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Abstract

Many of the existing techniques for controlling switched systems either require the
solution to a complex optimization problem or significant sacrifices to either stabil-
ity or performance to offer practical controllers. In [13], it is shown that stabilizing,
practical controllers with meaningful performance guarantees can be constructed for
a specific class of hybrid systems by parameterizing the controller actions by a finite
set. We extend this approach to the control of controllable switched systems by con-
straining the switching portion of the control input and fixing the feedback controller
for each subsystem. We show that, under reasonable assumptions, the resulting sys-
tem is guaranteed to converge to the target while providing meaningful performance.
We apply our approach to the direct-injection stratified charge (DISC) engine and
compare the results to that of a model predictive controller designed for the same
application.
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Chapter 1

Introduction

In this chapter, we present a formal overview of switched systems and discuss results

related to the stability of such systems.

1.1 Switched Systems

Switched systems are a subclass of hybrid systems consisting of an interleaving of con-

tinuous and discrete dynamics. The discrete portion of the system is either controlled

directly by a controller or a controllable event (a state intersecting some manifold, for

instance), or influenced by some uncontrollable external trigger. For the purposes of

this paper, we consider the first case only. A controllable switched system (which, for

brevity, we also call a switched system) may be described formally in the following

form

ẋ(t) = fi(t) (x(t), u(t)) , t 6= tl

x(tl) = x(t−l ) + Ti(tl),i(t
−

l
)

(1.1)

where i(t) ∈ M = {1, 2, · · · , N} is the mode of the system at time t, x ∈ Xp ⊂ ℜn

is the system’s state in mode p, and u ∈ Up ⊂ ℜm is the continuous portion of the

control input in mode p. fp is a globally Lipshitz function, and i(t) is a piecewise-

constant function. The system given by ẋ(t) = fp(x(t), u(t) where x ∈ Xp and U ∈ Up

is called the pth subsystem of (1.1).

We define a switch as a change in the value of the function i(t) at some time
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t (i(t) 6= i(t−)), and denote the lth switching instance as tl. The mode sequence

(p1, p2, · · · ) induced by i(t) is given by pl = i(tl).

Notable in (1.1) is the lack of restrictions the possible switching actions of the

controller (i.e. allowing for infinite switching within a finite period). Rather, the

controller is formulated to prevent such undesirable behavior.

As reflected in (1.1), the state may “jump” according to the translation vector

Tpq at each switching instance. For our purposes, we treat the translation vector as a

means for translating the state about some equilibrium operating point, which is use-

ful, for example, when approximating nonlinear subsystems with linear subsystems.

To that end, we assume that for each subsystem of (1.1) there exists a fixed vector

x0
p such that the unnormalized state x(t) = x(t) + x0

i(t) is a continuous function of

time. The offset vector x0
p is an artifact of modeling and is not chosen arbitrarily by

the designer to “ensure” the continuity of x(t).

If Xp = ℜn and Up = ℜm, we call the pth subsystem of (1.1) an unconstrained

subsystem. Otherwise, if each is a compact set, we call it a constrained subsystem.

We describe a switched system as being constrained (unconstrained) if all of the

subsystems are constrained (unconstrained). Otherwise, we term it as mixed. If fp is

a linear function of x and u, we write it as Apx+Bpu.

1.1.1 Stability of Switched Systems

We adopt the classical notion of stability in the sense of Lyapunov to switched systems:

for any ǫ > 0, there exists a δ > 0 such that ‖x(0)‖ < δ implies ‖x(t)‖ < ǫ for all

t > 0.

One approach to guaranteeing the stability of a switched system under arbitrary

switching is by constructing a common Lyapunov function V for all modes of the

system. However, this technique may be unnecessarily restrictive in that a system

which maybe stabilizable under a certain class of switching laws may not be stable

under all switching laws, hence not allowing for the existence of a common Lyapunov

function.

Alternatively, one may construct a collection of Lyapunov functions Vp, each cor-
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responding to a different operating mode of the system [8]. Although the existence of

multiple Lyapunov functions does not guarantee stability under arbitrary switching

sequences, there may exist switching sequences that will guarantee stability.

Let t̂pl be the lth switching instance of (1.1) into mode p. If, under all allowable

switching laws i(t), the sequence
(

V (t̂pl )
)

l∈Z+ is non-increasing, then i(t) stabilizes is

stable in the sense of Lyapunov. If the sequence is monotonically decreasing, then

the system is asymptotically stable. Practically, one may use this condition to design

a feedback control law to stabilize the system. One such approach is described in the

next chapter.

1.1.2 Optimal Control of Switched Systems

The added flexibility of being able to switch between subsystems greatly increases the

complexity of searching for an optimal control. Inherent in computing the optimal

control law is a combinatorial problem that requires one to simultaneously determine

a (potentially infinite) mode sequence as well as the switching instances and the

continuous control input that controls each subsystem.

Determining the optimal control law, therefore, is not a practical endeavor, and

techniques for optimally controlling such systems often try to reduce the complexity

by either restricting the number of controller decisions or considering a subclass of the

original optimal problem (for example, by fixing the mode sequence and optimizing

over the switching instances and the continuous control input only). These techniques

will be explored further in the following chapters.

1.2 Overview of this Paper

In this thesis, we analyze some existing approaches to optimally controlling switched

systems and present two new approaches that overcomes several inherent defects in

the existing art. We compare one such approach to another hybrid controller in an

application to the DISC engine, a switched system where stability and performance

are absolute requirements and where the computational and memory requirements of
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the controller must be applicable to low-cost embedded hardware.

For the remainder of this paper, we denote ‖v‖1, ‖v‖2, and ‖v‖∞ as the standard

1, 2, and∞-norms whereas we denote ‖v‖Q as v′Qv for a symmetric, positive-definite

matrix Q.
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Chapter 2

Existing Approaches to Optimally

Controlling Switched Systems

In this chapter, we review several existing approaches for optimally controlling both

constrained and unconstrained switched systems. Although these techniques vary

significantly, each either requires the solution to complex optimization problems or

a sacrifice in either stability or performance to obtain a potentially implementable

solution.

It should be noted that although these approaches do not treat the impact of

the translation vector, and so, for the remainder of this chapter, assume Tpq = 0 in

(1.1). Note that this does not imply that their formulations cannot be extended to

incorporate the translation vector.

2.1 Dynamic Programming on Unconstrained Sub-

systems

A straight-forward application of dynamic programming to switched system control

may be found in [19], where a combination of numerical optimizations is used to

derive an suboptimal pair of continuous control inputs and switching instances. The

mode sequence is assumed to be known so that it is not necessary to search over all
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finite-length mode sequences as well.

The optimization problem posed in [19] is as follows: given a switched system of

the form (1.1) and a finite mode sequence (p1, p2, · · · , pn), determine the continuous

input u(t) and switching instances tl so that

J(x, u) = ψ (x(tf )) +

∫ tf

t0

L(x, u)dt (2.1)

is minimized.

The authors propose adding a “false” state zk for each of the k switching instants

of the system and reparameterizing the time variable so as to reformulate the optimal

control problem as fixed-switching instance, free-final state, and free-initial condition

(in the false states) dynamic programming problem. Determining the optimal solu-

tion requires, for fixed values of zk, the solutions to the standard state and co-state

equations that give the continuous control input, and another set of state of equations

for determining the derivative of the optimal state and input trajectories with respect

to zk. A search over zk is then applied to find where the cost J is locally minimized.

Additional constraints on the optimization, including a restriction on the switching

regions and a free-final state condition, maybe applied to this approach in a fairly

straight-forward fashion.

The complexity of this approach scales both with the number of states in the

original system (which determines the complexity of the numerical solutions to the

state and co-state equations) and the number of switches (which governs the size of

the search for minimizing J).

Though the use of dynamic programming in this fashion is guaranteed to produce

a suboptimal, convergent trajectory, it is not practical to apply the approach to

either fast-paced systems or systems with computational limitations. The solution

requires iterations between updating the initial conditions for the false states and

computing the numerical solution to a series of two-point boundary value differential

algebraic equations (DAEs). For example, in a simple application to a second order

system with three subsystems and two switches, the numerical optimization required

20



approximately 260 seconds on a high-end workstation.

Though one may consider storing the switching instances in memory (by gridding

a large volume of the state and reference spaces, for example) and computing online

the solution to the DAEs that give the input trajectory, the assumption that the

mode sequence is fixed in the problem formulation implies that the memory require-

ments grow with the number of possible finite-length sequences that are considered.

Furthermore, the computation of the DAE for the input trajectory may itself be too

computationally intensive to apply on low-cost embedded hardware for a fast-paced

system.

2.2 Dynamic Programming via Discretization and

Optimal Cost Bounds

Another application of dynamic programming to the control of switched systems is

presented in [15], where the authors seek to construct a function Vp : Xp → ℜ for each

mode p of the system so that Vp satisfies a particular set of conditions that guarantees

the value of Vp0
(x0) acts the lower bound for the optimal cost-to-go from an initial

mode and state (p0, x0) to a reference mode and state (pf , xf ).

For a given optimal cost function

J(x0, p0) =

∫ tf

t0

Li(t)(x, u)dt+

M
∑

k=1

s
(

x(tk), i(t
−
k ), i(t+k )

)

(2.2)

where M is an arbitrary integer representing the the number of switches and s is

penalty of switching, the authors propose constructing the value functions Vp by

discretizing the state space and explicitly computing a value for Vp(x) for a set of

points x in the space Xp. Of course, it is assumed that the state spaces for each of

the subsystems is constrained so that the search is finite. To ensure the approximation

is truly a lower bound, the search additionally accounts for the dynamics of the system

between each grid point of the discretiztion.

Assuming that each Vp represents the true optimal cost-to-go, the optimal contin-

21



uous and discrete control laws can be computed as

up(x) = arg min
û∈Up

∂Vp

∂x
fp(x, û) + Lp(x, û)

ip(x) = arg min
q
Vq(x) + s(x, p, q)

(2.3)

for each approximation point x in each mode p. Essentially, u at a point x is chosen

so that the optimal cost-to-go is achieved while the choice of i at x is designed to

seek the minimum cost-to-go from the fixed point x across all operating modes. In

this setting, the target reference is fixed.

