C ~n2. Thus, the sequence {xz} is

in effect generated by applying the ordinary algorithm to the function fl, while 4x is obtained by

minimizing f(x,zx2) with respect to x2, after z has been computed. It follows that tha e convergence



properties of the partial algorithm can be inferred from those of the ordinary one; in fact this has

been demonstrated by [Ha90]. The partial algorithm, however, allows a choice between several

partial proximal terms, and also allows the simultaneous use of several different proximal terms in

a parallel computing context. When such possibilities are considered, the theory of the ordinary

algorithm is not directly applicable and a new analysis is needed. Our main purpose in this paper

is to provide such an analysis.

Our interest in the partial algorithm stems from a recent work of Ferris and Mangasarian [FeM91]

and of Ferris [Fer91] on parallel constraint distribution. Parallel constraint distribution is an aug-

mented Lagrangian type algorithm for convex programming whereby at each iteration the constraints

are partitioned into subsets and, for each subset, an augmented Lagrangian subproblem in which

constraints not of the subset appear in the augmented Lagrangian is solved; the multipliers obtained

from each of the subproblems are then combined in some simple fashion to yield a new set of mul-

tipliers. This algorithm has the advantages that each subproblem has fewer constraints than the

original problem and the subproblems can be solved in parallel. Numerical test results reported

in [FeM91] and [Fer91] indicate that the algorithm is quite promising for practical computation,

especially when implemented in parallel. One of our purposes in this paper is to show that parallel

constraint distribution is closely related to proximal minimization and, in particular, to a parallel

implementation of the partial proximal iteration (2) (see Section 5).

A central observation of the present paper is that the partial proximal iteration (2) can be

decomposed into a sequence of two steps as shown in Fig. 1:

(a) A (block) coordinate descent iteration for the function FC defined by

F,(x) = min {f(y ) + Iy - x112}

This iteration is done with respect to the second coordinate subvector x2 of the vector x =

(X1, x2); it starts at the current vector (xz, 2A), and yields a vector (xi,zkx+l).

(b) An iteration of the ordinary proximal algorithm starting at the vector (xk, x2k +1) obtained from

the preceding coordinate descent iteration; this can be interpreted as a gradient iteration with

stepsize equal to c for minimizing the same function F, (see e.g. [BeT89, p. 234]).

By contrast, the ordinary proximal iteration does only step (b) above. Thus the partial iteration

differs from the ordinary one only in that it executes an extra coordinate descent step prior to

each ordinary proximal iteration. Note here that FC is continuously differentiable and has the same

minimizers and minimum value as f; see e.g. [BeT89]. Thus both steps (a) and (b) above are aimed

at approaching an optimal solution.

A consequence of the preceding observation is that the value of the function F, provides a uniform
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criterion of merit, which is improved by all partial proximal iterations, independently of the partition

(x1, x2). We use this fact in Section 3 to provide a short convergence proof for a parallel algorithm

that involves execution of different partial proximal iterations by different processors. In Section 4,

we derive the rate of convergence of this algorithm. In Section 5, we show that partial proximal

minimization algorithms are intimately related to augmented Lagrangian algorithms with partial

elimination of constraints. When specialized within the augmented Lagrangian context, the parallel

algorithm of Section 3 becomes similar to the parallel constraint distribution algorithms of Ferris

and Mangasarian [FeM91], [Fer91la]; however, our convergence proofs are less complicated than those

in [FeM91] and [Fer9la], and require less restrictive assumptions. In particular, the convergence

analysis of [FeM91] and [Fer91la] assumes that the cost function is positive definite quadratic and

the constraints are linear, while we assume general convex cost and constraint functions. Most of our

analysis carries through to partial proximal minimization algorithms with nonquadratic proximal

terms [Ber82], [CeZ92], [ChT90], [Eck93], [KoB76], [GoT79], [Luq84], [Luq86], [TsB90]. We thus take

these more general methods as our starting point and specialize our results to the case of quadratic

proximal terms whenever the results for this case are stronger. In particular, our algorithms and

corresponding convergence results are patterned after those of Kort and Bertsekas [KoB76]. On the

other hand, our analysis assumes that the proximal term contains the origin in its interior, and thus

does not apply to methods using logarithmic/entropy proximal terms [Ber82], [CeZ92], [ChT90],

[Eck93], [TsB90], and the corresponding augmented Lagrangian methods that use the exponential

penalty function [KoB72], [Ber82], [TsB90].

2. A UNIFORM DESCENT PROPERTY

In this section we introduce the notion of partial proximal minimization and analyze its descent

properties. These descent properties will be used later to establish the convergence of algorithms

based on successive applications of partial proximal minimization.

We first define partial proximal minimization in the general context of nonquadratic proximal

terms. Consider the class of strictly convex, continuously differentiable functions R: X-+ X such

that

0(0) = 0, Vq$(0) = 0, lim Vq(t) = -oo, lim Vq(t) = oo.

This class was introduced in [KoB76] within the dual context of nonquadratic augmented Lagrangian

methods, together with the generalization of the proximal minimization algorithm obtained by re-

placing "I 12/2" with "q(.)". For an extensive discussion of the subject, see [Ber82, Ch. 5]. A
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Y2
Ordinary Proximal Step

Contours of the function

Partial Proximal Step Fc(y) = minx {f(x) +1 llx - yll2}

Y1

Figure 1: An illustration of the ordinary and the partial proximal iterations starting at the
vector xk = (xk, A). Both iterations involve a gradient step on the function FC with stepsize c. However,
the partial proximal iteration precedes the gradient step with a coordinate descent step along the subvector
X2.

prominent example in the class is the power function: q(t) = (1/-y)It I with y > 1. For y = 2 we

obtain the quadratic function used earlier.

