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Abstract

Most question answering systems narrow down their search space by issuing a boolean
IR query on a keyword indexed corpus. This technique often proves futile for defini-
tional questions, because they only contain one keyword or name. Thus, an IR search
for only that term is likely to produce many spurious results; documents that contain
mentions of the keyword, but not in a definitional context. An alternative approach
is to glean the corpus in pre-processing for syntactic constructs in which entities are
defined. In this thesis, I describe a regular expression language for detecting such
constructs, with the help of a part-of-speech tagger and a named-entity recognizer.
My system, named CoL. ForBIN, extracts entities and their definitions, and stores
them in a database. This reduces the task of definitional question answering to a
simple database lookup.
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"Col. Forbin, I know why you've come here

And I'll help you with the quest to gain the knowledge that you lack."

-Icculus
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Chapter 1

Introduction

Any web surfer who has issued a search query for a single word or name can relate

to the problem of "junk results". These are documents that contain several men-

tions of the query term, but do not provide relevant information to the target entity.

Question answering (QA) systems face a similar dilemma when asked a question that

contains only one keyword once stopwords are stripped away. This is because most

QA systems use a keyword-based information retrieval (IR) engine to retrieve a man-

ageable document set for further processing. If the document set is cluttered with

junk results, the old GIGO axiom (Garbage In, Garbage Out) often applies.

The goal of this thesis is to answer definitional questions without IR in the tradi-

tional sense. I will describe an alternative system that extracts informational nuggets

from the document corpus in pre-processing, in the form of entity/definition pairs,

and stores them for use at runtime. The system, called CoL. ForBIN, 1 collects these

pairs by searching for syntactic constructs in which entities are typically defined. CoL.

ForBIN is designed to operate on flat text, so its "grammar" is actually a regular lan-

guage that tries to minimally encapsulate a large subset of English grammar. I will

describe my implementation of this system, and demonstrate its near state-of-the-art

performance in definitional QA, with speed equivalent to that of a database lookup.

'CoL. ForBIN, named after the legendary knowledge seeker of Gamehengian mythology, abbre-
viates "Colonel Looks For Buried Informational Nuggets
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1.1 Question Answering Overview

The Text REtrieval Conference (TREC) Question Answering Track challenges par-

ticipants to develop systems that retrieve answers from a corpus of news articles in

response to natural language questions [16, 18]. Traditionally, systems designed for

this track have employed a pipelined architecture [17]. First, a document retrieval

module narrows the corpus down to a manageable set of documents. Then, based

on these documents, a passage retriever uses some heuristics to extract a set of pas-

sages that it deems likely to contain a valid answer. Finally, an answer extractor uses

finer-grained heuristics to extract an exact answer from the passages.

Pipelined architectures have proven reasonably successful in the field of QA. In

any pipelined architecture, the first element is most crucial. Errors made in the first

stages of processing can propagate down the pipe, thus preventing any subsequent

modules from achieving their goals. Document retrieval is no exception. Most often,

the document retriever is a simple information retrieval (IR) engine that performs a

boolean keyword search over the corpus. In the simplest case, the search query is

constructed from the question by removing stopwords, and separating the remaining

terms with an AND operator. Stopwords include question words ("who", "what",

"where", etc.), forms of the verb "to be", and function words that occur frequently

in the corpus (e.g. prepositions and articles). This technique is generally sufficient

for providing a set of relevant documents to support a generic "factoid" question. 2

However, it is prone to failure when the number of keywords is either too large or

too small. If the number is too large, then IR can suffer from poor recall; it will be

unable to find enough documents containing all the keywords. If the number is too

small, it can suffer from poor precision; it will produce a large number of documents

which may or may not be relevant to the question.

Another problem with producing too many documents is that it does not really

narrow down our search for an answer. The motivation for doing IR first is that

passage retrieval and answer extraction are too computationally expensive to perform

2For example, "Who was the first astronaut to do a spacewalk?"
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on the entire corpus at runtime. But if an IR query is too general, it may return a

document set that is tantamount to the entire corpus, in that it will still take days

for the finer-grained modules to do their work. Most systems will attempt to avoid

this eventuality by placing a cutoff on the number of documents to be passed along

to the passage retriever. This effectually turns a precision problem into a recall

problem, because the IR engine can only guess at what the best n documents are

among the ones it has found. Usually, it will pick the ones that mention the keywords

most frequently, but these are by no means guaranteed to contain the answer we are

looking for.

1.2 Definitional Questions

One subclass of natural language questions that can exhibit the phenomenon discussed

above is the definitional question. This is a relatively open-ended question that simply

asks "What is X?" or "Who is Y?" When faced with such a question, the goal is to

extract from the corpus any and all nuggets of information pertaining to the target

(denoted here by the variables X or Y). The problem with using a traditional IR

approach to answer these questions is that they only contain one keyword.

Take, for example, the question "Who is George W. Bush?" First, it is important

to see that, while it may seem as if "George", "W.", and "Bush" are three sepa-

rate keywords, we really want to treat the entire name "George W. Bush" as one.

Otherwise, we would retrieve headlines like: "Bush to Host George Harrison Tribute

in W. Va." Next we must realize that a search on "George W. Bush" will produce

any document that mentions his name, whether or not in a definitional context. For

example, a search on "George W. Bush" in the TREC 12 corpus yields almost 21,000

documents; far too many for any passage retriever to deal with efficiently. We can

tell the document retriever to stop looking after it finds the 1000 best documents, but

"best" in IR terms means "most hits", not "best definitions". In fact, a quick survey

of the top 20 documents returned by the Lucene IR engine [1] in response to the query

"George W. Bush" reveals 7 documents that simply list election results, and 8 others

17



that are equally irrelevant to the definitional question, containing passages like:

Guests include ... Karen Hughes, press secretary for George W. Bush,

1.3 Syntactic Pattern Matching

As mentioned by Katz et al. [9], among others [4, 12], we can avoid the recall problem

by precompiling bits of knowledge from the corpus with a technique called syntactic

pattern matching. The intuition behind pattern matching is that chunks of text con-

taining a definition usually manifest themselves in one of a few commonly occurring

syntactic patterns. Some examples are illustrated below, along with instances from

the AQUAINT corpus. In the following examples, D represents a definitional phrase

for the entity, X.

1. copular: X {is,wasare,were} {a,an,the} D

example: Cerebral palsy is a term for neurological disorders

2. appositive: X, {a,an,the} D,

example: Vigevano, a town near Milan,

3. or: X(s)(,) or D

example: hypertension, or high blood pressure,

4. such as: D, such as X

example: computer languages, such as Java or C++

5. occupation: D X

example: President of Gambia Yahya Jammeh

But how does one define X and D? In other words, what type of phrase makes

a good target entity, and what makes a good definition? Better yet, how do we

recognize these phrases in flat text? The Katz et al. system used a part-of-speech

(POS) tagger [3] to preprocess the corpus, and a simple regular expression library

to recognize certain POS sequences as noun phrases, and thus good targets. The

18



problem with this approach is that most good targets turn out to be named entities,

and these can be difficult to detect based on POS tags alone. Here are some examples

where the Katz et al. patterns misidentified a named entity target:

1. Input: Squier, Knapp, Ochs & Dunn, a political consulting firm in Washington,

Target: Dunn

2. Input: "Y2K: The Movie" is an "irresponsible" spark ...

Target: The Movie"

3. Input: Though Gore was the clear winner ...

Target: Though Gore

4. Input: After joining the UCLA law faculty Mellinkoff wrote "The

Target: the UCLA law faculty Mellinkoff

We can't afford to make these types of errors, because the targets we extract be-

come the keys of our database index, and therefore must match the targets extracted

from the questions. To alleviate this problem, I've added a named entity recognizer

to the preprocessing pipeline and merged its results with the POS tags. I've also de-

signed a more comprehensive regular expression grammar that detects a wider range

of noun phrases.

Another shortcoming of the Katz et al. patterns is their reliance on adjacency. For

a given target, they will match at most one adjacent nugget, allowing no intervening

text, and ignoring any text that follows. This can undermine our goal of maximizing

recall, since many newswire sentences are densely packed with informational nuggets

pertaining to a given entity. For example, consider the following sentence from the

AQUAINT corpus:

Holt, 50, a physicist, was the assistant director of Princeton Plasma

Physics Laboratory.

Here are three good nuggets of information about Holt: he's 50 years old, he's a

physicist, and he was the assistant director of Princeton Plasma Physics Laboratory.

19



But the Katz et al. patterns won't match any of these, because they don't know

what to do with the number 50. Even if Holt's age wasn't mentioned, the patterns

would still only match the adjacent nugget, "a physicist". CoL. ForBIN on the other

hand, employs a completely different matching algorithm. For a given target, it tries

to match each pattern in succession, taking as input the text left unconsumed by

previous patterns. It also knows how to deal with intervening expressions, such as

ages, affiliations, and time expressions.
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Chapter 2

Related Work

Syntactic pattern matching is an evolutionary descendent of surface pattern matching

techniques that were first described several years ago. Surface patterns attempt to

match exact words or character sequences in text, whereas syntactic patterns rely

also on syntactic attributes, such as part-of-speech tags. This chapter presents a

brief overview of systems that have employed pattern matching techniques in the

past three TREC competitions, with special emphasis on definitional questions.

