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Abstract

In the computation of dense optical flow fields, spatial coherence constraints are commonly used to

regularize otherwise ill-posed problem formulations, providing spatial integration of data. In this

paper we present a temporal, multi-frame extension of the dense optical flow estimation formulation

proposed by Horn and Schunck [1] in which we use a temporal coherence constraint to yield the

optimal fusing of data from multiple frames of measurements. Conceptually at least, standard

Kalman filtering algorithms are applicable to the resulting multi-frame optical flow estimation

problem, providing a solution which is sequential and recursive in time. Experiments are presented

which demonstrate that the resulting multi-frame estimates are more robust to noise thani those

provided by the original, single-frame formulation. Also, we demonstrate cases where the aperture

problem of motion vision cannot be resolved satisfactorily without the temporal integration of

data enabled by the proposed formulation. Practically, the large matrix dimensions involved in the

problem prohibit exact implementation of the optimal Kalman filter. To overcome this limitation we

present a computationally efficient, yet near optimal approximation of the exact filtering algorithm.

This approximation has a precise interpretation as the sequential estimation of a reduced order

spatial model for the optical flow estimation error process at each time step and arises from an

estimation-theoretic treatment of the filtering problem. Experiments also demonstrate the efficacy

of this near optimal filter.
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1 Introduction

Computation of the dense, 2-D vector field of apparent motion, or optical flow (image flow), is of

considerable interest in image sequence processing. It is an important "low-level" step in many

of the hierachical approaches to computational vision - both for the development of artificial

visual systems in robotics and for the modeling of biological visual systems. For example, optical

flows can provide us with the information necessary to detect object boundaries [2, 3] and to

derive the 3-D motion and structure of the objects in an image frame [4, 5, 6]. Optical flow

computation is also important to applications in fields outside of robotics and cognitive sciences,

such as in assessing motility of the heart [7, 8] and in interpretation and prediction of marine and

atmospheric processes [9, 10, 11]. Motion information is additionally useful for managing the image

sequences themselves, as it offers a basis for image sequence compression for efficient transmission

and storage [12, 13]. There exist a variety of techniques for computing optical flow, including

[1, 14, 15, 16, 17, 18, 19, 20, 21], as well as comparative studies of them [22, 23]. The focus of

this paper is not to provide a fundamentally new method of optical flow computation but to study,

in a probabilistic framework, how the flow estimates can be improved by incorporating a longer

sequence of images and how to compute such improved estimates in a computationally efficient and

near-optimal manner.

In the computation of a dense optical flow field at a single point in time, spatial coherence

(smoothness) constraints are commonly used to regularize an otherwise ill-posed formulation by

the spatial integration of data. Spatial coherence, in a sense, represents our prior knowledge or

assumption that the moving object (solid, viscous fluid, etc.) in the scene is structurally integral

and smooth. In this paper we examine the effects of applying a similar constraint over time. In

particular, we present a temporal extension of the formulation proposed by Horn and Schunck [1]

in which we use a temporal coherence constraint captured by an evolution equation to provide the

optimal fusing of data from multiple frames of measurements. Estimating the optical flow field

by processing sequences of measurements has an obvious advantage over static estimation based.

on only a single such observation. For one thing, the accumulation of a larger quantity of data

leads to a more reliable estimate due to a reduction in measurement noise. Another advantage,

not as obvious, is that in some cases a single measurement may not provide sufficient information
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to resolve static ambiguities in the flow field (i.e. the aperture problem of computational vision

[24]) and hence for reasonable estimates to be obtained, temporal information must be utilized as

well. Such ambiguity is caused by a lack of spatial diversity in the direction of the spatial gradient

[1]. In many cases the desired diversity of gradient directions is available over time, allowing the

resolution of this ambiguity through the incorporation of more image frames, as exemplified in this

paper.

The spatial and temporal coherence constraints can be interpreted as a priori statistical de-

scription of the unknown field [25]. Specifically, the optical flow formulation by Horn and Schunck

can be considered as a Bayesian estimation problem with additive Gaussian noise. Utilizing such an

estimation-theoretic framework for optical flow computation, we model the time-varying unknown

flow field as a dynamic process with an associated evolution equation which captures the temporal

coherence constraint of the variational formulation. Thus, the temporal extension of the Horn and

Schunck formulation, i.e., multi-frame optical estimation, can be written as state estimation based

on a dynamic system to which well-developed optimal sequential estimation algorithms, such as

the Kalman filter and its variants, are applicable for solution [26, 25]. The probabilistic frame-

work allows quantification of uncertainty in the estimates through computation of the second order

statistics.

Although Kalman filter allows time-recursive estimation of multi-frame optical flow fields, its

computational demands are still impractical. For typical problems the dimension of the associated

state will be on the order of the number N of pixels in the image, typically 104 to 106 elements. The

associated covariance matrices, necessary for implementation of the optimal filter, will thus have

on the order of 108 to 1012 elements! The storage and manipulation of such large matrices is clearly

prohibitive, necessitating the use of a suboptimal method. Our model-based approach provides

a rational basis for the design of a computationally feasible, yet nearly optimal filter for optical

flow estimation which naturally incorporates both temporal and spatial coherence constraints. Our

approximate filter arises from the construction of a reduced order spatial model for the optical

flow estimation error field at each time step and thus possesses a precise estimation-theoretic

interpretation. Reduced order approximations for Kalman filtering on (2-D) image frames have

frequently been reported [27, 28, 29]; the computational algorithm in this paper represents a 3-D

version for image sequences in which we must determine a reduced-order model, at each frame in the
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image sequence, in order to capture the dynamically-evolving statistical structure of the estimation

error field.

