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Abstract

This paper describes how a reengineering methodology was developed
and applied, to convert part of a system implemented in CMS-2 to a new C
implementation. In particular, this methodology used Larch specifications
as an intermediate design representation that was obtained through reverse
engineering. The benefits of using this methodology and ways of improving
it, primarily through automation, are suggested.
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CHAPTER ONE

INTRODUCTION

Systems reengineering is the practice of taking an existing system

and reimplementing it in a new and more advantageous form. This

technique avoids the expense of completely redeveloping system software by

allowing it to be transitioned to a more modern and maintainable language

using its existing design. This process may also offer the benefits of

extending the life of the system, reducing hardware dependency, improving

maintainability, and generating new and more accurate documentation.

Little formal research has been performed on the reengineering of

software from an existing system into a different programming language.

The research to date has focused on redocumentation [3,29] and

restructuring [5,27]. While these efforts have been useful, they have not

fully addressed the problem of language to language software reengineering.

It was the intent of this research to experiment with a particular

reengineering process and methodology, and determine its effectiveness

when used on source code from an existing system. Although the scope of

this project only allowed a fragment of a software system to be

reengineered, this research did provide a foundation for understanding the

process, results, and challenges of reengineering. The intent was that

future research would extend from this research, so as to create a more

complete characterization of the reengineering process.
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The research focused on the reengineering of a 299 line CMS-2

procedure and the data objects that it used to a C implementation, using

Larch specifications as an intermediate representation. The unclassified

CMS-2 source code was taken from an existing U.S. Navy weapons system,

the MK116 Mod7 torpedo system. From this work, a reengineering

methodology was developed, results were obtained from an experimental

application of this methodology, and information regarding possible

automation of the reengineering process was gained.

The rest of this thesis is organized as follows: Chapter Two defines

relevant terms and provides background information about the

reengineering project; Chapter Three provides specific information about the

languages and systems used in the project; Chapter Four describes the part

of the reengineering methodology that addresses reverse engineering;

Chapter Five describes the forward engineering process; Chapter Six

presents interesting examples encountered during reengineering and

analyzes the project's results; Chapter Seven provides the research's

conclusions and suggests areas for future study.
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CHAPTER TWO

THE BACKGROUND OF SYSTEMS REENGINEERING

Systems reengineering is a research area that integrates maintenance

and new development. The large number of systems in the maintenance

phase of their lifecycle along with the advances in development techniques

has made it profitable to focus on improving current systems using new

development methods. The upgrading, or traditional maintenance, of

existing systems often costly because of problems with its implementation

and prior maintenance practices. Often the size and complexity of existing

systems makes it difficult to redevelop software to help reduce maintenance

costs. System reengineering, using an intermediate representation, may

offer a cost effective alternative to redevelopment to attain improved system

maintenance. In particular, the use of formal methods as an intermediate

representation may be helpful by providing accuracy and precision.

2.1 Definitions

This section defines the terminology used throughout the rest of this

paper. Most of the definitions are commonly accepted, but some definitions

have been extended so as to convey a meaning more relevant to this

research. They move from general reengineering definitions to definitions

more specific to this project.

Figure 1 provides the generalized definitions for several reengineering
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Design Representation - The implementation-independent, abstract
representation of the design of a system.

Forward Engineering - The process of moving from high-level abstractions
and logical, implementation-independent designs to the physical
implementation of a system.

Redocumentation - The creation or revision of a semantically equivalent
representation of a system intended for a human audience.

Reverse Engineering - The process of analyzing a subject system to
identify the system components and their interrelationships, and to create
representations of the system in another form or at a higher level of
abstraction.

Reengineering - The examination and alteration of a subject system to
reconstitute it in a new form and the subsequent implementation of the new
form. This includes some form of reverse engineering (to achieve a more
abstract description) followed by some form of forward engineering or
restructuring.

Reimplemenation - The process of forward engineering a design
representation which was obtained through reverse engineering.

Restructuring - The transformation from one form of system representation
to another at the same relative abstraction level while preserving the subject
system's functional requirements.

Figure 1. Generalized reengineering definitions.

related terms, which are based on those of Chikofsky and Cross [6]. These

definitions could apply to any number of types of systems including

hardware, software, organizational, etc. The definitions shown in Figure 2

apply to reengineering at the system level [21]. They address the

integrated components of systems and do not view system as a single

unified entity. Figure 3 provides definitions that are specific to the

reengineering of software systems. These definitions focus on the

10



components of a software system and the specifics of the software

reengineering process.

Environmental Characteristics - The external properties which affect the
design of an embedded system including human-machine interfaces and the
organizational structure which the embedded system is a part of.

Nonfunctional Requirements - The real-time, time critical, reliability,
fault tolerance, maintainability, and security issues which characterize
systems.

Systems Reengineering - Transformation of any of the components in a
system including the hardware, software, and environmental characteristics
which produces a new implementation of the system.

Figure 2. System reengineering definitions.

Software reengineering, as defined, will be simply referred to as

reengineering henceforth. Thus, the term reengineering will refer to 1) the

transformation from one programming language to another 2) the use of an

intermediate design representation, 3) the reverse engineering process, and

4) the forward engineering process. The latter two points are inherited

from the generalized definition of reengineering. These four points are

important for characterizing the type of reengineering addressed in this

paper.

2.2 Reasons for and Benefits of Reengineering

Software reengineering is an important issue because of the large

number of existing systems that are implemented in older programming

languages. These systems have severe maintenance problems because of a
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Software Reengineering - The reengineering of an existing software

system to new target language using an intermediate representation to

capture the software design information.

Source Language - The programming language that an existing software
system is implemented in.

Target Language - The programming language that is used to represent a
forward engineered software implementation.

Translation - The automated conversion of software written in one
programming language to another programming language using direct
syntactic substitution.

Figure 3. Software reengineering definitions.

lack of portability, poor documentation, and poor prior maintenance

practices. It is also difficult to hire new programmers and maintainers that

are familiar with some older programming languages.

Through the exclusion of implementation specific information in the

design abstraction process, hardware dependencies in reengineered software

may be reduced. The removal of these aspects improves portability between

hardware platforms, allowing more flexible use of new hardware technology.

Removal of hardware dependencies also allows the maintainer who is

unfamiliar with a system's hardware to understand the system's

functionality more easily.

The reengineering process extracts software's design into a

representation that can be used as documentation for the old system as well

as the new. Since the documentation is derived directly from the software,

it is likely to be both consistent with the software and up to date. This
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method of generating of new documentation can improve understanding of

the system by providing information that was previously undocumented

(i.e., changes that have been made, the relationship between different

modules, and system complexity statistics). This information can be useful

for determining how future maintenance should be approached.

The ability to use new maintenance environments can also be gained

through reengineering. By porting software to new languages and systems,

new maintenance tools, which could not be used with the previous language

or system, can often be used. Such tools can include new CASE, automated

documentation, and software analysis tools.

Direct translation:

Source Target
Language Language

Use of intermediate representations:

Source Intermed. Intermed. Target
Language Rep. 1 . . . Rep. N Language

Figure 4. Two approaches to transitioning software from one programming
language to another.

2.3 Reengineering Strategies

Two approaches can be used to transition software from one

programming language to another: 1) the use of direct translation from one
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language to another, and 2) the use of intermediate forms to represent the

software in the transition between the two languages (see Figure 4). These

two approaches will be referred to as the translation and restructuring

approach and the intermediate representation approach, respectively. The

direct translation approach is often enhanced by automated restructuring of

the new source code, so that it can take advantage of the target language's

characteristics.

While restructuring [5,27] is a key point in the first approach, it is

important to note that restructuring is a process that can be applied

whether or not an intermediate representation is used. Also, not only can

the reimplemented source code be restructured, the original source can be

restructured prior to any transitioning.

2.3.1 The Translation and Restructuring Approach

The focus of the translation and restructuring approach [4] is on

providing effective translation and useful restructuring. One advantage

that this approach offers is that the translation process can be simple if

similar languages are used. Another advantage of this approach is that

much of the focus is on using and developing restructuring and repackaging

tools, which can also be applied to traditional software development

practices.

Two disadvantages of this approach are that it does not necessarily

improve understanding of the system, and inefficient implementations in

the original code may persist in the new implementation. These
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disadvantages occur because reverse engineering is not employed in the

transitioning process. Because the restructuring is automatic, and is based

on the new source code, no reverse engineering is performed and thus a

design abstraction is not obtained. This, in turn, leads to no improvement

in system understanding. Similarly, because there is no functional

abstraction, many of the previous implementation decisions will migrate to

the new implementation.

2.3.2 The Intermediate Representation Approach

The intermediate representation approach is what this thesis refers to

more specifically as software reengineering [9,23]. This approach focuses on

using a series of transformations, which result in one or more intermediate

forms. The emphasis is on applying transformations that will improve

maintainability and result in improved implementations.

The advantages of the intermediate representation approach are that

it provides design level documentation for the system, allows restructuring

at the design level, and abstracts away from implementation dependent

issues. The use of intermediate representations provides an automatic form

of documentation for both the original system and the new implementation.

Likewise, these intermediate forms provide a framework for restructuring

at a more abstract level than that of either the original or the new

implementation.

The disadvantages of this approach are that the process can be more

complex and may not be as easily automated as the translation and
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restructuring approach. The main difficulty is that abstraction away from

the source code into intermediate representations requires complex analysis,

which can not be fully automated.

2.4 Research Approach

The approach taken to this project was to define a high level

reengineering process, use it to experimentally reengineer part of an

existing system, and define a reengineering methodology based on this

experience. Defining a high level reengineering process involved choosing a

primary intermediate representation and determining what major steps

were involved.

Although the approach was accomplished primarily using manual

methods, the reengineering process must be partially automated to be

effective. In the course of experimenting with this process and determining

a methodology, it was useful to consider what parts might be automated.

This involved observing what parts were mechanical, what parts required

analysis of large amounts of data, and what parts could be improved by

providing a better reengineering environment. While it was not feasible to

develop the necessary automation as part of this research, it was possible to

capture the reengineering process and the methodology's fundamental needs

for automation.
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CHAPTER THREE

COMPONENTS OF THE REENGINEERING PROJECT

3.1 The Source Language: CMS-2

For the reengineering example, it was necessary to choose a source

language for which could benefit from reengineering, and which contained

interesting systems characteristics. The CMS-2 programming language [2]

was chosen as a source language because it fit these requirements. There

was a large amount of CMS-2 software that was in the maintenance stage

and that could be reimplemented in another programming language to

improve portability and maintainability. CMS-2 also contained many

systems related characteristics such as hardware dependencies, real-time

performance requirements, reliability requirements, and interesting

intermodular characteristics.

3.1.1 Background

CMS-2 was developed in the late 1960s for the Navy, for use in the

development of tactical systems. Software written in CMS-2 is intended to

be run on various AN/UYK and AN/AYK series computers. There are

several dialects of CMS-2, including CMS-2M and CMS-2Y, which

correspond to the different hardware platforms on which they are designed

to be run. Nearly all Navy tactical systems have been implemented using

CMS-2 or a dialect thereof.
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3.1.2 Structure

CMS-2 programs are divided into data areas, executable statements,

and control information areas. Data can be defined either locally or globally

(at the system level). Executable statements are contained in functions and

procedures, which can be reentrant. Control information, consisting of

compiler switches, macro substitutions, and hardware dependent

information, is included in header blocks.

3.1.3 Features

One of the more interesting aspects of the CMS-2 language is how

data is organized and manipulated. CMS-2 provides specific control over

how data is allocated and stored, by allowing the user to specify how tables

are arranged and packed. The overlay feature in CMS-2 allows the same

data area to be referenced by different variable names and various types.

The addresses of data objects can also be determined during run time and

used in the executable code.

The ability to use embedded assembly language within CMS-2 source

code, referred to as direct code, also gives CMS-2 programs interesting

properties. The DIRECT keyword is used to define a code block that

contains macro assembler code that interacts with the CMS-2. Such code

blocks are primarily intended for I/O operations. Direct code blocks can be

used for data declaration as well as execution of operations. Using direct

code usually requires an understanding of how registers are being used by

the CMS-2 code that surrounds the direct code block. In addition,
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understanding how registers are used in CMS-2 procedures often requires

the compilation of the surrounding CMS-2 code and the examination of the

object code generated.

CMS-2 does not explicitly support data abstraction and provides little

isolation from the underlying hardware. Many of CMS-2's attributes result

from the era in which the language was designed. In the late 1960s both

memory resources and computational speed were severely limited; it was

important to be able to closely interact with the hardware so as to take full

advantage of the resources. These considerations are reflected in the data

allocation and manipulation capabilities, and the direct code feature.

3.2 The Intermediate Representation: Larch Specifications

Software reengineering can use many different types of intermediate

representations. Possible forms include data flow diagrams, abstract

grammar trees, formal specification languages, program design languages,

and informal descriptions. Each of these representations have their benefits

and drawbacks. In choosing one or more intermediate representations for

reengineering, it is important to consider what purpose the representation

must serve.

