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Abstract
Infectious disease models predict the impact of outbreaks. Discrepancies between
model predictions stem from both the disease parameters used and the underlying
mathematics of the models. Smallpox has been modeled extensively in recent years
to determine successful response guidelines for a future outbreak. Five models, which
range in fidelity, were created for this thesis in an attempt to reveal the differences
inherent in the mathematical techniques used in the models. The disease parameters
were standardized across all models. Predictions for various outbreak scenarios are
given, and the strengths and weaknesses of each modeling technique are discussed.
The mixing strategy used greatly affects the predictions of the models. The results
gathered indicate that mass vaccination should be considered as a primary response
technique in the event of a future smallpox outbreak.
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Chapter 1

Introduction

Infectious disease models help policymakers to decide what type of response is most

likely to be successful in stopping an outbreak. Because of its capabilities as a bioter-

rorist agent [26], smallpox has been modeled extensively in recent years. The models,

which range in fidelity, use historical data gathered from various smallpox outbreaks

to predict the magnitude of a future attack and determine a successful response. Pre-

dictions of outbreak impact vary between models. Consequently, different types of

responses are recommended by each model. The lack of agreement between mod-

els stems from two sources: different model parameters and different modeling ap-

proaches. This thesis analyzes the predictions of three standard modeling approaches

to determine their implications in terms of recommended response strategies. Two

intermediate models are introduced to both aid analysis of the standard modeling

approaches and present possible modeling alternatives. Disease parameters are stan-

dardized across all models so different predictions can be attributed entirely to the

modeling approach used.

Disease modeling is based on the idea that diseases have several different states.

One of the simplest models has three states: susceptible, infectious, and removed.

In the model, susceptible people become infectious through contact with infectious

people. Infectious individuals are eventually removed from the model, which indicates

that these individuals have either developed immunity or died. Most models use the

principles of this simple model, but increase the realism by extending it to have more
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states.

Models vary in fidelity and computational complexity. A frequently used, low-

fidelity model is the ordinary differential equation population-based model. This

model treats everyone in each particular disease state equally, and fractions of each

population transition to different states in accordance with the equations that describe

the model. In contrast, the stochastic individual-based model with homogeneous mix-

ing analyzes each person individually, and individual transitions between states are

governed by the probabilistic chance that an individual will transition given the state

of the entire population at that time and the amount of time the individual has spent

in the current state. This model is more complex than the population-based model,

but each person still has an equal chance of interacting with any other person in the

entire population. The highest-fidelity model implemented for this thesis is a stochas-

tic agent-based model. Agent-based models simulate actual interactions between sub-

jects as realistically as possible-adults go to work, children go to school or daycare

centers, people interact more frequently with their neighbors than with strangers,

etc. Heterogeneous mixing occurs as a result of the social network modeling. A gen-

eralized transition population-based model (a population-based intermediate model)

bridges the gap between the population-based and individual-based models by group-

ing each state population by the time spent in the state and altering transition rules

accordingly. A stochastic individual-based model with heterogeneous mixing (an

individual-based intermediate model) determines whether the mixing strategy is the

key difference between individual-based and agent-based models by employing a rea-

sonable heterogeneous mixing strategy. The intermediate models attempt to replicate

the higher-fidelity results of the agent-based and individual-based models without in-

curring the increase in computational complexity associated with the higher-fidelity

models. A summary of the models' characteristics is given in Tables 2.1 and 2.2.

The practice of modeling transitions between states becomes more complex when

intervention methods are introduced. Intervention methods included in the models

are quarantine, isolation, and vaccination. Both isolation of symptomatic individuals

and vaccination of at-risk individuals can greatly reduce the impact of an outbreak if

16



administered effectively. Quarantine is largely a preventative measure implemented

to ensure that possibly infected individuals do not spread the disease further. There

are two main vaccination strategies, traced vaccination and mass vaccination. Traced

vaccination involves the identification and vaccination of contacts of infected individ-

uals. Vaccination of the entire community at the first sign of an epidemic is known

as mass vaccination.
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Chapter 2

Background

The administration of routine smallpox vaccinations ceased in the United States in

1972, and the World Health Organization declared smallpox eradicated in 1980 [22].

Only two known stores of smallpox remain, one in the United States and one in

Russia [26]. Clandestine stores of the live virus are assumed to exist, however, and

the limited herd immunity of people in the United States makes smallpox an effective

bioterrorist weapon [12]. In a contrast to anthrax, which is not contagious, smallpox

has a basic reproductive rate R between three and six [5, 23]. This means that

each primary infected individual (or index case) will infect between three and six

other people on average in a fully susceptible population if no efforts are taken to

reduce infection spread. The actual reproductive rate, R, is slightly lower because

of residual immunity in the population and decreases further as the disease spreads.

Still, to minimize the effects of a smallpox outbreak, infection control measures must

be swift and effective.

2.1 Smallpox disease stages

According to the Centers for Disease Control and Prevention (CDC), individuals

infected with smallpox transition through a number of disease stages while the disease

runs its course. Initially, exposure to smallpox is followed by a seven to seventeen day

incubation period in which subjects feel normal and are not contagious. Vaccination
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of infected individuals provides immunity if administered during the first three to

seven days of the incubation period. Subjects then transition into the prodromal

state, and can exhibit symptoms such as fever, malaise, head and body aches, and

sometimes vomiting. The prodromal state lasts two to four days, in which subjects are

mildly contagious. The final state is characterized by a pustular rash which develops

first in the mouth and then spreads to the face, arms, and legs within 24 hours. The

rash gradually forms into scabs which fall off 15-25 days after the onset of the rash.

Subjects are contagious throughout the rash state. When all scabs have resolved, the

disease has run its course and subjects are no longer contagious. The mortality rate

of smallpox is roughly 30%, and survivors are often left with pitted scars on the face

and extremities [6].

2.2 Intervention policies and methods

There are three main ways to reduce the spread of smallpox: quarantine, isolation and

vaccination. Quarantine involves restricting the movement of those presumed to be

exposed to a disease [8] either until the people express symptoms or for a generation

of the disease, so a lack of symptoms is reasonable proof that a quarantined individual

is disease-free. The isolation of infected individuals, in designated hospitals or other

facilities, minimizes the likelihood that the individuals will spread the disease to the

susceptible population. Vaccination builds immunity to the disease by inoculating

individuals with a similar but less harmful pathogen. Vaccination of infected individ-

uals can reduce the effects of smallpox if administered early in the incubation state.

For smallpox, vaccination of susceptible individuals results in immunity in nearly 98%

of cases [29, p. 10936]. As mentioned in Chapter 1, there are two main vaccination

strategies, traced vaccination and mass vaccination. Both vaccination policies are

examined in this thesis.

In the traced vaccination policy, symptomatic individuals are immediately isolated

and questioned to determine the people with whom they have been in recent contact.

Those contacts are then traced and vaccinated as quickly as possible. Edward Kaplan
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et. al. performed a study in which he determined that traced vaccination is effective

only if what he calls the "race to trace" can be won consistently [29]. As Kaplan et.

al. put it, "even if a contact is identified immediately on detection of the infecting

index case, the time from infection of the contact to detection of the index (and

tracing of the contact) can exceed the time during which the infected contact remains

sensitive to the vaccine" [29, p. 10935]. Rapid determination of infected contacts

is critical to bring the outbreak under control, since the vaccine is only effective in

infected individuals for three to seven days [6].

Mass vaccination, on the other hand, is a strategy in which every person in the

population is vaccinated immediately after the first symptomatic people are isolated.

No contact tracing is necessary in this policy since the entire population is vaccinated,

regardless of each person's contacts. In mass vaccination, resource constraints such

as the number of vaccinators and vaccinator efficiency limit the number of people

treated each day.

A study has shown that traced vaccination "would prevent more smallpox cases

per dose of vaccine than would mass vaccination" [30, p. 1342], but since the United

States has enough of the smallpox vaccine to administer a shot to everyone in the

country, the focus of this study is to discover ways to minimize the effects of an

outbreak without regard to the wastefulness of the policy.

The main objection to a mass vaccination policy stems from the danger of the

vaccine itself. The smallpox vaccine is comprised of a live virus of the pox family, and

causes death in approximately 1 out of every 1 million people vaccinated. A national

call for vaccination would thus cause roughly 300 deaths due to vaccine complications.

2.3 Modeling approaches

The two main differences between modeling approaches are the disease transition

model used and the way people are assumed to interact with each other. Table 2.1

indicates the transition modeling properties of each of the five models. Table 2.2

gives the interaction strategy of each model. People mix in either a homogeneous or
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Table 2.1: Transition model properties

Model Granularity Prediction Transition probabilities
Agent-based Individual-based Stochastic Arbitrary
Individual-based with Individual-based Stochastic Arbitrary

heterogeneous mixing
Individual-based with Individual-based Stochastic Arbitrary

homogeneous mixing
General transitions Population-based Deterministic Arbitrary
ODE Population-based Deterministic Exponential

Table 2.2: Model interaction properties
Model Mixing strategy Vaccination
Agent-based Heterogeneous Queue
Individual-based with Heterogeneous Queue

heterogeneous mixing
Individual-based with Homogeneous Queue

homogeneous mixing
General transitions Homogeneous Approximate
ODE Homogeneous Approximate

heterogeneous manner. The vaccination queue can be treated either as a first-come,

first-served structure or as a structure that requires approximations.

A simplified model, introduced here for the purpose of illuminating the key features

of disease modeling, is the SIR model [18]. The SIR model has only three states:

susceptible, infectious, and removed. Susceptible individuals can only transition to

the infectious state, and do so if the disease is transmitted to them through an

infectious person. Infectious people only transition to the removed state, and do so

after the disease has run its course. Removed people do not transition out of the

removed state, which represents either immunity or death.

2.3.1 Transition modeling strategies

Accurate determination of the transition modeling strategies between states is es-

sential for effective disease modeling. In general, transitions out of a state are id-

iosyncratic to both the disease being modeled and to the particular state. With this
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flexibility, models are able to produce any type of behavior. The arbitrary transi-

tion behavior can be captured by individual-based models and the general transitions

population-based model-the models in which there is knowledge of how much time

a person has spent in his or her current state. The low-fidelity ordinary differential

equation population-based model (the ODE model) is incapable of implementing ar-

bitrary transition behavior because the population in each state holds no information

on how long it has been in the state.

The ODE SIR model represents transitions by a set of ordinary differential equa-

tions. The rate of change of each state population is represented by an equation

similar to those in Equations 2.1-2.3 [14].

dSdS _3SI (2.1)
dt
dId- = 3SI-rI (2.2)

dRd = rI (2.3)
dt

In this model, 3 represents the infection rate of the disease, and r represents the

disease rate (r - 1 is the average time an individual remains infectious before transi-

tioning into the removed state). The population transitions follow the mean field of

exponential distributions.

As model fidelity increases to individual- and agent-based models, each individual

is treated separately and calculates his or her own probability of transitioning states

during each timestep, which can be dependent upon not only the state of the entire

population but also the amount of time the individual has spent in his or her current

state. The general transitions population-based model divides the population in each

state into subpopulations that represent the people who have spent a specific amount

of time in the state. This allows the general transitions model to use arbitrary tran-

sition probabilities as well, even though it is a population-based model. Typically, a

disease has a specified range of time in which a person remains in each state, and the

exact parameters used in the model determine its behavior. The transition strategy
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for state I is given in Equation 2.4.

Pt(I - R) = Pr{Transition from I to R time spent in state, t} (2.4)

An interesting property of the ODE model is exposed when individual-based mod-

els are created that replicate the output of the ODE model. To calculate the transition

probability of leaving the state, the solutions to the ordinary differential equations

of the ODE model must be determined. The analysis of the difference between the

models is best highlighted through an example.

Exponential transition probabilities

Assume the time that people remain infectious is normally distributed with a mean

of four days and a standard deviation of one day for the disease being modeled. The

ODE SIR model thus has the following differential equation represent the transition

out of state I:

dl - 1I (2.5)
dt 4

The solution to this equation is, for some constant A:

I1(t) = Ae-t (2.6)

Thus, if the initial population in state I is 1o, after one timestep dt the population

that remains in state I will be Io e-4dt. Thus the fraction of the population that

transitions out of state I during the timestep is 1 - e-4dt. After the second timestep

the population in state I will be (Ioe-4dt)e-4dt. The fraction of the population at time

dt that transitions in the second timestep again equals (1 - e- ). Using induction

we see that this fraction remains constant regardless of the timestep in which the

population is evaluated. Thus, in the individual-based model, the probability of a

person transitioning out of state I on any given day is independent of how long the
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Figure 2-1: Exponential transitions

person has been in state I, and instead is simply constant and equal to 1 - e- 4dt,

where dt is the timestep of the model. A graph of the transitions produced by such

probabilities is given in Figure 2-1 for a timestep dt = 0.8924.

Gaussian transition probabilities

The individual-based models and the general transitions population-based model,

unlike ODE models, can implement transmission probability generators that give

other results. The CDC website [6] gives bounds for time spent in each state in a

form like "Prodrome Duration: 2 to 4 days". Thus, the probability of transition out

of the prodrome state should depend on the time spent in the state. There are many

probability functions that can produce such behavior. Gaussian distributions are used

in this thesis. It should be noted that the Gaussian distribution assumption may not

exactly represent the true distribution of transition time out of each smallpox disease

state. The effects of using other distributions are given in Section 5.1.1.
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A Gaussian or normal distribution on a variate x with mean and standard

deviation a has the following probability function [3]:

1 (_-___
p(x) - e 22 (2.7)

The transition probabilities that produce normally-distributed transitioning pop-

ulations are dependent upon the amount of time the person has spent within the

state. Calculation of the transition probabilities requires a rudimentary understand-

ing of probabilistic analysis. The probability of transitioning during a given timestep

t is equal to the area under the curve P(x) between t and t + dt divided by the area

under the curve P(x) from t to oc. In other words,

Pt(I - R) = t P(x) dx (2.8)

For the first step, we integrate all the way from -oc to dt, since the area under the

tail is negligible for most disease distributions. Since there is no closed-form solution

to these integrals, the erf function [1] is used to determine the transition probability.

erf(x) is defined below, and comes from integrating the standard normal distribution

(normal distribution with mean 0 and standard deviation 1):

erf(z) j j e-t2 dt (2.9)

The transition probabilities are thus governed by the following equations (2.10-

2.12), where n x dt = t.

erf(u - (n - 1) xdt) - erf(/l -n x dt) if nxdt (2.10)if nxdt < lu (2.10)
2+ erf(p - (n-1)xdt)

erf(n x dt- t)-erf((n-1) x dt-t) if(n1) x dt > (2.11)
-erf((n-1)xdt- t)

erf( z - (n- 1) x dt) + erf(n x dt - ) otherwise (2.12)
otherwise (2. 12)

1 + erf (A - (n- 1) x dt)

The transition probabilities and the population that remains in the state after
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each timestep under those probabilities are given in Figure 2-2 for a timestep dt =

0.0208.

As Figure 2-2 shows, the transition times of the population are different than

in the ODE model. In fact, the use of arbitrary transition probabilities allows any

transition time curve to be generated.

It is important to keep in mind that because the individual-based models use

(pseudo)random numbers to generate transitions, the actual transitions (and conse-

quently the actual outputs) of the individuals in the models may vary between runs.

The graphs displayed here represent the expected behavior of the model, not the

output of any actual simulation. The averaged behavior of a number of simulation

runs will produce transition curves that become closer and closer to the ideal output

graphed above as the number of runs is increased.

In summary, the strategies of transition between states of a model play a large part

in determining the model's output. ODE models are limited to exponential distribu-
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tions. These exponential distributions, while sometimes able to capture the general

spread of an epidemic, are largely unrealistic when applied to single individuals within

the population. Individual-based models can implement arbitrary transition probabil-

ities which cause individuals in the model to transition between states in accordance

with empirical evidence, but are more computationally intensive.

2.3.2 Interactions between people

Smallpox is spread through personal contact. Consequently, the way that people

interact in a model affects its prediction. There are two types of mixing strategies,

homogeneous and heterogeneous. In the homogeneous mixing strategy, each per-

son is equally likely to encounter any other person during each timestep. Typically,

population-based models and some individual-based models use homogeneous mix-

ing. Under this mixing assumption, disease transmission may be overestimated since

in reality people tend to interact with nearly the same set of acquaintances each

day. Agent-based and higher-fidelity individual-based models address this concern

by implementing heterogeneous mixing strategies, possibly causing the disease to be-

come localized in certain subpopulations rather than spread throughout the entire

community.

The differences between individual-based and population-based models are made

further apparent in the traced vaccination policy. In traced vaccination, symptomatic

people list their recent contacts, who are immediately vaccinated. If infected contacts

are found quickly enough, the vaccine is effective and the outbreak is stopped. Since

traced vaccination involves tracking individual people, it is treated very differently in

the two types of models.

Individual-based contact tracing

Individual-based models have the ability to explicitly model interactions between

people. Thus, when an infectious person A infects a susceptible person B, B can

be explicitly recorded as being infected by A. Similarly, all the individual's contacts
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(people with whom the individual interacts but does not necessarily infect) can be

recorded. This ability allows an individual to determine exactly which people should

be queued for vaccination when he becomes symptomatic-his contact list is scanned

and those people are queued for vaccination. The individuals singled out for vacci-

nation can be examined to determine their respective disease stages at the time of

tracing. These calculations give insight into the effectiveness of traced vaccination,

as they allow an exact determination of the percentage of contacts who were still

sensitive to the vaccine upon insertion into the vaccination queue.

Population-based contact tracing

In contrast to the individual-based models, the population-based models implemented

in this thesis do not explicitly model interactions between people. Instead, the

population-based models rely on approximations based on disease parameters to pre-

dict what fractions of populations in each disease stage should enter the vaccination

queue during each timestep. These approximations are central to the predictions

given by the population-based models under a traced vaccination scheme. The ap-

proximations will be analyzed in Section 5.1.4.

2.3.3 The vaccination queue

The vaccination queue is treated quite differently in the individual-based models and

the population-based models. The individual-based models create a single large queue

and transition people accordingly. If two or more people enter the queue during the

same timestep, they are placed in the queue randomly with respect to each other but

behind every person who has already spent time in the queue.

The population-based models do not have the ability to differentiate between

individual people in the queue. The queue is broken into four separate states that

represent queued people in different stages of infection-(0) susceptible, (1) vaccine-

sensitive, (2) vaccine-insensitive, or (3) infectious. People in all other disease stages

are not eligible for vaccination. To imitate the individual-based queue transitions,
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the population-based model assumes that the fraction of the entire queue population

to be vaccinated during a single timestep is proportional to the relative numbers of

people in the queue. In other words, if N people transition out of the queue during a

given timestep, N x Qj transition from state Qj, where Qj represents one of the four
Q

queue states and Q_= Zjo Q,.
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Chapter 3

Models implemented

This chapter introduces the population and attack scenario considered in this thesis

(Section 3.1) and describes in detail the five models implemented (Sections 3.2-3.6).

3.1 Description of attack scenario

The attack scenario modeled for this thesis consists of 101,355 people in Cambridge,

Massachusetts, who undergo their daily routines while a subpopulation of ten indi-

viduals infected with smallpox travels in their midst. Once the outbreak is identified

(the delay time is a parameter of the model that varies the predicted attack impact),

intervention methods including quarantine, isolation, and either traced or mass vac-

cination are introduced into the model. Vaccination occurs in hospitals, and isolation

in hospitals and other designated buildings. Quarantine is implemented in homes and

designated areas.

Once an outbreak is identified, the entire population becomes immediately aware

of it through news sources (television, radio, internet, etc.). The Centers for Dis-

ease Control and Prevention has laid out a set of guidelines for response to a small-

pox outbreak which calls for "surveillance and containment" (traced vaccination) of

symptomatic individuals and their contacts [7]. Although the possibility of moving

to large-scale (mass) vaccination is not ruled out, public health resources are used

most efficiently in the "surveillance and containment" strategy [29]. The official CDC
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policy calls for traced vaccination that switches to mass vaccination after two gen-

erations of the disease spread if the outbreak has not been contained [7]. Thus, the

model provides implementations of both traced and mass vaccination. The vaccine

is administered only by highly trained nurses since it requires a bifurcated needle.

Vaccinations are performed in the eight Cambridge hospitals.

The disease is spread from infectious to susceptible individuals through close per-

sonal contact. The CDC website indicates that "direct and fairly prolonged face-to-

face contact is required to spread smallpox from one person to another" in most cases,

but can also be spread "through direct contact with infected bodily fluids or contam-

inated objects such as bedding or clothing" [6]. Aerosol deployment can spread the

virus in rare cases. Hence, a primary objective of smallpox modeling is to determine

a strategy to simulate interactions between people realistically.

The stages of the disease were described in Section 2.1. In the model, untraced

infected individuals transition through the different disease stages in order, and ulti-

mately either recover and become immune to further smallpox infection or die. When

an infected individual becomes overtly symptomatic, he or she is isolated from the

rest of the population to limit the spread of the disease. The symptomatic individual

is questioned to determine his or her recent contacts to whom the disease might have

spread. Those contacts may or may not have been infected by the individual, but all

of them are tracked down and ordered to receive the smallpox vaccine. The response

to the recent severe acute respiratory syndrome (SARS) epidemic demonstrated that

complete isolation of symptomatic individuals is a reasonable assumption.

The heightened awareness of the public to the threat of a bioterrorist attack

and the distinctive symptoms of smallpox make it highly unlikely that an overtly

symptomatic person would remain within the mixing population. Thus, the model

assumes that infected people will only spread the disease while in the prodromal stage.

The prodromal stage is thought to be less contagious than the rash stage, however.

Consequently, the published estimates of the smallpox Ro0 being between 3.5-6 [23]

and even spiking up to 20 in certain outbreaks [22] could be overestimates of the

contagiousness of smallpox in a future outbreak. An estimated R of 3.0 was used in
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the base case of each model as a result. It is important to note that the assumption

that individuals only spread the disease while in the prodromal state biases the results

in favor of mass vaccination, since the effective percentage of contacts traced would

increase dramatically if individuals were only infectious during the rash stage. The

effects of an increase in contact naming accuracy is given in Section 5.2.3.

Vaccination occurs at the hospital in a first-come, first-served manner, since all

contacts are presumed to be equally at-risk. Since checking into the hospital and

filling out the requisite paperwork takes time, each individual is forced to remain in

the hospital for an hour before receiving a vaccination shot. If an individual begins

to exhibit overt smallpox symptoms, he or she is immediately isolated regardless of

whether he or she had already received the vaccine. If an individual who received

the vaccine exhibits a fever, he or she is remanded to quarantine for a maximum

of sixteen days (the average time it takes a person who becomes infected to exhibit

symptoms of smallpox). If the person becomes symptomatic during the quarantine

period, he or she is isolated immediately.

If an individual survives vaccination, he or she is assumed to be immune to the

disease. The person is thus allowed to move freely within the population again.

However, the vaccine has a rate of effectiveness of roughly 97.5% [29], so a small

fraction of vaccinated individuals remains susceptible to infection. Also, individuals

infected before receiving the vaccine may be insensitive to the vaccine, in which case

they will continue to progress through the disease stages and be able to infect others.

Once infected individuals become symptomatic, they are isolated until the disease

has run its course.

The seventeen states of the model are taken from an ordinary differential equation

population-based model by Kaplan et. al. [29]. The states correspond to the disease

stages described in Section 2.1, but are further subdivided to indicate whether a

person has been traced and vaccinated or not. The states are shown in Table 3.1 and

are described in detail below.
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State name in
Kaplan et. al.
Unexposed

paper

Asymptomatic,
non-infectious,
vaccine-sensitive

Asymptomatic,
non-infectious,
vaccine-insensitive

Prodromal and
infectious

Symptomatic
Immune
Dead

Table 3.1: Disease states
Potential Treatment Stage

Untraced, queued
vaccinated

Untraced, queued
vaccinated

Untraced, queued
vaccinated

for vaccination,

for vaccination,

for vaccination,

Untraced, queued for vaccination,
vaccinated, quarantined

Untraced, isolated

Name used in
this thesis
Susceptible

Disease stage 1

Disease stage 2

Disease stage 3

Disease stage 4
Recovered

3.1.1 Untraced states

Untraced susceptible

Individuals in the untraced susceptible state S0 transition in two ways: by becoming

infected or by being identified as a contact of a symptomatic individual. The number

of people that transitions from susceptible to infected during each timestep depends

upon the disease transmission rate, the number of infectious people in the population,

and the number of susceptible people in the population. The number of untraced

susceptibles that transitions into the vaccination queue during each timestep depends

upon the fraction of the entire population that the untraced susceptibles represent,

the number of contacts generated by each symptomatic individual, and the number of

people becoming symptomatic. The people that are queued correspond to susceptible

people who are identified as contacts of an infectious individual-people the infectious

individual thought he might have infected but actually did not.

Other untraced states

The other untraced states represent infected people in the various disease stages who

have not been found and vaccinated yet. These untraced states gain and lose people
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through natural disease progression. The number of people transitioning depends

upon the average time spent in the state as well as the number of people in the

state. The asymptomatic states also transition subpopulations that become queued

for vaccination. Some of the subpopulations leave due to incorrect identification by

symptomatic individuals and others are correctly identified by their true indexes of

infection.

3.1.2 Queue states

Vaccination and quarantine commence after a specified amount of time, T-. People

in the vaccination queue transition through disease stages naturally. People in the

prodromal disease state who exhibit a fever are immediately quarantined. Vaccination

accounts for the rest of the transitioning population. Only susceptible people and

those in stage 1 of the disease can develop immunity from smallpox in the model.

Vaccinated people in other disease stages become traced but remain infected.

3.1.3 Quarantine state

Quarantine is reserved for people waiting to receive a vaccination who exhibit prodro-

mal symptoms when evaluated. Quarantined individuals remain so for an average of

sixteen days, until they become symptomatic and are isolated. In this manner, they

are unable to infect others but continue their progress through the disease stages.

3.1.4 Traced but unsuccessfully vaccinated states

Traced susceptible

The traced susceptible population is comprised of susceptible individuals who un-

derwent unsuccessful (but not fatal) vaccinations. Since the smallpox vaccine is not

100% effective, a small fraction of the vaccinated population remains susceptible after

vaccination. Those vaccinated individuals mix freely through the entire population

and are thus susceptible to infection.
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Other traced states

People progress naturally through the traced and infected states in an identical fashion

to the other infected states. Individuals enter each state through natural transitions or

from ineffective vaccination and leave each state through natural transitions. Since

the traced populations believe the vaccination was successful, the populations mix

freely and consequently the traced infectious individuals may transmit the disease to

susceptible people.

3.1.5 Immune/recovered and dead states

The immune/recovered population consists of people who underwent successful vac-

cination and people who survived the disease. The dead population is comprised of

people who suffered from vaccine-related deaths and people that died from the dis-

ease. Individuals thus transition into these states from only the vaccination queue

states and the symptomatic and isolated states.

3.1.6 Disease parameters of the models

Because of the eradication of smallpox in 1980, there is no recent data regarding the

parameters of the disease (transmission rate, morbidity and mortality, disease stage

rates, vaccine efficacy, etc.). Historical data from outbreaks in the 1970s and earlier

provide estimates of these critical parameters but may not be entirely accurate. In

particular, the transmission rate of smallpox may be different now due to technological

advances in travel and public transportation methods and the high concentrations of

people in cities. A summary of the disease parameters is given in Table 3.2. References

for all parameters values are cited in the table.