2.1 TREC 10 & 11

The TREC 10 competition took place in 2001, followed by TREC 11 in 2002. These

were the last two competitions to take place before the rule change that separated

questions into three categories: factoid, definition, and list. So, at the time, answers

to each type of question were judged by the same standards. The crucial difference

between TRECs 10 and 11 was the allowed answer length. TREC 10 entrants were

free to return a 50-byte string, which would be judged as correct if it contained the

question's answer in full. In TREC 11, however, entrants were required to return

an exact answer, which would be judged incorrect if it contained any extraneous

information. This remains the standard for factoid questions today. Below, I describe

some TREC 10 and 11 systems that employed surface pattern matching techniques.

21



2.1.1 InsightSoft-M

Soubbotin and Soubbotin of InsightSoft-M [13] describe a story generator that, given

a query topic, searches a document set for relevant snippets of text, and attempts

to assemble them in a coherent manner. The system, called CrossReader, deems a

passage relevant if it matches one of several predefined surface patterns. In 2001,

Soubbotin and Soubbotin [14 built a TREC-10 system based on the CrossReader

philosophy, treating the question focus as the query topic, and running the matcher

at passage retrieval time. Their system operated on pure text strings, attempting

to circumvent any notion of language understanding. Thus, the patterns were con-

structed from simple atomic units, such as letters, digits, and punctuation marks.

From these, however, they were able to represent higher syntactic notions, such as

the appositive pattern described earlier.

Their entry performed reasonbly well in the competition, achieving a mean re-

ciprocal rank (MRR) of 0.676. They answered 289/472 questions correctly, 193 of

which matched one of their patterns. (The rest simply contained question keywords,

or other minor indications of a correct response). Recall, however, that the answer

guidelines were much more lenient at the time. This allowed the Soubbotin system

to return inexact responses without being penalized. Moreover, since they performed

their matching in passage retrieval, after IR, they were faced with the recall problem

described in the previous chapter.

For TREC 11, Soubbotin and Soubbotin [15] built on their system from the previ-

ous year. The key difference was the addition of what they call "Complex Patterns".

In addition to matching on simple string tokens, they compiled lists of words corre-

sponding to semantic categories. A reference to one of these lists could then be used

as an atomic pattern element. For example, whereas the previous year's system might

detect a person as "C C", where "C" denotes a capitalized word, the newer version

might instead use "F L", where "F" denotes a list of known first names, and "L" a

list of last names. In doing so, they chose to sacrifice recall for precision, which was

reflective of the new "exact answer" requirement. However, one can only go so far
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with this approach before the lists become large and unwieldy.

2.1.2 ISI's TextMap

Hermjakob et al. [5] of the Information Sciences Institute also employed a version of

pattern matching in their TREC 11 system. However, instead of using a collection

of predefined patterns built out of string tokens and word lists, they constructed

patterns on the fly as reformulations of the question. Their system, called TextMap,

would generate up to 30 reformulations of each question, and look for an exact string

match in the document collection. Of course, each reformulation, or pattern, would

contain a gap reserved for the question's answer. For example, the question "Who

invented the telephone?" would be reformulated as "X invented the telephone", "X

was the inventor of the telephone", "X's invention of the telephone", and so on, where

the substring matching "X" would be returned as an answer.

One drawback to this approach is that each reformulation must be explicitly en-

coded as a rule. For example, the reformulation "X was the inventor of the telephone"

comes from the rule:

:anchor-pattern ''PERSON_1 invented SOMETHING_2.''

:is-equivalent-to ''PERSON_1 was the inventor of SOMETHING_2.''

This limits the generality of the approach, since the semantics are hand-coded, but is

sufficient for reformulating definitional questions, which come in a limited variety of

flavors. Another shortcoming of this system is its speed. The TextMap philosophy is

to exploit large data sets, such as the World Wide Web, relying on the high probability

that its auto-generated patterns will find a match. However, since the patterns are not

generated until runtime, the QA turnover is very slow (approximately one question

every five minutes).
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2.2 Restricting the Domain to Definitional Ques-

tions

By 2003, most TREC participants were already dividing the QA task among different

subsystems designed to handle the fundamentally different types of questions being

asked. The distinction was made official in the TREC 12 guidelines, which defined

separate criteria for judging answers to factoid, list, and definition questions, and

presented rankings on a per-category basis. As mentioned in the previous section,

the desired response to a definitional question is a collection of informational nuggets

pertaining to the question topic. Below, I describe some systems tailored specifically

around definitional questions.

2.2.1 Fleischman et al.

Fleischman et al. [4], also of ISI, developed an alternative to TextMap with definitional

questions in mind. As noted above, definitional questions have only a limited number

of reformulations (Fleischman et al. called them concept-instance relations), so they

decided to mine the corpus for these at pre-compile time. But, instead of performing

an exact string match (which would be impossible without knowing the question

target in advance), they preprocessed the text with a part-of-speech tagger, and

searched for tag sequences that matched one of two well-defined concept-instance

relations. These relations were two types of noun-noun modification, which they

called CN/PN (common noun/proper noun) and APOS (appositions), and which I

presented as occupation and appositive in the previous chapter. This technique, along

with a machine-learned filtering mechanism, yielded results that were fast (three

orders of magnitude faster than TextMap) and highly precise. The only problem was

poor recall, since many other good concept-instance relations, such as copulae and

"such as", were ignored. This is the problem Katz et al. set out to fix.
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2.2.2 MIT CSAIL's Intrasentential Definition Extractor

The MIT CSAIL team at TREC 12 employed a three-pronged approach to answering

definitional questions. One of these was a direct offshoot of the ISI system described

above. The other two were simply backoff mechanisms: dictionary lookup, and key-

word search over the corpus [9]. The careful reader will notice that the author was

a co-author of this publication, and might correctly surmise that my work on that

system gave rise to this thesis. My intuition was as follows: why stop at CN/PN and

APOS when there are so many other concept-instance relations (which I shall hence-

forth refer to as "target/nugget pairs") to glean? This carries an implicit assumption

that recall is more important than precision, because we only get one shot to glean

all the target/nugget pairs, and in doing so at pre-compile time, we can afford to

spend time later on answer filtering. With that in mind, using the sample definition

questions and answers provided by NIST before the competition, I manually scoured

the AQUAINT corpus for contexts in which these pairs occurred. This gave rise to

15 new patterns that could account for approximately 90 percent of target/nugget

recall. I mentioned some of this system's drawbacks in the previous chapter, and will

elaborate more on how I addressed them in the next.

2.2.3 State of the Art Alternatives: BBN and Yang

The system that scored highest in the definitional category last year was the group

from BBN Technologies, with an F score of 0.555. Xu et. al managed to do reasonably

well on the definitional task using a pipelined architecture [19]. First, they identified

the question target, to be used as the sole keyword or phrase in an IR query. As an

intermediate phase, before passage retrieval, they selected only those sentences from

the resulting document set that contained a mention of the question target. Next, they

employed a variety of lingustic processing and information extraction techniques to

extract kernel facts, or information nuggets, about the target. Among the techniques

they used were surface pattern matching and semantic role approximation. Finally,

the kernel facts were ranked according to how well they matched the "profile" of the
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question. The question profile was developed in one of three ways. First, the system

would check for an existing definition among several sources, including WordNet and

the Merriam-Webster dictionary. If none could be found, the system would back off

in one of two ways. For a who question, it would derive the centroid of 17,000 short

biographies from www.s9.com, essentially creating a generic biographic record. For

what questions it would take the centroid of all the kernel facts about that target,

assuming that the most frequently occurring facts are the relevant ones. The highest

scoring facts would be returned as an answer.

Xu et al. noted that when a question received bad F score, the failure was far

more likely due to bad recall than bad precision. They even went on to speculate

that, assuming perfect recall, their system would have achieved an F score of 0.797.

The recall problem is specifically what I intend to avoid by abandoning the pipeline.

The group that finished second in the definitional category, with an F score of

0.319, was Yang et al. from the National University of Singapore. They applied

pattern matching, but only as a boosting heuristic after two iterations of document

retrieval. The first iteration involves a simple keyword search, and the second one

filters out documents that do not contain all the bigrams in the question target. Then

the remaining sentences are grouped into positive and negative sets, based on whether

or not they contained any part of the search target. Finally, they used frequency

metrics to determine the importance of each word pertaining to the target, and tried

to select the most "important" sentences as their answer. (Sentences that match

certain surface patterns, like the appositive, have their importance rating boosted.)

This approach performed reasonably well, even with two rounds of document

retrieval, because it found an alternative solution to the recall problem: they placed

no restriction on the size of the resulting document set. But they were still able to

reduce it to a manageable size by distilling out documents that didn't contain all the

bigrams in the target. It would, however, be intersting to see what "manageable"

translates to in a quantitative sense, in terms of the question-answer turnover rate.

One advantage that precompiling nuggets will always have over runtime techniques

is that of runtime speed.
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Chapter 3

CoL. ForBIN: A Pattern Grammar

The Infolab group at MIT CSAIL, of which I am member, has a "strength in numbers"

philosophy regarding question answering. This is based on the intuition that, when

a user asks a question, she expects a speedy response, and she prefers an exact

answer with just enough text to provide relevant contextual information [11]. The

first requirement, speed, is why we avoid costly runtime search techniques. The second

requirement, precision, is why we prefer to return short strings of text, as opposed

to an entire document collection. So, our solution to both of these problems is to

accumulate offline vast amounts of data from diverse knowledge sources, and store

it in a common representational format: the <constituent relation constituent>

triple [6, 7, 8]. Then we use natural language processing techniques to translate

questions into methods that retrieve and assemble knowledge from our collection.

