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Abstract

We represent the standard ramp filter operator of the filtered back-projection (FBP) recon-
struction in different bases composed of Haar and Daubechies compactly supported wavelets.
The resulting multiscale representation of the ramp filter matrix operator is approximately diag-
onal. The accuracy of this diagonal approximation becomes better as wavelets with larger num-
ber of vanishing moments are used. This wavelet-based representation enables us to formulate a
multiscale tomographic reconstruction technique wherein the object is reconstructed at multiple
scales or resolutions. A complete reconstruction is obtained by combining the reconstructions at
different scales. Our multiscale reconstruction technique has the same computational complexity
as the FBP reconstruction method. It differs from other multiscale reconstruction techniques in
that 1) the object is defined through a multiscale transformation of the projection domain, and
2) we explicitly account for noise in the projection data by calculating maximum aposteriori
probability (MAP) multiscale reconstruction estimates based on a chosen fractal prior on the
multiscale object coefficients. The computational complexity of this MAP solution is also the
same as that of the FBP reconstruction. This is in contrast to commonly used methods of sta-
tistical regularization which result in computationally intensive optimization algorithms. The
framework for multiscale reconstruction presented here can find application in object feature
recognition directly from projection data, and regularization of imaging problems where the
projection data are noisy.

Key words: multiresolution reconstruction, wavelets, tomography, stochastic models.
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1 Introduction

In this work we present a multiresolution approach to the problem of reconstructing an image from
tomographic projections. In general, a multiresolution framework for tomographic reconstruction
may be natural or desirable for a variety of reasons. First, the data under consideration may
be naturally acquired at multiple resolutions, e.g. if data from detectors of differing resolutions
are used. In addition, the phenomenon may itself be naturally multiscale. For example, in the
medical field self-similar or fractal models have been effectively used for the liver and lung [10-12].
Furthermore, it may be that, even if the data and phenomenon are not multiscale, our ultimate
objectives are multiresolution in some way. For example, even though our data may be acquired at
a fine level we may actually only care about aggregate or coarse scale quantities of the field. Such
is often the case in ocean acoustic tomography or functional medical imaging. Conversely, if we are
only interested in imaging high frequency details within the object (for example, boundaries), then
we could directly obtain these features by extracting only the finer scale information in the data. Or,
indeed, it may be that we want to use different resolutions in different areas - e.g. in nondestructive
evaluation of aircraft we may want to look for general corrosion over an entire plane, but focus
attention on certain suspect rivets to look for cracks. Using conventional techniques we would
first have to reconstruct the entire field and then use post-processing to extract such features. A
final compelling motivation for the use of multiresolution methods in estimation and reconstruction
problems, is that they generally lead to extremely efficient algorithms, as in [13].

The conventional, and most commonly used, method for image reconstruction from tomographic
projections is the Filtered Back-Projection (FBP) reconstruction technique [1]. In the standard
FBP reconstruction as applied to a complete set of noiseless projections' the projection data at each
angle are first filtered by a high-pass "ramp" filter and then back-projected. In this paper, we work
in a different, multiscale transform space. The matrix representation of the resulting multiscale
filtering operator is approximately diagonal. This enables us to formulate an efficient multiscale
tomographic reconstruction technique that has the same computational complexity as that of the
FBP reconstruction method. Perhaps more significantly, however, the different scale components
of our proposed multiscale reconstruction method induce a corresponding multiscale representation
of the underlying object and, in particular, provide estimates of (and thus information about) the
field or object at a variety of resolutions at no additional cost. This provides a natural framework
for explicitly assessing the resolution-accuracy tradeoff which is critical in the case of noisy or
incomplete data.

Noisy imaging problems arise in a variety of contexts (e.g. low dose medical imaging, oceanog-
raphy, and in several applications of nondestructive testing of materials) and in such cases standard
techniques such as FBP often yield unacceptable results. These situations generally reflect the fact
that more degrees of freedom are being sought than are really supported by the data and hence
some form of regularization is required. Conventionally, this problem of reconstruction from noisy
projection data is regularized by one of the following two techniques. First, the FBP ramp filter
may be rolled off at high frequencies thus attenuating high frequency noise at the expense of not
reconstructing the fine scale features in the object [7,8]. This results in a fast, though ad hoc,
method for regularization. The other common method for regularization is to solve for a maximum
aposteriori probability (MAP) estimate of the object based on a 2-D (spatial) Markov random field
(MRF) prior model [25, 26]. This results in a statistically regularized reconstruction which allows

1According to Llacer [3], "a complete data set could be described as sufficient number of line projections at a
sufficient number of angular increments such that enough independent measurements are made to allow the image
reconstruction of a complete bounded region."
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the inclusion of prior knowledge in a systematic way, but leads to optimization problems which are
extremely computationally intensive. In contrast to these methods, we are able to extend our mul-
tiscale reconstruction technique in the case of noisy projections to obtain a multiscale MAP object
estimate which, while retaining all of the advantages of statistically-based approaches, is obtained
with the same computational complexity as the FBP reconstruction. We do this by realizing that
for ill-posed problems the lower resolution (i.e. the coarser scale) reconstructions are often more
reliable than their higher resolution counterparts and by capturing such intuition in prior statistical
models constructed directly in the multiscale domain. Similar to the noise-free case, we also obtain
these MAP estimates at multiple scales, essentially for free.

Finally, the FBP reconstruction method is not suitable for imaging problems where the projec-
tion data are incomplete (limited angle and/or truncated projections) [2,3]. These problems are
encountered in many applications in medicine, non-destructive testing, oceanography and surveil-
lance. Though the work presented here focuses on the case of complete data, our wavelet-based
multiscale framework has the potential of overcoming this limitation and we briefly discuss such
possibilities in the conclusion to the paper. We also refer the reader to a subsequent paper [20]
where we consider an extension to the incomplete data case based on a similar multiscale framework.

Wavelets have been recently applied to tomography by other researchers as well. Peyrin et
al [15] have shown that the back-projection of ramp-filtered and wavelet-transformed projection
data corresponds to a 2-D wavelet decomposition of the original object. Their method differs from
ours in several ways. First, the work in [15] does not deal with noise in the projection data. In
contrast, our framework allows for the solution of statistically regularized problems at no additional
cost when the projection data are noisy. Second, in [15], the object is represented in the original
spatial domain by a 2-D wavelet basis, the expansion coefficients of which are then obtained from
the projection data. Instead of this, we represent the object in the projection domain by expanding
the FBP basis functions (i.e. strips) in a 1-D wavelet basis. This has the advantage that our
multiscale basis representation of the object is closer to the measurement domain than the multiscale
representation in [15]. One consequence is that our algorithms for multiscale reconstruction are no
more complex than the FBP method. Another, is that our framework also allows for the simple
and efficient solution of statistically regularized problems at no additional cost when the projection
data are noisy. Sahiner and Yagle use the wavelet transform to perform spatially-varying filtering
by reducing the noise energy in the reconstructed image over regions where high-resolution features
are not present [16]. They also apply wavelet based reconstruction to the limited angle tomography
problem by assuming approximate a priori knowledge about the edges in the object that lie parallel
to the missing views [17]. Again as in [15], in [16,17] the object is represented in the original spatial
domain by a 2-D wavelet basis which is much different than our multiscale object representation.
DeStefano and Olson [18], and Berenstein and Walnut [19] have also used wavelets for tomographic
reconstruction problems, in particular to localize the Radon transform in even dimensions. Through
this localization the radiation exposure can be reduced when a local region of the object is to be
imaged. The work in [18] and [19] does not provide a framework for multiscale reconstruction,
however, which is the central theme here. In addition, our reconstruction procedure also localizes
the Radon transform, though we do not stress this particular application in this work.

The paper is organized as follows. Section 2 contains preliminaries. In Section 2.1 we de-
scribe the standard tomographic reconstruction problem and in Section 2.2 we describe the FBP
reconstruction technique. We outline the theory of 1-D multiscale decomposition in Section 2.3.
In Section 3, we develop the theory behind our wavelet-based multiscale reconstruction method
starting from the FBP object representation. In Section 4 we build on this framework to provide a
fast method for obtaining MAP regularized reconstructions from noisy data. The conclusions are
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Figure 1: The projection measurements for an object, f (shaded), at two different angular positions
(k = 1 and k = 2 respectively). The number of parallel strip integrals in each angular projection,
N,, is 8 in this case. Three basis functions, T 11, T18, T28, which are the indicator functions of the
corresponding strips, are also shown.

presented in Section 5. Appendix A summarizes the mathematical notation used throughout this
paper. Appendix B contains certain technical details.