The paper is organized as follows. In Section 2 we review the classical single-frame optical

flow estimation problem in a continuous setting. In Section 3 we present our temporal extension

to the continuous classical problem. In Section 4, we give a discrete reformulation of the single-

frame formulation and its interpretation as a maximum likelihood estimation problem. We then

derive a statistically optimal Kalman filtering algorithm for the resulting multi-frame problem. In

Section 5, we investigate implementation issues, including approximation of the Kalman filter and

the effects of discretization on the fundamental measurement constraint. In Section 6, we present

various simulation results demonstrating the benefits of applying temporal coherence to multi-frame

optical flow estimation as well as the effectiveness of our approximate Kalman filter in computing

such flow fields. The paper concludes with final comments in Section 7.

2 Optical Flow Estimation

We perceive motion by temporally tracking image intensity patterns, often associated with reflec-

tions from the surfaces of objects in the scene. If the brightness corresponding to a point on the

object surface remains practically constant for a sufficiently long duration, the position of the point

can be tracked by referencing the same brightness value, leading to motion perception. Such an

assumption of brightness invariance can be expressed as [1]

dE = (1)

where E(sl, 32, t) is the image intensity, which is treated as a differentiable scalar function over the

image frame (31,S2) C D and time t. Let f(sl,s2, t) [t ,z] be the optical flow vector at

a given point in the image frame and time. By expanding (1) in terms of partial derivatives, we

obtain the following relationship between the image intensity gradients and the optical flow vector

at each point in the space-time domain:

Ot + [8 ' as2] f =O (2)
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Horn and Schunck [1] have suggested that the fact that (2) provides only one constraint for the two

unknown components of f is the reason for the visual ambiguity often referred to as the aperture

problem in psychophysics [24] and have provided a method to compute optical flow using additional

constraints. Their method of computing the optical flow finds a single frame of the flow field, i.e.

f(sl, s2, t) for a fixed t, as a the solution of a quadratic minimization problem

f(ll,,,,,,,) 0~'aE 9E 2 a 2 a 2
minF s"4at +aJl ' a+, f + Al f2 + A2 ad, (3)

where (sl, s2 , t) # 0, /l, and 12 are given weights. The first quadratic term involves the image

data, penalizing large deviations from (2). The second and third terms are necessary to make the

formulation mathematically well-posed [30]. These two terms also represent our prior belief about

the flow field, implying that the computed flow should vary smoothly over space. Such spatial

coherence of the flow vectors reflects the smoothness and stiffness of the object surface in the scene

[24].

3 Multi-frame Formulation

The formulation (3) processes the data (the gradients of the image intensity) a frame at a time,

yielding flow estimates independently over time. We now consider the imposition of temporal coher-

ence [31] to the flow field in addition to the spatial coherence enforced by (3) in order to utilize more

data for each flow vector estimate. Temporal coherence imposes an inertia condition on the flow

field, favoring gradual changes in the optical flow vectors over time. Temporal coherence models of

optical flow are applicable to a wide range of motions in natural scenes, as most movements display

inertia of some type. To obtain such a multi-frame formulation of the optical flow computation

problem we use a simple temporal extension [25, 26] of (3). In particular, for 0 < t < r we find the

flow field f(sl,s 2, t) which provides the solution to

r f oEf / [0E 2 2 2 02
(minA -E + dE -]f +l f-lf + 12 f + p f ds ds2 dt. (4)

The multi-frame formulation (4) is obtained from the single-frame formulation (3) by the addition

of a quadratic term involving the first order temporal derivative.
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We demonstrate in Section 6 that flow estimates based on this multi-frame problem extension,

arising from the imposition of temporal coherence, yields solutions which are more robust and

accurate than those derived using the corresponding single-frame formulation (3). The inclusion

of the temporal constraint in (4) allows the integration of data over time. This use of temporally

extended data can both help resolve single-frame observation ambiguities (the aperture problem)

and greatly reduce noise sensitivity relative to the non-temporal formulation (3).

Note that the full solution to the optimization problem (4) leads to a space-time field f(si, s2, t)

in which the solution at any time takes advantage of all available constraints over the entire time

interval 0 < t < r. In the parlance of estimation theory, this is the noncausal, smoothed estimate.

In this paper we focus on the filtered estimate, i.e. the value of the solution to (4) at the current

time t = r. Filtered estimates are desirable in applications where the optical flow needs to be

calculated as soon as each frame in the image sequence becomes available; however, obtaining such

estimates corresponds to solving a different 3-D optimization problem for each '7 as r increases.

Such a solution clearly results in a greatly increased computational burden over what is required for

the single-frame solution of (3), making direct solution of the optimization problem (4) prohibitive.

We present an efficient, recursive solution to a discrete and probabilistic version of the causal

filtering problem represented by (4), obtained through Kalman filtering. Applications of Kalman

filtering to various formulations of optical flow estimation [32, 33] as well as to other low-level

reconstruction problems in computational vision [25] have been proposed. In these works, simplified

formulations are used to avoid the computational complexity associated with filtering large amounts

of image data. Specifically, the uncertainty in the dynamic model for the time-varying unknown

field, and hence the uncertainty in the estimate itself, is not formally represented or properly

propagated in these approaches. In an exact implementation of a Kalman filter, such uncertainty,

as captured in the estimation error covariance matrix, is propagated along with the estimate itself

[34, 35, 36] and allows for the optimal fusing of the current estimate with new observations. The

filtering algorithm presented in this paper employs a more systematic and rational approximation

of Kalman filter than those previously reported; it is based on the propagation of approximate

local models of the estimation error covariance. The mathematical details of our approximation

techniques can be found in [26] in the more general context of low-level visual reconstruction.
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4 Discretization and Probabilistic Interpretation