So how does one go about accumulating this vast collection of data? In the

past, we would attempt to identify structured data repositories on the web, and write

scripts that glean data from them en masse or at runtimel, depending on the stability

of the source. Of course, finding and annotating such sources requires human labor,

and maintenance becomes a major issue as sites change and the web continues to

grow. As an alternative, Jimmy Lin wrote a program that automatically extracts

relations from semi-structured data sources such as encyclopedia entries, but with

limited success [10, 9].

1Note that this is not a search, because the scripts know exactly where to look.
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In the sections below, I describe a middle-of-the-road solution: a program that

performs automatic relation extraction, but only for a small subset of relations (most

notably, the "is-a" relation). I claim that this subset alone is sufficient for providing

answer support to most definitional questions.

3.1 A Syntactic Regular Expression Library

I have referred to my patterns as syntactic, which implies that they follow the rules of

some grammar. However, the pattern-matching infrastructure is designed to operate

on flat text, so my "grammar" is actually a regular language that attempts to min-

imally encapsulate a subset of the English language grammar. In this section, I will

describe the regular language in detail, providing examples of strings it recognizes,

and counterexamples of ones it does not.

3.1.1 Atomic Elements

At the lowest level of abstraction 2 are three atomic elements: words, parts of speech,

and named entities. All expressions in the language are constructed by combining

these atomic elements via the concatenation, union, and star operators.

A word is a specific string token, 3 or set of string tokens, with an associated part-

of-speech tag. The POS tag can be applied to the whole set, or to individual set

members, and need not be specified. Here are some examples from the lexicon:

$of = /ofIN/; # the word ''of"'

$the = /theDT/; # the word ''the''

$do = /(doVBPldoesVBZldidVBD)/; # forms of ''to do''

$verbstrans = /(movedlwent IreturnedIcame)_[A-Z]+/;

The $do element looks for POS tags specific to each conjugation, whereas $verbs-trans

applies the generic POS tag4 to the entire set.

'ignoring the Perl regular expression syntax upon which this language is built
3as defined by the Penn TreeBank tokenization rules
4 matching any string of capitalized letters, and thus any POS tag
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A part-of-speech element is any token marked with a given POS tag, or set of

POS tags. Here are some part-of-speech elements:

our $det = qr{ \S+_DT }ox;

our $noun = qr{ \S+_NNP?S }ox;

our $verb = qr{ \S+_MDIVB[DGNPZI? };

our $comma = qr{ \S+_, }ox;

Note that punctuation marks fall into this category as well, since they are considered

by the Brill POS tagger as separate tokens.

Similar to a part-of-speech element is the named entity. A named entity, as

its name implies, is a string that refers to a discourse entity by name. These are

identified in preprocessing by BBN's IdentiFinder program [2], and are wrapped in

double angle brackets to distinguish them from other tokens. Named entities come

in several varieties, such as persons, organizations, and facilities, and this meta-data

is recorded by IdentFinder as well. Here are some examples:

our $namedentity = qr{ <<NE [^>]* >> }ox; # any named entity

our $person = qr{ <<NE-PER [^>]* >> }ox; # any named person

3.1.2 Detecting Phrase Boundaries

TREC answers are penalized if they contain too much extraneous information. Like-

wise, the Infolab philosophy is to answer questions in a succinct and precise manner.

For these two reasons, it is important that my patterns detect proper phrase bound-

aries. But how does one use a regular language to define a noun phrase, for example,

when its English language definition is self-referential?

First, we must understand that, while the English language provides support for

unlimited recursion, we seldom see more than a few iterations manifest themselves in

text. So while the following may be a valid English sentence: "I saw the apple in a

bag on the table in the middle of the room with a door to the patio by the yard," it
5A phrase is not defined per se, but rather stated in terms of context-free rules. Two of these

rules for a noun phrase are NP -+ NP PP, and NP - NP POS NP, both of which are self-referential.
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places high demands on the attention of the reader, and is thus unlikely to be seen in

a newspaper article. On the other hand, we can reasonably expect to see a sentence

like, "I saw the apple in a bag on the table." So, we can pick a cutoff on the number

i of iterations we expect to see (3, for example), and build i levels of phrase patterns

with increasing levels of complexity.6 This is the philosophy behind the design of my

pattern grammar, which I describe here.

At the lowest level are proper noun phrases and noun phrase modifiers:

Name Pattern Examples

properNP (the) {adj,noun}* NE Greenpeace

the United States

the honorable Judge Smails

properDP the {adj,noun}* NE the United States

the honorable Judge Wapner

(same as above, but requires "the")

NPmods {adj,noun,gerund}* seven tasty melting ice cream

t This is shorthand for the named-entity element described above.

From these, we can construct modified nouns, then determiner phrase specifiers and

modifiers:

6For example, the lowest-level NP pattern would match "the table", and the lowest PP would
match "on the table". The next higher level would use the lower-level patterns to match "a bag on
the table", "in a bag on the table" and so on.
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Finally, we can construct a common

single unifying low-level noun phrase:

noun phrase or determiner phrase, and a

Name Pattern Examples

commonNP (DPmods) modNoun all seven of the tasty ice cream cones

commonDP DPmods modNoun five of the seven tasty ice cream

cones

simpleNP set union: {properNP, commonNP, pronoun }

Now, with the simple addition of a preposition, we have a low level prepositional

phrase. This we can attach to the simple noun phrase to create a second noun phrase

of slightly higher complexity:

Name Pattern Examples

simplePP prep simpleNP like him

about Aaron

of the seven tasty ice cream cones

commonNP2 commonNP (simplePP) guys like him

the funny story about Aaron

some of the flavors of the seven ...

secondNP set union: {properNP, commonNP2, pronoun }
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Name Pattern Examples

modNoun (NPmods) noun seven tasty ice cream cones

possessive { his, her, etc. } his

{ properNP, time } 's Aaron's

last Sunday's

(det) modNoun 's the handsome man's

determiner set union: { a, the, possessive }
DPMods (predet) det (number) all of the seven

all seven of the

all seven of last year's



This gives us

building one up.

phrase. First, we

all the pieces we need to construct a verb phrase, so let's start

We'll need this for use in a relative clause modifier for our noun

construct some verb modifiers, and a modified verb:

Name Pattern Examples

Vmods adv ((,) (and) adv)* quickly

quickly and quietly

deftly, quickly, and quietly

modVerb (auxVerbs) (Vmods) could have been being eaten

verb has quickly gone

(particle) (Vmods) went quietly

And now we carefully construct a simple verb argument structure. We have the

secondNP at our disposal now, but we elect to use the simpleNP instead. The rea-

soning behind this is that secondNP consumes a prepositional phrase, but since we're

in a verb phrase, we'd prefer that the PP attach to the verb.7 Also, bearing in mind

that we're working up to a relative clause, let's construct a PP-extracted version of

the argument string as well:

Name Pattern Examples

simpleVargs { NP ({NP, PP}), the letter

PP (PP) } the girl the letter

the letter to the girl

to the store

with me to the store

PPextVargs (NP) (PP) prep to

the letter to

to the bar with

the letter from the man to

7 We want the constituent phrases to be as non-greedy as possible, because we don't want them
to steal attachments from the higher phrases
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Now we can piece them together into an infinitival phrase (and its PP-extracted

counterpart), and a reduced relative clause:

Name Pattern Examples

InfP (secondNP) to to go to the bar

modVerb (simpleVargs) her to come to the bar

the girl at the bar to come to the

club

PPextInfP to modVerbs PPextVargs to send the letter to

to go to the bar with

reducedRel (Vmods) participle riding a bicycle

(Vmods) (simpleVargs) eaten quickly by the child

This opens the door to capturing a new level of more complex noun phrases,

determiner phrases, and prepositional phrases. Then we can use this higher PP to

construct another NP of even higher complexity:

Name Pattern Examples

thirdNP secondNP (reducedRel) books about language written by

Chomsky

thirdDP secondDPI (reducedRel) some of the candy eaten by the small

child

higherPP prep thirdNP in the books about language written

by Chomsky

fourthNP commonNP (higherPP) the first three chapters in the book

about language written by Chomsky

I This is almost the same as secondNP, but requires a determiner. You'll

see later why I'm still making the distinction between noun phrases and

determiner phrases, even though determiner phrases are captured by the

noun phrase patterns as well.

The commonNP part (above) captures the noun head and pre-modifiers, and the
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higherPP part captures all the post-modifiers. This follows the intuition that any PP

attachments will come before any reduced relative modifiers, because otherwise, the

PPs will prefer to attach themselves somewhere in the embedded verb phrase. Now

we can construct some more complex verb phrases for use in a full relative clause:

Name Pattern Examples

Vargs2 (secondNP) (thirdNP) me

higherPP* me the letter

me the letter on the table

him to an early grave

to an early grave

me the letter on the table in the

room by the door

simpleVP modVerb {JInfP, Vargs2} sent him to an early grave

sent to an early grave

showed me the letter on the table in

the room by the door

Again, it may appear that I have arbitrarily chosen to use secondNP and thirdNP

here, but there is a reason for these selections. I chose secondNP for the first position

because thirdNP consumes a reduced relative, which could steal arguments from the

main verb. Perhaps this is best illustrated with an example. Consider the sentence:

"I showed the woman riding a bicycle the picture of a man". If we allow the first

argument to "saw" to be a reduced relative, the reducedRel pattern greedily captures

"the woman riding the bicycle the picture". To the regular language, this seems like

a perfectly reasonable reduced relative, along the same lines as "the man reading his

daughter a story".8

What about the thirdNP in the second argument position? Why not use the

fourth one there? Well, all the fourth one gives us is an additional prepositional

8For the sake of speed, CoL. ForBIN eschews any notion of a feature grammar. Otherwise, it
would be able to distinguish the above examples by noting that "read" is a dative verb, while "ride"
is not.
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phrase argument, but this will also get captured as part of higherPP*. In fact,

higherPP* allows us to "cheat" and get infinite recursion, as long as all the trailing

noun phrases match thirdNP.