For each c > 0, let Fc be the real-valued convex function on Rn defined by

F,(x) = min f(y) + (y - x (3)

where I: :n ·-- R is the function

((tl, ... ,tn) = E (t).
i=1

We remark that we can have different O's for different coordinate indices i but, for simplicity, we

will not consider this more general case. We also note that the gradient mapping V@ : ·n -* n

has an inverse V(-l : · "n -- jn because of the defining properties of the function q. We have the

following proposition which formalizes the interpretation of the partial proximal iteration as a block

coordinate descent step followed by an ordinary proximal step (compare with Fig. 1).

Proposition 1: Let c > 0 and a subset I of the index set {1, . . ., n} be given. For any x E Rn,

consider a vector x' satisfying

x' E arg min 1f(y) + )'i- (Y -i) (4)
yE92

n
CiE



and let x" be the vector with components

xi ViEI
l i Xi Vi I. (5)

Then

x' = x"+ V(-1 (-cVF(x")) = arg min {f(y) + C (6)

x" E arg min Fc(y), (7)
{iyi=2iy , i'I}

where FC: Rn --+ is the convex function defined by (3). Conversely if x' and x" satisfy (6) and (7),

then they also satisfy (4) and (5).

Proof: Fix any x E RIn. Let x' be a vector satisfying (4) and let x" be given by (5). We will show

that (6) and (7) hold. Indeed, from the definition of x", the vector x' minimizes over y E Rn not

only f(y) + 1 O'41 q(yi - xi) but also 21 EiI b(yi - xi'), implying that x' minimizes the sum, which

is f(y) + 1C)(y - x"). This proves the second equality in (6). The first equality in (6) is due to the

invertibility of V'I and the following consequence of Prop. 5.5(c) in [Ber82]:

D(xl' - x") = -cVFc(x").

[Actually Prop. 5.5(c) of [Ber82] addresses the dual context of nonquadratic augmented Lagrangian

methods, and thus considers (dual) functions f with f(z) = oo for all x outside the nonnegative

orthant. The proof given in [Ber82], however, applies verbatim to the more general convex function

f considered here.]

To prove (7), note that for all vectors z CE n with zi = x; for all i E I, we have

F,(z) = min f(y) + 1 E (yi - X) + 2cc - zi)}
yE> n2c E 

> min f(y) + - O(yi - xi)- yE
n

c

EEI

= f(x') + 2c E (x - xi) + 2 E (x i - xi )

> Fc(x,"),

where the last inequality follows from the definitions of x" and Fc. This proves (7).

Conversely, suppose that x' and x" satisfy (6) and (7). We will show that (4) and (5) hold.

Indeed, (7) implies that x; = xi' for all i E I, and that aF,(x")/&xi = 0 for all i ¢ I, so from (6) we
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have xl = x' for all i / I. Thus (5) holds. To show (4) we argue by contradiction. Suppose that for

some z E Rn we have

f(z) + 2c E q(zi - xi) < f(X') + (x - xi).
iEl cEl

Then the directional derivative of the function y -* f(y) + j ZieI q(yi - xs) at x' along the direction

z - x' is negative. This directional derivative is equal to the directional derivative of the function

Y + f(Y)+ 2- EieI (Yi-X;)- + 2-C EiI I(yi- x') at x' along the direction z-x'. The latter directional

derivative, however, is nonnegative in view of (5) and (6), arriving at a contradiction. This proves

(4). Q.E.D.

By using Prop. 1 and the special structure of Fc, we obtain the following key descent property for

FC under the partial proximal iteration. This property will be used in the subsequent convergence

analysis.

Lemma 1: Let c > 0 and a subset I of {1,..., n} be given. Let FC: Rn -X-+ be the continuously

differentiable convex function given by (3).

(a) For any x E Rn, the vector x' given by (4) satisfies

1
F,(x')- Fc(x") < -- 1(x'- x"),

where x" is the vector given by (5).

(b) Let 0(.) = ½1 . 12 [so that D(.) is the quadratic function ½-1' 112]. Then, for any x E ln, the

vector x' given by (4) satisfies

Fc(x')- Fc(x) < - 1VF(x)112.

Proof: (a) Fix any x E RIn and let x' and x" be given by (4) and (5), respectively. By Prop. 1, x'

and x" satisfy (6) and so the definition of Fc yields

Fr( ")- + x ).

It is also easily seen from the definition of Fc that FC(x') < f(x'), which together with the above

equality implies the result.

(b) We first establish some basic inequalities satisfied by the function F, and its gradient. For any

x, y E "n, let

x E arg min l )+ lIZ- x]I 2 ~ = argmin Jf(z) + cZ-- yH .)
7zE~n2zE3n
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Then,

(- ) E af(0),

and moreover, using (6) and (Q(.) =_'111 112,

x - = cVFc(x), y - = cVF,(y).

Combining these three relations and using the convexity of f, we obtain

F.(x) - F,(y)- (VFc(y), x- y) = f(i) + Ij - X112 - f(Y) - 1 IIY - y) 2
- , x y)

=A f (50 - f M I(Y yn -il 0 + 2 III - x - (y - y)112
C 2 C

1> f(Iy - X - ( -- Y)112

2= ~]VFa(x)- Va(y)l[2 V x, y E -n . (8)

Let us now fix x E Rn, and let x' and x" be given by (4) and (5), respectively. By Prop. 1, x' and

x" satisfy (6), so the assumption '(I) = ½II 112 implies x' = x"- cVFc(x"). Then part (a) yields

F,(x,) - F,(x") < _ X - X11112 - IIVFc(x) 11I2.
2c 2

Relation (7) implies (VF(x"'), x - x") = 0, so by invoking (8), we also obtain

C
2IVFc(x)- VFc(x")ll 2 < Fc(x)- F<(x").

Adding the above two relations and rearranging terms yield

2 (I[VF (x)- VF(x,")ll2 + IIVFc(xI")ll2) < FC(x)- F(x'),

so, by using the following easily verifiable inequality

I[VFc(z)112 < 2(11VF,(x) - VFc(z~x)II2 + IIVFc(x")ll2),

the result follows. Q.E.D.