3.2 The agent-based model

The agent-based model is the highest-fidelity model implemented for this thesis. The

model attempts to replicate the actions of Cambridge inhabitants as realistically as
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Table 3.2: Smallpox outbreak parameters

Parameter
Ro
cC

p
N

n

h
V0

V1

f
I°(0)
T

Description
Basic reproductive rate
Names generated per index
Fraction of infectees named
Population size
Number of vaccinators
Service rate
Fraction febrile in stage 3
Vaccine efficacy, stage 0
Vaccine efficacy, stage 1
Smallpox death rate
Vaccination fatality rate
Initial number infected
Time before intervention

Value
3.0
50
0.5
101,355
50
50 vacc's/(vaccinators days)
0.9
0.975
0.975
0.3
10- 6 people/vaccination
10 people
5 days, 25 days, never

possible. To do so, data from the 2000 census [9] was used along with an agent-

based model of human interactions and movement created by Ronald Hoffeld at the

Massachusetts Institute of Technology Lincoln Laboratory [11] to determine accu-

rate building and population requirements. The model generates between 55,000 and

60,000 workers, roughly 11,000 children attending school, and 25,000 to 30,000 college

students attending MIT, Harvard, and Lesley. Each day, every person probabilisti-

cally decides his or her actions depending upon the day of the week and the time of

day. On a typical weekday, a worker goes to work from 9 to 5, decides whether to

eat at home or at a restaurant, decides whether to go to the movies or return home,

and finally returns home to bed. Students attend school during the day and then

may go out as well, returning to their homes or dorms in the evening. On weekends

people may go to recreational parks, and each person's propensity for dining out and

attending movies increases.

In all three individual-based models, the disease transitions within an infected

person attempt to follow the description of smallpox given in Section 2.1. All dis-

ease transitions between states are Gaussian in nature, with two standard deviations

encompassing the published transition times. For example, the CDC website [6] in-
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dicates that an infected person is vaccine-sensitive for three to seven days. In the

agent-based model, this is represented by Gaussian transitions with a mean of five

days and a standard deviation of one day.

Transitions out of the vaccination queue and the susceptible states are not Gaus-

sian. The transitions out of the vaccination queue depend upon the queue workers'

effectiveness and the length of the vaccination line. Transitions out of the susceptible

states are based on whether the susceptible person came in contact with an infectious

person during the timestep. The probability of an infectious person transmitting the

disease to a susceptible person is calculated to be consistent with the value of Ro

used in the model, and assumes that infectious contacts are spread uniformly over

the infectious period.

3.2.1 Mixing strategy

In the agent-based model, there is no need to explicitly determine a mixing strategy.

People interact with each other during their everyday routines. Interactions occur as

a result of the routine modeling rather than the other way around. Since people go to

the same workplace and home every day, they see mostly the same people each day.

Random connections are made at restaurants, theaters, and parks. The goal of the

mixing strategy was to create a reasonable "small-world network" [32] representation

of the Cambridge inhabitants. The resulting connectivity graph (represented by peo-

ple as nodes and contacts as edges) should be a "randomized network", which is a

regular network with a limited number of random connections. "Scale-free" networks

are also of interest in smallpox modeling, but were not implemented for this thesis.

Both network structures are discussed below.

Small world networks

"Small-world" networks have been the subject of much recent study. The term refers

to large, sparse graphs of short characteristic length and a large degree of cluster-

ing [32]. Randomized and scale-free networks are two varieties of small-world net-
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works.

Randomized networks can be created in a variety of ways. Work by Watts and

Strogatz showed that a regular network could maintain virtually the same clustering

coefficient but drastically reduce its characteristic path length by introducing a small

number of random connections between vertices [32]. The agent-based model creates

a small-world network in this manner. Clusters are formed in each family and work-

place, and random connections are formed at restaurants, theaters, and recreational

parks.

Scale-free networks are "characterized by an uneven distribution of connectedness.

Instead of the nodes of these networks having a random pattern of connections, some

nodes act as "very connected" hubs [13]." The scale-free networks exhibit a short

characteristic path length but the implications of these networks to disease modeling

are great. Diseases spread more widely when the hubs are targeted [15].

3.2.2 Computer implementation of the agent-based model

In the agent-based model, each person is a separate object. Each person has a unique

identification number, a list of contacts, a current state indicator, the time spent in

the current state, a home indicator, a work indicator, and a list of family members.

Similarly, each building in Cambridge is a separate object. There are 44,858

buildings and they are split between houses, dorms, restaurants, theaters, schools,

colleges, offices, and hospitals in accordance with the census. Each building has a

maximum occupancy, a unique identification number, and a list of the people who

are currently inside it. The identification number is used to enable people to return

to the same homes and work buildings every day. The building occupancy limits

the number of people who can be inside the building at any time-restaurants that

become filled cause patrons to go elsewhere, much like in real life. Transportation

modeling is omitted.

Each day, every person moves between his or her assigned home to work and

back, and also may stop at restaurants and movie theaters. While in each building,

a person may interact with other people inside the same building. Interactions are
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recorded by each person and an infected individual's history is examined when he or

she becomes symptomatic. The individual's contacts are then notified and ordered to

enter the hospital for vaccination. An individual who receives a vaccination returns

home immediately afterward and remains there for the rest of the day. Since the

vaccine is a live virus, special care must be taken to avoid spread of the virus to

others. People may choose to remain at home longer than a single day. However,

returning to work or school the following day is a reasonable assumption of the average

behavior of the population and is thus implemented in the agent-based model.

Disease propagation occurs through contact between infectious and susceptible

people. To represent the disease having an Ro0 = 3.0, the average behavior of an

agent must be noted, to determine the probability that contact between an infectious

and susceptible person leads to infection. Contact is made when individuals are in

the same building at the same time. In the model, agents made an average of 183

contacts in a three-day period without intervention. The model parameters indicate

that each symptomatic person names 50 contacts, and that contacts are named with

a 50% probability. Thus, each agent should only make 100 contacts in a three-day

period to satisfy the model assumptions. Consequently, when individuals were in

the same building at the same time, the probability that they became contacts was

reduced to '° ; 0.55. After the reduction, 57% of contacts were co-workers, 37% of

contacts were random, and 6% of contacts were family. Co-worker contacts lasted an

average of eight hours a day, random contacts lasted an average of 2.5 hours a day,

and family contacts lasted an average of 13.5 hours a day. The total average number

of contact timesteps in a three-day period is roughly 3,800. Thus, the probability of

infecting one contact in one timestep is equal to -RO - 0.00079. The fact that family3,800

members and co-workers are more likely to become infected than random individuals

is taken into account since the individual remains in the buildings with those contacts

a larger portion of the time.

In mass vaccination, while at the hospital each agent should come into contact

with only a subset of the entire population in the vaccination queue. If that were not

the case, the agent-based model would predict an inflated outbreak impact since the
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average number of people contacted in the hospital would be much greater than usual.

To overcome this effect, the number of contacts a person has in the hospital is limited

to 27, since 27 contacts x 72 hours x 2 timesteps/hr = 3,888 contact timesteps.

Thus the Ro = 3.0 constraint is maintained. This assumption is justified by the

fact that all 101,355 people in the vaccination queue would not mix equally in real

life. The hospital contacts are generated uniformly over the entire population. The

homogeneous mixing assumption causes most infections to occur in the hospital.

Further study of actual hospital mass vaccination strategies is needed to justify the

assumption.

3.3 The individual-based model with heterogeneous

mixing

The individual-based model with heterogeneous mixing is a lower-fidelity attempt at

agent-based modeling. In this model, each person is a distinct entity in the community

and people interact in a limited manner, much like in the agent-based model. Estima-

tions, rather than explicit models of the day-to-day behavior of each person, are used

to determine how people interact with one another in the individual-based model with

heterogeneous mixing. Buildings and homes are not created in the individual-based

models since precise movements and interactions between people are not simulated.

Since entire population movements are not explicitly modeled, the individual-based

model with heterogeneous mixing is less complex and requires less computation than

the agent-based model. These benefits motivate the use of the individual-based model

with heterogeneous mixing.

Disease progression within each individual is modeled identically in this model

and the agent-based model. The vaccination strategy used is identical as well since

neither disease progression nor vaccination depends upon interpersonal interactions.

Thus, since the only difference between the models is the way in which people interact,

individual-based models with heterogeneous mixing require carefully chosen mixing
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strategies to produce accurate predictions. Since both the movement of people and

the disease spread possesses inherent elements of randomness, the agent-based model

and the individual-based model with heterogeneous mixing may produce different

predictions of outbreak impact.

3.3.1 Mixing strategy

The determination of a good mixing strategy was the most critical and difficult design

decision of the individual-based model with heterogeneous mixing. The results of the

agent-based model provide a good basis to determine a mixing strategy consistent

with the model assumptions.

In the agent-based model, interactions between people are limited by the geo-

graphical structure of the model. To emulate this structure, the individual-based

model with heterogeneous mixing can arbitrarily limit the people with whom an in-

dividual may interact to a subset of the population. People in the individual-based

model with heterogeneous mixing do not actually travel to different buildings and

come in contact with one another. Instead, contacts are generated probabilistically

and are limited to a subset of the entire population. An accurate modeling structure

can be determined by careful examination of the agent-based model. The individuals

in the agent-based model interact heavily with their family members and co-workers,

and infrequently with strangers at restaurants, movie theaters, and parks. The aver-

age family size in the agent-based model is 2.59 and increases to 10.21 when college

dorm occupants are considered "family." The average company size is eighty peo-

ple, and each person interacts with only a subset of the entire company. To emulate

the agent-based model, "clusters" of people that represent companies are created by

restricting the co-worker identification numbers to be similar. Random contacts are

chosen uniformly over the entire population and families are not implemented.
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3.3.2 Computer implementation of the individual-based model

with heterogeneous mixing

As in the agent-based model, each person in the individual-based model with hetero-

geneous mixing is a separate object. Each person has a unique identification number,

a list of contacts, a current state indicator, the time spent in the current disease state,

and a record of who infected him or her (if he or she is no longer susceptible). Disease

propagation occurs through contact between infectious and susceptible people.

The mixing strategy described above was implemented wholly through the use of

each person's unique identification number. The initially infected individuals were

picked in a uniformly random manner and were each given contacts that encom-

passed most of the population. This decision emulates the probable attack in which

the initially infected individuals attempt to infect as many different populations as

possible. All other individuals gather their co-worker contacts uniformly from the

"office-representing" cluster of people with similar identification numbers. Persons

with ids between 0-79 are a cluster, 80-159 are a cluster, etc. A co-worker contact of

person P is generated using the formula below.

New Contact= floor (P.getIdo)) x 80 + floor(80 x (uniform(O, 1))) (3.1)
80

A check is made to ensure that people do not generate themselves as contacts.

Random contacts are chosen uniformly from the entire population and represent con-

tacts made at restaurants, theaters, or parks.

The percentage of contacts that were co-workers was found in the following man-

ner. In the agent-based model, family and co-workers comprised 63% of the agent's

contact list, and the other 37% of contacts were random. However, an agent inter-

acted with his or her family and co-workers much more frequently than with strangers,

and consequently was more likely to infect family or co-workers than random con-

tacts. There are a number of ways to approximate this behavior in the individual-

based model with heterogeneous mixing. One way makes the probability of infect-
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ing a co-worker be higher than the probability of infecting a random contact, and

making each individual's contact list have the same percentage of each type of con-

tact as in the agent-based model. A different solution is to simply ignore the fact

that co-workers and family are more likely to become infected and treat everyone

equally. The method implemented for this thesis approximates the behavior of the

agent-based model without requiring different infection probabilities. The fraction of

contact timesteps, rather than just contacts, was calculated for each type of contact.

Family contacts comprised 13.5 hours/day x 2 timesteps/hour x 3 days x 6 contacts =

486 contact timesteps. Co-workers made 2,736 contact timesteps, and random con-

tacts made 555 contact timesteps. Thus, the percentage of total contact timesteps

in a three-day period spent with random contacts was 35757 15%. Consequently,

random people make up 15% of the contacts for each person in the individual-based

model with heterogeneous mixing, and co-workers make up the other 85% of each

person's contact list. Since each person has 100 contacts, an infectious person has a

3.0 infections/3 days 0.000208 probability of infecting one of his contacts in
100 contactsx 144 timesteps/3 days

a single timestep.

The vaccination line is treated as a queue at a single hospital and is implemented

using the vector class. The queue holds references to the actual person objects, so that

people can transition through disease states normally and have their internal changes

updated in the queue as well. This design choice prohibits the possibility that a

person could transition into the symptomatic state but still receive a vaccination,

since in an actual outbreak the person would be immediately isolated if symptoms

appeared.

3.4 The individual-based model with homogeneous

mixing

The person objects in the individual-based model with homogeneous mixing are iden-

tical to the person objects in the individual-based model with heterogeneous mixing.
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Intrapersonal disease progression is modeled identically in the two models as well.

The vaccination queue is maintained in the same manner also. The only difference

between the two models lies in the mixing strategy employed.

In the individual-based model with homogeneous mixing, the complex mixing

scheme based upon the unique identification number of each person is ignored. In-

stead, each person in the simulation is assumed to have an equal chance of coming

in contact with any other person during each timestep. This "free mixing" assump-

tion lessens the computational load of the model but fails to reproduce the localized

behavior that most real people exhibit. Thus, the disease will not be localized in

small subpopulations as it can be in the agent-based model and the individual-based

model with heterogeneous mixing. Free mixing is assumed to be a "worst-case" as-

sumption [28] since the at-risk population is as large as possible. Therefore the traced

vaccination policy should perform more weakly in the individual-based model with

homogeneous mixing, but the mass vaccination policy should perform in a similar

manner.

3.5 The general transitions model

The general transitions model attempts to imitate the major strengths of the individual-

based models while significantly reducing the computational cost of performing a

simulation. To reduce computational cost while trying to maintain the benefits of

modeling arbitrary transition probabilities, the generalized transition model splits

each disease state into the probable fractions of the population in each state that

have been in the state for a certain amount of time. As mentioned earlier, people

tend to remain in each state for a predictable amount of time. The generalized tran-

sition model provides the ability to represent arbitrary transition probabilities in an

effort to mimic the population dynamics expressed in stochastic models. The model

is similar to the integro-differential equation anthrax model of Wein et. al. [20].

The general transitions model is a population-based model. Transitions between

states are enacted upon fractions of the population in each state rather than upon
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individuals within the community. However, the time during which each fraction of

the population remains within its current state is recorded. This information allows

each fraction of a population to transition at a rate dependent upon the amount of

time the fraction has been in the state, thus capturing the essence of the natural

transition method of the individual-based model with homogeneous mixing. The

fractions of each population represent the number of individuals within the state that

have remained in the state for that amount of time. When employed in a model that

does not contain intervention techniques, the general transitions model can produce

results that are identical to the averaged results of a large number of individual-based

simulations.

Unfortunately, the general transitions model cannot explicitly capture the complex

population dynamics inherent in traced vaccination. Since fractions of populations are

being transitioned, there are no individuals maintaining contact lists that are queued

for vaccination when the individuals become symptomatic. Instead, estimations based

on the disease parameters and mixing assumptions must be used to determine the

size of the population that should enter the vaccination queue during each timestep.

3.5.1 Approximations necessary

There are four estimations necessary when intervention is introduced in population-

based models:

* The number of people who should be infected each timestep

* The number of people in each queue state who should be vaccinated

* The number of people each newly symptomatic case infected during the time

of his or her infectiousness

* The expected number of untraced contacts previously infected by each newly

symptomatic case who are in each disease state when the symptomatic case is

detected
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The number of people infected during each timestep depends upon the disease

transmission rate, the number of infectious people in the population, and the num-

ber of susceptible people in the population. The mass action law [31] governs the

population-based models. Consequently, the number of susceptible people infected in

a timestep equals /3ISdt, where dt is the timestep of the model and 3 is the infection

rate of smallpox.

The second parameter was described in depth in Section 2.3.3. An analysis of the

validity of the assumption is given in Section 5.1.3.

The average number of people a newly symptomatic case would have infected by

time t during his or her infectiousness in a population comprised entirely of suscep-

tible people, R(t), depends upon the length of time the individual was infectious,

the infection rate of the disease, and the number of susceptible people in the pop-

ulation while the individual was infectious. When arbitrary transition probabilities

are used, integrals must be evaluated to determine the probability P(t) that an in-

dividual was infectious for the length of time t. An equation for Ro(t) is given in

Equation 3.2. T represents the amount of time before intervention commences and

p(t) is the probability that a person transitions out of the state in his or her tth step.

t+-r

Ro(t) = j/ P(t - x) /3 [S(t - x) + Qo(t - x) + Sl(t - x)] dx (3.2)
x/dt

P(x) = I(1 -p(i)) (3.3)
i=O

Although the Ro(t) found by Equation 3.2 is not exact, it should produce the same

value as an averaged calculation of Ro(t) taken from many runs of the individual-based

model.

Aj (t), described as "the expected number of untraced contacts previously infected

by an index detected at time t who are in disease stage j when the index is de-

tected" [29], is a key parameter when determining the effectiveness of traced vaccina-

tion. To quell the outbreak, infected people must be vaccinated while the vaccine is
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still effective. In other words, an increase in A(t) corresponds to a decrease in out-

break impact, since infected people are only sensitive to the vaccine when in disease

stage 1. (t) represents the "rate with which anyone in the population is randomly

traced at time u = 0" [29]. Equations for each of these parameters are given in Equa-

tions 3.4-3.6, with Ro(t) and P(t) as described above. Each newly symptomatic case

lists c contacts, but only a fraction p of the Ro(t) real contacts are identified. Thus, a

total of [c-pRo(t)] contacts are incorrectly identified, and are mapped proportionately

over the entire population.

Aj(t) = Jot p(t -x)/3S(t x)e-f,'-tx(u)dux? (t)dx (3.4)

yj(t) = Pr{Contact in stage j at t infected at (t - x)} (3.5)

(u) = [c-pRo(u)] r3(u) I3(u) (3.6)
N

Exact calculations of the probabilities that a contact is in stage j at time t given

that the contact was infected at time t- x can be derived from sums of products,

but the computational cost of determining them reduces the benefits of using a

population-based model.

3.5.2 Computer implementation of the general transitions

model

The general transitions model is optimized to perform the fewest computations neces-

sary during each simulation. Like the individual-based models, the general transitions

model allows the use of arbitrary transition probabilities to determine transition times

between states. Since fractions of each population are transferred each timestep, the

transitions that have equal probabilities of transferring each day are represented by

single values. These populations are untraced susceptible, traced susceptible, recov-

ered/immune, and dead. Each person in the susceptible populations has an equal

chance of becoming infected during each timestep, regardless of the time spent in the
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state. The recovered/immune and dead populations never transfer states again.

The populations whose transition probabilities are dependent upon the time spent

in the state are represented by vectors of double values. In each vector v, the entry

v.at(i) corresponds to the subpopulation that has been in the state for i timesteps.

Transitions out of the state happen in two different ways: natural transitions and

transitions due to vaccination.

Natural transitions cause fractions of each subpopulation to be transferred. Since

each state has transition probabilities p(t), where p(t) is the probability that a person

will transition out of the state in his or her tth step, the total size of the population that

naturally transitions each timestep (AP) is given by the equation in Equation 3.7.

v.size()

ZAP = E v.at(i) . p(i) (3.7)
i=O

The queue transitions are treated differently, since the queue is a first-come, first-

served structure. As mentioned in Section 2.3.3, the populations transition in propor-

tions relative to the number of people in the queue. However, under that assumption,

the populations that have waited the longest for treatment are treated first. A pseu-

docode representation of this transitioning strategy is given in Figure 3-1.

3.6 The ordinary differential equation

population-based model

The ordinary differential equation population-based model uses seventeen ordinary

differential equations to govern the transitions between various stages of the disease.

The equations are shown in Equations 3.8-3.22, with the parameters of the model

given in Table 3.2. As in the paper by Kaplan et. al., in each differential equation "the

subscript j denotes the stage of infection, whereas the superscript 1 denotes whether

a person has yet to be traced (1 = 0) or has already been traced and vaccinated ( =
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void transitionOutOfState(vector<double> & v, double numToTransition) {

double populationToTransfer = numToTransition;

int subState = v.size() - 1; // People in queue longest leave first

while(populationToTransfer > ) {

if (v. at(subState) > populationToTransfer) {

v.at(subState) -= populationToTransfer;

populationToTransfer = 0;

}

else {

populationToTransfer -= v.at(subState);

v.popbacko();

subState--;

}

}

Figure 3-1: The queue transition strategy of the general transitions model

1). The state variables are: S = number of type susceptibles; I = number of type 

infected persons in disease stage j (j = 1, 2, 3, 4); Q = number in tracing/vaccination

queue at disease stage j (j = 0 means susceptibles); H = number in febrile quarantine;

Z = number immune (from vaccination) or recovered from smallpox; D = number

dead" [29].

The states are grouped by the tracing variable (untraced, queued, or traced) and

intervention does not commence until after a pre-specified time, r. A major difference

between the ODE model and the other models studied stems from the property that

the population transitions follow the mean field of exponential distributions. Since

arbitrary transition probabilities cannot be used in the ODE model, specific disease

rates must be given. The disease rates employed are given in Table 3.3.

Table 3.3: Disease rates for the ODE model
r, Disease stage rate = (5 days)- [6]
r 2 Disease stage 2 rate pu = (7 days)- [6]
r 3 Disease stage 3 rate p = (3 days)- 1 [6]
r4 Disease stage 4 rate ; = (16 days)- [6]

The meaning of each differential equation is readily discernible, and additional

information can be found in the Appendix of the Kaplan et. al. paper [29]. Notational
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d - -I3S [c - pRo(t)] N r313 (3.8)

dt = I3S°- [c - pRo(t)] + pA (t)} r313 - rI (3.9)

d13 j9 3.0
d rl = ljtj -{[-pRo(t)] N + pAj(t)} r3 3 -rjI (3.10)I

d 14 = r 3 13 - r 4I4 (3.11)
dt

dQ 0 so0

dt [ c-pRo(t)] Nr3 I3-/I3Qo-uQomin(1, ) (3.12)

dQt - d/33 Qo+{[c-pRo(t)] 1 +pA,(t)}r 3 I3- Qi min(1, )-riQi (3.13)
dt N Q

dtQj = rjQ_-+{[c- pRo(t)]fv+pAj(t)}r 3I3- Qjmin(1, ) - rjQj(3.14)dI°

dHr (1-f)h/rQ3min(1, - r3H (3.15)
dt

dSt (1-f)(1-vo)/-Qomin(1, )- 3SI3 (3.16)
dt Qd1' n)~~~~~~
d - /3oS13 + (1-f)(1-vl)-Q-min(1,L)-rlI (3.17)

dt Q

dt = 1I + (1-f)Q 2 min(1, Q) (3-18)
dtl )(3.18)

dtdt3 = (2~ +(1-ff)(1-o)luQo min( 1, Q)- fSI3 (.9
dt4 = r3(I±+Q3 ±+H)-r4 I~l (3.20)

dZ
dt= (1-f)(voQo + viQl)min(1,Q)+(1-) r4 (I4 + I 41) (3.21)

dDdtdt = fiQmin(1, Q) + 6 r4 (I4 + I41) (3.22)

Figure 3-2: The mathematical representation of the ODE model
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Table 3.4: Notational abbreviations

Notation
i
k
Sk
Ik

Qj
H

z
D

13

Q
T

Ro (t)
Aj (t)

Definition
Stage of infection
Boolean indicating tracing (k = 0 if person is not traced)
Number of type k susceptibles
Number of type k infected persons in disease stage j
Number in vaccination queue in disease stage j
Number in febrile quarantine
Number immune or recovered
Number dead from smallpox
Total number of freely mixing infectious individuals
Total number of people in vaccination queue
Time interval between attack and initiation of intervention
The average number of people infected by a newly symptomatic case
The expected number of untraced contacts previously infected by an index case

detected at time t who are in disease stage j when the index is detected

abbreviations can be found in Table 3.4.

3.6.1 Computer implementation of the ordinary differential

equation population-based model

Every state transition is governed by a differential equation in the ODE model. Con-

sequently, Euler's method [2] can be used as a first-order approximation of the tran-

sitions. The essence of Euler's method lies in the assumption that given a step dt

that is "small enough", for any t where the functions y(t) and y'(t) = f(y,t) are

defined, y(t + dt) y(t) + y'(t).dt. Although the Runge-Kutta method [4] produces a

higher-precision prediction by using a weighted average to determine a more accurate

slope between t and t + dt than the slope y'(t) used in Euler's method, the relatively

small changes in slope of each curve do not warrant the increase in complexity of the

algorithm. Furthermore, the Runge-Kutta method is not as easily extensible to the

generalized transition model described in Section 3.5 as is Euler's method.
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Chapter 4

Results

The five models were tested and validated under a variety of different initial conditions

and parameters to determine the sources of discrepancies between the models. Both

traced and mass vaccination schemes were studied.

4.1 Test results

The base case scenario consisted of ten initially infected individuals in the popula-

tion and no intervention methods. Three graphs are shown below: the susceptible,

recovered, and dead populations.

As the graphs show, the individual-based model with heterogeneous mixing and

the agent-based model predict similar outbreaks, and are the most optimistic of the

five models. The individual-based model with homogeneous mixing and the general

transitions model produce virtually identical outputs, as expected. The ODE model

produces the most pessimistic prediction. Figure 4-1 shows that the ODE model

predicts the largest number of people to be infected (absent intervention, the only

transition out of the susceptible state is into disease stage 1). Those infected indi-

viduals eventually either recover or die, which is why both the recovered and dead

populations are largest in the ODE model.

Intervention methods are introduced after five and 25 days. Intervention after

five days simulates national intelligence finding out about the outbreak before any-
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Figure 4-1: The susceptible populations with no intervention
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Figure 4-2: The recovered population with no intervention
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Figure 4-3: The dead population with no intervention

54



one becomes symptomatic. Intervention after 25 days simulates recognition of the

disease after two generations have become symptomatic (it is assumed that the first

generation would not enter hospitals since they are attackers and want to delay pub-

lic recognition of the disease as long as possible). Although in an actual attack the

initially infected individuals would try to infect as many people as possible, in the

models they are treated in the same manner as every other individual. The graphs of

the susceptible, recovered, and dead populations under both scenarios are shown in

Figures 4-4-4-9. Traced vaccination is implemented in each of the models presented.

The agent-based model and the individual-based model with heterogeneous mixing

predict the smallest outbreaks and are similar in all cases. The individual-based model

with homogeneous mixing and the general transitions model produce results that are

similar at first and diverge as the outbreaks continue, and the ODE model predicts

the largest outbreaks in all cases.

Mass vaccination is implemented after five and 25 days for the reasons described

above. Since mass vaccination eliminates the complex population dynamics involved

when contacts must be traced and queued individually, the graphs should be more

similar than those under traced vaccination. Similarly, the earlier mass vaccination

starts, the more similar the predictions should be. The graphs of the susceptible,

recovered, and dead populations under both intervention time scenarios are shown in

Figures 4-10-4-15. The predictions given by the models are distinct, but the scale of

the predictions must be noted. The difference between models in number of deaths

predicted in mass vaccination is much smaller than in traced vaccination. Further-

more, the individual-based model with heterogeneous mixing and the agent-based

model give predictions that are similar to the individual-based model with homo-

geneous mixing. This result stems from the assumption that visiting the hospital

creates a more homogeneous mixing scenario. The individual-based model with ho-

mogeneous mixing and the general transitions model give different results for reasons

not fully understood.