4.1 Single-Frame Case

To obtain a discrete formulation of the single-frame problem (3) we sample the image frame D on

an nl x n2 rectangular grid containing N nn 2 points. Let f(t) be a vector of the flow values

f(sl,s 2,t) sampled on the grid and ordered lexicographically according to the sampled spatial

coordinates (sl,s2). Since f is a 2-vector at each point, f(t) has 2N elements. We similarly

define g(t) to be an N-vector of the lexicographically ordered samples of (-_E) taken on the

same grid. Finally, let H(t) and W(t) be block diagonal matrices whose diagonal elements are the

samples of [E, OE] and (sl,s2 , t), respectively, taken on the same grid and sequenced in the

same lexicographical order. A discrete version of the single-frame formulation (3) is then given by

min {jIg(t) - H(t)f(t)llw(t) + IISlf(t)ll11I 2(N_,-n) + IS2f(t) I12(N ) } (5)

where jIIXIj2 denotes the weighted norm xTMx, 'm represents the m x m identity matrix, and S1

and S2 are first order difference operators along the si and s2 axes, respectively, given by

D2(1) nl-) -I I2

S $ ' D2(m-i)=

D2(nl- 1) -I2 I2

-I2nl I2nl

S2-

['2n, 12n,

Solving the quadratic minimization problem (5) is equivalent to solving a maximum likelihood

estimation problem [36] for f(t) with the following observation equation:

g(t) H(t) W-l(t)

o Sl f(t) + r(t), r(t) O, [I2(N-n2) (6)

0 St2 A 1r2(N_, ))7



where we have used the notation x - (m, C) to denote a Gaussian random vector x whose mean

and covariance are m and C, respectively. Thus, r(t) is a zero-mean Gaussian random noise

process. Note that W - 1(t) is a diagonal covariance matrix, whose non-zero elements v-l(s1 , 2, t)

are variances representing probabilistically how much the measured image gradients deviate from

the ideal brightness constraint (2). Also, /1 l and /21 are the variances representing how much

the first-order differences between neighboring flow vectors deviate from zero, effectively controlling

the strength of the spatial coherence constraint. The maximum likelihood estimate for the optical

flow, f(t), is obtained as the solution of the following inverse problem:

(HT(t)W(t)H(t) + /1STSl + _ 2STs 2 ) f(t) = HT(t)W(t)g(t). (7)

The equations in (7) represent a discrete version of the coupled Poisson equations of the Horn and

Schunck formulation. Note that the matrix operator L(t) = (HT(t)W(t)H(t) + ,lSTS 1 + /2S[S2)

on the left hand side of (7) has a sparse, nearest neighbor (a nested block tri-diagonal) structure

(37], whose sparseness enables us to use efficient iterative procedures, such as multigrid methods

[38], in the solution of (7). Also, this sparse matrix corresponds to the information matriz (the

inverse of the covariance matrix) associated with the posterior estimation error d(t) - f(t) - f(t).

In particular L(t) can naturally be considered to specify an implicit model for the estimation error

process d(t) of the following form:

L(t) d(t)= ¢(t), ¢(t) (0,L(t) ). (8)

The nearest neighbor structure of L(t) in (8) or (7) reflects a corresponding local structure to the

statistical model for the estimation error covariance. We will use this observation in what follows.

4.2 Multi-Frame Case

Now we consider the multi-frame extension of the single-frame formulation given in (6). The

continuous optimization problem (4) can be considered to be an optimal smoothing problem based

on the following temporal, linear Gauss-Markov dynamic system for f(t) [26]:

f(S 1,S 2, t) = q(t) (9)
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where q(t) is a Gaussian white noise process of zero mean and intensity p-1 . For such an optimal

smoothing problem, two-filter methods (obtained by running a Kalman filter in each of the causal

and anti-causal directions [36]) are applicable [39, 40]. In general we wish to compute only the most

recent estimate f(sl,sz2, ) from (4) for each r > 0. Such an estimate can be obtained by a single

causal Kalman filter. Specifically, a discrete version of this multi-frame problem can be formulated

as a state estimation problem for the dynamic system whose dynamic equation is

f(t) = f(t - 1) + q(t), q(t)- (,p-'l ), (10)

and whose observation equation is given by (6). The process noise q(t) is uncorrelated over time

and captures the uncertainty in the dynamic model (10). This Gauss-Markov dynamic model,

a discrete version of (9), indicates that the optical flow evolves in time as the accumulation of

a random perturbation at each time frame. In this paper we will be primiarily concerned with

the temporal dynamics of the form (10). Naturally, other more complicated dynamic models,

corresponding to having different temporal coherence terms in (4), could be used in general.

State estimation for the dynamic system (10)(6) can be performed in a sequential way by the

following implementation of the information form [34, 36] of the Kalman filter:

* prediction stage

L(t)= p, --p 2 ((t ) + (11)

f(t) = f(t- 1) (12)

z(t) = L(t)?(t) (13)

* update stage

L(t) = L(t) + HT(t)W(t)H(t) + i 1S S + +Y2S2S2 (14)

i(t) = Z(t) + HT (t)W(t)g(t) (15)

L(t)f(t) = i(t) (16)

where f(t) is the one-step predicted estimate and f(t) is the updated estimate using the new data
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available at time t. Also, L(t) and L(t) denote the predicted and updated information matrices,

respectively. Note that the updated estimate f(t) in (16) is specified implicitly, as for the single-

frame case (7).

5 Implementational Issues

5.1 Suboptimal Kalman filtering

The number of pixels, N, in a frame of a typical image sequence is on the order of 104 to 106. Such

a large number of points makes direct implementation of the optimal information Kalman filter

(11)-(16) impractical as the associated information matrices L(t) and L(t) of the optimal filter will

have on the order of 108 to 1012 elements.