As another example, consider again the sentence: "I saw the apple in a bag on the

table in the middle of the room with a door to the patio by the yard." Here there are

only one or two constituents attached to the verb (depending on whether you attach

"in a bag ..." to "saw" or "the apple"), but the simpleVP pattern will see four 9 and

capture them all. This is another way to fake recursion with a regular language.

Now, we're almost done. All we have left to do is construct a relative clause, using

the simpleVP above, and attach it to our noun phrase:

Name Pattern Examples

fullRel {comp, (comp) thirdDP} you need t to look for mold

simpleVP that t sent him to an early grave

that Jon sent t to Paris

RC Set union: {fullRel, reducedRel}

highestNP fourthNP {RC, InfP} tools you need to look for mold

words to live by

the package that Jon sent to Paris

the illness that sent him to an early

grave

the woman in the picture riding a

bicycle who everyone thought was

pretty

A few notational comments, regarding the table above: t is a placeholder for the

extracted subject or object, comp is a complementizer, such as "who" or "that", and

InfP includes the PP-extracted version as well.

There is another intricate detail here, involving the use of DP versus NP. Some-

9 "the apple in a bag", "on the table in the middle", "of the room with a door", "to the patio by
the yard"
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thing very ugly happens here if we fail to make this distinction. If we allow the subject

of a relative clause to be any noun phrase, we run into problems whenever there is

noun-noun modification. Consider the following two examples:

1. I received [the letter John sent me].

2. [Senator John F. Kerry sent me a letter].

The human reader can easily distinguish the first bracketed segment as a noun phrase,

and the second one as a sentence. However, these constructions look identical to the

RC pattern if we replace thirdDP with some NP. In other words, the second example

would be interpretted as "(the) Senator John F. (that) Kerry sent me a letter"10 .

This applies to any sentence with a noun-modified noun phrase as its subject. To

avoid this, we require that the subject of a relative clause be a determiner phrase. Of

course, this prevents us from capturing noun phrases like "the man women love to

hate", but it is rare that we see this formation without a complementizer.

With highestNP as the most complex atomic element, I now have a regular

language specification that recognizes a large percentage of noun phrases and verb

phrases that one might expect to find in newspaper text.

3.2 Building Patterns

The rationale behind having a library of words and phrases, like the one described

above, is to abstract away the details of regular expression syntax from the process

of developing patterns that extract relations from text. In this section, I describe

nineteen such patterns, treating all items described in the previous section as atomic

elements. In defining a pattern, I enclose the target entity in angle brackets, and its

defining characteristic in square brackets. I also present positive and false positive

instances of each pattern from the AQUAINT corpus.

10The human reader would also note that this is syntactically incorrect, but I have chosen to stick
with one generic verb argument structure pattern for economy considerations.
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3.2.1 Age

The age pattern is designed to capture a person's age when it manifests itself in text

as (person), [age],. In relational terms, this corresponds to the person is-of-age age

relation.

Pattern (person) , [number],

Instances pop sensation (Christina Aguilera), [19],

(Kelly McConnell), [13], of Paris, Texas

False Positives N/A

This pattern is very precise. I'm sure it generates some false positives, but I was

unable to find any in a subset of 1000 AQUAINT documents.

3.2.2 Affiliation

The affiliation pattern captures a person's affiliation or place of origin, when stated

as (person) of [affiliation]. The relation captured here is (person) is-a-constituent-of

[affiliation].

Pattern (person) of [{organization,location}]

Instances (Jim Crocker) of [Johns Hopkins University]

(Bert Ely) of [Alexandria, Va.]

False Positives the (Homer Simpson) of [the NFL], Terry Bradshaw,

This pattern is also

the one above.

very precise, but can be fooled by idiomatic expressions like

3.2.3 Also Known As (AKA)

The "aka" pattern is not as restrictive as its name implies. It captures several variants

of the "[Y], also know as (X)" construction, all of which express the (X) is-a [Y]

relation. For entity-second patterns, such as this one, I found that the simplest noun
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phrase pattern was generally sufficient for capturing the target entity.1 '

Pattern [highestNP] (,) be {(more) commonly, also, often, some-

times} {known, referred to} as (simpleNP)

Instances The [detainees] are known as (bidoun)

[the pro-independence Albanian militants], known as

(Kosovo Liberation Army)

[MDMA], commonly known as (ecstasy)

False Positives [This method], known as (surveillance),

[This process] is known as (cryotherapy).

Most false positives occur when the definitional term Y is too broad or vague.

3.2.4 Also called

Similar to the AKA pattern is "also called". This is another embodiment

relation where the target entity follows the defining phrase.

In addition to the

patterns, this pattern

as a participle.

of the "is-a"

overgenerality problem, which is common to all entity-second

can also suffer when the past-tense verb "called" is mistagged

"Bear in mind that the targets should roughly correspond with targets we'd expect to see in
definitional questions. If the target has too many keywords, it's probably best to treat the question
as a factoid.
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Pattern [highestNP] (,) ( {also, sometimes, often} ) called

(simpleNP)

Instances based on [a client-server reporting system] called

(Abacus)

[Maoist rebels], also called (Naxalites)

[the Internet business], called (Thaicom Direct)

False Positives [The group], called (Central European Initiative),

Annan, in [a separate statement], called (Pakistan)'s

action



3.2.5 Named

Also along these same lines is the "named" pattern. This one looks like "also called",

although it excludes the optional adverb. As its name implies, the target is usually a

named entity.

Pattern [highestNP] (,) named (simpleNP)

Instances [a young London-born playwright] named (Martin Mc-

Donagh)

[The unmanned probe], named (Nozomi)

False Positives [Deloitte and Touche], named (trustees) in the

bankruptcy

[the complaint] named (about six former state officials)

The named pattern shares "also called"'s susceptibility to part-of-speech tagging

errors, and also generates false positives when named is used in the sense meaning

"cited as", or "specified as".

3.2.6 Like

The last two entity-second patterns, "like" and "such as", differ slightly from others.

Instead of settling on a single target entity, these patterns will look for multiple targets

in a list construction. This follows the intuition that a concept is often demonstrated

by listing some of its hyponyms. If a list construction is found in target position, each

entity in the list enters a separate "is-a" relation with the common hypernym.
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Pattern [highestNP] (,) like simpleNP(s)

Instances [a prestigious sporting event] like (the SEA Games)

[cities with huge populations], like (Hong Kong),

(Shenzhen) and (Guangzhou)

[Muslim countries] like (Jordan), (Egypt) and (Turkey)

False Positives [a very big noise] like (lightning)

In [Greece], like (many countries), (parliament mem-

bers) have protection

This pattern suffers from multiple types of false positives, due to the different

senses of the word "like". For example, the pattern often picks up instances where

like is used to convey the meaning "similar to", instead of "such as", as desired.

3.2.7 Such As

The "such as" pattern

sake of simplifying the

is nearly identical to "like", and is only kept separate for the

underlying regular expressions.

Pattern [highestNP] (,) such as simpleNP(s)

Instances [donor agencies], such as (the International Monetary

Fund)

[Middle Eastern countries now seeking nuclear capabil-

ity], such as (Iran) and (Iraq),

[stinging insects] such as (bees), (wasps), (hornets), and

(red ants)

False Positives [Other aspects], such as (witness) and (expert testi-

monies)

There are no multiple senses here, but we still see the overgenerality problem.

40



3.2.8 Occupation

The next few patterns are my implementations of the original concept-instance re-

lations defined by Fleishman et al. Thanks to named entity detection (NED), my

patterns will be more precise, because NED removes the guesswork from detecting

proper noun phrase boundaries. Below are two versions of my occupation pattern,

which correspond to Fleischman's CN/PN pattern designed to capture the (NE)

has-post [Y], or (NE) has-title [Y) relations.

Pattern [(properNP) commonNP (and (properNP) commonNP)]

(NE)

Instances [former dictator] (Ferdinand Marcos)

[U.S. President] (Jimmy Carter)

[Pulitzer Prize-winning poet and Hudson resident]

(John Ashbury)

False Positives [the many layers] (Chris Cooper) gave Colonel Fitts

Pattern [{properNP, commonNP} (of) (the) properNP] (NE)

Instances [Former Secretary of Health and Human Services]

(Louis Sullivan)

[Wisconsin Democrat] (Russ Feingold)

False Positives on his way to begin a tour of [the U.S.] (Adams) has

called

False positives occur when the pattern match crosses phrase boundaries; that is

when one phrase or clause ends with a common noun, and the next one begins with

a named entity.

3.2.9 Appositive

Also a descendent of Fleischman et al., the appositive pattern is my implementation

of the APOS concept-instance relation. However, for the sake of precision, I have
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restricted the pattern to capture only instances matching (named entity), [non-NE

determiner phrase] construction. I found that (nounphrase), [noun phrase] was far

too wide a net to cast, capturing every pair of NPs in a comma-separated list, for

example.

