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Chapter 1

Introduction

1.1 Overview

In any VLSI industry, electronic design automation (EDA) tools that synthesize cus-

tom silicon from abstract hardware description languages (HDL) are used to automate

and accelerate the intricate design process. Over the years, EDA industry has pro-

vided tremendous value to chip designers with its automated software to create and

validate electronic designs, and has helped raise the level of abstraction in the design

process. The unrelenting drive to produce smaller and more complex electronic com-

ponents and microprocessors has fueled the reliance of chip designers upon EDA tools,

and more importantly, the need for ultra-powerful tools that achieve good quality of

results (QoR) in terms of area, timing, power, etc.

HDLs describe the architecture and behavior of discrete electronic systems. A

typical HDL supports a mixed-level description in which gate and netlist constructs

are used with functional descriptions. This mixed-level capability enables a designer

tlo describe system architectures at a very high level of abstraction and then incre-

mentally refine a design's detailed gate-level implementation. HDL descriptions plays

an important role in modern design methodology for three reasons [10]:

1. A design written as an HDL description can be simulated immediately. Design

simulation at this higher level, before implementation at the gate level, allows
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designers to evaluate architectural and design decisions.

2. HDL compiler can automatically convert an HDL description to a gate-level

implementation in a target technology. This eliminates the former gate-level

design bottleneck.

3. HDL descriptions provide technology-indenpendent documentation of a design

and its funtionality. An HDL description is easier to read and understand than

a netlist or a schematic description. A technology-independent documentation

can be reused to generate the design in a different technology, without having

to translate from the original technology.

As a result, HDL compilers has become an important part of the EDA tools.

Synthesis is a process that generates a technology-dependent, gate-level design for

an IC design that has been defined using HDL languages. The Design Compiler (DC)

comprises tools that synthesize HDL designs. The Presto Compiler - the default

HDL compiler in DC - translates Verilog or VHDL descriptions to the Synopsys

internal design format, as illustrated in Figure 1-1. Presto first profiles the HDL

files to obtain a full intermediate level (IL) description of the design, and performs

various architectural optimizations at the same time. During the second step, Presto

takes the IL description and translate it into the inet representation in which every

operational component of the design and their interconnections are identified. In

the final stage of the compiler, designs are stored using the Synopsys database (DB)

format. The DB files are structural representations of the design using cells from the

Generic Technology (GTECH) library, which is a technology-indepedent library. The

DB files are then passed to the Design Compiler, which can then further optimize the

design and map it to a spectific ASIC technology library. The entire synthesis flow

[il] is depicted in Figure 1-2.
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Figure 1-3: A 2-to-4 Decoder

1.2 Motivation and Goals

A decoder can be thought of as a converter from binary to a one-hot encoding. A 2-

to-4 decoder is shown in Figure 1-3, in which A are the inputs, and B are the outputs.

In HDL designs, decoders are generated for case variables, as shown in Example 1-1,

and left hand side (LHS) variable array subscripts, as shown in Example 1-2.

Ex 1-1: A 3-to-8 decoder is inferred from the case variable seL

module decoder (sel, res);

output [7:0] res;

input [2:0] sel;

reg [7:01] res;

always @ (sel) begin

case (sel)

3'bOOO: res = 8'b00000001;

3'bOO1: res = 8'bOO000010;

3'b010: res = 8'bOOOOO100;

3'bO11: res = 8'b00001000;

3'blOO: res = 8'bOO010000;

3'b101: res = 8'bOO100000;

3'bllO: res = 8'b01000000;

3'blll: res = 8'blO100000;

endcase;

end

endmodule

Ex 1-2: A 3-to-8 decoder is inferred from the LHS variable array subscript sei

module decoder (sel, res);

output [7:0] res;

input [2:0] sel;

reg [7:0-1 res;

always (sel or res) begin

res[sel] = 1;

end

endmodule

10
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For an n-bit input decoder, there are 2 output bits, and thus the width of a

decoder grows exponentially with its number of input bits. Hence decoders can con-

tribute a significant portion of the design area, and the new generation of HDL

compilers need to efficiently synthesize this particular hardware component, in order

to achieve better QoR. In the Presto Compiler, decoders are synthesized in two steps:

first decoders are generated from case variables and LHS variable subscripts during

the ilnet stage; Presto then maps the generated decoders using GTECH library cells

during the GTECH tranformtion stage. As a result, decoder related optimizations in

the Presto Compiler can also be divided into two steps: 1) generate fewer decoders by

sharing those that are driven by common inputs, referred to as decoder sharing, and

2) map decoders using fewer number of GTECH cells, referred to as decoder map-

ping. Currently, there is little decoder-related optimizations in the Presto compiler,

and this research project will implement algorithms for both decoder sharing and

decoder mapping. By generating fewer decoders and reducing their sizes, it is hoped

that the number of cells in the final design, and more importantly, the design area

would improve thereafter.

1.3 Thesis Organization

Chapter Two provides a detailed description of the decoder sharing problem, consid-

ers alternative methods, and discusses in detail the actual algorithms implemented

within the Presto framework. Chapter Three provides a detailed description of the de-

coder mapping problem, and gives mapping algorithms for various kinds of decoders.

Chapter Four demonstrates the results obtained using these optimization techniques

and discusses possible future improvements.
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Chapter 2

Decoder Sharing

2.1 Problem Description

2.1.1 Sharing Decoders and MUXes

For HDL example:

Ex 2-1: input x;
input[1:O] b
output[1:O] a
b x] = a x];

Currently, Presto detects the variable array subscript on the left hand side and blindly

generates a decoder. It also detects the variable array subscript on the right hand

side and blindly generates a multiplexer. A multiplexer (MUX) is a digital circuit in

which the correct data bit is selected according to the address input. A two-input

Figure 2-1: A two-input Multiplexer
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MUX is shown in Figure 2-1. Input A is the addressing input that controls which of

the two data inputs, XO or X1, will be transmitted to the output.

Before actually synthesizing any cells, the Presto compiler rewrites the above

example to the following:

decoderO = DECODER(x);

muxO = MUX(a, x);

case (1'bl)

decoderO[O]: b[O] = mux_0;

endcase

case ('bl)
decoderO[11]: bEll = mux_0;

endcase

The case construct in the rewritten statements is then synthesized into a select cell,

which can be thought of as a series of multiplexers with individual control inputs and

data inputs. Figure 2-2 shows the selector constructed in this particular example, in

which decoder outputs are used as control inputs and the mux output is used as the

data input. Figure 2-3 shows the complete circuit for this particular example.

A better approach is to calculate directly, based on the decoder output alone, the

addresses for both arrays, which are then inserted directly into the optimized case

statements. The optimized rewrite is as follows:

decoder_0 = DECODER(x);

case (bl)

decoderO [0]: b[O] = a[O];

endcase

case (bl)

decoderO[1]: bE] = aEl];

endcase

In the optimized case statements, the addresses for both arrays are transformed into

constants based on the value of DECODER(x), without the need for a mux from a[x].

When synthesizing the above case statements, the wires for individual bits from both

arrays are routed directly to the selector. Figure 2-5 illustrates the improved circuit

for this particular example.

Since it is long and tedious to write out each case statement, a shorthand is used

13



decoder01O] decoderO ] decoderO[1]

Figure 2-2: A two-input selector
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Figure 2-4: Improved circuit for b[x]=a[x] without the mux for a[x]

to replace the case construct, and is shown as follows:

decoderO = DECODER(x);

b [decoderO] = a [decoderO]; -- case construct shorthand

Similar simplification is employed throughout the paper.

The example above can be easily generalized to statements in the form of b Ef (x)]

= a[g(x)], in which indices on both sides are arithmetic expressions that contain a

common variable x. Currently, Presto generates a decoder from f(x), and a mux from

g(x). A better approach is to identify the common variable x in both indices, and

generate a decoder from it. Once the value of x is determined, Presto can calculate

both array addresses from f(x) and g(x) respectively, and transform variable sub-

scripts into constants before generating any actual cells. In this case, besides saving

one mux, arithmetic cells that would have been generated for f(x) and g(x) are also

eliminated. The optimized rewritten statements are as follows:

decoderO = DECODER(x);

b[f(decoderO)] = a[g(decoderO)]; -- case construct shorthand

Note that the rewritten case construct includes only cases in which f(decoderO) and
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g(decoderO) are within the range of array a and b. Decoder output bits that lead

to out-of-bound index values for either a or b will not be connected to the selector,

and are thus left unconnected. This is applied when synthesizing every variable array

references.

2.1.2 Sharing Decoders

In the previous section, decoder outputs are shared between left and right hand

side array references to eliminate unnecessary muxes. In this section, decoders with

common inputs are shared to avoid generating unnecessary decoders.

For the statement a[xl [x] [x+y = 1'bl, Presto blindly generates one decoder

for each dimension - DECODER(x), DECODER(x), DECODER(x+y). Optimally, Presto

should be able to detect common variables in all dimensions, and determine a mini-

mum set of decoders that is needed to completely decode the address in every dimen-

sion. In this particular example, the optimal set contains only two decoders - one for

variable x and one for variable y. DECODER(x+y) is considered unnecessary since the

value of x + y can be determined from those of x and y. The optimized rewrite is as

follows:

decoderO = DECODER(x);

decoder- = DECODER(y);

case (1'bl)
decoderO[O] && decoderl[O]: a[O] [0] [0] = 1;

endcase

case (1'bl)

decoder0[1] && decoderA [0]: a[l] [1] [1] = 1;

endcase

· . .

case (1'bl)

decoder O[0] && decoder [l]: a [0] [0] [1] = 1;

endcase

Note in this case, the control inputs for the synthesized selector are the AND of two

output bits from both decoders.

The number of decoders can be further saved by expanding the problem globally,

16



and identify repetitive decoders among different HDL statements. In the following

example:

input x;
output [1:0] a;
output [1:0] b;
aEx] = 1;

b[x] = 1;

Presto currently generates two decoders, one for each assignment. However, it is clear

that the two decoders are exactly the same, and thus one of them can be eliminated

from the design.