2 Preliminaries

2.1 The Tomographic Reconstruction Problem

In tomography the goal is to reconstruct an object or a field, f, from line-integral projection data [1].
For a parallel-beam imaging geometry, the projection data consists of parallel, non-overlapping strip
integrals through the object at various angles (refer to Figure 1). Each angular position corresponds
to a specific source-detector orientation. Suppose we have Ne uniformly spaced angular positions
between 0° and 1800 and N, parallel strip integrals at each angular position. Let us label the
observation corresponding to projection I at angular position k by yk(l), where k = 1,..., No and
I = 1,..., N,. Furthermore, let Tkt be the indicator function of the strip integral corresponding to
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this observation so that Tkt has value one within that strip and zero otherwise. Given this notation,

Yk(l) =11 f(u,v)Tk(u,v)dudv k= ,...,No; = 1,..., N (1)

where (u, v) are the usual rectangular spatial coordinates and the integration is carried over a region
of interest Q.

Due to practical considerations, we have to work with a discretized version of (1). By using
standard discretization techniques (see for example [21]), the projection data at angle k is given by

yk = Tkf (2)

where Tk is an N, x N2 matrix representing {Tkt(u, v); I = 1,..., N,} and f is an N 2 x 1 vector
representing f(u, v) on an N, x N, square pixel lattice, and Yk is the corresponding vector of
measurements Yk(/). Thus row I of Tk is the (discrete) representation of the strip function Tkt(u, v)
and the inner product of f with this strip yields the data contained in the corresponding entry of yk.
The tomographic reconstruction problem then reduces to finding an estimate f of the discretized
object f given the projection data contained in the {Yk; k = 1,. . ., Ne}.

2.2 The Filtered Back-Projection Reconstruction Technique

The filtered back-projection (FBP) reconstruction technique is the most commonly used method for
image reconstruction from tomographic data. It is based directly on the Radon inversion formula
which is valid (i.e. yields exact reconstructions) only when a continuum of noise-free line integral
projections from all angles are used [1]. In practice, as indicated in (1), we only have access to
sampled projection data which are collected using strips of finite width. In this case, the quality
of the FBP reconstruction is a function of the quality and fineness of the corresponding projection
data used. We refer the reader to [23,24] for details on sampling requirements for the Radon
transform. In this work we assume that we sample finely enough to produce good reconstruction
in the noiseless case.

In the FBP reconstruction, the object is expanded in a non-orthogonal basis that is closely
related to the data acquisition process and the coefficients of this expansion are then found from
local processing of the data in each angular projection. In particular, the estimated object is
represented as a linear combination of the same functions Tke(u, v) along which the projection data
are collected. Similar to (2), a discretized version of this representation may be obtained as:

NE
TT= EToZ k(3)

k=1

where the N, vector xk contains the object coefficient set at angle k. Note that (3) can be interpreted
as the back-projection operation [1] where the object coefficients ak are back-projected along the
basis functions Tk at each angle k and then the contributions from all No angles are added to get
the overall reconstruction f.

To complete the reconstruction the coefficients zk must now be determined. The standard FBP
method calculates them for each angle k according to the Radon inversion formula by filtering the
projection data Yk at that particular angle with a ramp filter [1]. Thus, for a fixed angle k:

xk = Ryk (4)
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where the matrix R captures this ramp-filtering operation. Thus (3) and (4) together represent the
two operations used in the standard FBP reconstruction.

In Section 3 we apply a 1-D multiscale change of basis to the coefficients zk and observations yk
using the wavelet transform [4,22]. One effect of this multiscale transformation will be to "compress"
(sparsify) the filtering operator. Beyond simple compression of this operator, however, our method
results in an associated multiscale transformation of the basis functions contained in Tk, and thus
leads naturally to a framework for the reconstruction of objects at multiple resolutions, and hence
the extraction of information at multiple resolutions. A key point in our multiscale reconstruction
method is that, as opposed to what is done in other multiscale reconstruction techniques (for
example, [15]), we do not directly expand the object estimate (i.e. f) in a spatial 2-D wavelet basis
but rather we expand the FBP basis functions {Tk} in a 1-D wavelet basis which then induces a
corresponding 2-D multiscale object representation. The multiscale versions of the object expansion
coefficients, {zk}, "live" in the strip integral (i.e. the projection) domain rather than in the original
object or spatial domain. Thus, as we have said, our multiscale basis representation of the object is
closer to the measurement domain than the multiscale representations in previous work, resulting
in very efficient algorithms.

2.3 1-D Wavelet Transform Based Multiscale Decomposition

Here we present a brief summary of the wavelet-based multiscale decomposition of 1-D functions.
We do not intend this as a complete treatment of the topic and intentionally suppress many details.
The interested reader is referred to any of the many papers devoted to this topic, e.g. the excellent
paper [22]. A multiresolution dyadic decomposition of a discrete 1-dimensional signal z(n) of length

2N is a series of approximations x(m)(n) of that signal at finer and finer resolutions (increasing m)
with dyadically increasing complexity or length and with the approximation at the finest scale
equaling the signal itself, i.e. X(N)(n) = z(n). By considering the incremental detail added in
going from the m-th scale approximation to the (m + 1)-st we arrive at the wavelet transform. In
particular, if x(m) is the vector containing the sequence x(m)(n) and C(m) is the corresponding vector
of detail added in proceeding to the next finer scale, then one can show [27] that the evolution of
the approximations in scale satisfies an equation of the form:

x(m+') = LT(m) 7(m) + HT(m) .(m) (5)

where L(m) and H(m) are matrices (linear transformations) which depend on the particular wavelet
chosen and are far from arbitrary and LT(m) and HT(m) denote their transposes (i.e. their ad-
joints). The operators LT(m) and HT(m) serve to interpolate the "low" and "high" frequency (i.e.
approximation and detail) information, respectively, at one scale up to the next finer scale. The
2m -vector &(m), containing the information added in going from scale m to (m + 1), is composed of
the wavelet transform coefficients at scale m and (5) is termed the wavelet synthesis equation.

Starting from a "coarsest" approximation x(o) (usually taken to be the average value of the
signal) then, it is possible to recursively and efficiently construct the different scale approximations
through (5) by using the complete set of wavelet coefficient vectors {((m)}. This layered construction
is shown graphically in Figure 2a, where our approximations are refined though the addition of
finer and finer levels of detail as we go from right to left until the desired scale of approximation
is achieved. In particular, the original signal x is obtained by adding all the interscale detail
components ((m) to the initial approximation z(O). For a given signal z the complete set of these
elements uniquely captures the signal and thus corresponds to a simple change of basis. In addition,
note from Figure 2 that the intermediate approximation x(m) at scale m is generated using only

7



T T T
L(N- (N)L() L(O)

(N-) (0)

T T T 
H(N-1) (N-I) H(i () H(O) (0)

(a)

L(N-1) (N-I) L(N-2) (N-2) x(i ) L(O) (O)

H(N-I) H(N-2) H(O 

,(N-E (N-2) (0)

(b)

Figure 2: (a) Tree diagram for wavelet transform synthesis. We start from a coarsest approximation
x(O) on the right and progressively add finer levels of detail ((m) as we proceed to the left, thus
refining the original approximation to the signal. The original (finest scale) sequence is obtained
as the final output on the left. (b) Tree diagram for wavelet transform analysis. Starting from a
finest level signal z in the left we recursively peel off layers of detail ((m) as we proceed to the right
and the next coarser scale representation z(m).

the corresponding subset of the complete wavelet coefficient set (e.g. to obtain z(2) we use only
Z(O), M(0), and M(1)). The representation of this intermediate approximation at the original finest
scale can be found by repeated interpolation of the information in z(m) through the application
of LT(m'), m' > m. This interpolation up to the finest scale corresponds to effectively assuming
that additional, finer scale, detail components &(m'), m' > m are zero in our representation of the

signal. It is such intermediate scale approximations and the detail necessary to go between them
that give the wavelet transform its natural multiscale interpretation, and indeed we exploit such
interpretations in Sections 3 and 4 to obtain induced multiscale object representations.

