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Abstract

A class of multiscale stochastic models based on scale-recursive dynamics on trees has recently

been introduced. Theoretical and experimental results have shown that these models provide

an extremely rich framework for representing both processes which are intrinsically multiscale,

e.g., 1/f processes, as well as 1-D Markov processes and 2-D Markov random fields. Moreover,

efficient optimal estimation algorithms have been developed for these models by exploiting their

scale-recursive structure. In this paper, we exploit this structure in order to develop a com-

putationally efficient and parallelizable algorithm for likelihood calculation. We illustrate one

possible application to texture discrimination and demonstrate that likelihood-based methods

using our algorithm have substantially better probability of error characteristics than well-known

least-squares methods, and achieve performance comparable to that of Gaussian Markov random

field based techniques, which in general are prohibitively complex computationally.
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1 Introduction

A class of multiscale models describing stochastic processes indexed by the nodes of a tree has

recently been introduced in [4, 5]. This class of processes is quite rich. In particular, experimental

results in [4] illustrate that these models are able to capture the statistical self-similarity exhibited

by stochastic processes with generalized power spectra of the form 1/f6. Moreover, in [12] we have

described how they can be used to represent any 1-D Markov process or 2-D Markov random field.

The basic concept underlying this modeling framework is the exploitation of the time-like nature

of scale. In particular, these models provide a scale-recursive description for random processes and

fields and, as a result, lead to extremely efficient scale-recursive algorithms for optimal estimation

[4, 5]. In particular, while standard 2-D optimal estimation formulations - e.g., those based on

MRF's - have per-pixel computational complexities that typically grow with image size, our scale-

recursive algorithms have a per-pixel complexity independent of image size and thus can lead to

substantial computational savings for standard image processing problems [13].

The conclusion that we draw from this is that the multiscale framework can in many cases

provide a very useful basis for signal and image processing problems, both because of the rich class

of phenomena that it can be used to describe and because of the efficient algorithms to which it

leads. This motivates further algorithmic development and, in particular, we discuss in this paper

a likelihood calculation algorithm for this class of processes. That is, we consider the problem

of computing the log of the probability density of a set of noisy observations assuming that the

data corresponds to a particular multiscale model. We exploit the structure of the multiscale

models to develop an efficient and parallelizable algorithm that allows for multiresolution data and

parameters which vary in both space and scale. The algorithm is non-iterative and again has a

constant per-pixel computational complexity.

We illustrate one possible application of the algorithm to a texture classification problem in
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which one must choose from a given set of models that model which best represents or most likely

corresponds to a given set of random field measurements [9]. Texture modeling with Gaussian

Markov random field (GMRF) models is well documented in the literature [1, 6, 16]. One difficulty

in using GMRF models, however, is that the calculation of likelihoods can be prohibitively complex

computationally. If data are available on a regular rectangular grid, likelihoods for stationary

GMRF's can be computed efficiently using 2-D FFT's. However, if there is an irregular sampling

pattern or if there are regions without data (due to camera blockage, for instance) then the 2-D FFT

approaches break down for GMRF models and exact likelihood calculation becomes computationally

infeasible for even moderately sized domains.

As developed in [12], multiscale models representing GMRF's to any desired level of fidelity can

be readily constructed and this immediately suggests the idea of developing texture models and

discrimination algorithms based on the multiscale modeling framework and the associated likeli-

hood calculation algorithm that we develop in this paper. However, it is not immediately obvious

that such a framework will provide significant advantages over classical GMRF-based approaches.

Specifically, the approach developed in [12] yields a family of multiscale models representing approx-

imations of a GMRF of increasing fidelity and complexity. Thus, if we require exact modeling of the

GMRF, the apparent computational gain in using the multiscale framework may have diminished

to the point that the benefit of our formalism is not particularly significant. However, as the results

in [12] illustrate, there is strong evidence that relatively low-order models yield processes which

are visually indistinguishable from realizations of the GMRF's they approximate. In this paper we

show that a corresponding statement is true when low-order multiscale models are used in place of

GMRF priors as the basis for algorithm design, in this case for texture discrimination. Indeed, as

we will see, we can achieve essentially the same performance in discriminating between two GMRF

textures using likelihood calculations based on low-order multiscale models as can be achieved using
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exact likelihoods for the GMRF models. Since for these low-order models the likelihood calculation

algorithm is extremely efficient, and since the algorithm allows for arbitrarily irregular sampling

patterns (i.e. it applies in many practical situations in which GMRF-based approaches relying on

2-D FFT computations do not), what this shows is that the multiscale framework does in fact offer

substantial advantages over the GMRF-based framework. Indeed, given the potentially substantial

computational savings in using the multiscale approach, and the fact that any model for a real tex-

ture is an idealization, these results demonstrate a potential advantage in using multiscale models,

rather than GMRF's, as a valid starting point for the modeling of textures.

This paper is organized as follows. In Section 2 we discuss the class of multiscale stochastic

models and the scale-recursive estimation algorithm associated with them. In Section 3 we present

the algorithm for performing likelihood calculations. In Section 4 we present results of experiments

that demonstrate the relative performance of our multiscale approach and GMRF-based approaches

to texture discrimination. Finally, our conclusions are summarized in Section 5.

2 Multiscale Stochastic Modeling and Optimal Estimation

2.1 Multiscale Stochastic Models

The models presented in this section describe multiscale Gaussian stochastic processes indexed by

nodes on a tree. A qth order tree is a pyramidal structure of nodes connected such that each node

of the tree has q offspring. Different levels of the tree correspond to different scales of the process.

In particular, the qm values at the mth level of the tree are interpreted as "information" about

the mth scale of the process. For instance, quadtree models naturally arise in 2-D applications,

and the simplest example of a quadtree multiscale representation is that in which the values of the

spatial process at the mth scale correspond to averages of the process values at scale m + 1 [15, 13].
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However, the state variables can also be used to represent many other properties of the process of

interest. For example, in [12], in which we demonstrate that these multiscale models can be used to

represent any 1-D Markov process or 2-D MRF, the state variables at coarser scales are interpreted

as decimated, rather than averaged, versions of the process at the finest scale. On the other hand,

the approzimate representations of GMRF's developed in [12] and that we use in Section 4 are

based on yet another interpretation which is associated with both averaging and decimation.

An example of a qth-order tree (for q = 3) is depicted in Figure 1. Here, each horizontal level

corresponds to a particular scale, with coarser scales toward the top of the tree and finer scales

toward the bottom. We denote nodes on the tree with an abstract index s, and define an upward

(fine-to-coarse) shift operator y such that sl is the parent of node s. We also define a corresponding

set of downward (coarse-to-fine) shift operators aj, i = 1, 2, .. , q, such that the q offspring of node

s are given by sl,sax 2 ,..., saq, and we let m(s) denote the level or scale of the node s (so that

m(sy) = m(s) - 1 and m(sai) = m(s) + 1). Finally, we define the operator a such that if s = slak,

then sS = sjak+l, with the convention that aq+l - al. In words, S is a horizontal shift operator,

defined cyclically, and such that if s is the kth offspring of its parent, then s$ corresponds to the

(k + 1)(mod q)th offspring of the same parent node.