The benefit of decoder sharing is the greatest for designs that are similar to the

following:

Ex 2-2: input [4:0 x;

input [1023:0 a;

output [1023:0] b;

int i;

for (i=0; i<1024; i++) {

a[x+i] = b[i];
}

Similar snippets of code can be found in signal processing or memory related designs,

which often contain large arrays with variable indices inserted in a for loop. The

ability to extract the variable and its corresponding decoder outside the loop would

result in huge savings in number of decoders. Using the example above, Presto

currently generates one decoder and one adder for each iteration (x, x + 1, x + 2...),

for a total of 1024 decoders and 1023 adders. The original rewrite is as follows:

for (i=0; i<1024; i++) {
decoder_0 = DECODER(x+i);

a[decoder_0] = b[i]; -- case construct shorthand

}

Optimally, variable x should be recognized as a common variable, and the decoder

generated from x is then shared among all iterations. The optimized design would

save a total of 1023 decoders and 1023 adders. The optimized rewrite is as follows:

17



decoderO = DECODER(x);

for (i=O; i<1024; i++) {

a[decoderO+i] = b[i]; -- case construct shorthand

}

2.1.3 Combining Two Problems

If we treat the right hand side array references the same as those on the left hand

side, problems in section 2.1.1 are then essentially the same as those in section 2.1.2.

in Example 2-1, if we use a decoder for subscript x in array a on the right hand side

instead of a minux, there would be two decoders with the same input x in the design.

Hence, one of them would be eliminated, and the same optimized circuit would be

synthesized as in Figure 2-4.

Therefore, the problem can be summarized as selecting a minimum set of decoders

from which every variable array address can be determined. The number of decoding

cells is reduced by reusing decoders with common inputs. This appears to be very

similar to that of common subexprssion elimination (CSE) - a well known standard

optimization implemented in most traditional compilers. The purpose of CSE is

to reduce the runtime of a program through avoiding the repetition of the same

computation. Indeed, after rewriting the assignment b [x] = a[x] to the following:

tl = decode(x);

t2 = decode(x);

b[t2] = a[ti]; -- case construct shorthand

Then decode(x) is trivially sharble, and naturally, only one decoder will be generated.

However, a direct application of CSE only eliminates decoders with the exact same

input, since decode operations with different arguments would not be considered as

identical computations. Statement b f (x)] I = a E[g(x)] becomes

tl = decode(f(x));
t2 = decode(g(x));
b[t2] = a[tl];

In this case, decode(f(x)) and decode(g(x)) are different and unsharable computa-

18



tions. Hence, a direct application of CSE would still generate unnecssary decoders in

the end.

2.2 Implementation Consideration

To effectively reduce the number of decoders, the compiler must first determine which

decoders may be generated, then choose which ones actually will be generated.

2.2.1 Identify Possible Decoders

To produce a list of possible decoders, we need to extract variables in array subscripts

and compare them. During the IL stage of the Presto compiler, various architectural

rewrites are applied to an HDL design, which may prevent us from correctly identi-

fying all possible decoders. The following design

Ex 2-3: input [1:0 x;
input [1:0 y;

a[2x+y+3] = c[2x+y];

b[x][y] = 1;

would be rewritten as

tO = 2x + y; -- CSE

tl (32-bits) = tO (2-bits); -- type conversion

a[Etl + 3] = c[tO];

b[x][y] = 1;

First, expression 2x + y is a common expression in the design and is renamed to tO

as the result of traditional CSE optimization. A constant integer 3, whose type is

32-bits, is contained in the subscript of array a. Hence tO, whose type is 2-bits, is

renamed to tl when its type is converted to 32-bits. In this case, CSE optimization

masqueraded both variables x and y as potential decoding inputs. Moreover, tO and

tl are rendered different as a result of type conversion, while the fact is that they

both possess the same value, albeit different types, and thus both should be deemed

identical.

19



In order to avoid such reverse effects, one option is to implement decoder sharing

during the IL stage of the Presto compiler, but previous to all IL rewrites that may

modify any subscript expression. The pros of this option include

1. During the IL stage, an HDL design is represented as a directed graph whose

nodes are operations to be performed and their operands. Analyzing any ex-

pression, including subscripts, requires graph-traversing, which can be done

with relative ease.

2. By analyzing original subscript expressions, a more accurate list of potential

decoders can be produced.

The cons of this option include

1. During the IL stage, loop iteration variables are regarded as ordinary variables

instead of constants. As a part of an index expression, loop iteration variables

would be included as potential decoding inputs, and thus may result in un-

neccessary decoders. In Example 2-2, if the loop iteration variable i is treated

the same as x, i and x + i would be included in the list of potential decoding

inputs. However, since i assumes a constant value in each iteration, the list

should include x only.

2. Expressions can only be compared by their names, instead of their values. As

a result, lexically identical but semantically different variables maybe consid-

ered equivalent, or lexically different but semantically identical variables maybe

considered different. This can be solved using partial redundancy [3] and value

numbering [1] - two classes of algorithms already implemented as a part of CSE

in the Presto compiler. However, if decoder sharing is to be implemented be-

fore all relevant IL rewrites, including CSE, then these two particlar algorithms

would need to be applied twice - during the decoder sharing phase and later

again during the CSE phase.

Another option is to implement decoder sharing during the ilnet stage of the

Presto compiler, after all the IL rewrites. The ilnet representation for each expression

20



0

x[0]
x[1]

y[O]
x[1 1J LI 

N2[0]

N2[1]

N2[2]

0

Figure 2-5: Ilnet representation of tl + 3 (2x + y + 3) in example 2-3

consists of nets driven by a certain opearational cell, whose inputs are nets driven by

some other operational cells. Once we obtain the ilnet representation for each index,

we can extract variables from them by traversing the cell interconnections backwards.

Figure 2-5 depicts the ilnet representation of the index expression t + 3 in Example

2-3.

The pros of this option include

1. Loop iteration variables are represented by constant nets. The compiler is then

able to differentiate them from ordinary variables, and exclude them from the

list of potential decoding inputs.

2. The netlist representation is a correct criterion in comparing two expressions.

Semantically different expressions are represented with different nets, and se-

mantically identical expressions are represented with the same nets.

The cons of this option include

1. Since each net represents one bit of the expression and most expressions contain

multiple bits, multiple nets need to be compared in determining the equivalence

of two expressions. This may result in a slight increase in compile time.

2. Arithmetic optimizations may eliminate certain cells, which may in turn disguise

potential decoding inputs. In the following example:

input [3:0] x;

a[x>>2] = b[x<<2];

21



instead. of representing both indices with left shift and right shift cells respec-

tively, the ilnet form for the left index consists of simple nets {0 0 x[3] x[2]}

with no driving cells, and the ilnet form for the right index consists of simple

nets {x[1] x[0] 0 0} with no driving cells. In this case, it is difficult to extract

variable x from both indices. Note that Presto would still produce a correct

design, albeit an inferior one, by generating two decoders instead of one.

Comparing the two options described above, the latter provides a better solution.

The inability of the first option to identify loop iteration variables may result in un-

necessary decoders, which opposites the goal of decoder sharing. Excluding partial

redundancy (PR) and value numbering (VN), the first option may have a shorter

compile time. This however, would lead to incorrect comparisons and possibly in-

correct designs. In terms of correctly comparing two expressions, ilnet comparison

provides a much easier and quicker solution than PS and VN.

2.2.2 Choose a Minimum Set of Decoders

After a list of potential decoders is produced, we need to choose from the list, a

minimum set of decoders that actually will be generated. Often, the appropriate

choice for part of the design may not be appropriate for the whole design. In Example

2-3, to completely decode the address for array a, the compiler may generate two

decoders - Decoder(x) and Decoder(y), or just one decoder - Decoder(2x + y). The

same can be said for array c. Thus, when considering the first statement alone, a

decoder of 2x + y appears to the better option. However, to completely decode the

address of array b in the second statement, the compiler must generate two decoders

from x and y. Therefore, the opposite is the better option in terms of the whole

design. Once Decoder(x) and Decoder(y) are generated, both can be shared among

all three arrays to completely decode their addresses.
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2.3 Detailed Implementation

2.3.1 Analyze Index Nets

When analyzing each index expression in its ilnet form, the compiler traverses the

cell interconnections backwards, identifies the operations that the cells represent, and

extracts different combinations of subexpression nets from which potential decoders

may be generated.

Before describing the algorithm, several points need to be brought to attention:

1. eliminate most significant zero nets

When decoding index expressions, the compiler is concerned with their values

instead. of their types. Most significant zeros do not impact the value of an

expression and thus those nets can be eliminated without any effects. In other

words, any nets in the form of {0 ... 0, n ... n} can be reduced to {n ... n}, with

n represnting any non-zero net. In the ilnet representation of the expression

2x + y + 3, depicted in Figure 2-5, 29 bits of zero nets in the output of the

second adder can be eliminated. The same can be said for 30 bits of zero nets

in the output of the first adder.

2. discard constant operands

If a variable expression f(x, y...) can be decomposed into - using any arithmetic

operation - another variable expression g(x, y...) and a constant, only g needs

to be considered as a potential decoding input. The value of f can be easily

calculated from Decoder(g). In Figure 2-5, the bottom operand driving the

second adder consists of only constant nets, thus nets t2 would be dropped

from consideration as a possible decoding input. All possible decoding inputs

would come from nets tl and its sub-nets.

3. discard' least significant zero nets

For nets in the form of {n ... n, 0 ... 0}, only their sub-parts {n ... n} need

to be considered as a potential decoding input. Denote z as the number of
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Figure 2-6: Modified ilnet representation of 2x + y + 3

least significant zero nets. Once the value of the sub-net is determined from

the decoder, denoted as v, the value of the entire nets can be easily calculated

as v 2. In Figure 2-5, 2x is represented as {x[1], x[0], 0}, which contains one

least significant zero net. Only the sub-nets {x[1], x[0]} will be considered as a

possible decoding input.