Pattern (NE), [thirdDP (and thirdDP)],

Instances (ETA), [an acronym that stands for Basque Homeland

and Freedom],

(Neta Bahcall), [a Princeton astronomer and a member

of the survey team].

(El Shaddai), [a Catholic group].

False Positives a plot to blow up the (United Nations), [a federal build-

ing], two tunnels ...

no sign points to (Ur), [the ziggurat], the tombs ...

As you can see, this pattern still captures some list formations when a common

determiner phrase lies adjacent to a named entity.

3.2.10 Copular

A copular expression is an explicit statement of the is-a relation: (X) is [noun phrase].

This pattern is designed to capture instances of that form.
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(entity) be [highestNP (and highestNP)]

Instances (The Hague) is [home to the International Court of Jus-

tice]

(Ur) was [the capital of Sumer and an important com-

mercial center in Mesopotamia]

(The Aga Khan) is [the 49th imam of the Ismaili com-

munity]

False Positives The return of the NBA in (Toronto) was [a rush].

Yoshida, the anthropologist, said (Japan) is [fertile

ground for Nostradamus] ...

False positives occur when the target is the object of a preposition, or when the

entire copular expression is embedded in a subordinate clause.

3.2.11 Became

The copular pattern has relatively high recall, and low precision, due to the high

term frequency of "to be" conjugations. On the other hand, "became" is a lower

recall, higher precision pattern capturing essentially the same relation. Technically

speaking, the relation is (X) became [Y], not "is-a".

(entity) became [highestNP (and highestNP)]

(Egypt) became [the first Arab country to sign a peace

treaty with Israel in 1979].

(Althea Gibson) became [the first black tennis player to

win a Wimbledon singles title]

(President Roosevelt) became [the first chief executive

to travel through the Panama Canal]

ever since (Bush) [became governor]

As you can see, this pattern is useful for capturing "the nth X to do Y" construc-

tions. Like the copular pattern, false positives can occur when the entire expression
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is embedded.

3.2.12 Relative Clause

The relative clause pattern is a simple juxtaposition of two phrases from the library

described in the previous section. It matches a named entity X modified by a non-

restrictive relative clause Y. This captures the relations (X) did [Y], or (X) experi-

enced [Y].

Pattern (NE), [RC],

Instances (Von Grueniigen), who [won the world giant slalom title

... 1,

(Pippen), who [played his first 11 seasons with the

Chicago Bulls],

(Iverson), whose [nickname is the Answer ...],

False Positives James Shields: Irish immigrant and opponent of

(Abraham Lincoln), who [is the only person to have

been a senator from three states I

Jackson said of (Brown), who [played for Brown with

the Los Angeles Clippers]

A common error, as demonstrated here, is when the relative clause attachment is

ambiguous between the head of a noun phrase and the object of its PP modifier.

3.2.13 Was Named

The "was named" pattern is useful for capturing (X) held-post [Y], or (X) earned-

distinction [Y] relations.
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Pattern (NE) {was, were, {has,have} been} named (as) [high-

estNP (and highestNP)]

Instances in 1994 when (Leon Panetta) was named [Chief of Staff

of the White House].

(Sanjay Dutt) was named [best actor for his role as a

vendor in the murder tale "Vaastav."]

False Positives Bernie Williams and (Hideki Irabu) were named [player

and pitcher of month in the American League for May].

This is another highly precise pattern, but I did find a false positive in the tricky

parallel construction noted above. This example demonstrates the shortcomings of

CoL. ForBIN's regular language.

3.2.14 Other Verb Patterns

So far we've restricted ourselves to a fairly small subset of relations. There are, of

course, many other relations that make good defining characteristics, and we'd like

to capture some of those while maintaining a reasonable balance between precision

and recall. In this spirit, last year our own Wes Hildebrandt compiled term frequency

statistics from biography.com, from which we were able to identify the 32 most fre-

quently occurring verbs in biographic entries. I grouped these verbs according to their

argument structure, and used them in five new patterns. Here are verb categories:

NP argument, animate subject: found, formed, retired, discovered, studied, wrote,

taught, published, married

NP argument, generic subject: won, led, made, began, joined, founded, estab-

lished, received, developed, produced, introduced

PP argument: lived, died, worked, served

transitional: moved, went, returned, came

passive: born, killed, appointed, elected
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This is what they look like in the context of their respective patterns:

animateNPverb: (person) verb [highestNP ... ]

Example: (Napoleon) [wrote fantastically fraudulent dispatches of

military exploits].

genericNPverb: (NE) verb [highestNP ...

Example: (Pittsburgh) [produced steel in prodigious quantities].

PPverb: (person) verb [higherPP ... ]

Example: (Nelson A. Rockefeller) [died in New York at age 70].

transitional: (person) verb {to, from} [highestNP ... ]

Example: (Stokes) [came from a family long active in social causes

and public service].

passive: (person) [{was, were} verb ...

Example: (Ezra Pound) [was born in Hailey, Idaho].

3.3 Putting it all Together

In Chapter 1, I discussed two major shortcomings of the Katz et al. pattern matching

system. The first section of this chapter explains how I addressed the precision, or

boundary detection, problem with "syntactic" regular expressions, and the second

section shows how my patterns make use of them. In this section, I describe how I

addressed the adjacency problem.

The patterns in the previous section only tell part of the relation extraction story.

As presented above, they will still only capture one nugget in the aforementioned

example:

Holt, 50, a physicist, was the assistant director of Princeton Plasma

Physics Laboratory.

What we need to do is stop treating each pattern as an independent atomic unit, and

instead, unite them all in a single pattern matching architecture.

As it turns out, I divided this "single" architecture into three independent mod-

ules. There are two reasons for this. First, I found that the patterns fall into three
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natural classes, and secondly, it is always useful to parallelize when processing such

massive amounts of data. I describe these three modules in the sections below.

3.3.1 Entity-First Patterns

A natural way to group the nineteen syntactic patterns is according the order in which

the target entity and definitional nugget occur. The larger of these two groups, with

twelve members, is the entity-first category:

entity-first patterns: age, affiliation, appositive, copular, became, relative clause,

was named, animateNPverb, genericNPverb, PPverb, transitional, passive

A thorough scan of the positive matches returned by Katz et al.'s entity-first patterns

revealed that a vast majority (approximately 95%) of the targets detected were named

entities. Now that I have IdentiFinder to show me the NE boundaries, I can refine

these patterns by searching only for named entity targets.

The question remains, however, what do we do about nuggets that are separated

from the target by some intervening clause? Also, as a corollary, how can we be sure

that the long-distance nugget corresponds to our target, and not some other entity

mentioned later in the text? I chose to adopt the following general solution: for each

target, look at the adjacent text and see if it matches one of our patterns. If so,

record the match, consume the matching text, and repeat.

There is one disclaimer however: we must be wary of the order in which we iterate

over the pattern set. We would not, for example, expect to see the appositive pattern

in the text following a copular. In fact, this would open the door to many false

positives of the form:

( Mr. X ) is the president of Company Y., [the world's largest producer

of Z's].

As demonstrated here, some patterns are inherently more adjacent than others, and

should thus appear earlier in the iteration. Also, for efficiency's sake, I will assume

the patterns form a natural precedence ordering (in terms of adjacency, or "target
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affinity"), and thus only one iteration is required to capture all relevant nuggets. Here

is the order I propose:

age > affiliation > appositive > relative clause > any verb pattern

It turns out this ordering is only violated in rare, pathological cases. Now, the

famous Mr. Holt gets three nuggets instead of one. Here are some more examples of

multiple-nugget sentences from the AQUAINT corpus:

Multiple-Nugget Sentences

(John Stevens), [80], [a lawyer from Muscatine, Iowa],

(Iverson), [22], was [last year's top draft pick].

(Luci Baines Johnson Turpin), [daughter of President Johnson], [is 52]

(Anwar Sadat), who [was Egyptian president at the time], was [a staunch U.S.

ally].

(The Notorious B.I.G.), whose (real name was Christopher Wallace], [was

killed in a drive-by shooting]

3.3.2 Entity-Second Patterns

The remaining seven patterns look for a definitional nugget before the target entity.

Unlike the entity-first patterns, these are generally not chained, so we can run them in

succession on the same input text. The only tricky part here is detecting the correct

nugget phrase boundary. For example, consider the following two instances of the

"also called" pattern:

1. a book of rhymed prophecies, called "Centuries"

2. a spinoff of a Microsoft program called Libraries Online

In the first example, the highestNP captures the correct nugget, because "Centuries"

is indeed a book of rhymed prophecies. However, in the second example, Libraries

Online is a program (not a spinoff) so the highestNP nugget, "a spinoff of a Microsoft

program", is inexact in this case.
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How do we decide what to return here, then? It is nearly impossible to determine

the appropriate nugget of information based on syntax alone, so I adopt the following

solution: return all possibilities, and let the user decide! But is that really the best

information CoL. ForBIN can provide, based on its syntactic knowledge? Not quite.

I can also tell you the head noun in each possible nugget phrase, and its relative

distance from the target.