Beyond the recursive computation of the approximations, it is also possible to compute the
components of the decomposition itself (i.e. the wavelet coefficients) recursively by exploiting the
same multiscale structure. In particular, as shown in [27] the wavelet coefficient vectors &(m) (and
2(°)) can be obtained from the following recursion defining the wavelet analysis equations, which is
illustrated in Figure 2b:

2() = L(m) 2(m+1), ( (m) =(m+1) (6)

where L(m) and H(m) are the same operators defined in connection with (5). The operators
L(m) and H(m) correspond roughly to low and high pass filters followed by downsampling by a
factor of 2, respectively. The figure shows how these wavelet coefficient vectors at each scale are
obtained by "peeling off" successive layers of detail as we proceed from finer to coarser scales (left
to right in the figure). This recursive structure yields algorithms for computation of the wavelet
transform coefficients that are extremely efficient. For convenience in the development to follow, we
will capture the overall operation which takes a vector x containing a discrete signal to the vector
t containing all of its corresponding wavelet transform elements {&(m)} and z(o) by the matrix
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operator W as follows: [ (N-1 ) 

WX = (7)

Since the transform is invertible and the wavelet basis functions are orthonormal, it follows that
W - 1 exists and further that W is a unitary matrix, i.e. that W - 1 -= WT. From the above discussion,
the matrix W captures the operation of the operators L(m) and H(m), and thus depends on the
underlying chosen wavelet. In our work in this paper, in addition to the Haar wavelet we will use
wavelets from an especially popular family of these functions due to Daubechies [4], the separate
elements of which are denoted D,, where n is an indication of the support size of the corresponding
filters contained in L(m) and H(m). Finally, since our signals are of finite length, we need to deal
with the edge effects which occur at the ends of the interval in the wavelet transform. While there
are a variety of ways in which to do this, such as modifying the wavelet functions at the ends of the
interval in order to provide an orthogonal decomposition over the interval [28], we have chosen here
to use one of the most commonly used methods, namely that of cyclically wrapping the interval
which induces a circulant structure in L(m) and H(m) [5,22]. While this does introduce some edge
effects, these are of negligible importance for the objectives and issues we wish to emphasize and
explore and for the applications considered here. Further, the methods we describe can be readily
adapted to other approaches for dealing with edge effects as in [28] and the references contained
therein.

As noted above, the intermediate approximations z(m) and their finest scale representation
may be obtained by using only part of the full wavelet coefficient set during synthesis, effectively
assuming the finer scale detail components are zero. For convenience in the discussion to follow
we capture this partial zeroing operation in the matrix operator A(m), which nulls the upper
N - m subvectors of the overall wavelet vector e and thus retains only the information necessary
to construct the approximation z(m) at scale m:

A(m) _ block diag [O(2N-2m), I(21,)] (8)

where Op is a p x p matrix of zeros and Iq is a q x q identity matrix. Also it will prove convenient
to define a similar matrix operator D(m), that retains only the information in e pertaining to the
detail component at scale m by zeroing all but the sub-vector corresponding to ((m):

D(m) - block diag [O(2N-_2m+1), I(21,), 0(2m)] (9)

Finally, with these definitions note that we have the following scale recursive relationship for the
partially zeroed vectors, in the spirit of (5):

A(m+l) ) = A(m) , + D(m) (10)

3 The Multiscale Reconstruction Technique

In this section we derive our 1-D wavelet-based multiscale reconstruction technique. We start by
applying a wavelet-derived multiscale change of basis W to the FBP object coefficients xk, which
will induce a natural multiresolution object representation. We then show how the coefficients of our
new multiscale representation can be computed directly from corresponding multiscale versions of
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the data, in the same way that xk is computed directly from yk in the standard FBP method. Taken
together these two components define a multiscale reconstruction algorithm, analogous in structure
to the FBP method. An important point is that our approach does not start with a decomposition
of the object in a 2-D wavelet basis and attempt to then find the resulting coefficients, but rather
works directly in the projection domain. The multiscale nature of our object representation in
the 2-D or spatial domain arises naturally from the original FBP definitions and our multiscale
decomposition of the zk, and thus we retain the simplicity and efficiency of this popular method.

Multiscale Object Representation

We start by applying a multiscale change of basis, as defined by the matrix W in Section 2.3, to
the original set of object coefficients zk at each angle k to obtain an equivalent set of multiscale
object coefficients as follows:

'k = Wzk (11)

Thus, for a given choice of wavelet defining W, the vector ~k contains the corresponding wavelet
coefficients and coarsest level approximation (i.e. the average) associated with zk and thus forms a
multiresolution representation of this signal. More importantly, by reflecting this change of basis
into the original FBP object representation (3), we naturally induce a corresponding multiscale
representation of the object through the creation of a corresponding set of transformed multiscale
basis functions. In particular, substituting (11) into (3) we obtain:

No No
f= E (TTWT) (Wv' E Tk (12)

k=l k=l

where Tk = W Tk, is now a matrix representing the transformed, multiscale basis functions at angle
k.

Before proceeding, let us consider these transformed bases functions contained in Tk in more
detail. Recall from Section 2.1 that the rows of Tk are composed of the (discretized) original strip
basis functions at angle k along which the data were collected, c.f. (2). Similarly the rows of the
transformed matrix Tk will contain the corresponding (discretized) multiscale object basis functions
at angle k. The wavelet transform operator matrix W, acting identically on each column of Tk,
will thus form the new multiscale basis functions at that angle from linear combinations of the
corresponding original strip functions, where these linear combinations correspond precisely to a
1-dimensional wavelet transform perpendicular to the projection direction. This transformation
of the basis functions is shown schematically in Figure 3 (which corresponds to the case of the
rectangular, Haar wavelet). The original strip basis functions (rows -of Tk) are illustrated in the left
half of the figure, while the corresponding collection of multiscale basis functions (rows of Tk) are
shown in the right half. The heavy boundaries illustrate the support extent of the corresponding
basis element while the "+" or "-" (together with shading) notionally indicate the sign of the
function over this region. Note that the number of basis elements in the original (left half) and
the multiscale (right half) framework are the same, as they must be since the multiscale framework
involves an orthonormal change of basis. We may naturally group the multiscale 2-D spatial basis
elements into a hierarchy of scale related components based on their support extent or spatial
localization, as shown in the figure. The basis elements defining the m-th scale in such a group are
obtained from the rows of jk corresponding to (i.e. scaled by) the associated wavelet coefficients ~(m)
at that scale. We can see that the basis functions of these different scale components, though arising
from a 1-dimensional multiscale decomposition, naturally represent behavior of the 2-dimensional
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Figure 3: Example of relationship between original strip basis functions contained in Tk (shown
in the left half of the figure) and transformed multiscale basis functions of Tk (shown in the right
half of the figure) for a fixed angle k corresponding to the Haar wavelet. The multiscale basis
functions may be naturally grouped into different scale components based on their spatial extent
(or, equivalently, their relation to the coefficients in ak), as shown.

object at different resolutions, directly corresponding to the different scale components contained
in the transformed vector k. In particular, in defining the overall object f, the multiscale basis

functions at scale m and angle k are weighted by the corresponding detail component (m). The
overall object is then represented by a superposition of such components at all angles k, as captured
in the sum in (12).

So far we have simply transformed the representation of the original finest scale object estimate
f. But the preceding discussion together with the development in Section 2.3 suggests how to use
our new multiscale decomposition ~k and corresponding basis functions sTk to obtain a multiscale
decomposition of the object estimate in the original space. Such a multiresolution decomposition
can be obtained through (12) by using a series of approximations to xk at successively finer scales,
thereby inducing a series of corresponding approximate representations of the object. In particular,
we define the m-th scale approximation fTm) to f as:

No

f(m) A_ E TkT (A(m) k) (13)
k=1

where recall that the m-th scale approximation (A(m) Ck) is obtained by zeroing the finer scale
components in the vector of 1-D wavelet transform coefficients of ek, as discussed in Section 2.3.



Thus the approximation f(m) uses only the m coarsest scale components of the full vector ,k.

Similarly, by Af 'm) we denote the additional detail required to go from the object approximation
at scale m to that at scale (m + 1), which is given by:

N.