The simulations were terminated after 100 days due to the prohibitively large

computational cost of running the agent-based model. The current disease and pop-
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Figure 4-4: The susceptible populations with traced vaccination after five days
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Figure 4-5: The recovered population with traced vaccination after five days
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Figure 4-6: The dead population with traced vaccination after five days
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Figure 4-7: The susceptible populations with traced vaccination after 25 days

Figure 4-8: The recovered population with traced vaccination after 25 days

Time (days)

Figure 4-9: The dead population with traced vaccination after 25 days
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Figure 4-10: The

Figure 4-11: The
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Figure 4-12: The dead population with mass vaccination after five days
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Figure 4-15: The dead population with mass vaccination after 25 days
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ulation parameters indicate that an outbreak will not run its course after 100 days,

however. This is evidenced in the models by a failure to reach constant susceptible,

recovered, and dead populations-in other words, there are still infectious individuals

in the population after 100 days. To provide a benchmark "worst-case" estimate of

outbreak impact, the individual-based model with homogeneous mixing was run for

300 days. The model was run with no intervention, with traced vaccination after 25

days, and with mass vaccination after 25 days. The results of the trials are given in

Figures 4-16-4-18. As the graphs show, the epidemic appears to stop after approx-

imately 125 days in mass vaccination, after 150 days with no vaccination, and after

approximately 200 days in traced vaccination. Mass vaccination predicts the smallest

outbreak and also stops the outbreak in the shortest amount of time. The outbreak

with no intervention terminates before the outbreak with traced vaccination because

the entire population becomes infected very rapidly.

4.2 Validation techniques and results

The models were validated through testing, but some significant issues require ad-

ditional study. The validation attempted to address the four main possible sources

of error mentioned by Gottfried: the data, the models, the model implementations,

and interpretation of the results [24]. The data used and the types of models created

were justified in earlier sections of this thesis and are based largely upon the work of

Edward Kaplan et. al. The ODE model was run using the equations and parameters

from [29] to ensure proper implementation of the model. Higher-fidelity models can

usually be simplified to mimic lower-fidelity models, so those tests were completed

first in an effort to validate the implementations of the higher-fidelity models. The

use of exponential transition probabilities in the general transitions model caused its

predictions to be identical to that of the ODE model. The average prediction from the

individual-based model with homogeneous mixing, with no intervention, is identical

to the prediction of the general transitions model with no intervention. The predic-

tions from the individual-based model with heterogeneous mixing are identical to the
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Figure 4-16: The susceptible populations in a 300 day simulation

Time (days)

Figure 4-17: The recovered population in a 300 day simulation

Time (days)

Figure 4-18: The dead population in a 300 day simulation
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predictions from the individual-based model with homogeneous mixing when the het-

erogeneous mixing constraints are removed. Similarly, the agent-based model gives

identical results to the homogeneous mixing model when all mixing and movement

constraints are removed.

A number of results are not explained by the model differences. In particular,

it is not clear why the general transitions model and the individual-based model

with homogeneous mixing produce different results when intervention techniques are

implemented. Also, the Gaussian transition probability assumption creates distinct

generational patterns in the populations for many generations. This pattern may be

an exaggeration of true outbreak characteristics. Further validation and study of the

existing models and parameters is necessary to fully understand the results.
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Chapter 5

Analysis and Discussion

The data gathered gives much insight into the differences between the models. Not

only do the models differ under each intervention scheme, but also the models produce

noticeably different results when disease parameters are altered. This discussion

examines the causes of change in an effort to understand both the strengths of each

modeling technique and the implications of incorrect disease parameter assumptions.

5.1 Model differences

The five models vary in a number of ways. The critical differences lie in two main

areas: transition probability generation and individual-based vs. population-based

modeling. The latter difference is separable into the mixing, queue removal, and con-

tact tracing strategies. Each of these differences and its effects on model predictions

is analyzed below.

5.1.1 Transition probability generation

The curves produced by the ODE model are the source of the most glaring difference

between the five models. As mentioned in Section 2.3.1, the other four models are able

to employ arbitrary transition probabilities. Due to its relatively long incubation time,

smallpox outbreaks frequently exhibit distinct generational patterns. For example,
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Figure 5-1: The disease generations of recovered individuals

the data from the 1972 Kosovo outbreak shows clear generations in the removed

population [23].

In contrast, the ODE model is governed by the exponential solutions to its dif-

ferential equations. The curves produced thus follow the mean field of exponential

distributions. The smooth exponential curves produced by the ODE model thus lose

any generational patterns exhibited by actual smallpox outbreaks. The difference

between the ODE model and the other models is shown in Figure 5-1 for recovered

individuals with the standard outbreak parameters and traced vaccination after 25

days.

As the graph shows, the model that implements Gaussian transitions exhibits

distinct generations of recovered individuals in the first 50 days of an outbreak. As

the number of people in the recovered state increases, the early generations become

less noticeable. However, the Gaussian transitions may exaggerate the generational

patterns of the outbreak. Further investigation of smallpox parameters and historical

data would be helpful in determining the desirability of this behavior. The model pre-

dicts an incubation time of twelve days (seven while vaccine-sensitive and five when

vaccine-insensitive) and an infectious period of three days, leading to generations

every twelve to fifteen days. In addition, it is useful to recall that the exponential

transition probabilities correspond to a constant probability of transitioning out of
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Figure 5-2: Uniform transitions

the current state, regardless of the time spent in the state. This assumption un-

dermines the effectiveness of early intervention, since infected people may become

vaccine-insensitive in an unrealistically short amount of time. In fact, the exponen-

tial transitions of the ODE model produce the most pessimistic predictions in all

intervention cases.

As mentioned in Section 2.3.1, the choice to use probabilities that would yield

Gaussian distributions on transitioning times was not validated by any study of small-

pox state transitions. To analyze the validity of the assumption, other probability

generators were used. A uniform probability generator and the expected population

remaining in the state is shown in Figure 5-2 for the same state as in Section 2.3.1

(average transition time of 4 days, transitions after 2-6 days) and a timestep of 0.25.

The results of using these probability generators for a homogeneous mixing model

with no intervention are shown in Figures 5-3-5-5.

As the graphs show, the predictions given by both models are similar. The Gaus-

sian transition model predicts slightly fewer infections but the difference in death

predictions is small.
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Figure 5-3: The susceptible populations with uniform and Gaussian transitions
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Figure 5-4: The recovered population with uniform and Gaussian transitions
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Figure 5-5: The dead population with uniform and Gaussian transitions
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5.1.2 Mixing strategy

The mixing strategy employed can play a large part in the prediction of a model.

Kaplan et. al. based their suggestion that mass vaccination should become the

standard CDC policy (as opposed to the current policy of traced vaccination that

switches to mass vaccination after two disease generations if the outbreak has not

been contained [7]) on the predictions of his ODE model that employed homogeneous

mixing [29]. Halloran, on the other hand, used a stochastic agent-based simulator

to show that traced vaccination had a higher ratio of cases prevented to doses used

than mass vaccination [25]. Furthermore, when some limited herd immunity was

assumed, Halloran's model showed that traced vaccination became competitive with

mass vaccination as a means of controlling a smallpox outbreak.

The results of Figures 4-1-4-15 show that the mixing strategy plays a large role in

outbreak impact predictions. As expected, the models that use Gaussian transitions

between states predict a smaller attack impact than the model that uses exponential

transitions. Unlike the three lowest-fidelity models, however, the outbreak impact

predicted by the agent-based model and the individual-based model with hetero-

geneous mixing is larger in mass vaccination than in traced vaccination. In mass

vaccination, the predictions given by the two highest-fidelity models are very similar

to the prediction given by the individual-based model with homogeneous mixing. The

similarity is explained by the treatment of individuals in the hospital. As described

in Sections 3.2 and 3.3, when individuals are in the vaccination queue, homogeneous

mixing is assumed. Consequently, the disease spreads more freely than when it was

restricted to subpopulations by the heterogeneous mixing assumption. The results

are different than the results of Kaplan et. al. [29] which favor mass vaccination.

The assumption of homogeneous mixing in the vaccination queue may be overly pes-

simistic, however. When the agent-based model implemented mass vaccination in a

manner that eliminated contact between individuals, the prediction of outbreak im-

pact was smaller than in traced vaccination. Refining the model assumptions to more

realistically reflect the disease transmission characteristics in hospital queues would
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produce more accurate results.

5.1.3 Vaccination queue removal

The treatment of the vaccination queues in each model is described in Section 2.3.3.

One would expect the behavior of the two vaccination strategies to be very similar

in the average case. This assumption was tested by monitoring each person in the

individual-based models as he or she was treated. The percentages of vaccinated

people in each disease state was then compared to the percentages of people in each

disease state in the entire queue. A weighted average taken over many timesteps

showed that the actual percentages of each type of person that transitioned was nearly

identical to the assumption of the population-based models. Thus, the vaccination

queue does not seem to be a cause of the different predictions between models.

5.1.4 Contact tracing

As mentioned in Section 3.5, a newly symptomatic person's contacts are not explicitly

known in the population-based models. Approximations to the disease stages of these

contacts (given in Equations 3.2-3.6) must be used in the population-based models.

In the paper by Kaplan et. al. [29], the equations are further simplified to reduce the

computational cost incurred by each simulation.

The further approximations did not yield particularly accurate results when run

against an individual-based model that used exponential transition probabilities and

homogeneous mixing. However, when the integrals of Equations 3.2-3.6 were for-

mally evaluated, the results were much more accurate. The graphs of the susceptible,

recovered, and dead populations for the two models are given in Figures 5-6-5-8.

5.2 Altering disease parameters

Accurate model parameters must be used in order to be confident in the prediction

given by any model. Smallpox models are no exception-in fact, an underprediction of
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Figure 5-6: The susceptible populations of the ODE model and the corresponding
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Figure 5-8: The dead populations of the ODE model and the corresponding
individual-based model
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and their effects on outbreak impact
Parameter changed
Initial infections doubled
Infectiousness doubled
Contact percentage increased to 85%
Intervention commenced 20 days earlier

Multiplication factor
2.03
43.51
0.18
0.67

the magnitude of an outbreak could be disastrous. The effects of changing a number

of parameters is examined below. Each parameter is analyzed with respect to the

predictions given by the individual-based model with homogeneous mixing. The base

case for comparison has ten initial infections, Ro = 3.0, traced vaccination beginning

on day 25, and a 50% accuracy in naming contacts. The individual-based model with

homogeneous mixing was consistently the most pessimistic model (ie. predicted the

most deaths) of the individual-based models. The changed parameters were:

* The number of initial infections

* The basic reproductive rate

* The day intervention techniques commence

* The percentage of contacts correctly identified

A graph of the different death predictions is given in Figure 5-9 with the reproduc-

tive rate case omitted to preserve graph scale. A summary of the parameter changes

and their effects on the dead populations is given in Table 5.1. The multiplication

factors in the table correspond to the size of the estimated outbreak when compared

to the base case. For instance, the base case predicts 94 deaths and the model with

twice the number of initial infections predicts 191 deaths. The multiplication factor

for that case is thus 2.03, since 2.03 x 94 191.

5.2.1 The number of initial infections

Intuitively, doubling the number of initial infections should double the number of

predicted deaths given by the model. The model predicts a multiplication factor of
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Figure 5-9: The effects of altering model parameters

2.03, which is very close to the expected 2.0. A smaller multiplication factor can

be consistent with the model in certain scenarios, however. An explanation for a

smaller multiplication factor is necessary if more than half of the initially susceptible

population becomes infected in the base case. In that scenario, when the initial

number of infected people is doubled, the susceptible population will not be large

enough to account for all the infections that are predicted to take place.

5.2.2 The basic reproductive rate

The basic reproductive rate of smallpox, R0 , is the number of people an infectious

person would infect in an entirely susceptible population. The models presented here

assumed that R = 3.0. However, an examination of the effects of an increased

Ro is useful. Figure 5-10 shows the death predictions of the standard model and

one in which people are twice as infectious for an 80 day simulation. As the figure

shows, the increase in deaths with the new assumption is dramatic. After 100 days

the model with R = 6.0 predicts a 44-fold increase in deaths. This number, while

alarming, is consistent with expectations. Since every infected individual infects

twice as many people as in the base case, the death toll should raise exponentially

in each disease generation. Generations are separated by roughly 14 days, and the

first generation of infected individuals either recover or die at approximately day 30.
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Figure 5-10: The death predictions of the model with Ro = 3.0 and R0 = 6.0

100-30+14
Thus, the increase in deaths could be approximately 2 14 = 64-fold. However,

when the reproductive rate is doubled, the susceptible population is exhausted-the

case mentioned in the previous section. This limitation may account for the smaller

multiplication factor.

As the basic reproductive rate rises, the cost of an individual not naming contacts

who were infected by him increases dramatically. Consequently, the traced vaccina-

tion strategy becomes weaker and weaker when compared to mass vaccination. This

effect is examined in Section 5.2.3.

5.2.3 The contact naming accuracy

Correct identification of contacts is critical when using the traced vaccination strat-

egy. When an infected contact is not traced, he or she is free to spread the disease

to susceptible people as long as he or she is not randomly contacted by someone

else. A larger basic reproductive rate amplifies this effect, since each unidentified

infected contact infects more people on average. The reduction in deaths following

an improvement in contact naming accuracy to 85% gives a multiplication factor of

0.18.

The basic reproductive rate of the disease and the contact naming accuracy play

key roles in the prediction of outbreak impact. A population that names contacts
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accurately may benefit from a traced vaccination policy, especially if the disease strain

is not very infectious. On the other hand, mass vaccination could more effectively

reduce the impact of an outbreak if the disease is highly infectious and the infected

population unknowingly transmits the disease to many other people. A more precise

knowledge of the reproductive rate of smallpox and the contact naming accuracy of

a population must be known to make a truly informed decision regarding the most

effective vaccination policy.

5.2.4 The length of time before intervention commences

Intervention techniques are most effective when started as soon as possible. The

model indicates that outbreak impact is reduced by a multiplication factor of 0.68

when intervention commences on day five. The intervention day is slightly misleading,

however, as nothing happens in traced vaccination until individuals become symp-

tomatic. Rather than at day five, the earlier intervention actually commences around

day 15--the day the initially infected individuals become symptomatic.

The graph presented in Figure 5-11 shows the different numbers of untraced in-

fectious people when intervention techniques are delayed five and 25 days. The first

15-20 days are very similar in both scenarios. However, the scenario with intervention

starting on day 25 shows a dramatic decrease in untraced infected people on day 25.

That jagged drop indicates that earlier intervention would have reduced the effects

of the outbreak.

5.3 The computational cost of each model

The computational cost of the individual-based models is much greater than that

of the population-based models. All models run in linear time with respect to the

number of days to simulate. The population-based models run in constant time with

respect to the population size, and a 100 day simulation takes under ten seconds to

complete. In contrast, the individual-based models run in time that is linear in the

population size. In addition, the agent-based model runs in O(NM) time, where
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Figure 5-11: The effects on infectious people of waiting 5 or 25 days before traced
vaccination

N is the size of the population and M is the number of buildings in the model.

Furthermore, each individual-based models must average a number of runs to ensure

its prediction is not an outlier. In the end, each individual-based simulation takes

between ten and fifteen minutes, and the agent-based model takes multiple hours to

simulate mass vaccination.
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Chapter 6

Future Work

There are a number of directions in which future work could bring insight to smallpox

modeling. First, additional validation and interpretation of the results of the existing

models and parameters would be useful to fully understand the sources of differences

between the models. In particular, the cause of the differences in predictions of the

general transitions model and the individual-based model with homogeneous mixing

could be better understood.

In addition, the network structure of the city could be determined more rigorously.

The personal relationships in the agent-based model were treated as a randomized

regular network. Analysis of the true network structure of people in the city may

prove that assumption incorrect. A paper by Chowell et. al. indicates that the city

of Portland, Oregon, possesses a scale-free network structure [16]. Scale-free networks

cause the mixing strategy and choice of initial infectives to play a much larger role

in the prediction of outbreak impact [15], and that relationship could be examined in

detail.

The granularity of the agent-based model could also be diminished. Halloran et.

al. created an agent-based model of 2000 people with a high degree of precision. A

drawback of higher-fidelity models is that "as model realism is increased the trans-

parency associated with simple frameworks is often lost and the validation of model

conclusions becomes harder [21, p. 683]." However, a higher-fidelity model would

only add to the information on smallpox modeling and could prove quite useful.
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In particular, public transportation modeling and more accurate vaccination queue

modeling could be introduced into the models.

Finally, the smallpox model predictions can only be as accurate as the param-

eters used in the models. Although the modeling strategies implemented here and

elsewhere give insight into the spread of disease, the lack of knowledge of the disease

characteristics limits the ability of the models to make a recommendation for future

actions and intervention policies. Further study of the smallpox transmission rate,

herd immunity of the vaccinated public, and infectious stage would provide a stronger

base on which to predict the impact of a smallpox outbreak.
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Chapter 7

Conclusion

The models implemented for this thesis vary widely in fidelity and produce different

results. The ODE model gives the most pessimistic predictions of outbreak impact but

is the least computationally expensive. The three individual-based models produce

similar results in mass vaccination, but differ dramatically in traced vaccination.

Mass vaccination outperforms traced vaccination for the homogeneous mixing

models in all scenarios examined in this thesis. This finding is consistent with the

Kaplan et. al. paper [29] on which these models are based. The Kaplan et. al. model

is biased toward mass vaccination, however, since it assumes that people are only in-

fectious during the prodromal stage of the disease. The heterogeneous mixing models

created for this thesis predict smaller outbreaks in traced vaccination than in mass

vaccination. The discrepancy stems from the treatment of the vaccination queue.

The queue is treated as a homogeneous mixing structure in all models. When the

vaccination queue is treated as a structure that allows no mixing, mass vaccination

predicts smaller outbreaks than traced vaccination.

The individual-based models are more intuitive than the population-based mod-

els. However, the intuition of working with individual objects comes at the price

of computational complexity. The agent-based model is significantly more computa-

tionally intensive than the other models, particularly in mass vaccination simulations.

The predictions given by the individual-based model with heterogeneous mixing are

similar enough to justify not using the agent-based model. An agent-based model
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that produces a scale-free network could produce different results, but the random-

ized networks implemented for this thesis appear to be accurately modeled by an

appropriate heterogeneous mixing strategy.

The individual-based model with heterogeneous mixing attempts to replicate the

mixing strategy of the agent-based model and succeeds for all the scenarios presented

in this thesis. However, a more detailed agent-based model may not be replicable by

a heterogeneous mixing model.

The individual-based model with homogeneous mixing explicitly models all in-

teractions between individuals, but the mixing strategy is unrealistic. Like the other

individual-based models, the homogeneous mixing model is not scalable to large popu-

lations. The individual-based models run in linear time with respect to the population

size.

The general transitions model can use an arbitrary transition probability generator

and is scalable to large populations. However, the general transitions model uses

approximations to represent complex population dynamics and is not intuitively easy

to code.

The ODE model is the fastest and is scalable to large populations. The wealth of

published mathematical representations of disease models makes an ODE model easy

to implement. However, the ODE model must also use approximations to represent

complex population dynamics. In addition, the outputs of the ODE model follow

unrealistic exponential curves.

In conclusion, each model possesses benefits and drawbacks that greatly affect

its predictions. The predictions given by each model rely heavily on the mixing and

intervention strategies used. Depending on the network structure of a city and the

city's implementation of mass vaccination, traced vaccination may be more effective

than previously presumed at containing a smallpox outbreak. However, the penalty

for underestimating an outbreak can be large, and mass vaccination predicts a low

(under 170 deaths in a population of 101,355 people) number of deaths in all models.

Thus, it appears that mass vaccination is the "safer" strategy-its worst case pre-

diction is much smaller than the worst case prediction of traced vaccination. Similar
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to the paper by Kaplan et. al., this thesis indicates that mass vaccination should be

considered further as a standard response technique when preparing for a smallpox

outbreak.
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Appendix A

Simulator source code

A.1 The agent-based simulator
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
// Agent.h: interface for the Agent class.

//
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
// CLASS DESCRIPTION

//
// The Agent class i the highest-fidelity model created for this
// thesis. People within the Agent model are assigned homes,
// workplaces, and families, and move around in a realistic manner.

// Smallpox is spread through the community under the disease

// parameters predicted by the CDC ebsite.

//

#if defined(AFXAGENTH__C27CC67E__INCLUDED)
#define AFXAGENTH-C27CC67E__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // MSCVER > 1000
#include <iostream>
#include <vector>
#include <cmath>
#include "time.h"
#include "Building.h"
#include "Person.h"
#include "Printer. h"

#include "Averager.h"

#include "Probability.h"

#include "RandNum.h"
using namespace std;

class Agent

{
public:

Agent();
virtual Agent();

void RunSimulation();

void reset();

private:

// MEMBER FUNCTIONS
void RunSimulationStep(double step);

void naturalTransition(Person & per, int queueSize, double step,
bool transtime, int numUSusc,
int numQO, int numTSusc);

void naturalTransitioHelper(Person per);

void queueContacts(Person & per);

bool hasIntervention(double step);

double comboChoose(double a, int );
double miniFact(double a, int b);
double Fact(int b);
double min(double a, double b);
double max(double a, double b);

void RepCheck ();

// MEMBER VARIABLES

const double timestep;
const double DAYSTORUN;

cont double INITIALINFECTIONS;

cont double INTERVENTIONDAY;

const int BUILDINCNUM;
double QUEUET I MEBEFORETREATMENT;
cont bool GAUSSIAN;
const bool MASSVACCINATION;

bool massvacChanged;

const double beta; // Infection rate
const double c; // Names generated per index
const double p; // Fraction of infectees named by index
const double N; // Population size
const double n; // Nuber of vaccinators
const double mu; // Service rate (traced vaccination)

cont double h; // Fraction febrile in stage 3
const double vO; // Vaccine efficacy, stage 0
const double v_1; // Vaccine efficacy, stage 1
cont double delta; // Smallpox death rate
const double f; // Vaccination fatality rate

double inter; // 1 if intervention has commenced,

// otherwise 0

Person * siul;
Building bldgs;

double statePop;
double * nar;

Printer pr;

Probability prob;
long randSeed;

RandNum r;

Averager av;
short flag;

};

#endif // !defined(AFX_AGENT_ H__C27CC67E__INCLUDED_)

///////////////////////////////////////////////////////////////////
// Agent.cpp: implementation of the Agent class.

//
///////////////////////////////////////////////////////////////////
#include "Agent.h"
using namespace std;

//
// GLOBAL VARIABLES

//
// number at hich this type of building ends

const int ONEPER - 17649;
const int TWOPER - 22649;
const int THREEPER - 40244;
const int FOURPER - 42428;
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const int
const int
const int
const int
const int
const int
const int
const int

COLLEGEDORMS - 42615;
WORKBLGS - 44427;
SCHOOLS - 44448;
COLLEGES - 44451;
THEATERS - 44454;
RESTAURANTS - 44854;
PARKS - 44857;
HOSPITAL - 44857;

// building occupancies
const int DORMOCC - 175;
const int WORKOCC - 80;
const int SCHOOLOCC - 650;

const int COLLEGEOCC - 11000;

const int THEATEROCC - 2250;

const int RESTOCC - 30;

const int PARKOCC - 10000;

const int HOSPOCC - 1000000;

// number
const int

const int
const int
const int
const int

of person at which this living type person ends
SINGLE - 17649;
DOUBLE - 27649;

TRIPLE - 80434;
QUAD - 89170;
COLLEGEKID = 101355;

// Averaging arrays
double aus[100];

double auinf l[100l];
double auinf2[100];
double auinf3[100];
double auinf4[100];
double aqO[100];
double aql [100];
double aq2[100];
double aq3[100];
double aquar[100];
double atsusc [100];

double atinfl [100];

double atinf2[100];
double atinf3[100];
double atinf4 [100];
double ad[100];

double az[100];
double qprob[6];

///////////////////////////////////////////////////////////////////
// Construction/Destruction
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Agent:: Agent )
timestep(1.0/48),
DAYSTORUN(100),
INITIALINFECTIONS(10),
INTERVENTIONDAY(25),

BUILDINGNUM(44858),
QUEUETIMEBEFORETREATMENT(O .0O),

GAUSSIAN(true),

MASSVACCINATION(fale),

massvacChanged(f alse),
beta(O . 00001),
c(50),
p(0.s5),
N(101355),
n(50),
mu(50),
h(0.9),
v_0(0. 975),
v_1(0.975),
delta(0.3),
f(0.000001),
inter(O),

prO,
prob(),
randSeed(-time(O)),

r(),
av((int)DAYSTORUN),

flag(i)

{
simul - new Person[(int)N];

bldgs - new Buildig[BUILDINGNUM];
statePop - new double[17];
nar - new double[17];
for(int i O; i < 17; i++) {

statePop[i] - O;
nar[i] - O;

}
}

Agent: :-Agent()
{

delete [] simul;

delete [] bldgs;
delete [] statePop;
delete [] nar;

****************************#*************************************
*

** Runs a single stochastic simulation.

** Requires: nothing

** Modifies: all people in simulation

** Returns: nothing
*/

void Agent: :RunSimulation() {
// PREPROCESSING

cout << "Beginning preprocessing." << endl;
for(int i - ; i < HOSPITAL+1; i)
bldgs[i] .setID(i);

for(int i - ; i < N; i+)
simul [i]. setId(i);

// DETERMINING OCCUPANCY OF EACH TYPE OF BUILDING
// 42615 total homes
// 17649 people living alone
for(int i - ; i < ONEPER; i) {

bldgs[i] .setOccupancy(1);

}
// 2-person families
for(int i - ONEPER; i < TWOPER; i++) {

bldgs [i] . setOccupancy(2);

}
// families with child
for(int i - TWOPER; i < THREEPER; i) 
bldgs [i] .setOccupancy(3);

}
// families with 4 people
for(int i THREEPER; i < FOURPER; i++) {
bldgs [i] . setOccupancy(4);

}
// college dorms
for(int i - FOURPER; i < COLLEGEDORMS; i) {

bldgs [i] . setOccupancy(DORMOCC);

}

// work buildings
for(int i - COLLEGEDORMS; i < WORKBLGS; i+) {

bldgs [i] .setOccupancy(WORKOCC);

}

// schools
for(int i WORKBLS; i < SCHOOLS; i++) {

bldgs [i] . setOccupancy(SCHOOLOCC);

}

// colleges
for(int i - SCHOOLS; i < COLLEGES; i++) {

bldgs [i] . setOccupancy(COLLEGEOCC);

}

// theaters

for(int i - COLLEGES; i < THEATERS; i++) {
bldgs [i] .setOccupancy(THEATEROCC);

}

// restaurants
for(int i - THEATERS; i < RESTAURANTS; i++) {
bldgs [i] . setOccupancy(RESTOCC);

}

// parks

for(int i - RESTAURANTS; i < PARKS; i++) {

bldgs [i] . setOccupancy(PARKOCC);

}

// hospital
bldgs [HOSPITAL] .setOccupancy(HOSPOCC);

// DETERMINING HOMES OF PEOPLE AND FAMILY STRUCTURE

// single people
int peopleSpot - O;
// people 0-17648

for(int i - ; i < ONEPER; i) {
simul[peopleSpot++] .setHomei);

bldgs [i] . incNumAssignedO;

}
// people 17649-27648

for(int i - ONEPER; i < TWOPER; i) {

simul [peopleSpot++] . setHome(i);
simul[peopleSpot++] .setHome(i);
bldgs i]. incNumAssignedO;
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bldgs[ i] .incNumAssigned();

}
// people 27649-80433

for(int i - TWOPER; i < THREEPER; i++) {

simul [peopleSpot++] .setHome(i);
simul [peopleSpot++] .setHome(i);
simul(peopleSpot++] .setHome(i);
bldgs [i] . incNumAssigned();
bldgs [i] . incNumAssignedO;
bldgs [i] incNumAssignedO;

}
// people 80434-89169

for(int i - THREEPER; i < FOURPER; i++) {
simul[peopleSpot++] . setHome(i);
simulpeopleSpot++]. setHome(i);

simul[peopleSpot++] .setHome(i);
simul [peopleSpot++] .setHome(i);
bldgs[i] incNumAssigned();

bldgs[i] .lncNumAssigned();

bldgs[i] .lncNumAssigned();

bldgs i] incNumAssigned();