To understand our sub-optimal filter, consider the set of equations (11)-(16). First consider the

update stage of the Kalman filter. If L(t) possesses a sparse and banded nearest neighbor structure,

as was true for the single-frame problem, then (14) will preserve this structure in L(t) since, as

we pointed out in connection with (7), HT(t)W(t)H(t) + ISTS1 + h2Sf2S2 also possesses this

structure. In particular, if this is the case, then (16) may still be solved efficiently for the updated

estimate f(t), and in fact this step would have exactly the same computational complexity as in the

single-frame approach. Thus we desire to preserve such a sparse and banded structure in 1(t).

Now consider the prediction stage. Unfortunately, even if L(t - 1) in (11) is initially sparse

and banded, the predicted information matrix L(t) will not be due to the matrix inverse on the

right hand side of this equation. In addition, finding the inverse of this matrix is a prohibitively

complex procedure. What we desire, then, is a sparse and banded approximation to L(t) that may

be efficiently computed.

As detailed in [26, 41], such an approximation may indeed be obtained by expanding the matrix

inverse on the right hand of (11) in a series as follows:

L(t) = p - p2 (A-1 - A-'QA- + A- 1 A-' - ... ) (17)

where A is a block diagonal matrix whose 2 x 2 diagonal blocks are identical to the corresponding

diagonal blocks of the matrix L(t - 1) + pI while Q = ,(t - 1) + pI- A is given by the remaining off-
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diagonal part of L(t-1)+pI. Note that A-' is block diagonal. The series (17) may now be truncated

to any desired number of terms to obtain an approximation to the exact expression of the desired

level of accuracy. The more terms are kept, the less sparse and banded the approximation will

become. Thus, there is a tradeoff between accuracy and computational efficiency. Our experience

has shown that retaining only the first two terms yields excellent results. In particular, we obtain

our near-optimal filter by replacing the optimal prediction step (11) by the following two-term

approximation:

L(t) = p - p2 (A-' - A-'nA-). (18)

Unlike (11), the suboptimal prediction step (18) does indeed preserve the desired nearest neighbor

structure in the (approximated) information matrix L(t).

It can be verified straightforwardly that propagating the information matrix in the approximate

filter as in (14) and (18) costs only O(N) flops per frame and has a local, modular computational

structure suitable for parallel implementation. Throughout the filtering procedure, the approxi-

mated information matrices maintain the nearest neighbor structure and have only O(N) non-zero

elements. Thus, the approximate filter has significant computational and storage advantages over

the optimal Kalman filter, which normally requires O(N 2 ) storage elements and O(N 3 ) flops per

frame of data.

A useful way to understand our approximation is provided by an examination of the update

stage of the Kalman filter. In this part of the filter we are fusing the information from the previous

prediction stage, as captured by L(t) and X(t) (or equivalently f(t)), with the new observation. In

particular, L(t) can naturally be thought of as specifying a prior model for the error e(t) - f(t) -f(t)

in the current estimate of the following form:

L(t)e(t)= (t), ((t) (0 C(t,0 t)) (19)

which is just the counterpart of (8) for the dynamic problem. This model is then combined with

the new observation to produce the best estimate e(t) of this error. The updated estimate f(t) in

(16) is then equal to f(t) + e(t). The update stage is thus just a static spatial estimation problem,

where (19) represents a prior model just before the inclusion of new data. That is, by writing the



observation equation (6) as y(t) = C(t)f(t) + r(t) (where y(t) and C(t) have been introduced to

denote the corresponding vector and matrix in (6) concisely), the estimate e(t) can be obtained by

solving the static estimation problem

0 1 (t) 1- 
C(t) re 2[ y(t) - C( J L C(t) j [ r(t) ]

which is statistically equivalent to obtaining the updated estimate f(t) of the unknown f(t) given

the prediction f(t). Since the implicit model is specified by L(t), our approximation of this ma-

trix by a sparse matrix of the given nearest neighbor structure in (18) corresponds naturally to

the specification of an approximate, reduced-order model for the error process. In particular this

approximation may be viewed as the imposition of a Markov Random Field structure of fixed spa-

tial extent on the flow field estimation-error [26]. Our approximation thus has a rational basis in

estimation-theoretic considerations.

5.2 Variance computation

The estimation error covariance matrix P(t) associated with the updated flow estimate f(t) is the

inverse of the information matrix L(t). This inversion can be performed recursively as

(k+1)(t) = AZ1 - AlQZLP(k)(t) (21)

where AL is a block diagonal matrix whose 2 x 2 diagonal blocks are identical to the corresponding

diagonal blocks of L(t) and £L _ L(t) - AL is the remaining off-diagonal part of L(t). This

is a matrix version of the Jacobi iteration which is guaranteed to converge, i.e., P(k)(t) - P(t)

as k - oo, because f(t) is positive definite [42]. We initialize P(°)(t) = A-', which makes the

recursion (21) equivalent (in the limit) to the series expansion used to invert a matrix in (17) [26].

The recursive scheme (21) is attractive in our suboptimal filtering scheme where L(t) is sparse

at all times. Moreover, in practice typically only certain elements of P(t), namely the diagonal

elements representing the variances as well as the elements near the diagonal, are desired. The

recursion (21) can often be approximated effectively by updating only the diagonal and near-

diagonal elements of the covariance matrix, e.g., by some nearest-neighbor or similar masking of
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the matrix after each recursion [26]. In such an approximate recursion, only O(N) matrix elements

are updated. This, combined with the sparseness of f(t), allows practical computation of variances.