Afrm) _ Z ~7T (D(m) k) (14)
k=l

where recall that the detail vector (D(m) Sk) is obtained by zeroing all but the corresponding level
of detail J(m) in k-. Combining the object approximation and detail definitions (13) and (14)
with the scale recursive relationship (10) we see that the object itself satisfies the following scale
recursive relationship, whereby the object approximation at the next finer scale is obtained from
the approximation at the current (coarser) scale through the addition of the incremental detail at
this scale, just as for the 1-D case treated in Section 2.3:

f=m+l)= -jm)+ +4(m) (15)

Note that our multiscale object representation given in (13) and corresponding scale recursive
construction (15) is induced naturally by the structure of the individual 1-D wavelet-based mul-
tiscale decompositions at each angle k and is not simply a 2-D wavelet transform of the original
object estimate f. In other words, we are not simply relating the coefficients of a 2-D multiscale
decomposition of f based in the original object domain to those of a 1-D decomposition of the data
in the projection domain, but rather we are allowing a multiscale projection domain decomposition
to induce a corresponding, and thus naturally well matched, multiscale object representation. In
particular, the m-th scale approximation of the object f(m) is created as a linear combination of
the corresponding m coarsest multiscale basis functions (c.f. Figure 3) summed over all angles k
(note that the coefficients finer than level m in (A(m) k) are zero and use the object definition
(13)). As can be seen, our resulting object representation lives close to the projection domain in
which data is gathered, with advantages in efficiency as we will see.

Multiscale Coefficient Determination

We now have a natural multiscale object representation framework through (13), (14), and (15)
that is similar in spirit to the FBP case (3). To complete the process and create multiscale object
estimates from data we must find the multiscale object coefficients ~k (which contain all the infor-
mation we need). Further we desire to find these object coefficients directly from corresponding
multiscale tomographic observations. Aside from simply being an evocative notion (e.g. directly
relating scale-specific data features to corresponding scale-specific object characteristics), such an
approach should be more efficient, in that we would expect coarse scale object characteristics to
be most strongly affected by coarse or aggregate data behavior and, conversely, fine scale object
characteristics to depend most strongly on fine scale data behavior. Said another way, we would
expect the relationship between such multiscale data and object elements to be nearly diagonal,
and this is indeed the case.

To the above ends, we perform a wavelet-based multiscale change of basis to the data sequences
Yk, similar to object oriented one in (11), to obtain an equivalent set of multiscale observations:

17k - Wyk (16)

where, recall, W is a matrix taking a discrete sequence to its wavelet transform. We may now
easily obtain our desired direct relationship between the multiscale representation of the data at
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angle k in 77k and the multiscale object coefficients 'k at the same angle by combining the two
transformations (11) and (16) together with the original FBP relation (4) to obtain:

4k = 1Z ik (17)

where 1? = WTRW is the multiscale data filter, corresponding to the ramp filter R of the usual FBP
case. As we show through examples later, the operator R is compressed by the wavelet operator so
that 1? is nearly diagonal. Further, higher compression is achieved if Daubechies wavelets Dn with
larger n are used. This observation is consistent with the observations of Beylkin et al [6], since R
is a pseudo-differential operator.

The Overall Multiscale Algorithm

We are now in a position to present our overall multiscale reconstruction method. By comparing
the FBP equations (3) and (4) to the corresponding multiscale equations (12) and (17), respectively,
we see that our complete multiscale reconstruction process for estimation of f parallels that of the
standard FBP reconstruction, in that identical and independent processing is performed on the
multiscale data sets r/k at each angle to obtain the corresponding multiscale object coefficients 4k
at that angle, which are then back-projected along corresponding multiscale basis functions Tk and
combined to obtain the final object estimate. Thus our overall procedure, given next, is no more
complex than the standard FBP method.

Algorithm 1 (Multiscale Reconstruction)

1. For a given choice of wavelet, form the multiscale filter matrix 7R = W R WT (the multiscale
counterpart of the original ramp filter) to process the data at each angle. 1R is nearly diagonal.

2. For each angle k perform the following:

(a) Find the multiscale observations '1k by taking the 1-D wavelet transform of the projection
data at angle k, rlk = WYk.

(b) Calculate the multiscale object coefficient set 4k = ZR 17k by filtering the multiscale obser-
vations.

(c) Back-project 4k along the corresponding multiscale basis functions Tk, '7k.

3. Combine the object contributions from the individual back-projections at each angle to obtain
the overall estimate, Ek 7T76k·

Beyond simply finding a finest scale object estimate as described in Algorithm 1, however,
we also have a method to reconstruct the underlying object at multiple resolutions through (13),
(14) and (15) and thus for easily obtaining information about the object at multiple scales. In
particular, if an approximation f"(m) at scale m is desired, then in Algorithm 1 we need only replace

'k by (A(m) k) in Step 2c and 3. In particular, this simply amounts to zeroing detail components
in 4k which are finer than scale m. Further, if instead we want to reconstruct the detail Af(m)
added at a particular scale, we need only replace 4k by (D(m) 4k) in Step 2c and 3 of Algorithm 1.

Similarly, this simply amounts to zeroing all but the desired scale of detail &(m) in Il. Note that
such intermediate scale information about f can even be efficiently found by calculating only those
elements necessary for reconstructing the scale of interest - i.e. all of k is not required. For example,
if all that is required is a coarse estimate of the object and not the full reconstruction, only the
coarsest elements of (m) are required. Conversely if only fine scale features are to be reconstructed,

then only the finest scale detail components of &£m) are needed.
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Figure 4: Phantom used for reconstruction experiments. The phantom is 256 x 256 and projections
are gathered at 256 equally spaced angles (Ns = 256) with 256 strips per angle (Na = 256).

Examples

We now show some examples of our multiscale reconstruction framework. Figure 4 shows the
256 x 256 phantom used in the experiments of this section. Projection data were collected at 256
equally spaced angles (NE = 256) with 256 strips used for each projection (N. = 256). First we
show a series of approximate reconstructions using the Daubechies D3 wavelet for the multiscale
decomposition W. Figure 5 shows the various scale approximate object reconstructions f(m) for
the entire range of scales m = 1, ... , 8. The approximations get finer from left to right and top
to bottom (so that the upper left frame is f(1) and the bottom middle frame corresponds to f(8)).
The bottom row, right shows the FBP reconstruction for comparison. Note in particular, that
the finest scale approximation (8) is identical to the FBP estimate f. The intermediate scale
estimates demonstrate how information is gathered at different scales. For example, in the scale
3 reconstruction f(3) (top right in the figure) though only 8 of the full 256 coefficient elements in
the vectors Ck are being used, we can already distinguish separate objects. By scale 4 (middle row,
left) we can start to identify the separate bright regions within the central larger object, while by
scale 5 this information is well localized. Even at this comparatively fine scale we are still only
using about 12% of the full object coefficient set.

In Figure 6 we show the corresponding detail components A('"m) for the same phantom. Again,
the additive detail becomes finer going from left to right and top to bottom in the figure. Notice
that the fine scale, edge based, features of the phantom are clearly visible in the A f( 4) and A '(5)
reconstructions (center row, middle and right in the figure), showing that structural information can
be obtained from these detail images alone. Recall that these images provide the added information
needed in going from the object approximation at one scale to that at the next finer scale (as
provided in Figure 5).

As we discussed earlier, the wavelet-based multiscale transformation of both the representation
zk and data Yk also serves to compress the ramp filter matrix R so that the corresponding mul-
tiscale filter matrix 7Z is nearly diagonal. As we argued earlier, this reflects the fact that coarse
scale object characteristics are most strongly affected by coarse or aggregate data behavior and,
conversely, fine scale object characteristics tend to depend most strongly on fine scale data behav-
ior. One consequence is that a very good approximation to the exact reconstruction procedure of
Algorithm 1 can be achieved by ignoring the off-diagonal terms of R in (17). These off-diagonal
terms capture both intra and inter-scale couplings. Further, this approximation to the exact recon-
struction becomes better as Daubechies wavelets D, with larger n are used. To illustrate this point,
in Figure 7 we show complete (finest scale) reconstructions f of the same phantom as before, based
on the same projection data but using a diagonal approximation to 7Z in (17) and Algorithm 1 for
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Figure 6: The detail added between successive scales in the reconstructions of Figure 5. First row,
left: Af(O). First row, middle: Af(1). First row, right: Af(2). Second row, left: Af(3). Second
row, middle: Af(4). Second row, right: A f(5). Third row, left: A f(6). Third row, middle: Af(7).