Given the objectives of the research, it was necessary to find an

intermediate representation that was accurate, precise and flexible enough

to robustly handle systems issues. The Larch family of specification

languages was chosen as an intermediate representation because of its
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features and the available support. Larch specifications were flexible and

could be tailored to describe software written in various programming

languages. Larch also supported both intermodular and intramodular

specification well, which was necessary for a design representation to be

effective. The availability of semantic and syntactic checking tools for Larch

also made it attractive.

3.2.1 Structure

Larch is a formal, two-tiered set of specification languages. The first

tier, the Larch Shared Language (LSL), provides a programming language

independent form for defining terms used in interface specifications and

generating theories about those terms. The second tier, the Larch Interface

Languages (LILs), specify what is needed to write and use program

modules. The LILs contain language specific information about data

representations, module interfaces, and exception handling.

This two tier division is advantageous for reengineering because it

allows a common form of representation, the LSL description, as well as a

language specific form, the LIL interface. There are multiple LILs currently

available including Larch/C, Larch/Ada, and Larch/Modula-3 [10,14]. This

division allows target languages to be changed by only respecifying the LIL

part of the specification.

3.2.2 Features

Larch specifications are based on the use of data abstractions. This

specification style provides an understanding of program functionality based
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on the data constructs as well as the control and data flow. By reverse

engineering software into data abstraction-based specifications, new

implementations can take advantage of the encapsulation and data hiding

that result from the specification process.

Incremental construction is also a key feature of Larch specifications

that make them both more understandable and easier to compose.

Specifications are composed by extending and constraining preexisting

specifications to form new ones. This technique results in the building of a

hierarchy of specifications. Such a hierarchy abstracts information out of

the individual specifications making them more easily understood.

Likewise, the division of specifications into multiple pieces encourages reuse

because existing specifications can, and should be used as a basis for new

specifications.

For this project, the Larch/C interface language (LCL) was used in

conjunction with the LSL to represent the software's functionality. Support

provided for Larch included LSL and LCL checkers. The LSL and LCL

checkers provided automated semantic and syntactic checking. The Larch

Prover [11,12], which performs logical checks on specifications, was not used

because of the time and resource limitations. Ideally, LSL and a

Larch/CMS-2 interface language would have been used to express the

intermediate representation attained through reverse engineering. LCL

was used, though, because Larch/CMS-2 did not exist and could not be

developed within the scope of this project.
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3.3 The Target Language: The C Programming Language

Reengineering software required that the target language be flexible,

easily maintainable, widely supported, and easily portable. The C

programming language was chosen as a target language because it met all

of these requirements: it was flexible in that it supported both high and

low level programming needs; it was simple, it was designed with systems

programming as a primary consideration; and it was popular. The available

support for the Larch/C interface language also made it a good choice.

3.3.1 Background and Structure

The C programming language was developed in the early 1970s by

Dennis M. Ritchie. It was designed as a general purpose programming

language that is highly portable. C is a fairly low level language and relies

heavily on the use of library functions. C uses libraries to avoid hardware

dependencies that occur when hardware dependent functions are included

in a programming language. The C programming language has been

standardized by the American National Standards Institute (ANSI) [1,171.

3.3.2 Features

C provides pointers and the ability to do address arithmetic, both of

which are used extensively in C programs. A preprocessor allows for macro

substitutions and compiler switches. Standard C libraries provide many of

the 1/0, string handling, and math functions that are built into other

languages. C also allows explicit control over run-time memory allocation
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and deallocation.

C provides great flexibility because of its low level nature, and is

easily understood because of it's simplified syntax. It does not include

explicit mechanisms for supporting data abstractions. Reimplementing

CMS-2 software in C can allow simpler expression and improved portability

over the original implementation.

3.4 The Test Case: The ASWCS 116/7

The reengineering test case had to be part of an existing system in

the maintenance phase of its life cycle. It was also important that the

system could benefit from reengineering and had interesting systems

characteristics. Part of the ASWCS 116/7 software was chosen as a

reengineering test case because it fit these requirements well. The ASWCS

116 system had been in the maintenance phase for several years and had

just undergone a revision. It was bound to specific hardware because of its

CMS-2 implementation. It was also a mission critical computer system,

which meant that it had real-time performance requirements and fault

tolerance needs.

3.4.1 Background

ASWCS 116/7 software is a decision support system for a torpedo

weapons system. It integrates the inputs from external sensors and user

controls, analyzes the information, and displays relevant information to the

operator. It consists of approximately 200,000 lines of CMS-2 code and is
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divided into 5 major subsections. The ASWCS 116/7 system was based on

the previous ASWCS 116/5 system, which was also written in CMS-2, and

has been under development for approximately three years. The ASWCS

116/7 system is just beginning its field use.

Many of CMS-2's characteristics make the ASWCS 116/7 software

difficult to maintain. Lack of modularity and clearly defined interfaces are

two predominant maintenance obstacles. These problems require the

understanding of a large portion of the system to maintain only a small

section of it. The limitation of eight character symbol names, which CMS-2

imposes, also makes it difficult to create meaningful names in a large

system such as the ASWCS 116/7. The use of in-line assembly language

progranuning and overlayed memory are additional factors that make

understanding the software difficult.

While the Navy uses the software and is responsible for maintenance,

the Navy did not develop the ASWCS 116/7 software. Rather, the Navy

provided the functional requirements for the system and it was developed

by General Electric. There are several forms of documentation available for

the ASWCS 116/7 software system. Three of the primary forms are: the

Program Performance Specification (PPS), the Program Design Specification

(PDS), and the Program Description Document (PDD). The PPS was the

functional requirement specification on which the program development was

based. The PDS was the design level specification that provided a mapping

between the PPS and the program modules. The PDD consisted of a low
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level description of the function of each module and was expressed in a

program design language (PDL).

The documentation is difficult to understand because of its large

quantity (several shelves worth), the extensive interrelation between the

program sections, and the relationships that must be traced between the

various documentation levels. Also, much of the documentation is

inconsistent with the actual software because the implementation of many

sections was deferred. Using this documentation and comments provided in

the software, Navy personnel must correct programming errors, implement

new features, and otherwise maintain the system.

3.4.2 Structure

The ASWCS 116/7 software consists of four major subprograms: the

Auto Processing Computer Program (APCP), Display and Control Computer

Program (DCCP), Mission Support Computer Program (MSCP), and

Executive Support Computer Program (ESCP). The functions of the Mission

Support Computer Program are to support display and control, provide

system readiness assessment, provide readiness control, and handle data

extraction and recording. Of these functions, the readiness control (RC)

function provides the ability to initiate, maintain, and terminate the overall

operation of the system. The RC function provides initialization control,

termination control, system recovery and mode control.

The RCININIP subtask, part of the RC function, performs

initialization control and system recovery for the MSCP. This subtask is
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executed by four subtask units: RCININIT, RCINPERD, RCINSUCC, and

RCINMGT. RCININIT serves as the initialization entrance control;

RCINPERD serves as the periodic entrance control; RCINSUCC provides

the successor entrance control; and RCINGMT processes the entry of the

time and date.

The RCINSUCC subtask unit is a task that consists of two

procedures: RCINSUCC and RCINFAIL. The RCINSUCC procedure

processes the successor entrance requirements for initialization processing.

RCINFAIIL handles the processing for initialization response failures. Of

the subtask units and procedures available, the RCINSUCC procedure of

the RCINSUCC subtask was chosen to be a reengineering example. The

choice of the RCINSUCC procedure was somewhat arbitrary, but was based

primarily on the size and complexity of the module. The listing for

RCINSUCC can be found in Appendix A. The source code itself is fairly

difficult to understand because of the enigmatic variable names and lack of

modularity.

3.4.3 Details

The RCINSUCC procedure is an average sized procedure in the

ASWCS 116/7 system that consists of 521 text lines of code, of which the

first 222 lines are PDL comments and following 299 lines are actual source

code. RCINSUCC has no formal parameters passed to it, and there are no

local variables for the RCINSUCC procedure other than two index variables

that are used as loop counters. The data used by the procedure, 12 tables
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and 25 variables, is contained in separate database files containing the data

declarations. The database files correspond to subtask, task and global

level data. The ASWCS 116/7 software also uses the features of the

SDX/SDEX operating system extensively, including task scheduling.
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CHAPTER FOUR

REVERSE ENGINEERING

4.1 Introduction

Reverse engineering was by far the most extensive and challenging

part of the project. Most of the effort included understanding the CMS-2

code and finding ways of describing its functionality using data

abstractions. Although the reverse engineering process was accomplished

manually, automated analysis and support techniques would benefit this

process.

4.1.1 Goals

The goal of the reverse engineering process was to provide a design

representation that would improve maintainability. Based on this goal, the

process was oriented towards providing conceptual information about the

design that would improve understanding and thus improve maintainability

of the new implementation. This goal also made the reverse engineering

process more complex and interesting. The process could have been

simplified, but it would not have provided as effective a study or as useful

results.

In particular it was the objective of reverse engineering to create an

intermediate design representation that abstracted design information

about the software into a more usable form. This form would be more

conceptually understandable than the implementation, show relationships
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that were not apparent in the implementation, and hide implementation

issues. It was also important to have available a mapping between the

intermediate design representation and the original implementation, so that

both forms could easily be compared.

4.1.2 Approach

Improvement in maintainability was achieved through an extensive

reverse engineering process. This process involved symbol renaming, data

reorganization, module decomposition, and specification of sequential

dependencies. Through these phases a procedural representation of the

original CMS-2 source code was transformed into LCL procedural

specifications and the data abstraction, which were identified, were

described by LSL data specifications. The final result was a set of Larch

specifications that represented the functionality of the original software. It

is important to note that the lack of a Larch/CMS-2 interface language was

a primary factor that led to the use of this approach.

The reverse engineering process was performed in six phases:

renaming, module decomposition, data analysis, data recomposition,

dependency determination and specification, and conversion into LCL

specifications. Renaming was used as an initial measure to make the

reengineering process and resulting specifications more comprehensible.

Module decomposition was based on complexity and module structure, and

was performed to make the procedural representation more manageable.

Data analysis examined the functionality and interrelation of data and
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determined how new data abstractions should be formed. Data

recomposition formally defined the data abstractions in the form of LSL

specifications. Dependency determination and specification analyzed the

source code to identify sequential relationships, and then specified them in

the procedural representation. The final stage of the reverse engineering

process was the conversion of the procedural representation into LCL

specifications.

A representation of the original CMS-2 procedure was transformed

during each stage of the reengineering process. This representation was

referred to as the procedural representation of the original software module.

The procedural representation began as the original CMS-2 source code.

Over each phase of the reverse engineering process, the procedural

Renaming Data Dependency
Analysis Determination

CMS2 -)Prc .- )Proc . Proc . -',Proc . 'Proc . - LCL
Src Rp. Rep. Rep. ARep. Rep. Specs

Module Data Conversion
Decomposition Recomposition to LCL

Figure 5. Transformation of the procedural representation.

representation came closer to resembling the final LCL specifications that

were generated, as shown in Figure 5.
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The lack of a Larch/CMS-2 interface made the reverse engineering

process more difficult, because it was necessary to partially describe the

CMS-2 code using LCL specifications. Ideally, the reengineering process

would have reverse engineered the CMS-2 software to a LSL and

Larch/CMS-2 specification set. This interface language would provide a

more natural means of specifying an interface from the LSL specifications to

the CMS-2 code. Then, as part of the forward engineering process, the

CMS-2/Larch specifications would be transformed to LCL specifications so

that C source code could be written using the LCL specifications. Since

there was no Larch/CMS-2 language available and would be difficult to

develop as part of this project, it was necessary to respecify the CMS-2

directly into LSL/LCL.

4.2 Renaming

The renaming phase of reverse engineering was one of the most

straightforward and useful parts of the reverse engineering process. This

phase involved choosing more descriptive names for the CMS-2 variables,

reexpressing variables as new types that better characterize the data's

function, and reexpressing the procedural representation of the source code

in a form that was more easily understood by the researcher. These

changes would eventually propagate to the Larch specifications and

sometimes to the new implementation. When renaming, it was necessary to

keep track of how the original source code names and structures mapped to
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the new procedural representation and vice versa.

The only symbols that were not renamed were other functions, which

had not been reverse engineered, and system functions. It was intended

that these symbol names would be changed at a later point in the

reengineering of the system. Only parts of the system that had been

reengineered would have their symbol names changed. This would make it

evident which parts of the system had not been reengineered yet.

4.2.1 How Renaming Was Performed

The CMS-2 data variables were renamed and CMS-2 keywords and

data variables were reexpressed. Some simple analysis was required to

reexpress data types, so as to achieve more effective renaming.

Reexpressing the CMS-2 keywords was helpful for making the procedural

representation more generic and thus more easily understood.

4.2.1.1 Data Renaming

Data objects were renamed based on their function. Variable of

simple types were renamed as single variables with new names. When

complex data structures were renamed, their subcomponents were renamed

also. The names chosen were primarily determined by comments around

the data declaration and comments near references to the data. The names

were also partially determined by simple analysis of how the data was used.