Note the difference between elimination and discard. When nets are eliminated,

not only are they prevented from being part of any decoding input, they are also erased

from the original ilnet representation. When nets are discarded, they are prevented

from being part of any decoding input, but are kept in the ilnet representation. Since

the ilnet representation will later be used to calculate the value of the index once the

actual decoders are generated, constant operands and least significant zeros must be

kept to ensure the correct calculation. The most significant zeros should be erased

from the ilnet representation since they do not impact the value of the index, and if

not removed, the compiler would have to evaluate them again.

Function AnalyzeNets summarizes the steps for analyzing each index expression.

The function input is the ilnet representation of each index with most significant zero

nets in the output eliminated (Algorithm 2). The function AnalyzeNets calls function

AddToGraph, which adds the extracted variables to an decoding input graph (Section

2.3.3). Applying the algorithm to the ilnet representation in Figure 2-5, variable nets

{NI[0], N1[1], N1[2]}, {x[0], x[1]}, and {y[0], y[1]} would be extracted and added to

the graph. EBy eliminating most significant zero nets, the ilnet representation itself is

modified, which is depicted in Figure 2-6.
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Algorithm 1: AnalyzeNets(N, parent-nodelD, dir)
input : N - nets to be analyzed with most their significant zeros eliminated
parent-nodelD - the ID of the node in the decoding input graph that
contains the parent of N
dir - whether N is the left or the right child of its parent. '1' represents left
child, and '2' represents right child

1 cell - DrivingCell(N); //cell with N as its output
2 N' - DiscardLSBZeros(N); //N' is N without least significant zeros
3 if cell =-= NULL then
4 AddToGraph(N', parent-nodelD, dir);

I L return

13 left - InputA(cell); //the left operand of the cell
'7 left - EliminateMSBZeros(left); //eliminate most significant zeros
8 right - InputBfl(cell); //the right operand of the cell
9 right EliminateMSBZeros(right);

io if left is not constant && right is not constant then
11 LnodelD = AddToGraph (N', parent-nodeID, dir);
12 AnalyzeNets(left, nodelD, 1);
13 AnalyzeNets(right, nodelD, 2);

14 else if left is constant then

//all potential decoding inputs would come from the
1.5 AnalyzeNets(right, parent-nodelD, dir)

16 else

//all potential decoding inputs would come from the
17 L AnalyzeNets(left, parent-nodelD, dir);

right operand

left operand

Algorithm 2: AnalyzeIndex(index)

1 N - ilnet representation of the index;

2 if N is constant then
a L return;

4 N - ElirninateMSBZeros(N);
5 AnalyzeNets(N, NULL, NULL);
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2.3.2 Compare Decoding Input Nets

When adding nets produced from the previous analysis to the decoding input graph,

they are compared against all existing nets in the graph in order to prevent duplicates.

There are three cases in which two nets are considered the same:

1. The new is exactly the same as the old, e.g.

old: {x[2], x[1], x[O]}

new: {x[2], x[1], x[O]}

2. The new is a subset of the old, e.g.

old: {x[2], x[1], x[O]} old: {x[2], x[1], x[O]} old: {x[2], x[1], x[O]}

new: {x[2], x[1]} new: {x[1], x[O]} new: {x[1]}

In this case, the values of the two are related through shifting operations. As-

sume the old contains old-bits number of bits, and the new contains new-bits

number of bits. If the new is exactly the same as old[t: v] with 0 < t < v <

(old-bits - 1), then the value of the new can be calculated from the old by left

shifting old-bits - 1 - v, and then right shifting old-bits - new bits.

Using the middle example above, the old has 3 bits, and the new has 2 bits.

The new is exactly the same as old[1 : 0], thus the left shift number is 2- 1 = 1,

and the right shift number is 3-2 = 1. The value of the new can be calculated

as (old << 1) >> 1.

3. The old is a subset of the new, e.g.

old: {x[2], x[1]}
new: {x[2], x[1], x[O]}

This is the exact opposite of the previous case. The value of the old can be

calculated from the new, instead of the other way around.

2.3.3 Construct Decoding Input Graph

The decoding input graph is essentially a forest of binary trees that merges all possible

decoding inputs. Each node in the graph contains nets that are inputs for potential
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Algorithm 3: CompareNets(old, new, & shift)
input : old - existing nets in the decoding input graph
new - nets that need to be added to the decoding input graph
output: 1) An integer indicating which case does the comparison belong to
2) Shift numbers relating the two nets

1old-bits - NumberOfBits(old);
2 newbits - NumberOfBits(new);

.3 case old bits == new-bits
4 Compare the old and the new bit by bit;
5 if all bits are the same then
6 L return 1

'7 else
s L return 0;

9 case old bits > new-bits
n +- new[newbits - 1] //n is the most significant bit in the new nets

//compare n with each bit in the old nets, starting from the most
significant bit, until one that is the same as n is found in the old nets

for i - oldbits-1; i > 0 && n=old[i]; i- - do {};
if i < 0 then
L return 0;

//get the subset from the old that has the same number of bits as the new,
starting from the ith bit in the old

subold +- old [i : i-(newibits-1)];

if CompareNets(sub-old, new) == then
(shift-*left) +- old-bits- 1- i;
(shift-right) -- old-bits- newbits;
return 2;

else
L return 0;

21 case old bits < new-bits
22 if CompareNets(new, old) == 2 then
23 L return 3;

24 else
25 LL return 0;
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Root

Root

a[2x+y+3] = c[2x+y]; a[2x+y+3] = b[x+y];
b[x][y] = 1; c[z] = 1;

D4 _nt
Root

(X/ 4) (X/2) (X/ 4)

K Itf
{N1, (0,1)1, {N2, (0,2)11

//N2, (U,1)}

Graph after the Graph after the
first index second index

a[x 2 + x/4] = b[x];

Figure 2-7: Several Decoding Input Graphs.

decoders. Using algorithm CompareNets, if the new nets are exactly the same as

those in an existing node m, then no nodes will be created and the new nets will not

be added to the graph. The ID of node m is returned. If the new nets are a subset of

those in node m, then the new nets and the shift numbers relating their values will

be added to mn's related-nets list. No new node is constructed and the ID of node m is

returned. If the nets in node m are a subset of the new nets, then a node n containing

the new nets is constructed. Node n replaces node m, and takes over m's related-nets

list. The shift numbers for each element in list is re-calculated. Old nets in node

m are also added to node n's related-nets list. The ID of node n is returned. The

nets in each index that do not have a parent are defined as root nets. The node that

contains the root nets, whether in itself or its related-nets list, would be marked as

"root". Figure 2-7 illustrates several decoding input graphs constructed for different

designs.
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Algorithm 4: AddToGraph(new, parent-nodelD, dir)
input : new - nets that need to be added to the decoding input graph
parent-nodeID - the ID of the node containing the parent of the new nets
dir - indicates if the new is the left child or the right child of its parent
output: Decoding Input Graph G

1 repeat

2 m - get a existing node from the graph;
3 }compare = CompareNets(m.nets, new, & shift);
4 until compare > 0 OR no more nodes in the graph;

5 switch compare do
6 case 0

//The new nets do no exist in the graph
7 nodelD +- ConstructNode(new);
8 case 1

//The new nets are exactly the same as the existing nets
9 nodelD +- m;
o10 case 2

//The new nets are a subset of the existing nets
11 nodelD +- m;
12 m..related-nets.append(new, shift);
13 case 3

//The existing nets are a subset of the new nets
14 nodelD +- ConstructNode(new);
15 foreach element n in m.related-nets do
16 | compare = CompareNets(new, n.nets, & new-shift);

17 Ln.shiftnumber = new-shift;
S18 nodeID.related-nets.append(m.nets, shift);

1) if parent-nodelD == NULL then
2) L mark nodeID as root;

21 else
22 if dir == 1 then
23 L set the left child of parentnodelD to nodelD;

24 else if dir == 2 then
25~ L set the right child of parent-nodelD to the nodeID;

26 return nodelD;
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2.3.4 Generate Decoders from the Graph

C)nce the decoding input graph has been built, we need to pick a minimum set of nodes

from which actual decoders would be built and values of all array subscripts can be

determined. This is achieved by traversing the graph reverse topologically. Each

interior node in the graph has two children, and those two children must be visited

before their parent(s). A node is crossed out when it is eliminated from becoming an

actual decoder. Both children will be crossed out except in the following situations:

1. One of children is marked as a root, and none of their parents is marked as a

root. A decoder is generated from the root child if it has not been crossed out,

while the other child node is crossed out.

'root

N 2 N3

If an uncrossed node is marked as a root (e.g. node N2), it represents a variable

expression whose value must be to be decoded, but has yet to be decoded. In

this case, a decoder must be generated from the node. Since none of the parent

nodes is marked as a root, each of them must be a child of some root node X.

If an actual decoder were generated from the non-root child node (e.g. node

N3), then the values of all parent nodes (e.g. node N1) would be naturally

determined. However, at least another decoder must be generated in order to

determine the value root X. From the standpoint of the root node X, choosing

the non-root child node would lead to more than one decoders, which is a worse

choice than just generating one decoder from the node X itself. Therefore, the

non-root child in this case is crossed out.

2. One of the children is marked as a root, and at least one of the parents is
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also marked as a root. Actual decoders would be generated from both children

assuming they not crossed out. As a result, the values of all parent nodes can

now be determined based solely on those two decoders. All parent nodes will

be marked as "root" and crossed out.

roc

I

,r(N4)

For root node N3, a decoder must be generated from it if the node is uncrossed

or no decoders are needed if it is crossed. Either way, we do not have any choices

when it comes to this particular node. To decode the value of node N1, two

choices exist - 1) generate one more decoder from N1 or 2) generate one more

decoder from N4. If node N1 were chosen, it onyl determines the value of one

parent node, namely the node itself. If node N4 were chosen, the value of all

parent nodes would then be naturaly determined. Hence all parent nodes can

be crossed out and marked as roots.