Figure 7: Complete finest scale multiscale reconstructions for phantom of Figure 4 for different
approximate filtering operators. The left three frames show approximate multiscale reconstructions
using only the diagonal elements of 1Z corresponding to different choices of the underlying wavelet:
First column = Haar. Second column = D3. Third column = Ds. For comparison, the right-most
frame shows an equivalent approximate FBP reconstruction using only the diagonal elements of R,
demonstrating the superiority of the multiscale based approximations.
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Figure 5: Approximation reconstructions of phantom of Figure 4 at various scales, using D 3 wavelet.
First row, left: l1). First row, middle: (2). First row, right: 3). Second row, left: f74). Second
row, middle: f(5). Second row, right: f6). Third row, left: 7). Third row, middle: f(8). The third
row, right shows the corresponding FBP reconstruction f for comparison. The FBP reconstruction
is the same as f8), since this is the complete reconstruction.

a variety of choices of the wavelet defining W. For the reconstructions we use only the diagonal
elements of 1R (which account for 0.0031% of all the elements for this case) in the calculation of ~,
effectively setting all off-diagonal elements to zero. Reconstructions corresponding to Daubechies
wavelets Dn with increasing n (in particular Haar or D 1, D3, and D8 ) are shown from left to right
in the figure. It can be seen from the improvement in the reconstructions that the accuracy of the
diagonal approximation becomes better as Dn wavelets with increasing n are used in the definition
of W. In particular, the approximations can be seen to compare very favorably with the standard
FBP reconstruction. For comparison we also show on the far right in Figure 7 a corresponding
approximate FBP reconstruction obtained using a diagonal approximation to the original ramp-
filter matrix R for reconstruction. It can be seen that a diagonal approximation in the multiscale
domain results in far better reconstructions that a similar approximation in the original domain,
indicating that the multiscale transformation of data and coefficients has served to decouple the
resultant quantities.

In summary, we have formulated a 2-D multiscale object reconstruction method in terms of
approximation and detail images. This method is derived from the classical FBP method and thus
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is well matched to reconstruction from projection data. The associated 2-D multiresolution object
representation is induced by a 1-D wavelet-based change of basis to the original FBP projection
space object coefficients. While the resulting representations are similar in spirit to a direct 2-D
multiresolution decomposition of the original object, in that approximations are produced at a series
of scales along with the detail necessary to proceed from one such approximation to the next finer
one, our approach does not correspond to such a direct orthonormal decomposition. As a result it
is fundamentally different from previous multiscale-related work in tomography (for example, [151).
In these approaches such a direct 2-D expansion of the object (i.e. a 2-D wavelet transform) is
used to directly define the approximation and detail images, the coefficients of which are then
calculated from the projection data. In contrast, all of our multiscale quantities inherently "live"
in the projection domain. As a result, our representation is closer to the measurement domain
than previous multiscale representations, and in particular implies that our approach is no more
computationally complex than FBP. To this point we have focused on noiseless reconstructions.
Next, we build on our multiscale reconstruction method to obtain a fast method for computing
regularized reconstructions from noisy projections.

4 Multiscale Regularized Reconstructions

In this section we consider the estimation of an object f from noisy projection observations. We ex-
tend our multiscale reconstruction method presented in Section 3 to obtain statistically regularized
estimates which may be simply and efficiently computed, in particular, with no more effort than is
required for the standard FBP reconstruction. This regularized solution is obtained by first solving
for the Maximum Aposteriori Probability (MAP) estimate [29] of the multiscale object coefficients,
~k, corresponding to a certain naturally derived multiscale prior model and then back-projecting
these multiscale coefficient estimates along the corresponding multiscale basis functions as before.

The presence of noise in projection data often leads to reconstructions by standard methods,
such as FBP, that are unacceptable and thus require some form of regularization. Traditionally, two
broad approaches have been used in the generation of regularized object estimates from such noisy
projection data. Perhaps the simplest approach has been to simply roll off the ramp filter used
in the standard FBP reconstruction at high frequencies. This is called apodization [7] and several
different windows are typically used for this purpose, for example Hanning, Hamming, Parzen,
Butterworth etc. [8]. The assumption is that most the object energy occurs at low frequencies
while the most disturbing noise-derived artifacts occur at high frequency. The high frequency roll-
off thus attenuates these components at the expense of not reconstructing the fine scale features
in the object. Since the overall procedure is essentially the same as the original FBP method,
the result is a fast, though ad hoc, method for regularization. The other traditional approach to
regularizing the noisy data problem is statistically based. This method starts with a statistical
model for the noisy observations based on (2):

yk = Tkf + nk (18)

where nk is taken as an additive noise vector at angle k. This observation model is then coupled with
a 2-D Markov random field (MRF) prior model [25,26] for f to yield a direct MAP estimate of the
object f. While statistically based, thus allowing the systematic inclusion of prior information, the
2-D spatially-local MRF prior models used for the object generally lead to optimization problems
that are extremely computationally complex. As a result, these methods have traditionally not
found favor in practical applications.
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In contrast to the above two techniques, we will develop a multiscale MAP object estimate that,
while retaining all of the advantages of statistically-based approaches, is obtained with the same
computational complexity as the FBP reconstruction. To accomplish this, we continue to work
in the projection domain, as the FBP method does, and build our statistical models there, rather
than in the original object domain. As in Section 3, we then allow the resulting projection domain
coefficients to induce a 2-D object representation through the back-projection and summation
operations. To this end we start with an observation equation relating the noisy data Yk to the
FBP object coefficients zk, rather than the corresponding 2-D object f as is done in (18). Such a
relationship may be found in the FBP relationship (4), which in the presence of noise in the data
becomes:

yk = R-l k + nk, -nk ~ A(0, Ank) (19)

where, recall R is the FBP ramp filter operator 2, the notation z - Af(m, A) denotes a Gaussian
distribution of mean m and covariance A and In denotes an n x n identity matrix. In particular,
we assume the An,, = AkINo, i.e. that the noise is uncorrelated from strip to strip but may have
different noise covariances at different angles, capturing the possibility that the data at different
projections may be of differing quality (e.g. due to different sensors or imaging configurations).
Further, we assume that the noise is uncorrelated from angle to angle, so that nk is independent
of nj, k :$ j. This model of independent noise in the projection domain is well justified for most
tomographic applications.

As in Section 3, for purposes of estimation we desire a relationship between multiscale repre-
sentations of the data, object coefficients, and noise. Working in the multiscale transform domain
will again allow us to obtain induced multiresolution estimates of the object. Such a multiscale
oriented relationship between the quantities of interest can be found by combining (19) with the
multiresolution changes of bases (11) and (16) based on W (defined in Section 2.3) to obtain:

77k = R-lk + k(, Vk A(0, AV). (20)

where vk = Wnk is the multiscale transformed noise vector at angle k with Av. = WAn,,W T =
AkIN, as its corresponding covariance. This equation relates our observed noisy multiscale data Yk

to our desired multiscale object coefficients ~k through the multiscale filtering operator R. Note that
the assumption of uncorrelated noise from angle to angle and strip to strip in the original projection
domain results in uncorrelated noise from angle to angle and multiscale strip to multiscale strip in
the multiscale domain, since W is an orthonormal transformation.

The Multiscale Prior Model

To create a MAP estimate of the multiscale object coefficients tk, we will combine the observation
equation (20) with a prior statistical model for the desired unknown multiscale coefficient vectors th.

Multiresolution object estimates and the detail between them can then be easily obtained by using
the resulting MAP coefficient estimates ~k at multiple scales in the multiscale object definitions
(13) and (14), as was done previously in Section 3.

We base our prior model of the object coefficients directly in scale-space. Such scale-space
based prior models are desirable for a number of reasons, e.g. they have been shown to lead to
extremely efficient scale-recursive algorithms [9,13] and they parsimoniously capture self-similar

2Note that (19) assumes that R- ' exists. For the case where R represents an ideal ramp filter this will indeed
not be the case, as this operator nulls out the DC component of a signal. For filters used in practice, however, this
inverse does exist and the expression given in (19), based on such a filter is well defined. Details may be found in
Appendix B.
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behavior, thus providing realistic models for a wide range of natural phenomenon. In particular,

such self-similar models can be obtained by choosing the detail components ((m) (i.e. the wavelet
coefficients at each scale) as independent, A/(0, a 22-p m) random variables [14]. The parameter
p determines the nature, i.e. the texture, of the resulting self-similar process while a,2 controls
the overall magnitude. This model says that the variance of the detail added in going from the
approximation at scale m to the approximation at scale m + 1 decreases geometrically with scale.
If p = 0 the resulting finest level representation (the elements of zk) correspond to samples of white
noise (i.e. are completely uncorrelated), while as p increases the components of zk show greater long
range correlation. Stich self-similar models are commonly and effectively used in many application
areas such as modeling of natural terrain and other textures, biological signals, geophysical and
economic time series, etc. [10-14].