The multiscale stochastic models of interest here are specified in terms of scale-recursive dynamic

equations defined on the tree. Specifically, let z(s) E 1Zn denote the value of the "state" of the

process at node s. The statistical characterization of 2(s) is then given by:

x(s) = A(s)x(sj)+B(s)w(S) (1)

under the assumptions that z(0) - K(O0, P(O)), w(s) - A/(0,,I), A(s) and B(s) are matrices of

appropriate size, and s = 0 corresponds to the root node at the top of the tree4 . The state variable

z(0) provides an initial condition for the recursion. The driving noise w(s) E lZm is white, i.e. w(s)

4The notation z .A(m,P) means that z is normally distributed with mean vector m and covariance P.
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and w(a) are independent if s £ ur, and independent of the initial condition. Interpreting each level

as a representation of one scale of the random process or field of interest, we see that (1) describes

its evolution from coarse to fine scales. The term A(s)z(sj) represents interpolation or prediction

down to the next level, and B(s)w(s) represents new information or detail added as the process

evolves from one scale to the next.

The class of models (1) has a statistical structure that we can exploit to develop extremely

efficient algorithms. In particular, note that any given node on the qth-order tree can be viewed

as a boundary between q + 1 subsets of nodes (q corresponding to paths leading towards offspring

and one corresponding to a path leading towards a parent). An important property of the scale-

recursive model (1) is that not only is it Markov from scale-to-scale but also, conditioned on the

value of the state at any node, the values of the state corresponding to the q + 1 corresponding

subsets of nodes are independent. This fact is the basis for the development in [4, 5] of an algorithm

for computing smoothed estimates of z(s) based on noisy measurements y(s) E 7RP of the form:

y(s) = C(s)(s)+ v(s) (2)

where v(s) N K(O, R(s)), is independent of both the driving noise w(s) and the initial condition

x(O), and the matrix C(s) specifies measurements taken at different spatial locations and perhaps at

different scales. This algorithm provides the starting point for our likelihood calculation algorithm,

and hence we briefly review it in the next section.

2.2 Multiscale Optimal Estimation

The algorithm for computing the smoothed estimates of x(s) consists of an upward sweep in which

the available measurement information in a subtree is successively fused in a fine-to-coarse recursion

in scale, followed by a downward sweep in which the information is spread back throughout the

tree. We denote the set of measurements in the subtree which has s as its root as Y8, i.e. Y, =
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{y(a)lIr = s or a is a descendant of s}. We also define i(sIY) as the expected value of the state

z(s) given measurements in the set Y, i.e. £(slY) = E[z(s)IY]. The set Y can be any subset of the

measurements on the tree. In particular, the smoothed estimate of z(s), the estimate based on all

of the data, is denoted i(slYo). Finally, we define the error covariance corresponding to i(slY) as

P(slY) = E[(z(s)- (slY))(s)s)- ~(slY))T], and the set ya = Y, \ {y(s)}, where the notation

Y. \ {y(s)} means that the measurement y(s) is not included in the set Y.a'. Note that i(slYaf)

is the best estimate at node s given all of the data in the subtree strictly below node s, whereas

i(slY,) is the best estimate including y(s) as well. The upward sweep of the smoothing algorithm

computes these quantities recursively from fine-to-coarse scales. The initialization of i(sjlYfa) and

the corresponding error covariance P(slY,?a) at the finest level reflect the prior statistics of z(s)

at the finest scale, as we have not yet incorporated data. In particular, for every s at this finest

scale we set i(slYsa ) to zero (which is the prior mean of x(s)) and similarly set P(slYjaq) to the

corresponding covariance, namely the solution at the finest level of the Lyapunov equation:

P(s) = A(s)P(sj)A T (s) + B(s)BT (s) (3)

where P(s) denotes the variance of the process z(s) at node s. The upward sweep of the smoothing

algorithm then proceeds recursively. Specifically, suppose that we have i(slY,aQ ) and P( slY.) at

a given node s. Then this estimate is updated to incorporate the measurement y(s) (if there is a

measurement at node s) according to the following:

£(SIY1) = (SlYa ' ) ±+ K(s)[y(s)- C(s)f(sIYa)] (4)

P(sIY.) = [I- K(s)C(s)]P(slY1 'I) (5)

where K(s) = P + R(s)}-l

Suppose then that we have the updated estimates i(sai IY,,i) at all of the immediate descendants

of node s. The next step involves the use of these estimates to predict z(s) at the next coarser
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scale, i.e. to compute i(slY,,i). Specifically, we can define an upward model for the tree process

which describes its evolution in terms of fine-to-coarse dynamics [5, 4]:

x(sl) = F(s)x(s) + v(s) (6)

with the measurement equation again given by (2), and where F(s) = P(sl)AT(s)P(s)- 1 and

E[Iiv(s)wiT(s)] = P(sl) - P(sl)AT(s)P(s)l-A(s)P(sf) - Q(s). This upward model is equivalent

to the downward model in the sense that the joint second order statistics of the states z(s) and

measurements y(s) are the same. The driving noise term tO(s) is white along any path from the

finest to coarsest scales and, as a result, (6) can be used to obtain the fine-to-coarse predicted

estimates:

i(sJYJ,,) = F(scai)i(sailYa,,) (7)

P(sIY,a,) = F(sai)P(saiY,,,)F T (sai) + Q(sa,) (8)

Next, note that Ya q = Yal U Yaa U ... U YCaq. This implies that :(slYjaq) can be obtained by

using standard formulas for combining linear least squares estimates based on independent sets of

measurements in the following merge step:

q

i(jYP.) = p ) uE (9)
i=l

P(SJYl ) = [(1 - q)P(s)- ' + P-1 (sIYJi)1- (10)
i=1

The upward sweep given by the update, predict and merge equations proceeds recursively up the

tree. At the top of the tree (corresponding to the root node s = 0), one obtains the smoothed

estimate of the root node, i(0[Yo). The estimate i(01Yo) provides initialization for a downward

sweep in which i(slYo) is computed recursively from coarse-to-fine. It is also possible to derive

a recursion for the smoothing error covariance P(slYo), and in fact a multiscale model for the

smoothing error process which allows one to calculate the full correlation structure of the error

statistics. The reader is referred to [4, 11, 14] for further details. Our primary focus here will be on
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the relationship of the upward sweep of the algorithm, which we refer to as the multiscale Kalman

filtering algorithm, to the likelihood calculations discussed in the next section.

3 Likelihood Function Calculation

In this section, we provide an algorithm for computing the likelihood function for the multiscale

model, i.e. the log of the probability density of the data based on this model. We denote the set

of nodes on the tree at which we have measurements as T and stack the measurements {y(s)}aET

into a vector y. Then, y - A(0O, Ay), where Ay is implicitly given by the model parameters.

The main problem in evaluating the likelihood is that the data covariance matrix Ay is generally

full, and thus inverting it directly is difficult if the number of data points is large. The algorithm

below whitens the data, which allows the likelihood to be evaluated easily. In particular, the data is

invertibly transformed to a new set of data {V(s)}IET-, such that v(s) and v(ar) are uncorrelated if

s 5 o. In particular, if we construct a vector v by stacking up the residuals {v(s)}, then v = Ty for

some invertible matrix T and the resulting covariance matrix, A, = TA ,TT, is diagonal (or block

diagonal) 5. The likelihood function expressed in terms of {v(s)} and its statistics is then given by:

C = -log IT - 2 log 2r - 2 [log IA,() + T(s)A (s) (11)
sET

where m is the dimension of y6.