The following proposition provides some additional inequalities, which compare the iterates of

the ordinary and the partial proximal algorithms, and are useful for the convergence analysis of the

latter (see the proof of Prop. 2).

Lemma 2: Let c > 0 and a subset I of {1,..., n} be given. For any x E n", the vector x' given

by (4) satisfies

f(x') < Fc(x) < f(x),
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where Fc : Rn -*- X is the convex function defined by (3).

Proof: We have

f(x') < f(x') + 2 E (x - X)

1

= min jf(y) + 1 (y - Xi)

<- yEf(

_ f(x).

Since the expression in the right-hand side of the second inequality is equal to Fc(x), the result

follows. Q.E.D.

Note an important consequence of Lemma 2: if f is bounded below and if {xk} is a sequence gen-

erated by the partial proximal minimization iteration (2), then both {f(xk)} and {F (xk)} converge

monotonically to the same value, regardless of the particular partition used. It is possible to change

the partition from one iteration to the next if this can improve convergence. Furthermore, if 0 is a

quadratic function, we have from Lemma l(b) that VF,(xk) -* 0, so that all cluster points of {xk}

minimize F, and hence also f. This result will be extended in the next section when we consider

parallel versions of the partial proximal minimization algorithm.

3. PARALLEL ALGORITHMS

We now consider the following extension of the partial proximal minimization algorithm. At the

start of the kth iteration we have the current iterate xk. We construct all distinct partitions of xk

into two subvectors, and we execute the partial proximal iteration corresponding to each partition

and to a chosen scalar ck. The next iterate xz+l is an arbitrary convex combination of the different

vectors thus obtained. We describe below this algorithm, which we call the parallel partial proximal

minimization algorithm (or the parallel PPM algorithm, for short).

Let C denote the set of all subsets of {1,..., n}. Beginning with an arbitrary x°0 E n, we generate

a sequence {xk} as follows: Given xk, we choose a scalar ck > 0 and, for every subset I E C, let X

be given by

I E argmin ff(y) + 0q$(yi-~X); (9)
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we define xk + l to be an arbitrary convex combination of the vectors 4, that is,

xk+l = E -A (10)
IEC

where cei, I E C, are any scalars satisfying

a c=1, ar >0 VIEC. (11)
IEC

(Note that an ac may be zero, so we need only compute the vectors ~i with cak > 0.)

In order for the parallel PPM algorithm to be well defined, we assume that the minimum in each

partial proximal iteration [cf. (9)] is attained. Note that the multiple partial proximal iterations

involved in (10)-(11) can be executed in parallel by multiple processors. The next proposition shows

the validity of the algorithm by combining the inequalities of Lemmas 1 and 2, and by using a

modification of the convergence arguments for the ordinary proximal minimization algorithm (see

[BeT89, p. 240]).

Proposition 2: Let {xk} be a sequence generated by the parallel PPM algorithm (9)-(11) with

{ck} monotonically nondecreasing.

(a) If the set of minimizers of f is nonempty and compact, then {xk} is bounded, each of its

cluster points is a minimizer of f, and lim-O,, f(xk) = minx f(x).

(b) Assume that f is bounded below and let 4(') = a] 12 [so D(-) is the quadratic function 11. 112].

Both {f(xk)} and {Fk(xk)} are monotonically nonincreasing and limk,, VFFk(xk) = 0,

where FC: n" -- R is the function given by (3).

Proof: (a) For each k and I E C, we have by applying Lemma 2 with x = xk, c = ck, and x' = 

that

f(i) < Fck(Xk) < f(Xk)

This together with (10)-(11) and the convexity of f yields

f(xk+i) < Chf( ik) < f(Xk)
IEC

Thus, {f(xk)} is monotonically nonincreasing.

For each k and I E C, since k is given by (9), we have from Prop. 1 that

zI= arg min { f(y) + f '( ) (12)

where , is the vector in I"' whose ith component is the ith component of xk if i E I and, otherwise,

is the ith component of k. We also have from (7) that, for each k and I E C,

Fk) < Fc(k),10

1 0



and from Lemma 1(a) that

Fck( .) < Fk ()- ( ) -

Combining the above two relations and using (10)-(11) and the convexity of Fck yields

FCk(Xk+l) < F~k(X)- ; E (ki - _k).
IEC

Since Fck+l(xk+l) < Fck(xk+l) [Cf. ck+1 > ck and (3)], this shows that {Fck(xk)} is monotonically

nonincreasing and that

lim ak E a¢(Xk-X) = 0. (13)
IEC

Also, the compactness of the set of minimizers of f implies that all the level sets of f are compact

[Roc70, Cor. 8.7.1] and that, for k > 1 and I E C, xk and A are contained in the level set {x I

f(x) < f(x°)} (cf. Lemma 2). It follows that the sequences {xk} and {Xi} are bounded. Since

each component of A is either a component of xk or of A, it follows that the sequence {Jif} is also

bounded.

Fix any minimizer x* of f. Using (12) and the convexity of f, we have for each c E (0,1) and

I E C that

,(I) + , k(I- I) < ((X + (1 _ -)) + - k + ((*- * k))

< ef(x*) + (1 - )ff(4) + k( - AI + ~(x* - k)).