Let's walk through an example of this procedure. Consider the following excerpt:

"the criminal use of justice by a fundamentalist prosecutor called Kenneth Star"

From a purely syntactic standpoint, this snippet has three possible phrases in nugget

position: "a fundamentalist prosecutor", "justice by a fundamentalist prosecutor",

and "the criminal use of [that justice]". We can't just choose the smallest one, or

the second smallest one, as demonstrated in the examples above, so we return all the

information we can:

Nugget Head Distance

a fundamentalist prosecutor prosecutor 1

justice by a fundamentalist prosecutor justice 2

the criminal use of justice by a fundamentalist use 3

prosecutor

Now the user, who is presumably better informed semantically, can choose which

one is best. Perhaps she already has strong evidence that Kenneth Star is a lawyer of

some kind. Then she will notice that the head noun "prosecutor" is a specialization

of "lawyer", and use this information to decide on the first nugget. Or perhaps she

will query WordNet for the lowest common hypernym between the target and each

nugget head (normalizing all named entities to their subtype, so Kenneth Star would

become "person"), and choose the nugget with the shortest hypernym path. Let's

try this approach, and see what we come up with here:

wn person -hypen

Sense 1

person, individual, someone, somebody, mortal, human, soul
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=> organism, being

=> living thing, animate thing

=> object, physical object

=> entity

=> causal agent, cause, causal agency

=> entity

wn prosecutor -hypen

Sense 1

prosecutor, public prosecutor, prosecuting officer, prosecuting attorney

=> lawyer, attorney

=> professional, professional person

=> adult, grownup

=> person, individual, someone, somebody, mortal, human

=> organism, being

=> living thing, animate thing

=> object, physical object

=> entity

=> causal agent, cause, causal agency

=> entity

wn justice -hypen

Sense 1

justice, justness

=> righteousness

=> morality

=> quality

=> attribute

=> abstraction
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"Justice", in the sense used here, does not share a common hypernym with "person",

so "prosecutor" wins again. However, without word sense disambiguation, we must

consider all senses equally, so the third sense of "justice" will actually give us the

shortest hypernym path:

Sense 3

judge, justice, jurist, magistrate

=> adjudicator

=> person, individual, someone, somebody, mortal, human, soul

=> organism, being

=> living thing, animate thing

=> object, physical object

=> entity

=> causal agent, cause, causal agency

=> entity

In retrospect, "shortest hypernym path" probably isn't the best heuristic. What

we really want is a short path on the target side, and a long one on the nugget

side, because this will give us the most specialized description. By this heuristic,

"prosecutor" wins over both senses of "justice". Should this approach fail, then the

user can make use of the distance field, perhaps defaulting to the closest possible

nugget.

3.3.3 Occupations

Not fitting quite well into either of the above categories are the two occupation pat-

terns. Like the entity-first patterns, their target is strictly a named entity, but like

the entity-second patterns, the nugget comes before the target. However, unlike the

entity-second patterns, occupations do not generally require the sophisticated nugget

disambiguation techniques described above. Furthermore, the occupation patterns

generate the most matches by far (almost an order of magnitude greater than any

other pattern), and thus require considerably more time to run than the rest. The
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combination of these factors led me to treat occupations as a separate class of pat-

terns, with the simplest matching algorithm of all. That is: match the target and

nugget. If the nugget ends in a plural noun, check for multiple targets (similar to the

approach taken by the "like" and "such as" patterns), and record them all.
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Chapter 4

Experimental Results

4.1 Generating Ground Truth

My first approach to fixing the boundary detection problem was to start with the

patterns of Katz et al. [9], and substitute the target and nugget regular expressions

with my newly created highestNP pattern. This approach saw mixed results. For ev-

ery good nugget captured by the new patterns (e.g., "a book of rhymed prophecies"),

there was a counterexample where they matched too greedily (e.g., "a spinoff of a Mi-

crosoft program"). Also, it became apparent that the highestNP pattern was overly

sophisticated for target detection. Most correct targets were either named entities or

instances of the simpleNP pattern.

In addition to providing such insights, these initial trials also gave rise to a testbed

for human evaluation, which led to the generation of ground truth elements. Based on

user input provided through a form on the web, I was able to collect 50-500 positive

and negative instances of each pattern from a subset of 886 AQUAINT documents.

Incidentally, the subset I chose was comprised of the supporting documents for all

the definitional nuggets deemed valid for the TREC 12 competition. I chose this set

because it was a reasonable size for testing, and because it was guaranteed to contain

answers to last year's definitional questions (my initial benchmark for evaluating

the new patterns). I was also able to collect 500 instances of valid entity/definition

pairs from 50 randomly chosen AQUAINT documents. These did not necessarily
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correspond to any surface patterns, and were meant to serve as a basis for evaluating

total pattern recall.

4.2 Testing Against Truth

4.2.1 Generating Benchmark Statistics

As noted above, ground truth items were generated by manually annotating old

pattern-matching results. Initially, two sets of results were annotated by hand. These

were the patterns of Katz et al. in their original form, and with target and nugget

regular expressions substituted with highestNP. I will refer to the original patterns as

"trec12" and to the substituted ones as "baseline"1 . Table 4.1 contains the human-

judged results of the trec12 and baseline experiments. Precision is defined in terms

of both accuracy and relevance, so in order to be judged correct, a nugget must have

correct bounds, and must be relevant to the target. The formula I used to calculate

precision is hits/matches, where matches is the number of pattern instances found,

and hits is the number of correct instances, as defined above.

We can also evaluate the entire pattern set in terms of nugget recall. That is,

out of all the valid target/nugget pairings in the corpus, how many can we extract

using syntactic patterns alone? Of course, it is nearly impossible to hand-annotate

the 3 Gb AQUAINT corpus with all valid target/nugget pairs. The best we can do is

choose a random subset of documents to annotate, and see how many ground truth

pairs are extracted by the patterns as well. Table 4.2 shows the recall statistics for

the trec12 patterns 2, and table 4.3 shows how much of the recall can be attributed

to each pattern.

A match is ruled inexact, but acceptable, if the targets overlap by more than 50%,

and the matched nugget contains all the information in the true nugget, along with a

isince the official ground truth items were derived from the substituted ones
21 have chosen to exclude the baseline patterns here, because they did not include the occupation

patterns, which account for over half of the recall
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Pattern Trec12 Baseline
hits/matches precision hits/matches precision

elaka 7/28 25.00 3/29 10.34
e2-aka 4/18 22.22 11/29 37.93

el-also-called 2/72 02.78 2/65 03.08
e2_also-called 5/32 15.63 27/65 41.53
el-appositive 41/206 19.90 160/1014 15.78
e2_appositive 28/206 13.59 73/1014 07.20
elbecame 26/72 36.11 50/95 52.63

el-is 29/137 21.17 97/478 20.29
e2_like 6/67 08.69 70/378 18.52

el-named 7/18 38.89 7/13 53.85
e2_named 3/18 16.67 6/26 23.08

el-rel-clause 23/94 24.46 46/179 25.70
elIverbnp-generic 35/207 16.90 141/492 28.66
elverb-np-person 5/51 09.80 40/143 27.97

el-verb-passive 13/41 31.70 22/41 53.66
el-verb-pp 8/44 18.18 40/72 55.56

el -verb-transitional 2/35 05.71 32/98 32.65

Weighted Average Precision ('Irec12): 18.95
Weighted Average Precision (Baseline): 19.55

Table 4.1: Human-judged precision statistics for the trec12 and baseline patterns.
The averages are weighted on the number of matches, which is roughly proportional
to recall, but not quite (see the discussion at the end of this chapter). Notice that
several patterns appear to be listed twice. This is because, previously, many patterns
had both an entity-first and entity-second version. In each case, however, one of
these versions was phased out, because its precision was considerably lower than the
other. The one exception to this rule is the named pattern, which maintained its
entity-second version, and spawned the entity-first "was named" pattern.
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Truth Items Matches Recall
exact inexact exact inexact

483 144 175 29.81 36.23

Table 4.2: Recall numbers for the trec12 patterns.

Pattern Matches Percent
e2_aka 1 00.69

elappositive 55 38.19
el-became 1 00.69

ellis 5 03.47
e2_like 1 00.69

el-relative 6 04.17
e2_occupation 75 52.08

Table 4.3: Trec12 recall breakdown by pattern (exact).

limited amount of extraneous text. 3 As you can see, much of the recall4 is still coming

from the appositive and occupation patterns, the modified versions of Fleishmann's

APOS and CN/PN relations.

4.2.2 Comparison to Benchmark

In this section, I describe my method for comparing the new pattern results to the

benchmark statistics. As mentioned above, I was able to collect 50-500 positive and

negative instances of each pattern from the training set of documents. The problem

with this collection is that it is by no means comprehensive. This is because the

human annotator only had access to the specific sentences that contained an instance

of the old, adjacency-dependent patterns. Thus many positive and negative instances

were ignored, because the annotator never saw them. To account for this flaw, I

will throw out any new matches that do not roughly correspond 5 to any items in the

positive or negative training sets. Precision will then be defined as p/ (p + n), where p

is the number of positive examples captured, and n the number of negative examples.

As you can see in table 4.4, CoL. ForBIN's patterns are significantly more precise,
3The total match length must be no greater than twice that of the true nugget.
4 In Chapter 2, I claimed this number was close to 90%. This turned out to be a classic case of
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Recall Breakdown By Pattern

appositive:38*/

upation:52%

relative:4%

is:3%
other:2%

Figure 4-1: Pie chart view of the trec12 recall breakdown.

but at what cost? Usually, there is a tradeoff between precision and recall, but since

recall is so important here, my goal was to keep it relatively consistent with that of

trec12 patterns. As it turned out, my recall numbers actually improved, in terms of

both exact matches and inexact matches. (See Table 4.5.) This was due largely to

the new long-distance matching architecture.