Achieving a computational gain via whitening the data depends upon finding a transformation

T for which (a) the specification of T and the calculation v = Ty can be performed efficiently and

(b) ITI = constant (usually equal to 1) independent of the parameters of the model7. One obvious

choice for the transformation T is that based on an eigendecomposition of Ay,. In this case (b)

'For simplicity in notation, we will use {v(8)} in place of {Uy()}IeT, and similarly {y(s)} in place of {y(s)},e-.
6For example, if each measurement y(a) is of dimension p, then m = pS, where S is the cardinality of T.
7The latter can be of critical importance in parameter estimation since the dependence of IT[ on the parameters

can greatly complicate maximization of £ as a function of the parameters.
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is trivially satisfied, but only in certain situations will the same be true for (a). For example, if

the parameters of the model (1) vary only as a function of scale, then the Haar transform (and

appropriate generalizations for trees of order q > 2) can be used to whiten the data [5]. On the

other hand, if either the model or process is non-stationary (e.g., if the model parameters in (1) vary

in both space and scale) or if the data collection is non-stationary (e.g., if the data for a 1-D or 2-D

process has data dropouts, if 2-D data are available at a non-rectangular or irregular set of points,

or if C(s) in (2) depends fully on s and not just on m(s)) then not only is the determination of the

eigenstructure of A. extremely complex but also, even if we can compute an eigendecomposition,

the calculation v = Ty will itself be complex (in general, O(m2 ) operations).

There are, of course, alternatives to the full eigendecomposition method of whitening. In par-

ticular, Gram-Schmidt orthogonalization, in which the data are ordered and sequentially whitened,

provides another approach which also automatically satisfies (b) 8. Satisfying (a), on the other hand,

requires the availability of substantial structure. In particular, in general the whitening of each

successive data point requires subtracting from it an estimate of it based on all data preceding it in

the chosen ordering and without additional structure the computation of these estimates requires

growing memory as the orthogonalization procedure proceeds. For 1-D time series, in which there

is an obvious, natural ordering of the data points, the class of causal Gauss-Markov models has

such structure and, in particular, the Kalman filter performs the whitening itself by generating the

filter innovations, each sample of which is precisely the required difference between a measurement

and its estimate based on previous data. The algorithm we present here can be viewed as a natural

generalization to (1), (2) of the Kalman filter-based algorithm for 1-D Gauss-Markov models. In

particular, note that for q = 1, the "tree" corresponds simply to a completely ordered sequence

8Assuming that y is constructed by stacking the measurements {y(s)} in the desired order for whitening, we
immediately see that Gram-Schmidt orthogonalization always yields a lower block triangular matrix T with identity
blocks along the diagonal.
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of points so that (1), (2) corresponds to the usual state space model for time series for which the

Kalman filter performs the desired whitening. Our algorithm for general qth-order trees is based

directly on the multiscale Kalman filter described in Section 2, and hence reduces precisely to the

standard algorithm in the case q = 1. For q > 1, the algorithm has an interesting new component

not arising in the standard time series due to the fact that on higher order trees the multiscale

Kalman filter provides only a partial whitening of the data.

In particular, define the residuals generated by the multiscale Kalman filter as f (s) - y(s) -

C(s)J(s[Ya~), where the subscript f is used to distinguished these filter residuals from the residuals

v(s) which will be the result of the likelihood calculation algorithm. The fact that the set {Vf(s)}

is not white for q > 1 is apparent from the update equation (4) in which the residual term vf(s)

is used to obtain :(s]Y,). Since the estimate i(slYa) does not depend on nodes outside of the

subtree below node s, there is no reason to expect that vf(s) is orthogonal to the corresponding

residuals calculated at nodes at the same level as s. More generally, from the structure of the

upward sweep we can immediately conclude that vf(s) and uj(a) are necessarily uncorrelated if

and only if one of these nodes is the ancestor of the other, i.e. if and only if for some r > 0, s = ar

or ar = sat. Thus, along any single path from a fine scale node back toward the root node, the

corresponding multiscale Kalman filter residuals are white. For usual time series corresponding to

q = 1, there is only one such path. However, for q > 1, there are many paths and the Kalman

filter, which operates in parallel on these, does not whiten the data across them. Nevertheless, the

partial whitening that the Kalman filter performs can be taken advantage of and in the following

subsections we describe an algorithm which does just that.
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3.1 Ordering the Nodes

Any Gram-Schmidt procedure requires a total ordering of the data points. The essential attribute of

the order we use is that offspring nodes appear earlier than their parents. This leads to a likelihood

calculation algorithm which has a multiscale Kalman filter embedded in it, and which in essence

provides the additional computations required to fully whiten the data.

To motivate the ordering scheme, recall that if we choose some path from finest to coarsest

levels, the Kalman filter will produce a completely uncorrelated sequence along this path. Thus, if

we take the residuals along one such path as elements of our final whitened process, we won't have

any additional processing to do at these nodes. For example, consider the 3td-order tree in Figure 1

and suppose that we take the "left-most" path sal-s-sj-O as our chosen path along which we let

the Kalman filter do all of the work - i.e. the corresponding Kalman filter residuals vf will also be

the corresponding values of v, our final, completely whitened process. Note first that the Kalman

filter estimate is initialized with a value of zero at the finest level so that, referring to Figure 1,

(sal IY. ) = 0. Thus vf (sal) = y(sai), and it is natural then to think of the node sal in Figure 1

as the first point in our total ordering of the nodes. However, its parent s should not be thought of

as the second point. In particular, while the Kalman filter residual vf(s) at this node has certainly

been whitened with respect to y(scl), it has also been whitened with respect to y(sa2 ) and y(sa3 ),

and thus, to take advantage of the work already performed by the Kalman filter, we should place

sa 2 and sa 3 before s in our total order. Obviously, just as in our arbitrary choice of an initial path,

we can arbitrarily choose to place one of these two points before the other, so we choose to order

the first four points as sal, SC2, sa 3 , S.

Continuing with this logic on Figure 1, since the Kalman filter will whiten vf(sj) with respect

to all of the data in the subtree beneath sI, all of these points should be placed before sI in the

order (so that s8 will be the 13th point). Moreover, since the Kalman filter will also whiten v(s6)
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with respect to its three descendants, those descendants should precede sS in the ordering. More

generally, the ordering philosophy that this suggests is the following: Place each of the nodes as

early in the order as possible, subject to the constraint that all descendants of any node precede

that node in the order and to the constraint that each node immediately follows its descendent

which is placed latest in the order (so that, referring to Figure 1 and the example above, node

s follows node sa3 in the order). There is still some freedom in this ordering and we arbitrarily

order the immediate offspring of any node s "left-to-right" as sal, sa2 ,., saq, as we have done

in the example above. The resulting order for the tree in Figure 1 is given in Figure 2. For future

reference, we now adopt the notation s < a if s appears before u in this ordering.

With the ordering established in this way, we see that the Kalman filter does all of the work

for some nodes but only part of it for others. For example, consider the tree of Figure 2. In this

case, the Kalman filter will have done all of the desired whitening at nodes 1 (where no whitening

is needed), 4 (whitened with respect to nodes 1 - 3), and 13 (whitened with respect to nodes 1 -

12). Thus at these three nodes we can take v(s) = Yf(s). On the other hand, the Kalman filter

does only part of the work for nodes 2 - 3, 5 - 8 and 9 - 12. For instance, node 8 is whitened

relative to data at nodes 5 - 7 but not with respect to nodes 1 - 4. The key to performing the

remaining whitening is to propagate information around the tree structure in an efficient way. In

particular, what we wish to compute at any node s is E{z(s)ly(a), o < s}, the estimate of the state

x(s) at that node based on measurements at all of the nodes preceding s in the ordering. Having

this, the residual calculation is simply v(s) = y(s) - C(s)E{z(s)ly(a), a < s}. The key then is to

look carefully at the structure of the set of nodes {ala < s}, and to perform the calculation using

prediction, merge, and update steps analogous to those used in the Kalman filter.
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3.2 Algorithm Description

Before describing the calculations required to obtain E{x(s)ly(a), a < s} in general, we first con-

sider those corresponding to nodes 1 - 13 in Figure 2 in order to convey the essence of the algorithm.