Rearranging terms and dividing both sides by ~ gives

( (if) < If(X*) + I [b(A - A + + (* - AI)) - (i - A)],f(~i) < f(x*) + 1

which together with (10)-(11) and the convexity of f yields

f(xk+l) < f(x*) --+ - 5 E i [(IA - ik ( + (X* - k)) - ( -Ik)]
AX1+1) < f(x*) + kck E I I I I I I

IEC

< f(x*) + 4 5 V ((A - A + ±(X. - X*)),. >-

where the second inequality follows from the convexity of -. By taking the limit supremum as

k -+ O, we obtain

lim sup f(xk+l) < f(x*) + lim sup ERI -(X + (X* - )), -
k-ooo kc00o C I ( I I I

IEC

Finally, we take the limit of both sides as -- 0. Since the sequences { f}, {XI} and {1/ck} are all

bounded, we can pass this limit through the limit supremum on the right-hand side to obtain

limsup f(xk+l ) < f(x*) + limsup 4 akc(VC(A - A), x* - A (14)
kazoo k- oo I I C
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Assume first that ck -- oc. Since both sequences {k} and {f } are bounded, it follows from (14)

that limsupk-,o f(xk+l) < f(x*). Since x* minimizes f, {f(zx)} must converge to f(x*).

Assume now that ck -* < oo. Let IC be an infinite subsequence of the set of positive integers such

that for every I E C, {o}XkElc converges (to either a positive number or zero) with limk,,, kElt c~ > o

for at least one I E C; since C is a finite set, such a subsequence exists. From (13) we see that for

all I E C such that limk-+o, kEK ac > 0, we have

lim 4(A -;ik) = 0
k-+oo, kEK I

and hence also limko,,, keKc{;;A - :i} = 0, implying that

lim V7(S -_ik) = 0.
k-+oo, kEK

Using the above equation in (14), we obtain limsupkoc, kEK f(xk+ 1) < f(x*). Since x* minimizes

f, {f(xk)}JlcE must converge to f(x*). Since {f(xk)} is monotonically nonincreasing, it too must

converge to f(x*).

(b) Fix any k. For each I E C, we have upon applying Lemma 1(b) with x = xk, c = ck, and x'

equal to the vector Az given by (9) that

Fck () - Fck (Xk) < - IIVFk(xk) I I2.

Combining this with (10)-(11) and the convexity of Fck, we obtain

Fck (k+l ) - Fck (Xk) $< Z k(Fck(H) - FCk(xik))
IEC

< --- a 'iVF, ( Xk)l2
IEC

ck
=- yI1VFCk(xk) I.

Since Fck+l(Xk+l) < Fck(xk+ l ) [cf. ck +l > ck and (3)], and Fck is bounded below by infXERn f(x) for

every k, the preceding relation implies that {Fck(xk)} is monotonically nonincreasing and that

lim ck[IVFZC(xk)I12 = 0.
k-+oo

Since {ck} is bounded below by c0 > 0, this proves that limk-, VFCk(xk) = 0.

For each I E C, we have upon applying Lemma 2 with x = x k , c - ck , and [cf. (9)] x' = xk that

f(k) < Fk(Xk) < f(xk).

This together with (10)-(11) and the convexity of f yields

f(xk+l) < aE ckf(ik) < Fck(Xk) < f(xk).
IEC
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Thus, {f(xk)} is monotonically nonincreasing. Q.E.D.

It can be seen from the above proof that the monotonicity property of {ck} is not crucial for

Proposition 2 to hold. Instead, it suffices that {Fk(xk)} is maintained nonincreasing and {ck} is

bounded away from zero.

The parallel PPM algorithm can be generalized, and can be implemented in a flexible and asyn-

chronous manner. One can envision multiple processors executing asynchronously different partial

proximal iterations starting from the vector that is currently best in terms of some uniform merit

criterion, such as the value of f or Ft. The results from several processors can be combined via

a convex combination, but the convex combination should be accepted only if the uniform merit

criterion is improved.

It should be noted that the above convergence results for the parallel PPM algorithm are consid-

erably weaker than those available for the proximal minimization algorithm (see [BeT89, Sec. 3.4.3],

[ChT90], [EcB92], [Fer91lb], [GoT79], [Gu191], [Luq86], [Mar70], [Roc76]). One difficulty is that the

extra coordinate descent step of (7) destroys certain monotonicity properties of the iterates, which

are essential to proving some of the stronger convergence properties of the proximal minimization

algorithm.

Finally, we note that the choice of the coefficients ac, I E C, can have a significant effect on the

convergence rate of the parallel PPM algorithm. To illustrate, consider applying the parallel PPM

algorithm with 4(') = 2 112 to minimize the two-dimensional convex differentiable function

f(xl,X2) = 2{max{0, X}2+ max{0, 2}2}.

Suppose furthermore that x° > 0 and x° > 0, and that ck = c > 0 for all k. If we set ck = 1

(so ack21 = {1,2l) 0) for all k, then it is not difficult to see that one possible sequence is given by

Xk = x/(1 + c)k and x = (-1)k - 1 for all k, so the cost converges at a linear rate but the iterates

themselves do not converge. On the other hand, if we set cakl) to alternate between 1 and 0 with

the corresponding values of ac2} alternating between 0 and 1, while -el,2) = 0, then it can be seen{2} en 0,2} an 1 l

that a minimizer of f is obtained after only two iterations.

4. RATE OF CONVERGENCE

We now turn to the analysis of the convergence rate of the parallel PPM algorithm. To establish

some terminology, consider a real sequence {sk} that converges to a real number s*. We say that
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{sk} converges finitely if there exists k such that sk = s* for all k > k; superlinearly with order p,

where p > 1, if

lim sup < 00;
k-aoo ISk - S*IP

superlinearly if
lir j8 k + 1 - S* I O ;
rl Isk - = 0;

and linearly if there exist 3 E (0,1), and k such that

ISk+l - S*1

ISk -S*I- 

Following [OrR70], we say that {sk} converges R-linearly to s* if there exist scalars q > 0 and

p E [0, 1) such that Isk - s*I < q/3k for all k. Note that {sk} converges R-linearly if Isk - s* I tk for

all k where {tk} is some sequence converging linearly to zero.

The convergence rate of the ordinary proximal minimization algorithm depends on the growth

properties of the minimized function f as well as the growth properties of the proximal term used.

The following key assumption was first introduced in [KoB76] (see also [Ber82, p. 342]) and was

used to analyze the convergence rate of the proximal minimization algorithm for quadratic as well

as certain types of nonquadratic proximal terms.