In reality, of course, the V ’s are only guaranteed to act as lower-bounds for the

cost-to-go. Stability and convergence are not discussed in the work, and it is not

clear how fine a quantization of the space is required to guarantee convergence. For

example, for a set of the trivial value functions Vp = 0 (which is clearly a lower-bound

for the cost-to-go) for all modes p, convergence to the target is not guaranteed. Since

a coarser gridding of the state space results in a poorer lower bound of the optimal

cost-to-go (smaller Vp’s), one should suspect that the coarseness of the state space

gridding should impact convergence.

2.3 Model Predictive Control (MPC) for Constrained

Linear Subsystems

In [2], it is shown how to extend the techniques of MPC (also known as receding

horizon control) to arbitrary systems with dynamics that can be expressed as a com-

bination of linear and logical dynamics. The authors show that any such system can

be converted into what they term a mixed logical dynamical (MLD) system, and they

apply a variation of MPC control to it using mixed-integer quadratic programming

(MIQP), the resulting formulation called mixed-integer predictive control (MIPC). If

the continuous parameters of the MIQP are bounded to polytopes, the solution to

the MIPC maybe stored exactly in memory and referenced using state feedback. Of

course, this application of MPC, like all applications of MPC, is limited to discrete-
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time systems.

One variation of the MIQP problem formulation is as follows: given an initial

state x0 and a final state xf , find the control sequence u(t) and switching sequence

i(t), 0 ≤ t ≤ T <∞ so as to minimize

J =

T−1
∑

t=0

‖x(t|0)− xf‖2Q + ‖u(t)− ue‖2R + ‖i(t)− ie‖2K (2.4)

subject to x(t|0) and u(t) being admissable parameters, and x(t+1|0) = Ai(t)x(t|0)+

Bi(t)u(t) where x(t|0) is the predicted value of x at time t given x(0|0) = x0.

MIPC does not alleviate the issue of combinatorial complexity in choosing a mode

sequence, and, at each time step of the look-ahead horizon, it must consider all possi-

ble mode sequences. An “efficient” (in the sense that it does not, on average, consider

all possibilities) branch and bound algorithm for reducing expected the computational

time required to compute the solution to (2.4) is given in [1]. To make the approach

applicable to embedded hardware, it is assumed that the state and input spaces are

polytopes so that the solution may be stored exactly in memory and simply referenced

online.

In essence, MIPC attempts to reduce the complexity of hybrid control by examin-

ing only a short look-ahead horizon at each time step of the controller. One proof of

the “stability” of MIPC requires that a feasible solution to the MIPC exists over the

full horizon from the initial state x0 to the terminal state xf [2]. Of course, it is not

practical to consider the “feasibility” argument for stability since the computational

advantages to MIPC (and MPC in general) lie in considering a short horizon that,

for many applied systems, will not include the target state.

Another method for guaranteeing the stability of an MIPC is to append (2.4)

with a terminal weight of the form x′Px for a symmetric, positive definite matrix

P satsifying a particular set of conditions that guarantee that the cost-to-go is a

Lyapunov function [3]. The existence of such a P matrix, however, is tanamount

to the existence a common polyhedral Lyapunov function for the system, which is

not, in general, guarenteed to exist. It is additionally remarked that a means for
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synthesizing P is still an open-problem for hybrid systems.

2.4 Control Lyapunov Functions for Constrained

Subsystems

In [11], control Lyapunov functions are applied to general, nonlinear input constrained

switched system of the form (1.1). For each subsystem of the switched system, control

Lyapunov functions are used to compute a stabilizing control law to the origin that

satisfies the actuator constraints. Because it is assumed that the initial state of the

system lies in the region of stability for the inital mode, the system is asymptotically

stable for each mode of the system. Stability is sufficiently guaranteed under switching

by applying a slight variation of the multiple Lyapunov function approach to stability:

the value of the Lyapunov function when switching into a mode must be less than

the value of the Lyapunov function when that mode was last switched from.

Although the authors leverage a separation in subsystem and switching control

which significantly reduces the complexity of the online controller, the motivation to

switch is unclear since system performance is not a factor in the problem formulation

and stability is already guaranteed when no switching occur. For most applications

where performance is a factor in controller design, this technique is simply unsuitable.

2.5 Switching among Autonumous Linear Systems

The work in [14] may be considered a special case of [19] with two caveats: each

subsystem is stable and linear and there is no continuous control input

ẋ = Ai(t)x (2.5)

(Of course, if each subsystem of a switched system is linear and stabilizable, a state-

feedback law of the form u = −Kpx for each mode p may be used to stablize the

system so that resulting system is of the form (2.5)).
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Leveraging the homogeneity of the switched system, the authors expose a pattern

in the optimal switching law whereby, for a given mode and remaining mode sequence,

the switching law may be expressed in a form of state-feedback where the decision to

switch is made by examining the cone the state lies within. It can easily be seen that

for the class of switched systems where each subsystem is homogenous and the cost

function is of the form

J =

∫ T

0

‖x‖zQ + ‖u‖zRdt (2.6)

that for two switching laws i1(t) and i2(t)

Ji1(t) (x0) < Ji2(t) (x0)

⇒ Ji1(t) (αx0) = |α|zJi1(t) (x0) < |α|zJi2(t) (x0) = Ji2(t) (αx0)
(2.7)

Indicating that the optimal switching law i∗(t) is the same for all x̂ lying in the cone

αx in mode i∗(0). Hence, the feedback control law has a conic structure.

The work is further extended to the case of finite-length, arbitrary mode sequences

in [6] by applying the principles of dynamic programming to this switching law struc-

ture.

The determination of a continuous control input, the switching instances, and the

mode sequence are well separated in this approach, and the only online computaional

complexity lies in finding the conic region that contains the state. However, restricting

the continuous input to linear state-feedback for each mode may be unnecessarily

restrictive. Furthermore, as the length of the mode-sequence increases, the memory

requirements of the switching law grows proportionally. Infinite-horizon switching

laws, even if approximated by large mode sequences, are impractical to consider.
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Chapter 3

Reducing the Complexity in

Control of Systems with Bounded

Switching Regions

The approaches presented in the previous section suffer from either significant-complexity,

restrictive assumptions, or a critical sacrifice to stability. It was shown in [13] and [12]

that the use of hierarchal control combined with a quantization in the controller deci-

sions to a finite parameterization can greatly reduce the computational complexity of

hybrid control, allowing for the use of planning algorithms that guarantee convergence

and quality of performance. We seek to extend this approach to general switched sys-

tems that do not admit the symmetries with respect to the tracking space that is

assumed in these works. In particular, we only assume that the switched system of

interest has bounded switching regions, a practical assumption that includes the class

of constrained switched systems.
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3.1 Constructing and Applying the Static Robust

Hybrid Switching Graph

The underlying idea of the Static Robust Hybrid Switching Graph (SRHSG) is as

follows: restrict the ability of the system to switch to a finite set of states in each

mode, called switching states. Applying predesigned feedback controllers in each

mode, we can then find the minimum-cost path consisting of a set of switching states

from the initial state to the terminal state.

In this chapter, assume that the switching regions Xpq are bounded between all

modes p and q (p 6= q) of the switched system. Define the switching states Spq ⊂ Xpq

of modes p and q by

x1, x2 ∈ Spq where x1 6= x2 ⇒ 0 < 2rs < ‖x1 − x2‖2 (3.1)

Essentially, the set of switching states represents those states the controller must

track in order to switch from one mode to another. Once the system’s state is within

the switching radius rs of one of switching states, the system may switch between

these modes. The switching radius should be small but not so small that tracking

it is unecessarily difficult (from the effects of noise, for example). Clearly, by the

assumption that Xpq is bounded, the set of switching states is finite.

Our requirement that the state x(t) be continuous is reinforced by only allowing

a transition from two modes to occur where the unnormalized state is admissable in

both modes. For simplicity, from this point forward, we will assume without loss of

generality that Tpq = 0 so that x(t) = x(t).

For each switching state, we define a switching radius as SR(x) = {xr|‖xr−x‖2 <
rs}. The set of all switching states of mode p is given as Sp =

⋃

q∈M Spq.

We now construct the robust hybrid switching graph (SRHSG) for the system.
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Define the directed SRHSG G = (V,E) by

1. v = (p, x) ∈ V ⇔ x ∈ Sp

2. (v1, v2) = ((p, x1), (q, x2)) ∈ E ⇔

{p = q and x1, x2 ∈ Sp} or {p 6= q and x1 = x2 ∈ Spq}

(3.2)

The first condition simply states that all the switching states are vertices in the

SRHSG and vice-versa. The second condition states there exist edges between all

the switching states in the same mode, and between the same switching state in two

different modes.

Assume that for each mode p of the system there exists a control law up such that

for any initial state x0, final state xd, and a reference yref , there exists a time T ≥ 0

so that x(T ) = xd. Furthermore, assume up and T are chosen so as to minimize

Jp =

∫ T

0

L ((g(x, u)− yref), up) dt (3.3)

where L is a positive definite function, and g(x) is the output of the system in mode p.

We term the optimal cost for such a given set of parameters as J∗
p (x0, xd, yref). Also,

let û be the control law that minimizes (3.3) for T =∞ and denote the corresponding

optimal cost as Ĵ∗
p (x0, xd, yref). Design of the subsystem controllers is discussed in

section 3.5.

It is possible that a controller that minimizes the error with respect yref while

tracking xd in finite time may be too computationally intensive to use. As an alter-

native, one may apply a controller that optimally tracks a different reference, ŷref ,

that is achievable in steady-state at xd and optimal with respect to yref . Of course,

the resulting full controller may not be optimal with respect to the traditional met-

rics, but the optimization may still meaningful and potentially worth the significant

reduction in complexity.

By the limitation of only being able to choose from a finite set of switching states,

and by having a control law that can track switching states in finite time, it is only

necessary to determine the sequence of switching states to track, termed the switching
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path, from an initial state x0 in mode p to a reference state xref (corresponding to

the reference output yref) in mode q.

The SRHSG graph G is appended with additional edges connecting the switching

states of the initial and reference modes to, respectively, the initial and reference

states. Let v0 = (p, x0) and vf = (q, xref), and define the directed, weighted graph

G′ = (V ′, E ′), called the appended SRHSG, by

1. V ′ = V ∪ {v0, vf}

2. E ′ = E ∪ {
⋃

x∈Sp

(v0, (p, x))} ∪ {
⋃

x∈Sq

((q, x), vf )}
(3.4)

Define the weighting function w : E ′ → ℜ on G′ as:

w(e) =



























ǫs, p1 6= p2

J∗
p1

(x1, x2, yref), p1 = p2 and x2 6= xref

Ĵ∗
p1

(x1, x2, yref), otherwise

(3.5)

where ǫs > 0 is the switching penalty.