Consider first the whitening of the measurement at node 2 with respect to node 1 in Figure 2. As

illustrated in Figure 3a, in order to compute E{x(2)ly(1)}, we first take the Kalman filter estimate

of the state at node 1 based on node 1 data, and then use the upward dynamics (6) to predict the

value of the state at the parent node 4, and then use the downward dynamics (1) to obtain the

estimate of the state at node 2 based on node 1 data. Likewise, as shown in Figure 3b, to obtain

E{x(3)ly(1), y(2)}, we merge the upward predictions of the state at node 4 based individually on

nodes 1 and 2, and then predict downward to obtain the desired estimate at node 3.

Continuing, consider the whitening of nodes 5 - 8. Since all of these are to be whitened with

respect to nodes 1 - 4, a common calculation has the information flow depicted in Figure 3c. That

is, we take the Kalman filter estimate of the state at node 4 based on data from nodes 1 - 4,

predict upward to node 13 and then downward to node 8. This estimate is then (a) predicted

downward to node 5; (b) merged at node 8 with an upward predicted estimate from node 5 and

then predicted downward to node 6; (c) merged at node 8 with the upward predicted and merged

estimate based on nodes 5 and 6 and then predicted downward to node 7; and (d) merged at node 8

with the full predicted and merged estimate of the state at this node based on nodes 5 - 7 (i.e. the

upward Kalman filter's predicted estimates at node 8). These results yield the estimates needed to

compute v(s) in at nodes 5 - 8. Similarly, as shown in Figure 3d, the Kalman filter estimates at

nodes 4 (based on measurements at nodes 1 - 4) and 8 (based on measurements at nodes 5 - 8) are

predicted upward, merged, and then predicted downward to node 12, providing a common piece of

information used in an exactly analogous fashion to obtain the desired residuals at nodes 9 - 12.

Looking at the process we have just described, we see that it has similar structure to the

14



multiscale kalman filtering algorithm. The key differences are: (a) in the upward sweep we need

to use several predicted estimates (e.g., at node 4 we make use of the prediction of the state at

this node based on the measurement at node 1, measurements at nodes 1 and 2 together, and

measurements at nodes 1 - 3); and (b) there is a downward sweep involving both pure downward

prediction as well as merging of estimates in disjoint subtrees (e.g., in merging the estimate at node

8 based on the measurements at nodes 1 - 4 with that based on the measurement at node 5 before

continuing the backward prediction to node 6). In effect, the computations required for whitening

are a superset of those required for multiscale Kalman filtering, and as a result our algorithm has

a multiscale Kalman filter embedded in it. We describe in detail below how the computations can

be organized to obtain an efficient algorithm for likelihood calculation on qth-order trees.

The required calculations in our algorithm can be broken up into three steps: an upward sweep,

followed by a downward sweep, followed by the computation corresponding to (11). To describe the

upward and downward sweeps, we begin by examining the structure of the set of data to be used

in whitening y(s) at some node s. In particular, this set of data consists of measurements at all

descendant nodes of s, Y5aq, together with data at other nodes that have been placed earlier in the

order. We define this latter set of nodes as YJ = (y(a)la < s and y(a) X Y,'}. Thus, the general

equation for the residual v(s) and its variance A,(,) is:

V(s) = y(s) - C(s)j(slY],Ya ) (12)

AV(.) = C(R)P(slY?.,Y, )CT (s) + R(s) (13)

where E(sjY. yxaq)-E{X(s)IY,y Y)} = E{z(s)ly(a), a< s}.

Since the sets Y. and Y.'q are disjoint, one way in which to compute the estimate i(slf., Y'Q)

and the corresponding error covariance is to perform a merge operation on the estimates i(slY,)

and x(slYaq) and their corresponding error covariances. Note that the latter of these estimates

is exactly the upward-predicted estimate calculated by the Kalman filter (see (9), (10)). Also, note
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that Y." is nothing more than the union of the disjoint sets Y,,,,,, Y,,2, Y,,, (e.g., the set of

all descendants of node 8 in Figure 2 is the union of nodes 5, 6 and 7). We saw in the preceding

section that we had need for estimates based on partial unions of these disjoint sets (e.g., we used

estimates of node 8 based on node 5 alone, based on nodes 5 - 6, and based on nodes 5 - 7) and

thus we define

Ya i = U=.lYaa,, fori=1,2,...,q (14)

Examples of these sets are given in Figure 4 (for s = a).

Using (14), we can identify the basic downward recursive structure of the sets Y,, which will

provide us with a simple method for obtaining the estimates i(sIY,) required in (12). In particular,

if node s is the ith of the immediate descendants of its parent node sl, i.e. if s = saci, then:

=Y Y.U.5 u-Y (15)

with the convention that YJ0 _ 0. An example of this is illustrated in Figure 4 in which we

have indicated both the set of descendants of node s, Yaq, and the three components YJ, Y.7aj,

and Ylc,, of Y,, where the union of the latter two of these yields Ya 1,, U Y;a~2 = y"a2. As we

discuss in the detailed development below, both i(slYcaq) and the set of estimates i(slYcai) for

i = 1, 2,..., q - 1, are computed recursively through a series of update-predict-merge steps, during

the upward sweep of the algorithm. In the downward sweep, we use the estimates i(slYfai) for

i = 1, 2,..., q - 1 and the structure of YZ characterized in (15) to recursively compute i(slYe) at

each node, combine this with :(sJYa"), and then use (13) to compute the residual v(s).

We begin with the upward sweep of the algorithm where at each node s we wish to compute

and store the set of predicted and partially merged estimates J(slYai), i = 1,2,..., q. As in

the upward sweep of the smoothing algorithm described in Section 2, we start by initializing the

estimates J(slyaq) at the finest level of the tree to zero. Likewise, the covariances P(sJlYq)
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at the finest level are initialized using the Lyapunov equation (3). Suppose next that we have

~(cr[Y 1), i(a[Yaf2 ),*... , x(arY~' ) at each of the immediate descendants a = sal, sa2, *., scaq of

node s. At each of these nodes it is only the last of these estimates, the original Kalman filter

predicted estimate i(alY? ), that is used in the upward calculation to obtain the desired quantities

at node s. First, i(aojY§') is updated to include the measurement at node a using the Kalman filter

update equations (4) - (5) (with s in (4) - (5) replaced by a for a = sal, sa 2,.-*, saq), yielding

the updated estimate i(sailYai), at each immediate descendant of s. These estimates are then

predicted up the tree according to (7) - (8), yielding i(slY,,,), i = 1, 2, * *, q. What remains then

is a horizontal recursion in which these q estimates are successively merged to form the desired

estimates £(slY'Yi ) , i - 1, 2, · · q:

i(sIY') - P(slYai) E P- 1 (SIYaj)W(SIY.lj)
j=l

= P(slYi)[P-l(sly'-1 )i(slyi' -') + P-'(SjYic)W(slYai)] (16)

P(slY"') = [(1- i)P(s)- + EP-'(SIYj)]-1
j=l

= [P-1 (sIYa'- ) + P-1 ( IY,ai) - P(s)-']-1 (17)

Equations (16) - (17) for computing these merged estimates follow from the fact that the measure-

ments in the sets Y,,,i, i = 1, 2,... , q are conditionally independent given z(s). Thus we see that, as

compared to the merge step (9) - (10) for the Kalman filter, the merge step for likelihood calcula-

tion involves a q-step horizontal recursion (16), (17) in which the last step yields the same quantity

((sIYc"
q) as in the Kalman filter, but in which the preceding quantities i(sIY ai), i = 1,2,.. , q are

now explicitly computed and stored for later use in the downward recursion.