An example of how a simple variable was renamed is shown in

Figure 6. The variable QTMFG is declared as an integer, but the comments

accompanying the declaration suggest that the variable is actually used as a
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based on the declaration:

''CRITICAL TASK FAIL FLAG, 0/1''
VRBL QTMFG I 32 S $

QTMFG is renamed as -> crittaskfailflag

Figure 6. An example of data renaming.

flag that denotes a critical task failure, and that it will only hold the values

0 and 1. Upon tracing of all references to that variable in the program, it

was determined that the variable was indeed only assigned values of 0 and

1. Based on this knowledge the variable was renamed as a flag.

4.2.1.2 Data Reexpression

Simple data analysis was also performed at this stage of the

reengineering process so that the data could be reexpressed as simpler

types. Types were simplified where possible, so as to make their

functionality more apparent. The example above showed how an integer

type is determined to be equivalent to a boolean in its use, and its renaming

based on this information. Similarly, some tables could be reduced to

tuples, or structure types, and some variables could be reduced to

enumerated types. This analysis was useful as a basis for more complex

data analysis at later stages of the reverse engineering process.

An example of such an equivalence is shown in Figure 7. The table

QHTERMRQ has only one dimension and therefore is equivalent to a tuple or

structure type, which is how it is reexpressed. The introduction and use of
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partially based on the declaration:

TABLE QMTERMRQ V 1 1 ''TERMINATION (TERM) MESSAGE''$
FIELD REQ I 8 U 0 7 ''TYPE OF TERMINATION -

OPERATOR REQUEST OR
RCIN, 1 - 2'' $

FIELD FAILTYPE I 8 U 0 15 ''FAILURE TYPE,1 - 2''$
END-TABLE QMTERMRQ $

QMTERMRQ (0, REQ) is reexpressed as term_msg. term type
QMTERMRQ(0,FAILTYPE) -> term_msg.fail type

Figure 7. An example of data reexpression.

a simpler type is useful in this situation because it enables the data's type

to better reflect the data's function. After renaming and reexpression, it

was obvious by viewing the procedural representation that QMTERMRQ was a

message structure. This was not apparent from the reviewing CMS-2

procedure.

4.2.1.3 Keyword Reexpression

CMS-2 keywords were also reexpressed and the structure of the

procedure representation was modified to accommodate the new expression.

Reexpression was used to move away from CMS-2 specific control

statements and structures such as a FOR statement, which is the

equivalent of a switch statement in C, to more generic and LCL-like forms

such as an if, else, and else if representation. The indentation structure

was also changed at this stage to assure that the indentation was consistent

throughout the procedural representation and to make the control blocks

more clear. It is important to note that if a Larch/CMS-2 interface
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language was being used instead of the LCL or if researcher was more

familiar with CMS-2 this process may not have been necessary or as useful.

4.2.2 Substitution

After new names were chosen and the means of reexpression was

determined, the new forms were substituted into its procedural

representation for the original symbols. Also, comments, blank lines, and

BEGIN and END statements were removed from the procedural

representation. Removing these constructs resulted in an 40% reduction in

the size of the procedural representation. The resulting procedural

representation was a much more readable and understandable form of the

original procedure. This form of the procedural representation would be

the form used in the complexity analysis and decomposition phase.

4.2.3 Renaming Map

It was important to keep a two-way mapping between the original

CMS-2 symbol names and the new names, so that symbols could be traced

from the original CMS-2 code throughout the reverse engineering process.

Maintaining this mapping was quite tedious especially as more and more

modifications were made at later stages of the reengineering process. This

mapping contained not only the name mapping itself but also information

about how and why the mapping was made, and recorded the conclusions of

any analysis. The reexpression information was also recorded in the

renaming map and was used again for later data analysis.
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4.2.4 Automation of the Renaming Process

While the choosing of names is a task that requires human insight

and understanding, the renaming process involves extensive searching and

record keeping that could easily be automated. By automating the location

and presentation of references to symbols, the time and effort required to

perform renaming would be reduced. The automated generation and

maintenance of the renaming map would also be useful. Furthermore, an

automated analysis support could be provided for identifying type

simplifications.

4.3 Modular Decomposition

Modular decomposition divided existing modules into smaller, more

easily handled modules. This division had the advantage of reducing the

number of external references per module in the final specification and

reducing the complexity of each individual module. The module

decomposition was based on separating control blocks in the procedural

representation, but other techniques could also be used. The result of the

decomposition phase was the separation of the procedural representation

into several different modules. Automated analysis tools would be useful

for assisting the analysis and mechanics of this process.

4.3.1 Reasons for Modular Decomposition

The RCINSUCC procedure was originally 299 lines of source code,

which was equivalent to five pages of text. The size of the procedure made
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successorentrancecontrol

calclock

handle_initcompletemsg

handleinitresponse

handle initfail_response

Figure 8. The new structure of RCINSUCC after renaming and modular
decomposition.

it difficult to work with and understand. Modular decomposition divided

the procedural representation into four additional sub-modules. This

reduced the size of the procedural representation of the top level

RCINSUCC module to 15 lines, and the representations of sub-modules to

62, 64, 16 and 25 lines each. Figure 8 shows the procedural representation

of RCINSUCC after renaming and modular decomposition.

By creating smaller modules, it was easier to reverse engineer the

module in parts. Smaller units also resulted in final specifications that

were more understandable, because the reduction of unit complexity also

made the functionality of each module easier to described. Figure 9 shows

procedural representation of the top level submodule,

successorentrancecontrol. The change in understandability is evident

when the procedural representation shown in Figure 9 is compared to the

37



PROCEDURE successorentrancecontrol()

BEGIN
tsd.msg_id = ATESsd.controlword $
tsd.sendtaskid = ATESsd.word_1 $
IF (tsd.msg_id == tsd_msg_id INIT) THEN
handleinit complete msg ()

ELSE IF (tsd.msgid == tsd_msg_id_INIT_RESP) THEN
handleinit-responsemsg ()

ELSE IF (tsd.mgjid == tsd_msgidINIT_FAIL_OVERRIDE) THEN
handleinit_failresponse()

ELSE
SSLOGERR(errorstrSUCC_ENTCONT, tsd.msgid,NULL) $

EXEXIT(NULL,NULL) $
END $

Figure 9. The procedural representation for the top level module representing
RCINSUCC after renaming and decomposition.

original CMS-2 code or even the code's PDL description (see Appendix A).

These benefits propagated throughout the reengineering process to the

reimplemented C code, which had reduced complexity, making it more

maintainable.

Dividing the RCINSUCC procedure into smaller sub-procedures also

resulted in fewer external variables being referenced by each module. For

example, the original RCINSUCC procedure accessed a total of 37 external

data objects. After modular decomposition, the top level module used only

one external data object, and the most that were used by any one module

was 21. The rest of the external data accesses were contained in the

submodules. This decoupling made each module more understandable

because the number of external objects that had to be located and

understood was reduced.
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4.3.2 How Decomposition was Performed

Decisions about how modules should be divided were based on five

factors. The size of code blocks was one decomposition criterion. The

objective of not allowing overly large modules is a common goal for software.

Complexity was another criteria that was used, since reduced complexity

made modules more maintainable. Functionality was also a natural way of

decomposing modules. While there were no specific rules on what limits to

use for each of these criteria, specific guidelines could easily be chosen.

Isolating hardware dependencies was another basis for creating

submodules. Separating blocks of code bound to compiler switches allowed

them to processed with in later stages of reengineering independently of the

main procedural representation. Similarly, direct assembler code could also

be isolated by abstracting it into a submodule.

4.3.3 Automation of Modular Decomposition

It would be easy to automate the processes of complexity analysis and

decomposition. Modular complexity analysis techniques [19,20] are

available that would be directly applicable to this process. Control flow

complexity metrics are another means that could be used for decomposing

modules, since there is a close relationship between separate control paths

and separate functionality. Although automation could improve this

process, it is also important that a maintainer's insight be used to assure

that meaningful functional decomposition was achieved.
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4.4 Data Analysis

Data analysis was one of the most important parts of the reverse

engineering process, because it had the greatest impact on improving

system understanding. It involved evaluating how data was interrelated,

what the data's functionality was, and how data should be reorganized to

form abstractions. This process was important for creating specifications

that accurately described the data's functionality. More accurate

specifications would make the system more understandable and provide

better design level encapsulation, which would make new implementations

more maintainable.

4.4.1 Objective

The objective of the data analysis phase was to determine information

about data relationships that were not immediately evident from the data's

declaration or individual references to the data. These relationships

included data's functionality, its interaction with other data, its functional

composition, and changes that occurred in parallel in different data objects.

This information was then used to reorganize the data into abstractions,

and determine what operations should be provided for the abstractions.

While simplification was the end goal of analysis in the renaming phase, the

goal of data analysis phase was improved recomposition of the data.

4.4.2 Analysis Techniques

The data analysis process began in the renaming phase when data
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declarations and references were examined. This simple analysis allowed

data types to be simplified and renamed more appropriately. In the data

analysis phase, much more complex analysis was performed. Data

relationships and reorganization strategies were determined by analysis of

the original data's implementation, use, interaction, and surrounding

comments.

Examining how data was implemented provided hints about how

what purpose the data served. The data implementation sometimes had to

be reconsidered, since the original implementations often were overstated.

Mechanisms such as data overlays also provided interesting clues about the

data's functionality. Data declarations were also useful for determining

data's initialization state.

The references to the data objects were the critical means of

determining how data was used. This information was necessary for

determining what operators to provide for the reorganized data

abstractions. Studying how data was used also provided insight into ways

in which complexity could be extracted from the procedural representation

and transferred to data abstractions.

Abstraction of functional properties was one way complexity could

often be transferred from the procedural representation to data

abstractions. For example, Figure 10 shows the declaration and references

to an integer variable that was used as a counter. Upon analysis, it was

determined that the variables QCNT1 and QCNT2 were declared, assigned a
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*** FILE rcinlocd.inc:
0423 VRBL QCNT1 I 32 S ''COUNT OF TASK RESPONSES''$
0424 VRBL QCNT2 I 32 S ''COUNT OF TASK RESPONSES''$

* FILE rcinsucp.inc:
0296 SET QCNT1 TO 1 $
0344 SET QCNT1 TO QCNT1+1 $
0416 SET QCNT2 TO QCNT2+1 $
0420 SET QCNT2 TO QCNT2 - 1 $
0422 IF QCNT2 EQ MZNAVTSK
0454 SET QCNT1 TO QCNT1+1 $
0455 IF QCNT1 EQ MZINITSK

Figure 10. Declaration and references to the variables QCNT1 and QCNT2.

Figure 11. Informal specification of the counter data abstraction.

single value, incremented, and decremented. This information lead to the

informal specification of a data abstraction to represent these variables,

which is shown in Figure 11.

Studying the relationships between different data objects and their
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counter = data type is init, inc, dec, fetchvalue

Overview
A counter is a mutable whole number.

init = proc(c: counter)
effects Sets the value of c equal to 1.

inc = proc(c: counter)
effects Increments the value of c by one.

dec = proc(c: counter)
effects Decrements the value of c by one.

fetchvalue = proc(c: counter) returns (int)
effects Returns the value of c.

end counter



uses provided insight into how data objects could be reorganized into more

meaningful abstractions. Determining these relationships was a fairly

laborious task, because of the numerous types of relationships could exist

and the number of possible relationships between objects increased by n!

with the number of data objects. It would been easily possible to reduce the

number of relationships that had to be checked using various techniques,

but because of the limited scope of this research only interrelated data

access was analyzed.

Interrelated data access occurred when one data object was

referenced or modified in a manner that consistently corresponded to the

access or modification of another data object. This often corresponded to the

existence of significant functional relationships between data objects.

Interrelated data access implied that there was a logical relationship that

could be stated about the data, which might be abstracted out of the

procedural code and into data abstractions. This relationship could possibly

SET QTIMLEFT TO 1024 * (30-(QIODONE-QINISTRT)) $

is abstracted to:

update-timeremaining = proc(t: timer)

Figure 12. Abstraction of functional information into a data abstraction
operator.

be incorporated into a single operator for a data abstraction that performed
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the function of the previously existing logical relationship between the data.

Figure 10 shows an example of how interrelated data access was

determined and abstracted. The variable QTIMLEFT is consistently assigned

a value based on the variables QIODONE and QINISTRT throughout the

program. This logical relationship leads to the organization of this data into

an abstraction that hides the specifics about how the time remaining value

is updated.

The analysis of data's conceptual basis provided a means for

understanding the designers' intents and the rationale behind the data's

original implementation. This information was determined based on the

comments accompanying the data declarations, the comments accompanying

the data references and the PDL description of the source code. A

conceptual basis was critical for making good decisions about how to

reorganize the original data into data abstractions.