Assumption A:

The set of minimizers of f, denoted X*, is nonempty and compact. Furthermore, there exist

scalars a > 1, p > 0, and 6 > 0 such that

/3(p(x; X*))a < f(x) - min f(y) V x with p(x; X*) < 6, (15)

where p(x; X*) is the distance from x to X* given by

p(x;X*) = min IIx- x*II. (16)
x*EX*

The ordinary proximal minimization algorithm has finite, superlinear, or linear convergence rate

depending on whether a = 1, 1 < a < 2, or a -= 2, respectively; see references [KoB76], [Ber75]

(which deals with the case ao = 1), and [Ber82], Chapter 5 (which provides a comprehensive analysis).

The convergence rate is also superlinear if a- = 2 and ck -~ oo. If a > 2, the convergence rate is

slower than linear, that is, some of the generated sequences do not converge linearly. In the case

where the proximal term has a growth rate y > 1 other than quadratic (7y g 2), the convergence

rate is influenced by 7 (it is superlinear if 1 < a < 7 even in the case where a > 2).

The following proposition provides corresponding, although slightly weaker, results for the parallel

PPM algorithm.
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Proposition 3: Let Assumption A hold, let f* = minyein f(y), and let {xk} be a sequence

generated by the parallel PPM algorithm (9)-(11) with {ck} monotonically nondecreasing.

(a) If oa = 1 and there exists a scalar or > 0 such that

a Ik> V k and I E C such that a > 0, (17)

then {f(xk)} converges to f* finitely.

(b) Assume that for some scalars M > 0 and 7 > a we have

¢P(z) < MIIxlIIr V x with [IxI[ < 6. (18)

If 1 < a < y, then {f(xk)} converges to f* superlinearly with order y/ca. Also, if 1 < oa = 7

and ck -- oo, then {f(xk)} converges to f* superlinearly.

(c) Let k(.) = 21 12 [so d(.) is the quadratic function I11 112]· If a = 2 and ck - c < c- , then

{f(xk)} converges to f* R-linearly.

Proof: By Prop. 2(a), we have f(xk) - f*, so Lemma 2 yields f(i) _ f* for all I C C, where i

is given by (9). Since X* is compact, it follows that for all k sufficiently large we have

p(Xk;X*) < 6, p(pi;X*) < 6 V I E C.

Without loss of generality we assume that the above relation holds for all k.

(a) For each k and I E C, we have from Prop. 1 that XI minimizes f(y) + -(y- XI) over y, where

xIk is the vector in RnT whose ith component is the ith component of xk if i E I and, otherwise, is

the ith component of XI. Thus,

gk + -Vj(:k - fk) = 0, (19)

where gk is a subgradient of f at I. Let us denote by 7 the element of X* which is at minimum

distance from ;k, that is,

p(i; X*) = Ik -1 |1|

From (15) with a = 1 and using the convexity of f, we have

3Pp(I; X*) < f(k) - f(-Z)

< (gk, A - >

< IIgII 11I - ) III

= IlgI p(k; X*).
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Thus for all k and I E C we have

0 < (I|gI|1 - ,)p( ki;X*). (20)

If ck -0 o, then from (19) and the boundedness of {k - ik}, we have gk -- 0 for all I E C,

and (20) implies that for sufficiently large k, we have p( k;X*) = 0 or equivalently Xi E X*, for all

I E C. This implies that xk+ l E X* for all sufficiently large k, so the algorithm terminates finitely.

If ck -+ c < oo, let KIC be an infinite subsequence of the set of positive integers such that for every

I E C, either ak > 0 for all k E K or ack = 0 for all k E K; since C is a finite set, such a subsequence

exists. Let C be the subset of index sets I C C such that ak > 0 for all k C K. Using the assumption

(17), we have

crk > Vk E ICand E C, ck O V k E IC and IC.

Then from (13) we obtain

lim - ( -( ) = 0
k--+oo, kEXK4

IEC

implying

lim (Xi-X)=IE IC.
k--+oo, kEK

Therefore, we have

lim V7(XI -Xi) = 0 V I E C,
k-oo, kEK

or equivalently, in view of (19),

lim gk =0 V IEC.
k-+oo, keXC

It follows from (20) that for all I E C and all k E IC sufficiently large we have p(z; X*) = 0. Using

(10) and the fact ak = 0 for all I ¢ C and k E IC, we obtain Xk+1 E X* for all k E KC sufficiently

large. Since the choice of the subsequence KC was arbitrary and a finite number of such subsequences

comprise all integers beyond some index, this shows that the algorithm terminates finitely.

(b) For each k, let us denote by xk the element of X* which is at minimum distance from Xk, that

is,

p(xk;X*) = Il-i-k xzkI and f(xk) = f*

We have for each I E C,

f(k)f * < f(k) +-•+i _ _

iEI
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where the third inequality follows from (18) and the last inequality follows from (15). By using the

convexity of f and (10), we obtain for all k that

f(xk+l) - f* M

(f(xk)-_ f, ) / - cky/ (21)

This proves the result.

(c) Using the compactness of X* we have that there exists 6' > 0 such that p(x; X*) < 6 for all x

such that f(x) - f* < 6'. Given z C "n such that f(x) - f* < 6', c > 0, and a subset I C {1, . .. , n},

let x' and x" be given by (4) and (5), respectively. By Prop. 1, z' satisfies (6) so

f(xz) +- C (X- x", y- xl) < f(y) V y.

Let x* be the element of X* for which Ilx' - x*ll = p(x; X*). Setting y = x* in the above relation

and rearranging terms, we obtain

1 1
f(x') - f* <1 -( - x,* - xI) < 1 - x'lIlx* - x'll.

c c

By Lemma 2 and the assumption f(x)- f* < 6', we have f(z') - f* < 6', so that p(x'; X*) < 6 and

(15) with a = 2 yields

;311x* - x'112 < f(x') - f* < 11x" - xi'llx* - x'11l

or, equivalently,

11x* - x'11 < lx 11"- x'11.