The upward update-predict-merge process continues up the tree until the root node is reached.

At the end of the upward sweep, we have obtained at each node the set of estimates i(slYc' i) for

i = 1, 2, .. , q. The downward sweep then begins with the residual calculation at the root node, 0,

17



of the tree. Since Yo = 0, we have that:

i(OIYO,Yoai) = i(OlYo), i=1,2,* ,q (18)

with a similar initialization for the error covariances P(OYOyai). The estimate and error covariance

at i = q are then used to calculate the residual and its covariance at the root node via (12), (13).

Since the root node is the last one in our enumeration of nodes, the residual at this node is simply

the Kalman filter residual. The other estimates in (18) for i = 1, 2, .. -, q - 1 provide initialization

for recursive computation of i(saYJ). In particular, using the recursive structure of the sets Y8 given

by (15), we have that if s = srai:

(siY) = (19)

P(sIY.) = A(S)P(sjIYJ,,Yi1-')A T (s) + B(s)BT(S) (20)

Finally, these estimates are merged with the q estimates /(sjlYi) computed during the upward

sweep:

(l(sl,Y, ') = P(slY, Y.a')[P-l(slY'i)2(sIY 'i) + P-l(sY8 ) (sIY)] (21)

P(slY,,Yai) = [P-'(slyi ') + P-'(sI,) - P(s)-l] (22)

The estimate /(sIYJ,Yc"a) is then used in the subsequent orthogonalization step given by (12) -

(13), while the q estimates i(sIYs), i(s[YJ, Yai), i = 1 2, 2.,q - 1 are propagated down the tree

according to (19) - (20). At the end of the downward sweep we have obtained v(s) and A,(,) at

each node s, and (11) can then be used to compute the associated likelihood.

Both the upward and downward sweeps of the algorithm are parallelizable at each level of the

tree. Consider first the upward sweep. The update step (4) at a given node s requires only the value

of i(slYJa), which is available from computations at the previous level, and the measurement y(s).

Thus, all of the updates at any given level can be performed in parallel. Likewise, the prediction

step (7) requires only the updated estimate, and the merge step (9) requires only the predicted
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estimates =(slY,,j ), j = 1, 2,..., q. Similar statements can be made about the corresponding error

covariance calculations and about the downward sweep computations in (12)-(13), (16)-(17), and

(19) - (22).

Finally, we discuss the complexity of the algorithm as a function of the model parameterization

and order of the tree. Recall that z(s) E R", wt(s) E Zm' and y(s) E RP. Using the approximation

that inversion of an N x N symmetric matrix requires N 3/3 floating point operations (flops) it is

straightforward to calculate the number of flops required by the algorithm (see Appendix A). In

particular, if we assume that the measurements y(s) are available at all nodes on the tree, then

the algorithm requires 9 25n 3/3 + 4p3/3 flops per node. Note that the total per-node computation

is constant. Also, note that the structure of the model can often be exploited to substantially

reduce the required computation, e.g., in the context of the multiscale model used for computing

optical flow in [13], we could use the fact that the dynamics are diagonal. Likewise, in the texture

discrimination application in the next section in which we use the approximate GMRF multiscale

models proposed in [12], simplification results from the fact that the matrices A(s) have large blocks

of zeros, and the fact that measurements are only available at the finest level.

4 A Texture Discrimination Application

In this section we illustrate the use of the likelihood calculation algorithm in the context of texture

discrimination. In the classical texture discrimination problem, we are given a set of texture models

and a set of noisy random field observations, and we must choose that model which corresponds

most closely in some sense to the data [9]. When statistical models are available for the textures

and the measurements, this problem can be formulated as a likelihood ratio test and that is the

9The number here is approximate - for simplicity we have ignored quadratic, linear and cross terms in p and n.
Obviously, such terms may be significant if n and p are small. A more detailed analysis in which these terms are
accounted for can be found in Appendix A.
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approach we take in this section. In particular, we will utilize GMRF models, and multiscale rep-

resentations of these, as a basis for texture representation, and will examine for the discrimination

problem the relative merits and performances of a GMRF-based LRT, a multiscale model-based

LRT, and a minimum-distance classifier approach developed in [1]. Our analysis will be based

on synthetic random field measurements which correspond to noisy realizations of GMRF texture

models. We show that texture discrimination based on the multiscale methods described in this

paper provides a computationally efficient approach that works in important contexts in which

GMRF-based methods are either computationally infeasible or suffer significant losses in perfor-

mance. In addition, we apply the methodology to discrimination of three textures contained in a

set of synthetic aperture radar (SAR) imagery.

4.1 Gaussian Markov Random Fields and Their Multiscale Representations

Gaussian MRF's correspond, for some choice of parameters, to the following autoregressive model

[2]:

z(i, j) = h,(i- k,j - ) +e(i,j) (23)
(k,l)ED

where hk,l = h-k,-I, (i, j) E {0, 1, ,M - 1} x {0, 1,--, M 2- 1}, D is a neighborhood around (0, 0),

and e(i, j) is a locally correlated driving noise term. As in [1], we interpret the lattice as a toroid,

i.e. the independent variables (i, j) in (23) are interpreted modulo (Ml, M 2). For instance, the first-

order neighborhood of lattice site (0, 0) is given by the set {(0, 1), (0, M 2 - 1), (1, 0), (Ml - 1, 0)}.

In [12], we introduced a multiscale representation of (23) based on a generalization of the mid-

point deflection construction of a Brownian motion over an interval. In addition, we also introduced

in [12] a family of multiscale approximate GMRF representations, which allow one to trade off the

complexity of the model (1), (2) for the accuracy in the representation. We provide the details

of these representations in Appendix B. The fundamental result is a method for choosing the
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multiscale model parameters such that (1) and (2) represent, to any desired degree of fidelity, the

GMRF in (23).

4.2 The Texture Discrimination Problem

The noisy random field measurements on which the hypothesis test is based are of the form:

y(i,j) = c(i,j)z(i,j)+v(i,j) 0< i < Ml - 1,0 <j< M2 -1 (24)

where v(i, j) A(0O, r(i,j)), c(i,j) is a spatially varying gain and z(i, j) is a realization of a random

field of the form (23). The spatially varying measurement gain c(i, j) can be used to capture the

possibility that measurements are available over only a subset V of the image lattice. In this case

one simply sets c(i, j) = 1, (i, j) E D and c(i, j) = 0 otherwise. We focus here on a binary hypothesis

testing problem and denote the parameters of the multiscale models used in calculating likelihoods

as1 ° 00mm and 90mm, and the parameters of the corresponding GMRF models as 09" mrf and O 'nrf .