5.3 Image preprocessing

Discretization of the image sequence in time and space affects the equivalence between the intensity

invariance assumption (1) and the gradient constraint (2). Dense temporal sampling of the image

sequence is especially critical in practice for (2) to be useful for optical flow computation. Let the

temporal sampling interval for the image sequence be At. Then a discrete version of (1) can be

written as

E(s + As, t + At) - E(s, t) = 0, (22)

where s [ [s1, s 2 T and As (At)f. By performing a Taylor series expansion of (22) we obtain

0 = + E9
= a sE(AS)+ aE(at)

a 2E 1 TA 2 E (At) 2 82 E
+-(As)(At) + -(As)T (AS)+ (+-+asat 2 s 2 t+"

(23)

Then, by dividing both sides by At, we see that (23) reduces to (2) only if all the second order

partial derivatives are zero,

02 E e9 E 02 E
= 0, = 0, and 0t2 (24)

ast aS2 at2 (24)

or, alternatively, At -* 0. Thus, two ways to satisfy (2) are to increase the temporal sampling rate

or to somehow reduce the high frequency components in the intensity function. The latter can be

achieved by presmoothing or intentionally blurring the images before gradient computations [43] so

that the second and higher order brightness gradients are diminished. Presmoothing also reduces

the effects of noise in the brightness measurement by providing spatial averaging.

In the experiments to be presented in Sections 6, presmoothing is implemented by averaging over
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9 x 9 local subframes l, and improvements in accuracy (over the cases in which no presmoothing

has been applied) of the optical flow estimates are observed. We further ensure the quality of

the measurement by computing the second order gradients 8a2 E - , at each pixel after

presmoothing and weighting the measurement by a function of the magnitudes of these second

order gradients. Specifically, we have found experimentally (Section 6.3) that, using the weights

2E a 2E 2 E 12
V(3J1,2,t) = exp - sti ) exp (-k EOt' Oszat] (25)

with a constant parameter k, is particularly effective in increasing accuracy of the optical flow

estimates.

6 Simulations

We demonstrate the beneficial effects of the temporal coherence constraint, formulated as the

dynamic model (10), for optical flow estimation by example. Synthetic image sequences of moving

brightness patterns are processed by various multi-frame and single-frame optical flow estimation

methods, and the improvements gained by using this particular temporal coherence constraint are

discussed. The following three methods are considered:

* SF (Single Frame)

This method is a discrete version of the single-frame computational approach proposed by

Horn and Schunck [1]. Each frame of optical flow is computed without any provision for

temporal integration of data, by solving the inversion problem (7) for f(t).

* TCO (Temporal Coherence, Optimally computed)

This method is our multi-frame algorithm implemented as the optimal Kalman filter (11)-(16)

based on the temporal coherence constraint (10).

* TCS (Temporal Coherence, Suboptimally computed)

This method is the suboptimal but computationally efficient version of the TCO method:

'An alternative to this simple averaging is local fitting of an analytic surface (e.g. [44, 45]), which allows us
to trade an increase in computational complexity with the advantage that image gradients can be obtained as the
parameters of the surface.
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The prediction step (11) of the Kalman filter is approximated as (18).

Variants of these methods arise in different computational environments. Specifically, the inversion

steps (7) (for SF) and (16) (for TCO and TCS) can be implemented by one of the following

computational procedures, leading to variations in the algorithms above:

· dm (direct matrix inversion)

Although direct matrix inversion requires computational resources too large for practical op-

tical flow estimation, it does provide us with the exact estimates for the algorithm comparison

purposes. In one of the experiments to be presented we have chosen to use a very small image

frame to perform direct inversion for such comparison purposes.

* ic (iterative inversion, iterations to convergence)

In practice, the inversion problems are solved iteratively. We use Gauss-Seidel iterations in

the experiments in this paper. Needless to say, this iterative solution will converge to the

corresponding solution of dm in the limit.

* is (iterative inversion, single iteration)

In time sequential processing, it is natural to initialize the iterative inversion at time t with

the estimate obtained at time t - 1, providing a reasonably good estimate for time t even

before the first iteration. By slightly "updating" this initial guess with a single (or a small

number of) Gauss-Seidel iteration(s) at the present time, a fairly accurate estimate of the

flow field can emerge after continuing the process over several time-frames [1], although such

estimates are suboptimal in the statistical sense.

In the experiments to be presented, each computational method is made explicit by the name of

its main algorithm suffixed by the name of the variation, e.g., TCO-dm, TCS-ic, SF-is, etc.

Also, in each experiment, the initial frame of optical flow estimate is computed identically for every

participating computational method in order to highlight the differences in the temporal effects

of each method. Specifically, the initial estimates are computed by either the SF-dm or SF-ic

method depending on the experiment.

The method SF-is deserves a special attention. This method is the approach to multi-frame

optical flow estimation suggested by Horn and Schunck in [1]. It performs only one Gauss-Seidel
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iteration for the inverse problem (7) at each t but uses the estimate from the previous frame, f(t- 1),

to initialize the current iteration. Unlike the SF-dm or SF-ic method, therefore, this method does

have some provision for propagating the estimates temporally. Note that if, instead of only a single

Gauss-Seidel step, the iterations are allowed to converge for each frame of data, the resulting flow

estimates would have lost all information from the previous frame and become exactly the same as

the SF-ic estimates. Although the SF-is method is ad hoc in terms of its temporal integration of

data, its ease in implementation is appealing from a practical point of view.