}
// people 89170-101354
for(int i = FOURPER; i < COLLEGEDORMS; i++) {

for(int j O; j < 65; j++) 
simul[peopleSpot++] .setHome(i);
bldgs[i] . lncNumAssigned();

}
}
while(peopleSpot < N) {

simul[peopleSpot++].setHome(FOURPER +
(it)(r .getNext(&randSeed) *

(COLLEGEDORMS-FOURPER)));
}

// DETERMINING WORK OF EACH PERSON
// people living in single homes or two person families work
it bldg;
double rand;
for(int i O; i < DOUBLE; i++) {
bldg - O;
while(!(bldgs[bldg] .canAssign())) 

rand r.getNext(&randSeed);

bldg COLLEGEDORMS (int)(rand*(WORKBLGS-COLLEGEDORMS));

}
simul[i] .setWork(bldg);

bldgs[bldg] .incNumAssigned();

}

// some people in three person families go to college, others go
// to work, others go to school

for(int i DOUBLE; i < TRIPLE; i++) 
bldg O;
while(!(bldgs [bldg] . canAssign()) {

rand r.getNext(&randSeed);
if(rand .54)

bldg = COLLEGEDORMS + (int)((r.getNext(&randSeed)) *
(WORKBLGS-COLLEGEDORMS));

else if (rand < .67) {
bldg WORKBLGS + (int)((r.getNext(&randSeed)) *

(SCHOOLS-WORKBLGS));

}
else {

bldg = SCHOOLS + r.nextThree(&randSeed);

}
}
simul [i] .setWork(bldg);
bldgs [bldg] .incNumAssigned();

// four person families have two go to
// school and ollege

work, and the others to

for(int i - TRIPLE; i < QUAD; i++) {
bldg - O;
while(!(bldgs[bldg].canAssign)) 

rand - r.getNext(&randSeed);

if(rand < .5)

bldg - COLLEGEDORMS + (int)((r.getNext(randSeed)) *
(WORKBLGS-COLLEGEDORMS));

else if(rand < .8)
bldg - WORKBLGS + (int)((r.getNext(&randSeed)) *

(SCHOOLS-WORKBLGS));
else {

bldg - SCHOOLS + r . nextThree (&randSeed);
}

}
simul i] . setWork(bldg);
bldgs [bldg] . incNumAssigned 0;

// College students are assigned to one of the three Cambridge
// universities
for(int i - QUAD; i < COLLEGEKID; i++) {

bldg O;
while(!(bldgs[bldg].canAssignO)) {

bldg - SCHOOLS + r.nextThree(&randSeed);

}
simul[i] .setWork(bldg);
bldgs [bldg] .incNumAssigned();

}

// Determine family members, since they are your closest contacts
for(int i - O; i < N; i++) {
bldgs[simul[i] .getHome()] .addOccupant(simul[i] getld());

simul[i] .updateCurrentBldg(simul [i] .getHome());

}

for(int i - SINGLE; i < COLLEGEDORMS; i++) {
vector<int> fam - bldgs[i].getOccupantVector();
for(int j - ; j < fam.sizeO; j-++) 
for(int k - ; k < fam.size); k++) 

simul[j] .addToFamily(fam.at(k));

}
}

for(int i - ; i < BUILDINGNUM; i++) {
bldgs [i .removeAllOccupants( 0);

// Simulation starts at the beginning of the ork/school/college
// day, ending ith sleeping and waking up the next day.

for(int i - ; i < N; i++) {
bldgs[simul[i] getWork()] .addOccupant(simul[i] .getId());

simul [i] .updateCurrentBldg(simul[i] .getWorkO));

}

// Random infections

for(int i - ; i < INITIALINFECTIONS; i++) {
rand - r.getNext(&randSeed);
if(rand < 12000.0/65000) {
simul[QUAD+(int)(r.getNext(&randSeed)*12185)] .transitionStates(l);

}
else {

simul[(int)(r.getNext(&randSeed)*80000)] .transitionStates(1);

}
}

cout << "Preprocessing complete. Beginning simulation." << endl;

// Simulation starts at 9:00am on a Monday morning.
for(double d - ; d < DAYSTORUN; d +- timestep) {

RunSimulationStep(d);
}

// Prints average R of the simulation.
int avgNumInfected - O;
int totalNumInfected - O;
for(int j - ; j < N; j++) {

if(simulj] .getEverInfected()){
totalNumInfected-++;
avgNumInfected += simul[j] getNumInfected();

// Stores output of simulation to global arrays

for(int j - ; j < DAYSTORUN; j++) 
av. changeDayOfStuff (j);

na - av.returnDOS ();
aus[j] - nar[0];

auinfltj] - nar[l];

auinf2[j] - nar[2];

auinf3[j] = nar[3];
auinf4[j] = nar[4];
aqO[j] - nar[5];

aql[j] - nar[6];
aq2[j] - nar[7];
aq3[j] - nar[8];

aquar[j] - nar[9];
atsusc[j] - nar[1];
atinfl[j] - nar[ll];
atinf2[j] - nar[12];
atinf3[j] - nar[13];

atinf4[j] - nar[14];

az[j] - nar[lS];
ad[j] - nar[16];

}

nar - NULL;

// Prints probabilities of finding contacts in each disease stage
cout << (qprob[1]+O.O)/qprob[5] << endl;
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cout << (qprob[2]+O .O)/qprob [] << endl;
cout << (qprob[3]+0.O)/qprob[5] << endl;

****************************+***********************************

** Resets all values of people in simulation to initial values.

** Requires: nothing
** Modifies: all people in simulation
** Returns: nothing
*/

void Agent::reset() {
massvacChanged - false;

for(int i - O; i < N; i++)
simul[i] reset();

for(int i - O; i < BUILDINGNUM; i++)
bldgs [i] .removeAllOccupants(0);

for(int i - ; i < 17; i++)
statePop[i] = O;

}

//
// PRIVATE FUNCTIONS

//
void Agent::RunSimulationStep(double step) {

RepCheck0();
for(int a 

-
; a < 17; a++) {

statePop[a] = O;

}
for(int a = O; a < N; a++) {
statePop[simul[a] .getState()] ++;

}

// Prints output to log files at each integer day

if (step - int(step+.001) < timestep - .00001) {
//cout << "Day " << (int)(step+.001) << endl;
pr.PrintDay(statePop);
av.addToAvg(int(step+.001), statePop);

}

// Workday starts at 9:00, goes until 5:00. Then people may go

//to a restaurant for two hours or may go home. Then at 7:00
// people may go to the movies until 10:00. Then they go home

// until 9:00 the next morning.

// On weekends, people may go to the park from 9:00 to 5:00 and
// then people may go to a restaurant for two hours or may go

// home. Then at 7:00 people may go to the movies until 10:00.
// Then they go home until 9:00 the next morning.

bool weekday;

if(((int)(step*48) . 7) < 5)
weekday = true;

else
weekday = false;

bool transtime;

if((int)((step-(int)step)48) -- O) {
flag 1;

transtime = true;

}
else if((int)((step-(int)step)*48) == 16) {

flag = 2;

transtime - true;

}
else if((int)((step-(int)step)48) = 20) {
flag = 3;

transtime - true;

else if((int)((step-(int)step)48) -= 26) {
flag O;
transtime true;

}
else {
transtime false;

}

// flag == 1 means during work
// flag -- 2 means eating at a restaurant or at home
// flag -- 3 means at the movies or at home

// flag -- 0 means everyone is at home

if(transtime) {
for(int i O; i < HOSPITAL; i++) {

bldgs [i] .removeAllOccupants O;

if(flag -- 1) {
for(int i - ; i < N; i++) {

if(!simul[i].isInQueue()) {

if (weekday) {
// everyone goes to work

bldgs simul[ (i] .getWorkO] .addOccupant(simuli] getld());

simul[i] .updateCurrentBldg(simul[i] getWorkO();

}
else {

if(r.getNext(&randSeed) < .2) {
// Person goes to the park
int randm - RESTAURANTS + r.nextThree(randSeed);
bldgs[randm] .addOccupant(simul[i] getId());

simul[i] .updateCurrentBldg(randm);

}
else {

// Person stays home

bldgs[simul[i] .getHome()].addOccupant(simul[i] .getldO);
simul [i] .updateCurrentBldg(simul [i] .getHome () );

}
}

else if(flag -- 2) {
for(int i - ; i < N; i++) {

// Person goes either home or to a restaurant. Assume
// people eat out less frequently on weekdays than on

// weekends.
if(!simul[i] .isInQueue() {

if(weekday) {

if(r.getNext(&randSeed) < .04) {
int ran - O;
while(!(bldgs[ran] .addOccupant(simul[i.getldO))) {

ran = THEATERS + (int)(r.getNext(&randSeed) *
(RESTAURANTS-THEATERS));

}
simul[i] .updateCurrent8ldg(ran);

}
else {

// If not at a restaurant, goes home
bldgs[simul[i].getHome ()] .addOccupant(simul[i] .getIdO);
simul[i] .updateCurrentBldg(simul[i] getHome());

}

else {
if(r.getNext(&randSeed) < .08) {
int ran O;

while(! (bldgs[ran] .addOccupant(simul[i] .getIdO))) {
ran - THEATERS + (int)(r.getNext(&randSeed) *

(RESTAURANTS-THEATERS));

}
simul[i] .updateCurrentBldg(ran);

}
else {
// If not at a restaurant, goes home

bldgs[simul[i].getHome()] .addOccupant(simul[i] .getIdO);
simul [i] .updateCurrentBldg(simul [i] .getHome());

}
}

else if(flag = 3) 
// People leave restaurants for the movies or home.

// People leave home for the movies.

for(int i - O; i < N; i++) {

if(!simul [i] .isInQueue() {

unsigned short curbldg - simul[i].getCurrentBldg();

double prob;

if (weekday)

prob .01;
else

prob - .04;

if(r.getNext(&randSeed) < prob) {
int ran - COLLEGES + r.nextThree(&randSeed);

bldgs [ran] .addOccupant(simul[i].get IdO);

simul [i] .updateCurrentBldg(ran);

else {
// If doesn't go to movies, goes home
bldgs[simul[i] .getHome()] .addOccupant(simul[i] getId());
simul[i] .updateCurrentBldg(simul[i] getHome ());
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cout << "non existent state" << endl;

else {
// People all go home

for(int i O; i < N; i++) {
if(!simul[i].isInQueue()) {
bldgs[simul[i]getmeO . addOccupant(simul[i] .getId());

simul[i] .updateCurrentBldg(simul[i] .getHome () );

for(int i - O; i < 17; i++) {
statePop[i] - O;

for(int i O; i < N; i++) {
statePop[simul[i] .getState O]++;

// Now that people are all in their correct places, we can do
// disease transitions given their state and the state of people
// around them.

// Standard disease transitions for everyone
for(int i - ; i < N; i++) {
naturalTransition(simul[i], bldgs[HOSPITAL] .getOccupantNum(),

step, transtime, (int)statePop[O],

// First are the transitions out of the hospital queue. People (int)statePop[5], (int)statePop[10]);
// who have just been vaccinated go home immediately, but may }
// tart working the net day if they feel up to it.

Person * trans NULL; RepCheck(O;
int queueNum - ; }
int qFinished O;

int queueSize bldgs[HOSPITAL].getOccupantNumO;

int totalToQueueChange (int)min((double)queueSize, nmu*timestep);/ *****************************************************************

while(bldgs[HOSPITAL].getOccupantNum() > 0 &
queueNum < totalToQueueChange &&
hasIntervention(step) && qFinished < queueSize) {

qFinished++;
queueNum++;

trans = simul[bldgs [HOSPITAL].getLastOccupant()];

bldgs [HOSPITAL] . reoveLastccupant ();
int tState trans->getState();

if(tState > 8) {
// Person is not in queue anymore, so the leaving should not

// affect how many people can be treated in that timestep
// (the person was not treated)

queueNum---;
trans->updateCurrentBldg(trans->getHome ());
bldgs[trans->getHome()] .addOccupant(trans->getId());

}

// Person has not been in queue long enough to have received

// treatment
else if(trans->getTimeInqueue() <

QUEUETIMEBEFORETREATMENT/timestep I
trans->getQueueAltered()) {

trans->unsetQueueAltered();

// Inserts person back into queue at random place
double ran r.getNext(&randSeed);
int pTA = (int)ran*bldgs[HOSPITAL].getOccupantNum();
bldgs[HOSPITAL].insertHospitalOccupant(trans->getId(), pTA);
queueNum- -;

// Standard queue transition depending upon values of person
// transitioning

else {
trans->queueTransition(r .getNext(&randSeed),

r.getNext(&randSeed), f, v_O, vl, h);

// Person goes home for the rest of the day

bldgs[trans->getHome ( )] .addOccupant(trans->getIdo);
trans->updateCurrentBldg(trans->getHome ));

// Mass vaccination changes

if(MASSVACCINATION && !massvacChanged &k hasIntervention(step)) {
massvacChanged true;

for(int as O; as < N; as++) {
if(simul[as].getState() < 4) {

simul [as] .setAltered();

// People who are untraced enter the vaccination queue

if(simul[as].getState() --== O)

simul[as]. transitionStates (5);
else if(simul[as].getState() 1)

simul [as] .setState(6);
else if(simul[as].getState() == 2)
simul [as] .setState(7);

else if(simul[as].getState() -- 3)
simul[as] .setState(8);

else

** Performs natural transition of Person per depending upon
** community state.
**
** Requires: nothing
** Modifies: per

** Returns: nothing

*/
void Agent::naturalTransition(Person & per, int queueSize,

double step, bool transtime,

int numUSusc, int numQO,
int numTSusc) {

if(per.getAltered()) {
per.unsetAltered();
per. incTotalSteps 0;

if(per.gettate() -- 4 

per.getState() .- 9 11
per.getState() == 14) {

// Just became symptomatic and isolated, and his contacts

// should be placed in queue if intervention has begun

if(hasIntervention(step)) {
queueContacts (per);

}
else {

// If intervention has not begun, we allow person to
// transition through states as normal, but set the
// contactAltered flag to true, indicating that the person
// should queue his/her contacts as soon as intervention
// commences

per.setContactAltered();

else if(per.getState() - 5 II per.getState() -= 6 1
per.getState() == 7 1 I per.getState() == 8) 

// Just got placed in hospital, so the hospital should now
// hold them

double randNum = r.getNext(krandSeed);

// pToAdd puts person in queue randomly compared to
// everyone else entering queue on this day, but after
// everyone who has been in the queue already
bldgs [per.getCurrentBldg0] .removeOccupantID(per.getId());
double dd = (double)bldgs[HOSPITAL] .getOccupantNum) -

queueSize;
int pToAdd - (int)(randNum*max(O.O, dd));
bldgs [HOSPITAL] . insertHospitalOccupant(per.getIdO(, pToAdd);
per .updateCurrentBldg(HOSPITAL);

}

else {
// Do nothing

}

return;

}

// Not altered, so time to transition naturally
per. incTotalSteps( );

// Random chance that person gains contact during this timestep

85



if(per.getCurrentBldg() !- per.getHomeO() {
vector<int> v - bldgs[per.getCurrentBldg()].getOccupantVector()
for(int ve - ; ve < v.size(); ve++) 

if(r.getNext(&randSeed) < 100.0/183 &&
v.at(ve) !- per.getIdO) {

per.forceAddContact(v.at(ve), (int)(c/p));

}

if(per.getContactAltered() && hasIntervention(step)) {
// Person identified as symptomatic before intervention
// commenced, now that intervention commenced they should

// queue their contacts for vaccination
queueContacts (per);
per.unsetContactAlteredO;

}

if(per.getState() == 3 11 per.getState() -- 8 1
per.getState() 13) {

// Uses gathered information to determine number of people

// infectious person should infect today

per. setEverInfected(true);
int numToInfect O;
int numTests;
if(per.getState() --== 8) {
nuTests - min(bldgs[HOSPITAL].getOccupantNum(), 27);

}
else {

numTests bldgs [per.getCurrentBldg()] .getOccupantNum();

}
for(int i - O; i < numTests; i++) 
if(r.getNext(&randSeed) < 0.00079) {

numToInfect++;
}

per .addNumlnfected(numToInfect);

int numSuscU = O;
int numSuscT - O;
int numQueueO = O;

// Infects susceptibles proportionately to the population sizes
while(numTolnfect > ) {

if(r.getNext(&randSeed) < numUSusc/(numUSusc+numTSusc+numQO))
numSuscU++;

else if(r.getNext(&randSeed) <
(numUSusc+numQO)/(numUSusc + numTSusc + numQO))

numQueueO++;
else

numTSusc++;

numToInfect--;
}

if(per.getState() != 8) 

// Infects people in the current building with them

vector<int> vec 

bldgs[per .getCurrentBldg()] .getOccupantVector();

for(int i O; i < vec.size(); i++) {

double randNum;

if(numSuscU -- 0 & numQuueO == 0 &a numSuscT --== O)
break;

// Infects non-altered susceptible people

else if(numSuscU > 0 && simul[vec[i]]).getState() -- 0 &&

!(simul[vec[i]].getAltered())) {

simul[veci]] .transitionStates(1);

simul [vec [i] . setAltered();
simul[vec[i]] .setIndex(per.getId());

randNum r .getNext (&randSeed);
if(per.getCurrentBldg() !- per.getHome()) {

per. addInfected(vec [i]);

}
numSuscU--;

}
else if(numQueueO > 0 && simul[veci]].getState() == 5 &&

!(simul[vec[i]].getAlteredO)) {
simul[vec[i] ]transitionStates(6);

simulvec[i]] .setAltered();

simul[vec[i]] .setIndex(per.getIdO);

randNum - r.getNext(&randSeed);

if(per.getCurrentBldg() ! per.getHome()) {

per.addInfected(vec[i]);

}I
numQueueo--;

}
else if(numSuscT > 0 && simul[vec[i]].getState() -- 10 &&

!(simul[veci]].getAlteredO)) {

simul[vec[i]] .transitionStates(11);
simul[vec[i]] .setAlteredO;
simul[vec[i]] .setlndex(per.getld());
randNum - r.getNext(&randSeed);
if(per.getCurrentBldg() !- per.getHomeO) {

per.addlnfected(vec[i]);

}
numSuscT--;

}
else {}

}
int numLft - numSuscU + numQueueO + numSucT;

if(numLeft > ) {
per. addNumInfected(-numLeft);
//cout << "Not enough people became infected" << endl;

}
}
else {
// Homogeneous mixing in the vaccination queue

int numAtempt - 100;
while(numToInfect > 0 && numAtempt > ) {

numAttempts--;
int aPerson - (int)(r.getNext(&randSeed)*N);

if(simul[aPerson] .getState() -= 5 &&

!(simul[aPerson] .getAltered())) {
simul[aPerson] .transitionStates (6);
simul [aPerson] .setAlteredO;
simul[aPerson] .setIndex(per.getIdO);

if(randNum < p) {
per. addInfected(aPerson);

}
numToInfect--;

// Determines whether person should stay in current state or

// transition
naturalTransitionHelper (per);

}

**********F****+*********************************************

** Determines and changes state of per strictly through disease
** transitions.

** Requires: nothing
e* Modifies: per

** Returns: nothing

*/
void Agent: :naturalTransitionHelper(Person & per) {
// Transitions do not occur on someone who was just altered to
// be in the state
if(per.getAltered()) return;

// All transitions are based upon transition probabilities of
// the disease
if(per.getState() == O) {
per. incStepsInState();
return;

}
else if(per.getState() =- 1) {
if(r.getNext(&randSeed) <

prob.getProb(1, per.getStepsInState(), GAUSSIAN)) {

per.transitionStates (2);

return;

}
else {

per.incStepsInState();
return;

else if(per.getState() -= 2) {
if (r.getNext(&randSeed) <

prob.getProb(2, per.getStepsInState.(), GAUSSIAN)) 

per .transitionStates (3);
return;

}
else {
per.incStepsInState();
return;

}

else if(per.getState() - 3) {
if(r.getNext(&randSeed) <

prob.getProb(3, per.getStepsInStateO(, GAUSSIAN)) {
per.transitionStates (4);

// Here altered indicates that contacts should be queued

per. setAlteredO;

return;
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else 
per. incStepsInState);
return;

else if(per.getState() -- 4) 
if(r.getNext(&randSeed) <

prob.getProb(4, per.getStepsInState(), GAUSSIAN)) 
if(r.getNext(&randSeed) < delta) {

per.transitionStates(16);
return;

}
else C

per.transitionState s(15);
return;

else 
per. incStepsInState();
return;

}

else if(per.getState() =- 5) 
per. incStepsInState();
per. incTimeInQueue ( );

return;

}
else if(per.getState) -- 6) 

per. incTimeInQueue);
if(r.getNext(&randSeed) <

prob.getProb(6, per.getStepsInState(), GAUSSIAN)) C
per.transitionStates(7);

return;
}
else C

per. incStepsInState);
return;

}

else if(per.getState() -- 7) 
per. incTimeInQueue);
if(r.getNext(&randSeed) 

prob.getProb(7, per.getStepsInState(), GAUSSIAN)) C
per.transitionStates(8);

return;
}
else C
per. incStepslnState();

return;

}

else if(per.getState() -- 8) {
per. incTimelnQueue);

if(r.getNext(&randSeed) <
proh.getProb(8, per.getStepslnState(), GAUSSIAN)) 

per.transitionStates (14);

// Here altered indicates that contacts should be queued

per.setAltered();

return;

}
else 

per. incStepsInState();
return;

}
else if(per.getState) =- 9) 

per. incTimeInQueue);

if(r. getNext(&randSeed) <

prob.getProb(9, per.gettepsInState), GAUSSIAN)) {

per.transitionStates(14);
return;

}
else (

per. incSteps InState ( );
return;

}
else if(per.getState) -- 10) 

per. incStepsInState);
return;

else if(per.getState() -- 11) 
per. incTimeInQueue();
if(r.getNext(&randSeed) <

prob.getProb(11, per.getStepsInState), GAUSSIAN)) 
per .transitionStates(12);
return;

else C
per. incStepsInState);
return;

else if(per.getState) -- 12) {
per.incTimeInQueue();
if(r. getNext(&randSeed) <

prob.getProb(12, per.getStepsInStte(), GAUSSIAN)) 
per .transitionStates(13);

return;

else {
per.incStepsInState ();
return;

else if(per.getState() -- 13) {
if(r.getNext(&randSeed) 

prob.getProb(13, per.getStepsInState(), GAUSSIAN)) 
per .transitionStates(14);
// Here altered indicates that contacts should be queued
per .setAltered();
return;

}
else {

per. incSteps InState ();

return;
}

else if(per.getState() -- 14) {
if(r. getNext(&randSeed) <

prob.getProb(14, per.getStepslnState(), GAUSSIAN)) {
if(r.getNext(krandSeed) < delta) {

per .trnsitionStates(16);
return;

}
else C

per .transitionStates(15);
return;

}
else C
per. incStepslnState();
return;

else if(per.getState() -- 15
per. incStepslnState();
return;

II per.getState() -- 16) {

else {

cout << "not a valid state when updating." << endl;
return;

}

as Transitions states of contacts of recently symptomatic person

** and readies them for placement into hospital queue on next

** timestep.

as Requires: nothing
as Modifies: per, all types of contacts of per
** Returns: nothing
*/

void Agent::queueContacts(Person &per) 
vector<int> cot - per.getInfectedsVector();
vector<int> more - per.getFamilyVector)O;
for(int i O; i moresize); i++) C

cont.pushback(more [i]);

more - per.getContactVector();

while((cont.size) < c/p) &A (ore.size() > 0)) {
cont.pushback(more .back ());
more.popback ();

// cot now holds all contacts to be queued

int qcont - cont.size();
for(int i - O; i < cont.size); i++) 

int id - cont.at(i);
if(r.getNext(&randSeed) < p) {

if(simul[id].getState() < 4) {
simul [id] . setAltered();

}

if(id < per.getId() && siulid].getAltered())

simul[id].decTotalSteps();

else
simul tid] .setQueueAltered);
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// Transitions untraced people into the vaccination queue

if(simul[id]) .getState() -- ) {

simul[tid] .transitionStates(5);

qcont--;

I
else if(simul[id].getState() 2 1) {

simul[id] .setState (6);

qprob[1]++;

else if(simul[id].getState() -- 2) {
simul[id] .setState(7);
qprob (2]++;

}
else if(simul[id].getState() -- 3) {

simul[id] .setState(8);
qprob[3]++;

}

else {
qcont--;

}
else {

if(qcont > ) {
qprob[5] +- qcont;

/******************************************************************
**
** Returns true if time is past time for intervention to start.

**
** Requires: nothing
** Modifies: nothing

** Returns: True iff step > INTERVENTIONDAY

*/
bool Agent::hasIntervention(double step) {

if(step < INTERVENTIONDAY)

return false;

else
return true;

/*******************************************************************

** Returns mathematical choose operation of aCb, defined as:

** aCb a!/(b!*(a-b)!)
**
** Requires: nothing
** Modifies: nothing
** Returns: a Choose b

*/

double Agent::comboChoose(double a, int b) {

double retval;

if(b > a)
retval = O;

else {
retval = miniFact(a, b)/Fact(b);

}
return retval;

}

/*******************************************************************
**
**
** Performs the multiplication of integers between range a and b.

**
** Requires: a is an integer

** Modifies: nothing

** Returns: Performs operation b(b+1)*(b+2)...*(a-l)*a, a helper

** function to calculate the choose operation

*/

double Agent::miniFact(double a, int b) {
double retval - 1;
for(int i - 0; i < b; i++)
retval *- (a -i);

return retval;
}

/*******************************************************************
**
** Performs the factorial operation.
**
** Requires: nothing
** Modifies: nothing
** Returns: Performs operation b*(b-1)*(b-2)*...*3*2*1, as a
** helper function for the choose operation
**/
double Agent::Fact(int b) {

double retval - 1;

if(b < 1)
retval - 1.0;

else if (b < 3)

retval - (double)b;
else {

for(int i - 2; i < b; i++)

retval *- i;
}
return retval;

}

** Returns the minimum of a and b.

** Requires: nothing

** Modifies: nothing
** Returns: The smaller of a and b.
*/

double Agent::min(double a, double b) {

if(a < b)
return a;

else
return b;

** Returns the maximum of a and b.

** Requires: nothing
** Modifies: nothing
** Returns: The larger of a and b.
*s/

double Agent::max(double a, double b) {

if(a > b)
return a;

else

return b;

}

/****oe************e********************************************

** Test function to maintain representation invariant.

** Requires: nothing
** Modifies: nothing
** Returns: nothing

**/

void Agent: :RepCheck() {

/*

for(int i O; i < BUILDINGNUM; i++) {

if(bldgs[i].getOccupantNum() > bldgs[i].getOccupancy())

cout << "building " << i << " holds too many people." << endl;

}
for(int i O; i < N; i++) {

Building b = bldgs[simuli].getCurrentBldg()];
if(!b.containsID(simul[].getId())) {

cout << i << " not in current building. Current bldg ";

cout << simul[i].getCurrentBldg() << endl;

cout << "Actual building containing them is: ";

for(int j = O; j < BUILDINGNUM; j++) {
if(bldgs[j] .containslD(simul[i] .getId(O))

cout << j << endl;

}

if(flag -- ==1) {
for(int i COLLEGES; i < RESTAURANTS; i+) {

if(bldgs[i].getOccupantVector().size( ! O) {

cout << "People should be at work or parks." << endl;

}
}

else if(flag -- 2) {
for(int i - COLLEGEDORMS; i < THEATERS; i++) {

if(bldgs[i].getOccupantVector).size() ! O) {

cout << "No one should be at work anymore." << endl;

}
}
for(int i - RESTAURANTS; i < PARKS; i++) {

if(bldgs[i].getOccupantVector().size() !- ) {

cout << "People should be at restaurants or home." << endl;

}
}

else if(flag -- 3) {
for(int i - COLLEGEDORMS; i < COLLEGES; i++) {

if(bldgs[i].getOccupantVector().size() !- O) {
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cout << "No one should be at work anymore." << endl;

}
}
for(int i - THEATERS; i < PARKS; i++) {
if(bldgs[i].getccupantVector().size() !- O) 

cout << "People should be at the movies or home." << endl;

}
}

else if(flag --== O) {
for(int i - COLLECEDORMS; i < PARKS; i++) {
if(bldgs[i].getOccupantVector().size() !- O) {

cout << "Error. Everyone should be at home now." << endl;

}
}

for(int i - ; i < N; i-++) {
if(simul[i] .isInQueue() &&

!(siml[i].getCurrentBldg() -- HOSPITAL)) {
cot << "Error. Should be in hospital." << endl;

}
*/

//
// GLOBAL HELPER FUNCTIONS

//

/******************************************************************

** Prints dum to log file output.
**
** Requires: nothing
** Modifies: output

** Returns: nothing

*/

void Print(double dnum, ostreasm& output) {
output << dnum << endl;

}

/******************************************************************
**
** Prints day and dum to log file output.
**
* Requires: nothing

** Modifies: output
** Returns: nothing

*/
void Print(int day, double dnum, ostream& output) {
output << day << " \t" << dum << endl;

}

******************************************************************
**
** Rus the nmber of simulations desired and produces outputs.