4.4.3 Integrated Analysis

None of the characterizations of the data was sufficient to develop

accurate and meaningful design abstractions for the software. This was

because none of the characterizations was complete. For example, data's

implementation might have been biased by plans for future changes. This

consideration could have led to an implementation that was more complex

than it needed to be, making the implementation an inaccurate

characterization of the data's current functionality. Coincidental

relationships between data could be misinterpreted so that data which was
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functionally unrelated might be incorrectly grouped in the same abstraction.

Comments in the program could also have been misleading, causing the

conceptual characterization to not correspond to the code's actual function.

Implementations

Data References

Data Data
)Analysis Abstractions

Comments in Phase
Source Code

Documentation

Figure 13. Integration of data analysis information.

Taken together, as shown in Figure 13, it was possible to determine

data abstractions that would make the system easier to understand. These

abstractions were defined in terms of their operations and informal

descriptions of their function. The data abstractions created either mapped

to a single data object, multiple data objects, or part of a data object from

the original system. Much of the abstraction process was based on human

judgement and it is likely that different decisions would lead to different

data organizations. Regardless of the variability of the organization, it is

most likely that the end result would still be an improvement over the data

organization in the original software.
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4.4.4 Data-Operator Mapping

As with renaming, it was important to maintain a mapping of the

relationship between the renamed CMS-2 data objects and the operators for

the new data abstractions. This was necessary so that it would be possible

to trace relationships between the original CMS-2 implementation and the

reorganized data abstractions. This abstraction map contained information

about which data abstraction operators corresponded to original data

references. An example of the data mapping for the counter abstraction can

be found in Appendix B. This mapping also provided a means of verifying

that all of the original CMS-2 data had been accounted for in the reverse

engineered data abstractions.

4.4.5 Automation of Data Analysis

The automation of data analysis was critical for the process to be

efficient and complete. The process of locating and switching between data

declarations and references was a time consuming task. It was further

complicated by the data overlay ability that CMS-2 provides, whereby the

same data can be referenced by multiple variable names. As with finding

references, locating and comparing comments and PDL descriptions of data

objects and their references could be improved by providing an effective

presentation system. Determining relationships between data was also

inefficient, because it was extremely difficult to manually make comparisons

of how different data combinations were accessed across the entire program

space.

46



Automation would best be integrated into a decision support system

that would provide effective presentation of information and automated

analysis of data. An important function of this system would be to

automatically display all of the declarations and references to data and

improve inspection techniques. Providing statistics about data usage and

information about correlations between data objects could also be

automatically performed [29]. Automated maintenance of the abstraction

mapping would also be useful since it is a simple, but time consuming task

to manually keep the map updated.

4.5 Data Recomposition

The goal of data recomposition was to formally define data

abstractions that would functionally specify data organization and usage.

Data recomposition was achieved through the formulation of Larch

specifications. While formulation and composition of LSL specifications was

performed manually for this research, automation could be used to assist in

constructing the specifications and reduce the time necessary to perform

recomposition.

4.5.1 Composition of LSL Specifications

The knowledge gained through the data analysis process was used to

form LSL specifications. LSL traits formally specified the operators defined

in the data analysis phase. The definition of the corresponding LCL

specification was postponed until the forward engineering process.
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counter: trait

introduces
COUNTER_start: -> CNTR
COUNTERinc: CNTR -> CNTR
COUNTERdec: CNTR -> CNTR
COUNTER_fetchvalue: CNTR -> Int

asserts
CNTR generated by [COUNTER_start, COUNTERinc, COUNTER-dec]
CNTR partitioned by [COUNTERfetchvalue]
forall c : CNTR

COUNTERfetchvalue(COUNTER start) == 1;
COUNTER-inc(COUNTER dec(c)) == c;
COUNTERfetch-value(COUNTER-inc(c)) ==

COUNTERfetchvalue(c) + 1;
COUNTER_fetch value(COUNTER dec(c)) ==

COUNTER_fetchvalue(c) - 1

Figure 14. LSL specification for a counter.

Automated semantic and syntactic checkers were used to verify the legality

of the traits. An example of the end result of data recomposition is shown

in Figure 14.

The operators defined in the introduces clause of LSL specifications

were based on the operators that were determined to be useful in the data

analysis phase. Depending upon how the abstraction was formulated, a

new operator might perform the function of several operations on the

original data. On the other hand, it might take several operators to

accomplish what one operation did previously. The former case was more

desirable, because it transferred complexity from the procedural

representation to the data abstraction, and was more common.
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The types that were used in conjunction with the LSL trait operators

were also defined. These types including tuples, enumerations, integers and

strings. They were chosen based on the types of the data from which the

abstraction originated, often with simplified types.

The statement of logical equations for reverse engineered

specifications was the final stage of the data recomposition process. The

generation of this logic was largely based on the informal specifications

created in the data analysis phase and the abstraction mapping from the

original CMS-2 code to the reformed data abstractions. Informal

specification was useful for providing the specifier with a conceptual notion

of the operators' function. The data map was critical in determining the

specific logic associated with the operators.

After the LSL specifications were composed it was necessary to verify

that they were legal syntactically and semantically. This was accomplished

using the LSL checker, which warned of errors that might exist in the

specification. The Larch prover might have been used to perform logical

checking, but was not used because of time constraints.

4.5.2 Automation of Data Recomposition

The efficiency of the data recomposition phase would be improved by

providing an environment in which specifications could be easily composed.

Much of the effort required in this phase was in locating data object

references in the procedural representation, so that the logic associated with

operators could be determined. Automated location and presentation of this
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information would reduce the time required to perform data recomposition.

Automatic generation of LSL skeleton text for the data abstractions would

also be useful.

For example, an automated tool could create a skeleton LSL

specification based on the information gained in the data analysis phase. It

could then prompt the user to define the logic associated with an operator,

or a set of operators, by displaying all of the references to the original data

that the operator replaced. The tool could determine which references to

display using the data-operator map, which was created in the data analysis

phase. The tool would perform this process for each of the operators, and

then prompt the user to specify any assumes, generated by, partitioned by,

implies converts, and exempts information.

4.6 Procedural Specification

Procedural specification was the stage where the procedural

representation was made consistent with the LSL traits. This process

required the substitution of operator calls into the procedural

representation, and the expression of iteration and iterated blocks in logical

form. The procedural specifications were simplified by the information

hiding that the data abstractions provided. This conversion could be

almost completely automated.

4.6.1 Operator Substitution

The substitution of operator calls for data references in the
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procedural representation was based on the mapping between the original

CMS-2 data and LSL traits. This information was contained in the

abstraction mapping. Often the substitutions were direct. Occasionally

though, it was necessary to restructure the procedural representation to

account for conceptual changes introduced by the data abstractions. This

restructuring usually corresponded to removal of iterative or comparative

statements.

4.6.2 Expression of Iteration

The substitution of logic and trait operators for iterative constructs in

the procedural representation was straightforward. An example of this

substitution is shown in Figure 15. A logical forall statement is used to

VARY QLNDXA WITHIN MZGROUP1 $
EXQUEUE INPUT MZGROUP1(QLNDXA,TASK) ,GNINIT,

GNMINIT,QMOOO(0,0) $
END ''VARY'' $

maps to...

\forall tid taskid
(if TASKis_oftype(tid,task typeNNAV) then
EXQUEUE (tid, EXQUEUEvalueINIT, CPCI msgINITIALIZATION,

INITMSG get_handle (im'))
else true)

Figure 15. An example of how iteration was respecified.

express the iteration through a set of task ids. A conditional statement and

the TASK_isoftype operator are used to state which specific task ids in

the set are to be used. This is followed by the statement or group of

statements to be performed in each iteration.
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4.6.3 Automation of Procedural Specification

Much of the substitution involved in this phase of reverse engineering

could be automated since it was accomplished using simple substitution

rules. There were more complex cases, though, which required additional

work. These cases would be best supported by an environment that would

guide the user through the substitution process by making the necessary

information available to the user.

4.7 Dependency Analysis and Sequential Specification

Dependency analysis and specification were necessary because the

semantics of LSL and LCL did not specify the order in which operations

were performed. The sequential execution of the original CMS-2 code

implicitly determined an order in which the CMS-2 statements would be

executed. To improve the accuracy of the reverse engineered specification,

it was necessary to explicitly state these sequential relations in the reverse

engineered Larch specifications. Since this process was wholly determined

by the original CMS-2 code, its procedural representation, and the data

abstractions, the process could be completely automated.

4.7.1 Dependency Analysis

It was necessary to determine which statement(s) in the procedural

representation should sequentially follow other statement(s), because of

dependencies. The reason for this analysis was that one statement might

modify a shared (or global) variable that another statement that followed it
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might use also. In this case, the second statement would be dependent on

the action of the first statement, and must sequentially follow the first

statement to perform correctly.

Although the field of dependency analysis has been studied

extensively [22,25,26], the method for determining dependency relationships

in this research was simple. Dependency analysis was performed at the

intramodular level; since all modules had to be called by statements from

within other modules, the intermodular case would be accounted for also.

In the procedural representation, adjacent operators of different traits were

considered independent. External function calls, on the other hand, were

always treated as dependent on whatever statements preceded them since it

was unclear what data they might access. Similarly, statements that

followed an external function call were considered dependent on it.

EXSTOPER INPUT RCIN $ <- 1

SET MZTSKINI(1,INIT) TO MZINIT $ <-
SET QCNT1 TO QCNT1+1 $ <- 2
SET QRCINVOK(O,REASON) TO 0 $<-

EXOUEUE INPUT RCIN, GNSUCC,GNMINIT,ORCINVOK(0,0) $ <- 3

Figure 16. Implicit sequential dependency relationships in CMS-2.

An example of the results of dependency analysis is shown in

Figure 16. The sample CMS-2 code shows part of a conditional block that

has three dependent sequential blocks. The first block is the EXSTOPER

function call. The second block contains the next three statements, which
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reference and modify different data objects. The third block is the EXQUEUE

function call. It is important to note that the three assignment statements

can be grouped together in the same block because they operate on different

data objects.

EXSTOPER (task idRCIN);

tir' = TIR_set_init(tirA,tdskid_IOCD) /\
taskresponsecounti' =

COUNTERIinc(task-responsecount1A) /\
sir' = SIR set(sirA,sir_INITCOMPLETE);

EXQUEUE (task idRCIN, EXQUEUE valueSUCC,
CPCI-msg_INITIALIZATION,SIRgethandle(sirA));

Figure 17. Sequential specification in the procedural representation.

4.7.2 Sequential Specification

Once the dependency relationships were determined it was necessary

to specify them. An example of a sequential specification is shown in

Figure 17. This procedural representation corresponds to the CMS-2 source

code in Figure 16. There are three dependent statement blocks that are all

sequentially dependent on one another. Each of these blocks are specified

in groups delimited by a ";" character. The order in which the statements

are listed corresponds to the order in which the blocks must be executed. If

non-determinism was also a consideration, sequential relationships could

have been specified using a modified form of guarded commands [7,16].
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4.7.3 Automation of the Analysis and Specification

Determination of sequential dependencies and their subsequent

specification is a process that could be performed completely by automated

methods. By analyzing modules' procedural representation, dependent code

blocks can easily be determined. Sequential specification then only requires

containing those blocks using the ";" character and specifying their order.

The dependency determination method used was simple and could be

easily improved upon using automated methods. One improvement would

be to precisely determine sequential dependency relationships. This could

be accomplished by checking external functions to determine what data they

reference. This information would allow a more accurate specification of the

dependencies of external function calls.

4.8 Generation of LCL Specifications

The final phase of the reverse engineering process was the conversion

of the procedural representation to LCL specifications. This was

accomplished by generating stub LCL specifications for the LSL traits,

including and importing files created in the reverse engineering process,

defining procedural interfaces, removing or commenting out the sequential

information, and checking the specifications. The final LCL specification,

without the specified sequential information, for the top level procedure

that replaced RCINSUCC is shown in Figure 18. The final transformation

of the procedural representation to LCL specifications could be automated
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imports system functions, task scheduling-data,
initialization-mag, datetime msg,
ATESschedulingdata, system alerts_mog;

uses successorentrance_control(task-scheddata for TSD,
initmsg for IN,
sys alerts msg for SAM,
date_time msg for DTM,
ATESscheddata for ATESSD);

void successorentrancecontrol(void) taskscheddata tsd;
init msg im;
sysalerts-msg sam;
datetime_msg dtm;
ATESsched data Asd; {

ensures
tad' = TSDset msg id(TSD set_sendtaskid(tsdA,
ATESSD-get-word_ (AsdA) ) ,ATESSDgetcontrol word (AsdA) ) /\

(if TSDis_mg_id(tsdAtsd msg_idINIT) then
handleinit-complete-msg (tsdA, imA, samA ,dtmA)

else if TSD-is-msgid(tsd^, tsd-msg_idINITRESP) then
handleinitresponse msg (tsdA, imA, saM^)

else if TSD-is-msgid(tsdA,
tad_msg_idINIT_FAIL_OVERRIDE) then

handleinit_failresponse(tdA, imA, samA)
else
SSLOGERR(errorstr_SUCCENTCONT,

TSDget_msgid-handle(tsdA),NULL)) /\
EXEXIT (NULL, NULL);

Figure 18. The LCL specification for successorentrancecontrol.

by producing skeleton stubs for the LSL specifications, and by automatically

defining the LCL procedural interfaces.