6.1 Measurement integration by temporal coherence

One of the advantages of using a temporal coherence constraint in optical flow estimation is im-

provement in estimates due to temporal accumulation of complementary information regarding the

flow vectors. Reconstruction of optical flow using only spatial data integration (i.e., the SF meth-

ods) cannot be performed correctly when a complete set of the information necessary to estimate

the flow vectors is not contained in each data frame. Specifically, since diversity in the orientations

of the measured spatial gradients is necessary to resolve the aperture problem, optical flow com-

putation methods employing only a spatial coherence constraint will have difficulties dealing with

cases where all the spatial gradients happen to be oriented in nearly the same direction (including

the cases where most of the spatial gradient vectors have small magnitudes). Addition of a tempo-

ral coherence constraint can often relieve such difficulties by allowing the use of information from

adjacent image frames. We give a demonstration below that the temporal constraint is, in fact,

instrumental in correctly estimating the flow in such cases.

Experiment 1: Rotating Ramp

Small image frames are used in this experiment so that the optical flow estimates of the various

methods can be computed by direct matrix inversion, allowing comparison of the exact estimates

of the different methods.

1. The image sequence.

A sequence of 10 x 10 images of a sloping edge rotated constantly over time is observed. The

amount of rotation between adjacent image frames is 0.1 radians. Figure 1 shows frames 0, 5,

10, 15, 20, and 25 of the image sequence. The sloping edge, or transition region, is a quarter-
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wave of a sinusoid changing from -1 to 1 over a band approximately 5-pixel wide. The

pixel values are measured with floating-point accuracy without noise. The ramp is the only

region in the image with non-zero spatial gradients; the rest of the image frame is featureless

(constant brightness) so that motion is undetectable there. Note that all the spatial gradient

vectors in each image frame are oriented in an identical direction. The image gradients are

computed as averaged first-order differences, as performed by Horn and Schunck [1].

2. The flow estimates.

Figure 2 shows the estimated flow vectors using the four methods SF-dm, SF-is, TCO-

is, and TCO-dm with the parameters p = 1, /1 = 2 = 0.00025, and W(t) = I. With

these values, the relative strength of spatial coherence, normalized by the strength of the

brightness constraint, is about l1--, accommodating the large spatial variations among the

motion vectors in rotational motion (especially for small image frames as in this example).

As described before, all four methods begin with the same initial estimates, as reflected in the

results for frame 0 in the figure. The TCO-dm method produces a fairly accurate estimate

at frame 25. The estimate by the SF-is method at frame 25 appears to be fairly good, also.

The SF-dm method, however, fails completely. This behavior demonstrates that some sort

of temporal integration of measurements is necessary for correct estimation in this case.

3. The estimation errors.

Figure 3 displays the percent average estimation error for each t,

x 100, (26)Ilf(t)ll

where f(t) is the true flow and f(t) is the estimated flow, for the four methods. The figure

also displays the plot of standard deviation (representing the spatial variation of the estima-

tion error f(t) - f(t) for each t) associated with each of the four error curves. First, note

the difference between the optimal estimates with and without the temporal coherence, as

reflected by the performances of the SF-dm and TCO-dm methods whose errors are plot-

ted as the dashed and solid curves, respectively, in the figure. Clearly, the plot for SF-dm

displays no reduction in error as more images are processed, while the error for TCO-dm

decreases steadily down to below 5% in the first 30 frames. Next, comparison of the error
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curves for the SF-is (dotted line) and SF-dm (dashed line) methods shows that having even

a weak provision for temporal data integration leads to much more accurate flow estimates

than having no such provision at all. The TCO-is method with its explicit use of a temporal

coherence constraint, however, performs better than the SF-is method, as the error curve

(dash-dot line) decreases to a lower value and in a more stable (smooth and near-monotonic)

manner than the curve for SF-is.

4. The Kalman gains and variances for the TCO-dm method.

One can visualize the temporal integration process of the optimal Kalman filter in the TCO-

dm method by observing the "images" of the magnitudes of the Kalman gains and variances.

Figure 4a shows the magnitudes of the Kalman gains at frames 0, 5, 10, 15, 20, and 25. The

magnitude of the Kalman gain is an indication of how much the filter values the new data in

updating the estimate. Lighter pixels have higher values than darker pixels. (Note that the

frame size is only 10 x 10, resulting in the jagged appearance of the images.) Comparison

of Figures 4a and 1 reveals that the Kalman gain is high where the image contrast is high.

Figure 4b shows the magnitudes of the error variances. Pixels with low (dark) variances

have high confidence in their associated flow vector estimates. Notice that the area of high

confidence grows with time, indicating that the filter produces good estimates of flow vectors

over a wider region in the image frame as more measurements are integrated over time.

6.2 Noise reduction by temporal coherence

A temporal coherence constraint can improve the quality of optical flow estimates by reducing the

effect of measurement noise through the averaging of the noisy data over time. We have added

white Gaussian noise of variance 0.0025 independently to each pixel of the images in the Rotating

Ramp sequence of Experiment 1. Although the magnitudes of the noise are small relative to the

pixel values, the gradients computed from the corrupted images are noisy enough to make optical

flow computation challenging. The sequence has been processed using the SF-dm, SF-is, TCO-

is, and TCO-dm methods. Figure 5 displays the estimated flow fields, and Figure 6 shows the

estimation errors (26) and their associated standard deviations for the computed optical flows. The

success of the TCO-type methods and the failure of the SF-type methods are evident in the figures.

The difference in the performances of the SF-is and TCO-is methods can be clearly seen in this
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example (by comparing the respective 2 5th frame estimates in Fig. 5 or the dotted and dash-dot

curves in Fig. 6), signifying the explicit use of the temporal coherence constraint in the algorithm

formulation.