* Requires: nothing
** Modifies: output
** Returns: nothing

*/
it main() {

// The nmber of runs to average over
int numRuns - 10;

// Nmber of days in each simulation

int days 100;

// Initializing averaged values to zeroes

for(int as - O; as < days; as++) {
aus[as] - O;

auinfl[as] = O;

auinf2[as] - 0;
uinf3[as] - 0;

auinf4[as] - 0;
aqO[as] - O;

aql[as] - O;

aq2[as] - 0;
aq3[as] - 0;
aquaras] = O;

atsusc[as] - O;

atinfl[as] - 0;
atinf2[as] - 0;
atlnf3[as] - 0;
atinf4[as] - 0;
az[as] - 0;
ad[as] - O;

qprob[as] - O;

// Log file names and streams

string fl, f2, f3, f4, f, f6, f7, f8, f9, flO, fll, f12, f13;
string f14, f, f16, f17;
fl - "SO.txt";

f2 - "I_10.txt";

f3 - "I20.txt";

f4 - "I30.txt";

f5 - "I_40.txt";
f6 - "Q_O.txt";

f7 - "Ql.txt";
f8 - "Q_2.txt";

f9 - "Q_3.tt";

flO - "H.txt";

fll - "Sl.txt";
f12 - "I_11.txt";
f13 - "I_21.txt";
f14 - "I_31.txt";

fl5 - "I_41.txt";

f16 - "Z.txt";

f17 - "D.txt";

of stream
ofstream
of stream
ofstream
ofstream
ofstream
of stream
of stream
of stream
ofstream
ofstream
ofstream
of stream
ofstream
of stream
of stream
of stream

SOout(fl.cstrO);
IlOout(f2.cstr );
I_200ut(f3. cstrO);
I_300t(f4.cstr());
I_40out(f .cstr());
QOout(f6.cstr());
Qlout(f7.cstr());
Q_2out(f8.cstr());
Q_3out(f9.cstr());
Hout(flO.cstr());
Sout (fl .cstr());
I_11lout(f12.cstr());

I_21out(f13.cstr() );
I_31iout(f14.cstr() );
I_41out(fl5.c_.str());
Zout(f16. c_.str());
Dout(f17.cstr());

Agent a;
for(int i O; i < numRuns; i++) 

a.RunSimulation();
a. reset ( );
cot << "sim " << i1 << " of " <<
cout << endl;

numRuns << " is completed.";

// Printing averaged values to log files

for(int i = O; i < days; i++) 
Print(aus[i]/numRuns, SOout);

Print(auinf [i]/numRuns, I1Oout);
Print(auinf2[i]/numRuns, I20out);

Print(auinf3[i]/numRuns, I_30out);

Print (auinf4[i]/numRuns, I400ut);
Print(aqO[i]/numRuns, QOout);

Print(aql[i] /nmRuns, Qlout);

Print (aq2[i]/numRuns, Q_2ut);

Print(aq3[i]/numRuns, Q_3out);
Print (aquar [i] /numRuns, Hout);

Print(atsusc[i]/numRuns, S_lout);
Print(atinfl[i]/numRuns I_llout);
Print(atinf2[i]/numRuns, I21out);
Print(atinf3[i]/numRuns, I31out);

Print(atinf4i]/numRus I_41out);

Print(az[i] /numRuns, Zout);
Print(ad [i] /numRuns, Dout);

// Closing all output streams and terminating program
SOout. close();
I_10out.closeO;
I_20out .closeO;

I_300ut.close();
I_400ut.close O;
QOout.close();
Ql.out . close();
Q_2out. close ();

Q_3out.close();

Hout.close ();
S_.lout.close();

I_1..out.close ();
I_21out .close O;
I_31ut.close();
I_41out.close();
Zout .closeO;
Dout . close();

return O;

for(int as - O; as < 8; as++)
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A.2 The individual-based simulator with
heterogeneous mixing

//I//////////////////////////////////////
// STOHet.h: interface for the STOHet class.
//

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
// CLASS DESCRIPTION

//
// The STOHet class creates a tochastic simulator using

// heterogeneous mixing of people to determine contacts.

// It can employ either Gaussian or exponential transition

// probabilities.

//
#if !defined(AFX_STOHETH__INCLUDED)
#define AFX_STOHETH__INCLUDED_

#if _MSC_VER > 1000

#pragma once
#endif // MSCVER > 1000

#include <iostream>

#include <string>

#include <fstream>
#include <vector>

#include <cmath>

#include "RandNum. h"

#include "time.h"
#include "Probability.h"

#include "Person.h"
#include "Printer.h"

#include "Averager.h"

using namespace std;

class STOHet

{
public:

STOHet O;

virtual STOHet();

void RunSimulation();

void reset();

private:

// MEMBER FUNCTIONS

void RunSimulationStep(double step);

void naturalTransition(Person & per, int queueSize, double step,

int numUSusc, int numQSusc, int numTSusc);
void naturalTransitionHelper(Person & per);

void queueContacts(Person & per);

int getNumTonfect(int numSusceptible);

bool hasIntervention(double step);

double comboChoose(double a, it b);
double miniFact(double a, int b);

double Fact(int b);

double min(double a, double b);

double max(dublble a, double b);

// MEMBER VARIABLES

const double timestep;

const double DAYSTORUN;

const double INITIALINFECTIONS;

const double INTERVENTIONDAY;

double QUEUETIMEBEFORETREATMENT;
const bool GAUSSIAN;
const bool MASSVACCINATION;
bool massvacChanged;

const double beta; // Infection rate
const double c; // Names generated per index
const double p; // Fraction of infectees named by index
const double N; // Population size
const double n; // Number of vaccinators
const double mu; // Service rate (traced vaccination)

const double h; // Fraction febrile in stage 3
const double v_O; // Vaccine efficacy, stage 0

const double v_1; // Vaccine efficacy, stage 

const double delta; // Smallpox death rate
const double f; // Vaccination fatality rate

double inter; // 1 if intervention has commenced,

// otherwise 0

Printer pr;

Probability prob;
long randSeed;
RandNum r;
Averager av;

Person * simul;
vector<Person*> totalQueue;
double * statePop;
double * nar;

};

#endif // !defined(AFXSTOHETH__INCLUDED_)

///////////////////////////////////////////////////////////////////

// STOHet.cpp: implementation of the STOHet class.
//

#include "STOHet.h"
#include <fstream>

#include <string>
using namespace std;

//
// GLOBAL AVERAGING ARRAYS

//
double ausO[100;

double auinfl[100];

double auinf2[100];
double auinf3[100];

double auinf4[100];

double aqO[100];
double aql([100];

double aq2[100];
double aq3[100];
double aquar[100];
double atsusc [100];
double atinfl[100];

double atinf2[lO0];

double atinf3[100];

double atlnf4[100];

double ad[100];
double az[100];
double qprob[6];

void Print(double dnum, ostream& output);
void Print(int day, double dnum, ostreamt output);

// Construction/Destruction

STOHet::STOHet()

: timestep(1 .O/48),
DAYSTORUN(100),
INTERVENTIONDAY(25),

beta(0. 00001),

c(50),
p(O.S),
N(101355),

r_.1l(1.0/3),
r_2(1.0/8),
r_3( 1.0/3),
r_4(1.0/12),
n(50),
mu(50),

h(0.9),
v_O(0.975),
v1(0 . 975),
delta(0.3),
f(O.00001),
INITIALINFECTIONS(10),
inter(O),

QUEUETIMEBEFORETREATMENT(O.0),
GAUSSIAN(true),

MASSVACCINATION(false),

massvacChanged(false),

prO,
probO(),
randSeed(-time(O)),
r(),
av((int)DAYSTORUN)
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simul - new Person[(int)N];
for(int i - O; i < N; i++)
simul[i] .setId(i);

totalQueue.clear();
for(int i - O; i < INITIALINFECTIONS; i+)
simul[(int) (r.getNext(&randSeed)*N)] .transitionStates(1);

statePop - new double[17];

nar - new double[17];
for(int i - O; i < 17; i++) {
statePop[i] - O;
nar[i] - O;

STOHet: :STOHet()

{
delete [] simul;
delete [] statePop;
delete [] ar;

** Runs a single stochastic simulation.

Requires: nothing
** Modifies: all people in simulation
** Returns: nothing
*/
void STOHet::RunSimulation() {

// Finding the ten randomly infected people and adding contacts
// evenly to them for the largest infected population
int * te new int[10];
int asd - O;
for(int i O; i < 10; i++)
te[i] - O;

for(int a - ; a < N; a++) {
if (simul [a] .getState() -= 1) {

te[asd] = a;
asd++;

for(int a O; a < c; a++) 
simul[te[O]] .addContact(99+lOO1*a,(int)c);
simul[te[1]] .addContact(1100l+lOOa, (int)c);
simul[te [2]] . addContact(12200+100*a,(int) c);
simul[te[3]] .addContact(3300+100*a,(int)c);
simul[te[4]] .addContact(14400+lOO1*a,(int)c);
simul[te[5]] .addContact(5500+0l0*a,(int)c);
simul[te[6]] .addContact(16600+lOO1*a,(int)c);
simul [te [7]] . addContact(7700+lOOa,(int)c);
simul [te[8]] . addContact(18800+0l0a,(int) c);
simul[te[9]] .addContact(6000+lOO1a,(int)c);

}
delete [ te;

// Run simulation
for (double i = ; i < DAYSTORUN; i + timestep) {

RunSimulationStep(i);

}

for(int j O; j < DAYSTORUN; j++) {
av. changeDayOfStuff (j);

nar - av.returnDOS();
aus[j] - nar[O];

auinfl[j] - nar[l];
auinf2[j] = nar[2];

auinf3[j] - nar[3];
auinf4[j] - nar[4];
aqO[j] - ar[5];

aql[j] - nar[6];
aq2[j] - nar[7];
aq3j] - nar[8];
aquar[j] = nar [9];
atsusc[j] - nar[10];
atinfl[j] - nar[ll];
atinf2[j] = nar[12];
atinf3[j] - nar[l3];

atinf4C[j] - nar[14];
az[j] - nar[lS];
ad[j] - nar[16];

}
nar - NULL;

// Determining q probabilities as discussed in Kaplan paper
cout << (qprob[l]+0.0)/qprob[5] << endl;
cot << (qprob[2]+O.O)/qprob[5] << endl;

cout << (qprob[3]+0O.O)/qprob[S] << endl;

// Determining effective R of simulation
int avgNumlnfected - O;
int totalNumInfected - O;
for(int j - O; j < N; j++) {

if (simul[j] .getEverlnfected() ) {
totalNumInfected++;
avgNumInfected +- simul[j].getNumInfected();

}
}
cout < end < "Average number infected - ";
cot << (.O*avgNumInfected)/totalNumInfected << endS;

}

Resets all values of people in simulation to initial values.

* Requires: nothing
** Modifies: all people in simulation
** Returns: nothing
*/
void STOHet::resetO(

for(int i - O; i < N; i++)
simul[i] reset();

massvacChanged - false;

totalQueue .clear();

for(int i - O; i < INITIALINFECTIONS; i+)
simul[(int)(r.getNext(randSeed)*N)] .transitionStates(1);

for(int i - O; i < 17; i++)
statePop[i - O;

//
//PRIVATE METHODS

//

** Performs a single step of the simulation, transitioning all
** people correctly.

** Requires: nothing
** Modifies: all people in simulation

** Returns: nothing

*/
void STOHet::RunSimulationStep(double step) {

// Resets statePop array for accurate counting
// state
for(int i - ; i < 17; i++) 

statePop[i] - O;

of numbers in each

// Finds nuber of people in each state during this timestep, also
// checks for invalid states
for(int i - ; i < N; i-++) 
if(simul[i].getState() < 0 11 simul[i].getState() > 16)
cout << "incorrect state" << endl;

statePop[simul[i] .getState()]++;

// Prints output to log files at each integer day
if (step - int(step+.00001) < timestep - .00001) {

pr .PrintDay(statePop);
av.addToAvg(int(step+.0000O1), statePop);

}

// Determines total number of people to transition out of the
// vaccination queue during this day
int totalChangedThisTimeStep - (int)min((double)totalQueue.s ize(O,

n*mutimestep);
int queueNu - O;
Person* transitioner - NULL;
// Tests whether everyone left in the queue is has not been there
// long enough to transition out--if qFinished >- queueSize, we
// need to go to the next timestep
int qFinished - O;
int queueSize - totalQueue.size);

while(totalQueue.size() > 0 &&
queueNum < totalChangedThisTimeStep &&
hasIntervention(step) && qFinished < queueSize) {

qFinished++;
queueNum++;
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transitioner - totalQueuetotalQueue.size() - 1];
int tState - ransitioner->getState();
totalQueue .popback ();

if(tState > 8) 
// Person is not in queue anymore, so the leaving should not

// affect how many people can be treated in that timestep

// (the person was not treated)

queueNum--;

// Person has not been in queue long enough to have received

// treatment
else if(transitioner->getTimeInQueue() <

QUEUETIMEBEFORETREATMENT/timestep I
transitioner->getQueueAltered() 

transitioner->unsetQueueAltered( );

// Inserts person back into queue at random place

double ran - r.getNext(&randSeed);

int pTA (int)(ranetotalQueue.size());
vector<Person>::iterator ite totalQueue.begin();

for(int m - ; m < pTA; m+)

ite++;
totalQueue.insert(ite, transitioner);
queueNum--;

// Standard queue transition depending upon values of person

// transitioning
else {
transitioner->queueTransition(r .getNext(&randSeed),

r.getNext(&randSeed), f, vO,
v_1, h);

// Checking for mass vaccination and if so, queuing all untraced

// people
if(MASSVACCINATION && massvacChanged && hasIntervention(step)) {

massvacChanged - true;
for(int i - ; i < N; i++) {

if(simul[i].getState() < 4) {

if(simuli].getState() -- O)
simul[i].t ransitionStates (5);

else if(simul[i].getState() -- 1)

simul [i] .setState(6);

else if(simul[i].getState() == 2)

simul i] .setState(7),

else if(simul[i].getState() 3)

simul[i] .setState(8);

simul i] .setAlteredO;

}

//
// NON-QUEUE TRANSITIONS BETWEEN STATES

//
// Each run through the loop is a person being updated on a

// particular day

// Re-evaluating number of people in each state after queue

// transitions

for(int i - ; i < 17; i++) {
statePop[i] = O;

}
for(int i - 0; i < N; i-++) {
if(simul[i].getState() < 0 11 simul[i].getState() > 16)
cout << "incorrect state" << endl;

statePop[simul[i] .getState()]++;
}

// Performs natural transition of people during given timestep

int numInQueueAtStartOfDay totalQueue.size();

for(int i - ; i < N; i++) {
naturalTransition(simul[i], numInQueueAtStartOfDay, step,

(int)statePop[O], (int)statePop[5],
(it) statePop[10]);

}

/********************************************
**
** Performs natural transition of Person per depending upon
** community state.
**
** Requires: nothing
** Modifies: per

** Returns: nothing

*/

void STOHet::naturalTransition(Person & per, int queueSize,
double step, int numUSusc,
int numQSusc, int numTSusc) {

if(per.getAltered() {

per.unsetAlteredO;

per.incTotalSteps ();

if(per.getState() -- 4 11 per.getState() -- 9 1 I
per.getState() -- 14) 

// Just became symptomatic and isolated, and his contacts

// should be placed in queue if intervention has begun

if(hasIntervention(step) & MASSVACCINATION)

queueContacts (per);

else {
// If intervention has not begun, we allow person to

// transition through states as normal, but set the contact

// Altered flag to true, indicating that the person should

// queue his/her contacts as soon as intervention commences

per.setContactAltered();

else if(per.getState() -- 5 II per.getState() -- 6 II
per.getState() -- 7 11 per.getState() -- 8) {

// Just got placed in queues, so the queue should now hold

// them

double randNum - r.getNext(krandSeed);

// pToAdd puts person in queue randomly compared to

// everyone else entering queue on this day, but after

// everyone who has been in the queue already

double dd - (double)totalqueue.size() - queueSize;

int pToAdd = (int)(randNumamax(O.O, dd));

vector<Person>::iterator it - totalQueue.begin();

for(int m O; m < pToAdd; m++)

totalQuue. insert (it, &per);

else {
// Do nothing

}

return;

}

// Not altered, so time to transition naturally

per. incTotalSteps );

// Random chance that person gains contact during this timestep

if(r.getNext(&randSeed) < timestep) {

vector<int> ve - per.getContactVectorO);

int newCont;
if(r.getNext(&randSeed) < 0.85) 
// Co-worker contact

newCont - (int) (r.getNext(&randSeed)*80) +

(int)(per.getId()/80)*80;
}
else {

// Random contact
newCont - (int)(r.getNext(&randSeed) *80);

}
if(O <- newCont && newCont <- N && newCont !- per.getId() {

per.addContact(newCont,(int)(c/p));

}
}

if(per.getContactAltered() && hasIntervention(step)) {

// Person identified as symptomatic before intervention
// commenced, now that intervention commenced they should
// queue their contacts for vaccination

quueContacts (per);
per .unsetContactAltered();

}

double numSusceptible - numUSusc + numQSusc + numTSusc;
if(per.getState() - 3 11 per.getState() -- 8 11

per.getState() -- 13) {
per.alterEverInfected(true);
// Uses binomial distribution to determine number of people

// infectious person should infect today

int numToInfect - getNumToInfect(per.getContactVector().size());

int numSuscU - 0;

int numQueueO - O;
int numSuscT - O;
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per .addNumInfected(numTolnfect);

while(numToInfect > ) {
double randNum - r.getNext(&randSeed);

// Infects proprtionate numbers of each susceptible state
if(randNum < numUSusc/numSusceptible)

numSuscU++;
else if (randNum < (numUSusc + numQSusc)/numSusceptible)

numQueueO++;
else

numSuscT++;
numToInfect--;

}

if(!per.getState() -- 8) 

// Heterogeneous mixing

vector<int> vec - per.getContactVector();

for(int i = vec.size()-l; i >- O; i--) {
double randNum;

int pos - vec.at(i);
if(numSuscU = 0 && numQueueO =- 0 & numSuscT -- O)
break;

// Infects non-altered susceptible people
else if(numSuscU > 0 && simul[pos].getState() -- 0 &&

!(simul[pos].getAltered())) 
simul [pos].transitionStates (1);
simul[pos] .setAltered();

simul [pos] . set Index (per. get Id ());
per.addInfected(pos);
numSuscU--;

}
else if(numQueueO > 0 && simul[pos].getState() -- 5 &&

!(simul[pos] .getAltered())) {
simul[pos].transitionStates(6);

simul[pos] . setAltered();
simul [pos] .setIndex(per.getId());

per.addInfected(pos);
numQueueO--;

}
else if(numSuscT > 0 && simul[pos].getState() -- 10 &&

!(simul[pos].getAltered())) {
simul[pos] .transitionStates(11);

simul [pos] . setAltered();
simul[pos] .setIndex(per.getId());

per.addInfected(pos);
numSuscT--;

}
else {}

}
int umLeft - numSuscU + numQueueO + numSuscT;
if(numLeft > ) 

per. addNumInf ected(-numLeft);

}

else {
numToInfect numSuscU + numQueueO + numSuscT;
int numAttempts 100;
while(numToInfect > 0 & numAttempts > ) {

numAttempts--;
int aPerson - (int)(r.getNext(&randSeed)*N);

if(simul[aPerson].getState() -- 5 &&
!simul [aPerson] .getAltered()) {

simul[aPerson]. transitionStates (6);

simul[aPerson] .setAltered();
simul[aPerson] .setIndex(per.getIdO));

per.addInfected(aPerson);

numToInfect--;

// Determines whether prson should stay in current state or
// transition
naturalTransitionHelper(per);

}

*****************************************#********t*F***********

*a Transitions Person per naturally as model dictates.

** Requires: nothing
** Modifies: all people in simulation
** Returns: nothing

*/
void STOHet::naturalTransitionHelper(Person per) {

// Altered people just got into the state, should not transition

if(per.getAlteredO)) return;

// All transitions dictated by disease parameters

if(per.getState) -- O) {
per. incStepsInState();
return;

}
else if(per.getState) -- 1) {

if(r. getNext(&randSeed) <
prob.getProb(1, per.getStepsInState(), GAUSSIAN)) {

per. transitionStates (2);
return;

}
else {

per. incStepsInState();
return;

}

else if(per.getState() =- 2) 
if(r. getNext(&randSeed) <

prob.getProb(2, per.getStepsInState(), GAUSSIAN)) 
per. transitionStates (3);
return;

else 
per. incStepsInState();

return;

else if(per.getState() -- 3) 
if(r.getNext (&randSeed) <

prob.getProb(3, per.gettepsInState), GAUSSIAN)) 
per. transitionStates (4);
// Here altered indicates that contacts should be queued
per. setAltered();
return;

}
else 

per. incStepsInState ();
return;

}

else if(per.getState() -- 4) 
if(r.getNext(&randSeed) <

prob.getProb(4, per.getStepslnState(), GAUSSIAN)) 
if(r.getNext(&randSeed) < delta) 

per.transitionStates (16);
return;

}
else C

per.transitionStates (15);
return;

else {
per. incStepsInState();

return;

}

else if(per.gettate = 5) 
per. inctepsInState();

per. incTimeInQueue();

return;

}
else if(per.getState) = 6) {
per. incTimeInQueue();

if(r. getNext(&randSeed) <
prob.getProb(6, per.getStepsInState(), GAUSSIAN)) 

per. transitionStates (7);

return;

}
else {
per. incStepsInState();

return;

else if(per.getState() -- 7) {
per.incTimeInQueue();
if(r. getNext(&randSeed) <

prob.getProb(7, per.getStepsInState(), GAUSSIAN)) 
per.transitionStates (8);
return;

}
else {

per.incStepsInState();

return;

}

else if(per.getStateO) -- 8) {
per. incTimeInQueue();

if(r.getNext(&randSeed) <
prob.getProhb(8, per.getStepsInStateO), GAUSSIAN)) {
per .transitionStates(14);

// Here altered indicates that contacts should be queued
per. setAlteredO();
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return;
}
else {

per. incStepsInState();
return;

}

else if(per.getState() = 9) {
per. incTimeInQueue();
if(r. getNext(&randSeed) <

prob.getProb(9, per.getStepsInState), GAUSSIAN)) 
per .transitionStates(14);

return;
}
else {

per. incStepsInState();
return;

}
else if(per.getState() 10) {

per. incStepsInState();
return;

}
else if(per.getState() 11) {

per.incTimeInQueue();
if(r. getNext(&ArandSeed) <

prob.getProb(11, per.getStepsInState(), GAUSSIAN)) {
per.transitionStates(12);
return;

}
else {

per. incStepsInState();
return;

}

else if(per.getState() --== 12) {
per.incTimeInQueue();
if(r. getNext(&randSeed) <

prob.getProb(12, per.getStepsInState(), GAUSSIAN)) {
per.transitionStates(13);

return;
}
else {

per .incSteps InState();
return;

}
else if(per.getState) - 13) 

if(r.getNext(&randSeed) <
prob.getProb(13, per.getStepsInStateO), GAUSSIAN)) 

per.transitionStates(14);
// Here altered indicates that contacts should be queued
per. setAltered();

return;
}
else C

per. incStepsInState);

return;
}

else if(per.getState() -- 14) {
if(r.getNext(&randSeed) <

prob.getProb(14, per.getStepsInState(), GAUSSIAN)) 
if(r.getNext(&randSeed) < delta) 

per.transitionStates (16);
return;

}
else {

per.transitionStates(15);
return;

else {
per.incStepsInState);

return;

}

else if(per.getState() -- 15 11 per.getState) -- 16) 
per. incStepsInState();

return;

else {
cout << "not a valid state when updating." << endl;
return;

** Queues all recorded contacts of Person per.

** Requires: nothing

** Modifies: all contacts of per
*e Returns: nothing

*/
void STOHet::queueContacts(Person & per) {

vector<int> cont - per.getInfectedsVector();
vector<int> more - per.getContactVector();
int numToAdd - (int)min(((c/p)-cont.size()), (double)more.size));
for(int i - O; i < numToAdd; i++) {
cont.pushback(more.at(i));

}

int contactsNeeded - (int)((c/p) - cot.size());
int qcont - cont.size();
if(! MASSVACCINATION) {

for(int i - O; i < cont.size(); i++) {
if(r.getNext(&randSeed) < p) {

int contactId cont[i];
if(!(contactId >- 0 && contactld < N)) {
contactld - (int)(r.getNext(&randSeed)*N);

}
int stateOfContact - simulcontactId].getState();

if(stateOfContact < 4)
simul[contactId] .setAltered();

if(contactId < per.getIdO))
simul[contactId] .decTotalSteps );

else

simul [contactId] .setQueueAltered();

if(stateOfContact ==-- O) 
simul[contactId].transitionStates(5);

qcont--;

}
else if(stateOfContact - 1) {
simul[contactId] .setState(6);

qprob[1]++;

}
else if(stateOfContact -- 2) 
simul[contactId] .setState(7);

qprob[2]++;

}
else if(stateOfContact -- 3) {
simul[contactId] .setState(8);

qprob[3]++;

}

else {
qcont--;

}

else {

}

if(qcont > ) {
qprob[5] +- qcont,

************+*********+***+******Fo********+*****************+*******

** Determines number of people an infectious person should infect
** using a standard binomial distribution.

** Requires: nothing

*e Modifies: nothing
** Returns: number of people an infectious person should infect

*/
int STOHet::getNumToInfect(int nuSusceptible) {

int retval - O;
for(int i - 0; i < umSusceptible; i++) {

if(r.getNext(&randSeed) < 0.000208) {
retval++;

return retval;

** Determines whether intervention has commenced yet.

e Requires: nothing
** Modifies: nothing

Returns: True iff intervention techniques have begun.

*/
bool STOHet::hasIntervention(double step) {
if(step < INTERVENTIONDAY)
return false;
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else // GLOBAL FUNCTIONS
return true; //

e Performs the choose operation aCb, defined as: a!/(b!(a-b)!).