3. Both children are marked as roots. The same actions are taken as in case 2. It

does not matter whether any parent is marked as a root or not.

I

I
I

tl = iecoder(N 3) tL = Decoder(N4)

4. Neither child is marked as a root, but at least two of their parents are marked

as roots. Same actions are taken as in case 2.
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roo

tl = Decoder(N4) t2 = Decoder(N5)

In this case, there are at least two parent nodes that must be decoded, and thus

at least two more decoders are needed. By choosing two child nodes, all parent

nodes - including those marked as roots - would be naturally determined.

Figure 2-8 illustrates the decoders generated for two simple decoding input graphs

from Figure 2-7. Figure 2-9 illustrates the decoder generating process for a relatively

complicated graph.

Note that every time a decoder is generated from a node n, its value is also

assigned a temporary variable. The attribute of the nets contained in node n is then

set to the temporary variable. For nets in node n's related-nets list, their attributes

are set to an expression involving the temporary variable and the corresponding shift

number. Using the bottom graph in Figure 2-7 as an example, a decoder is generated

from nets N3. Assume a temporary variable tl is assigned the value of the decoder.

Then the attribute of nets N3 is set to t. The attribute of nets N1 is set to tl >> 1,

and the attribute of nets N2 is set to tl >> 2.

2.3.5 Rewrite Array References

Once the actual decoders are generated, each index is rewritten using the values of

those decoders. The rewritten expression is deduced by inversely traverse the ilnet

representation of each index, and replace it with net attribute expressions.

Again using the bottom example in Figure 2-7, the rewrite is as follows:

a[x/2 + x/4] = b x]; t = Decoder(x);
a[tl>>l1 + tl>>2] = b[t];
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a[2x+y];
b[x][y] = 1;

a[2x+y+3] = b[x+y];
c[z] = 1;

Case 3

4-1 -

LI = LIL;UUcrtk1-4,) t = Decoder(N3); t2 = Decoder(N4)
t2 = Decoder(N3) t3 = Decoder(N5)

Figure 2-8: Decoders Generated for simple decoding input graphs.
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case 3

case 1

case 2
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~R R
R R

Figure 2-9: Decoder Generating Process for a relatively complicated graph. The first
one represents the original decoding input graph. Each graph shows the transforma-
tion made after traversing the nodes in the dashed rectangle. Decoders are generated
from numbered nodes.
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Algorithmin 5: RewriteIndex(N)

input : N - nets of an index expression

1 if the attribute of N is set then
2 expr -- the attribute of N;
3 if there are least significant zeros in N then

4 L expr - expr .2 number -ofleas t -significan t -z eros ;

5 return expr;

6 else if \T is constant then
expr - the value of N;

8 K return expr;

9 else
cell -- the driving cell of N;
op - the arithmetic operation performed by the cell;
hs-net - InputA(cell);

rhs net +- InputB(cell);
Ihs -Rewriteindex(lhs-net);
rhs +-- RewriteIndex(rhs-net);
expr - {lhs op rhs};
return expr;

Using the left example in Figure 2-4, the rewrite is as follows:

a[l2x+y+3] = c[2x+y]; ==. tl = Decoder(x); t2 = Decoder(y);
b[l-x] [y] = 1; a[2tl+t2+3] = c[2tl+t2];

b[tl] [t2] = 1;

After array indices are rewritten using temporary decoder variables, the state-

ments are then rewritten to case constructs described in section 2.1.
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Chapter 3

Decoder Mapping

3.1 Problem Description

During the GTECH transformation phase in the Presto compiler, all cells - including

decoders - are mapped using cells from the GTECH library. The GTECH library

is a generic technology-independent library, which consists of common logic elements

[12], which includes:

1. Boolean Logic Cells: Buffers, Inverters, AND, OR, NAND, NOR, XOR, XNOR

2. Adder, MUX

3. Flip-Flop, Latch

The goal of the decoder mapping is to map decoders using the fewest number of

GTECH cells possible. In doing so, we hope to reduce the size of each decoder.

Define a as the value represented by a binary string a[n- 1: 0]. A decoder with

an n-bit input is a combinational circuit specified as follows:

Input: x[n-1: 0] E {0,1)}
Output: y[2 n _ 1: ] E {o, 1}2"
Functionality: y[i] = I 41 x i

Consider a decoder with whose input x has 3 bits. When x = 101, output y equals

00100000. Individual bits in the output can be expressed as a simple boolean function
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of the decoder input. For a 3-bit decoder,

{n7, n6, n5, n4, n3, n2, n, nO} = DECODER(x[2], x[1], x[O]);

each output net is expressed as follows:

n7 = AND(x[2], x[1], x[O )
n6 = AND(x[2], x[1], A'x[O])
n5 = AND(x[2], x [1], x[O])

nO = ANI)D (-x [2], x [1], -x [])

The simplest way to map a decoder is to build a separate circuit for every output

bit. This decoder circuit would contain 1) n.2n- 1 number of inverters, since each input

bit is inverted in half of the 2n outputs, and 2)(n- 1) 2n number of AND gates, since

each output needs n- 1 AND gates. Thus, the total cost of this particular brute force

design is ((n. 2n). Assuming the AND gate has a longer delay time than the inverter,

the delay of the circuit is (tpd(INV) + n tpd(AND)). This mapping algorithm is

currently employed in the Presto compiler. Intuitively, it is wasteful in terms of the

number of GTECH cells used. For example, boolean expressions for every two output

bits differ by only one bit, namely x[O], and the corresponding AND tree share all

but one single operand. In the current appraoch however, the AND of x[n- 1: 1] is

computed twice.

One solution is to share the same sub-trees among different output bits. Various

different sub-trees are available to be shared - an AND-tree of input x[n- 1: 1] can

be shared between outputs y[2 n - 1] and y[2 n - 2]; an AND tree of input x[n - 1: 2]

can be shared between outputs y[2' - 2] and y[2n - 3]; an AND tree of input x4n- 1]

and x[n- 2] can be shared among output bits y[2 n _ 1: 2n-2]. The choice of common

sub-AND trees to be actually shared is crucial to the number of AND gates used.

It seems that the problem can be solved by traditional CSE algorithms. However,

several distinct features of the problem renders CSE unsuitable:

1. Expressions for decoder outputs are known in advance. Once the decoder in-

put is determined, so are the expressions for all decoder output bits. More

importantly, all available common sub-expressions (sub AND-trees) are natu-
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rally determined. Traditional CSE algorithms do not know the expressions in

advance, and expressions are much more general than those in decoder circuits.

Hence, most CSE algorithms leave the responsibity of finding possible com-

mon subexpressions to the vicissitudes of the parser 11], which often leads to

obscured common expressions due to the order they appear in the expression

tree.

2. To effectively reduce the number of AND gates, the compiler need to pick an

optimal set of common sub-AND trees to be shared among different output

bits. In traditional CSE algorithms, finding optimal common subexpressions

is NP-complete [4], and fast heuristics are deployed. When applied directly on

decoding output expressions, many of them yield poor results. For example, if

the longest common subexpressions are chosen, then AND-trees from input bit

x[n- 1 : 1] would be shared between every two consecutive output bits. This

particular set of common sub-AND trees would turn out to be sub-optimal. In

fact, due to the symmetric structure possessed by the decoder output expres-

sions, optimal sub-AND trees can be determined in advance, which is described

in detail in the following sections.

It is often that some of the decoder outputs do not drive any cells and are left

unconnected. Therefore, decoders can be divided into two main categories:

1. Full Decoder. A decoder without any unconnected outputs.

2. Partial Decoder. A decoder with some unconnected outputs. Output bits are

left unconnected because they represent an out-of-bound array index. In the

following example:

Ex 3-1: Partial Decoder. ('U' = Unconnected Nets) :

input[3:0] x;

output[9:0] a; === {U,U,U,U,U,U,n9,n8,...,nO} = Decoder(X)

a[x] = 1;

output bits from 10 to 15 is left unconnected because the range of array a is

from 0 to 9.
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Partial Decoders can be further categorized according to the following two criteria:

1. whether the unconnected outputs are continuous: A continuous partial decoder

is one whose connected outputs are separate from unconnected outputs. No

connected outputs are sandwiched between two unconnected outputs. Other-

wise, the decoder is defined as a discontinuous partial decoder. The following

illustrates a few examples.

Ex 3-2: Continuous Partial Decoders

{r7, n6, U, U, U, n2, n, nO} = Decoder(X)

{U, U, n5, n4, n3, n2, U, U} = Decoder(X)

{n7, n6, n5, U, n3, n2, n, nO} = Decoder(X)

Ex 3-3: Discontinuous Partial Decoder

{n7, n6, U, n4, n3, U, n, nO} = Decoder(X)

2. whether the unconnected outputs can be treated as don't cares: For partial de-

coders generated from array references, unconnected outputs can be treated as

don't cares if the option for dynamic bounds-checking is turned off. In this

case, the designer does not care about the behavior of the circuit once the array

index is out-of-bound. If the option is turned on, an error should be generated if

the index is out-of-bounds. For partial decoders generated from case variables,

unconnected outputs are treated as don't cares if they represent cases that are

specified as don't cares in the original design.

3.2 Full Decoder

Denote a full decoder with n-input bits as Decoder(n). Let x be its input and y be its

output. Decoder(n) can be designed using recursion on n. The circuit of Decoder(1)

simply consists of one inverter where y[0] - INV(x[0]) and y[1] +- x[0].