6.3 Temporal coherence in the approximate filter

As discussed in Section 5, for realistic applications the large size of image data sets makes exact

implementation of the optimal Kalman filter in the TCO method impractical. As a result we

developed an implementable yet near-optimal filter, i.e., the TCS method. Here, we present

numerical experiments which demonstrate the efficacy of this near-optimal TCS method. First we

will examine the performance of the approximate filter on the small Rotating Ramp images. For

these small images we can compare the output of the approximate filter to the optimal Kalman filter

estimates and show that the approximate filter produces estimates that are almost indistinguishable

from the optimal ones. Next we will apply our approximate filter to large images of realistic size,

where the exact optimal Kalman filter cannot be used. Since the true flow field will be known, we

will use the percent average estimation error (26) for each t for our flow comparisons.

We start by comparing the approximate filter with the exact, optimal Kalman filter. The noise-

free image sequence of the Rotating Ramp is processed with the approximate Kalman filter, (18)

(12)-(16), of the TCS-dm method, and the resulting estimates are compared with the estimates

obtained with the corresponding optimal Kalman filter of the TCO-dm method. Qualitatively, the

optimal and approximated optical flow estimates appear to be identical. To quantify the difference

between the two estimates, we have computed for each t the difference in percent normalized average

estimation errors

( (t) - f(t) ,(t) - f(t) ) X 100 (27)
IlAOIIl[ IPf(t)[[

where f,(t) and fo(t) are the estimates by the suboptimal and optimal filters, respectively, and

f(t) is the true flow. Figure 7 shows that this approximation error is at most 3% and is negligible

for most t. The error is often negative, meaning that the suboptimal filter has estimated more
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accurately than the optimal filter in some frames. The figure also displays the plot of

v 'x- 11 100 (28)

comparing the variances (diagonals of the covariance matrices) p,(t) and po(t) from the suboptimal

and optimal filters, respectively. The values from the suboptimal filter are within 7% of those from

the optimal filter and are within 1% for most t. A more detailed comparison may be found in [26].

The accuracy of the approximate filter along with its efficiency (both in terms of computational

costs and storage requirements) allows us to impose the temporal constraint to process image

sequences with a much larger and more realistic frame size than those in the experiments so far,

which we do next.

Experiment 2: Stagnation Flow

In this experiment we consider estimation of the motion of a non-rigid body using the SF-ic and

TCS-ic methods as well as the SF-is and TCS-is methods.

1. The image sequence.

Figure 8 shows a flow pattern whose velocity vector at point (s1, z2) is given by (As,, -As 2) for

A = 0.1, where the coordinate origin is at the midpoint of the bottom edge of the figure. This

type of flow (for an arbitrary constant A) is useful for a local characterization of stagnation

flow [46], i.e., the flow of fluid obstructed perpendicularly by a solid object. A sequence of

64 x 48 images are synthesized based on such a velocity field. Figure 9 presents four images

from the sequence. Note that the direction of the predominant contrasts in each image changes'

from mostly vertical in the early frames to mostly horizontal in later frames, implying that

some type of temporal coherence constraint is necessary for correct estimation of the flow

from this image sequence. We have corrupted the images by adding an independent Gaussian

noise with a variance of 9 to each pixel and then requantizing the resulting pixel values to

256 grey levels.

2. The flow estimates and estimation errors.

As described in Section 5.2, the 9 x 9 unit uniform stencil is used to spatially smooth the
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images before brightness gradients are computed. The computational parameters p = 10 and

/l1 = /2 = 0.025 have been used. Figure 10 shows frame 18 of the estimated flow vectors

computed by the SF-ic and TCS-ic methods. The SF-ic method, without any provision for

temporal data integration, has completely failed to estimate the flow field, while the TCS-ic

method has performed a reasonable reproduction of the flow in Figure 8. The flows computed

by the SF-is and TCS-is are shown on Figure 11, which also displays the importance of

temporal coherence in estimation. The average estimation errors and associated standard

deviations for the four methods, shown in Figure 12, are consistent with these observations.

Again, superior performance of the TCS-type methods over the SF-type methods is displayed

rather dramatically by the error curves.

3. The number of iterations required.

Both the SF-ic and TCS-ic methods have been allowed to use a maximum of 500 Gauss-

Seidel iterations to compute the estimates at each t; however, the actual numbers of iterations

required for convergence of the solution (to within 10 - 7 rms difference from iteration to

iteration) are typically lower, as shown in Figure 13. Note that both algorithms initialize each

iterative session (except in the first frame) using the respective estimates from the previous

frame. Figure 13 indicates that the TCS-ic method requires progressively fewer iterations

to compute the estimates (e.g., down to 16 iterations for the estimates in frame 18) and thus

has a much superior convergence property than the SF-ic method which requires 100 to 500

iterations for the estimates in any frame.

Experiment 3: Yosemite

Our final example involves estimation of a time-varying flow field. Ideally, the temporal dynamics

of the flow field is known in advance so that a model physically more accurate than the model (10)

can be constructed. Unfortunately, the dynamics of the motion vectors is seldom available prior to

motion estimation in practice. In fact, the estimated optical flow vectors themselves are commonly

used to infer the dynamics of the objects in the scene, which in turn determines the dynamics of the

motion vectors. The dynamically simple model (10), however, can be quite effective in delivering

the benefits of temporal coherence to time-varying flow fields, and this experiment describes one

such case. Issues regarding modeling of time-varying flow fields are explored in more depth in [41].
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1. The image sequence.

A motion image sequence is synthetically generated based on a 3-D topographic model of

the Yosemite Valley2. Figure 14 shows a typical frame from the sequence. The frame size is

316 x 252, and the pixel values are quantized to 256 grey levels. Figure 15 shows the tenth

frame of the true optical flow sequence. As in the case with the Stagnation Flow experiment,

we have corrupted the images by adding an independent Gaussian noise with a variance of 9

to each pixel.