*# Requires: nothing
Modifies: nothing

*# Returns: a Choose b as defined above
*/

double STOHet::comboChoose(double a, int b) 
double retval;
if(b > a)
retval = O;

else {
retval = miniFact(a, b)/Fact(b);

}
return retval;

so Performs the multiplication of integers between range a and b.
**
** Requires: a is an integer
## Modifies: nothing
*# Returns: Performs operation be(b+l)(b+2).. (a-i)ea, a
s* helper function to calculate the choose operation
**/
double STOHet::miniFact(double a, int b) {
double retval = 1;

for(int i = O; i < b; i+)
retval e= (a - i);

return retval;
}

*******************************************************************

Performs the factorial operation.

## Requires: nothing
so Modifies: nothing
*e Returns: Performs operation b(b-1)e(b-2)e...3e2l, as a
** helper function for the choose operation
*/

double STOHet::Fact(int b) 
double retval 1;
if(b < 1)

retval = 1.0;
else if (b < 3)

retval - (double)b;
else {

for(int i = 1; i <-b; i+)
retval i;

}
return retval;

}

*******************************************************************
**
## Returns the smaller of a and b.

** Requires: nothing
as Modifies: nothing
** Returns: The smaller number of a and b
*/

double STOHet::min(double a, double b) {
if (a < b)
return a;

else
return b;

}

* Returns the larger of a and b.

## Requires: nothing
** Modifies: nothing

e# Returns: The larger number of a and b
*/
double STOHet::max(double a, double b) {
if (a > b)
return a;

else
return b;

//

int main() {
// Number of simulations to average
int numRuns - 5;

// Length of each simulation to record
int days - 100;

// Initializing averaging arrays
for(int as - O; as < days; as++) {

aus [as] O;
auinfl[as] - 0;
auinf2[as] - 0;
auinf3[as] - 0;
auinf4[as-] 0;
aqO[as] = O;
aql[as] - O;
aq2[as] - 0;
aq3[as] - 0;
aquar[as] = O;
atsusc [as] = O;
atinfl[as] = 0;
atinf2[as] - 0;
atinf3[as] = 0;
atinf4[as] - 0;
az[as] - O;
ad[as] = O;

}

for(int as = O; as < 8; as++)
qprob[as] - O;

// Opening streams and log
string fl, f2, f3, f4, f5,
string f14, flS, f16, f17;
fl - "SO..txt";

f2 - "I_10.txt";
f3 - "I_20.txt";

f4 - "I_30.txt";
f5 - "I_40.txt";
f6 = "QO.tt";
f7 = "Ql.txt";
f8 = "Q_2.txt";
f9 - "q_3.txt";
flO - "H.txt";
fll = "Sl.txt";
f12 - "I11.txt";
f13 - "I_21.txt";
f14 - "I_31.txt";
fl = "I_41.txt";
f16 - "Z.txt";
f17 = "D.txt";

ofstream S0out(fl.cstr ();
ofstream I_10Oout(f2.cstrO);
ofstream I20ut(f3.cstr());
ofstream I_300t(f4.cstr());
ofstream I40out(f5.cstr());
ofstream QOout(f6.cstrO();
ofstream Qiout(f7.cstrO);
ofstream Q_2out(f8.cstr());
ofstream Q-3out(f9.cstr());
ofstream Hout(flO.c_str());
ofstream Slout(fll.cstr());
ofstream Illout(f12.cstr());
ofstream I_21out(f13.cstr());
ofstream I_31out(f14.cstr());
ofstream I_41ut(flS.cstr());
ofstream Zout(f16.cstr();
ofstream Dout(fl7.cstr());

// Running simulations
STOHet s;
for(int i - O; i < numRuns; i++) {

s .RunSimulation( );
s. reset();
cout << "im " << il << " of "<<
cout << endl;

files
f6, f7, f8, f9, flO, fll, f12, f3;

numRuns << " is finished.";

// Printing outputs

for(int i - ; i < days; i++) {
Print(aus[i]/numRuns, SOout);
Print(auinfl[i]/numRuns, I_Oout);
Print(auinf2[i]/numRuns, I_20out);
Print(auinf3[i]/numRuns, I_30out);
Print(auinf4[i]/numRuns, I_40out);
Print(aqO[i]/numRuns, QOout);
Print(aql[i]/numRuns, Qlout);
Print(aq2[i]/numRuns, Q_2out);
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Print(aq3[i]/numRuns, Q_3out);

Print (aquar [i] /numRuns, fout);
Print(atsusc[i]/numRuns, Slout);
Print(atinfl[i]/numRuns, I_llout);
Print(atinf2[i]/numRuns, I21out);
Print(atinf3[i)]/numRuns, I_31ut);

Print(atinf4([i]/numRuns, I_41out);

Print(azi]/numuns, Zout);

Print(ad[i]/numRuns, Dout);

}

// Close all output streams and end program

SOout.close();
I lOout.closeO;
I._20out.close();
I_30out.close();
I_40out.close O;

QOout.close ( );

Qlout .cloOse();
QO_2out. close();

Q._3out. close();
Hout .close();
S_lout.close();
I_llout .close);
I_21out.close();
I_31out.close();
I_41out.close();
Zout.closeO;
Dout.close();

return O;

//
//GLOBAL HELPER FUNCTIONS

//

** Prints dnum to log file output.

** Requires: nothing
** Modifies: output

** Returns: nothing

*/

void Print(double dnum, ostream& output) {

output << dnum << endl;

** Prints day and dnum to log file output.

** Requires: nothing

** Modifies: output

** Returns: nothing

*/
void Print(int day, double dnum, ostream& output) {

output << day << " \t" << dnum << endl;
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A.3 The general transitions simulator
Probability prob;///////////////////////////////////////////////////////////////////

// GeneralTransitions.h: interface for the GeneralTransitions class.

//
///////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////
// CLASS DESCRIPTION

//
// The general transitions class is the first smallpox simulator

// to be able to use arbitrary transition probabilities. It is a

// deterministic, population-based model, so it can reproduce the

// results of the ODE model. Hoever, if the GAUSSIAN flag is set

// to true, the probabilities of transitioning states are changed

// to Gaussian probabilities described on the CDC website about

// smallpox, thus creating a more realistic model. Approximations

// about the people to put in the vaccination queue are still

// described by the Kaplan model, but the queue is treated more

// realistically than in the ODE model.

//
II/11////111/1111111//1111111111/1///////////////////////////
#if !defined(AFXGENERALTRANSITIONSH__INCLUDED_)
#define AFX-GENERALTRANSITIONSH__INCLUDED_

#if MSCVER > 1000
#pragma once

#endif // MSC-VER > 1000

#include <iostream>

#include <string>

#include <fstream>

#include <vector>

#include "Printer.h"

#include "Probability.h"

using namespace std;

class GeneralTransitions

{
public:

GeneralTransitions();
virtual -GeneralTransitions();

void RunSimulation();

private:
// MEMBER FUNCTIONS
void RunSiulationStep(double step);

double removeProportions(int state);

double remPor(int state, vector<double> & v);

void updateStatePop();

void addToVec(vector<double> & v, double val);

bool removeFromEnd(vector<double> & v, double val);

void insertInVec(vector<double> & source,

vector<double> A target, double prob);

double hasIntervention(double step);

double mln(double a, double b);

double q(int j, double k);

double abs(double d);

//MEMBER VARIABLES

const double timestep;

const double INITIALINFECTIONS;

const double DAYSTORUN;

const double INTERVENTIONDAY;

bool MASSVACCINATION;

cost bool GAUSSIAN;

const double beta; // Infection rate

const double c; // Names generated per index

const double p; // Fraction of infectees named by index

const double N; // Population size

const double n; // Number of vaccinators

const double mu; // Service rate (traced vaccination)

const double rl; // Disease rate 1

cont double r_2; // Disease rate 2

const double r_3; // Disease rate 3

const double r4; // Disease rate 4

const double h; // Fraction febrile in stage 3

cont double vO; // Vaccine efficacy, stage O
const double v_l; // Vaccine efficacy, stage 1

const double delta; // Smallpox death rate

const double f; // Vaccination fatality rate

double inter; // 1 if intervention has commenced,

// otherwise 0

Printer pr;

double ususc;
vector<double>

vector<double>

vector<double>

vector<double>

vector<double>

vector<double>

vector<double>

vector<double>

vector<double>

double tsusc;

vector<double>

vector<double>

vector<double>

vector<double>

double z;

double d;

uinfl;
uinf2;
uinf3;
u_inf4;

q_O;
qi;

q_2;
q_3;
quar;

t infl;

tinf2;

tinf3;

tinf4;

double statePop[17];

#endif // !defined(AFX_GENERALTRANSITIONS_H__INCLUDED_)

///////////////////////////////////////////////////////////////////
// GeneralTransitions.cpp: implementation of the GeneralTransitions

// class.

//
///////////////////////////////////////////////////////////
#include "GeneralTransitions.h"

/////////////////1////////////////////1//////11///////////
// Construction/Destruction

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

GeneralTransitions::GeneralTransiti ons()

: timestep(1.0/48),
INITIALINFECTIONS(10),
DAYSTORUN(100),
INTERVENTIONDAY(25),
MASSVACCINATION(true),
GAUSSIAN(true),
beta(O . 00001),
c(SO),

p(O.S),

N(101355),
n(50),

mu(50),
r_1l(1.0/S),
r._2(1.0/7),
r._3(1.0/3),
r_4(1.0/16),
h(0.9),
v_0(0 . 975),
v1(0.975),
delta(0.3),
f(O.000001),
inter (O),

pr(),
prob(),

ususc(O),
u_.inf 1 (),
u_.inf2(),

u_inf3(),

uinf4(),

q_O(),
q_1 (),
q_2(),
q_3(),
quar (),
t_susc (O),
t_infl(),
t_inf2(),
t_inf3(),
t_inf4(),
z (O),
d (O)

for(int i - O; i < 17; i++)
statePop [i] - O;

u_inf1. clear();

u_inf2 .clear();q-20,

q3 0,
quarO,

t-.nfl(),

t-inf2(),
t.nf3(),

t.nf4( 

for(int i 0; i < 17; i-)

statePop[i] 0;
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uinf3. clear();
uinf4. clear();
qO. clear();
q_. clear();
q2. clear();
q3.clear();
quar .clearO;
tinf . clear ();
t_inf2.clear();
tinf3. clear();
t_inf4. clear();

u_infl.pushback(INITIALINFECTIONS);
u_susc - N-INITIALINFECTIONS;

GeneralTransitions: :GeneralTransitions()
{
}

void GeneralTransitions: :RunSimulation() {
double i;
for(i - O; i < DAYSTORUN; i +- timestep) {

RunSimulationStep(i);

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
// PRIVATE METHODS

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Runs a step of the simulation, and outputs numbers in each

** state to log files

** Requires: nothing
** Modifies: Log files associated with each ostream object.

** Returns: nothing

*/
void GeneralTransitions::RunSimulationStep(double step) 

updateStatePopO();
if (step - int(step.00001) < timestep - .00001) {

pr. PrintDay(statePop);

}

inter hasIntervention(step);

double I3 = statePopt3] + statePop[8] + statePop[13];
double Q statePop[5] + statePop([6] + statePop[7] + tatePop[8];
double RO = beta*(statePop[O] + statePop[S] + statePop[10])/r_3;

if(!inter) { // NO QUEUES OR QUARANTINE YET
//NO ONE IN ANY QUEUE OR TRACED STATES
//TRANSITIONS ARE ONLY NATURAL DISEASE PROGRESSIONS
//DO THEM IN REVERSE ORDER TO AVOID TRANSITIONING SOME PEOPLE
//FASTER THAN THEY SHOULD BE TRANSFERRED

// TRANSITIONING OUT OF SYMPTOMATIC INFECTED INTO RECOVERED

// AND DEAD
double numToTransfer - O;
double totalNumToTransfer - O;
totalNumToTransfer = removeProportions(4);
int i =0;

z +- (1-delta)*totalNumToTransfer;
d += delta*totalNumToTransfer;

// TRANSITIONING OUT OF ASYMPTOMATIC INTO SYMPTOMATIC INFECTED
totalNumToTransfer - removeProportions (3);

vector<double>::iterator it - u_inf4.begin();

if(totalNumToTransfer > O)
u_inf4 . insert(it, totalNumToTransfer);

// TRANSITIONING OUT OF VACCINE-INSENSITIVE INTO ASYMPTOMATIC
totalNumToTransfer - reoveProportions (2);

it = u_if3.beginO;
if(totalNumToTransfer > O)

u_inf3.insert(it, totalNumToTransfer);

// TRANSITIONING OUT OF VACCINE-SENSITIVE INTO VACC. INSENSITIVE
totalNumToTransfer - removeProportions(l);

it - u_inf2.begin();
if(totalNumToTransfer > O)

u_inf2.insert(it, totalNumToTransfer);

// TRANSITIONING OUT OF SUSCEPTIBLE INTO VACCINE-SENSITIVE
totalNumToTransfer - min(statePop[O],

timestep*beta*.I_3*statePop [O]);
it - uinfl.beginO;
if(totalNumToTranfer > ) {

u_infl. insert(it, totalNumToTransfer);
ususc -- totalNumToTransfer;

//////////////////////////////////////////////////////////////////
/////////t//////////////////////////////////////////////////////////

else { // QUEUES AND QUARANTINE ARE WORKING
double numToTransfer - O;
double totalNumToTransfer - O;
double queueTreatable;
if (Q < ) 

cot << "error in Q" << endl;

}
else if(Q =- O) {
queueTreatable - O;

}
else {
queueTreatable = min(timestep*mu*n, Q)/Q;

// TRANSITIONING OUT OF TRACED SYMPTOMATIC INTO RECOVERED/DEAD
int i - O;
totalNumToTransfer - removeProportions(14);

z +- (1-delta)*totalNumToTransfer;

d +- delta*totalNumToTransfer;

// TRANSITIONING OUT OF ASYMPTOMATIC INTO SYMPTOMATIC INFECTED
totalNumToTransfer - removeProportions(13);

vector<double>::iterator it;

if(totalNumToTransfer > ) {

it t_inf4.begin();

tinf4.insert(it, totalNumToTransfer);

}

// TRANSITIONING OUT OF VACCINE-INSENSITIVE INTO ASYMPTOMATIC
totalNumToTransf er = reoveProporti ons (12);

if(totalNumToTransfer > ) {
it tinf3.beginO;
t_inf3.insert(it, totalNumToTransfer);

}

// TRANSITIONING OUT OF VACCINE-SENSITIVE INTO VACC. INSENSITIVE
totalNumToTransfer - removeProportions(11);

if(totalNumToTransfer > ) {
it - tinf2.beginO;
tinf2.insert(it, totalNumToTransfer);

}

// TRANSITIONING OUT OF TRACED SUSCEPTIBLE INTO VACCINE-SENSITIVE
totalNumToTransfer min(statePop[10],

timestep*beta*I_3*statePop[10]);

it tinfl.beginO;
if(totalNumToTransfer > O) {
tjinfl.insert(it, totalNumToTransfer);

tsusc -- totalNumToTransfer;

}

// TRANSITIONING OUT OF QUARANTINE INTO SYMPTOMATIC
totalNumToTransfer - removeProportions(9);

addToVec(t_inf4, totalNumToTransfer);
// new state was already created by transition from

// traced asymptomatic

// TRANSITIONING OUT OF 3RD QUEUE STATE INTO QUARANTINE,
// TINF3, TINF4, DEAD
// ASSUME THAT QUEUE TRANSITIONS HAPPEN BEFORE NATURAL

// TRANSITIONS FOR ALL QUEUING STATES
totalNumToTranfer - statePop[8]*queueTreatable;
it - quar.begin();
if(totalNumToTransfer > O) {
quar. insert (it, h* (1-f) *totalNumToTransfer);
addToVec(tinf3, (1-h)*(1-f)*totalNumToTransfer);
d +- ftotalNumToTransfer;
removeFromEnd(q_3, totalNumToTransfer);
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totalNumToTransfer - reoveProportions(8);
addToVec(tinf4, totalNumToTransfer);
// new state was already created by transition from
// traced asymptomatic

// TRANSITIONING OUT OF 2ND QUEUE STATE INTO 3RD QUEUE STATE,

// TINF2, DEAD
totalNumToTransfer statePop[7]*queueTreatable;

if(totalNumToTransfer > ) {
addToVec(tinf2, totalNumToTransfer);
d +- ftotalNumToTransfer;
removeFromEnd(q_2, totalNumToTransfer);

}

totalNumToTransfer = removeProportions(7);

it - q3.begin( );
if(totalNumToTransfer > O)

q_3.insert(it, totalNumToTransfer); // Natural transition

// TRANSITIONING OUT OF 1ST QUEUE STATE INTO 2ND QUEUE STATE,

// TINF1, RECOVERED, DEAD
totalNumToTransfer = statePop[6]*queueTreatable;
if(totalNumToTransfer > ) 

addToVec(tinfl, (1-f)*(1-vl)*totalNumToTransfer);
z +- (1-f)*v_l*totalNumToTransfer;
d +- f*totalNumToTransfer;

removeFromEnd(ql, totalNumToTransfer);

totalNumToTransfer removeProportions (6);

it q2.begin();
if(totalNumToTransfer > O)
q2.insert(it, totalNumToTransfer); // Natural transition

// TRANSITIONING OUT OF SUSCEPTIBLE QUEUE STATE INTO 1ST QUEUE

// STATE, TSUSC, RECOVERED, DEAD

totalNumToTransfer = statePop[5]*queueTreatable;
t susc +- (1-f) *( 1-v _0) *totalNumToTransfer;
z += (1-f)*vO*totalNumToTransfer;
d += ftotalNumToTransfer;

removeFromEnd(qO, totalNumToTransfer);

double updatedSizeOfQO - O;
for(i = ; i < qO.size(); i++) 

updatedSizeOfQO +- qO.at(i);

}
totalNumToTransfer = timestep*beta*I_3*updatedSizeOfQO;
it ql.begin();

if(totalNumToTransfer > ) {
ql .insert(it, totalNumToTransfer);

removeFromEnd(qO0, totalNumToTransfer);

}

// TRANSITIONING OUT OF UNTRACED SYMPTOMATIC INTO RECOVERED

// AND DEAD
totalNumToTransfer removeProportions(4);

z + (1-delta)*totalNumToTransfer;
d +- delta*totalNumToTransfer;

//TRANSITIONING OUT OF UNTRACED INFECTIOUS INTO QUEUED,

//UNTRACED SYMPTOMATIC

double kappa - (c - p*RO)*r_3*I_3/N;
double labdal - q(1, kappa)betastatePop[]/(r_3 + kappa);
double lambda2 - q(2, kappa)*betastatePop[]/(r.3 + kappa);

double lambda3 - q(3, kappa)*beta*statePop[O]/(r_3 + kappa);

totalNumToTransfer - min(statePop[3],

timestep*((c-p*RO)*statePop[3]/N +
p*lambda3)*r_3*I_3);

addToVec(q3, totalNumToTransfer);
removeFromEnd(uinf3, totalNumToTransfer);

totalNumToTransfer - removeProportions (3);

it - uinf4.beginO;
if(totalNumToTransfer > O)

uinf4.insrt(it, totalNumToTransfer);

//TRANSITIONING OUT OF VACCINE INEFFECTIVE INTO QUEUE,

// INFECTIOUS
totalNumToTransfer - in(statePop[2],

timestep*((c-p*RO)*statePop[2]/N +
p*lambda2)*r_3*I3);

addToVec(q_2, totalNumToTransfer);
removeFromEnd(u_inf2, totalNumToTransfer);

totalNumToTransfer - removeProportions(2);

it - uinf3.beginO;
if(totalNumToTransfer > O)

uinf3.insert(it, totalNumToTransfer);

// TRANSITIONING OUT OF VACCINE EFFECTIVE INTO QUEUE, VACCINE

// INEFFECTIVE
totalNumToTransfer - min(statePop[1],

timestep*((c-p*RO)*statePop[1]/N +
p*lambdal)*r_3*I_3);

addToVec(ql, totalNumToTransfer);
removeFromEnd(uinf 1, totalNumToTransfer);

totalNumToTransfer - removeProportions (l);

it - uinf2.beginO;
if(totalNumToTransfer > O)

uinf2.insert(it, totalNumToTransfer);

// TRANSITIONING OUT OF UNTRACED SUSCEPTIBLE INTO QO,

// UNTRACED VACCINE EFFECTIVE
totalNumToTransfer - min(statePop[O],

timestep*((c-p*RO)*statePop[O]/N)*r_3#I_3);
it - qO.begin();
qO.insert (it, totalNumToTransfer);
u_susc -= totalNumToTransfer;

totalNumToTransfer - timestep*beta*I_3*ususc;
usus - totalNumToTransfer;
it - uinfl.beginO;
if(totalNumToTransfer > O)

uinfl.insert(it, totalNumToTransfer);

// MASS VACCINATION
if(MASSVACCINATION && inter) {

int j;
double stateSize = ususc;
it qO.beginO;

qO.insert(it, stateSize);

stateSize - ususc - O;

int queuelen - ql.size();

int inflen = uinfl.sizeO;
if(inflen <= queuelen) {

for(j - ; j < inflen; j++.) 
ql.at(j) += uinfl.at(j);

}

for(j = O; j < queuelen; j++) {

ql.at(j) +- uinfl.at(j);

for(j queuelen; j < inflen; j+) {
ql.pushback(uinfl.at(j));

}
u infl .clear();

queuelen - q2.sizeO;
inflen - u_inf2.size(O);
if(inflen <- queuelen) {

for(j - ; j < inflen; j++) {
q_2.at(j) +- uinf2.at(j);

}

else {
for(j - O; j < queuelen; j++) {

q2.at(j) +- uinf2.at(j);

}
for(j queuelen; j < inflen; j++) {

q2 .pushback (uinf2. at(j));

uinf2.clear();

queuelen - q3.sizeO;

inflen - uinf3.size(O);
if(inflen <- queulen) {

for(j - ; j < inflen; j++) 
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q_3.at(j) +- uinf3.at(j);

}
}
else {

for(j - O; j < queuelen; j++) 
q_3.at(j) +- u_inf3.at(j);

for(j - queuelen; j < inflen; j++-) 
q_3.push-back(u_inf3.at(j));

}
uinf3 .clear();

v.at(i) -- numToTransfer;
if(probab -- 1 II v.at(i) <- O)

v.pop_backO;

totalNumToTransfer +- numToTransfer;

// Tests for correctness
else if (numToTransfer -- ) {}
else {

if(probab < O)
cot << "Probab less than 0: probab - " << probab << endl;

else if (v.at(i) < O) 
cout << "vector holds negative people. v.at(i) - ;
cout << v.at(i) << endl;

return totalNumToTransfer;

/######*#**#########*###*#*#*##*#****################**********

## Returns the total number of people transitioned out of state
#e during the timestep, depending upon how long they have been in
e# the state.

#e Requires: nothing
we Modifies: It calls another function hich modifies the vector

#e holding the people in the given state
#* Effects: Returns the total number of people removed from the
we state due to natural transitions

**/
double GeneralTransitions::removeProportions(int state) {

if(state -- 11 state - 10 11 state -- state -- 16) {
cout << "can't do vector operations on non-vectors" << endl;
return -1;

}
else if(state 1)

return remPor(state, uinfl);
else if(state =- 2)

return remPor(state, u_inf2);
else if(state =- 3)

return remPor(state, u_.inf3);
else if(state =- 4)

return remPor(state, u_.inf4);

else if(state --== 6)
return remPor(state, qO);

else if(state == 6)
return rePor(state, ql);

else if(state == 7)

return remPor(state, q_2);
else if(state -== 8)

return remPor(state, q_3);

else if(state == 9)

return remPor(state, quar);

else if(state == 11)

return remPor(state, tinfl);

else if(state == 12)
return rePor(state, t-inf2);

else if(state == 13)
return remPor(state, tinf3);

else if(state == 14)
return remPor(state, tinf4);

else {
cout << "not a valid state" << endl;

return -1;

ce Returns the total number of people transitioned out of state
#e during the timestep, depending upon how long they have been in
#* the state.

we Requires: nothing
ew Modifies: v
ew Effects: Returns the total number of people removed from the

we state due to natural transitions
##/
double GeneralTransitions::remPor(int state, vector<double> & v) {
double totalNumToTransfer - O;
double numToTransfer;

int i;
for(i - O; i < v.sizeO; i++) {

// Probability that people in the state for i steps transition

// now
double probab - prob.getProb(state, i, GAUSSIAN);
numToTransfer - O;

// Transferring that number of people out of the vector
numToTransfer - probabev.at(i);
if(numToTransfer > 0 && abs(numToTransfer) < 99990) {

we Calculates number of people in each state during the timestep

* Requires: nothing
we Modifies: statePop array
** Returns: nothing
*/
void GeneralTransitions: :updateStatePop() {

int a;
for(int i O; i < 17; i++)

statePop[i] = O;

statePoptO] +- ususc;

for(a - O; a < uinfl.size(); a++)
statePop[l] - uinfl.at(a);

for(a - ; a < uinf2.sizeO; a++)
statePopf2 + uinf2.at(a);

for(a = ; a < u_inf3.size(); a)
statePop[3 +- uinf3.at(a);

for(a O; a < u_inf4.sizeO; a++)
statePop[4 +- uinf4.at(a);

fol(a - ; a < q_O.size(); a-++)
statePop[S +- qO.at(a);

for(a - ; a < ql..size(); a++)
statePop[6} +- q.at(a);

for(a - ; a < q_2.size(); a++)
statePop[7 + q2.at(a);

for(a = 0, a < q3.size(); a+)

statePop[8] +- q_3.at(a);
for(a - ; a < quar.size(; a++)

statePop[9 +- quar .at(a);

statePop[10 - t._susc;

for(a = ; a < t_infl.size(); a+)
statePop[(11 +- tinfl.at(a);

for(a - ; a < tinf2.size(); a+)

statePop[12] +- tinf2. at(a);

for(a - ; a < t_inf3.size(); a++)
statePop[13] +- tinf3.at(a);

for(a - O; a < tjinf4.size(); a-++)
statePop[14} +- tinf4.at(a);

statePop[15 -;
statePop[16] - d;

}

**#*************#*#***#**#*##****##*#*#*#***#######***********#*#**

we Adds val people to the front of the state vector v.

we Requires: val > 0
we Modifies: v
ew Effects: Adds people to new state vector
#e/
void GeneralTransitions::addToVec(vector<double> & v, double val) {
if (!(v.emptyO)) 

v.front() +- val;

}
else {

vector<double>::iterator it - v.begin();
v.insert(it, val);

* Removes val people from the end of the vector, corresponding to
ce queued people receiving vaccination (first come, first served).
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**

Requires: val > 0
Modifies: v
Effects: Returns boolean indicating whether everyone supposed

to be removed is, should always return true

bool GeneralTransitions: :removeFromEnd(vector<double> & v,

double val) {
int begin - v.size() -1;
for(int i - begin; i >- ; i--) {
if(val - v.at(i) < ) {
// Only some of the people in this state will be removed
v.at(i) - val;

val 0;

break;

}
else {
val -- v.at(i);

// all people in this state move, so state is empty
v.at(i) - O;
v.popback ();

}
}
bool retval - (!((int)val));

// returns 1 if all people supposed to be removed are
if (retval)

return retval;

else {
cout << "not everyone removed from vector" << endl;
return retval;

}

void GeneralTransitions: :insertlnVec(vector<double> & source,

vector<double> & target,
double prob) {

for(int i O; i < sourcesize(); i++) {
if(i < target.size()) {

target.at(i) +- source.at(i)*prob;

}
else {

target.pushback(source.at(i)*prob);

}
source.at(i) -- source.at(i)*prob;

/***************************************************************t**

** Calculates whether intervention has commenced.
**

** Requires: nothing
** Modifies: nothing
** Returns: if intervention has commenced, 0 otherwise

*/
double GeneralTransitions: :hasIntervention(double step) {

if (step < INTERVENTIONDAY)

return O;

else return 1;

}

/*******************************************************************

**

** Calculates minimum of two numbers
**

** Requires: nothing

** Modifies: nothing
** Returns: Minimum of a and b

*/
double GeneralTransitions: :min(double a, double b) {
if (a < b)

return a;

else

return b;

}

/******************************************************************

**

** Returns the conditional probability that a contact of an

** index detected at time t is in stage j of disease given that

** the contact has not been traced by time t (see Kaplan).

** Requires: nothing

** Modifies: nothing

** Effects: Returns a double value between 0 and 1 indicating

** conditional probability

**/

double GeneralTransitions::q(int j, double k) {

double retval - 1; // Probability q (Eq. 19 in Kaplan paper)

double rk - O;

double rj - O;

if(j = 1)

rj - r_1;

else if(j -- 2)

rj r2;

else if (j 3)

rj - r_3;

else if (j -- 4)

rj - r4;

else
cout << "Error in calculating q (rj)" << endl;

for (int i = 1; i < j - 1; i++) {
if(i -- 1)

rk r_1;

else if (i - 2)

rk - r_2;
else if (i -- 3)

rk - r_3;

else if (i =- 4)

rk r4;

else
cout << "Error in calculating q (rk)" << endl;

retval *- rk/(rk + r3 + k);

retval - (r_3 + k)/(rj + r3 + k);

return retval;

}

/*******************************************************************

**

** Returns the absolute value of d.
**

** Requires: nothing
** Modifies: nothing

** Effects: Returns absolute value of d

**/

double GeneralTransitions::abs(double d) {
if (d < O)
return -d;

else

return d;
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A.4 The ODE simulator
///////////////////////////////////////////////////////////////////
// ODEpopbased.h: interface for the ODEpopbased class.