Subject to the above constraints, we can now determine the optimal switching

path simply by finding the “shortest” path (the path of least cost) from v0 to vf in

G′, an algorithm with O (|E ′| log2 |V ′|) complexity.

Let the function SPN : V ′ → V ′ be a mapping of a node in the graph G′ to

the next node in the optimal switching path to vf , and define SPN(vf) = vf . The

optimal switching path starting from v0 can be then be written as

P = [SPN(v0), SPN(SPN(v0)), · · · ] = [p1, p2, · · · ] (3.6)

and the number of switches is obtained as N = min {i|pi = pj , j > i}. Since the

shortest-path in the appended SRHSG contains no cycles, N is guaranteed to be

less than or equal to |V ′|, meaning there are only a finite number of switches in the

switching path.
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3.2 Making SRHSG Applicable to High-Speed Pro-

cesses

It may not be practical to compute the costs between large numbers of vertices or,

perhaps, to apply a shortest-path algorithm on every time step of the system even

if all of the costs are known, and so a means for storing a rough approximation to

the solution of the dynamic program in memory is required. Given the granularity

of the SRHSG shortest-path problem, we can assume that small shifts in the initial

and reference states do not impact the switching portion (those states before the

reference) of the switching path. Therefore, we can quantize the state and reference

output spaces and expect a fairly good approximation to the exact solution.

Define the set X̃p, the set of approximation points in the admissible set of the

state space in operating mode p, by

1. Sp ⊂ X̃p ⊂ Xp

2. x1, x2 ∈ X̃p ⇒ 2rs < ‖x1 − x2‖2

3. X̃p is finite

(3.7)

The first condition states that the switching states of mode p act also as approximation

points. The second condition ensures that a switching state is the approximation

point for its switching radius, which is necessary for convergence. Define the state

approximation function APXp : Xp → X̃p as APXp(x) = arg minz∈X̃p
{‖x − z‖X}.

Similarly define Ỹp and APYp for the reference space (though the lower bound for the

distance between such approximation points may be any positive constant).

Given a finite number of approximation points in both spaces, we can now store

the solutions in a table. For an initial mode p and reference mode q, define the

SRHSG table Tpq = X̃p × Ỹq →M ×X as

Tpq(x̃, ỹ) = SPN ((p, x̃))

(with v0 = (p, x̃) and vf = (q, ỹ))
(3.8)
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3.3 The Full Controller

We apply the SRHSG table to the control law up for each mode p in an open-loop

fashion. Table lookups are only performed when the mode or the reference changes,

otherwise the system drives the plant’s state to the next state in the switching path

determined by the previous lookup. Denote the reference state, output, and mode,

respectively, as xref , yref , and q, and let x(n), y(n), and i(n) be the state, output,

and operating mode of the plant at time sample n. The following algorithm uses the

SRHSG table to guide the plant along the optimal switching path

1. if x(n) ∈ SR(x) then i(n + 1)← pnext else i(n+ 1)← i(n)

2. if either the reference changes or i(n) 6= i(n + 1) then

3. x̃← APXi(n+1) (x(n))

4. (pnext, xd)← Ti(n+1)q (x̃, APYq(yref))

5. if i(n + 1) = pnext then xd ← xref

6. end

7. u(n+ 1)←











ûi(n+1) (x(n), y(n), xd, yref) , xd = xref

ui(n+1) (x(n), y(n), xd, yref) , otherwise

(3.9)

3.4 Stability

By the properties of up, the finiteness of the switching portion of the switching path,

and the assumption that all switching states are reachable, (3.9) is guaranteed to

robustly converge to reference. By induction, it can easly be shown that since each

switching point is reached in finite time, the system will eventually reach the final

mode of the system where is tracks the reference state and output.

However, regardless of the feedback controllers used for each subsystem, it is not

possible to guarantee stability in the sense of Lyapunov. For example, for a switched

system containing two subsystems and one switching state, regardless of the intial and

final states, the state must pass through the switching state in order to switch modes.
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Once in the reference mode, however, the system is guaranteed to be asymptotically

stable to the target state.

3.5 Subsystem Controllers

Under the switching constraints presented of the SRHSG, we want to choose the

continuous control law u(t) and switching times {T1, T2, · · · , TN} so that, for a given

initial state (p, x0) and final state (q, xf) and reference output yref , the following is

minimized

J =

∫ ∞

0

L
(

gi(t)(x, u)− yref , u
)

dt

=

∫ T1

0

L
(

gi(t)(x, u)− yref , u
)

dt+

∫ T2

T1

L
(

gi(t)(x, u)− yref , u
)

dt+ · · ·

+

∫ ∞

TN

L
(

gi(t)(x, u)− yref , u
)

dt

(3.10)

where i(t) is the mode at time t and, for simplicity, we assume a particular N -length

switching path given by [(p1, x2), · · · , (pN , xN), (q, xf)] (i.e., x(tk) = xk is a fixed

switching point). It can be readily seen from (3.10) that, by fixing the switching state

for each mode, we separate the cost function into several independant optimizations

J =

∫ T1

0

L
(

gi(t)(x, u)− yref , u
)

dt+

∫ T2−T1

0

L
(

gi(t)(x, u)− yref , u
)

dt+ · · ·

+

∫ ∞

0

L
(

gi(t)(x, u)− yref , u
)

dt

(3.11)

Therefore, for each mode p and any x(0) = x0 ∈ Xp, xd ∈ Xp, and yref ∈ Y , we must

choose a final time T < ∞ and a continuous control input u so that x(T ) = xd and

the cost function

J =

∫ T

0

L(gp(x, u)− yref , u)dt (3.12)

is minimized.
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3.5.1 Computing the Optimal Control Law

In general, minimizing (3.12) over both u(t) and T is a formidable task. In this

section, we consider approaches to solving this optimization problem for the special

case of fp being a linear system and L being a quadratic function of the output error

and the input. We provide a means for computing the optimal, closed-loop control

law for both unconstrained and constrained subsystems.

Unconstrained Systems

We adapt the deriviation of the optimal, finite-time, final-state fixed controller in

[9] for linear systems with a quadratic cost function to the following optimization

problem: find the continuous control law u(t) or 0 ≤ t ≤ T and the optimal final time

T ≥ 0 such that the cost function

J =

∫ T

0

‖Cx+Du− yf‖2Q + ‖u‖2Rdt (3.13)

subject to

ẋ = Ax+Bu

x(0) = x0

x(T ) = xd

(3.14)

is minimized.

For some fixed final time T (not necessarily optimal), we append to (3.13) the

boundary constraints at T

J = v′x(T ) +

∫ T

0

‖Cx+Du− yf‖2Q + ‖u‖2Rdt (3.15)

where v is some unknown, constant multiplier. From here, we arrive at the state,
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co-state, and stationary equations for the optimization

ẋ = Ax+Bu

λ̇ = −A′λ− C ′Q[Cx+Du− yf ]

u = −[R+D′QD]−1[D′QCx−D′Qyf +B′λ] = −Γ−1[D′QCx−D′Qyf +B′λ]

(3.16)

which, after some simplfication, gives

ẋ = Axx+Bxλ+ Exyf

λ̇ = Aλλ+Bλx+ Eλyf

(3.17)

where

Ax = A− BΓ−1D′QC Aλ = −(A− BΓ−1D′QC)′

Bx = −BΓ−1B′ Bλ = −C ′Q(I −DΓ−1D′Q)C

Ex = BΓ−1D′Q Eλ = C ′Q(I −DΓ−1D′Q)

(3.18)

so that Aλ = −A′
x, −Bx is symmetric and positive definite, and −Bλ is symmetric

and positive semi-definite (see Appendix B). The boundary constraints are

x(0) = x0

x(T ) = xd

λ(T ) = v

(3.19)

We apply an extension of the backward sweep method presented in [9]. We assume

that the boundary condition on x(T ) is given as a linear combination of the initial

conditions x0 and v and the reference yf

x(T ) = Θx0 + Σyf + Φv (3.20)

By linearity, the initial condition λ(0) = v is given by a linear combination of the

same parameters

λ(0) = Sx(0) + Zyf +Wv (3.21)
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Of course, by optimality, any time t < T is an “initial time” for which this is true,

so the matrices Θ, Σ, Φ, S, Z, and W may be treated as time-varying matrices that

maintain these conditions for all time

λ(t) = S(t)x(t) + Z(t)yf +W (t)v

x(T ) = xd = Θ(t)x(t) + Σ(t)yf + Φ(t)v
(3.22)

For (3.22) to satisfy the boundary constraints (3.19), we arrive at the following set of

sufficient boundary conditions

S(T ) = 0, Z(T ) = 0, W (T ) = I

Θ(T ) = I, Σ(T ) = 0, Φ(T ) = 0
(3.23)

Now, substituting λ(t) from (3.22) into the co-state equation of (3.17) and relating

the terms, we get

0 =[Ṡ + SAx + SBxS −Bλ − AλS]x

+ [Ż + (SBx − Aλ)Z + SEx + Eλ]yf

+ [Ẇ + SBxW −AλW ]v

(3.24)

where equality to zero must be true for all x and v. We therefore sufficiently satisfy

(3.24) by setting each expression to zero individually

Ṡ + SAx + SBxS −Bλ − AλS = 0

Ż + SBxZ −AλZ + SEx −Eλ = 0

Ẇ + SBxW − AλW = 0

(3.25)

Subject to the boundary conditions in (3.23), we are left with a differential Riccati

equation (DRE) in S (which must be symmetric) and two ordinary differential equa-

tions (ODEs), which can be solved numerically.

Differentiating the ψ expression from (3.22) and substituting the expression for
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ẋ(t) from (3.17), we similarly arrive at

Θ̇ + ΘAx + ΘBxS = 0

Σ̇ + ΘBxZ + ΘEx = 0

Φ̇ + ΘBxW = 0

(3.26)

The relationship between Aλ and Ax yeilds Θ(t) = W ′(t), and so we are simply left

with two ODEs that are functions of S, Z, and W .