Assume the mappings of decoders with input length less than n are known. Using

the divide-and-conquer method, consider a parameter k, where 0 < k < n. Partition

the input bits x[n- 1: 0] into two parts as follows:
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XR = x[k-1 0]

,k

Decoder(k)

R[2k-1 :0] 2

n-k k
n-k 2 X 2

X L > 2 array of-+n-k > Decoder(n-k) array of

xln-1 : k] n-k

L2 -1 : 0] AND-gates

o.:;

jtl z. n-l]

Figure 3-1: A recursive mapping of Decoder(n)

1. The right part, denoted by XR, including input bits x[k- 1: 0]

2. The left part, denoted by XL, including input bits x[n- 1, k]

A recursive mapping of the decoder feeds XR to Decoder(k). The output of this

decoder is denoted by R[2k - 1: 0]. In a simliar manner, XL is fed to Decoder(n- k).

The output of this decoder is denoted as L[2n- k 1: 0]. Both decoder outputs are

then fed to a 2k x 2 n-k array of AND gates, in which each AND gate has two inputs

from R and L. Denote the AND gate with position (r, ) in the array as ANDr,i. The

inputs of this AND gate are R[r] and L[l]. The output of this AND gate is y[ 2 k + r].

Figure 3-1 depicts the recursive implementation.

Let c(n) be the number of gates used in the recursive mapping of Decoder(n).

c(n) satisfies the following recurrence equation:

1 if n = 1
c(n) = 

lc(k) + c(n - k) + 2n otherwise.
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Obviously, c(n) = Q(2n), regardless of k. Let k = n/2, or k = n/21 if n is odd.

Assume that. n is a power of 2, the recurrence equation is then:

c(n) = 2. c(n/2) + 2n

= 4 c(n/4) + 2n + 2.2n/2

= 8 c(n/8) 2 + 2n 2 n/2 + 4.2 n /4

= n - c(1) + {2n + 2 .2n / 2 + 4 .2n /4 + ... + n 2n /
n

}

< n + + 2 log2 n- 2n/2}
2 log 2 n

< n + {2 (1 +22n/)}2n/2

=E(2) (1)

Let d(n), d(INV), and d(AND) be the delay of Decoder(n), Inverter, and AND gate,

respectively. d(n) satisfies the following recurrence equation:

d(n) {d(INV) if n = 1
d(n) = { (IV

max{d(k), d(n - k)} + d(AND) otherwise.

Setting k = n/2, it follows that d(n) = (o10g2 n. d(AND)).

The mapping of Decoder(n) described above is asymptotically optimal with re-

spect to both the cost and the delay. A full decoder has 2 number of outputs, all

of which has an unique expression. One new AND gate must be included for each

output to differentiate it from all others. Hence the whole circuit must contain at

least 2 number of AND gates. Since c(n) = (2n), the recursive mapping is thus

asymptotically optimal. In a full decoder, all n input bits must be used to produce

an output. HIence a neccessary condition to produce a correct output is that each

input bit must appear as a leaf in a binary tree, provided that only 2-input AND

gate is used. The height of the tree is Q(log2 n). Since each node in the tree corre-

sponds to an AND gate, the circuit delay is therefore, Q(log2 n. d(AND)), which is

asymptotically the same as d(n).
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Not only is c(n) asymptotically optimal, it can be proved that it is the exact

optimal solution as well.

Claim 4.1 For the following recurrence

if n = 1

min{T(k), T(n-k)} + 2n (O < k < n)

the minimum is obtained when k = [n/2J, and thus T(n) = TL[n/2J + TFrn/21 + 2n.

To prove this claim, we need to first prove the following:

Claim 4.2 For all n

T(n) - T(n-1) > T(n-1) - T(n-2) > T(n-2) - T(n-3) > ... > T(2) - T(1)
Proof using Induction:

1. Base Case:

T(3)- T(2) > T(2)- T(1) T(3) > 2T(2)- T(1)

Since T(1) = 1, T(2) = T(1) + T(1) + 22 6 and T(3) = T(2) + T(1) + 23 = 15,

the base case is true.

2. Assumption: For all n

T(n)-T(n-1) > T(n-1)-T(n-2) > T(n-2)-T(n-3) > ... > T(2)-T(1)

Rearranging the equation, we have:

T(n) + T(1) > T(n- 1) + T(2) > ... > T[(n + 1)/2J + TF(n + 1)/2]

which shows that for all n + 1:

min{T(k) + T(n + 1-k)} must have k = [(n + 1)/2J for 0 < k < n + 1.

3. Inductive Step: For n + 1, we need to prove

T(n + 1) - T(n) > T(n) - T(n- 1)

=, T(n + 1) > 2T(n)- T(n- 1)

LHS:

T(n + 1) = min{T(k) + T(n + 1 - k)} + 2n+

= T[(n + 1)/2J + TF(n + 1)/21 + 2n+
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RHS:

2T(n)-T(n-1) = 2{min{T(k)+T(n-k)}+2n}-{min{T(k)+T(n-1-lk)}+2n-1}

= 2T[n/2J + 2Ti[n/21 + 2n+ l- TL[(n- 1)/2J - T[(n- 1)/21 - 2n- 1

If n= 2k,

T(n + 1) > 2T(n)- T(n- 1)

==~ T(k) + T(k + 1) > 2T(k) + 2T(k)- T(k- 1) - T(k)- 2 2k-1

~= T(k + 1) - T(k) > T(k) - T(k - 1) - 22k-1

Since 0 < k < n, we have T(k + 1) - T(k) > T(k) - T(k - 1) based on the
inductive assumption. Since 2 2k-1 > 0, the above is true.

If n = 2k + 1,

T(n + 1) > 2T(n)- T(n- 1)

:=~ T(k + 1) + T(k + 1) > 2T(k) + 2T(k + 1) - T(k) - T(k) - 22k

:= 0 > -22k

which is trivially true.

4. Q.E.D.

We have proved that for every n,

T(n) - T(n- 1) > T(n-1) - T(n-2) > T(n-2) -T(n-3) > ... > T(2)-T(1)
which infers that for every n,

min{T(k) + T(n- k)} must have k = [n/2J.
Therefore, Claim 4.1 is true, and Decoder(n) uses the exact optimal number of boolean

gates.

3.3 Continuous Don't Care Partial Decoders

If the unconnected outputs can be treated as don't cares, expressions for connected
outputs in a partial decoder may not require all input bits. Suppose the unconnected

outputs in Example 3-1 are don't cares, then output n2 can be expressed as:
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n2 = AND (-x [2], x[1], x [])

instead of

n2 = AND (-x [3], x [2], x[1], -x [0]).

When x[3] is 0, input x evaluates to 2, and output net n2 is rightfully set to 1. If

x[3] is 1, then x evaluates to 10, and is out-of-bound. Since the designer does not

care what happens in this case, the decoder can output any value. Using the optimal

boolean expression, output net n2 would be set to 1, and a[2] would be assigned a

value of 1. The same can be said for outputs n3 to n7. For output nO, nil, n8, and n9,

x[3] cannot be ignored. Otherwise, the design cannot differentiate between output nO

and n8, and between output nil and n9.

Denote a continuous don't care partial decoder with n-input bits as Decoder(n).

Let C be the number of connected outputs, C' be the 2's power that is closest to but

greater than C, and N be the total number of outputs (N 2n). If C' is less than N,

then less than half the decoder outputs are connected. In this case, N - C' number

of unconnected outputs and n - log2C' number of most significant input bits can be

eliminated. ]In the new and smaller decoder, C' = N. In the following example,

Ex 3-4: Partial Decoder with Unnecessary Input and Output bits

{n15, n14, ... , n9, U, U, ... , U = Decoder (x[3:0]);

there are only seven connected output bits, C = 7 and C' = 8. Hence only 0lo92C' = 3

input bits are needed to represent the original decoder. The modified decoder is:

{n7, ... , n2, n, U = Decoder (x[2:0]);

As a result, for every Decoder(n), C' = N = 2n. Since C' > C and C' is the closest

2's power to C, the number of connected outputs must be between 2 n-1 < C < 2 .

That is, at least half of the output bits are connected in a continuous don't care

decoder. More importantly, due to the continuity of those connected output bits, it

is obvious that the least significant n - 1 input bits constitute a full decoder.

Figure 3-2 illustrates two examples of 4-bit continuous don't care partial decoders,

one of which has outputs n[10: 15] unconnected, and the other has only n[0] uncon-
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x[3] x[2] x[1] x[O]

nO ---- 0 0 0

nl O"---- 0 0 1

n2 * 0 1 0
n3 * 0 1 1

n14 * 1 0 0
n5 * 1 0 1
n6 * 1 1 0

7 * 1 1 1

n8 1"---- 0 0 0
119 1"-- 0 0 1

U * * * *

U * * * *
1] **u 

U
nl
n2

0

n8
n9

nlO

nS0ni 5

(a) (b)

Figure 3-2: Two 4-bit continuous don't care partial decoders. Both input bits x[2:0]
constitute a full decoder. In (a), outputs n[10: 15] are unconnected, thus the decoder
has relatively many unconnected outputs and considered very partial. In (b), only
output n[O0] is unconnected, thus the decoder has relatively few unconnected output
bits and considered close to full.

nected. Let p be the number of connected output pairs that have the same lower

n- input bits. In Figure 3-2(a), nO and n8 have the same lower three bits - 000;

ni and n9 have the same lower three bits - 001. Thus, p = 2. In Figure 3-2(b), p is

7.