Table 4.6 and Figure 4-2 show the recall breakdown by pattern. APOS and

CN/PN still dominate, but that's okay now that they are much more precise. Also,

contribution from other patterns is up from 10 to nearly 17%. This is a direct reflec-

tion of the new long-distance matching strategies.

overfitting.
5Refer to the inexactness discussion in the previous section.
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Pattern Matches Precision
positive negative exact inexact

el-appositive 67 10 70.13 87.01
el-became 40 4 79.55 90.91

ellis 50 11 60.66 81.97
el-rel-clause 13 12 44.00 52.00

el-verb np-generic 67 82 33.56 44.97
el-verb-np-person 17 25 38.10 40.48

el-verb-passive 27 4 74.19 87.10
el-verb-pp 42 5 72.34 89.36

elverb-transitional 32 22 46.30 59.26
el-was-named 8 1 66.67 88.89

e2_aka 10 0 100.00 100.00
e2-also-called 7 0 100.00 100.00

e2_ike 29 5 79.41 85.29
e2_such-as 22 7 66.67 81.48
e2-named 3 0 100.00 100.00

Weighted Average Precision (Exact): 58.12
Weighted Average Precision (Inexact): 68.67

Table 4.4: New pattern precision, based on ground truth

Version Truth Items Matches Recall
exact inexact exact inexact

trec12 483 144 175 29.81 36.23
forbin 483 156 186 32.30 38.51

Table 4.5: Forbin pattern recall compared with trec12.

Pattern Matches J Percent

el-affiliation 1 00.64
e2_aka 2 01.28

ellappositive 40 25.64
el-is 4 02.56

e2like 17 10.90
e2_named 1 00.64

e2-occupation 82 52.56
elrel-clause 7 04.49

el-verb np-generic 1 00.64
ellverb-pp 1 00.64

Table 4.6: New recall breakdown by pattern.
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Recall Breakdown By Pattern
other:4%

is:3%
relative:4%

like:11%

occupation:

ositive:26%

Figure 4-2: Pie chart view of the recall breakdown (new).

4.3 Human Judgements

As noted above, the process of generating truth was somewhat myopic, in the sense

that I had not foreseen the advent of the long-distance pattern matching architecture.

Thus the human annotator was not asked to look for long-distance nuggets of the form

detected by the entity-first module. To correct this error, the same human annotator

was asked to re-evaluate the new entity-first results on a per-pattern basis. These

results are more reflective of the patterns' actual precision, and are displayed in Table

4.7. Also, as a sanity check and for completeness, I asked the annotator to evaluate

the entity-second patterns. Those results can be found in Table 4.8. Note that,

even with the larger sample space and human evaluator, these results are reasonably

consistent with those reported in the previous section.
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Table 4.7: Entity first pattern precision, as judged by a human evaluator.

Table 4.8: Entity second pattern precision, as judged by a human evaluator.

Overall Weighted Average Precision

exact inexact

59.90 63.27

Table 4.9: Overall weighted average precision calculated over all the patterns.

60

Pattern Matches Precision
exact inexact

el-affiliation 94 0.83 0.85
elIage 11 1.00 1.00

el-appositive 232 0.87 0.89
el-became 20 0.70 0.85

el-is 197 0.63 0.68
el-releclause 190 0.53 0.55

el-verb-np-generic 63 0.43 0.49
el-verb-np-person 31 0.42 0.48

el-verb-passive 37 0.46 0.57
el-verb-pp 28 0.75 0.93

elverb-transitional 78 0.35 0.36
el-was-named 44 0.27 0.55
e2_occupation 132 0.73 0.75

Weighted Average Precision (Exact): 64.25
Weighted Average Precision (Inexact): 68.90

Pattern Matches Precision
exact inexact

e2_aka 25 68.00 68.00
e2_also-called 47 70.21 70.21

e2like 234 39.32 42.30
e2_named 11 63.64 63.64
e2-suchas 121 46.28 47.11

Weighted Average Precision (Exact): 46.58
Weighted Average Precision (Inexact): 48.40



4.4 Testing in QA Context

I have shown that my patterns perform better than the trec12 ones in terms of both

precision and recall, but I still have not addressed the topic of this thesis: that is,

answering definitional questions. Bearing in mind that CoL. ForBIN is not intended to

be a standalone QA system, but rather part of a multi-pronged approach, I decided to

"ask"6 it for nuggets pertaining to some of the TREC 12 definitional question topics.

I have grouped ForBIN's responses into four categories. The first one, vital re-

sponses, correspond to nuggets that were deemed vital by NIST for TREC 12. I

have also included a duplicates category for paraphrases of previously returned vital

responses. Duplicates are considered by NIST as extraneous text, and should thus be

avoided. 7 The other two categories are "okay" and "no judgement". NIST defined its

ground truth as the set union of all nuggets submitted by participants that pertain

to the topic entity. Those that were not considered "vital" defining characteristics

were classified as "okay". I have included a separate category, "no judgement", for

nuggets that were not submitted by anyone as TREC 12 answers. I leave it as a task

for the reader to determine their status.

First, let's examine some "Who is" questions. Since most of the patterns match

exclusively named-entity targets, we expect these to have the most database hits.

We also expect overall precision to be roughly equivalent to the weighted average

precision figures reported above, so 60-65%. I chose the following "Who is" targets

at random from the TREC 12 question set: "Andrew Carnegie", "Alberto Tomba",

"Aaron Copland", and "Vlad the Impaler". See Tables 4.10, 4.11, 4.12, and 4.13 for

CoL. ForBIN's responses regarding these topics.

Next we examine some "What is" questions. (See Tables 4.14 and 4.15.) The

first topic, "golden parachute" is not a named entity, so we expect significantly lower

recall here. Remember that only the entity-second patterns allow targets that are not

named entities, and these only account for approximately 13% of total pattern recall.

6In other words, query the database.
7But ForBIN's primary responsibility is still recall. It remains the task of the user to filter

duplicates.
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Qid 2224: Who is Andrew Carnegie?
Vital responses (1 missed)
built a steel empire
made gifts amounting to $350 million before he died in 1919

Vital duplicates
the steel tycoon
money built more than 1,600 public libraries in the United States in the early
part of the century

No Judgement
the self-made man
rose from poverty to the role of captain of industry
a name that crops up frequently alongside Gates' these days
an immigrant from Scotland

Table 4.10: Sorted nuggets from CoL. ForBIN pertaining to "Andrew Carnegie"

Qid 1907: Who is Alberto Tomba?

Vital responses (1 missed)
Italian Olympic and World Alpine skiing champion
settled this year after courts set a date for the ski champ's tax trial

Okay responses
won his only World Cup overall title and two discipline titles in the cup finals
here in 1995

Vital duplicates
Skiing superstar
Olympic gold medalist
Italian top skier

No Judgement
her compatriot
Local hero
came from far off the pace with a blistering second run to momentarily overtake
first-run leader Stangassinger, but the Austrian won

Table 4.11: Sorted nuggets from CoL. ForBIN pertaining to "Alberto Tomba"
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Qid 1901: Who is Aaron Copland?

Vital responses (2 missed)
composer
"American-sounding" music was composed by a Brooklyn-born Jew of Russian
lineage who studied in France and salted his scores with jazz-derived syncopa-
tions

Okay responses
the other great historic figurehead at Tanglewood

Vital duplicates
divided composers like himself who "play at writing operas" from those "hope-
lessly attracted to this 'form fatale."'

No Judgement
vastly preferred Stravinsky to Wagner or Brahms.

Table 4.12: Sorted nuggets from CoL. ForBIN pertaining to "Aaron Copland"

Qid 1933: Who was Vlad the Impaler?

Vital responses (0 missed)
the 16th-century warrior prince
inspired Bram Stoker's 1897 novel Dracula
was known for piercing his victims on spikes while he ate his dinner

Table 4.13: Sorted nuggets from CoL. ForBIN pertaining to "Vlad the Impaler"
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Qid 1905: What is a golden parachute?

Vital responses (2 missed)
severance packages

Table 4.14: Sorted nuggets from CoL. ForBIN pertaining to "golden parachute"

Qid 2201: What is Bollywood?
Vital responses (3 missed)
The Bombay-based film industry

Table 4.15: Sorted nuggets from CoL. ForBIN pertaining to "Bollywood"

The second topic, "Bollywood", is a named entity, but it has a low term frequency so

we expect low recall for this one as well. ForBIN's responses confirm our expectations.

The last topic, "Hague", has a high term frequency, so we'd expect higher recall

and lower precision with this one. But, assuming IdentiFinder can tell us that it's

"the Hague", the GPE we're interested in, and not "Hague", the person, we come up

with some reasonably good answers. (See Table 4.16.)

Here, we see a truly false nugget: "a defense lawyer". This was a case of ambiguous

appositive modification: "In the Hague, a defense lawyer, Michail Wladimiroff, said

.. ". What about the rest of the "no judgment" nuggets? Table 4.17 shows how they

were classified by our human annotator.

So, discounting duplicates, precision is even higher than expected - about 80%.

Likewise, our vital nugget recall is over 60%. Of course, this is a very small sample,

and we could have just been lucky. These examples were merely meant to illustrate

CoL. ForBIN in action.

4.5 Discussion

The skeptic will be quick to point out that the data set I used for benchmark com-

parison is quite impoverished. Especially deceiving are the high precision numbers

attributed to the entity-second patterns. I mentioned several times that I had col-

lected 50-500 positive and negative examples of each pattern, but the greatest number
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Qid 2158: What is the Hague?