4.8.1 Generating LCL Stubs

It was necessary to generate LCL stubs for the LSL data abstraction

traits so that it could be verified that the LCL procedural specifications,

which were the result of reverse engineering, were legal specifications and

were consistent with the LSL traits. The stubs were generic LCL

specifications, which only provided the LCL checker with information about
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imports taskid;

typedef enum {tsd-msgidINIT,
tsd msgidINITRESP,
tsd-msgid_INITFAILOVERRIDE) tsd-msg-id;

abstract type handle;

abstract type tasksched-data;

taskscheddata tad;

uses taskschedulingdata(taskscheddata for TSD,
taskid for TASKID,
tsd_msg_id for TSDMSGID,
handle for HANDLE);

Figure 19. The LCL stub for the taskscheduling-data LSL trait.

parameter types and data representations (see Figure 19). Global variables

were also declared in the LCL stubs so that the LCL checker could be used.

Parameter types were defined in the LCL specifications based on the

parameter types specified in the LSL traits. In the LCL stubs, the data

type used for all of the data abstractions, which the LSL traits described,

was an abstract type. Abstract types were chosen, because they did not

provide a bias towards how the data should be represented in the new

implementation. The decisions about how data abstractions should be

reimplemented was left for the forward engineering phase.

4.8.2 Completing the Specifications

To complete the LCL specifications it was necessary to modify the

procedural representation so as to explicitly include the necessary traits.

These were easily determined by examining the logical statements following

the ensures clause of the procedural representation. Any trait referenced in
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that logic had to be included in the LCL specification through either an

imports or a uses statement.

It was also necessary to fully define the LCL procedural interfaces.

This required declaring both direct and global parameters that were passed

to the modules defined by the procedural representations. Which

parameters to pass explicitly was defined by the original code and the

modular decomposition. Global parameters were determined by examining

the logic contained in the procedural representation and determining which

of the variables used were not passed explicitly to the procedure.

Since sequential specification was not defined in the LCL, the

sequential specification determined through reverse engineering was not

included in the LCL procedural specifications themselves. Instead, it was

intended that the sequential specification, contained in the intermediate

procedural representation, would be used in the forward engineering process

to determine the sequential constraints that the new implemenation must

conform to.

4.8.3 Checking the LCL Specifications

Checking the LCL specifications was the an important and time

consuming part of their creation. Using the LCL and LSL checkers it was

possible to verify that the specifications were consistent and syntactically

legal. They also verified that the same names and types were used

consistently in both the LCL procedural specification and the LSL trait

specifications. The checking was time consuming because there were a
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number of inconsistencies and errors that occurred because of the numerous

changes that were made. Many of the errors were clerical, some were due

to changes that had not been made throughout all of the specifications, and

a few errors were mistakes that had been made in the specification process.

It is likely that the number of errors encountered in the specifications

would be reduced if the entire reverse engineering process was automated.

It was extremely difficult to manually maintain consistency throughout the

numerous iterations that were involved in the reverse engineering process.

This difficulty resulted in more time being spent correcting inconsistencies

when LCL specifications were checked. It is unlikely, though, that the

specification mistakes would have been avoided or detected other than by

use of the checkers.

4.8.4 Automation of LCL Specification

Much of the work done in the procedural specification phase could

easily be automated. In fact, the checking process itself was already

automated. None of the other tasks performed, except for error correction,

required extensive human comprehension or interaction. At the same time,

these tasks were time consuming, making them a prime candidate for

automation.
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CHAPTER FIVE

FORWARD ENGINEERING

The forward engineering process involved fully defining LCL

specifications for the data specifications and then implementing both the

procedural and data specifications, which were generated through reverse

engineering, C source code. Completing the LCL data specifications

required determining how traits should be represented and interfaced to.

This information allowed them to be implemented. Implementing the LCL

procedural specifications required substitution of the corresponding C code

for the LCL logic. While much of this process required complex decision

making, automated support could be provided to help implementors choose

among possible implementations that were stored in a library, and then

automatically perform the necessary substitutions.

5.1 Implementation of the Data Specifications

There were many possible C implementations of the reverse

engineered data abstractions. While the specification precisely stated the

software's functional requirements, it stated little or nothing about how

these functional requirements were to be met. Consequently, it was first

necessary to determine how data abstractions would be implemented in C.

Once this was determined, it was necessary to complete the LCL

specification stubs. Given the LSL and LCL specifications, it was then
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possible to write the C implementations for the data abstractions.

5.1.1 Determining LSL Trait Implementations

The first step in forward engineering the data specifications was to

decide which data specifications would be implemented as data abstractions

in C. In creating the LSL specifications, implementation specific

information had been abstracted to provide the most flexible and easily

understood representation. While these abstractions were useful for better

understanding the data's functionality, many would be better represented in

a C implementation as simple types. On the other hand, some of the more

complex abstractions would be best implemented as abstractions in C to

better maintain their properties.

flag: trait

introduces
new: -> FLAG
FLAG_set: FLAG -> FLAG
FLAGunset: FLAG -> FLAG
FLAGcheck: FLAG -> Bool

asserts
generated by [new, set, unset]
partitioned by [FLAGcheck]
forall f : FLAG

FLAGscheck(FLAG-set(f));
-FLAG check(FLAGunset(f))

exempts FLAGcheck(new)

Figure 20. The LSL specification for a flag.

Two examples of data specifications that were mapped directly to C

types were the flag specification and the counter specification. The flag
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specification, shown in Figure 20, could be implemented as an integer

variable in C. There would be little gain in maintainability by '

implementing it as data abstraction in C. It would just require more time

and effort, and reduce program performance.

taskinitializationrecord: trait

assumes Container(TIR for C), Integer

introduces
TIR_clear: TIR -> TIR
TIR_setinit: TIR, taskjid -> TIR
TIRisinit: TIR, task-id -> bool
TIRgetnumtaskstoinit: TIR -> Int

asserts
partitioned by [TIR-is-init, TIR-getnum_taskstoinit]
forall tir : TIR , tid, tidl, tid2 : taskid
TIR-getnumtaskstoinit(tir) == 12;
TIRis~jnit(TIRclear(tir),tid) == false;
TIR_isinit(TIR-setjinit(tir,tidl),tid2) ==

if tidi = tid2 then true
else TIRisinit(TIR._setjinit(tir,tidl))

Figure 21. The LSL specification for the taskinitializationrecord data
abstraction.

An example of a data specification that was better implemented as an

abstraction would be the taskinitializationrecord specification,

shown in Figure 21. This abstraction maps task ids to an initialization

state and yields the number of tasks that have to be initialized. It is not

specified how the mapping is performed, and it is better kept hidden by an

abstraction. Hiding the implementation details allows the representation to

be more easily changed and is more easily understood conceptually in the
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code, since the mapping details are not apparent.

The taskinitializationrecord is a simple example of the type

of abstraction that might be better implemented as a data abstraction. The

timer data abstraction, shown in Figure 10, is interesting because it

abstracts implementation specific information (e.g. computational factors)

out of the procedural code. This simplifies maintenance by centralizing

where changes are made. In the case of a time-based abstraction, this can

be useful since operating system time functions often vary from system to

system.

It is less clear for the counter specification shown in Figure 14

whether it should be implemented as an abstraction or a C integer type.

The operators could be implemented as new C functions for a data

abstraction or as existing C functions that operate on integers. The C

integer type was chosen because it was felt than no significant loss in

maintainability would result, and there would be a significant improvement

in performance. Also, the ++ and -- operators in C correspond nicely to the

COUNTERincrement and COUNTERdecrement functions specified. It is

important to understand that while the use of an integer type would not

provide information about the true nature of the data, the LSI/LCL

specification would, so that maintainers would have a means of accurately

and precisely understanding counter the data type.

An interesting consideration is that it is unlikely that the original

system's designers intended for variables used as counters to ever be less
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than zero. This invariant not included in the reverse engineered

specifications, because there was information code that justified stating it

based on the original system. In the forward engineering process, invariant

could easily be added to the specification for a counter, as an extension of

the specifications, based on intuitive and logical deductions about the

counter abstraction.

If the invariant:

COUNTER_fetchkvalue(c) >= 0

had been added to the counter data specification, implementing counters as

C data abstractions would have been more advantageous than as an integer

type. A C data abstraction implementation would have employed the data

abstraction enforce this invariant, and relieved the procedural code, which

used counters, from this responsibility.

5.1.2 Completion of LCL Specifications for Data Specifications

After it was determined which data specifications would be

implemented as data abstractions, the stub LCL specifications for those

specifications were replaced by fully defined LCL interface specifications

and then checked. Composing the LCL specifications was an easy task

since the LSL specifications contained most of the detail. It primarily

involved specifying the names and parameters associated with C procedures

used to operate on the implemented data abstractions and how they

incorporated the LSL trait operators. The LCL specification for the

task initializationrecord is shown in Figure 22.
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imports taskid;

abstract type taskinit-rec;

taskinitrec tir;

uses taskinitializationrecord(task-initrec for TIR,
int f or Int);

void tir-clear(void) taskinitrec tir; {
modifies tir;
ensures tir' = TIRclear(tir^);
}

void tirsetinit(task-id tid) taskinitrec tir; {
modifies tir;
ensures tir' = TIRset-init(tir^,tid);
}

bool tirisinit(task-id tid) taskinitrec tir; {
ensures result = TIRisinit(tir^,tid);
}

int tirget numtaskstojinit(void) taskinitrec tir; {
ensures result = TIRget num_tasks_tojinit(tir^);
}

Figure 22. LCL specification for the taskinitialization data abstraction.

5.1.3 Implementing the Data Abstractions in C

Based on the LSL and LCL specifications, the C source code was then

written for the abstractions. This process required the implementer to

determine a suitable mapping for the abstraction into C and to write C

source code that corresponded to the logic contained in the LSL

specifications. The implementation of the taskinitializationrecord is

shown in Figure 22.

The advantage offered by implementing the

taskinitializationrecord abstraction as a data abstraction is more
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#include "standard.h"
#include "taskid.h"
#include "taskinitializationrecord.h"

int taskinitrec [NUNOFINITTASKS] [2] =
(task idDBXC),{task id-IOCDI ,{taskid_1028},
(taskidNVCN},{task_id_IOWN},{taskid_1053),
(taskidIOKC}, (taskidDCCN},{taskid_1019),
(taskidSACT},{taskidWCHP},{taskidRCMC);

void tir clear (void)
{
int i;
for (i=O; i<NUMOFINITTASKS; i++)
taskinitrec[i][INIT_STATUS] = NOT_INIT;

}

void tirsetinit(task-id tid)
{
int i;
for (i=O; taskinitrec[i][TASKID] != tid; i++);
taskinitrec[i][INITSTATUS] = INITIALIZED;

}

int tirisinit(task-id tid)
{

int i;
for (i=O; taskinitrec[i] [TASKID] != tid; i++);
if (taskinitrec [i] [INITSTATUS]) return (TRUE);

}

int tirget-numtasksto-init (void)
{
return (NUNOFINITTASKS);

}

Figure 23. The implementation of taskinitializationrecord.

apparent when future maintenance requirements are considered. For

instance, a logical extension to the program that used this data abstraction

might be to check a task's initialization state based on an attribute other

than the taskjid, possibly task priority. By hiding the implementation of

the taskinitializationrecord, the implementors would be free to

modify the underlying data representation and add new interface
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procedures without affecting preexisting ones.

5.1.4 The Specification-Implementation Mapping

It was important to maintain a mapping of how the LSL operators

were replaced by C implementations. This operator-implementation map

made the Larch specifications more useful as documentation for the newly

implemented system and made it easier to implement the procedural

specifications. The map contains information about the data specifications

which had been implemented as data abstractions in C, and those which

had been implemented as simple types. For example, the map would show

that the LSL operator COUNTERinc mapped to the ++ function.

Similarly, the LSL TIRisinit operator would map to the tirisinit

function that was implemented.

5.2 Implementation of the Procedural Specifications

Implementing the procedural specifications was a fairly simple task

once the data abstractions had been implemented. It involved substituting

the mapping from LCL logic to C keywords and constructs, and mapping

LSL operator calls to the C implementations of those calls. The C

implementation of successorentrancecontrol is shown in Figure 24.