Then, by (3) and i(.)= - 112,

1 1
Fc(x') - f* < f(x*) + 2 X* - x'112 - f* < IIx" - X'112.2c 2c(C3) 2

On the other hand, we have from the proof of Lemma 1(b) that

Fc(x') < F,(x") - |Iix' - xll 2,

which together with the above relation yields

F,(z')- f* < () 2 (Fc(z")- F(x))

Rearranging terms and using the fact [cf. (7)] F,(x,") < Fc(x), we finally obtain

1
F,(x') - f* < (cI)2 + 1 (F(x) - f*). (22)

Consider now a sequence zxk} generated by the parallel PPM algorithm with {ck} monotonically

nondecreasing. Since X* is compact, by Prop. 2(a), we have f(zk) -+ f* so that f(zk) - f* < 6' for
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all k large enough. Fix any such k. By (9), we can apply (22) with x = xk, c = ck and x' = -i for

every I E C and obtain

Fck(k)- f* < (c)2 + (Fk(xk)-f*) V I E C.

Then, using the definition (10)-(11) of xk+l and the convexity of Fck, we obtain

Fk(xk+l) - f* < (c) 1 (F ()- f) V I E C.

Since Fck+l(xk+l) < Fck(x k+l ) [cf. ck+l1 > k and (3)], this implies

FCk+l(xk+l) - f* < (Fck (k)- * )

(Ck13)2 - I

We have that {ck} is bounded below by c°, so it follows that {Fk(xk)} converges linearly. Since

f(xk+l) < F.k(xk ) for all k, we obtain that {f(xk)} converges R-linearly and part (d) is proven.

Q.E.D.

The preceding proof of part (b) also shows that if a = y and ck --c E (1i/M, oo), then {f(xk)}

converges linearly [see (21)].

The preceding analysis assumes that the set of minimizers of f is bounded. We show below that

this assumption can be removed if the minimized function f is differentiable on its effective domain

and has a growth property similar to that given by (15) with a = 2. This result will be useful when

we analyze dual applications of the partial proximal algorithm in Section 5, for which the set of

minimizers of f is frequently unbounded (see Prop. 7).

Assumption B: The set of minimizers of f, denoted X*, is nonempty and f has the special form:

f( ) {g(z) if x E C (23)
co otherwise,

where C is a nonempty closed convex set in In and g : Rn -, is a convex differentiable function.

Furthermore, there exist scalars P > 0 and 6 > 0 such that

/3p(x; X*) < IIx - Pc[x - Vg(x)]l V x C C with lix - Pc[x - Vg(x)]ll < 6, (24)

where Pc['] denotes the orthogonal projection onto C and p(x;X*) is the distance from x to X*

defined by (16).

The growth condition (24) differs from the growth condition (15) (with a = 2) mainly in that

the cost difference f(x) - f* is approximated by the norm of a certain residual function squared.

This difference is nonetheless significant for it turns out that the partial proximal algorithm drives
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the latter to zero even when X* is unbounded (see the proof below). In general, verifying that

the condition (24) holds is not easy. However, it is known that this condition holds when g is

strongly convex [Pan87] or when C is a polyhedral set and g is the composition of a strongly convex

function with an affine mapping [LuT92]. (See [LuT91] and Section 5 for additional discussions of

this condition.)

Proposition 4: Let Assumption B hold and let {xk} be a sequence generated by the parallel

PPM algorithm (9)-(11) with {ck} monotonically nondecreasing and with 4(') = a'1 2. Then {f(xk)}

converges to min. f(x) R-linearly.

Proof: First, we show that, for any c > 0, the function FC inherits from f a property similar to

the growth condition (24). Fix any x E Rn and let

= arg min f(y) + IlY- xl12
yE n 2c'

Then, by Q(-) = 1 2 , we have x - : = cVFc(x) and, by using (23), we also have that i is a

minimizer of the function y -* g(y) + llly - xll2 over C, so that

x = Pc[x - cVg(i)].

Thus,

IlI - Pc[i - cVg(M)]l = IIPc[x - cVg(X)] - Pc[i - cVg(i)]ll < I li - ll,

where the second inequality follows from the nonexpansive property of the projection operator Pc [].

Since Ili - Pc[i - cd]ll > cfll - Pc[i - d11h for any d GC n (see Lemma 1 in [GaB84]), this implies

clII - Pc[i - Vg(Z)]ll < Ilx - 1ll.

Then, it readily follows from (24) that

cl3p(i; X*) < Ilx - 11, whenever Ilx - I 11< c6.

Since x - i = cVFc(x) and, by the triangle inequality, p(x;X*) < Ix - ~iI + p(i;X*), this shows

that

3p(x; X*) < (c/ + 1)1 VFc(x)Il, whenever IIVFc(x)ll < 6.

Also, denoting f* = miny f(y), we have from (3) and D(-.) = 1 I112 that

Fc(x) = f(x) + 21II - X112 f* -+ 1II* - X112 V X* c X*,

so that FC(x) < f* + 1 p(x; X*)2. Combining this with the previous relation yields

Fc(x) < f* + - (C + 1/P) 2 11VFc() 112 whenever IIVFc(z)l < 5. (25)
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Consider now a sequence {xk} generated by the parallel PPM algorithm with {ck} monotonically

nondecreasing. By Prop. 2(b), we have VF (xk) --+ 0, so that IIVFck(zk)ll _< 6 for all k sufficiently

large. For any such k we have from (25) that

Fee (xk) < f* + 2 (Jck + 1//) 2 1VF (xk)l 21

In addition, by following the proof of Prop. 2(b), we see that

c
k

F+k+ +l ) - Fck(Xk) < -- IIVF (xk)ll 2

Combining the above two relations and rearranging terms yields

Fck+l(k+l) - f* < (1 2(ck + 1)2 (Fk (xk) f*).