Vital responses (0 missed)
the Dutch cap.
the Dutch city that is the headquarters for the International Court of Justice
site of the World Court
venue of the International Criminal Tribunal for the former Yugoslavia

Okay responses
handles disputes between nations

Vital duplicates
the Dutch political center
home to the International Court of Justice
last week indicted Milosevic for orchestrating the forced explusion of some
800,000 ethnic Albanians from Kosovo

No Judgement
a defense lawyer
an instrument of American political goals

Table 4.16: Sorted nuggets from CoL. ForBIN pertaining to "the Hague" (as a GPE)

Vital
the self-made man
rose from poverty to the role of captain of industry
an immigrant from Scotland

Okay
Local hero
vastly preferred Stravinsky to Wagner or Brahms
an instrument of American political goals

False Positive
a name that crops up frequently alongside Gates' these days
her compatriot
came from far off pace with a blistering second run to momentarily ...
a defense lawyer

Table 4.17: Our judgements of the nuggets for which there was no NIST judgement
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you see in either of the matches column is 82. This is because, as it turned out, there

was very little overlap in the sets of target/nugget pairs captured by the old and new

systems. In other words, the new patterns filtered out many bad nuggets, but missed

several good ones as well.

This appears to be a classic tradeoff of precision for recall, yet I claim that my

recall numbers improved as well! How is this possible? Well, thanks to long-distance

matching, ForBIN was able to get recall from elsewhere in the text. Unfortunately,

the human annotator was never asked to look elsewhere in the text for positive and

negative instances of the patterns, so we had no means of evaluating these new results

programatically.

Thus another round of manual annotation was warranted. Due to time constraints,

we were unable to annotate a data set as large as the one used in the baseline experi-

ments. Instead, using the same collection of 886 documents, we annotated the results

for each pattern until we saw them all (in the low recall cases), or until we felt we had

seen a large enough accurate sampling of the data (in the high recall cases). For most

of the high recall cases, the cutoff was around 200 items. The only problem with this

approach is that it distorts the weighted averages, by making the pattern distribution

seem more uniform. A better weighing metric is percent of total pattern recall. If

we weigh on this instead, we get an average precision of 72.14% (73.67%, counting

inexact matches), thanks to large contributions from appositive and occupation.

How does this translate into a TREC F score? Well, it's difficult to judge, because

NIST's notion of precision is slightly different from the one presented here. Theirs

includes an answer length allotment, and a penalty for duplicate responses. However,

if we make certain assumptions, we can estimate CoL. ForBIN's F scores for varying

values of B. In particular, let's assume that every acceptable response uses exactly its

length allotment, and that every incorrect answer and duplicate is that same length

as well. Also, since we're using the entire allotment - not just the exact answer -

we can assume that the inexact (better) precision and recall calculations apply here.

The only factor left to consider is the number (or percentage, rather) of duplicate

responses. This is something I have not analyzed in detail, so I must treat it as a
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6 F(# = 5) score

0.9 0.3312
0.8 0.3626
0.7 0.3744
0.6 0.3806
0.5 0.3844
0.4 0.3870
0.3 0.3888
0.2 0.3903
0.1 0.3914
0.0 0.3923

Table 4.18: CoL. ForBIN's estimated F(# = 5) score, as 6 varies.

6 1F( =3) F(fl=2) F(3=1)
0.9 0.2707 0.2087 0.1237
0.8 0.3316 0.2911 0.2131
0.7 0.3585 0.3353 0.2808
0.6 0.3736 0.3628 0.3339
0.5 0.3833 0.3816 0.3765
0.4 0.3901 0.3953 0.4116
0.3 0.3951 0.4056 0.4409
0.2 0.3989 0.4138 0.4658
0.1 0.4019 0.4203 0.4872
0.0 0.4044 0.4257 0.5058

Table 4.19: CoL. ForBIN's estimated F score, varying with # and 6.

variable, 6. Table 4.18 shows CoL. ForBIN's estimated F(# = 5) score for varying

values of 6. What this tells us is that, even if only 10% of our responses are unique

(6 = 0.9), we achieve an F(3 = 5) score of 0.3320 - good enough for second place in

TREC 12. If half are unique, we get 0.3846 - less than 0.01 away from the assymptotic

upper bound.

Note that these results are for 3 = 5, which values recall about five times more

highly than precision. But every year, NIST tightens its standards on precision. For

example, this year at TREC 13, 13 was set equal to 3 for defintional questions. How

would this affect our F score? For that matter, what if / were set equal to 2 or 1?

Table 4.19 shows these results. (See Figure 4-3 for a graphical view.)
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Estimated F score for different values of delta and beta

0 0.1 0.2 0.3 0.4 0.5 0.6
detta

0.7 0.8 0.9 1

Figure 4-3: F score for different values of /, as a function of 6.

Naturally, as 3 decreases, J becomes more of a factor, because we are weighing

more heavily on precision. So, with all things equal (13 = 1), a CoL. ForBIN user

can achieve an F score above 0.50, or as low as 0.12, depending on how well she is

able to filter duplicates. Bear in mind once again that ForBIN is not meant to be a

standalone utility, but rather a tool for gleaning information in preprocessing. If one

already has an F score close to 0.50 after preprocessing8, one can afford to spend time

on more costly runtime techniques aimed at boosting that number.

8 Remember, BBN won TREC 12 with an F score of 0.555.

68

0.7

0.6 -

LL

0O
E)

2n
W

0.5

0.4

0.3

0.2

0.1

5

2 3

beta=1



Chapter 5

Future Work

As the saying goes, your F score is only as strong as its weakest link. In CoL.

ForBIN's case, that link is recall. Below, I ponder the future of CoL. ForBIN, with

special emphasis on improving recall.

5.1 Target Expansion

The simplest way to improve recall is with target expansion, or substituting references

that are not fully resolved with their fully resolved antecedent. The intuition behind

this notion is as follows: When a new discourse referent is introduced, he/she/it

is often referred to by name. However, seldom is that full name repeated in the

remainder of the discourse. Instead, the name is replaced with an anaphor (e.g.

pronoun, nominal reference, or partial name) which the reader is left to resolve. So,

for example, if we restrict ourselves to nuggets associated with the string "Allen

Iverson", we miss all the nuggets pertaining to "Iverson", "Allen", "the Sixers' point

guard", and "he" - all referring to the same Allen Iverson.

Of course, we cannot blindly assume that every "Iverson" in the corpus refers

to Allen Iverson (or much worse, every "he"). But we can add another stage of

preprocessing whereby all anaphoric references are replaced, or at least marked, with

their fully resolved antecedents. To do so properly is a costly operation, involving

a full parse of the text, but Infolab contributor Federico Mora has developed a low
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cost, heuristics-based alternative. Unfortunately it was still incomplete when I began

testing CoL. ForBIN, so I was unable to make use of it in my experiments.

5.2 CFG Parsing

While we're on the topic, is parsing really such a bad idea? As machines become faster

and memory gets cheaper, the answer tends toward the negative. With that said, the

future of CoL. ForBIN has two possible directions: we can either spend time fine-

tuning the regular language so as to "fake" more syntactic constructions, or we can

translate that language into a compact context-freel grammar. While the first path

maintains the status quo, it may not be the wisest approach, because the underlying

regular expressions are already quite large, and bordering on unwieldy. The second

approach involves a substantial change in infrastructure, but the resulting language

would be much more expressive and more representative of actual natural language.

I foresee the future of CoL. ForBIN proceeding in the latter direction.

5.3 Statistical Methods

Statistical techniques have proven successful in several areas of NLP, ranging from

POS tagging to information extraction. In fact, CoL. ForBIN already relies heavily

on a statistical tool: the IdentiFinder named entity recognizer. So, if we're planning

to endow CoL. ForBIN with a parser (see above), then it follows that we may want

its grammar to be probabilistic. In other words, for a given parent node, we would

like to know if its possible expansions include any target/nugget pairings, and if

so, what is their probability distribution. These parameters are not hand-coded, of

course, but must be learned from manually annotated training data. Fortunately, the

ForBIN development process has lent us a convenient visual tool designed specifically

for annotation, so the process of creating training data will be much less laborious in

the future. Given such a training set, we can convert the process of finding pattern

lor some variant thereof
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instances from a regular expression match to a probabalistic context-free grammar

parse.
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Chapter 6

Contributions

In CoL. ForBIN, I have described a system that extracts reasonably precise defini-

tional nuggets from newspaper text. It then stores them in a database which is meant

to serve as a backbone for a larger definitional question answering system. Although

it is not intended for use in isolation, due to its lack of semantic knowledge, the

database alone can achieve F scores ranging from 0.40 to 0.50, depending on # and

the quality of duplicate filtering. Thus with syntactic clues as its only heuristics, and

speed as fast as a database lookup, ForBIN could have placed second in the TREC

12 definitional category.

In a broader sense, this thesis contributes to the field of natural language process-

ing by:

* Identifying certain relations that make good definitions, and the syntactic con-

structs in which they occur.

" Building a library of regular expressions that resemble context free rules, and

thus give us a notion of syntax.

" Assembling syntactic patterns from these expressions designed to capture the

aforementioned relations.

" Finding all instances of these patterns in the AQUAINT corpus, and storing

them for use in question answering.
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Recall remains a limiting factor, but with improvements such as target expansion and

incorporating a parser, ForBIN will be an even more highly effective tool for question

answering.
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