///////////////////////////////////////////////////////////////////
// CLASS DESCRIPTION

//
// The ODE model is the most rudimentary smallpox simulator. It

// consists of seventeen different states, and the transitions

// between states are governed by equations given in Edward

// Kaplan's paper "Emergency response to a smallpox attack: The

// case for mass vaccination," except for the transition out of the
// quarantined state, in which everyone goes to the symptomatic and

// isolated state rather than some going into the asymptomatic and

// infectious state.

//
///////////////////////////////////////////////////////////////////
#if defined(AFXODEPOPBASEDH_ INCLUDED_)

#define AFXODEPOPBASEDH_ INCLUDED_

#if MSCVER > 1000

#pragma once

#endif // _MSC_VER > 1000

#include <iostream>

#include <string>

#include <cmath>

#include "Printer.h"
using namespace std;

class ODEpopbased

{
public:

ODEpopbased();

virtual ODEpopbased();

void runSimulation(O);

private:

// MEMBER FUNCTIONS

void runSimulationStep(double step);

double updateSO(double I_3, double RO);

double updateIlO(double I3, double R_O, double lambdal);

double updateI_20(double I3, double R0_O, double lambda2);

double updateI_30(double I_3, double Rdoubl R0 double lambda3);

double updateI_40();

double updateQO(double 13, double RO, double Q);

double updateQl(double I_3, double R0_O, double lambdal, double Q);

double updateQ_2(double I_3, double R0, double lambda2, double Q);

double updateQ_3(double I_3, double R0_O, double lambda3, double Q);

double updateH(double Q);

double updateS_1(double I3, double Q);

double updateI_11(double I_3, double Q);

double updateI_21(double Q);

double updateI_31(double Q);

double updateI_410;

double updateZ(double Q);

double updateD(double Q);

double min(double a, double b);
double hasIntervention();

double q(int j, double k);

// MEMBER VARIABLES

cont double beta; // Infection rate

const double c; // Names generated per index

const double p; // Fraction of infectees named by index

const double N; // Population size

const double r_1; // Disease stage 1 rate

const double r_2; // Disease stage 2 rate

const double r_3; // Disease stage 3 rate

const double r_4; // Disease stage 4 rate
const double n; // Number of vaccinators
const double mu; // Service rate (traced vaccination)

const double h; // Fraction febrile in stage 3
cont double vO; // Vaccine efficacy, stage 0

const double v_1; // Vaccine efficacy, stage 1
const double delta; // Smallpox death rate

const double f; // Vaccination fatality rate

const double timestep;

cont double DAYSTORUN;
const double INITIALINFECTIONS;
bool MASSVACCINATION;

const double INTERVENTIONDAY;

double statePop[17];
double statePopTemp[17];

double * tempArray;

double inter; // 1 if intervention has commenced, otherwise 0

double day;

Printer pr;

int totstep;

double * sO;
double * qO;
double * s_1;
double * kap;
double * rO;
double * laml;
double * lam2;
double * lam3;

#endif // !defined(AFXODEPOPBASED~_HINCLUDED_)

// ODEpopbased.cpp: implementation of the ODEpopbased class.

//

#include "ODEpopbased.h"

// Construction/Destruction

bool newway false;
ODEpopbased::ODEpopbasedO(

: timestep(O.001),
DAYSTORUN(100),
INITIALINFECTIONS(O10),
MASSVACCINATION(false),
INTERVENTIONDAY(25),

beta(O.00001),

c(50),

p(0.5),

N(101355),

r_(1.0/5),

r_2(1.0/7),
r_3(1.0/3),

r_4(1 .0/16),
n(50),
mu(50),

h(O.9),
v_0(0.975),
v_1(0.975),

delta(O .3),

f(0.000001l),
day(O),

inter(O),
pr(),prO ,
totstep(O)

{
for(int i - ; i < 17; i++) 

statePop[i] - O;

statePopTemp[i] - O;

}

statePop(1] = INITIALINFECTIONS;// Initial infections

statePop[O] N - statePop[1]; // All others susceptible

tempArray = new double[(int)DAYSTORUN];
sO = new double[(int)(DAYSTORUN/timestep)];

qO - new double[(int)(DAYSTORUN/timestep)];

s_ - new double[(int)(DAYSTORUN/timestep)];

kap new double[(int)(DAYSTORUN/timestep)];

rO new double[(int)(DAYSTORUN/timestep)];

laml - new double[(int)(DAYSTORUN/timestep)];
lam2 new double[(int)(DAYSTORUN/timestep)];

lam3 new double[(int)(DAYSTORUN/timestep)];

ODEpopbased::-ODEpopbased()

102



delete
delete
delete

delete

delete

delete

delete

delete

delete

[] tempArray;
[] sO;
[] qo0;
[] s l;
[] kap;
[] rO;
[] laml;
[] lam2;
[] la3;

/1111111//111111111111/111111111111111111/////////////////////
// PUBLIC METHODS

//1/////1///////////////////////////////////////////////////
void ODEpopbased::runSimulation() {
for(int j = O; j < (int)(DAYSTORUN/timestep)-l; j++) {

sO[j] - 0;

qO[j] = O;
sl[j] - 0;

kap[j] = O;
r_O[j] - 0;

laml[j] = O;
lam2[j] = 0;
la3[j] = 0;

}
for(double i O; i < DAYSTORUN; i+- timestep) {
runSimulationStep(i);

if(i - (int)i < timestep + .00000001)

cout << "day "<< (int)i << endl;

lambdal - q(1,kap[totstep-l])*laml[totstep -1];
lambda2 - lam2[totstep -1];
lambda3 - lam3[totstep -1];

}
else {
// Integral approximations

double kappa;
if (inter)

kappa (c - p*RO)*r_3*I_3/N;
else

kappa - O;

// Probabilities determined by stochastic model (cheating)
double ql, q2, q3;

if(day < S [ day > 50) {
ql - q2 = q3 = 0;

}

else {
ql - .570;
q2 - .364;
q3 = .063;

}

lambdal - ql*beta*statePop[O]/(r.3 + kappa);
lambda2 - q2*betastatePop[O]/(r_3 + kappa);
lambda3 - q3*beta*statePop[O]/(r_3 + kappa);

lambdal - q(1, kappa)beta*statePop[O]/(r_3 + kappa);
lambda2 - q(2, kappa)betastatePop[O]/(r_3 + kappa);
lambda3 - q(3, kappa)*beta*statePop[O]/(r_3 + kappa);

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII/11///1/1/
// PRIVATE METHODS
////////////////1///////////////1/////////////////////////

** Runs a step of the simulation, and outputs numbers in each
** state to log files

** Requires: nothing
** Modifies: Log files associated with each ostream object.

** Returns: nothing

*/
void ODEpopbased: :runSimulationStep(double step) {
day += timestep;

// Indicates hether intervention has commenced

inter = hasInterventlonO;

// Definitions of these variables are given in Kaplan's paper

double I_3 = statePop[3] + statePop[8] + statePop[13];
double Q = statePop[S] + statePop[6] + statePop[7] + statePop[8];
double RO - beta*(statePop[O] + statePop[5] + statePop[10])/r_3;

double lambdal;
double lambda2;

double lambda3;
if(newway) {

// Actual calculations of lambdas rather than integral

// approximations given in Kaplan's paper.

tot step++;

sO[totstep-1] - statePop[O];

qO[totstep-1] = statePop[S];

s_1[totstep-1] = statePop[10];

double rsum O;

for(int j O; j < totstep-l; j++) {

rsum +- r_O[j];
}
rO[totstep-1] exp(-r_3*timestep)rsum +

beta*(sO[totstep-1] + qO[totstep-1] +

s_ [totstep-1]);

rsum - 0;
for(int j - ; j < totstep-l; j++) {
rsum + laml[j];

}
laml [totstep-1] - exp(-r_3*timestep)*exp(kap[totstep-1])*rsum;

lam2[totstep-1] - q(2,kap[totstep-1])*laml[totstep-1];
lam3[totstep-1] - q(3,kap[totstep-1])*laml[totstep-1];

// Finding number to transition out of each state
statePopTemp[O]
statePopTemp[1]
statePopTemp[2]
statePopTemp[3]
statePopTemp[4]
statePopTemp[5]
statePopTemp[6]
statePopTemp[7]
statePopTemp[8]
statePopTemp[9]
statePopTemp[10]
statePopTemp[11]
statePopTemp[12]
statePopTemp [13]
statePopTemp[14]
statePopTemp[15]
statePopTemp[16]

= updateS_O(I_3, R_O);
- updateIlO(I_3, R, lambdal);
- updateI_20(I_3, RO, lambda2);
- updateI_30(I_3, R, lambda3);
- updateI_40();
- updateqO(I_3, RO, );
= updateQl(I_3, R_O, lambdal, Q);
= updateQ_2(I_3, R_O, lambda2, Q);
- updateQ_3(I_3, R_O, lambda3, Q);
- updateH(q);
- updateS_l(I_3, Q);
= updateIll(I_3, Q);
- updateI_21(Q);
- updateI_31(Q);
= updateI_41();
= updateZ(q);
= updateD(Q);

// Transitioning correct number of people from each state
for(int i - ; i < 17; i++) {

statePop[i] + statePopTemp[i];

}

if(MASSVACCINATION && inter) {
statePop(S) +- statePop[O];
statePop[6] + statePop[1];
statePop[7] + statePop[2];

statePop[8] +- statePop[3];
statePop[O] = O;
statePop[l] - 0;
statePop[2] - 0;
statePop[3] 0;
MASSVACCINATION = false;

}
// Printing number of people in each state, if start of new day
if (step - int(step) < timestep) {
pr.PrintDay(statePop);

/*****************************************************************
**
** Calculate correct number of people to transition each day

** Requires: nothing
** Modifies: nothing
** Returns: Number of people to transition from each state each
** timestep

*/
double ODEpopbased::updateSO(double I_3, double RO) {
return (timestep (-beta*I_3*statePop[O] -

(c-p*RO)statePop[O]*r_3*I_3*inter/N));

}
double ODEpopbased::updateIlO(double I_3, double RO,
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double lambdal) {
return timestep * (beta*I_3*statePop[O] -

((c-p*R_O)*statePop[1]/N + p*lambdal) *

r_3*I_3*inter - r_l*statePop[1]);
}
double ODEpopbased::updateI_20(double I_3, double RO,

double lambda2) {
return timestep * (r_lstatePop[1] - ((c-p*R_O)*statePop[2]/N +

p*lambda2)*r_3*I_3inter -
r_2*statePop[2]);

}
double ODEpopbased::updateI_30(double I_3, double RO,

double lambda3) 
return timestep * (r_2*statePop[2] - ((c-p*R_O)*statePop[3]/N +

p*lambda3)*r_3*I_3inter -
r_3statePop[3]);

}
double ODEpopbased::updateI_40() 

return timestep * (r_3 * statePop[3] - r4 * statePop[4);

}
double ODEpopbased::updateQ_O(double I3, double R0_O, double Q) 

return timestep * ((c-p*RO)statePop[O]*r_3*I_3inter/N -
beta.*I_3*s.tatePop[5] -
mustatePop[5]emin(1.O, n/Q));

}
double ODEpopbased::updateQ_l(double I3, double RO,

double lambdal, double Q) 

return timestep * (beta*I_3statePop[5] +
((c-p*R_O)statePop[1]/N plambdal) *
r_3*I_3*inter -
mu*statePop[6]*min(1.O, n/Q) -
r_l*statePop[6]D);

double ODEpopbased::updateQ.2(double I_3, double RO,
double lambda2, double Q) 

return timestep * (rl*statePop[6] + ((c-p*RO)statePop[2]/N +
pelambda2)*r3*I_3inter -
mu*statePop[7]*min(1.O, n/Q) -
r2*statePop[7]);

)
double ODEpopbased::updateQ_3(double I3, double RO,

double lambda3, double Q) 

return timestep * (r_2statePop[7] + ((c-p*RO)statePop[3]/N +
p*lambda3)*r_3I_3inter -
muestatePop[8]*min(1.O, n/Q) -
r_3statePop [8]);

}
double ODEpopbased::updateH(double Q) 

return timestep * ((1-f)*hmu*statePop[8]*min(1.O, n/Q) -

r_4*statePop[9]);
I
double ODEpopbased::updateS_l(double I_3, double q) 

return timestep * ((1-f)*(1-vO)*mustatePop[S]iin(1.O, n/Q) -
beta*statePop[10] *I_3);

}

double ODEpopbased::updateIll1(double I3, double Q) 
return timestep * (betaostatePop[10]I_3 +

(1-f)*(1-v1)*u*statePop[6]*min(1.O, n/Q) -
r statePop[1ll);

}
double ODEpopbased::updateI_21(double Q) 

return timestep * (r_lestatePop[11] +
(1-f)*muestatePop[7]min(1.O, n/Q) -
r_2*statePop[12]);

double ODEpopbased::updateI_31(double ) 
return timestep * (r2*statePop[12] 

(1-f)*(1-h)*mustatePop[8]*min(1.O, n/Q) -
r_3statePop([13]);

double ODEpopbased::update_41() 
return timestep(r_3*(statePop[13] + statePop[8] + statePop[9]) -

r_4*statePop[14]);

double ODEpopbased::updateZ(double Q) {
return timestep * ((1-f)*(vOstatePop[5] + vl*statePop[6]) *

muemin(1.O, n/Q) 
(1-delta)r4(statePop[4]+statePop[14]));

double ODEpopbased::updateD(double Q) 

return timestep * (fsmu*Qmin(1.O, n/Q) +
delta*r_4*(statePop[4] statePop[14]));

/*******F******F******,********************************************

** Calculates minimum of two numbers

** Requires: nothing
* Modifies: nothing
e* Returns: Minimum of a and b

*/
double ODEpopbased::min(double a, double b) {

if (a <- b)
return a;

else
return b;

}

/*
· Calculates whether intervention has commenced.

c Requires: nothing

** Modifies: nothing
c* Returns: 1 if intervention has commenced, 0 otherwise

*/
double ODEpopbased: hasIntervention() {

if (day < INTERVENTIONDAY)
return 0;

else
return 1;

}

/****************************** * *******************************

c* Returns the conditional probability that a contact of an
· index detected at time t is in stage j of disease given that
** the contact has not been traced by time t (see Kaplan).

c* Requires: nothing
* Modifies: nothing
c* Effects: Returns a double value between 0 and 1 indicating
· * conditional probability
**/

double ODEpopbased::q(int j, double k) 
double retval - 1; // Probability q (Eq. 19 in Kaplan paper)
double rk O;
double rj O;
if(j =- 1)
rj - ri;

else if(j -- 2)
rj = r2;

else if (j = 3)
rj = r3;

else if (j 4)
rj - r4;

else
cout << "Error in calculating q (rj)" << endl;

for (int i - 1; i < j - ; i) {
if(i -= 1)

rk = rl;
else if (i -= 2)

rk = r_2;
else if (i 3)

rk - r3;
else if (i -= 4)

rk = r_4;
else

cout << "Error in calculating q (rk)" << endl;

retval *-= rk/(rk + r_3 + k);

}

retval *-= (r_3 + k)/(rj + r_3 + k);

return retval;
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Appendix B

Helper classes

B.1 Person
IIIIIIIIIIIIII1//111111111111/1111111111111111111111111111111111111

// Person.h: interface for the Person class.

//
////////////11////////////////////////////////////I/////////
//////////////////////////////////////////////M///////////////////
II CLASS DESCRIPTION

//
// The person class holds the state for a single person, which

// includes an identification number, current state, number of

// steps (total, in current state, in queue), a vector of contacts,
// and various flags. The stochastic model simulates many people

// interacting and spreading smallpox.

//
#if !defined(AFXPERSONH__INCLUDED_)

#define AFXPERSONH__INCLUDED_

#if MSCVER > 1000
#pragma once
#endif // MSCVER > 1000

#include <iostream>

#include <vector>

using namespace std;

class Person

{
public:

Person();

virtual Person();

// ACCESSOR FUNCTIONS

int getId() const;
int getState() const;
int getStepslnState() const;
int getIndex() const;
int getTimeInQueue() const;
int getTotalSteps() const;

bool getAltered() const;

bool getContactAltered() const;

bool getQueueAltered() const;

bool isInQueue() cont;

vector<int> getContactVectorO;

vector<int> getFamilyVector();

vector<int> getInfectedsVectorO;

unsigned short getHome() const;

unsigned short getWork() const;

unsigned short getCurrentBldg() cont;

bool getEverlnfectedO const;

imnt getNumInfected() const;

// MUTATOR FUNCTIONS
void transitionStates(int newState);
void queueTransition(double randl, double rand2, double f,

double vO, double v, double h);

void reset ();

void setId(int newId);
void setState(int state);
void incStepsInState();
void setIndex(int index);
void incTimeInQueue();
void incTotalSteps();
void decTotalSteps();

void setAltered();
void unsetAltered();

void setContactAlteredO;

void unsetContactAltered();
void setQueueAltered();

void unsetQueueAltered();

bool addContact(int id, int listSize);
void forceAddContact(int id, it listSize);
void addToFamily(int famId);

void addInfected(int id);

void setHome(int i);
void setWork(int i);

void updateCurrentBldg(int bldg);

void setEverInfected(bool b);
void addNumInfected(int i);

private:
int id;
int currentState;
int stepsInCurrentState;
int myIndex;
int timeInQueue;
int totalSteps;

bool isAltered;

bool isContactAltered;

bool isQueueAltered;

vector<int> contacts;

vector<int> family;

vector<int> infecteds;

unsigned short home;

unsigned short ork;

unsigned short currentbldg;

bool everInfected;
int numInfected;

};
#endif // !defined(AFXPERSONN__INCLUDED_)

///////////////////////////////////////////////////////////////////
// Person.cpp: implementation of the Person class.
//

#include "Person.h"
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///////////////////////////////////////////////////////////////////
// Construction/Destruction

///////////////////////////////////////////////////////////////////
Person: :Person()

id(O),
currenttate(O),
stepslnCurrentState (0),

myIndex(-1),
timeInQueue(0),

totalSteps (O),
isAltered(false),

isContactAltered(false),

isQueueAltered(false),

home (O),
work(O),
currentbldg(O),
everInfected(false),
numInfected(O)

{
contacts.clear();
family. clear();
infecteds.clear();

}

Person: :-Person()

{
}

//
// ACCESSOR FUNCTIONS

//
/********************************** ********

Returns identification number of person.

** Requires: nothing
Modifies: nothing

Returns: id of person

*/
int Person: :getId() const {
return id;

}

*
Returns current state of person.

Requires: nothing

* Modifies: nothing
* Returns: current state of person

*/

int Persn::getState() const {

return currentState;

}

*

Returns number of steps spent in current state of person.

Requires: nothing

Modifies: nothing

Returns: number of steps spent in current state of person

*/
int Person::getStepsInState() const {

return stepslnCurrentState;

}

*

** Returns id of person who infected this person

** Requires: nothing

** Modifies: nothing
** Returns: id of person who infected this, -1 if this not

** infected

*/
int Person: :getlndex() const {
return myIndex;

}

*

Returns number of steps spent in queue.

Requires: nothing

Modifies: nothing

Returns: time spent in queue

t P n::gtTi nQu*/ oost
int Person: :getTimeIn~ueue() const {

return timelnQueue;
}

Returns total number of steps taken in simulation.

Requires: nothing
** Modifies: nothing

Returns: total number of steps taken

*/

int Person::getTotalteps() const 
return totalSteps;

Returns flag indicating hether person altered in transition.

Requires: nothing

Modifies: nothing
Returns: altered flag

*/
bool Person: :getAltered() const

return isAltered;

/ Cscesec*s+ese*e*ee*e*eceeececeeeeee*ceeeeee**eeccceeeeeesec***e

Returns flag indicating hether person needs to queue their

* contacts.

Requires: nothing

Modifies: nothing
Returns: contact altered flag

C/

bool Person: :getContactAltered() const

return isContactAltered;

/ *****cee**+***Cec*****c****************Cc****Cs*s*

Returns flag indicating hether person altered into queue.

Requires: nothing
Modifies: nothing
Returns: queue altered flag

*/
bool Person: :getQueueAltered() const 

return isQueueAltered;

}

bool Person: :isInQueue() const 

return ((currentState > 4) & (currentState < 9));

}

** Returns contact vector (holding other ids) of person.

** Requires: nothing
** Modifies: nothing
** Returns: contact vector of person

*/
vector<int> Person::getContactVectorO {

return contacts;

** Returns family vector (holding other ids) of person.

**
** Requires: nothing
** Modifies: nothing

Returns: vetor of family member ids of person

vectr<int> Person: :getFamilyVector( {

return family;

}

/*~*** * **** ** ******* **************
Returns infected vector (holding other ids) of person.

Requires: nothing
Modifies: nothing

Returns: vector of people this person infected

*/
vector<int> Person::getInfectedsVector() {

return infecteds;

}
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** Returns the number of the building this lives in.
**
** Requires: nothing
** Modifies: nothing
** Returns: Id of home of this person.

*/
unsigned short Person: :getHomeO const {

return home;

** Returns the number of the building this works in.
**
** Requires: nothing
** Modifies: nothing
** Returns: Id of workplace of this person. Id of school/college

** for students.

*/
unsigned short Person: :getWork() cost {

return work;

/******************************************************************

** Returns the number of the building this person is currently in.
**
** Requires: nothing
** Modifies: nothing
** Returns: Id of current building of this person.

*/

unsigned short Person: :getCurrentBldg() const {
return currentbldg;

}

/*******************************************************************
**
** Returns true iff this was ever infectious.
**
** Requires: nothing
** Modifies: nothing
** Returns: True iff this person was ever capable of spreading
** disease.

*/

bool Person::getEverInfected() const {
return everInfected;

}

/*******************************************************************

** Returns the number of people this person infected during a
** simulation.

** Requires: nothing
** Modifies: nothing
** Returns: Total number of people this person infected.

*/
int Person: :getNumInfected() const {
return umInfected;

//
// MUTATOR FUNCTIONS

//
/*****************************************************************
**
** Transitions person to new state.
**
** Requires: 0 <- newState <- 16
** Modifies: currenttate, stepsInCurrentState

** Returns: nothing

*/
void Person: transitionStates(int newState) {

currentState - newState;
stepsInCurrentState - O;

}

/*****************************************************************

** Performs a transition of someone in the queue who has been
** popped out after receiving a vaccination shot.

Rqir **thig** Requires: nothing

** Modifies: this
** Returns: nothing

*/
void Person::queueTransition(double randl, double rand2, double f,

double vO, double v, double h) {
if(currentState - 5) {

// Person was queued and susceptible, can either be traced and
// susceptible, immune, or dead from vaccine problems.

if(randl <- f) {
// Person died from vaccine-related complications
transitionStates(16);
setAltered();

}
else {
if(rand2 < vO) {

// Person i immune

transitionStates(15);

setAltered();

}
else {

// Person is traced and susceptible
transitionStates(10);

setAltered();

else if (currentState -- 6) {
// Person was queued and stage 1 infectious, can either be
// traced and infectious, immune, or dead from vaccine problems.

if(randl <- f) {
// Person died from vaccine-related complications

transitionStates( 16);
setAltered();

}
else {

if(rand2 < vl) {
// Person is immune
transitionStates( 15);
setAltered();

}
else {

// Person is traced and
settate(11);
setAltered();

stage 1 infectious

else if (currentState -- 7) {
// Person was queued and stage 2 infectious, can either be
// traced and infectious or dead from vaccine problems, as
// vaccine will no longer provide immunity.
if(randl < f) {

// Person died from vaccine-related complications
transitionStates(16);
setAltered();

}
else {

// Person is traced and stage 2 infectious

setState(12);
setAltered();

else if (currentState -- 8) 
// Person was queued and stage 3 infectious, can either be
// traced and infectious, quarantined, or dead from vaccine
// problems.

** if(randl <- f) {
// Person died from vaccine-related complications
transitionStates(16);
setAltered();

}
else {
if(rand2 < h) {

// Person has been quarantined

transitionStates (9);

setAltered();

}
else {

// Person is traced and stage 3 infectious
setState(13);

** setAltered();

}}

else {
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cout << currentState << endl;

}
}

/****************************************************/**

** Resets all values except the id of this to default values, to

** run multiple simulations.

**

** Requires: nothing

** Modifies: this

** Returns: nothing

,/
void Person::reset() {

currentState - O;

stepsInCurrentState - O;
myIndex - -1;

timeInQueue - O;
totalSteps O;

isAltered - false;

isContactAltered - false;

isQueueAltered = false;

contacts.clear();
family. clear();

infecteds .clear();

home = O;

work - O;

currentbldg - O;

everInfected = false;

numlnfected - O;

}

/******************************************************************

**

** Sets identification number of this

**

** Requires: newId unique in simulation, newId !- -1

** Modifies: id

** Returns: nothing

*/
void Person::setId(int newId) {

id - newId;

}

/******************************************************************

**

** Sets current state of person to state.

**

** Requires: 0 <- state <- 16

** Modifies: currentState

** Return: nothing

*/
void Person: :settate(int state) {

currenttate = state;

}

/******************************************************************

**

** Increments steps taken in current state.

**

** Requires: nothing

** Modifies: stepsInCurrentState

** Returns: nothing

*/
void Person::incStepsInState() {

stepslnCurrentState++;

}

/*****************************************************e************

** Sets index of this (id of person who infected this).

**

** Requires: index is the id of a person in the simulation

** Modifies: myIndex

** Returns: nothing

*/
void Person::setIndex(int index) {

myIndex - index;

/*******************************************************************

**

** Increments number of steps spent in the vaccination queue.

**

** Requires: nothing

** Modifies: timeInQueue

** Returns: nothing

*/
void Person::incTimelnQueue() {

timelnQueue++;

}

**

** Increments total number of steps taken in simulation.

** Requires: nothing
** Modifies: totalSteps

** Returns: nothing

*/
void Person: :incTotalSteps() {

totalSteps++;

}

/*****************************************************************

**

* Decrements total number of steps taken in simulation. Needed

** when person transitions naturally, but in the same timestep

** another person places them into the queue for vaccination.

*

** Requires: nothing

** Modifies: totalSteps

** Returns: nothing

*/
void Person::decTotalSteps() {

totalSteps--;

}

**************************************************

**

** Sets the altered flag to true.

**

** Requires: nothing

** Modifies: isAltered

Returns: nothing

*/
void Person::setAltered() {

isAltered - true;

}

/*******************************************************************

** Sets the altered flag to false.

**

** Requires: nothing

** Modifies: isAltered

** Returns: nothing

*/

void Person:: unsetAltered() {

isAltered - false;

}

/*******************************************************************

**

** Sets the contact altered flag to true.

**

** Requires: nothing

** Modifies: isContactAltered

** Returns: nothing

*/

void Person: :setContactAlteredO {

isContactAltered - true;

}

/******************************************************************

** Sets the contact altered flag to false.

**

** Requires: nothing

** Modifies: isContactAltered

** Returns: nothing

,/

void Person: :unsetContactAltered() {

isContactAltered - false;

}

/******************************************************************

**

** Sets the queue altered flag to true.

** Requires: nothing

** Modifies: isQueueAltered

** Returns: nothing

*/

void Person: :setQueueAltered() {

isQueueAltered - true;

}08
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Sets the queue altered flag to false.