5.2.1 Substitution

Mapping from the LCL logic to C keywords was simple but required

some judgement in choosing which particular mapping to use. Much of this

decision making was stylistic, such as whether a forall should be
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#include "systemfunctions.h"
#include "task_schedulingdata.h"
#include "initialization msg.h"
#include "date_time_msg.h"
#include "ATESscheduling_data.h"
#include "system alerts msg.h"

void successorentrancecontrol (void)
{
TSD_set msgid(ATESSD-get-controlword());
TSDsetsendtaskid(ATESSD-getvwordl());
if (TSD_is_ sgid(tsd-msg_idINIT))
handleinit complete msg);

else if (TSD-is-msg-id(tsd-msgidINIT_RESP))
handleinit response msg );

else if (TSD-is-msgid(tsd-msg_idINITFAILOVERRIDE))
handleinit_failresponseo();

else
SSLOGERR(errorstrSUCCENTCONT,

TSDgetmsgid_handle() ,NULL);
EXEXIT (NULL, NULL);

}

Figure 24. The C implementation of successorentrancecontrol.

implemented as a for, while, or do loop or if a logical if should be

implemented as an if or a switch statement. Other tasks such as removal of

global parameters, conversion from imports to #includes, and changing /\"

to ";" often required direct substitution.

The LSL operator calls in the LCL specification were substituted with

the C implementations for those operators. This substitution was easily

accomplished using the operator-implementation map produced during the

implementation of the data specifications. Names for direct mapping

between the LSL operators and the C data abstraction functions could be

substituted directly. Operators that did not have direct mappings into C

functions required slightly more complex substitutions.
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No multiprocessor implementations were written for this project, so

the guarded commands did not have any corresponding C implementations.

Instead, the guarded commands were used to determine the order in which

the specified dependency blocks would execute in the new C code.

5.3 Automating the Forward Engineering Process

Automation would be particularly useful for maintaining the

operator-implementation map, for providing decision support, and in

maintaining libraries of reusable C modules. Decision support for choosing

possible C data types or possible C data abstractions from an available

library of implementations would reduce the time required to implement the

specifications and improve the quality of implementations.

It also would be easy to automate the implementation of the

procedural specifications. Since most of the substitutions made were based

on the operator-implementation mapping (or a simple keyword mapping), it

would be easy to create tools that would automatically perform the

substitution. Such automation would not only support reengineering efforts;

it would also aid in future maintenance activities.
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CHAPTER SIX

ANALYSIS OF RESULTS

Analysis of this reengineering project shows that reengineering can

provide many of the expected benefits, and that this particular methodology

is also useful for addressing systems issues. This analysis presents

reengineering examples and an evaluation of the results from which

conclusions are drawn.

6.1 Interesting Examples

There are many interesting cases help with understanding how

reengineering can improve software quality and maintainability. Three

specific examples of reengineered code follow with commentary on the

advantages that reengineering provided.

6.1.1 Logical Data Organization

Data reorganization was extremely useful for improving

understanding of software as well as improving maintainability by providing

more logical grouping of data. The respecification of the MZTSKINI table is

an example of how data reorganized through reverse engineering. The

original CMS-2 declaration of MZTSKINI is shown in Figure 25.

MZTSKINI was originally used to store the initialization state of

certain tasks, and to store information about attributes associated with the

tasks. These attributes provided information about the tasks' NAV
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TABLE MZTSKINI V 3 13 ''TASK INITIALIZATION TABLE" $
SUB-TABLE MZGROUP1 2 8 "NON-NAV DEPENDENT TASKS'' $
SUB-TABLE MZGROUP2 10 3 "NAV-DEPENDENT TASKS" $
FIELD TASK 1 32 S 0 31
P DBXC, IOCD, IOWN, I053,WCHP,

SACT, IOKC, DCCN, RCMC, NVCN,
IO19,IO28,IOCD $

FIELD TASKNM H 4 1 31
P H(DBXC),H(IOCD),H(IOWN),H(IO53),H(WCHP),

H(SACT),H(IOKC),H(DCCN),H(RCMC),H(NVCN),
H(IO19),H(IO28),H(IOCD) $

FIELD CRIT I 8 U 2 23
P 1,1,7(0),1,3(0) $
FIELD INIT I 8 U 2 15 $

END-TABLE MZTSKINI $

Figure 25. The CMS-2 declaration of the MZTSKINI data table.

dependency and if the tasks were critical. Through data analysis, it was

determined that the initialization state for a task was modified during

program execution, but the other attributes were not changed.

Based on this knowledge, during data recomposition, the MZTSKINI

data was divided into two abstractions (see Figure 26): 1) a task abstraction

that contained operators capable of determining the attributes associated

Vtask 
task-initialization-record

task id

Figure 26. The data abstractions that replaced MZTSKINI.

with a task given its task-id; and 2) the taskinitializationrecord (tir)
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abstraction, which was a mutable record of whether a task had been

initialized or not. This specification better represented the true nature of

the data contained in the MZTSKINI table.

Since the tir used information associated with tasks, the task trait

was used in its specification. The data division in the new abstractions also

had the beneficial side effects of removing implementation details from both

the data specification and the procedural specification.

The C implementation of this specification was undetermined. It

would be possible, though probably not desirable, to recombine the

abstractions into a similar implementation. This implementation choice

would be unlikely, because based on the specifications, there was no

apparent reason for combining the two data abstractions. It would be more

likely that the two would be reimplemented separately so as to provide

better modularity. This way, a change in the number of tasks with

attributes or the number of attributes associated with a task would not

affect the implementation of the tir. Similarly, if the tir needed to be

changed so as to support more than two initialization states, it would not

require changing the implementation of the task specification.

6.1.2 Removal of Implementation Details

An example of how implementation dependent aspects of software

were abstracted away using Larch specifications is apparent when

examining the MZTSKINI example further. In the original CMS-2

implementation, the table MZTSKINI was referenced by an ID number that
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was contained in a field of the table. To fetch data associated with the ID

number, it was first necessary to iterate through the table's ID fields to

locate the index associated with the ID. This resulted in additional

complexity in the procedures that used MZTSKINI.

In the recomposed data abstractions that provided the functionality of

the MZTSKINI table, the information associated with a taskid is referenced

directly by the taskid. There is no concept of table indices in the

specification because it is a purely implementation dependent notion. The

result is that the iteration and comparing associated with the table

implementation is no longer necessary in the procedural specifications (see

VARY QLNDXA WITHIN MZTSKINI $
IF QDATAPK(0,SENDTSK) EQ MZTSKINI(QLNDXA,TASK) THEN

SET MZTSKINI(QLNDXA,INIT) TO HZINIT $
END ''VARY'' $

after data reorganization reduces to

tir' = TIRsetinit(tirA,task-idDBXC) /\

Figure 27. Elimination of implementation dependent aspects.

Figure 27).

6.1.3 Removal of Hardware Dependencies

The removal of hardware dependencies was also achieved through

data reorganization. One example of this is in the reengineering of the

RCINSUCC procedure, where a compiler switch is used to differentiate

between two sets of possible values in a task group. The original CMS-2
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CSWITCH EDC ''RCINSUCPINC 2370'' $
BEGIN IOWN, I053,WCHP, IOED, SACT, DCCN,RCMC
"RESPONSE FROM NON-NAV DEPENDENT TASKS' '$

END-CSWITCH EDC ''RCINSUCPINC 2370'' $

CSWITCH KCMX ''RCINSUCPINC 2370'' $
BEGIN IOWN, I053,WCHP, IOKC, SACT, DCCN,RCMC
''RESPONSE FROM NON-NAV DEPENDENT TASKS' '$

END-CSWITCH KCMX ''RCINSUCPINC 2370'' $

reduces to:

else if TASK_is_oftype(TSD getsendtask id(tsdA),
tasktypeNNAV) then

Figure 28. A CMS-2 compiler switch and how it was respecified.

source code containing the compiler switch and the part of the LCL

specification corresponding to it are shown in Figure 28. Note that CMS-2's

BEGIN keyword is equivalent a case statement C.

The compiler switch, which is used to differentiate between

implementations for different target platforms, is abstracted out of the

procedural specification through the data abstraction process. In the new

specification, the logic does not specify at the procedural level which tasks

are in which sets. It is only stated that a task must be a member of a

particular set to satisfy the condition. The determination of what tasks are

in the NNAV set is abstracted to the LSL specification of the task trait.

One means of specifying the two possible NNAV task groups would be

to specify two different task traits. One specification would correspond to

the EDC switch set and the other would correspond to the KCMX switch set.

Then, by separating the specifications into separate libraries, depending on
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the implementation desired, different specification libraries could be used.

The new C implementation could be written in many ways. One

possibility would be to create a C implementation of task that also used a

compiler switch to determine which set of tasks to use. Another alternative

might be to create separate C implementations for the task trait that would

correspond to the two specifications. Like the specifications, the different

implementations could be kept in separate libraries that could be chosen at

compilation time. It would even be possible, though probably not desirable,

to create an implementation that was similar to the original CMS-2

implementation, in which a compiler switch was used in the main procedure

to choose the task set to be used.

6.2 Evaluation of Results

The results of this research were useful in providing better

understanding of the benefits from reengineering CMS-2 software to C

using Larch specifications as an intermediate form. The experience gained

in the reengineering process was valuable for developing a complete

reengineering methodology. The specifications gained through

reengineering provided a better understanding of the system. The C

implementation provided a realistic sample of reengineered code. Due to

the scope of the project the results were by no means complete, but they

were a considerable increase in existing knowledge.
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6.2.1 The Reengineering Experience

The results of applying the reengineering process to the RCINSUCC

procedure are given in the methodology described in Chapters Four and

Five. Applying the process provided insights into how automation could be

used. It also helped improve the author's understanding about how to

logically represent software. Performing the reengineering was useful for

determining the specific challenges that were involved and the areas that

need further study.

6.2.2 The Specifications

The goal of providing new documentation and improving system

understanding was achieved through the composition of the Larch

specifications obtained through reverse engineering. The LSL specifications

were useful for providing a better understanding of data use and its

implementation independent representation. The LCL procedural

specifications were useful for improving understanding of the functionality

of the original CMS-2 procedure and the new C implementation. By

abstracting implementation details and functional complexity into the LSL

specifications, the procedural LCL specifications were made simpler. This

made them more easily understandable and made resulting

implementations more maintainable.

6.2.3 The New Implementation

The C implementations of the LCL procedural specifications were

useful for comparison to the CMS-2 implementation and the Larch
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specifications. It showed how improved specifications of the CMS-2 code

could lead to improved C implementations. The reimplementation process

also showed how many different C implementations were possible based on

the Larch specifications.

The new C implementation was not executable because many of the

data abstractions that the new RCINSUCC implementation used, were not

completely reverse engineered, and thus could not be reimplemented. Even

if all of the data abstractions had been reimplemented and stubs were used

to simulate interaction with other system procedures, running this code

would not have provided useful performance information. To gain accurate

information about how the new implementation performed, compared to the

old implementation, it would be necessary to test the implementation of a

much larger part of the system, if not the entire system itself.

6.2.4 Scope Limitations

The extreme interrelation in the ASWCS 116/7 system made it

unfeasible to completely reengineer most of its procedures given the scope of

this project. For the RCINSUCC procedure it was possible to produce LCL

specifications and C code for the procedure. It was not possible to

completely reengineer all of the data abstractions that the RCINSUCC

procedure used and the other system procedures and functions that it

called, because of time constraints. Instead, only some of the data

abstractions were fully defined using LSL and LCL specifications, and then

reimplemented in C. From these examples it was possible to draw some
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conclusions about the reengineering process and methodology used.

A smaller example was considered for this project, but was not chosen

because it would not have yielded as meaningful results. A smaller self-

contained example that could be completely reengineered would have

provided a more complete view of the reengineering process, but would not

have provided as good a characterization of what it would be like to

reengineer most of the system. Smaller examples were also less likely to

have as many interesting and diverse cases as larger ones.
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CHAPTER SEVEN

CONCLUSION

The research performed was successful in that it accomplished its

goals, was a good learning experience, and provided a basis for future

research. A reengineering methodology that addressed systems issues was

developed and experimented with. There were many lessons learned about

the reengineering process, formal specification using Larch, CMS-2 and data

abstraction. This research also provided a basis for further research in

reengineering, specifically in the area of automation. In drawing these

conclusions though, it is important to consider biases that may have been

introduced due to the researcher's background.

7.1 Accomplishments

The research goals of developing a reengineering methodology that

dealt with systems issues was accomplished by this project. The

methodology was developed through the experimentation with a

reengineering process, and systems issues were addressed by the

reengineering example chosen. An intermediate representation was also

used, and important insights were gained about it. Where automation

might be applied to improve reengineering process was also considered.

Experimenting with Larch specifications as an intermediate design

representation provided great insights into the requirements of design
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representations and their usefulness. The characteristics on which the

Larch family of specification languages was chosen turned out to be

important. In particular, flexibility, understandability, automated checking

support, and a two-tiered structure were useful in managing the

complexities associated with reengineering.

Knowledge of where automation techniques could best be applied was

also gained. Manually performing analysis, substitution, and consistency

maintenance, provided a strong sense of what processes would best be

automated and how a reengineering environment should be constructed.

Based on this research, another report is in the process of being written,

which discusses the functional requirements of reengineering tools and a

support environment [8].