Suppose we obtain the numeric solutions for each of the above matrix differential

equations for a fixed final time T . By the boundary condition on x(T ), we use the xd

expression in (3.22) and obtain v = Φ−1(t) (xd −W ′(t)x− Σ(t)yf) (for a proof that

Φ may be inverted at t, see Appendix B). Therefore, the feedback control law is

u =− Γ−1{
(

D′QC +B′(S −WΦ−1W ′)
)

x+
(

−D′Q+B′(Z −WΦ−1Σ)
)

yf

+B′WΦ−1xd}
(3.27)

Parameterizing the Unconstrained Control Law

It is still necessary to search for the optimal value of the final time T for the optimiza-

tion which depends on x0 and yf . Clearly, it is impractical to consider calculating the

above ODEs and DRE for each potential value of T on every time step of the system

to find the optimal such value.

First, we note that the differential equations (3.25) and (3.26), as well as their

boundary constraints, depend completely upon the system and the final time, not x0,

xd, or yf . Therefore, we simply solve (3.25) and (3.26) using some very large final

time T ∗ and denote the cooresponding solutions as S∗, W ∗, Z∗, and so on. Suppose

now, for some initial state x0, we know the optimal final time is 0 < T̃ < T ∗, then the

solutions S̃, W̃ , Z̃, etc. to (3.25) and (3.26) for a final time T̃ are simply computed

as S̃(t) = S∗(T ∗ − T̃ + t)), W̃ (t) = W ∗(T ∗ − T̃ + t), etc.

If the pair (−B1/2
λ , Ax) is detectable and the pair (Ax, B) is controllable, then, in

choosing some very large time T ∗, we note that the DRE that determines S (3.24)
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stabilizes to the solution S∞ of the corresponding algebraic Riccati equation (ARE)

S∞A
′
x + A′

xS∞ + S∞BxS∞ −Bλ = 0 (3.28)

Therefore, for a large final time T , we can approximate S(0) (since the DRE (3.24)

is integrated backwards starting from T ) from the solution S of (3.24) as S(0) ≈ S∞.

Furthermore, we may impose some ǫ tolerance of error for this approximation by

finding a final time τ <∞ such that the solution to the DRE for S with the boundary

constraint at τ gives ‖S(t)− S∞‖ < ǫ for all t ≤ 0.

By time-invariance as well as convergence of the DRE, solving the DRE for any

greater final time (τ + T ) yields ‖S(t)− S∞‖ < ǫ for all t ≤ T .

In Appendix B, we show that all the matrices parameterizing the control law

converge to some constantas t → −∞. Therefore, we can, with finite memory, ap-

proximate with arbitrary precision the feedback control law. By picking some very

large final time T ∗, the solutions to the DRE and ODEs approximate to constants

for all t < 0.

Of course, the difficulty of determining the optimal final time for a given intial

state, target state, and output reference still remains. We note that only a bounded

portion of the target state space and output reference space is likely to be applied to

the controller in practice, and so we can quantize this bounded subset of the space

along with the state space to store, in memory, a rough approximation to the optimal

time-to-go for all (finite) tuples (x0, xd, yref) that lie in the quantization set.

We state that the quantization set is finite despite our not bounding the initial

state space because, assuming that for all α > 1 the optimal time-to-go for αx0 is

greater than that for x0, the optimal time-to-go will grow monototically as α → ∞.

Regardless of whether the optimal time-to-go approaches some finite value asymptot-

ically or grows unbounded, we can always bound the maximum final time T needed

to store the paramterization of the control law. This assumption however needs to

be proved formally.

Therefore, applying the assumption, a natural bound along the initial-state space
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of the quantization already exists. For an initial state where the optimal time-to-

go (from that state to a given target state under the influence of a given output

reference) is greater that T ∗, we use the constant approximations for S, W , Φ, Z, and

Σ to provide an approximately-optimal control policy. Once the state lies within the

region of the state space where, for the given target and reference, the optimal time-

to-go is less than or equal to T ∗, we apply the optimal time-to-go that is approximated

by the quantization as well as the corresponding optimal control law.

Constrained Systems

For constrained systems, we design a controller only for discrete-time systems since,

when expressed as a multiparametric-quadratic program, the closed-loop optimal con-

troller may be stored in memory.

The optimization problem is similar to that of the unconstrained case: determine

an optimal final time N and control input u(n), 0 ≤ n ≤ N , so that we minimize

J =
N

∑

n=0

‖Cx+Du− yf‖2Q + ‖u‖2Q (3.29)

subject to the boundary conditions x(0) = x0 and x(N) = xd as well as the constraints

x(n) ∈ Px, u(n) ∈ Pu, and yf ∈ Py, where Px, Pu, and Py are all polytopes.

Of course, the above formulation is that of a multiparametric-quadratic program

(MP-QP) in x0, xd, and yf that may be solved offline to yield a solution which can

be referenced online.

Clearly, for a fixed and finite set of initial states, target states, and output reference

values, there exists is a maximum final time N∗ such that for all final times N > N∗,

the solution to is not optimal for any combination of values from this finite set.

Because the computation of the optimal time-to-go must be performed offline and

approximated online, a quantization of the space is required whereby a finite set

(finite by the fact that the state space and reference space are bounded to polytopes)

of initial states, target states, and output reference values is used to reference the

optimal time-to-go for all points.
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Applying the maximum N∗ arising from such a quantization, we store the solution

to the corresponding MP-QP in memory for all 0 ≤ N ≤ N∗. In real-time, we can use

the quanization to reference an approximately-optimal final time. Once a final time

is chosen, the solution to the corresponding MP-QP is used to obtain the feedback

law.

By the fact that the control input lies in the polytope, it is possible, for some

initial state x0 and some given final time N , that no admissible control input that

gives x(N) = 0. Because we are quantizing the space and approximating the actual

optimal final times by a finite set of final times, it is possible that the approximating

final time makes the problem not feasible for the actual initial state. In this case, we

can simply increment the final time by one until the corresponding MP-QP for the

initial state has a feasible solution.

3.5.2 A Low-Memory Control Law

For both constrained and unconstrained systems, the above techniques give us a

means for efficiently storing a parameterization of an otherwise complicated control

law in memory for relatively fast computation of the optimal closed-loop control.

However, each of these approaches also requires a potentially large quantization

of the state-reference space which may require too much memory for low-cost embed-

ded hardware. By the separation that exists between the switching control and the

subsystem controllers, each subsystem controller needs only to satisfy the condition

that, in some finite time, the state of the system is within the switching radius of the

switching state. In this section, we present one possible alternative for the subsystem

controller that is far simpler than the controllers provided in the previous sections

and which still may provide meaningful performance.

For each mode p of the system, let up be the optimal, infinite-horizon LQR con-

troller that minimizes

J =

∫ ∞

t=0

‖





x

Cx+Du



−





xd

ŷref



 ‖2Q + ‖u− uref‖2Rdt (3.30)
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where ŷref = Cxd + Duref is achievable at xd and minimizes ‖ŷref − yref‖2Q. The

solution to this LQR problem can be found for both unconstrained and constrained

systems[4].

Although this approach gives a low-complexity controller for each subsystem, its

performance is not optimal with respect to the traditional metrics for optimality (H-2

or H-∞, for example), and so simulation may be required to determine if the quality

of performance approximately satisfies the subjective performance requirements of

the designer.
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Chapter 4

Reducing the Complexity in

Control of Systems with

Unbounded Switching Regions

In this chapter, we propose a simple scheme by which (1.1) may be controlled under

the following conditions:

• all of the subsystems are homogenous (i.e. fi(αx, αu) = αfi(x, u))

• all of the subsystems are unconstrained

• the switching region between any pair of subsystems is unbounded

We also assume that the translation vector is zero, and that the control goal is to

minimize a cost function of the form

J =

∫ ∞

0

‖x‖zQ + ‖u‖zRdt (4.1)

where z ≥ 1.
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4.1 Dynamic Switching States

In chapter 3, it was shown that the use of switching states in switched control allows

for a separation between subsystem control and the switching strategy. By the fact

that the number of switching states was finite, it was possible to determine the optimal

switching path using dynamic programming.

For the case of unbounded switching regions, the use of a finite number of switching

states does not provide a satisfactory cover of the space, and so an alternative means

for applying switching states needs to be considered. For this case, we will fully

leverage the assumption that each subsystem (as well as the cost function in some

sense) is homogenous.

Let C be the boundary of the unit sphere in the state space X. We choose

{v0, v1, v2, . . . , vn} as a set of states in X that satisfy v0 = 0 and where the vi’s for

i > 0 are n distinct states on C. We term these states the base states of the system.

Also, for each base state vi, we choose a set of scalars ∆i = {αi1, αi2, . . . , αimi
} where

0 < αij < 1.

We define the set of dynamic switching states of scale r for the switched system

as

Vr = {rαijvi|∀i, j}
⋃

{−rαijvi|∀i, j} (4.2)

For simplicity, let vij = αijvi. We rewrite (4.2) as

Vr = {rvij|∀i, j}
⋃

{−rvij |∀i, j} (4.3)

Essentially, the dynamic switching states (DSSs) of scale r are positively and nega-

tively scaled copies of the base states that are contained in the open sphere B(0, r).

It is additionally noted that each base state vi as well as −vi are contained Vr for

at least one r > 1. Also, 0 ∈ Vr for all r.
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4.2 Switching Constraints

Assume momentarily that there are no switching constraints imposed on the system.

If for an initial state x0 the control inputs that minimize (4.1) are u∗ and i∗ (yielding

a cost-to-go J), then, under the assumptions of homogeneity, any scaled version of the

same initial state βx0 has βu∗ and i∗ as the corresponding optimal control (yielding

a cost-to-go |β|zJ).

We would like our problem formulation to have such a scaling property since, if

the optimal control law is known from any state starting on on the unit shell C, we

automatically know the optimal control law from any initial state which lies on some

scaled version of C (which is, of course, the entire space X).

In the spirit of the SHRSG, we restrict mode switches to the DSSs of the system.

Therefore, for any initial state x0 with unity magnitude on C, the choices in control

are to either stay in the same operating mode and optimally track the origin in infinite

time, or to track and switch modes at one of the nonzero DSSs in V1 in finite time. Of

course, determining the DSS to track requires knowledge of the remaining cost-to-go

from each of the DSSs.

We resolve this difficulty by posing the above problem at all scales of the system.

That is, if the system’s state is x, we only allow the controller to either optimally

track the origin in infinite time, or to track and switch modes at one of the nonzero

DSSs in V‖x‖. Intuitively, we are simply scaling our decisions.