In addition to defining the scale varying probabilistic structure of the detail components of

~k, we also need a probabilistic model for the element of ~k corresponding to the coarsest scale
approximation of zk, i.e. zk ) . This term describes the DC or average behavior of zk, of which we
expect to have little prior knowledge. As a result we choose this element as A/(0, XA), where the
(scalar) uncertainty A- is chosen sufficiently large to prevent a bias in our estimate of the average
behavior of the coefficients, letting it be determined instead by the data.

In summary, we use a prior model for the components of the multiscale coefficient vectors
~k which is defined directly in scale-space and which corresponds to a self-similar, fractal-like
prior model for the corresponding object coefficients zk . In particular, this model is given by

~ (0, At) with hk independent from angle to angle and where:

A = block diag [A- *N1). A( O)A ]21)

A(m) = .222-PmI2(,

Again, this model not only assumes that the sets of multiscale object coefficients, ~k, are independent
from angle to angle but also that these coefficients are independent from scale to scale, that they
are independent and identically distributed within a given scale, and finally that their variance
decreases geometrically proceeding from coarse to fine scales. Obviously other choices may be made
for the statistics for the multiscale object coefficients, and we discuss some particularly interesting
possibilities in the conclusions. The choice we have made in (21) while simple, is well adapted to
many naturally occurring phenomenon. In addition, since the observation noise power is uniform
across scales or frequencies, the geometrically decreasing variance of this prior model implies that
the projection data will most strongly influence the reconstruction of coarse scale features and
the prior model will most strongly influence the reconstruction of fine scale features. This reflects
our belief that the fine scale behavior of the object (corresponding to high frequencies) is the
most likely to be corrupted by noise. Finally, our choice of prior model in (21) results in efficient
processing algorithms for the solution of the corresponding MAP estimate, in particular with no
more complexity than the standard FBP reconstruction.

The Multiscale MAP Estimate

We are now in a position to present our overall algorithm for computing a MAP [29] multiscale
object estimate Ck. Since the data at each angle 77k and the corresponding prior model for Ck are
independent from angle to angle, the MAP estimates of the vectors ~k decouple. In particular, the
estimate of hk at each angle, based on the observations (20) and the prior model (21) is given by:

= [ + .=-TA-1 ]-] R-T lk A - (22)
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where the regularized multiscale filter operator R is defined in the obvious way. This regularized
filtering matrix is exactly analogous to the unregularized filtering operator R of (17) for the noise
free case. In this regularized case, however, 7R now also depends on both the noise model A.,
and the prior object model At. If the noise variance is low relative to the uncertainty in the prior
model (so A-' is large) then 1 will approach R and the estimate will tend toward the standard
unregularized one. Conversely, as the noise increases, R7 will depend to a greater extent on the
prior model term At and the solution will be more regularized or smoothed.

Finally, as in the noise-less case, the resulting object estimate f is then obtained by back-
projecting the estimated multiscale object coefficients kA, along the corresponding multiscale basis
functions Tk and combining the result. The overall structure of this regularized reconstruction
parallels that of the original FBP method, and therefore is of the same computational complexity
as FBP. In summary, our overall, efficient regularized multiscale estimation algorithm is given by
the following procedure, which parallels our unregularized multiscale reconstruction algorithm:

Algorithm 2 (Regularized Multiscale Reconstruction)

1. Find the regularized multiscale filter matrix R (the multiscale regularized counterpart of the
original ramp filter) by doing the following:

(a) For a given choice of wavelet, form the unregularized multiscale filter matrix R =
W R WT as before.

(b) Choose the model parameters Ak specifying the variances of the observation noise pro-
cesses and thus defining Avh, c.f. (20).

(c) Choose the multiscale prior model parameters a2, p and A t specifying the magnitude and
texture of the model and the uncertainty in its average value, respectively, and generate
the prior covariance matrix Ae through (21).

(d) Form = [Ai' + R-TAI -l]1 1 R-TA-

2. For each angle k perform the following:

(a) Find the multiscale observations Ok by taking the 1-D wavelet transform of the projection
data at angle k, Yk = W yk.

(b) Calculate the regularized multiscale object coefficient set ~k = 77k by filtering the mul-
tiscale observations.

(c) Back-project ,k along the corresponding multiscale basis functions Tk, Trk.

3. Combine the regularized object contributions from the individual back-projections at each angle
to obtain the overall regularized object estimate, Ek 3Tk 

As before, we may also easily obtain regularized reconstructions of the object at multiple resolutions
by using (13) and (14) together with the MAP coefficient estimates Ck. In particular, to obtain
the approximation fm) at scale m then we need only replace & by (A(m) ~k) (corresponding to
simply zeroing some of the terms in (/) in Step 2c and 3. Similarly, the corresponding object detail
components Af(m) at scale m may be obtained by using (D(m) &) in place of &k in these steps.

While Algorithm 2 is already extremely efficient, in that 2-D multiscale regularized object es-
timates are generated with no more complexity than is needed for the standard FBP method,
additional gains may be obtained by exploiting the ability of the wavelet transform operator W
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to compress the FBP filtering operator R. Recall, in particular, that the (unregularized) multi-
scale filtering matrix 1? = WRWT is nearly diagonal, with this approximation becoming better as
Daubechies wavelets Dn with increasing n are used in the specification of W. Based on our assump-
tions, the matrices At and A,,,, specifying the prior model and observation covariances respectively,
are already diagonal. If in addition 1R- 1 were also a diagonal matrix, then from (22) we see that 1?
itself would be diagonal, with the result that the "filtering" in Step 2b of Algorithm 2 would simply
become point by point scaling of the data. To this end we will assume that the wavelet transform
W truly diagonalizes R by effectively ignoring the small, off-diagonal elements in 1R- 1. That is, we
assume 3:

R-' ; diag(rl, r 2 ,. * * *,rr) r(23)

where ri are the diagonal elements of R - 1'. Now let us represent the diagonal prior model covariance
matrix as At = diag[pl,p2,... ,PN,], and recall that AVk = AkIN,. Using these quantities together
with our approximation to 1Z- 1 in the specification of the estimate (22) yields an approximate
expression for k'

1 7' diag ~1 + (Ak/Pl)'2 + (1k/p2)" r + (k/PNo) (24)

where the approzimate MAP filtering matrix 1Z is defined in the obvious way. Our experience is
that when W is defined using Daubechies wavelets of order 3 or higher (i.e. using D 3, D 4 ,...), the
estimates obtained using RZ in place of the exact regularized filter JZ in Algorithm 2 are visually
indistinguishable from the exact estimates where IZ-1 is not assumed to be diagonal. Indeed, it is
actually this approximate filtering operator JZ that we use to generate the example reconstructions
we show next.

Before proceeding, however, let us examine our MAP regularized filtering operator 1z in more
detail to understand how our multiscale MAP estimation procedure relates both to the standard
FBP method and the ad hoc regularization obtained through apodization of the FBP filter. The
MAP estimates &k induce corresponding estimates 4k of the original object coefficients zk through
the change of basis (11) and, similarly, %rk and yk are related through (16). Thus, the multiscale
MAP estimation operation specified by (22) imposes a corresponding relationship between the
original finest scale quantities ik and yk, given by:

zk = (WT W) k Reff yk (25)

where the effective multiscale MAP regularized filtering matrix Reff is defined in the obvious way.
The effect of this MAP regularized filter can now be compared to the standard FBP or apodized
ones. The behavior of the matrix operator Rff can be most easily understood by examining its
corresponding frequency domain characteristics. To this end, in Figure 8 we plot the magnitude
of the Fourier transform of the central row of effective regularized matrix Rdff corresponding to a
variety of choices of the model or regularization parameters Ak (the noise variance) and p (the decay
rate across scales of the added detail variance) for fixed a 2 = 1 (overall prior model amplitude)
and At = 1 (prior model DC variance). We also plot, with heavy lines, the magnitude of the
Fourier transform of the corresponding central row of the standard FBP ramp filter matrix R for
comparison. From Figure 8, we can see that in the multiscale MAP framework regularization is

30One can imagine another level of approximation where we set the off-diagonal elements of 1Z itself to zero prior
to inversion rather than those of R7- 1. This further approximation results in reconstructions which are visually very
similar to what we obtain here.
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Figure 8: The Fourier transform of the central row of Rff for different values of regularization
parameters p and AAk, illustrating the effect of the multiscale regularizing filter in the frequency

domain. In each of the subplots, the V-shaped heavy line corresponds to the standard FBP ramp
filter and the four curves from top to bottom correspond to p = 0.5 (solid line), 1.0 (dashed line),
i.5 (dashdot line) and 2.0 (dotted line) respectively (in some subplots some of the lines overlap).
In all cases we fixed cr2 = 1 (the overall prior model amplitude) and A( = 1 (the prior model DC

variance).

basically achieved by rolling off the ramp filter at high frequencies, the same principle as used in the
ad hoc, apodization regularized FBP reconstructions. We also see that decreasing the observation
noise variance Ak for a fixed prior model structure p, or conversely, increasing the variance of the
detail added in proceeding from coarse to fine scales in the prior model (i.e. decreasing p) for a
fixed observation noise variance AAk, leads to decreased regularization as reflected in decreased high
frequency attenuation. This behavior is reasonable, in that in the first case, the data becomes less
noisy while in the second the uncertainty in the prior model becomes larger. In both these cases
one would want to put more reliance on the data (i.e. less regularization).