When the number of connected outputs is close to 2n -1, as in Figure 3-2(a), there

are relatively many unconnected outputs, and the decoder is very partial. Intuitively,

the first step for mapping such decoder is to build a sub-full decoder from the lower

n- 1 bits, which costs c(n- 1). For each pair in p, two AND gates involving the

input bit x[n - 1] are needed to differentiate one output from the other. The total

cost is thus c(n- 1) + 2p. In Figure 3-2(a), a full decoder is built from x[2 : 0]

using the mapping algorithm described in the previous section. Denote y as its

output. Then two more AND gates are needed to differentiate nO = AND(x[3], y[O])

from n8 = AND(- x[3], y[0]), and two more AND gates are needed to differentiate

n = AND(x[3], y[l]) from n9 = AND(x[3], y[l]).
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When the number of connected outputs is close to 2, as in Figure 3-2(b), there

are few unconnected outputs, and the decoder is close to full. Intuitively, the first

step for mapping such decoder is to build a n-bit full decoder, followed by eliminating

unnecessary gates built in the process. Since expressions are unique for each output

in the full decoder(n), at least one AND gate is built exclusively for each unconnected

output and thus can be munched. There are 2n - 1 -p number of unconnected outputs,

thus the same number of gates can be munched in the end. The total cost is c(n) -

(2n -1 -p). t is possible that more gates can be munched, but the worst mapping

cost is obtained by assuming the fewest number of munched gates. In Figure 3-2(b),

a 4-bit full decoder is first built from x[3 : 0. Since the AND gate with inputs

(, x[l: 0]) and ( x[3: 2]) appears exclusively in unconnected output nO, it would

be munched.

Let s(n) be the number of gates used for Decoder(n). Of the two methods de-

scribed above, we choose the one with the fewer gates, and obtain

s(n) = min{c(n - ) + 2p, c(n)- (2n-1 -_ p)}

To investigate the quality of s(n), we first identify a lower bound on the number of

gates needed for Decoder(n) - denoted as t(n). Note c(n) denotes the cost of a n-bit

full decoder.

Claim 4.3: A n-bit continuous partial don't care decoder requires at least c(n- 1)+p

number of AND gates: t(n) > c(n - 1) + p

Proof Using Induction on p:

1. Base Case: p = 1

In this case, the decoder has one more output than a (n- 1)-bit full decoder.

At least one extra AND gate is needed for the extra output since it is unique

from all outputs in the full decoder. Thus, t(n) > c(n- 1) + 1.

2. Inductive Assumption: For all p, we have

t(n) > c(n- 1)+ p.
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3. Inductive Step: For p + 1,

comparing two decoders with p and p+ 1 pairs of outputs having the same lower

n-1 input bits. The latter must have a connected output that was unconnected

in the former. Since the new connected output is unique, one more AND gate

is needed, and thus t(n) > c(n - 1) + (p + 1).

4. Q.E.D.

Claim 4.4: The proposed heuristic solution s(n) approaches optimum exponentially

Proof: Let , be the maximum error between s(n) and t(n).

1. If c(n-- 1) + 2p < c(n) - (2n - 1 - p), then s(n) = c(n - 1) + 2p.

In this case, c(n - 1) + 2p < (1 -+ ){c(n - 1) + p}

(1 - )p < c(n - 1)

< c(n-l)
,z--, <1-~ (1)

2. Otherwise, s(n) = c(n) - (2n-1 - p).

In this case, c(n) - (2n -1 - p) < (1 + 6){c(n - 1) + p}

p > c(n)-(l+~)c(n-1)- 2n- 1 (2)

Equating (1) and (2), we have:

~c(n-1) _ c(n)-(1+~)c(n-1)-2n- 1

1-~ 

c (n--1 ).= 1- = C(n)-2n-1

_ : 2n-1+cL(n-1)/2J+c[(n-1)/2]
2n-l+c[n/2J+crn/21

If n is even, we have

~ 1 - _ 2n-1 +c((n-2)/2)+c(n/2)
2n-l+c(n/2)+c(n/2)

It was shown in the previous section that c(n) = E(2n), Thus, we have

2n- 1+2(n-2)/2+2n/2
5 , - = 2n-1+2n+2n/2

,__ 2 __ 1- 2n/2_.+4
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i,> (S (3(2n1/2)

Similar reasoning can be used to prove that if n is odd, we have:

= o(T-1)/2 )

In summary. it is proven that ~ decreases exponentially, and the mapping algorithm

described above approaches optimum exponentailly fast. s(n) is very close to optimal

when n is large.

3.4 Discontinuous Don't Care Parital Decoders

Similar to its continuous counterpart, expressions for connected outputs may not

require every input bit due to the existence of don't care unconnected outputs. How-

ever, due to the discontinuity of the connected outputs, the lower n- 1 bits of input

may not constitute a sub-full decoder. Therefore, instead of always eliminating the

most significant input bit, different combinations of input bits may be eliminated to

produce an optimal expression for each output. Figure 3-3 illustrates an extreme

example of discontinuous don't care partial decoder in which a different combination

of input bits is eliminated for each output, and in the end, each output requires only

one input bit; and thus no AND gates are needed.

Optimizing output expressions in this case can be viewed as a special case of

two-level boolean minimization. A new boolean function F is constructed for each

connected output bit, whose ON-set F° N consists of only the output bit in question.

The DC-set (don't-care set) FDC consists of every unconnected output bit, and the

OFF-set F °OF consists of all other connected outputs. Figure 3-4 illustrates the new

boolean function constructed for output n4 of the decoder described in Figure 3-3.

Quine-McCluskey (Q-M) method [8] starts with a list of 0-terms, which includes

elements in both F ° N and FDC sets. Each pair of 0-terms is merged into a single

1-term if they differ by exactly one position. A list of 1-terms is then merged into 2-

terms, and so on, until no more merging is possible. If a k-term is formed by merging

two (k-1)-termns, then the two (k-1)-terms are not primes and would be discarded later.
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{U, U, J, n4, U, n2, nl, U} = Decoder(X[2:0])

)

N4 =w[2]

N2 =w[1]

NI = w[0]

A . .Not a Full Decoder

Figure 3-3: In this extreme example of a discontinuous don't care partial decoder,
x[l1:0] does nriot constitute a sub-full decoder. x[2] is sufficient to identify n4 from
other connected outputs. Similar reasoning can be applied to other two connected
outputs. Thus, optimal expression for each output only requires one input bit, and
no AND gate is required for this decoder.

ON-set: 100

010
OFF-set:

001

111

110

DC-set: 101 - unconnected outputs

011 /

000

> -- other connected outputs (n2, n 1)

Figure 3-4: New boolean function constructed for output n4 of the decoder described
in Figure 3-3.
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(1) 100 -- ON-set 1-0 (1,3)
(2) 111 10- (1,4)

(3) 110 -00 (1,6) (( 3),(2 4))
(4) 101 -- DC-set 11- (2,3) (( 4),(2 3))
(5) 011 1-1 (2,4)

(6) 000 -11 (2,5)

0-terms 1-terms 2-terms

Figure 3-5: Quine-McCluskey method applied to the boolean function in Figure 3-4.
The prime terms are indicated in bold.

The result of the merging process is a set of prime terms, from whom a minimum

subsets that covers F° N is then selected. However, unlike traditional two-level sum-of-

products functions, the boolean function constructed for each decoder output contains

only one product term (F ° N has only one element). Therefore, instead of employing

various minimum covering heuristics, we can inspect the prime list and select the one

with the least number of literals, which also contains the original term in the ON-set.

Figure 3-5 illustrates the Q-M process applied to the boolean function of n4 in Figure

3-4. In this case, the prime terms generated by Q-M is 1--, -00, and -11. The first

two prime terms contain the term 100 in the ON-set. Since the first prime has fewer

number of literals, it is chosen as the optimal expression for output n4. It should be

noted that even with the drastic simplification of choosing the minimum cover, the

generation of all primes in the merging step still demands large computation time. For

a function of n variables, the upper bound on the number of prime implicants is 3n/n

-- there are nearly 3 million prime implicants for a 16-bit input decoder. Therefore,

Q-M is not suited for optimizing decoder output expressions.

Many heuristic algorithms exist that perform the same function as Q-M, but have

much shorter execution times. Most of them employ an expand-reduce iteration. In

the first step, an implicant i is maximally expanded and other implicants covered

by i are removed. The prime cover found depends on the ordering in which the

variables are taken in the expansion [6]. To minimize the effect of the expansion

ordering, the size of each implicant in the cover is then reduced so that it may lead

to another cover with smaller cardinality in the next iteration. Unlike Q-M, these

heuristic algorithms will not always find the exact optimum for the boolean function.
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x[2] x[JL] x[O]

N4 1 o 0 N4

N2 0 1 0 N2

N1i 0 0 1 N1

x[2] x[1] x[O] x[2] x] [0]

1 0 1 N4 1 0 1

0 1 1 
N2 0 1 1

o 0 0 

optinmize nl bits flipped in I 
column x[O] | sub-matrix S

Figure 3-6: Set Cover Transformation.

In practice, minimizers such as MINI [5] and ESPRESSO [9] produce answers that

are very close to optimal. Note that those heuristics are complex in order to solve

complex two-level functions. Each decoder output expression however, is a simple

AND of all input bits. Therefore, the complexity seems a bit unjustified in this case.

Minimization of decoder output expressions can also be transformed into a set-

cover problem. Using the matrix that includes every connected outputs, we first

inspect row mn corresponding to the output bit in question. If the entry em,n in row

m and column n is 1, all entries in column n are then flipped. In the end, every

entry in row m is now 0. Let S be the modified matrix without row m, and C be

the minimum set of columns such that there is at least one 1 in every row of S. C is

the minimum cover of S. The optimal expression for the output in question is then

constructed using the input bits in set C only. Figure 3-6 illustrates the process using

the decoder depicted in Figure 3-3. When optimizing output ni, bits in column x[0]

is flipped since x[O] is 1 for nl. Removing row nl from the matrix, column x[0] covers

the modified sub-matrix. Thus, the optimal expression for nil is nl = x[0]. Similar

steps can be applied to other two outputs n2 and n4.