Under the above switching constraints, knowledge of the optimal cost J∗(x0) from

a state x0 to the origin implies that the optimal cost from βx0 is |β|zJ∗(x0).
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4.3 Constructing the Dynamic Robust Hybrid Switch-

ing Graph

4.3.1 Computing the Optimal Cost-to-Go for the DSSs

As with the SRHSG setup in Chapter 3, there is a nice separation in the continuous

and switching portions of the control input that allow us to design custom controllers

in each mode that are parameterized independently of the switching control law. For

the cost function (4.1), we arrive at the following subsystem control objective: for

a given initial state x0 and target state xd in mode p, choose a final time T and a

control input u so as to minimize

Jp(x0, xd) =

∫ T

0

‖x‖zQ + ‖u‖zRdt (4.4)

subject to x(T ) = xd. We denote the resulting optimal cost J∗
p (x0, xd). For xd = 0,

we automatically set T =∞ so that the control law is the infinite-horizon regulator.

Of course, for a fixed initial state x0 and target state xd, the choice of operating

mode will also have an impact on the cost. Let p∗ = p∗(x0, xd) be the operating

mode (which may not be unique) that minimizes the cost from x0 to xd in (4.4)

(i.e., p∗ = arg minp J
∗
p (x0, xd)). Then J∗

p∗(x0, xd) is the optimal cost over all operating

modes (subscript “p∗”) as well as control inputs and final tracking times.

Let J∗(x) denote the optimal cost from a state x to the origin under the imposed

switching constraints. We then have J∗(±rvij) = J∗(±rαijvi) = |rαij|zJ∗(vi).

Therefore, the optimal cost J∗(vi) from any base state vi must be equal to either

• the optimal infinite-horizon cost — J∗
p∗(vi, v0) where v0 = 0

• the sum of the cost to track some DSS v ∈ V1 plus that DSS’s optimal cost —

J∗
p∗(vi, v) + J∗(v)

Of course, the application of the DSS v0 in the latter case is the same as in the former,

and hence we no longer need to distinguish between the two cases.
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Formally stated, for each non-zero base state vi, there exists a DSS v ∈ V1, where

v = αvj for some base state vj 6= vi, such that

J∗(vi) = J∗
p∗(vi, v) + J∗(v)

= J∗
p∗(vi, αvj) + J∗(αvj)

= J∗
p∗(vi, αvj) + |α|zJ∗(vj)

(4.5)

The above expression represents a simple linear relationship between the optimal

costs of two base states vi and vj. We can leverage optimality further and express

the same equality as the minimum cost obtained over all DSSs in V1

J∗(vi) = min
v∈V1

{J∗
p∗(vi, v) + J∗(v)}

= min
j 6=i;k
{J∗

p∗(vi,+αjkvj) + J∗(+αjkvj), J
∗
p∗(vi,−αjkvj) + J∗(−αjkvj)}

= min
j 6=i;k
{J∗

p∗(vi,+αjkvj) + |αjk|zJ∗(vj), J
∗
p∗(vi,−αjkvj) + |αjk|zJ∗(vj)}

(4.6)

where the second equality stems from the inclusion of both positively and negatively

scaled copies of vj in V1. Of course, we can determine which of the two copies +vjk

or −vjk is the optimal to apply without knowing the optimal cost from each because

the optimal costs are the same (J∗(vj) = J∗(−vj)). Without loss of generality, we

can simplify notation by assuming that the optimal choice is always the positively

scaled DSS vjk.

Because this is true for all i, we can solve the optimal cost J∗(vi) for all vi by

solving the following linear program
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min
∑

i

J∗(vi) subject to

J∗(v0) = 0

0 ≤ J∗(v1) = min
j 6=i;k
{J(vi, αjkvj) + |αjk|zJ∗(vj)}

0 ≤ J∗(v2) = min
j 6=i;k
{J(vi, αjkvj) + |αjk|zJ∗(vj)}

...

0 ≤ J∗(vn) = min
j 6=i;k
{J(vi, αjkvj) + |αjk|zJ∗(vj)}

(4.7)

With J∗(vi) known for all vi, the optimal DSS to track from vi is determined by

searching over all DSSs v ∈ V1, using the fact that J∗(v) = |α|zJ∗(vj) for some base

state vj .

We denote the optimal DSS to track from vi as χp∗(vi). We use the subscript

“p∗” to denote that we are applying the optimal mode during the tracking as well.

By homogeneity, the optimal DSS to track from βvi is simply given as χp∗(βvi) =

βχp∗(vi).

We define the Dynamic Robust Hybrid Switching Graph (DRHSG) G = (V,E) by

1. V = V1

⋃

{v0, v1, . . . , vn}
⋃

{−v0,−v1, . . . ,−vn}

2. (x1, x2) ∈ E ⇔ x1 is a base state , x2 ∈ V1, and

x2 6= βx1 for any β 6= 0

3. w ((x1, x2)) = J∗
p∗(x1, x2)

(4.8)

4.3.2 Applying DRHSG for all States

The optimal cost for any non-base state x ∈ C in mode p is simply given by

J∗
p (x) = min

v∈V1

J∗
p (x, v) + J∗(v) (4.9)

The optimal DSS to track is denoted as χp(x). By homogeneity, the DSS state to

track for any non-DSS state x in mode p is ‖x‖χp(
x

‖x‖
). The appended DRHSG, just
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as the appended SRHSG, is defined as including this new initial state, though we will

not define it here formally.

Of course, it is impractical to consider performing the above computation online,

and so a quantization of the state space is required to store an approximation of

the control law in memory. As shown is Chapter 3 for the case z=2, the continuous

portion of the control law may be parameterized fairly efficiently in memory if the

subsystems are all linear. Therefore, if we quantize C to a finite set of approximation

states X̃p for each mode p in the system, then, for each x ∈ X̃p, the next state to

track χp(x) as well as the optimal time in which to track that state may be stored

in memory. If x is a DSS, the optimal mode to apply p∗ may be stored as well since

mode switches can occur at DSSs.

4.4 Stability

We now prove that a DRHSG-based controller asymptotically stabilizes a switched

system. The proof relies on the assumption that optimal state trajectory x(t) result-

ing from minimizing (4.4) is continuous as a function of the initial state x0. This

assumption needs to be proven.

For some DSS v ∈ V1, χ
−1
p (v) is the set of points on C for which v is the optimal

DSS to track in mode p (a base state will belong to one of these sets for some v and

p). Let Ppv = χ−1
p (v) be the closure of this set, which is compact in Rn.

For an initial state x0 ∈ Ppv, the closed-loop system will track v in some finite

time. Let x∗(x0, t) denote the optimal state trajectory according to (4.4) from x0 to

v, and let T be the cooresponding optimal final time. Then, over the compact interval

t ∈ [0, T ], x∗(x0, t) varies continuously as a function of t and so there is a maximum

deviation ‖x∗(x0, t
∗)‖ <∞ of the trajectory at some time 0 ≤ t∗ < T .

If the optimal control trajectory x∗(x0, t) also varies continuously in the initial

state x0, then x∗(x0, t) is continuous over the compact set Ppv, and so there is a

maximum deviation ηpv such that ‖x∗(x0, t)‖ < ηpv <∞ over all x0 ∈ Ppv and t.

Because the number of modes p and DSSs v in V1 are finite, a finite number of
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sets Ppv cover the unit shell C. If we let η be the maximum deviation over all ηpv,

then the maximum deviation of any trajectory with an initial condition on C is η.

Since the next switching state is contained in B(0, 1), it can be shown by induc-

tion and homogeneity that the optimal trajectory x(t) starting from any x0 on C is

contained in the ball B(0, η).

Therefore, given any ǫ > 0, choosing ‖x0‖ < ǫ/η guarantees ‖x(t)‖ < ǫ for all t.

Since x(t)→ 0 as t→∞, the system is asymtotically stable.

4.5 Principle of Optimality

It is clear that if the closed-loop system controlled by a DRHSG controller is sampled

at the switching times, it obeys Bellman’s Principle of Optimality. However, it does

not possess this property when examined along the full state trajectory.

Consider the following example. Suppose that for each base state, there are only

two cooresponding DSSs — a positive and negatively scaled version. If the initial

condition is one of the base states x(0) = vi, then, in some finite time T , we have

x(T ) = χp∗(vi) ∈ V1.

Assume x(T ) 6= 0 and take some state x(t1) along the state trajectory. If the

system were to treat x(t1) as the “initial condition”, then the system would not drive

to the DSS x(T ) because x(T ) /∈ V‖x(t1)‖.

Because the principle of optimality does not apply, a “true” closed-loop controller

cannot be used to stabilize the system. The system may only use a closed-loop

controller to track an open-loop switching path.

It is believed that if switching lines rather than switching states on lines are used,

the principle of optimality would apply because the same problem is always posed for

all states of the system. However, it also may be for more computationally intensive

to solve for the optimal trajectory.
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Chapter 5

Application of SRHSG to the

DISC Engine

We compare the SRHSG control methodology to a MIPC controller designed for the

same application: the direct-injection stratified charge (DISC) engine. This applica-

tion is particularly relevant because the DISC engine is a constrained system with

demanding resource and performance requirements.

5.1 Overview of the DISC Engine

The DISC engine can be operated in two combustion regimes: homogeneous and strat-

ified. In homogeneous operation, fuel is injected during the intake stroke, providing

an approximately even air-fuel mixture throughout the cylinder. The characteristics

of the engine are similar to that of the typical port-fuel injection (PFI) engine in

terms of performance and emissions, and the air-to-fuel ratio (AFR) operates about

the stoichiometric value of 14.62:1.

In the stratified operation, fuel is injected late into the compression stroke, forcing

the fuel, under the influence of a specialized piston head, to be concentrated about the

spark plug. The typical AFR for this mode of operation is about 35:1, significantly

higher than that of the PFI engine. However, this operation regime also generates a

significant amount of NOx byproduct that must be accounted for by a specialized NOx
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catalyst in order for the engine to meet strict air-quality standards. These catalysts

lose their effectiveness over time and must be purged by switching the engine for

some time back into the homogeneous regime and running the AFR slightly rich of

stoichiometry.

The choice of the operating mode depends upon the amount of brake torque de-

manded by the driver and the current state of the NOx catalyst. When the demanded

torque is high (such as at high speeds or for fast acceleration), the engine should be

operated in homogeneous operation. When the demanded torque is low to moderate,

and the catalyst is operating effectively, stratified operation may be used to greatly

increase the fuel economy. As the catalyst becomes saturated, the mode should be

temporarily switched to the homogeneous regime until it is clean (termed a purge

operation). Based upon the torque demanded by the driver and the catalyst state,

a high-level algorithm determines the appropriate combustion mode to apply and

computes a set point for the intake-manifold pressure, AFR, and the torque. The

purpose of the DISC engine controller is to track these references in such a way as to

guarantee convergence and quality of performance.