We have that {ck} is bounded below by c°, so it follows that {Fck(zk)} converges linearly to f*.

Since f(zk+l) < FCk(xk) for all k, we obtain that {f(xk)} converges R-linearly to f*. Q.E.D.

5. RELATION TO MULTIPLIER METHODS

We assume throughout this section that 0(-) = 11-12 [so that 4(-) is the quadratic function II. 112],

and we show that partial proximal iterations correspond to augmented Lagrangian iterations with

partial elimination of constraints. This indicates a possible application area of the parallel PPM

algorithm of Section 3 and establishes its relation to the constraint distribution method of [FeM91].

In addition, by applying the convergence results of Section 4, we analyze the rate of convergence of

these augmented Lagangian iterations under much weaker assumptions than those given in [FeM91].

For example, we establish linear rate of convergence for the dual cost of the multipliers, assuming

that the constraint functions are affine, and the cost function is the sum of the indicator function

for a polyhedral set and a strongly convex differentiable function with Lipschitz continuous gradient

(see Prop. 7). In contrast, the linear rate of convergence result in [FeM91] in addition assumes that

the cost function is quadratic. (On the other hand, the analysis of [FeM91] establishes the stronger

result of linear rate of convergence for the multipliers.)

Consider the following convex program

minimize ho (z) (26a)

subject to hi(z) < 0, ,h,(z) < 0, (26b)

20



where ho,..., h,n are closed proper convex functions in R-m (m > 1). We can also allow for linear

equality constraints in the above problem but, for simplicity, we will not consider this more general

case.

For any convex function g, we denote by dom g the effective domain of g, i.e., dom g = { z I g(z) <

+oo }. For any convex set C, we denote by int(C) and ri(C), respectively, the interior and the relative

interior of C. We make the following standing assumptions regarding the convex program (26):

Assumption C:

(a) There exists a z E ri(dom ho) satisfying h,(z) < 0 for all i, with strict inequality holding

whenever hi is not affine.

(b) The level sets of the program (26), namely, sets of the form

{ z I ho(z) < ,hl(z) O,..., h(z) O 

with ~ E X, are bounded.

Note that by part (a) of Assumption C, the program (26) has at least one feasible solution. This,

together with part (b) of Assumption C, implies that the set of optimal solutions for (26) is nonempty

and compact.

By associating a Lagrange multiplier x1 with the constraint hi(z) < 0 for every i, we obtain the

following dual function:

f W ={ sup{ -(x, h(z)) - ho(z)} if x > 0, (27)

f() = otherwise,

where we denote by h(z) the vector in Rn whose ith component is hi(z) and by x the vector in RnI

whose ith component is x;. It is well known that f is a closed proper convex function.

It is known that when Assumption C holds, the set of Kuhn-Tucker vectors for the convex program

(26) is nonempty and equals the set of minimizers of f (see [Roc70, Th. 28.2]). Moreover, strong

duality holds in the sense that the optimal value of problem (26) equals the negative of the minimum

value of f. Thus, we can consider solving problem (26) by minimizing the dual function f of (27)

and, for this purpose, we can use the parallel PPM algorithm (9)-(11). We show below that, for

4(') = 21- I2, the proximal minimization step (9) in this algorithm is well defined and can be

implemented with the use of quadratic augmented Lagrangian functions. Fix any nonempty subset

I of {1,..., n}, any x C In and any scalar c > 0. Consider the following convex program associated

with I, x and c:

minimize ho(z) + - C[xi + ch;(z)]+ (28a)
iEI

subject to h;(z) < 0, i ~ I, (28b)
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where, for any number a, we denote by [a]+ the positive part of a, i.e., [a]+ = max{0, a}. This

program has at least one feasible solution (namely, z) and its level sets are bounded [since any

direction of unboundedness for this program would also be a direction of unboundedness for the

program (26)], so it has at least one optimal solution. Let z' be any such optimal solution. Notice

that the program (28) has a feasible solution (namely 2), which is in the relative interior of the

effective domain of its cost function and satisfies with strict inequality all constraints for which hi is

not affine. Then, by Th. 28.2 in [Roc70], the program (28) has a Kuhn-Tucker vector. Fix any such

Kuhn-Tucker vector and let x;, i ¢ I, denote its component associated with the constraint h;(z) < 0.

Let x' be the vector in Rn whose ith component is x; for all i ¢ I and, otherwise, is

Xi = [xi + ch/(z')]+ V i E I. (29)

We claim that x' is a minimizer of the function

Y f(Y) + 1C ly - X/. (30)

To see this, notice from the Kuhn-Tucker conditions for the program (28) that

x~ = [xi + chI(z')]+ V i V I, (31)

and

0 E dho(z') + Z[x, + chi(z')]+3h,(z') + Z x:ah(z').
tEl Sin

This equation together with (29) yields

0 E aho(z,) + 'ah(z,),
i=l

implying

z' = argmin {(x', h(z)) + ho(z)}. (32)

Let us write (29) and (31) equivalently as

o E Ti-hi(z')+ - V i E , 0O E T -h 1 (z') V i 1,

where T7 is the interval [0, +oo) if x'i = 0 and otherwise is just the origin {0}. From (32) and the

definition of f [cf. (27)], we see that the Cartesian product (T1 - hl(z')) x ... x (T, - h,(z')) is

precisely f (x'). This together with the above relation shows that x' is a minimizer of the function

given by (30).

The above discussion shows that the parallel PPM algorithm with quadratic proximal term,

applied to minimizing the dual function f of (27), is well defined and that each partial proximal
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minimization (9) can be achieved by solving a convex program of the form (28). A key feature

of the program (28) is that only a subset of the constraints are eliminated. By carefully choosing

the subsets to eliminate, one can preserve special structures of the cost function and perhaps also

attain a faster rate of convergence; see [Ber82, Section 2.4], [Dun89], and [Alj90] for discussions of

augmented Lagrangian methods of this type.