In snmmary then, our multiscale based regularization approach, though derived from statistical

considerations and possessing all the advantages of such methods (e.g. the ability to incorporate
prior knowledge in a rational way, the ability to do performance analysis and understand the
relative importance of various sources of uncertainty, etc.), obtains results at no greater (and in
some cases with substantially less) computational complexity than standard unregularized or ad
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hoc approaches. In addition, we obtain, essentially for free, estimates at multiple resolutions and
thus the ability to extract information from data at multiple scales.

Examples

Next we show some examples of reconstructions using our multiscale methods in the presence of
noise. The same 256 x 256 phantom shown in Figure 4 was used for all experiments. In each
case projection data for the phantom were again generated at No = 256 equally spaced angles
with NJ = 256 strips in each projection. These noise-free values were then corrupted through the
addition of independent, zero-mean Gaussian noise to yield our observations. The variance An of
this additive noise depended on the experiment and was chosen to yield an equivalent signal-to-noise
ratio (SNR) of the resulting observations, defined as:

SNR (dB) = 10 log - -' lTfl2 (26)
1l NeN.

where, recall, Tkf is the noise-free projection data at angle k. Finally, in all multiscale reconstruc-
tions we show here the Daubechies D3 wavelet was used in the definition of W for the reconstruction.

The first example, shown in Figure 9, demonstrates reconstruction from noisy data using the
unregularized multiscale approach of Section 3. The variance An of the added noise was chosen to
yield a SNR of 5 dB. This figure shows the various scale approximate object reconstructions f(m)
corresponding to the unregularized Algorithm 1 for the complete range of scales m = 1,..., 8. As
before, the approximations become finer from left to right and top to bottom (so that the upper left
frame is f1() and the bottom middle frame corresponds to fI8)). The bottom right frame shows the
standard FBP reconstruction based on the noisy data. Since f(8) corresponds to the unregularized
complete finest scale reconstruction it is also the same as the standard FBP reconstruction based
on the noisy data for this case. The figure illustrates the resolution-accuracy tradeoff inherently
captured in the multiscale framework and confirms the point that even in the unregularized case,
information from noisy observations can be focused by stopping the reconstruction at a coarse scale,
for example scale 5 (center row, middle in the figure). The finer scale detail contributions AA(m),
m > 5 are evidently mainly noise which obscure the object features. In particular, in the finest
scale reconstruction (i.e. the standard FBP reconstruction) the object is almost completely lost in
the noise.

Next we show estimates generated by our multiscale MAP regularized estimation method dis-
cussed in this section. Figure 10 shows the various scale approximate object reconstructions f(m)
corresponding to our multiscale MAP estimate of 1,k using noisy data with same SNR (i.e. SNR =
5 dB) as in Figure 9. The MAP estimate k, was generated using the extremely efficient approximate
expression (24), which, for the Daubechies D 3 wavelet we are using, was indistinguishable from the
corresponding estimate based on the exact expression (22). Again the approximations become finer
from left to right and top to bottom in the figure. For these reconstructions we chose the modeled
observation noise variance as Ak = 5.5 x 10 5 . For the statistical model parameters of the prior, the
decay rate across scale of the added detail variance was chosen as p = 1.5, the overall magnitude
of the prior was set to a 2 = 11, and the variance of the prior model average value was At = 1.
The effect of the regularization can be readily seen in its ability to suppress noise in the finest
scale reconstruction. For comparison, the standard FBP reconstruction for this case is given on the
bottom row, right in Figure 10. In addition, the multiscale nature of the information focusing can
be seen in the scale evolution of the estimates. In particular, there appears to be little difference
between scale 5 and finer scale estimates in the figure, suggesting that little additional information
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Figure 9: Reconstructions of phantom of Figure 4 from 5 dB SNR projection data based on unreg-
ularized Algorithm 1 using D 3 wavelet. Reconstructions are shown at various scales demonstrating
the smoothing effect that can be achieved. First row, left: f('). First row, middle: ](2). First
row, right: f3). Second row, left: f4). Second row, middle: f,5). Second row, right: (6f). Third
row, left: f7(). Third row, middle: (8). The standard FBP is shown in the third row, right for
comparison. The FBP reconstruction is the same as f?8), since this is the complete unregularized
reconstruction.

is being obtained in proceeding to such finer scales, that the additional degrees of freedom being
added at such finer scales are not really being supported by the data, and thus that we should
stop the reconstruction at this coarser scale. Further, estimates at scale 5 and coarser appear quite
similar to the corresponding unregularized estimates in Figure 9, showing that these coarser scale
estimates are dominated by the data and are not very dependent on the prior model at this point
anyway.

Finally, in Figure 11, we show a series of finest scale multiscale MAP regularized reconstructions,
corresponding to different choices of the prior model texture as determined by the parameter p.
The same phantom as before is used, but we use observations with a SNR of -10 dB (much
worse than used above). The standard FBP reconstruction is shown for comparison in the far
right image of the figure. The object is completely lost in the FBP reconstruction at this extreme
level of noise. The MAP reconstructions are shown in the first three frames of the figure, with a
smoother, more correlated prior model being used as we proceed from left to right. The specific
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Figure 10: Multiscale MAP regularized reconstructions at various scales of phantom of Figure 4
from 5 dB SNR projection data using D 3 wavelet. The values of the statistical model parameters
used are Ak = 5.5 x 105 , p = 1.5, o,2 = 11, Xt = 1. First row, left: f1). First row, middle: J(2).

First row, right: 1(3). Second row, left: (4). Second row, middle: f56). Second row, right: f(6).
Third row, left: f17). Third row, middle: f(8) For comparison, the standard FBP reconstruction
for this case is given in the third row, right. The improved ability of the regularized reconstructions
to extract information is demonstrated.

multiscale MAP model parameters were chosen as follows. The observation noise variance was
chosen as AA, = 1.7 x 107. The overall prior model magnitude was set to a2 = 17 while the prior
model DC variance was set to A~ = 1. The prior model texture parameter p took on the values
{0.5,1.0,1.5}. The increased smoothness in the prior can be seen to be reflected in increased
smoothness of the corresponding estimates. Note also the ability of the algorithm to pull out at
least the global object features in the presence of this substantial amount of noise. Again, the more
highly smoothed reconstructions (corresponding to higher values of p) appear quite similar to the
coarser level, unregularized reconstructions shown previously, showing that we are really accessing
the coarse level information in the data.
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Figure 11: Multiscale MAP regularized reconstructions of the phantom of Figure 4 at the finest scale
from -10 dB SNR observations for different choices of prior model texture, p, with Ak = 1.7 X 107,
a2 = 17, and At = 1, are shown in the first three frames: Frame 1: p = 0.5. Frame 2: p = 1.0.
Frame 3: p = 1.5. For comparison the standard FBP reconstruction is shown in the last frame on
the far right.