5.1.1 DISC Engine Model

We treat the simplified model of the DISC engine presented in [5], a derivative of

the mean value model proposed and verified in [18]. In this section, we present a

brief overview of the DISC engine parameters and present the form of the linearized,

discrete-time DISC engine model.

Model Parameters

The tracking parameters (outputs) of the DISC engine are:

• Intake-manifold pressure pm which governs the mass-flow rate of air into the

cylinder and impacts the air-to-fuel ratio (AFR).

• Air-to-fuel ratio λ, the ratio of the mass flow rates of air and fuel into the

cylinder and serves as the measure for fuel-economy.
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• Brake torque τ , the torque provided to the driver which is the sum of the

indicated torque (torque generated through combustion) with frictional and

pumping losses.

• Combustion regime ρ where ρ = 1 designates stratified operation and ρ = 2

designates homogeneous operation. The DISC engine controller controls this

parameter directly in order to track the reference operation mode.

The following parameters are treated as inputs to the engine:

• Mass flow rate of air through the throttle Wth used for controlling pm.

• Fueling rate Wf that affects both the AFR and the brake torque.

• Spark timing δ that impacts the amount of torque generated through combus-

tion.

There is a particular spark timing, termed the maximum-brake torque timing (δmbt),

such that the amount of brake torque generated through combustion is maximized

when δ attains this value. δmbt is a function of λ, and the brake torque quadratically

depends upon the amount of deviation between δ and δmbt.

Constraints

In both operating modes, there exist actuator saturations and other practical limi-

tations that are treated as hard constraints on the ranges of Wth , Wf , and δ. By

convention, we restrict the spark timing to the interval [0, δmbt], where the upper

limit (δmbt) is variable. In general, we denote the minimum admissible value for a

parameter v as vmin and the maximum admissible value as vmax.

To avoid misfirings and excessive emissions caused by either too rich or too lean an

air-fuel mixture, the AFR λ is specially bounded to a range that depends only upon

the combustion regime. The output parameters pm and τ are naturally bounded by

all of the above limitations.
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We assume that all references to the system are achievable; that is, there is an

input to the system that will track that reference is steady-state. Hence, all references

are bounded as well.

Linear and Discretized Model

The general form of the linear, discrete-time model of the DISC engine is presented

below (the dependence on ρ is implicit):

p̂m(n + 1) = ap̂m(n) +
[

b 0 0
]











Ŵth(n)

Ŵf(n)

δ̂(n)





















p̂m(n)

λ̂(n)

τ̂(n)











=











1

c2

c3











p̂m(n) +











0 0 0

0 d22 d23

0 d32 d33





















Ŵth(n)

Ŵf(n)

δ̂(n)











(5.1)

where v̂ denotes the normalized value of the parameter v to its operating point about

which the approximating linearization is performed.

5.2 MPC Control of the DISC Engine

In this section, we give a very brief, qualitative description of the MIPC controller

presented in [5] for controlling the DISC engine.

The MIPC problem formulation is as follows: given the reference yref and a nom-

inal input uref (an “equilibrium” input for the system corresponding to the “equi-

librium” output yref according to the nonlinear DISC engine model), find an N -step

input horizon for the input u(n) and the combustion mode ρ(n) so as the minimize

J =

∞
∑

n=0

‖Q











yref − y(n)

ǫτ (n)

ǫλ(n)











‖1 + ‖R











uref − u(n)

ρ(n)− ρref

s(n)











‖1 (5.2)
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where

ǫτ (n+ 1) = ǫτ (n) + T (τ(n)− τref)

ǫλ(n+ 1) = ǫλ(n) + T (λ(n)− λref)
(5.3)

subject to x(n), y(n), and u(n) are all admissible for each of the N future time

samples. The positive definite matrices Q and R individually weight the errors in the

output and the input, the magnitude of the parameter s(n), and the integrated error

between the torque and the AFR which is meant to provide zero-offset tracking of

these two parameters.

To guarantee that the above QP is feasible, the admissible set of parameters is no

longer restricted to polytopic sets but to the entire space. The slack variable s(n) is

introduced into the problem formulation to relax the original hard constraints to a set

of soft constraints that heavily penalizes though allows for constrained parameters to

admit values in the prediction horizon that violate their original polytopic constraints.

The stability, convergence, and performance properties of the above controller

are not discussed in [5]. Though the problem seems to be formulated as an opti-

mal control problem, in fact, optimizing along a short-look ahead horizon does not

guarantee performance nor convergence to the reference. Though the controller is

designed to drive the system to the reference by “forcing” both the output and the

input to attain pre-specified, nominal values, formal results proving this do not exist.

Furthermore, by allowing physically constrained parameters to be modeled as uncon-

strained parameters in the QP, it is possible that the system could potentially suffer

from integrator windup in the parameters ǫτ and ǫλ, which may negatively impact

stability and performance.

5.3 SRHSG Control of the DISC Engine

5.3.1 Subsystem Controllers

Before the switching strategy for the DISC engine can be computed, controllers for

each subsystem of the DISC engine need to be constructed. Therefore, we consider
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the subproblem of tracking a particular reference in the same mode subject to the

cost function

J =

T
∑

k=0

‖Cx+Du− yref‖2Q (5.4)

From (5.1), we see that there exists a nice separation between the input that affects

the state and the inputs that affect the output in that, under the assumption that

all references are achievable, allows us to optimally track a reference with respect to

simply by tracking the IMP in minimum time and minimizing the error of the AFR

and the torque at every time step.

To optimally determine values for the inputs Wf (n) and δ(n) so as to minimize the

errors in λ and τ while satisfying hard constraints, we use a quadratic program (QP)

that depends upon the plant’s state and the reference. To track the state in minimum

time, we implement a basic discrete-time bang-bang controller for determining Wth(n)

Ŵth(n+ 1) = sat





[ 1 0 0 ]ŷref − a(ρ)x̂(n)

b(ρ)



 (5.5)

The controller for determining Wf(n) and δ(n) is a QP that seeks to minimize the

error in λ and τ while meeting hard constraints on the inputs and the outputs. Given

a reference output yref and combustion mode ρ, let

y23 = [ λ τ ] u23 = [ Wf δ ]

Q23 = PQP T D23(ρ) = PD(ρ)P T

yref
23 = Pyref C23(ρ) = PC(ρ)P T

(5.6)

where P =





0 1 0

0 0 1



.
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The optimizing quadratic program is

y23 = arg min
ỹ23

‖yref
23 − ỹ23‖2Q23

subject to




λ̂min

τ̂min



 ≤ ỹ23 ≤





λ̂max

τ̂max









Ŵf,min

δ̂min



 ≤ D−1
23 (ρ)(ˆ̃y23 − C23(ρ)x̂) ≤





Ŵf,max

δ̂mbt





(5.7)

where δmbt is an affine function of the AFR and the combustion regime.

The above QP determines the optimal value for y23, which can then be used to

compute the control input u23. However, solving (A.2) at every time sample of a

fast-paced system such as the DISC engine is not practical, and so we employ the

multi-parametric quadratic programming (MPQP) techniques detailed in [4]. Ap-

proximately 20 partitions in the parameter space are required to store the exact

solution (A.2) in memory.

Of course, even if multiple linearizations are utilized, the controller is still open-

loop, so zero-offset tracking cannot be guaranteed. Integral action is applied to (A.2)

to obtain a closed-loop controller for λ and τ .

1. e← (1− α)
(

yref
23 − y23(n)

)

|eI(n− 1)

2. Let y′23 be the solution to (A.2) applying the reference ỹref
23 = yref

23 + e

3. eI(n) = y′23 − yref
23

4. Compute u23 accordingly from y′23

(5.8)

where the constant 0 < α < 1 determines the trade off between the convergence rate

and sensitivity to noise. It can be shown that (5.8) asymptotically stabilizes λ and τ

to their optimal values with respect to a fixed mode of operation and system state.

We refer the reader to Appendix A for the proof of this result as well as a comparison

of (5.8) to another controller designed for the same purpose.
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Approximating via Muliple Linearizations

It is shown in Appendix A how to adapt the torque and AFR controller for use

with multiple linearizations of the nonlinear DISC engine model. For brevity, we

do not discuss these approaches here as they are not relevant, but we note that the

simulations in this chapter make use of such multiple linearizations.

5.3.2 The Full Controller

We apply (3.9) using the control law constructed from (5.5) and (5.8) to build the

full controller for the DISC engine. We modify (5.5) so that the tracking state xd

provided by the switching path is tracked

Ŵth(n+ 1) = sat

(

xd − a(ρ)x̂(n)

b(ρ)

)

(5.9)

Algorithm (5.8) remains unchanged for determining the values of Wf(n) and δ(n) as

it minimizes the error between the reference and the output AFR and torque.

Although usable SRHSG tables of practical sizes can easily be generated for the

DISC engine, we briefly consider in this section a means for significantly reducing the

table’s memory requirements for systems possessing scalar states. Consider the rules

below

• Rule A: If, for a given state x0 and reference yref , the tracking state is xd, then

the same tracking state should be used for all states in between x0 and xd.

• Rule B : The operating mode may change only once when tracking a reference.

Applying these assumptions, the SRHSG table format may be modified. For each

reference approximation point ỹref ∈ Ỹρ in reference mode ρ, the following data

structure may be used

TD (ỹref , ρ) =





−∞ xl2 xl3 · · · xln

xs1 xs2 xs3 · · · xsn



 (5.10)
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By Rule B, it is redundant to store a table for the case that the state and reference

are in the same mode, so table (5.10) assumes that the system is in a different mode

than the reference. The first row specifies the range of points that drive to a switching

state, the second row is the switching states to use. The algorithm for getting the

next switching state is

1. T ← TD (APYρ(yref), ρ)

2. i← max {j|x(n) ≥ [T ]1,j}

3. xd ← [T ]2,i

(5.11)

5.4 Results and Comparison

The simulation results for the SRHSG-controlled system were obtained using a 22KB

table with the following attributes: 106 switching points along in the IMP, 49 and

36 approximation points along the IMP in the stratified and homogenous modes

respectively, and 48 and 29 approximation points in the reference output space in the

stratified and homogenous modes respectively. It took roughly 2 hours to generate

the table using a 1GHz PC.