The validity of such transformation is reasoned as follows: expression minimization

for the connected output in row m is equivalent to selecting a minimum set of literals

(columns) that covers F° N (row m) and does not intersect F ° FF (all rows except

m). Denote C to be such sets of columns, Em,c to be entries in row m whose column

belongs to C, and En,c to be entries in row n (n $4 m) whose columns belongs to

C. Note that after the first step, all elements in row m are 0, including elements in

Er,,,c. Since m,C should not intersect with En,,C elements in En,c must include at
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least one 1. The same thing can be said for all rows not equal to m. Thus, C is a

minimum set of columns such that there is at least one in every row of matrix S.

A wide range of set-cover algorithms has been well documented. In this case, a

simnple greedy method - selecting the column with the most l's - is satisfactory. Even

though examples can be shown where the cardinality of the computed cover using

such method exceeds twice that of a minimum cover [2], the method itself is simple

and fast. Assuming a decoder with n-input bits and C number of connected outputs,

the running time is then O(nC).

Denote c(n) be the cost of n-bit full decoder, in this case, there are two choices

to map Decoder(n):

1. Build a full n-bit decoder and then eliminate unnecessary boolean gates. The

cost is c(n) - [2n - C], which is the same as its continuous counterpart.

2. Apply the greedy set-cover algorithm to identify optimal expressions for each

connected output, and then build a separate circuit for each output. As a re-

sult of the boolean minimization, decoder output expressions as a whole have

become less structed, and we are not able to know the modified expressions

in advance. The literals and the number of literals may be different for each

optimal output expression. Moreover, they may also be different for the same

output in various decoders that have different sets of connected and discon-

nected outputs. Hence, it is difficult to construct a cost function that applies

across the board. Decoder(n) is mapped using the one that uses few number

of boolean gates in the end.

3.5 Continuous Care Partial Decoders

Unlike don't care partial decoders, expressions for connected outputs in this case

must require all input bits since unconnected outputs cannot be treated as don't

cares. Suppose unconnected outputs in Example 3-1 on page 38 are not don't cares,

then input bit x[3] cannot be ignored for output n2. Otherwise, an input of 10, which
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is out-of-bounds and produce an error, would drive output n2 to true and produce an

incorrect design. Using the same reasoning, extra input bits and unconnected outputs

cannot be eliminated even if the number of connected outputs is less than half of the

total outputs, as did in Example 3-4 on page 44 for continuous don't care partial

decoders. Therefore, the number of connected outputs can be anywhere between 0 to

2n, with each output expression requiring all input bits.

Denote Decoder(n) as a continuous care partial decoder with n-input bits, C as the

number of connected outputs, and c(n) as the cost of n-bit full decoder. Due to the

continuity of the connected outputs, the least significant log2 CJ input bits constitute

a full decoder. Similar to continuous don't care partial decoders, Decoder(n) can be

built in two ways:

1. build the sub-full decoder from the lower k = [log2 C] input bits, and then add

on neccesary gates. Let X be decoder input. Since each output requires all

input bits, boolean gates are needed for the most significant n - k input bits -

X[k: n- 1]. Since connected outputs are continuous, X[k: n- 1] can have at

most three different values, in which X[k: k + 1] differ, and X[k + 2: n- 1]

are the same. Otherwise, Decoder(n) would have a k + 1 sub-full decoder (see

Figure 3-7).

Hence, for X[k: n- 1], we need n-k-3 AND gates for X[k + 2: n- 1], 3 AND

gates for X[k: k + 1], and 3 AND gates to connect these two parts. Moreover,

we may need to invert each bit, and a total of n - k inverters may be needed.

Therefore, 2n- 2k + 3 number of gates are needed for the most significant n- k

input bits.

Since each output is unique, we need one AND gate in each output to combine

the right k input bits and the left n - k input bits. Therefore, the total cost of

this method is c(k) + (2n - 2k + 3) + C.

2. build a full decoder from all n input bits, and eliminate unnecessary gates. The

total cost of this method is c(n) - [2n C].
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X[n-l:k2] X[k+2] X[k] X[k-1 0]

o 0 .oo..oo
0 1 1 ... l I

o I
I

0 1 1 
I I sub-full
, decoder

0 1 00... 00
0 0 11 ... 11

XX...XX
XX...XX

XX...XX
XX...XX

xx...xx
3 3 ~~~~~~XX..XX

1 00 ... 00
1 I 0 11. 11 I

I I

II1 0 00 ... 00 f<5

I 1 1.1sub-full

I I decoder (k+ 1)

0 1 - 00...00 '
0 0 11. 11

c(k)

',

Figure 3-7: In (a), a continuous care partial decoder is built by generate a sub-full
decoder and then add on neccessary gates. In (b), if the right k-bits forms a full
decoder, then X[n- 1: k + 2] must be the same, and X[k + 1: k] has at most threee
different values. Otherwise, the decoder would have a sub-full decoder of more than
k bits.

Let s(n) denote the cost for Decoder(n), then we have

s(n) = min{c(k) + (2n - 2k + 3) + C, c(n) - [2n - C]), (k = [log2 CJ)

To obtain an asymptotic estimate on the range of C in which the first method is

better than the second, we set

c(k) + (2n - 2k + 3) + C < c(n) - [2n - C]

c(k) + (2n- 2k + 3) < 2c(n/2)

= O(2k) < 2 (2
n/2)

It is obvious that the above inequality always holds when k < n/2, and C < 2n/2.

Therefore, when the sub-full decoder constitutes less than or equal to half of the input

bits, the first method is applied. Otherwise, the second method is applied.

Claim 4.5: When k < n/2, Decoder(n) requires at least c(k) + C number of gates.

Therefore, the first method is asymptotically optimal.

Proof: Since each output is unique, no matter how the input bits are split in the

beginning, one AND gate is needed in each output to combine two sub-parts in the

end - for a total of C number of AND gates. Assuming no gates are needed for input
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bits X[n- 1: k], then it is obvious that the least expensive way to split the input

bits is to divide the decoder into two parts: X[n- 1: k] and X[k- 1: 0]. Since

X[k- 1 : 0] consitutes a full decoder, it costs c(k). Therefore, Decoder(n) costs at

least c(k) + C = (2k) + E(2k) = (2k). When k < n/2, the first method is adopted,

which costs c(k)+ (2n-2k + 3) + C = (2k) + (2n - 2k + 3) + (2k) - (2k )

asymptotically optimal.

Claim 4.6: When k > n/2, Decoder(n) requires at least c(n/2) + C.

Proof: Based on Claim 4.5, when k = n/2, Decoder D requires at least c(n/2) + C

number of gates. Decoders in which k > n/2 have more unique outputs than D, thus

they require at least the same number of gates as D.

Claim 4.7: When k > n/2, the proposed solution approaches optimum exponentially.

Proof: Let ' be the error between s(n) and the least number of gates when k > n/2.

c(n) - [2" - C] = (1 + ~)[c(n/2) + C]

If n is even:

-- 2c(n/2) + C = (1 + ~)[c(n/2) + C]

- _= c(n/2)'--: =c(n/2)+C

-~~= ( _2n/2+2 )

Since k > n/2, we have

__.:(- 1 = I k2 ) = (2kIF/2)
l-2k-n/2 2-/

Therefore, decreases exponentially, and s(n) in this case approaches the minimum

exponentially.

3.6 Discontinuous Care Partial Decoders

Similar to its continuous counterpart, expression for each output in this case requires

all input bits. However, since its outputs are discontinuous, it is not obvious which

part of input bits constitute a sub-full decoder, provided if one does exist. Figure 3-8

illustrates a discontinuous care partial decoder with five connected outputs, in which
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x[4] x[3] x[,

1 1 1

1 1 1

1 1 1

1 1 0

1 0 1

Figure 3-8: A
outputs. Each
decoder.

2] x[1] x[O]

1 1

1 0

0 1

1 1

1 1

discontinuous care partial decoder of 5-input bits with 5 connected
outputs requires all input bits. No sub-input bits constitute a sub-full

no combination of input bits constitute a sub-full decoder. As a result, it only seems

appropriate to build such decoders by generate a full decoder from all input bits first,

and then eliminate unnecssary gates whose outputs do not drive anything.
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Chapter 4

Experimental Results

The impact of decoder related optimizations implemented in the Presto Compiler is

evaluated using Synopsys Place and Route Suite (PRS), which is a set of real-world

designs used company-wide as a benchmark suite to evaluate the QoR of several

design tools.

In the actual implementation, two switches were built for decoder sharing and

decoder mapping respectively. By turning on and off the appropriate switches, we

are able to exam the separate and combined effects of two optimizations. Table 4-

1 summarizes the effect of decoder sharing only; Table 4-2 summarizes the effect

of decoder mapping only; Table 4-3 summarizes the effect of both. The statistics

measured in each table include:

1. DC # cells, Area: The number of cells in the final synthesized design; The area

of the final synthesized design.

2. DC WNS: Worst Negative Slack in the design. Slack is the difference between

the actual and expected signal arrival time. A negative slack means a violation

of some timing requirement.

3. DC Rule Violate: The number of violations of user-specified design constraints.

4. RTL CPU hours, RTL memory: The CPU hours and memory used by Presto

Compiler compiling the design.
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5. DC CPU hours, DC memory: The CPU hours and memory used by the Design

Compiler.

The first row in each table lists the changes averaged over the whole suite. Note

that not all designs in the suite are affected by the optimization, e.g. designs without

variable indices. Detailed stats are then listed for each design that was affected by the

optimization. For each design, the first line lists stats without the optimization, the

second line lists stats with the optimization, and the third line lists the percentage of

the improvement achieved. A negative percentage means improvement, and a positive

percentage means the opposite.