R Requires: nothing
** Modifies: isQueueAltered

* Returns: nothing

,/

void Person: :unsetQueueAltered() {

isQueueAltered - false;

** If contact vector is not full, adds contact to contact vector.

** Requires: id is the id of a person in the simulation

** Modifies: contacts

** Returns: true if contact is added, false if vector is full

*/
bool Person::addContact(int id, int listSize) {

if(contacts.slze() < listSize) {

for(int i = ; i < contacts.size(); i+) {

if(id =- contacts.at(i))

return false;

}
contacts .pushback(id);

return true;

}
else {

return false;

}
}

/***************************************************************

** Adds contact by removing oldest contact of person if contact

** list is full, otherwise simply adds contact.

** Requires: id is the id of a person in the simulation

** Modifies: contacts
** Returns: nothing

*/
void Person::forceAddContact(int id, it listSize) {

if(contacts.size() < listSize) {

contacts .pushback(id);

}
else {

vectorint>: iterator it - contacts.begin();

contacts.erse(it, it+1);

contacts .pushback(id);

}

/**********************************$*******************************

** Adds contact to family of this person.

*

o Requires: id is the id of a person in the simulation

** Modifies: family

** Returns: nothing

*/

void Person::addToFamily(int famId) {

if(famId != id)

family.pushback(id);

}

/*******************************************************************

**

** Adds contact that this person infected.

** Requires: id is the id of a person in the simulation

** Modifies: infecteds

** Returns: nothing

*/
void Person: :addInfected(int id) {

infecteds .pushb.ack(id);

}

/**************************************************************#***

**

** Sets the home of this person to i.

** Requires: i is the number of a residence in the simulation

** Modifies: home

** Returns: nothing

*/

void Person: :setHome(int i) {

home i;

}

/*******************************************************************

**

** Sets the workplace of this person to i.

**

** Requires: i is the number of a work building in the simulation

** Modifies: work

** Returns: nothing

*/

void Person: :setWork(int i) {

work - i;

}

/*****************************************************************

** Sets the current building of this person to i.

** Requires: i is the number of a building in the simulation

** Modifies: currentbldg

** Returns: nothing

*/

void Person: :updateCurrentBldg(int bldg) {

currentbldg - bldg;

}

************************************t******************************

**

** Sets the everInfected flag to b.

**

** Requires: nothing

** Modifies: everInfected

** Returns: nothing

*/

void Person: :setEverInfected(bool b) {

everInfected - b;

}

/*******************************************************************

**

** Adds i to the number of people this person has infected.

**

** Requires: nothing

** Modifies: numInfected

** Returns: nothing

*/

void Person: :addNumInfected(int i) {

numInfected + i;

}
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B.2 Building

///////////////////////////////////////////////////////////////////
// Building.h: interface for the Building class.

//
///////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////
// CLASS DESCRIPTION

//
// The Building class i a helper class for the agent-based model.

// Buildings have various characteristics, such as the maximum

// occupancy and the people currently in the building. People can

// enter the building if the maximum occupancy is not exceeded and
// may leave the building at any time.

//

#if defined(AFXBUILDINGH__INCLUDED)
#define AFXBUILDINGH__INCLUDED_

#if MSCVER > 1000
#pragma once

#endif // MSC-VER > 1000

#include <iostream>

#include <string>

#include <vector>
#include "Person.h"
using namespace std;

class Building

{
public:
Building();

virtual Building();

// ACCESSOR FUNCTIONS

int getID();

int getOccupancy();
bool canAssign();

unsigned short getNumAssigned();

int getOccupantNum();
int getOccupant(int place);
int getLastOccupant();
vector<int> getOccupantVector();
bool containsID(int id);

// MUTATOR FUNCTIONS
void setID(int id);
void setOccupancy(int o);

void incNumAssigned);

bool addOccupant(int id);

void addHospitalOccupant(int id);
bool insertHospitalOccupant(int id, int place);

bool removeOccupantID(int id);

void removeLastOccupant();

void removeAllOccupants();

private:

int ID;
int OCCUPANCY;

unsigned short numAssigned;

vector<int> occupants;

#endif // !defined(AFXBUILDINGH__INCLUDED_)

///////////////////////////////////////////////////////////////////
// Building.cpp: implementation of the Building class.

//
II/1//////111///1/111//1///////11111111111//////////////////

#include "Building.h"

I/////////////////////I//1//////////11//////////////////
// Construction/Destruction

///////////////////////////////////////////////////////////////////
Building: :BuildingO)

ID(-1),
OCCUPANCY(O),

numAssigned(O)

occupants. clear();

/*************************************************************

** Returns the Id number of this building.

** Requires: nothing

** Modifies: nothing

** Returns: The id of this building.

*/
int Building::getID() {
return ID;

**************************************#***********************

** Returns the occupancy of this building.
**
** Requires: nothing

** Modifies: nothing

** Returns: The occupancy of this building.

*/

int Building: :getOccupancy() {
return OCCUPANCY;

/************************************************************

* Returns whether more people can be assigned to this building.

**
** Requires: nothing

** Modifies: nothing

** Returns. True iff the number assigned is smaller than the

** building occupancy.

*/
bool Building: canAssign() {
return (numAssigned < OCCUPANCY);

}

/**************************************************************

** Returns the number of people assigned to this building.

**
** Requires: nothing

** Modifies: nothing

** Returns: The number of people assigned to this building.

*/

unsigned short Building: :getNumAssigned() {
return numAssigned;

** Returns the number of people currently inside this building.

**
** Requires: nothing

** Modifies: nothing
** Returns: The number of people currently inside this building.

*/

int Building::getOccupantNum() {
return occupants.size();

** Returns the id of the person in place of this building.

**
** Requires: nothing
** Modifies: nothing

** Returns: The id of a person inside this building.

*/
int Building::getOccupant(int place) {

return occupants [place];

}

/**************************************************************
**
** Returns the id of the last person in this building.

**
** Requires: nothing
** Modifies: nothing

** Returns: The id of a person inside this building.

*/

int Building::getLastOccupant() {
return occupants .backo();

Building: :Building()
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/*************************************************************
***

** Returns the entire vector of ids of the people in this building.

** Requires: nothing

Modifies: nothing

** Returns: The vector of ids of the people in this building.

*/

vector<int> Building::getOccupantVector() {
return occupants;

}

*************************************************************

** Returns true if person with ID# id is inside this building.
**

** Requires: nothing

** Modifies: nothing

** Returns: True iff occupants contains id.

*/
bool Building::containsID(int id) {
for(int i = ; i < occupants.size(); i++) {
if(occupants.at(i) == id)

return true;

}
return false;

}

//
// MUTATOR FUNCTIONS

//
/*************************************************************

** Sets the identification number of the building to id.
**

** Requires: nothing
** Modifies: ID
** Returns: nothing
*/
void Building::setlD(int id) {

ID = id;

}

/*************************************************************

** Sets the maximum occupancy of the building to o.
**

** Requires: nothing
** Modifies: OCCUPANCY
** Returns: nothing

*/
void Buildlng: :setOccupancy(int o) {
OCCUPANCY - o;

}

/************************************************************

** Increases the number of people assigned to this building by one
**

** Requres: nothing

** Modifies: numAssigned

** Returns: nothing

*/

void Building::incNumAssigned() {
numAssigned++;

/*************************************************************

** Adds person ith ID# id to this building if maximum occupancy
** will not be exceeded.
**

** Requires: nothing
** Modifies: occupants
** Returns: True iff there is room to add another person to the
** building.

bl Bidig:ddcc*/ptit id)
bool Building::raddOccupant(int id) {

if(occupants.ize() < OCCUPANCY) {
occupants .pushback(id);

return true;
}
else return false;

}

** Adds person to hospital. Does not check for size constraints.
**

** Requires: nothing
** Modifies: occupants
** Returns: nothing
*/

void Building::addHospitalOccupant(int id) {
vector<int>::iterator it - occupants.begin();

occupants. insert(it, id);

}

/**************************************************************

** Adds person to hospital in particular spot place.

**

** Requires: nothing

** Modifies: occupants

** Returns: nothing

*/
bool Building: :insertHospit1aOccupant(int id, int place) {

vector<int>::iterator it occupants.begin();

if(place > occupants.size())

return false;

for(int i O; i < place; i++) {

it++;

}
occupants.insert(it, id);

return true;

}

/**************************************************************

** Removes id from this building if id is present.

**

** Requires: nothing

** Modifies: occupants

** Returns: True iff id is a member of occupants.

*/

bool Building: :removeOccupantID(int id) {

for(int i = ; i < occupants.size(); i++) {

if((occupants.at(i)) -= id) {

occupants.erase(occupants.begin()i, occupants.begin()+i+1);

return true;

}
return false;

}

/**************************************************************

** Removes last person in building.

**

** Requires: nothing

** Modifies: occupants

** Returns: nothing

*/
void Building: :removeLastOccupantO {

occupants.pop_back ();

/*************************************************************

**

** Removes all people from building.
**

** Requires: nothing

** Modifies: occupants

** Returns: nothing

*/
void Building::removeAllOccupants() {
occupants. clear ();

numAssigned - O;
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B.3 Random number generator
///////////////////////////////////////////////////////////////////
// RandNum.h: interface for the RandNum class.

//
///////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////
// CLASS DESCRIPTION

//
// This class provides pseudorandom numbers distributed uniformly

// between 0 and 1. It is generally seeded with the time the

// computer has been running, as found in the time.h class.

//
///////////////////////////////////////////////////////////////////
#if defined(AFXRANDNUMHINCLUDED_)
#define AFXRANDNUMH__INCLUDED_

#if _MSCVER > 1000
#pragma once
#endif // MSCVER > 1000

class RandNum

{
public:
RandNum();
virtual RandNum(O;
double getNext(long *idum);

int nextThree(long idum);

};

#endif // defined(AFXRANDNUMH__INCLUDED_)

///////////////////////////////////////////////////////////////////
// RandNum.cpp: implementation of the RandNum class.

//
///////////////////////////////////////////////////////////////////
#include "RandNum.h"

///////////////////////////////////////////////////////////////////
// Construction/Destruction

/////////////////// ///////////////////////////////
RandNum:: RandNum ()

RandNum:: RandNum ()

}

/****************************t************************************

**

** Creates pseud-do-random numbers for use in calculating transiti

** probabilities.
**

** Requires: nothing
** Modifies: nothing
** Returns: Pseudo-random number for use in modeling random

** processes. Taken from numerical recipes.

C/

double RandNum::getNext(long *idum) {

#define IA 16807
#define IM 2147483647

#define AM (1.0/IM)
#define IQ 127773
#define IR 2836
#define NTAB 32
#define NDIV (+(IM-1)/NTAB)
*define EPS 1.2e-7
#define RNMX (1.0-EPS)

int j;

long k;

static long iy-O;

static long iv[NTAB];
double temp;

double retval;

if (*idum <- 0 11 !iy) 
if (-(*idum) < 1) idum-l;

else idum -(*idum);
for (j-NTAB+7;j>-0; j--) {

k-(*idum)/IQ;
idum-IA*(*idum-k*IQ)-IR*k;

if (*idum < ) *idum - IM;
if (j 

<
NTAB) iv[j] - *ldum;

}
iy-iv [(0];

}

k-(*idum)/IQ;

idum-IA*(*idum-k*IQ)-IR*k;
if (idum < ) idum +- IM;
j-iy/NDIV;
iy-iv[j];
iv[j] - idum;
if ((temp-AMiy) > RNMX) retval - RNMX;
else retval - temp;

#undef IA
#undef IM

#undef AM
#undef IQ
#undef IR
#undef NTAB
#undef NDIV
#undef EPS
#undef RNMX

return retval;

*************************************t*****************************

**

** Creates pseudo-random number between 0-2 inclusive.

**

** ** Requires: nothing
** Modifies: nothing

on ** Returns: Pseudo-random number for use in modeling random

** processes. Taken from numerical recipes.

*/
int RandNum: :nextThree(long * idum) {
double rand = getNext(idum);
if(rand < .33333)

return 0;
else if (rand < .66666)

return 1;

else return 2;
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B.4 Transition probabilities
IIIIIIIII/////////////////////////////////////////////////////////
// Probability.h: interface for the Probability class.

//
///////////////////////////////////////////////////////////////////
IIIIIII////////////////////////////////////////////////////////////
// CLASS DESCRIPTION

//
// The Probability class allows Gaussian transitions to occur
// between states. For Gaussian transitions, both the number of
// steps in the current state and the value of the current state
// matter in determining whether a person should transition
// naturally during a given timestep. Thus the Probability class
// only has one function, getProb, which does just that. There is
// also an exponential transition probability built in.

//I////1////////////////1/////////////////////////////////////
#if defined(AFXPROBABILITYH__INCLUDED_)

#define AFXPROBABILITYHINCLUDED_

#if MSCVER > 1000
#pragma once

#endif // MSCVER > 1000

#include <iostream>
#include <string>

#include <fstream>

using namespace td;

class Probability

{
public:

Probability();

virtual Probability();

double getProb(int state, int stepsInState, bool Gaussian);

private:

string erftable;

// The different transition probabilities. An array titled:
// meanXsdYpZ corresponds to transition probabilities
// for a Gaussian random variable with mean X, and standard
// deviation Y.Z.
double mean5sdl [385];
double mean7sdlp5[553];
double mean3sdOp5 [217];
double meanl6sd2[577];

};

#endif // !defined(AFXPROBABILITYH__INCLUDED_)

///////////////////////////////////////////////////////////////////
// Probability.cpp: implementation of the Probability class.

//
///////////////////////////////////////////////////////////////////
#include "Probability.h"

#include <cmath>
using namespace std;

II Construction/Destruction
///////////////////////////////////////////////////////////////////
Probability: :Probability()

: erftableO

ifstream erfl, erf2, erf3, erf4;
string etl, et2, et3, et4;
etl "/home/cory/popbased/probs/mean5sdl . txt";
et2 - "/home/cory/popbased/probs/mean7sdlpS.txt";
et3 = "/home/cory/popbased/probs/mean3sdOp5 .txt";
et4 = "/home/cory/popbased/probs/meanl6sd2.txt";

cout << "open3 failed" << endl;

}
if (erf4.failO) {
cout << "open4 failed" << endl;

}

// Garbage variable for mean 16, standard dev 2, since
// probability of transitioning before day 10 is extremely tiny.
double retval O;

// Each transition probability array stores the value 1 at the end
// (after 3 standard deviations from the mean) since people should
// not be stuck in the same stage forever. This ensures
// transition if a person has not done so already.
for(int i - ; i < 384; i++)

erfl>>mean5sdl[i];
meanSdl[384] - 1;

for(int i - ; i < 552; i++)
erf2>>mean7sdlp5 [i];

mean7sdlp5 [552] 1;

for(int i - ; i < 216; i++)
erf3>>mean3sdOp5 i];

mean3sdOp5[216] 1;

for(int i - O; i < 479; i++)
erf4>>retval;

for(int i - O; i < 577; i++)
erf4>>meanl6sd2[i];

mean16sd21577] 1;

erf 1. close ();
erf2.close();
erf3.close(O;
erf4 .close O;

Probability: :Probability()

{
}

/*******************************************************************
**
** Returns probability of transitioning state given current state
** and time spent there.
**
** Requires: nothing
** Modifies: nothing
** Returns: Gaussian or exponential probability
*/
double Probability::getProb(int state, int stepsInState,

bool Gaussian) {

// TESTING PROBABILITY FOR EMULATION WITH DIFFERENTIAL EQUATION
// MODEL
if(!Gaussian) {

if(state -- O state -- 5 state =-- 0 1 state =. 15 I
state -= 16) {

return -1;
}
else if(state == 1 11 state - 6 11 state - 11) {

return 1-exp(-1.O/(5*48));

}
else if(state -- 2 11 state -- 7 11 state = 12) {

return 1-exp(-1.O/(7*48));

else if(state -- 3 II state -
return 1-exp(-1.O/(3*48));

I
else if(state -- 4 1[ state --

return 1-exp(-1.O/(16*48));

I
else return -1;

8 11 state - 13) {

14 11 state -- 9) 

erfl.open(etl.cstrO);
erf2.open(et2.c.str());
erf3.open(et3.cstr();
erf4.open(et4.cstr0());
if (erfl.fail0) 

cout << "openl failed" << endl;

}
if (erf2.failO) {

tout << "open2 failed" << endl;

if (} f3.fil) if (erf3 .failO()) {

else {
// GAUSSIAN PROBABILITIES, gathered using erf function
if(state -- 0 11 state -- I state -- 10 1 I state -- 15

state -- 16) {
cout << "Not a valid state for Gaussian transition" << endl;
return -1;

}
else if(state -- 1 I state - 6 11 state -- 11) {

if(stepsInState > 384) {
retur 1;
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return meansdl [stepsInState];

}

else if(state =- 2 II state -- 7 11 state -- 12) {
if(stepsInState > 552)

return 1;
return mean7sdlp[stepsInState];

}
else if(state 3 [ state -- 8 11 state -- 13) {

if(stepsInState > 216)

return 1;
return mean3sdOpS[stepsInState];

else if(state -- 4 state -- 14 11i state -- 9) {
if(stepsInState < 480)

return O;
else if(stepsInState >- 1057)

return 1;
else

return mean16sd2[stepsInState-480];

else {
cout << "State is invalid." << endl;

return -1;
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B.5 Output averager

//111/111//111111/111111/1111111//////////////////////////
/ Averager.h: interface for the Averager class.

//
I////1/11//1/1111/11/1//11111/////////////////////////
//111/11//1/111111111/111111111111///////////////////////
// CLASS DESCRIPTION

//
// This class allows the stochastic models to be run multiple

// times, in order to average their outputs to determine the mean
// behavior of the models. Since the stochastic model only keeps
// track of its populations in the current timestep of the current
// run, this class holds all timesteps of each run.

//
///////////////////////////////////////////////////////////////////
#if !defined(AFXAVERAGERH__INCLUDED_)
#define AFX _AVERAGERH_ INCLUDED_

#if MSCVER > 100
#pragma once
#endif // _MSCVER > 1000

#include <iostream>

using namespace std;

class Averager

{
public:

Averager(int numDays);
virtual AveragerO;

// Adds each state of timestep i to its corresponding array
void addToAvg(int i, double a);

// Selects particular timestep i and puts state values into
// dayOfStuff array

void changeDayOfStuff(lnt i);

// Returns the dayOfStuff array

double *returnDOS();

private:
double * ususc;
double * uinfl;
double * ulnf2;
double * uinf3;
double a uinf4;

double * qO;
double ql;

double * q2;
double * q3;
double 0 quar;
double * tusc;
double * tinf;
double * tinf2;
double * tinf3;
double * tinf4;
double * z;
double * d;

double * dayOfStuff;

};

#endif // !deflned(AFXAVERAGERH__ INCLUDED_)

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
// Averager.cpp: implementation of the Averager class.

//
///////////////////////////////////////////////////////////////////
#include "Averager.h"

///////////////////////////////////////////////////////////////////
// Construction/Destruction

/////////////////////////////////////1//////////1/////////////
Averager::Averager(int numDays)

{
uusc new double[numDays];

uinf 1 = new double[numDays];
uinf2 - new double[numDays];

uinf3 new double[numDays];
uinf4 - new double[numDays];
qO new double[numDays];
ql - new double[numDays];
q2 - new double [numDays];
q3 - new double[numDays];
quar = new double[numDays];

tsusc new double[numDays];
tinfl - new double[numDays];
tinf2 - new double[numDays];
tinf3 new double[numDays];
tinf4 - new double[numDays];
z new double[numDays];
d - new double[numDays];
dayOfStuff = new double[17];

for(int i 0 O; i < 17; i++)

dayOfStuff[i] O;

for(int i - O; i < nuDays; i++) {
ususci] - O;
uinfl[i] - O;
uinf2[i] = O;

uinf3[i] O;
uinf4(i] - O;
qO[i] - 0;

ql[i] - O;

q2[i] O;
q3i] O;

quar[i] = O;
tsusc[i] = O;

tinfl[i] = O;

tinf2[i] - O;
tinf3[i] - O;

tinf4[i] O;

z[i] - O;
d[i] - O;

Averager:: Averager ()

{
delete [] ususc;
delete [] uinfl;
delete [] uinf2;
delete [] uinf3;
delete [] uinf4;
delete [] qO;
delete [] ql;
delete [] q2;
delete [] q3;
delete [] quar;
delete [] tsusc;
delete [] tinfl;
delete [] tinf2;
delete [] tinf3;
delete [] tinf4;
delete [] z;
delete [] d;
delete [] dayOfStuff;

/ee*****e*e**************e*********************e****************

** Adds values from array ar to arrays holding
** timestep.

each state in each

** Requires: 0 < i < numDays, length of ar 17

*e Modifies: All arrays holding each state
*e Returns: nothing

*/
void Averager::addToAvg(int i, double * ar) {

ususc[i] +- ar[O];
uinfl[i] +- ar 1];
uinf2[i] += ar[2];
uinf3[i] +- ar[3];
uinf4i] +- ar[4];
qO[i] += ar[5];
ql[i] +- ar[6];
q2[i] +- ar[7];
q3i] += ar[8];
quari] - ar[9];
tsusci] +- arc[10];
tinfli] + ar[11];

tinf2[i] +- ar[12];
tinf3[i] + ar[13];
tinf4[i] += ar[14];
z[i] - ar[1S];
di] - ar[16];

}

** Changes dayOfStuff array to hold the number of people in each
** state to day i
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** Requires: 0 <- i <- numDays
** Modifies: dayOfStuff

** Returns: nothing

*/
void Averager::changeDayOfStuff(it i) {

dayOfStuff[O] - ususc[i];

dayOfStuff[1] - uinfl[i];

dayOfStuff[2] - uinf2[i];

dayOfStuff[3] - uinf3[i];

dayOfStuff[4] = uinf4[i];
dayOfStuff [S] = qO[i];
dayOfStuff[6] = qI[i];
dayOfStuff[7] - q2[i];

dayOfStuff[8] = q3[i];
dayOfStuff[9] - quar[i];

dayOfStuff[10] tsusc[i];

dayOfStuff[11] = tinfl[i];
dayOfStuff [12] - tinf2[i];

dayOfStuff (13] - tinf3[i];
dayOfStuff [14 - tinf4[i];
dayOfStuff [15] - z[i];
dayOfStuff [16] =- d[i];

** Returns array of numbers of people in each state for the day

* that dayOfStuff array currently holds.

** Requires: nothing

** Modifies: nothing

** Returns: dayOfStuff [array of length 17]

*/
double Averager: returDOS() {

return dayOfStuff;

}
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B.6 Log file printer

/1/////////////////1//////////////////////////////////////
// Printer.h: interface for the Printer class.

//
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
// CLASS DESCRIPTION

//
// This class i used to print output to log files. The call
// PrintDay takes in an array of the day's values for each state,

// and prints them out to the appropriate states.

//

#if defined(AFXPRINTERH__ INCLUDED_)

#define AFXPRINTERH__INCLUDED_

#if MSCVER > 1000

#pragma once
#endif // MSCVER > 1000

#include <iostream>

#include <string>

#include <fstream>

using namespace std;

class Printer

{
public:

Printer();

virtual Printer();

void PrintDay(double * statePop);

private:

void Print(double dnum, ostream& output);
string fl, f2, f3, f4, f5, f6, f7, f8, f9, flO, fll, f12, f3;

string f14, fIl5, f16, f7;
ofstream SOout, IOout, I20out, I_30out, I_400ut;
ofstream QOout, Qlout, Q_20t, Q_3out, Hot;

ofstream Slout, Illout, I_21out, I31out, I_41out, Zout, Dout;

#endif // defined(AFXPRINTERH_ INCLUDED_)

// Printer.cpp: implementation of the Printer class.

//

#include "Printer.h"

II Construction/Destruction

Printer:: Printer()

fl("SOd.txt"),
f2("IlOd.txt"),

f3("I_20d.tt"),
f4("I30d.txt"),
f5("I_40d.txt"),
f6("QOd.tt"),
f7("Q_1ld.txt"),
f8("Q_2d.txt").
f9("Q_3d.txt"),

flO("Hd.txt"),
fll("Sld.tt"),
f12("I_lld.txt"),
fl3("I_21d.txt"),
f14("I_31d.txt"),

flS("I_41d.txt'),

f16("Zd.tt"),

fl7("Dd.txt"),
SOout(fl.cstr()),

I_10out(f2.cstr()),

I_20ut(f3.cstr( 0),
I_30ut(f4.c.strO),

I_40ut(fS.c_str),
qOout(f6.cstr (),
Q_lout(f7.c_str())
Q_2out(f8.ctr()),
Q_3out(f9.cstr),

Hout (f 10. cstr()),
S lout(fll .cstr()),
I llout(f12.cstr()),
I21out(f13.c_str ()),
I-31out(f14.cstr()),
I-41out(flS.cstr()),
Zout(f16.cstr()),
Dot (f 17. cstr())

}

Printer: : Printer()

{
S_0out.close();

IjlOout.close();
I_20out .close( );
I 30ut.close ;

I_400ut.close();
QOout .close();
Qlout .close();
Q_2out .close();
Q_30ut .close();
Hout.close();

S lout.close();

Illout.close();
I_21out.close();
I31out.close();
I_41out .close();
Zout.close();

Dout.close ;

}

Prints output of statePop to proper log file.

Reqires: statePop be array with length 17
Modifies: Log files associated ith each ostream object.

** Returns: nothing

*/
void Printer: :PrintDay(double statePop) {

Print(statePop[O], SOot);
Print(statePop[1], I_10out);
Print(statePop [2] I20ut);
Print(statePop [3], I30out);
Print(statePop[4], I40ut);
Print(statePop[5] QOout);
Print(statePop [6], Qlout);
Print(statePop [7], Q_2out);
Print(statePop[8], Q_3ot);
Print(statePop[9], Hout);
Print(statePop[10], Slot);
Print(statePop[11], Illout);
Print(statePop[12], I_21out);
Print(statePop[13], I_31t);
Print(statePop[14], I_41out);
Print(statePop[15], Zout);
Print(statePop[16], Dout);

Prints dnum to log file output.

Requires: nothing
Modifies: output
Returns: nothing

*/
void Printer::Print(double dnum, ostream& output) {

output << dnum << endl;
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