As is well known, the likelihood ratio test (LRT) for deciding between two statistical models with

parameters ~Om' and Om1n and given by:

Choose O8mm

ploje~n(Y9lOm )llog logt1 (25)
pyle-'"' (yI8om)

Choose 90mm

results in optimum performance for the discrimination problem when (24) corresponds to measure-

ments of a realization of a multiscale texture model. A similar test, based on 09 mrf and 9Omrf is, of

course, optimal when the measurements correspond to a GMRF. We refer below to the LRT based

on the GMRF and multiscale models as the GMRF-based and multiscale model (MM)-based ap-

proaches to texture classification, respectively. In the examples presented here, we have set r/= 1,

"°These parameters contain the information required to specify (1) and (2), i.e., A(s), B(s), C(s), R(s) and Po. In
the context of representing GMRF's we discuss in [12] and Appendix B how the latter can be obtained.
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corresponding to the maximum-likelihood decision rule.

To compare probability of error performance for the two approaches we have performed Monte

Carlo simulations for a number of model pairs, image lattice sizes and noise levels. With regard to

the choice of model pair, a number of GMRF models corresponding to natural textures are proposed

in [3]. As observed there, two of these generate realizations which are quite similar visually. The

parameters of these two models, which correspond to pigskin and sand, are given [3]. The specific

results in this paper correspond to these two GMRF's, and in fact to the family of models given

by s9gmrf - (1- w)8 "m f + wSmrf , with 0 < w < 1 (where Omrff corresponds to pigskin and snm rf

to sand) and to a complementary family of multiscale approximate representations of the GMRF

family constructed using the method developed in [12] and reviewed in Appendix B. The motivation

behind choosing a family of models is that we want to illustrate that the performance characteristics

of the MM and GMRF based approaches are comparable as the distance between the model choices

varies. In particular, if we are trying to distinguish between observations coming from 8,, and 81

for either MM or GMRF, this task is increasingly difficult as w -, 1 (at which point the two models

are identical).

4.3 Complete Data

To demonstrate that the GMRF-based and multiscale model-based approaches to texture discrimi-

nation result in similar performance, we first compare their performance in the case that r(i, j) _ r,

c(i, j) - c, since in this case 2-D FFT's can be used to calculate the likelihoods required for the

GMRF-based LRT. To implement the MM-based LRT, we need to make a choice of which multi-

scale models to use. We choose first and for most of our experiments the simplest of the multiscale

approximate models corresponding to a given GMRF, namely a zeroth-order Haar-transform based

model (see Appendix B). The state dimension n of this model is 16, and the measurement dimen-
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sion at the finest scale is also 16 (in this application, the measurements are only available at the

finest scale). Assuming that M1 = M 2 = M (see (23)), tedious but straightforward calculations

show that in this case the algorithm of Section 3 requires approximately 6540 flops per-pixel and

thus 6540M 2 flops in total (see Appendix A). The likelihood corresponding to the GMRF model

can be computed using 2D-FFT approaches in O(M 2 log M) computations, which in this case leads

to less computation than the MM-based approach for reasonable values of M.

The results of experiments in which we generated measurements according to (24) and then

carried out three approaches to classification are given in Figure 5. In particular, in Figure 5a, each

data point corresponds to 1000 experiments in which we generated a random field corresponding to

0m,,f or 18m" f (500 experiments each) for a 32 x 32 lattice and signal-to-noise ratiol l of 0 dB, and

then implemented the MM-based, GMRF-based and minimum-distance (MD)-classifier approaches

to texture classification (the minimum-distance classifier we used is based directly on that in [1],

which uses least-squares estimates of the parameters as a sufficient statistic). The percentages of

correct classifications we have plotted are estimates of the probabilities of correct classification.

We can characterize the error in these estimates by noting that if we define the sample mean as

P = NC/N, where NC is the number of correct classifications in N trials, then a simple application

of the central limit theorem allows us to show, for example, that if p = 0.5, with N = 1000, and

with 95% confidence, the error in i is less than 0.031, whereas if p = 0.9, the 95% confidence error

in P is approximately 0.056.

Note that, as expected, as w -, 1 the percentage of correct classifications approaches 50 per-

cent, reflecting the increasing similarity of the models. In Figure 5a, the GMRF-based approach

is superior to the MM-based approach, since in the experiments the measurements actually did

correspond to a GMRF. However, the difference in performance is small and of at best marginal or

1
1SNR _ 10log c'E{z(i,j)2 }/r.
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no statistical significance in view of the fact that, in any real application, the GMRF model is an

idealization. In addition, both the GMRF and MM-based approaches significantly outperform the

MD-classifier.

The results in Figure 5a are based on the simplest zeroth-order multiscale model. By increasing

the order of the approximate models, the performance results will become progressively closer

to one another. For instance, we have performed experiments using the first and second order

approximate representations discussed in [12], for SNR = 0, and M = 16. The results of these

experiments (10000 Monte-Carlo trials) are shown in Figure 5b. The improvement in performance

with increasing model order is apparent. Numerous other examples which complement and further

reinforce these results for a variety of cases are discussed in [11].

4.4 Incomplete Data

The results in the previous section and in [11] provide substantial evidence that the MM-based and

GMRF-based approaches to texture classification provide comparable performance under a variety

of conditions. In this section, the results of experiments are presented which provide further

evidence of this and, more importantly, allow us to demonstrate how our multiscale framework

can be used to calculate likelihoods given measurements over only a subset of the image lattice.

This is one case in which our multiscale approach provides a potentially significant computational

advantage over GMRF-based approaches.

Note that the measurement matrix C(s) in (2) can vary as a function of node. In the approxi-

mate multiscale models, the values of the GMRF are represented as components of state vectors at

the finest level of the tree, each value being represented in one state vector. Thus, setting C(s) = I

if s is a node at the finest level corresponds to the case of complete measurements, i.e. c(i, j) = 1

for all pairs (i, j). Likewise, when not all measurement data are available, we can take this into
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account by eliminating the appropriate rows of the matrices C(s). This is exactly what we have

done in this section in which we used measurements over an incompletely sampled region as in

Figure 6a.

Unavailable measurements correspond to black regions in Figure 6a, and might be single pixels

or groups of pixels of various sizes. We have computed the relative performance of the GMRF-based

and MM-based approaches on domains small enough to do the exact calculations for the GMRF

models. Measurements of a GMRF random field were made at 90% of the 16 x 16 lattice sites, at

SNR's of -10, 0 and 10 dB. The results are shown in Figure 6b and illustrate that the GMRF-based

and MM-based approaches provide comparable performance. Again, in view of the fact that in any

real application both of these models are idealizations, the performance differential is insignificant.

4.5 Application to Synthetic Aperture Radar Signal Processing

Finally, we present some results in the context of stripmap synthetic aperture radar (SAR) imagery

[17]. Specifically, we have used the multiscale framework as a basis for discriminating between the

three types of background clutter shown in Figure 7a: grass, trees, and roadl2. The data from

which we generated this image were collected using a fully polarimetric SAR [19]. In this case, the

processed radar return Y(i, j) is a complex vector which consists of two co-polarization terms and

one cross-polarization term:

HH HHI + HHQ

Y(i, j)= HV = VI + HVQ (26)

VV ij -vvI + vvQ

2laThe SAR data were provided by the MIT Lincoln Laboratory under the ARPA sponsored Advanced Detection
Technology program [19].
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where HVI and HVQ are, for example, the in-phase and quadrature components of the vertically

polarized return from the horizontally polarized transmit pulse. To generate Figure 7a we have

processed the vector SAR image with the polarimetric whitening filter (PWF) developed in [18],

which corresponds to setting:

y(i,j) = Y(i,j)#f-lY(i,j) (27)

where the # symbol denotes the complex conjugate transpose and t is the sample covariance

matrix of the image. As discussed in [18], under certain conditions the PWF minimizes the speckle

commonly associated with coherent imagery.