The goal of the optimization is to decrease the number of cells (DC # cells)

and more importantly, the area (DC # Area) of the final design. Examing the

results summarized in all three tables, we see that some designs did benefit from the

optimaztions. For other designs however, the number of cells and the design area has

increased as a result of the optimizations. Moreover, for those that did gain some

benefit, the degree of improvement is not as great as expected. Design6 contains

a 9-bit variable index appeared three times. Three full decoders were built in the

old design while only one was built in the new design. When measuring decoder

sharing alone, decoders are mapped using the brute-force method, and hence a 9-bit

full decoder costs 6400 number of gates. Since two decoders are saved in this case,

the number o)f cells (DC #Cells) should decrease by 12800. However, according to

Table 4.1, the actual difference is only 2569. Design7 has the exact same situation,

and its actual difference is only 1760. Design8 contains a 8-bit full decoder. When

measuring decoding mapping alone, the old design costs 2816 and the new design

costs 312. While theorectically 2504 number of gates should be saved, the actual

saving is only 580 according to Table 4.2.

It is believed that the less-than-expected improvement is mainly caused by high

fan-out gates produced as a result of decoder optimizations. When a decoder is shared

among multiple arrays, its outputs would be driving multiple select cells instead of

one. Assume n is the number of decoder input bits. In the recursive mapping of

the full decoder, each output from the left half of the input needs to be ANDed
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DC

Area

DC DC Rule

WNS Violate

RTL CPU

Hours

DC CPU

Hours

RTL (MB) DC (MB)

Memory Memory

-0.45% +0.26% -4.17% 1.0029X 0.9823X 0.9841X 0.9903X

221296

223642

+1.06%

531777

534085

+0.43%

247935

248343

+0.16%

3.21e+06

3.21e+06

-0.21%

260521

259067

-0.56%

1.09e+06

1.03e+06

-5.84%

1.09e+06

1.03e+06

-5.76%

-2.75

-2.82

+1.13%

-0.43

-0.53

+0.99%

-1.3

-1.24

-1.27%

-1.2

-1.16

-0.79%

-0.25

-0.32

+3.85%

-1.66

-1.61

-0.94%

-1.59

-1.71

+2.29%

1

1

+0.00%

0

0

+0.00%

0

0

+0.00%

1

0

-100.00%

0

0

+0.00%

0

0

+0.00%

0

0

+0.00%

0.00789

0.0068

0.8621X

0.0193

0.0171

0.8873X

0.0106

0.00979

0.9231X

0.0316

0.0313

0.9914X

0.00136

0.00136

1.0000X

0.0264

0.0337

1.2784X

0.0264

0.0297

1.1237X

1.45

1.35

0.9299X

2.91

2.57

0.8851X

0.786

0.743

0.9457X

2.45

2.48

1.0106X

0.11
0.105

0.9530X

2.55

2.72

1.0675X

2.76

2.04

0.7384X

175

159

0.9119X

329

315

0.9582X

130

129

0.9926X

505

505

1.0000X

81.7

81.7

1. OOOOX

241

219

0.9061X

241

219

0.9062X

'Table 4.1: Optimization Results for Decoder Sharing Only

58

DC

#Cells

Average:

-0.14%

DESIGNi:

27537

27466

-0.26%

DESIGN2

42901

43399

+1.16%

DESIGN3

87642

88155

+0.59%

DESIGN4

184255

184300

+0.02%

DESIGN5

6855

6781

-1.08%

DESIGN6

112501

109932

-2.28%

DESIGN7

112683

110923

-1.56%

393

381

0.9691X

756

747

0.9882X

531

517

0.9738X

1.3e+03

1.3e+03

0.9953X

173

171

0.9876X

774
727

0.9396X

774
727

0.9389X



DC DC Rule RTL CPU DC CPU RTL (MB) DC (MB)

WNS Violate Hours Hours Memory Memory

-0.08% -0.17% +0.25% +4.17% 1.0082X 0.9918X 0.9825X 0.9957X

-2.75

-2.75

+0.00%

-0.43

-0.48

+0.50%

1

1

+0.00%

0

0

+0.00%

0.0068

0.00735

1.0800X

0.0193

0.0193

1.0000X

1.3

1.07

0.8253X

2.97

2.88

0.9692X

174

165

0.9449X

329

311

0.9470X

393

384

0.9762X

756

744

0.9843X

DESIGN3

87642 247935

87642 247935

+0.00% +0.00%

DESIGN4

184255 3.21e+06

184288 3.21e+06

+0.02% -0.07%

DESIGNS

6855 260521

6786 260251

-1.01% -0.10%

DESIGN6

112501 1.09e+06

112825 1.09e+06

+0.29% +0.15%

DESIGN7

112683 1.09e+06

113450 1.09e+06

+0.68% -0.49%

DESIGN8

207064

206484

-0.28%

5.28e+06

5.25e+06

-0.68%

-1.3

-1.3

+0.00%

-1.2

-1.16

-0.79%

-0.25

-0.25

+0.00%

-1.66

-1.68

+0.38%

-1.59

-1.77

+3.44%

0 0.0106 0.782 130 53

0 0.0106 0.788 130 530

+0.00% 1.OOOOX 1.0077X 0.9993X 1.OOOOX

1

1

+0.00%

0

0

+0.00%

0

0

+0.00%

0

0

+0.00%

0.0318

0.0313

0.9829X

0.00136

0.00136

1.0000X

0.0258

0.0253

0.9789X

0.0261

0.025

0.9583X

-0.33 13 0.0106

-0.38 14 0.0109

+1.48% +100.00% 1.0256X

2.41

2.46

1.0215X

0.108

0.101
0.9320X

2.53

2.86

1.1315X

2.71

2.35

0.8645X

1.59

1.66

1.0450X

505

504

0.9984X

81.8

81.7

0.9988X

241

215

0.8904X

241

215

0.8905X

235
233

0.9879X

1.3e+03

1.3e+03

0.9965X

173

173

1.0008X

774
761

0.9832X

774
761

0.9829X

1.3e+03

1.3e+03

0.9967X

Table 4.2: Optimization Results for Decoder Mapping Only
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DC

#Cells

DC

Area

DESIGN1

27537

27900

+1.32%

DESIGN2

42901

41678

-2.85%

221296

218715

-1.17%

531777

522110

-1.82%



#Cells Area WNS Violate Hours Hours Memory Memory

-0.82% -0.93% -0.04% +4.35% 1.0101X 0.9902X 0.9752X 0.9882X

DESIGN1

27537 221296 -2.75 1 0.00789 1.47 175 393

27922 218928 -2.69 1 0.00653 1.08 157 378

+1.40% -1.07% -0.97% +0.00% 0.8276X 0.7346X 0.8990X 0.9620X

DESIGN2

42901 531777 -0.43 0 0.0193 2.97 329 756

38141 501656 -0.29 0 0.0185 2.53 306 741

-11.10% -5.66% -1.39% +0.00% 0.9577X 0.8501X 0.9318X 0.9809X

DESIGN3

87642 247935 -1.3 0 0.0106 0.788 130 531

88155 248343 -1.24 0 0.0103 0.821 129 517

+0.59% +0.16% -1.27% +0.00% 0.9744X 1.0418X 0.9932X 0.9739X

DESIGN4

184255 3.21e+06 -1.2 1 0.0324 2.47 505 1.3e+03

184297 3.21e+06 -1.16 1 0.0313 2.51 505 1.3e+03

+0.02% -0.23% -0.79% +0.00% 0.9660X 1.0162X 1.OOOOX 0.9934X

DESIGNS

6855 260521 -0.25 0 0.00136 0.109 81.7 173

6781 259067 -0.32 0 0.00136 0.113 81.7 171

-1.08% -0.56% +3.85% +0.00% 1.OOOOX 1.0376X 1.OOOOX 0.9876X

DESIGN6

112501 1.09e+06 -1.66 0 0.0258 2.48 241 774

108468 1.02e+06 -1.61 0 0.0332 2.4 206 721

-3.58% -6.87% -0.94% +0.00% 1.2842X 0.9683X 0.8529X 0.9319X

DESIGN7

112683 1.09e+06 -1.59 0 0.0258 2.7 241 774

107395 1.02e+06 -1.51 0 0.0324 3.04 206 721

-4.69% -6.79% -1.53% +0.00% 1.2526X 1.1263X 0.8530X 0.9314X

DESIGN8

207064 5.28e+06 -0.33 13 0.0109 1.66 235 1.3e+03

206484 5.25e+06 -0.38 14 0.0106 1.65 232 1.3e+03

-0.28% -0.68% +1.48% +100.00% 0.9750X 0.9933X 0.9877X 0.9967X

Table 4.3: Optimization Results for Decoder Sharing and Mapping Combined
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with every output from the right half of the input, and vice versa. Therefore, every

AND gate in the first recursive step has a fan-out of 2n/2, every AND gate in the

second recursive step has a fan-out of 2n/4, and so on. While the saving on number of

gates increases as n increases, the fan-out of AND gates in the mapped decoder also

increases exponentially. In order to lessen the loads for wires with high fan-outs, the

Design Compiler inserts buffers between them and the cells that they are driving. The

extra buffers add to the cell numbers and design area, directly counters the benefit

provided by the implemented optimizations.

Furthermore, without decoder sharing, a new decoder is generated for each array

reference, which can then be placed right next to the select cell driven by the decoder.

However, when one decoder is shared among multiple arrays, it is inevitable for the

decoder to placed further away from some of the select cells, which results in longer

wires. When the new decoder mappings, the output of one AND gate is shared among

many other AND gates, and thus long wires can also be generated for the same reason.

Longer wires leads to longer delays and possibly longer critical path, hence producing

worse WNS.

Note that it is difficult to lessen the revese effects described above. Once the

Design Compiler takes over, it restructures parts of the design as it sees fit, and

Presto has no way of predicting which parts of design will be modified. However,

what we really care about is the final design area. From Table 4.3, we see that the

area was improved for all designs when both decoder optimizations are turned on.

In conclusion, the design areas are improved somewhat at a low cost of circuit

timing (WNS). The effects of the optimizations described in this paper are very

design-specific. If a design contains a lot of sharable variable array subscripts, then

decoder-sharing would improve the design QoR greatly. If a design contains a lot of

large decoders, then decoder-mapping would improve the design QoR greatly.
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