The left column of Figure 5-1 shows the system’s responses under SRHSG control,

and the right column shows some of the the control inputs. The system is initialized

in the stratified regime, and tracks the IMP, AFR, and torque references. The use of

MP-QP allowed for a very fast tracking of the latter two parameters while satisfying

the hard constraints on the inputs. When the reference indicates switching to the

homogenous regime (at the time when the reference AFR drops to roughly 14:1), the

controller examines the SRHSG table and selects a switching point along the IMP

(in thiscase, the switching point is at 52 kPa). When the pressure reaches this point,

the system switches modes, and the controller drives to the reference IMP. The mode

shift causes a change in the system dynamics, and, consequently, a perturbation in

the torque and AFR. This disturbance, however, is relatively insignificant, meaning

the SRHSG shortest-path algorithm chose a good switching point. The response may

be compared to the response given by the MIPC controller shown in Figure 5-2 where
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convergence to the target is not guaranteed.
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(a) Intake-manifold pressure (b) Air-to-fuel ratio

(c) Torque (d) Spark timing

(e) Combustion regime

Figure 5-1: SRHSG simulation results for the full controller applied to the nonlinear
DISC engine. Solid line — response of the system; Dashed line reference (except for
spark timing where dashed line is MBT spark timing. The fine-dotted lines in AFR
represent the AFR boundaries).
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(a) Intake-manifold pressure (b) Air-to-fuel ratio

(c) Torque (d) Spark timing

(e) Combustion regime

Figure 5-2: MIPC simulation results for the full controller applied to the nonlinear
DISC engine. Solid line — response of the system; Dashed line reference (except for
spark timing where dashed line is MBT spark timing. The fine-dotted lines in AFR
represent the AFR boundaries).
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Chapter 6

Conclusions and Future Work

In this paper, we presented two new approaches to controlling switched systems with

both bounded and unbounded switching regions that reduced the complexity of find-

ing both an optimal control input and mode sequence to a dynamic programming

problem in tracking an optimal switching path, using pre-designed feedback con-

trollers for each subsystem of the switched system. The switching path is completely

determined by finding the minimum-cost sequence of switching states to track in each

mode.

Unlike other approaches, our both static and dynamic RHSG

• do not require a pre-determined, finite length mode sequence

• are inherently immune to the Zeno effect

• are guaranteed, under reasonable assumptions, to converge to the target state.

Furthermore, by separating the subsystem controllers from the switching path, the

subsystem controllers are parameterized separately from the switching law. A further

reduction in complexity may be obtained by reducing the complexity of the subsystem

controllers by considering controllers which do not provide optimal performance in

the traditional p-norm sense, though the designer would need to determine whether

such a sacrifice in performance is worth the benefits in simplicity. Our work does not

provide a quantitative measure of the resulting performance in this case.
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Future work in the control of constrained switched systems should include exam-

ining other approaches to reducing controller decisions to obtain simple and effective

controllers, simplifying the individual subsystem controllers, and providing some mea-

sure of the system’s stability (not simply convergence to the target) for SRHSG.

For unconstrained switched system, work into applying the concept of switch-

ing lines rather than states should offer a control scheme for which the principle of

optimality applies, allowing for the use of closed-loop controllers.
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Appendix A

Proof of Stability of the Torque

and AFR Subsystem Controller

In this appendix, we prove the stability properties of the torque and AFR subsystem

controller. For simplicity in presentation, we use different notation from that used in

Chapter 5. Note, in particular, the following changes

• x is the state of the closed-loop integrator system, not the intake-manifold

pressure

• yref , not yref
23 is the torque and AFR reference

• u, not u23, is the spark timing and fueling rate inputs

• D and C, not D23 and C23 are the corresponding system matrices for the sub-

system.

A.1 Linear and Disceretized Model

The subsystem of interest in this appendix is that which controls only the latter two

output parameters of the DISC engine model. As can be seen in (5.1), there is a

nice separation between the input that regulates the state (pm), and the inputs that

regulate the remaining outputs (λ and τ). We assume that the state is controlled
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optimally (by a bang-bang controller, for instance) and so in further assuming the

target reference is achievable, we can optimally control λ and τ independently of pm.

Presented below is the sub-system of interest

y(n) =





λ̂(n)

τ̂(n)



 = Cp̂m(n) +Du(n) (A.1)

where, for simplicity, we substituted the output and input vectors with y and u

respectively. D is invertible.

A.2 Optimal Torque and AFR Control

For a given reference yref =
[

λref τref

]T

and intake-manifold pressure pm, it is

the responsibility of the torque and AFR controller to determine admissible values

for Wf and δ so as to make the outputs λ and τ “optimally close” to their respective

set-points. For this, we seek to minimize the standard 2-norm distance of the output

and reference. Thus, the difficulty of computing the appropriate inputs is reduced to

a quadratic program (QP).

However, solving a QP at every step of the controller for a fast-paced system like

the DISC engine is clearly impractical. We leverage the fact that the constraints on

yref as well as on y, u, and pm are all polytopic, reforming the problem to that of a

multiparametric-quadratic program (MP-QP). The solution to a MP-QP, in this case,

is an explicit piecewise affine function of yref and pm that can be evaluated practically

in real-time. We do not discuss MP-QPs in detail in this paper as it is only the QP

portion of the problem that is important for the controller analysis.

We denote the quadratic program used to determine the control input u as Qp :
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ℜ2 → ℜ2. It is presented below

arg min
ỹ

(yref − ỹ)′Q(yref − ỹ)

subject to




λ̂min

τ̂min



 ≤ ỹ ≤





λ̂max

τ̂max









Ŵf,min

δ̂min



 ≤ D−1(ỹ − Cp̂m) ≤





Ŵf,max

δ̂mbt





(A.2)

where Q is a positive definite, symmetric matrix. We implicitly treat the dependence

of Qp on pm and so it is not a parameter of the function.

Qp maps the reference yref to the optimal achievable output y′, from which the

control signal to apply is determined as u = D−1(y′−Cp̂m). Due to the invertibility of

D, it is only necessary to formulate the problem in terms of one of these parameters,

allowing for all the constraints on both y and u to be treated as just a single set of

constraints on y. For simplicity, we denote the polytope bounding y as P .

A.2.1 Closed-Loop Controller

The algorithm for computing the optimal Wf and δ for a given reference and current

plant output is presented below

1. x(n + 1) = (1− α)(yref − y(n)) + eI(n)

2. y′(n + 1) = Qp(yref + x(n + 1))

3. eI(n+ 1) = y′(n+ 1)− yref

4. u(n+ 1) = D−1(y′(n+ 1)− Cp̂m)

(A.3)

where:

• 0 < α < 1 is a constant that impacts the speed of convergence (smaller values

give faster convergence while larger values decrease the closed-loop sensitivity

to noise)
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• x is the “true” integrated error between the reference and the output

• y′ is the optimal point in P with respect to yref +x to which the system should

strive to attain

• eI is the integrated error after anti-windup is applied (a “corrected” version of

x).

(It should be noted that it is assumed the solution to Qp is an MP-QP that assumes

the reference is bounded to a particular polytope. This may be accounted for by sat-

urating x to some arbitrary polytope in (A.3). This correction is of little importance,

however, and so we ignore it.)

To simplify analysis, we let Q be the identity matrix. This is done without a loss

in generality since we can always apply an invertible transformation of coordinates

to the system in the form of
√
Q, for which an identical stability analysis may be

performed. We also assume, without loss of generality, that the output of the plant

y(n) is exactly equal to y′(n) (if it is not, we could apply a translation of coordinates

and perform the same analysis). Thus, we can represent the entire closed-loop system

(plant and controller) in the following state-space form

x(n + 1) = α [Qp(yref + x(n))− yref ]

y(n) = Qp(yref + x(n))
(A.4)

Of course, yref may not be an achievable reference since it is assumed only that the

reference
[

p̂m,ref yref
T

]T

is achievable. If pm is not at its target set-point pm,ref ,

there is no guarantee that yref may be reached by an admissible u. In this case

it is desirable to drive the system to the optimal admissible output value given by

yopt = Qp(yref).
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A.3 Stability of the Closed-Loop System

A.3.1 Equilibria

Before determining an equilibrium point for (A.4), we present some basic results. In

all, we let F : ℜn → ℜn be the quadratic program given by F (y) = arg minŷ∈M ‖y − ŷ‖
for some polytope M .

Lemma A.1. For some y /∈M , there exists a hyperplane W that separates the space

into two disjoint regions R1 and R2 such that y is contained in R1 and M is contained

in R2. Furthermore, the vector (y − y∗) is perpendicular to W .

Proof. Let W be the hyperplane containing the point y∗ = F (y) and perpendicular to

the vector (y− y∗). We prove the claim by contradiction. Suppose some point p ∈M
is contained in R1. By the convexity of M , the line segment l = {(1− β)y∗ + βp|0 ≤
β ≤ 1} is contained in M , and, furthermore, it intersects W at only y∗.

Let By be the closed ball of radius ‖y − y∗‖ centered at y. Then l intersects By

at y∗ though it is not tangential to it. Therefore, there is some point in l (also in M)

contained in the interior of By which is a contradiction of the optimality of y∗.

Corollary A.2. If F (y) = y∗ and y /∈M , then F (βy+(1−β)y∗) = y∗ for all β ≥ 0.

We can now easily show that xe = α(yopt − yref) is an equilibrium for the closed-

loop system (A.4).

α{Qp(yref + xe)− yref} =α{Qp(αyopt + (1− α)yref)− yref}

=α(yopt − yref)

=xe

At this equilibrium state, u, which is uniquely determined by x and yref drives the

plant output to yopt. Without loss of generality, we will assume that yopt = 0, which is

easily obtained by simply applying a translation of coordinates. Letting ze = x− xe,
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we rewrite (A.4) as

z(n + 1) = α [Qp(q + z(n))− yopt] = α [Qp(q + z(n))]

y(n) = Qp(q + z(n))
(A.5)

where q = αyopt + (1− α)yref = (1− α)yref . An equilibrium state for this system is

clearly ze = 0.

A.3.2 Asymptotic Stability

It remains to show that the equilibrium point ze = 0 of (A.5) is globally asymptotically

stable. Before proceeding, we establish the contraction property of the quadratic

program F . It is assumed 0 ∈M .

Lemma A.3. ‖F (y)‖ ≤ ‖y‖ for all y.