7.2 Lessons Learned

There were many lessons learned as a result of this research:

discovery of how complex actual existing systems could be, the need for

numerous iterations in the reengineering process, and the need for expertise

in the languages and systems used. The complexity of the system used in

the experiment was much greater than was initially thought. In particular,

the amount of coupling within the system, the complexity of the

programming language and operating environment, and the difficulty of

understanding the documentation were unexpected.

It was also not clear that reengineering would be such an iterative
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process. It was expected that data analysis and recomposition could be

performed simultaneously. In reality, it was necessary to perform many

changes in these phases to obtain the most accurate data abstractions. The

need for many of these changes was driven by new data analysis

information and the effects of changes that had been made elsewhere in the

analysis or recomposition phases.

The need for expertise in the source language, the target language,

the intermediate representation, and the existing system were all

underestimated. It is critical that the source language and intermediate

representation be understood extremely well by the person(s) reverse

engineering the system so functionality of the existing software can be

correctly interpreted and expressed. Similarly, the person(s) forward

engineering the new system must have a firm understanding of the target

language and the intermediate representation, so that they can implement

the software's representation effectively and accurately.

It is unclear whether it would be beneficial to have the reengineer

have expertise with the system being reimplemented. On the one hand, it

would be helpful for speeding the reverse engineering process and to better

capture the system's intent. On the other hand, the respecification could be

easily biased by over-familiarity with the original implementation. It might

be best to have a reverse engineer who are less familiar with the system,

but who is in close consultation with the previous system maintainers.
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7.3 Future Directions

There are several extensions of this research that would be useful for

improving this reengineering process. One extension would be to perform

more in depth research on techniques that could be applied the different

phases of the reverse and forward engineering processes. Developing a set

of automated tools and a support environment would make the

reengineering process more efficient. Performing a larger scale

reengineering project would also be extremely beneficial for addressing

topics that this research did not.

Each of the phases in the reengineering processes are research topic

in themselves. These topics include source code complexity analysis, data

analysis, data mapping, and code generation. The data analysis and data

mapping are two primary areas that need to be researched since they are

critical to the reverse engineering process. These two areas are necessary

for the formulation of an accurate and useful design representation of

software.

Developing tools that will aid in analysis and composition is also

important for making reengineering an effective and efficient process.

Creating a suitable reengineering environment that integrates these tools is

another challenge that must be addressed. Much of the need is in

developing interfaces that will allow effective manipulation of data and aid

in decision support.

While this project was useful for determining basic information, it is
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necessary to completely reengineer an existing system to better understand

the reengineering process. Since this is a fairly large undertaking, it is the

next logical step in the course of this research. Reengineering an entire

system would provide better insight to some of the system level concerns

that were not fully addressed by this research.

Considerable gains in understanding reengineering were made by

developing a methodology and reengineering part of a system. Further

gains will be made by reengineering an entire system, and then by

reengineering multiple systems. But even then, it will not be clear how

useful reengineering is until extensive maintenance has been performed on

these reengineered systems. This research suggests that reengineering has

great potential, but only time and experience will tell.

7.4 Research Biases

In examining this work and its conclusions, it is helpful to know the

author and researcher's background, to better understand what biases

might have been present. The researcher has a bachelors degree in

computer science and has been working in the area of reengineering for

slightly over a year. He has four years of programming experience in C,

practically no CMS-2 programming experience, little background in formal

methods and logic, and no experience with the ASWCS 116/7 system. The

author has worked extensively with data abstraction and specification

principles.
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The reengineering process was aided by the author's understanding of

data abstraction and specification. Likewise, it was useful to have a strong

background in computer science and a fairly good grasp of the issues

involved in reengineering. The C programming experience was helpful in

the forward engineering process and in understanding LCL.

Lack of experience with CMS-2, Larch, and the ASWCS 116/7 system

was a considerable hinderance in the reengineering process. Not fully

understanding CMS-2 and the ASWCS 116/7 system often made it difficult

to understand why certain design choices had been made. Lack of

experience in writing formal specifications required extensive correction of

specifications to improve their accuracy and precision.
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Appendix A: The RCINSUCC Procedure.

COMMENT [ BRIEF DESCRIPTION OF PROCEDURE :
THIS PROCEDURE IS THE SUCCESSOR ENTRANCE CONTROL PROCEDURE
THAT PROCESSES THE SUCCESSOR ENTRANCE REQUIREMENTS FOR
INITIALIZATION PROCESSING.
1 $

COMMENT
BEGIN RCINSUCP
. store scheduling packet in local storage
. DOCASE based on successor data packet
. CASE 1: initialization complete message
. DOCASE based on requesting task
. CASE 1: responding task is DBXC
. . . clear DBXC time-out indicator
. . . IF DBXC initialized properly
. . . THEN

CSWITCH CALCLOCK
. . . IF state flag is set to warm
. . . . THEN
. . . . . IF there was an operator date time input
. . . . . THEN
. . . . . . Set Current Time Clock to temp GMT + Current \

Time Clock Delta
.. . .. Set GMT to temp GMT
.. . ..call SSTIMEAS to convert Current Time Clock in

seconds to DDHHMOss MMssYYss format
........call SSBCDTAG to convert time to BCD
........call SSBCDTAG to convert date to BCD
. .......format the date returned to sYMD
........call RSETCCC to set the Calendar Clock Card to

the operator input date and time
. . . . . ELSE
........Set Current Time Clock to output of RASC1985
. .......Set GMT to the difference between GMT and

Current Time Clock delta
. . . . . ENDIF
* . . . ELSE

. ...... Set Current Time Clock Delta to zero

.. .....Set Current Time Clock using temp GifT
.. . . ENDIF

set IOC prior PV to Real Time Clock (requested \
by ESCP to be done here as the IOC is tied to the \
last time the CTC is updated)

. . . . set Calibration Factor 1 to remainder of the G2T
divided by number of seconds in 1 day - RTC
(req by ESCP to maintain a G24T with milliseconds)

* . . . set Calibration Factor 2 to Calibration Factor 1
* . . . set previous IOC RTC calue to IOC RTC

END-CSWITCH CALCLOCK
. . . . set DBXC task initialized in the task

initialization table
. . . . set count of initialized tasks to 1
. . . . IF initialization character was "C"
. . . . THEN
. . . . . set system mode word to tactical and the \

submodes to w/o
. . . . . store system mode in the initialiazation \

message
. . . . . call DBSMODE to store system mode in the \

database
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. . . . ELSE character was "A", "B" or "W"
. . . . call DBRMODE to retrieve system mode from\

the database
. . . . . store system mode in the initialization

message
. . . ENDIF initialization character

. . . .call SSXTRACT to extract the executive
status data

. . . . reset the restart character in the ATES
table to "A"

. . . . call EXSYSTRN to save the new
initialization character

. . .set periodic flag to "IOCD" timeout

. . . call EXBEGPER to start RCIN initialization
timer at 5 seconds

. . . queue IOCD at its initalization entrance
with the date/time message

. . . ELSE DBXC did not initialize properly
. . . call EXDERS with point 29
. . . queue AMCN with critical, non-override task \

failure
. . . . queue SD67 with critical, non-override task \

failure
. . . . queue RCTM with termination message
. . . ENDIF DBXC initialized ok

. CASE 2: responding task is IOCD
. . . call EXSTOPER to stop periodic scheduling\

for IOCD timeout
. . . set IOCD task initialized in the task

initialization table
. . . increment count of initialized tasks
. . . set RCIN message buffer to initialization

complete message
. . . queue RCIN at it's successor entrance

. CASE 3: responding task is RCIN
. . . IF invocation reason is RCIN init complete message

. . THEN
. . . . call SSGETTIM to get initialization time

. . set periodic flag to "all others" responding

. . set in progress flag for 30 second timer

. . call EXBEGPER to start RCIN initialization
timer at 30 seconds

. . . . DOUNTIL GROUP1 tasks in the initalization
table have been queued

. . . queue each task with initialization
messsage at their initialization
entrance

. . .. ENDDO
. . . ELSE (5 second timer has elapsed)

. . . IF timed out indicator is not cleared
. . . . THEN (DBXC failed to respond)

.set OPERFLG to critical task failed

.set failed count to 1

.call RCINFAIL to process response failure
. . . . ELSE

.task responded before time elapsed (DO NOTHING)
. . .. ENDIF
. .. ENDIF
. CASE 2: initialization response message from

other tasks
. DOUNTIL initialization table is searched
. . IF task id equals task id in data packet
... THEN
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. . . IF the response indicates a successful
intialization

.. .. THEN
.. . set the active field for the task
.. . DOCASE base on responding task ID
.. . CASE 1 response from NVCN
.IF periodic is in NVCN timeout mode
.THEN
.call EXSTOPER stop periodic
.EDIF
.set periodic flag to NAV-dependent IOs
.start periodic for 2 second timeout
.queue NAV dependent I/O tasks with

initialization message
.. . CASE 2 response from NAV-dependent task
.increment NAV dependent task counter
.IF task is critical IOCD
.THEN

decrement NAV dependent task counter
.. . . ENDID
.. . . IF NAV dependent task counter indicates all
tasks answered

.THEN
.stop periodic processing for two second
timeout
.IF 30 second timer has not expired

THEN
.set periodic flag back to "all others"
.get current time
.. calculate time left for 30 sec timer
.. . call EXBEGPER to restart periodic

.. ENDIF
.. ENDIF

.CASE 3 response from all non-NAV dependent \
tasks
.. increment task initialization counter
.. IF the task initialization counter indicates

all tasks initialized
.THEN
.call EXDERS with point 29
.IF two second timer is in progress
.THEN
.clear 30 sec. in progress flag (QINPROG)

.. . . . ELSE
.. . . . . call EXSTOPER to stop the periodic

processing for RCIN
.ENDIF
.IF initialization character is "A"
.THEN
.. . . . . queue AMCN with auto reload complete
message

.ENDIF initialization character

.queue SACT at its successor entrance with
initialization complete

.. . . . queue SD67 at its successor entrance with
initialization complete

.call SSTYPEIT with initialization complete
.ENDIF all tasks initialized

.ENDCASE

.ENDIF
ENDIF successful initialization

ENDIF proper task id
ENDDO search initialization table
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. CASE 3: SD67 "NO" or "GO"
. IF "NO" is received from SD
. THEN

. . . set termination flag in the task data base
. . queue RCTM with termination request,

non-critical task failure
. ELSE "GO" received from SD
* . . IF initialization character is "A"
* . . THEN
* . . . queue AMCN with auto reload complete

message
* . . ENDIF initialization character
* . . queue SACT at its successor entrance with

initialization complete
* . . queue SD67 at its successor entrance with

initialization complete
* . . call SSTYPEIT with initialization complete

. ENDIF answer from SD
. CASE 4: "software execption"
. call SSLOGERR to issue software exception

message
. ENDCASE
. call EXEXIT to exit successor entrance
END RCINSUCC
1 $

COMMENT ((EJECT $
(EXTDEF) PROCEDURE RCINSUCC $

LOC-INDEX QLNDXA,QLNDXB "LOCAL INDEX'' $
SET QDATAPK(0,0) TO GNSCHPKT(QDUM,ASWSCW) $
SET QDATAPK(0,1) TO GNSCHPKT(QDUM,SDW) $
FOR QDATAPK(0,MSGID)
ELSE ''CASE 4''

BEGIN $
SSLOGERR INPUT H (RCINSUCC) ,QDATAPK(0,MSGID) ,0 $
END ''END CASE 4'' $
BEGIN GNMINIT ''CASE 1 - COMPLETE RCIN INIT.