We interpreted the pixel values of the PWF image as measurements of a multiscale process as

in (2) and used multiscale models for grass trees, and road as a basis for discriminating between

clutter types. GMRF model parameter estimates were obtained from imagery taken nearby using

sample correlation data as in [10, 8]. These were then transformed multiscale models using the

methodology discussed in Appendix B. The image in Figure 7a was divided into 16 x 16 patches,

and each patch was assigned classified according to which multiscale model (grass, trees, or road)

had the highest likelihood. The result is shown in Figure 7b - white corresponds to road, light

gray to trees and dark gray to grass. The classifications appear consistent with Figure 7a. Shadows

in the lower and top left lead to classifications of some areas of trees as road. Likewise, bushes in

the primarily grass upper right are classified as trees.

While Figure 7b is in essence a rudimentary segmentation of Figure 7a, we emphasize that this

is not the goal. Rather, we view the ability of the multiscale framework to discriminate as indicative

of the extent to which it can be used to model the underlying clutter. If models can be developed

which capture the statistical structure of the clutter, than these can be used as a basis for the

development of segmentation techniques far more powerfull than simple block discrimination (in

analogy to methods such as those developed in [3, 16] subsequent to [1] for GMRF's) as well as
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new approaches to such tasks as anomaly detection, change detection and target detection.

5 Conclusions

We have presented a likelihood calculation algorithm for a class of multiscale stochastic models. The

algorithm exploits the structure of the tree on which the multiscale models are defined resulting in

an efficient and parallelizable approach. In addition, we have investigated one possible application

of the algorithm to the problem of texture discrimination, and have demonstrated that likelihood-

based methods using our algorithm and the results in [12] for modeling GMRF's have substantially

better probability of error characteristics than well-known minimum-distance classifier approaches,

and achieve performance comparable to that of GMRF-based techniques, which in general are

prohibitively complex computationally. Since our multiresolution algorithm has constant per-pixel

complexity independent of data array size and does not require uniform sampling of the domain,

it represents a very promising alternative to GMRF-based methods.

Acknowledgment: We thank John Henry, Bill Irving and Les Novak of the MIT Lincoln Labo-

ratory for providing us with the SAR imagery and subsequent technical support.

A Complexity Analysis

In this appendix we analyze the computational complexity of the likelihood calculation algorithm

presented in Section 3. Recall that the algorithm consists of an upward sweep (including update,

predict and merge steps) and a downward sweep (including predict, merge and orthogonalize steps)

followed by a step in which the likelihoods corresponding to the normalized residuals are added

up. We will analyze each of these in turn. As in Section 2, we assume that the state dimension

is n and the measurement dimension is p (the complexity is not a function of the driving noise
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dimension). The number of branches in the tree is q. Finally, we assume that the computation of

the process noise covariance (using the Lyapunov equation (3)) and the upward model parameters in

(6) is negligible. This assumption is valid, for instance, when the multiscale model has parameters

A(sac) and B(sai) which vary only as a function of scale or only as a function of scale and i, since in

these cases the state covariance and upward model parameters vary similarly, and hence only need

to be computed at one node at each scale (if the dependence is on scale only) or q nodes at each

scale (if the dependence is on i as well). We recall that the computing the inverse of a symmetric

matrix requires approximately u3 /3 floating point operations (flops), where u is the dimension of

the matrix, that multiplying a u x v matrix by a v x w matrix requires approximately 2uvw flops,

and that this latter computation can be reduced by approximately a factor of two if the matrices

involved are symmetric.

Upward sweep update (4), (5): The computation of the gain K(s) requires approximately 2n2p+

4np2 +p 3 /3+p 2 /2 flops. The update of the covariance given K(s) requires an additional 2n2p+n3 +n

flops. Finally, the update of the state estimate requires 4np+p+n flops. Thus, the total computation

for an update step at each node requires approximately n3 +9p3/3 + 4n2p + 4np2 + 4np +p2 /2 + 2n +p

flops.

Upward sweep prediction (7), (8): The prediction of the covariance requires approximately

3n3 + n2 /2 flops, whereas the prediction of the state estimate requires an additional 2n 2 flops.

Upward sweep merge (16), (17): By merging recursively across the offspring of node s, the addi-

tional computation required to obtain P(slY'i) is equal to 2n 3/3 +n 2. The additional computation

required to obtain the estimate i(slYai) is equal to 4n2 + n flops, for a total of 2n3 /3 + 5n2 + n

flops.

Downward sweep prediction (19), (20): Predicting the covariance requires 3n3 + n2/2 flops

whereas the complexity of predicting the estimate down is 2n2 flops.
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Downward sweep merge (21), (22): Computing the covariance requires 2n3 /3 + n2 flops (recall

that the inverse of p(slYai) has already been computed during the upward sweep). Computation

corresponding to (21) requires an additional 4n2 + n flops, for a total of 2n 3/3 + 5n2 + n flops.

Orthogonalization (12), (13) and summation (11): The innovations covariance computation

requires 2n 2p + 2np2 + p2/2 flops, whereas computation of the innovation itself requires 2np + p

flops. The summation requires 2p3/3 +p3/3 + 2p2 + 2p flops per node, where we have assumed that

the determinant computation requires 2p3/3 flops. Thus, the total per-node computation in these

steps is 2n 2p + 2np2 + p3 + 5p2 /2 + 3p + 2np flops.

Adding these up, we calculate that the total complexity of the algorithm is, with I + 1 being

the number of levels, (q+l'/(q _ 1))(25n3/3 + 4p3/3 + 6n 2p + 6np2 + 15n2 + 3p 2 + 6np + 4n + 4p)

flops. Since the number of nodes is ql+l/(q - 1), the total per-node computation is constant in

the sense that, if the number of levels of the tree is changed, the per-node computation does not.

With measurements only available at the finest scale, the total complexity of the algorithm is

ql(n 3 + 4p3 /3 + 6n2p + 6np2 + 6np+ 3p 2 + 2n + 4p) + (ql+1 /q - 1)(22n3 /3 + 10n2 + 2n) flops, since the

update and orthogonalize steps only need to be done at ql nodes in that case, which again implies

a constant per-node complexity (although in this case the per-node computation does depend on

q).

Finally, we can use the above analysis to calculate the per-pixel computational complexity of

the likelihood calculation algorithm as applied to the texture discrimination problems in Section 4.

In this case, n = p = 16 (see Appendix B), q = 4, and measurements are only available at the finest

level. An M x M image leads to a model with M 2/16+ M 2 /64+.. .+ 1 ; M 2/12 nodes, and M 2/16

nodes at the finest level, and hence the total per-pixel computation in this case is approximately

6540 flopsl3 .

l3This complexity could be further reduced by taking into account the special structure of the multiscale approxi-
mate GMRF models, e.g., as mentioned previously, the matrices A(s) in these models have large blocks of zeros.
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B Multiscale Representations of Markov Random Fields

In this appendix, we review the multiscale representations of Markov random fields introduced

in [12]. These representations are based on a generalization of the classical mid-point deflection

construction of Brownian motion. This construction is discussed first, followed by a review of our

generalization to exact and approximate multiscale representations of MRF's.