5 Conclusions

In this paper we have developed a wavelet-based multiscale tomographic reconstruction technique
which is different from other multiscale techniques in the following respects. First, our 2-D mul-
tiscale object representation is naturally induced by expanding the FBP coefficients, and hence
basis functions (i.e. strips), in a 1-D wavelet basis. This is in contrast to other multiscale recon-
struction techniques which begin with a 2-D object representation obtained from a full 2-D wavelet
decomposition of the object space. These techniques must subsequently relate the inherently 1-D
projection data to these fundamentally 2-D object coefficients. In contrast, the multiscale repre-
sentation resulting from our approach, arising as it does from the projection strips themselves, is
much closer to the measurement domain. The result is a highly efficient method to compute our
multiscale object coefficients, in particular, no more complex than the widely used standard FBP
operation. Yet, unlike the FBP method, our multiscale reconstructions also provide a framework
for the extraction and presentation of information at multiple resolutions from data. Further, our
resulting multiscale relationships between data and object allow extremely simple approzimations
to be made to our exact relationships with virtually no loss in resulting image quality, thus further
improving the potential efficiency of our approach. Such approximations are not possible with the
standard FBP method, as they result in severe artifacts.

In addition, based on this wavelet-based multiscale framework, we have proposed a statistically-
based multiresolution MAP estimation algorithm. This method provides statistically regularized
reconstructions from noisy data, and does so at multiple resolutions, at no more effort than is
required for the standard FBP method. This approach, based on the construction of prior mod-
els directly in scale-space, allows for the inclusion of natural, self-similar prior models into the
reconstruction process. In contrast, conventional statistically-based regularization methods, utiliz-
ing MRF-type prior models constructed directly in (finest scale) object space, lead to extremely
complex and taxing optimization problems. The result has typically been that such statistically
motivated methods have been shunned in practice in favor of fast, though ad hoc, approaches. Our
results provide a bridge between these two extremes. Further, in providing estimates at multiple
resolutions, our results provide tools for the assessment of the resolution versus accuracy tradeoff,
wherein we expect coarser scale features of data to be more accurately determined than finer scale
ones. Though we did not exploit this ability in the present paper, our formulation also allowed
for the possibility of combining data from projections of fundamentally different quality, through
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the specification of different noise variances Ak at different angles. The resulting estimates do not
correspond to a simple FBP or even rolled off FBP reconstruction, yet are easily obtain in our frame-
work. Finally, as before, our multiscale MAP approach leads to algorithms which are amenable to
an additional level of approximation, with resulting improved efficiency, again at virtually no loss
in corresponding reconstruction quality.

Even though this paper concentrates on the complete-data case, our multiscale reconstruction
method has the potential of overcoming this limitation and dealing with limited or missing data
problems. First note that our ability to combine projections of different quality already does this
to some extent, in that some projections can be down weighted. More important, however, is the
structure of the prior model covariance. Specifically, while the prior model (21) assumes that the
multiscale object coefficients, fk, are independent from angle to angle, we would intuitively expect
the coarse scale object coefficients at different projection angles to actually be highly correlated
with each other, and further for this correlation to decrease at finer scales. Such a correlation
structure across projection angles would help us estimate at least the coarse scale object coefficients
to a good accuracy even if the projection data at certain angles are missing. The current angular
independence of the coefficients fk corresponds to an overall covariance structure for these variables
(i.e. the vector of all fk's) which is block diagonal, and it is this block diagonality that is partially
responsible for the extreme efficiency of our current technique. Using the proposed, more correlated
prior covariance structure would correspond in this paradigm to the addition of off-diagonal terms.
At first, such a proposal would seem to make things dramatically worse from a computational
perspective, since we must now contend with what corresponds to the. inversion of a full rather
than a block-diagonal matrix. All is not lost, however, for at least two reasons, both related to
the fact that we are building our prior models directly in scale space. First, the addition of only
coarse scale correlations may be sufficient to regularize a given problem, with the result that only
a few, low dimensional, off diagonal elements need be added to the prior model covariance (recall,
at coarser scales there are far fewer model elements - e.g. at the coarsest scale there is only one
per angle). These few additional coarse scale terms could then be aggregated into a slightly larger
corresponding covariance block, returning us to the block diagonal case, but with one block slightly
larger than the rest. More significantly perhaps, however, is that recent research has demonstrated
that certain scale-based prior models (which correspond to tree structures), though corresponding to
highly correlated fields, can lead to extremely efficient scale-recursive estimation algorithms [9,13].
We examine such variations of prior covariance structure, including the combination of projections
of differing quality in a future paper.
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A Summary of Notation

Table 1 summarizes the notation used in this paper.

Notation Explanation
Ne Number of angular projections.
N, Number of strip integrals in each angular projection.
k, £ FBP quantities are indexed by k, 1.

k is the angle of projection, k = 1, . .. , Ne.
I is the strip within the angular projection, = 1, . .., N,.

f The discretized object defined on a N, x N, square grid.
f The reconstructed object.

Ak Projection data set at angle k, k = 1,..., No. Yk = [yk(1) yk(2) ... yk(N,)]T.

zk FBP object coefficient set at angle k, k = 1,..., Ne. zk = [zk(l) 2k(2) ... zk(N)] T

Tk The discrete strip projection operator at angle k, Yk = Tkf.

TkT The back-projection operator at angle k, f = Sk T[zk.

R The matrix representing the FBP ramp filtering operation, zk = Ry,.
W The matrix realization of the discrete 1-D wavelet transform operation.
Dn Daubechies wavelet, where h indicates the support size of the corresponding filter.
m The multiscale quantities are indexed in scale by m;

Scales become finer with increasing m.
7k v The 1-D wavelet transform of yk, 77k = WYk.

The 1-D wavelet transform of xk, 4k = Wzk = [(N-I)) T (.)) T (k) T]T

(km) Detail vector of xk at scale m containing the wavelet transform coefficients of zk
at scale m.

(z) Coarsest scale approximation of axk.
Sk The multiscale projection operator at angle k, 77k = Tkf, Xk = WTk.

The multiscale back-projection operator at angle k, f = Sk Yrkk ·

f(m) The approximate object reconstruction at scale m.
Af m) The object detail reconstruction at scale m, f((m+l) = f(m) + ŽAf(m)

7? - The multiscale filter, ,k = iZr/k, R1 = WRWT.
p, a2 At The MAP prior model parameters;

p is the decay rate of prior variance across scales.
a2 is the overall prior model amplitude.
A( is the prior model DC variance.

nk The noise vector at angle k, Yk = R-lzk + nk;

nk - A(O, Ank,), An, = AkIN,..
Vk The 1-D wavelet transform of nk, vk = Wnk, vk - A/(O, Ak), An = AkIN,;

k = 1? k + Vk.
1R The regularized multiscale filter.
1R An approximation to above obtained by ignoring off-diagonal elements in 1R.

Table 1: Notation used in this paper.
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B Details about the formation of FBP ramp-filter matrix R

In this work we take the matrix R to represent the practical FBP filtering operator. In the ideal
case, this FBP ramp filter operation is given by:

F1 I NFN (27)

where FN is a N x N matrix representing the 1-D Fourier transform operation on a sequence of
length N, and HN is a N x N diagonal matrix containing ideal high-pass "ramp" filter coefficients
for a length N sequence. The matrix HN has a diagonal entry of 0 since it gives zero weight to the
frequency cell centered around 0. Thus the ideal ramp filter coefficient matrix HN, and hence the
matrix (27), is not invertible. In practice, however, to avoid dishing (i.e. interperiod interference)
and DC artifacts, a filtering operator R is used which is constructed according to [1]:

R = S F2 -I H2N F2N ST (28)

where F2N is a 2N x 2N matrix representing the 1-D Fourier transform operation on a sequence
of length 2N, H2N is a 2N x 2N diagonal matrix containing the corresponding ideal ramp filter
coefficients, and the N x 2N zero-padding matrix S is given by

S=[ IN 0]. (29)

If we define H to be the equivalent N x N practical ramp filter coefficient matrix such that:

R = F-1 H FN= S F2 - HN F2N ST (30)

then H can be seen to be given by:

H = FN S FN- H2N F2N S T FN1 (31)

One can show that H is a diagonal matrix and the diagonal elements of H are almost identical to
HN except that H gives small positive weighting to the frequency cells centered around 0 (refer
to [1] for a plot of the diagonal elements of H). Thus H has no 0 diagonal entry, resulting in an
invertible R = F-1HF. The only issue that remains now is of the conditioning of such a R. The
above procedure for computing R results in a relatively well-conditioned matrix, with the condition
number of R ranging from 24 for N = 16 to 389 for N = 256. Intermediate values of N result in
condition numbers between 24 and 389. In the work of this paper we use this practical, and thus
invertible, filtering operator given in (30) for all calculations.
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