REQUEST" $
FOR QDATAPK (0, SENDTSK)
ELSE

BEGIN ''CASE 4 - EXCEPTION CASE'' $
SSLOGERR INPUT H(RCINSUCC),

QDATAPK(0,SENDTSK) ,0 $
END $

BEGIN DBXC ''CASE 1 - RESPONSE TASK IS DBXC"' $
SET QTIMEOUT TO 0 $
IF GNSCHPKT(QDUM,INITSTAT) EQ QOK
THEN ''DBM INITIALIZATION OK'

BEGIN $
CSWITCH CALCLOCK $

IF QMOOO(0,RFLAG) EQ 0
THEN

BEGIN $
IF QOPENTRY EQ 1
THEN

BEGIN $
SET OSETCCC TO 0 $
SET OTTIME6(0,QCTC) TO OGMTTEMP $
SET QTTIME6(0,QDATGMT) TO QGMTTEMP $
SET QTTIME6(0,QDELTA) TO 0 $
SET QTTIME6(0,QDELTAMS) TO 0 $
SSTIMEAS INPUT QTTIME6(0,QCTC)

OUTPUT QOUT1,QOUT2 $
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RTAGBCD INPUT QOUT1 OUTPUT QTEMTIME $
SET CHAR(0,2)(QSETCCC(O,BCDTIME)) TO

CHAR(2,2) (QTEMTIME)
RTAGBCD INPUT QOUT2 OUTPUT OTEMDATE $
''FORMAT TO sYMD TO SET CCC'"$
SET CHAR(1,3)(QSETCCC(0,BCDDATE)) TO

CHAR(1,3) (QTEMDATE)
SET EXB1 TO CORAD(QSETCCC) $
EXEC 60 $

END $
ELSE

BEGIN $
SET QTTIME6(0,QCTC) TO QGNTTEMP $
SET QTTIME6(0,QDATGMT) TO QGMTTEMP $
SET QTTIME6(0,QDELTA) TO 0 $
SET QTTIME6(0,QDELTAMS) TO 0 $

END $
END $

ELSE
BEGIN $

SET QTTIME6(0,QDELTA) TO 0 $
SET QTTIME6(0,QDATGMT) TO QGMTTEMP $
SET QTTIME6(0,QCTC) TO QGMTTEMP $

END $
''ENDIF'' $
SET QTTIME6(0,QPIOC) TO QRTC $
SET QCLKGMT6(0,CALFAC1) TO REM(QGMTTEMP/86400) -

QRTCMS/1000 $
SET QCLKGMT6(0,CALFAC2) TO QCLKGMT6(0,CALFAC1) $
SET QCLKGMT6(0,PIOCRTC) TO QRTC $

$

$

END-CSWITCH CALCLOCK $
SET MZTSKINI(0,INIT) TO HZINIT $
SET QCNT1 TO 1 $
IF QM000(0,RFLAG) EQ QCOLD
THEN

BEGIN ''COLD START" $
SET QM000(0,SMODE) TO GNNORMAL $
SET QMO0O(0,SUBMODE) TO GNNORMAL $
SET OMODE TO GNNORMAL ''SET MODE TO TACT'' $
SET QSMODE TO ONONE ''NO SUBMODE FOR TACT'' $
DBSMODE INPUT QMODE,QSMODE OUTPUT QSTAT $
END ''COLD START'' $

ELSE
BEGIN ''WARM START'' $
DBRMODE OUTPUT QSTAT,QMODE,QSMODE,QENG $
SET QM000(0,SMODE) TO QMODE ''CURRENT SYST

MODE'' $
SET QMOOO(O,SUBMODE) TO QSMODEO

''AND SUBMODE'' $
END ''WARM START" $

SSXTRACT INPUT QXSTAT ''GET THE EXEC STAT DATA'' $
SET QATESPK(0,ICHAR) TO H(A) ''AUTO WARM RELOAD'' $
EXSYSTRN INPUT OSAVE ''SAVE THE NEW INIT CHAR'' $

COMMENT MOVE DATA FROM LOCAL TABLE TO CONTEXT AREA TABLE $
SET QRCTIME6 TO QMMANTIM $
SET QPERFLG TO QIOCD $
EXBEGPER INPUT 5120,RCIN $
EXQUEUE INPUT IOCDGNINIT,GNMINIT,QMO00(0,0) $
END ''DBM INITIALIZATION OK'' $

ELSE ''DBM INITIALIZATION FAILED''

BEGIN $
SET QMTERMR(0,REQ) TO QRCIN $
SET QMTERMRO(0,FAILTYPE) TO ODBM S
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SET QAMCNBUF(0,ALERTID) TO QFAIL $
EXDERS INPUT 29,0,0 "SYSTEM DERS POINT'' $
EXQUEUE INPUT AMCN,GNSUCC,GNALERT,CORAD(QAMCNBUF) $
EXQUEUE INPUT SD67, GNSUCC,MZTERMRQ,QMTERMRQ (0,0) $
EXQUEUE INPUT RCTM, GNSUCC,MZTERMRQ, QMTERMRQ (0,0) $
END ''DBM INITIALIZATION FAILED'' $

''ENDIF'' $
EXDERS INPUT 601,0,0 ''SYSTEM DERS POINT'' $
END ''CASE 1 - RESPONSE TASK IS DBXC" $
BEGIN IOCD ''CASE 2 - RESPONSE FROM IOCD' $
EXSTOPER INPUT RCIN $
SET MZTSKINI(1,INIT) TO MZINIT $
SET QCNT1 TO QCNT1+1 $
SET QRCINVOK(0,REASON) TO 0 $
EXQUEUE INPUT RCIN,GNSUCC,GNMINIT,QRCINVOK(0,0) $
END "CASE 2 - RESPONSE FROM IOCD'' $
BEGIN RCIN ''CASE 3 - RESPONSE FROM RCIN'' $
IF QDATAPK(0,RCREASON) EQ 0
THEN

BEGIN ''RCIN initialization message'' $
SSGETTIM OUTPUT QINISTRT $
SET QPERFLG TO QOTHERS $
SET QINPROG TO 1 $
EXBEGPER INPUT 30720,RCIN $
VARY QLNDXA WITHIN MZGROUP1 $
EXQUEUE INPUT MZGROUP1(QLNDXA,TASK) ,GNINIT,

GNMINIT,QMOOO(0,0) $
END ''VARY'' $
END ''RCIN initialization message'' $

ELSE
BEGIN ''DBXC 5 SEC TIMER ELAPSED'' $
IF QTIMEOUT
THEN

BEGIN "DBXC FAILED TO RESPOND'' $
SET QPERFLG TO QDBXC $
SET OFLCNT TO 1 $
RCINFAIL $
END ''DBXC FAILED TO RESPOND'' $

END ''DBXC 5 SEC TIMER ELAPSED'' $
''ENDIF'' $
END ''CASE 3 - RESPONSE FROM RCIN'' $

END ''FOR'' $
END ''CASE 1 - RCIN INIT. COMPLETION'' $
BEGIN GNMINITR ''CASE 2 - INIT. RESPONSE

MESSAGE'' $
VARY QLNDXA WITHIN MZTSKINI $

IF QDATAPK(0,SENDTSK) EQ MZTSKINI(QLNDXA,TASK)
THEN

BEGIN ''SENDING TASK ID CHECK'' $
IF QDATAPK(0,INITSTAT) EQ QOKINIT
THEN

BEGIN ''SUCCESSFUL INITIALIZATION'' $
SET MZTSKINI(QLNDXA,INIT) TO MZINIT $
FOR QDATAPK (0 ,SENDTSK)
ELSE ''CASE 4''

BEGIN $
SSLOGERR INPUT H(RCINSUCC),

QDATAPK(0,MSGID) ,O $
END ''END CASE 4'' $
BEGIN NVCN ''RESPONSE FROM NVCN'' $
IF QPERFLG EQ ONVCN
THEN

BEGIN ''NVCN TIMEOUT ACTIVE'' $
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EXSTOPER INPUT RCIN $
END "NNCN TIMEOUT ACTIVE" $

IF QPERFLG EQ QNVCNB
THEN

BEGIN "NAV DATA AVAILABLE'' $
SET QPERFLG TO QNAVIOS $
EXBEGPER INPUT 2048, RCIN $
VARY QLNDXB WITHIN MZGROUP2 $

EXQUEUE INPUT MZGROUP2 (QLNDXB, TASK),
GNINIT,GNMINIT,QM000(0,0) $

END ''VARY'' $
END "NAV DATA AVAILABLE" $

ELSE
SET QPERFLG TO QNVCNB $

END "RESPONSE FROM NVCN'' $
BEGIN 1019,IO28,IOCD ''NAV DEPENDENT I/Os'' $
SET QCNT2 TO QCNT2+1 $
IF MZTSKINI(QLNDXA,TASK) EQ IOCD AND

MZTSKINI(QLNDXA,CRIT) EQ 1
THEN

SET QCNT2 TO QCNT2 - 1 $
'ENDIF''
IF OCNT2 EQ MZNAVTSK
THEN

BEGIN "ALL NAV-DEPENDENT I/Os
RESPONDED'' $

EXQUEUE INPUT SACT,GNSUCC,MZINITNV,
QM000(0,0) $

EXSTOPER INPUT RCIN $
IF QINPROG
THEN

BEGIN ''RESTART PERIODIC'' $
SET QPERFLG TO QOTHERS $
SSGETTIM OUTPUT QIODONE $
SET QTIMLEFT TO

1024*(30-(QIODONE-QINISTRT)) $
IF QTIMLEFT GT 0
THEN

EXBEGPER INPUT QTIMLEFT, RCIN $
ELSE

EXBEGPER INPUT 1, RCIN $
''ENDIF'' $
END ''RESTART PERIODIC'' $

END "ALL NAV-DEPENDENT I/Os RESPONDED'' $
END ''NAV-DEPENDENT I/Os' $

CSWITCH EDC ''RCINSUCPINC 2370'' $
BEGIN IOWN, I053,WCHP, IOED, SACT, DCCN, RCMC
''RESPONSE FROM NON-NAV DEPENDENT TASKS'' $

END-CSWITCH EDC ''RCINSUCPINC 2370'' $
CSWITCH KCMX ''RCINSUCPINC 2370'' $

BEGIN IOWN, 1053,WCHP, IOKC, SACT, DCCN, RCMC
"RESPONSE FROM NON-NAV DEPENDENT TASKS'' S

END-CSWITCH KCMX ''RCINSUCPINC 2370'' $
SET QCNT1 TO QCNT1+1 $
IF QCNT1 EQ MZINITSK
THEN

BEGIN ''TASK INIT. COUNT COMPLETED" $
EXSTOPER INPUT QTASK $
IF MZTSKINI(9,INIT) EQ MZNOINIT
THEN

BEGIN ''RESTART TIMEOUT FOR NVCN'' $
SSGETTIM OUTPUT QIODONE $
SET OPERFLG TO QNVCN $

95



SET QTIMLEFT TO
1024*(30-(QIODONE-QINISTRT)) $

EXBEGPER INPUT QTIMLEFT, RCIN $
END ''RESTART PERIODIC FOR NVCN'' $

EXDERS INPUT 29,0,0 ''SYSTEM DERS POINT''$
SET QINPROG TO 0 $
IF QMOOO(0,INITCH) EQ H(A)
THEN

BEGIN $
SET QAMCNBUF(0,ALERTID) TO QREL $
EXQUEUE INPUT AMCN, GNSUCC, GNALERT,
CORAD(QAMCNBUF) $

END $
EXQUEUE INPUT SACT,GNSUCC,MZINITOK,

QM000(0,0) $
EXQUEUE INPUT SD67,GNSUCC,MZINITOK,

QM000(0,0) $
SSTYPEIT INPUT CORAD(QOCD(QICM,TEXT)),7 $
END "TASK INIT. COUNT CHECK'' $

END "RESPONSE FROM NON-NAV DEPENDENT
TASKS'' $

END ''FOR'' $
END ''SUCCESSFUL INITIALIZATION'' $

END ''SENDING TASK ID CHECK'' $
END ''VARY'' $
END ''END CASE 2 - INITIALIZATION RESPONSE MESSAGE'' $
BEGIN MZIFRMID ''CASE 3 - INIT. FAIL RESPONSE'' $
IF QDATAPK(0,OFAIL) EQ QNOGO
THEN ''NO RECEIVED FROM SD67''

BEGIN $
SET QTMFG TO 1 $
SET QMTERMRQ(0,REQ) TO QRCIN $
SET QMTERMRQ(0,FAILTYPE) TO QNCRT $
EXQUEUE INPUT RCTM,GNSUCC,MZTERMRQ,QMTERMRQ(0,0) $
END ''NO RECEIVED FROM SD67'' $

ELSE ''GO RECEIVED FROM SD67''

ENI
END

END

BEGIN $
IF QM000(0,INITCH) EQ H(A)
THEN
BEGIN $

SET QAMCNBUF(0,ALERTID) TO QREL $
EXQUEUE INPUT AMCN, GNSUCC, GNALERT,
CORAD(QAMCNBUF) $

END $
EXQUEUE INPUT SACT,GNSUCC,MZINITOK,QM000(0,0)
EXQUEUE INPUT SD67,GNSUCC,MZINITOK,QM000(0,0)
SSTYPEIT INPUT CORAD (QOCD(QICM,TEXT)),7 $

''GO RECEIVED FROM SD67'' $
''END CASE - 3 INIT. FAILURE
RESPONSE'' $
''END FOR'' $

EXEXIT INPUT 0,0 $
END-PROC RCINSUCC $
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Appendix B: The Data-Operator Map for the counter Abstraction

*** FILE rcinlocd.inc:
0423 VRBL QCNT1 I 32 S ''COUN

maps to counter

0424 VRBL QCNT2 I 32 S ''COUN

maps to counter

* FILE rcinsucp.inc:
0296 SET QCNT1 TO 1 $

maps to COUNTERinit

0344 SET QCNT1 TO QCNT1+1 $

maps to COUNTERinc

0416 SET QCNT2 TO QCNT2+1 $

maps to COUNTERinc

0420 SET QCNT2 TO QCNT2 - 1

maps to COUNTERdec

0422 IF QCNT2 EQ MZNAVTSK

maps to COUNTERfetchvalue

0454 SET QCNT1 TO QCNT1+1 $

maps to COUNTERinc

0455 IF QCNT1 EQ MZINITSK

maps to COUNTERfetchvalue

T OF TASK RESPONSES"$

T OF TASK RESPONSES''$

$
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