B.1 Multiscale Representation of Brownian Motion

Our multiscale representations of 1-D Markov processes and 2-D MRF's rely on a generalization

of the mid-point deflection technique for constructing a Brownian motion in one dimension. To

construct a Brownian motion sample path b(t) over the interval [0, 1] by mid-point deflection, we

start by randomly choosing values for the process at the two boundary points and at the mid-point,

i.e. we choose the three numbers [b(O), b(0.5), b(1)] according to the joint probability distribution

implied by the Brownian motion model. We then use these three values to predict values of the

Brownian motion at the one-fourth and three-fourths points of the interval - the Bayesian estimate

of the mid-points just corresponds to linear interpolation as shown in Figure 8(a). Random values,

with appropriate error variances, are then added to the predictions at each of these new points, as

seen in (b). The critical observation to be made here is that, since the Brownian motion process

is a Markov process, its value at the one-fourth point, given the values at the initial point and

mid-point is independent of the process values beyond the mid-point, in particular the values at

the three-fourths and end-points of the interval. Obviously, it is also the case that the value at

the three-fourths point is independent of the values at the initial and one-fourth points, given the

values at the mid-point and final point. What this means for us is that this construction can be

interpreted as a sample realization of a particular multiscale model. This model has as its root-node

state the 3-tuple [b(O), b(0.5), b(l)], and two states at the second level given by [b(O), b(0.25), b(0.5)]

30



and [b(0.5), b(0.75), b(l)], as shown in Figure 8(d). The Markov property of Brownian motion allows

us to iterate the mid-point deflection construction and its equivalent multiscale model, generating

values at increasingly dense sets of dyadic points in the interval. At each level in this procedure we

generate values at the mid-points of all neighboring pairs of points. In fact, since the only properties

of the Brownian motion that we have used are its Gaussianity and Markovianity, this approach can

be generalized to represent all 1-D Gauss-Markov processes within the multiscale framework [12].

Further, by generalizing the multiscale model class appropriately, all 1-D Markov processes can be

represented [12].

B.2 Exact Multiscale Representations of GMRF's

The representations of 1-D Markov processes in the previous section relied on the conditional

independence of regions inside and outside a boundary set, and we use the same idea here to

represent Markov random fields on a square lattice. The multiscale model is identical to that used

in the 1-D case, except that it is defined on a quadtree instead of a dyadic tree. That is, we consider

multiscale models exactly as in (1) but where s denotes a node on a quadtree.

Consider a 2-D GMRF z(t) defined on a 2N x 2N lattice. The construction of Markov processes

in 1-D started with the values of the process at the initial, middle and end points of an interval.

In two dimensions, the analogous top level description consists of the values of the GMRF around

the outer boundary of the lattice and along the vertical and horizontal "mid-lines" which divide

the lattice into four quadrants 14. For instance, on a 16 x 16 lattice, the state vector x0 at the root

node of the quadtree contains the values of the GMRF at the shaded boundary and mid-line points

shown in Figure 9a. To construct a sample path of the GMRF, we begin by choosing a sample

14Strictly speaking, two mid-lines are not required. However, we take this approach here since it leads much more
naturally to the approximate representations of GMRFs which are discussed in the next subsection and which form
the basis for our experiments in Section 4.
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from the joint pdf of the GMRF values defined on the boundary and mid-line set.

In the 1-D case, transitions from the first to second level consisted of obtaining a sample from

the conditional distribution of the state at the mid-points of the left and right half-intervals. In

two dimensions, we predict the set of values at the mid-lines in each of the four quadrants. The

components of the four state vectors at the second level are illustrated in Figure 9b for the 16 x 16

GMRF. Now, we can iterate the construction by defining the states at successive levels to be the

values of the GMRF at boundary and mid-line points of successively smaller subregions. Because of

the Markov property, at each level the states are conditionally independent, given their parent state

at the next higher level. Thus, the GMRF can be thought of precisely as a multiscale stochastic

process and this leads to models exactly as in (1).

B.3 Approximate Multiscale Representations of GMRF's

In this section we describe a family of approximate representations for Gaussian MRF's that provide

low-dimensional alternatives to the exact multiscale representations. The basic idea behind the

approximate representations is to take as the state not boundaries of regions, but rather some

reduced-order representation of them. Conceptually, we would like to retain only those components

of the boundary that are required to maintain nearly complete conditional independence of regions.

As described in detail in [12], one way to do this is to view the GMRF values which make up a

particular state of the multiscale model as a set of 1-D sequences. For instance, consider the values

of the GMRF contained in the root-node state (see Figure 9a), and in particular the values denoted

with V, <, >, A which make up the boundary of the north-west quadrant. We can view these as a

set of four 1-D sequences, each of which has a length that is half the number of rows or columns in

the lattice. Any given sequence is just as well represented in the wavelet transform domain [7, 15],

and there are good reasons to believe that only a small number of wavelet coefficients are required
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to represent essentially all of the information in a given sequence [12]. This suggests transforming

the state via a wavelet transform, and only keeping a subset of the coefficients as our representation

of the state. In the simplest representation, we could retain just the averages of the various 1-D

sequences, which results in a substantial reduction in the dimensionality of the multiscale model.

By keeping more coefficients in the expansion, we obtain a better representation of the original

GMRF, and in the extreme case that all wavelet coefficients are kept, the representation is, of

course, exact. Hence, this provides a flexible framework allowing one to tradeoff representation

complexity and fidelity, and our main goal is to provide representations which have a complexity

low enough to allow for substantial computational advantages within the multiscale framework,

while also providing equal or better performance.

In our experiments in Section 4, we have used the simplest possible approximate representation,

i.e. that which retains only the average of each 1-D sequence as the state. We refer to this as a

zeroth-order Haar-transform based model since only the scaling coefficient in a Haar transform

representation of the sequence is retained (for generalizations to higher order representations and

other wavelets we refer the reader to [12]). Since, referring to Figure 9a, there are sixteen boundary

sequences, the state dimension in this model at the coarsest level is sixteen. The state dimension is

also sixteen at the next level (see Figure 9b). If we proceeded to the next level each of the boundary

and mid-line sequences would be of length two. At this point, the region in the image corresponding

to these boundary and mid-line sequence is 4 x 4. However, the values do not completely represent

the state since the "basis" in this case - i.e., the two-pixel averages - is not complete. Hence,

at this level, we simply take as the state the values of the sixteen pixels. At this point, all pixels

in the image are represented and no more levels need to be added to the model. Thus, the state

dimension is sixteen at all levels and in fact at all nodes. An M x M image thus leads to a quadtree

multiscale model with M 2 /16 nodes at the finest level. Since in an I-level model there are 4 l- 1
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finest level nodes, the number of levels in a multiscale model corresponding to an M x M image

(where M is a power of 2) is I = (log2 M) - 1.
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Figure 1: A third-order tree.

Figure 2: An ordering of the nodes on the tree which leads to efficient likelihood calculation.
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Figure 3: Information flow in the likelihood calculation algorithm.
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Figure 4: Examples of subsets Y'i and Y, of nodes defined with respect to node s.
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Figure 5: (a) Comparison of multiresolution model (MM) based, GMRF-based and minimum-
distance (MD) classifier approaches to texture classification. (b) Improvement in performance as
the approximate GMRF representation order is increased.
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Figure 6: We demonstrate in Section 4.4 how the multiscale framework can be used to calculate
likelihoods when the data is sampled in an irregular fashion. For instance, data may not be
available the blackened regions in (a) due to dropouts, camera blockage or sampling constraints.
(b) Performance data corresponding to 90% coverage.
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Figure 9: (a) The state at the root node in an exact multiscale representation and (b) the four
states at the second level of the quadtree.
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