The above dual application of the parallel PPM algorithm is closely related to the parallel con-

straint distribution algorithm of [FeM91]. In particular, by noting that the program (28) is identical

in form to that appearing in Th. 3.2 of [FeM91], we see that the two algorithms differ only in that

the latter requires the subsets I effectively used at each iteration to form a partition of {1,... , n}

and that, instead of taking a convex combination of the b's, it extracts the coordinates indexed

by I from ;ik to form xk+l. Thus, the parallel PPM algorithm updates in a manner reminiscent of

Cimmino's method [Cim38], while the parallel constraint distribution algorithm updates in a manner

reminiscent of a Jacobi method. The subsequent paper [Fer91la] uses updates similar to the ones

of the present paper and presents computational results showing an improved performance over the

algorithm of [FeM91].

Under a strong regularity assumption that guarantees boundedness of the set of Kuhn-Tucker

vectors for the convex program (26), we immediately obtain as a consequence of Prop. 2(a) the

following convergence result for the parallel PPM algorithm.

Proposition 5: Assume that there is a point in dom ho satisfying all the constraints in (26b)

with strict inequality. Consider the parallel PPM algorithm (9)-(11) with {ck} monotonically nonde-

creasing and with 0(.) = 1. 12, applied to minimize f given by (27). Then a sequence {xk} generated

by the algorithm is bounded, each of its cluster points is a minimizer of f, and {-f(xk)} converges

to the optimal value of the program (26).

Proof: By the given hypothesis, the convex program (26) is strictly consistent in the terminology

of [Roc70, p. 300]. Since the optimal value of problem (26) is finite, it follows from Corollary 29.1.5

in [Roc70] that the Kuhn-Tucker vectors for problem (26) form a nonempty compact convex subset

of Rn. Since these Kuhn-Tucker vectors are precisely the minimizers of f, the hypothesis of Prop.

2(a) holds, and the result follows from that proposition. Q.E.D.

By translating the growth conditions (15) and (24) on f into conditions on ho and hi, ..., h,, and

then applying Props. 3 and 4, we analogously obtain the following two rate of convergence results

for the parallel PPM algorithm.

Proposition 6: Assume that there is a point in dom ho satisfying all the constraints in (26b)

with strict inequality. Furthermore, assume that there exist scalars ac > 1, f3 > 0, and 6 > 0 such
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that

p(u) - p(O) - (u, x*) _< (•O- 1O) V x* E x p(O) and u with Iull •< o/z61-l ,

where p: n_ -+ (-oo, +oo] is the perturbation function given by p(u) = min{ ho(z) I h(z) < u ).

Let {xk} be a sequence generated by the parallel PPM algorithm (9)-(11) with {ck} monotonically

nondecreasing and with q(.) = al 12, applied to minimize f given by (27). Let f* = mint f(x)

-p(O).

(a) If 1 < ca < 2, then {f(xk)) converges to f* superlinearly with order 2/a.

(b) If a = 2 and ck - oo, then {f(xk)} converges to f* superlinearly.

(c) If a = 2 and ck -c < oo, then {f(xk)} converges to f* R-linearly.

Proof: As was shown in the proof of Prop. 5, the set X* is nonempty and compact. We show

below that f satisfies (15) with a, 3, 6 as given, so the claim immediately follows from Prop. 3(b)-(c).

Fix any x E Rn with p(x;X*) < 6. First assume that x V X*. Let x* be the minimizer of f

nearest to x, i.e., p(x; X*) = lix- x*ll. Also let

u = oa(x - X*)llx - X*lla-2.

It is well known that p is the conjugate function of f, so that, by [Roc70, Thm. 23.5],

x* E dp(O).

Also, direct calculation finds that jlulI < a 3 6t - l and

(O - 1)8 (11/ + (U,>X*) = (-, ) - 11- 11 . * I .

Thus, the hypothesis on p yields

p(u) - p(O) < (u, X) - 1 Ix - * I la.

Also, we have

p(u) = sup {(u, y) - f(y)} > (u, X) - f(x), p(O) =-f*,

which together with the above inequality yields

-f(z) + f* < -f11x - X*lla.

Rearranging terms and using p(x;X*) = 1 - x*II, we obtain

3p(x;X*) < f(xz) - f*.
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Second, assume that x E X*. Then the above relation holds trivially. Q.E.D.

As is shown by the preceding proof, the growth condition in Prop. 6 can alternatively be replaced

by the growth condition (15) on the dual function f. Depending on the problem structure, one

condition may be easier to verify than the other.

Proposition 7: Assume that the cost function ho is the sum of the indicator function of a

polyhedral set and a strongly convex differentiable function whose gradient is Lipschitz continuous

everywhere. Also assume that the constraint functions hi,..., h, are affine. Let {xk} be a sequence

generated by the parallel PPM algorithm (9)-(11) with {ck} monotonically nondecreasing and with

=(.) -= .1 12, applied to minimize the dual function f given by (27). Then {-f(zk)} converges

R-linearly to the optimal value of the convex program (26).

Proof: It can be seen that, in this case, the convex program (26) is a special case of the convex

program (2.2) studied in [LuT91] and that Assumptions A and B therein hold. Then, by Thm. 4.1

in [LuT91], f satisfies Assumption B when restricted to the level set { x I z > 0, f(x) < f(x ° ) }.

Since, by Prop. 2(b), {f(xk)} is monotonically nonincreasing so the sequence {xk} lies in this level

set, we can invoke Prop. 4 to conclude that {f(xk)} converges to min, f(x) R-linearly. Q.E.D.

We remark that Prop. 7 is similar to the rate of convergence results obtained in [FeM91] and

[Fer91la], but these references treat only the case where ho is strongly convex quadratic and hi, ..., hn

are affine.
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