2. Presmoothing and gradient weighting.

The images are presmoothed by the 9 x 9 unit stencil as in the Stagnation Flow experiment.

The weight for the gradients at each pixel location, i.e., each element of W(t), is computed

using (25) with k = 2. Compared with the uniform weighting W(t) = I, this weighting

scheme is able to decrease the average estimation error by over 4% per frame. We have

attempted similar weighting schemes using other second order gradients but have not found

them as beneficial as (25).

3. The flow estimates and estimation errors.

The flow fields are estimated with the SF-ic TCS-ic SF-is and TCS-is methods using

the parameters p = 10 and /1t = z2 = 250. We have used 500 Gauss-Seidel iterations to

solve the inverse problem for each frame of flow estimate, except for the estimates in the first

frame. The estimate from the previous frame is used to initialize each iterative procedure. To

obtain the estimates in the first frame, due to lack of a favorable initialization values, 3500

iterations have been used. The spatial coherence applied is stronger in this example than the

previous examples, in part because of sparseness of the reliable image gradients, which can

be observed from the grey-scale displays of the estimation error variances on Figure 16. The

dark stripes in the displays are the pixel locations where the variances are low and where

the image gradients are heavily relied upon by the filter to estimate the flow field. As can

be observed, the filter has taken advantage of the long and mostly linear gradients along the

outlines and striations of the cliffs and mountains as well as the edges of the river. The use of

a stronger spatial coherence is also justified by the mostly translational nature of the motion

2Lyn Quam of SRI International has produced the original image sequence.
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represented by the flow field. In fact, with a larger frame size of the Yosemite image in mind,

the spatial variation among the flow vectors in this example is less than that in the previous

examples, allowing more rigid spatial coherence. Figure 17 shows the tenth frame of the

estimated flow vectors. The noise-suppression effect of the temporal coherence constraint can

be observed in the upper part of the frame. Finally, Figure 18 shows the estimation errors in

the first ten frames for the four flow computation methods. The TCS-ic method consistently

yields more accurate estimates than the other three method.

7 Conclusion

We have demonstrated that the temporal coherence afforded by the use of the dynamic model (10)

can improve the quality of the optical flow estimates via temporal measurement integration and

noise reduction. We have shown how to practically compute such flow estimates sequentially in

time using a Kalman filter. In particular, the information form of the Kalman filter is shown to

be approximable, leading to a computationally efficient formulation of an effective, general-purpose

procedure for multi-frame optical flow estimation. The key to this approximation was the interpre-

tation of the update stage of the Kalman filter as an implicitly defined, static spatial estimation

problem for the field estimation error with a prior model specified by the current information

matrix of the process. Our approximate filter then arises through the efficient specification of a

reduced-order model of the desired sparse and banded form. Numerical experiments showed that the

resulting filter provided near-optimal estimation performance. An important direction to extend

this work is to consider how to deal with discontinuities in the flow field (due to object occlusion

etc.) over space and time. This might involve studies on piece-wise smooth coherence constraints

for the flow field (e.g. [32, 16]) and on spatio-temporal dynamic modeling of the discontinuity

boundaries (e.g. [40]). Also, more sophisticated (and perhaps more application-specific) temporal

modeling of the optical flow, such as Lagrangian modeling, is another possibility for an interesting

extension to the presented work.
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Figure 1: The Rotating Ramp. Frames 0, 5, 10, 15, 20, and 25 are shown.
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Figure 2: Optical flow estimates for the Rotating Ramp example. The flow patterns at frames
(from left to right) 0, 5, 15, and 25 are shown. The flow vectors are magnified by 1.5 for clarity.
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Figure 3: The average estimation errors and their associated standard deviations in the Rotating
Ramp example for the four methods: SF-dm (dashed line), SF-is (dotted line), TCO-is (dash-dot
line), and TCO-dm (solid line).
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(a)

(b)

Figure 4: The magnitudes of (a) the Kalman gain and (b) error variance for the TCO-dm method
in the Rotating Ramp example. Frames 0, 5, 10, 15, 20, and 25 are shown.
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Suboptimal vs. Optimal Filter
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Figure 7: The error introduced when the optimal Kalman filter in the TCO-dm method is ap-
proximated as in the TCS-dm method.
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Figure 8: The true flow in the Stagnation Flow experiment. Every other flow vector along each
axes is shown with a magnification factor of 4 for clarity.
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Figure 10: The optical flow estimates for frame 18 of theStagnation Flow sequence by the SF-icand TTCS-i-ic methods.
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Figure 11: The optical flow estimates for the frame 18 of the Stagnation Flow sequence by the
SF-is method and TCS-is method.
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Figure 12: The estimation errors and associated standard deviations by the TCS-ic (solid-line),
SF-ic (dashed-line), SF-is (dotted-line), and TCS-is (dash-dot line) methods for the Stagnation
Flow experiment.
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Iterations used in Stagnation Flow
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Figure 13: The number of iterations used by the TCS-ic (solid-line) and SF-ic (dashed-line)
methods for convergence of the estimates in the Stagnation Flow experiment.
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Figure 15: The true flow for the tenth frame in the Yosemite image sequence. The flow vectors are
reduced by a factor of 2 for display purposes.
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Figure 16: The filter variances associated with the two components of each flow vector estimate for
the second frame in the Yosemite image sequence.
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Figure 18: The estimation errors and associated standard deviations by the TCS-ic (solid-line),

SF-ic (dashed-line), SF-is (dotted-line), and TCS-is (dash-dot line) methods when the noisy

Yosemite image sequence is processed.
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