Proof. Let B0 be the closed ball with radius ‖y‖ centered at 0, and let x be a point

on the surface of B0 that intersects the ray R = {βF (y)|β ≥ 0}.
Consider the existence of a positive real constant γ such that the point y∗ = γx

possesses the property that (y − y∗) ⊥ y∗ (that is, y∗ is the point on R minimally

distant to y). Since (y∗ − y)′x = 0, we have that γ‖y‖2 = γx′x = y′x ≤ ‖y‖2.
Therefore, 0 ≤ γ ≤ 1 so that if such a y∗ exists, it lies in B0 and ‖F (y)‖ = ‖y∗‖ ≤ ‖y‖.

In the case that there is no point y∗ on R such that y∗ ⊥ (y∗ − y), it can easily

be shown that F (y) = 0 since the set −R must contain such a point.

To prove that the origin is an asymptotically stable equilibrium point of (A.5)

we apply Lyapunov’s direct method. Let V (z) = ‖z‖2. We prove that ‖z(n + 1)‖ <
‖z(n)‖ for all z(n) 6= 0 by proving that ‖z(n)‖ ≥ ‖F (y + z)‖ > α‖F (y + z)‖ =

‖z(n + 1)‖.

Theorem A.4. Equation (A.5) has a globally asymptotically stable equilibrium point

at z = 0.

Proof. We prove the claim by contradiction. Assume that there exists some z 6= 0

such that ‖z‖ < ‖F (y + z)‖ where F (y) = 0 (the proof is obvious for z = 0).
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Let z = γy + y⊥ where γ is some real constant and y⊥ is perpendicular to y. By

Lemma A.3, we know that ‖z‖ < ‖F (y+z)‖ ≤ ‖y+z‖, and so we obtain that γ > −1

and y⊥ is arbitrary.

Let W be the hyperplane separating y and M as described in Lemma A.1 which

separates the space into the two regions R1 and R2. Assume y ∈ R1; by the bound

on γ, we have that (y + z) must lie in the closure of R1.

For any ray R = {βp‖β ≥ 0} where p ∈ R2, the point x on R with minimum

distance to (y + z) is such that x = 0 or (x − (y + z)) ⊥ x (this extends from the

proof of Lemma A.3). If x = 0, then ‖z‖ > F (y + z) and the proof is complete, so

assume the latter.

It can be derived using the proof of Lemma A.1 that x′x = (y+z)′x ≤ (y⊥)′x (the

proof is straight-forward in ℜ2, and it can be easily extended to ℜn because (y + z)

and R lie in a plane). Hence, ‖F (y + z)‖ ≤ ‖y⊥‖ ≤ ‖z‖, which is a contradiction.

The claim that ‖z‖ ≥ ‖F (y + z)‖ for all z is true. Therefore, for (A.5), ‖z(n +

1)‖ ≤ α‖z(n)‖ < ‖z(n)‖ for all z(n) 6= 0, proving that the system is asymptotically

stable.

Of course, at the equilibrium (ze = 0), the output of (A.4) is yopt = Qp(y), which

is precisely what is desired.

A.4 Using Multiple Linearizations

The brake torque τ is a function of what is termed the indicated torque τind (torque

generated through combustion) summed with frictional and other losses.

τind =
(

θa + θb(δ − δmbt)
2
)

Wf (A.6)

θa, θb, and δmbt are affine functions of λ that depend on the combustion regime. The

quadratic impact of the spark timing’s deviation from the MBT spark timing on indi-

cated torque (and, therefore, on brake torque) cannot be approximated well enough

by any single linearization of (A.6). However, we can generate and partition multiple
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Table A.1: Example partitioning for linearizations

Model # 1 2 3 4
Minimum deviation from MBT 0 5 10 15
Maximum deviation from MBT 5 10 15 ∞

linearizations of (A.6) according the range of this deviation. For example, consider

the partitioning in Table A.1 that can be used to generate four such linearizations.

Given a nominal input W d
f and Wth

d (which gives a nominal MBT spark timing

δd
mbt), different nominal values δd of the spark timing are chosen, one within each range

of δd
mbt according to the partitions. Each selection of δd gives a different linearization

of the DISC engine model.

Let L ⊂ Z+ be the set of model references and assume there are N linear approx-

imations (|L| = N). Denote the maximum deviation for model l ∈ L as ∆max(l) and

the minimum deviation as ∆min(l). When applying model generated by linearization

l to determine a suitable control input, the spark timing is restricted to the range

δmbt −∆max(l) ≤ δ ≤ δmbt −∆min(l) (A.7)

We extend (A.1) to include multiple linearizations and denote the system obtained

using the lth linearization as

y(n) = C(l)p̂m(n) +D(l)u(n) (A.8)

Determining the optimal control input requires a new MP-QP (which we will denote

Q̃p) that depends on the linearization being used to approximate the mode. Q̃p is

exactly identical to Qp with the exception that it takes as an additional argument

the linearization to apply. In addition to using this model approximation, (A.7) is

appended as an additional constraint in the program.

Extending the controller to using multiple linearizations requires the controller

to both determine the linearization to use and the optimal input to apply for that
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linearization. Of course, each of these decisions depends upon the other since the

“best” linearization depends on the MBT spark timing which, in turn, depends on

the linearization used to compute the optimal input u to the plant.

We resolve this difficulty by solving the problem in two steps. First, using just the

reference and not the integrated error, a nominal optimal control input is computing

from each linearization. Then, using the linearization that gives the best predicted

performance, the control signal u that is applied to the plant is computed with the

integrated error included. The new controller algorithm is presented below.

1. For each l ∈ L, let yl = Q̃p(yref , l)

2. Let l∗ = arg min
l
‖yref − yl‖

3. x(n + 1) = (1− α)(yref − y(n)) + eI(n)

4. y′(n + 1) = Q̃p(yref + x(n + 1), l∗)

5. eI(n+ 1) = y′(n+ 1)− yref

6. u(n+ 1) = D−1 (l∗) (y′(n+ 1)− C (l∗) p̂m)

(A.9)

It should be noted that if the feedback information from x is used for determining

the linearization in step 2, a “chattering” between multiple linearizations may result.

Therefore, the nominal linearization to apply is chosen independently of the feedback

error.

A.5 Simulations

For these simulations, we used four linearizations of the DISC engine model, and

each linearization required approximately 20 regions in the 3D parameter space pa-

rameterized by pm and yref for the MP-QP. We compare these results against the

speed-gradient controller presented in [16], which is designed for the same applica-

tion.

Speed-gradient (SG) control is a model-based Lyapunov design technique that

relies on the minimization of a cost function J (a function of the plant’s states) to drive
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a system to a reference eqequilibriumoint. In an application of SG the DISC engine,

J is constructed as the sum of a performance function Jp and a barrier function Jb. Jp

penalizes excursions of certain engine parameters away from their nominal set-points

so as to force the system to drive these parameters to eqequilibriumJb is designed to

prevent constraint violations of the acactuatorsnd outputs by heavily penalizing the

potential for any parameter to exceed its adadmissibleange. A novel derivation of the

SG method and its application to the DISC engine as well as a numerical algorithm

for checking the stability of the closed-loop system are presented in [16].

As noted previously, the MP-QP controller explicitly guarantees constraint satis-

faction at every time step of the system without the use of a barrier function or a

penalty on an actuator’s deviation from its nominal, equilibrium value. Allowing the

controller free range over all admissible control signals allows the closed-loop system

to response more quickly to changes in reference without the risk of violating such

constraints.

Figures A-2 and A-1 compare the two controllers during a purge operation. Both

systems start in the stratified regime under torque-tracking mode and both switch

combustion regimes when the intake-manifold pressure reaches approximately 50 kPa.

When the purge signal is sent, the reference AFR decreases to its stoichiometric value

14.62:1, and the SG controller switches its mode to AFR-tracking mode (where greater

emphasis is placed upon tracking the AFR). As can be seen in Figure A-2, the speed

of the torque response significantly decreases as AFR tracking takes precedence.

In this simulation, the MP-QP controller is constantly kept in torque-tracking

mode. Despite the emphasis on torque-tracking, the closed-loop system (which is

guaranteed to asymptotically converge to the reference) achieves the desired stoichio-

metric AFR more quickly than its SG-controlled counterpart while allowing for the

fast-tracking of torque references. Although there is a small deviation in the AFR

from stoichiometry at time t = 1.7s when the reference torque changes, the deviation

is minor and quickly resolved.

Notable in the MP-QP-controlled response is the overshoot in the torque response

at time t = 1.7s. The overshoot is the result of a model-mismatch between the
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nonlinear model and the linearized model used by the controller. Hence, the control

signal that is optimally computed for the approximate system does not produce the

expected output at the plant. The integrator, however, gradually accounts for the

mismatch and, as the intake-manifold pressure is driven to its reference value, the

error diminishes.
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Figure A-1: MP-QP Controlled System
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Figure A-2: SG Controlled System
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Appendix B

Results Related to the Subsystem

Controller

B.1 invertibility of Φ(t)

The ODE relating Φ to W and Θ is

Φ̇ + ΘBxW = 0 (B.1)

where

• Θ(t) = W ′(t)

• Bx = −BΓ−1B′, where Γ = R+D′QD, is negative-definite

• Aλ = −A′ − C ′QDΓ−1B′

Therefore, Φ(t) is given by

Φ(t) =

∫ t

T

W ′(t)BΓ−1B′W (t)dt ≥ 0 (B.2)

We directly apply the argument from [17] to our formulation and prove that Φ(t)

is invertible by contradiction. If for any time τ < T , Φ(τ) is singular, then, by

the continuity of the integrand, the integrand must be zero over the interval [τ, T ].
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Assume there is some vector b 6= 0 such that b′Φ(τ)b = 0. Then B′W (t)b = 0 for

all t ∈ [τ, T ]. Letting z(t) = W (t)b, we get from the differential equation governing

W (t) that

Ẇ (t)b = −A′W (t)b⇒ ż(t) = −A′z(t) (B.3)

where

z(T ) = b

B′z(t)b = 0, for all t ∈ [τ, T ]
(B.4)

Combining the above constraints with the solution z(t) = −eA′(t−T )b, we obtain

b′
∫ τ

T

eA(t−T )BB′eA(t−T )B′dtb = 0 (B.5)

which is a contradiction since the system is controllable. Hence, Φ(t) is invertible.

B.2 Positive Semi-Definiteness of −Bλ

Proving −Bλ is positive semi-definite is tantamount to showing that (Q − QD(R +

D′QD)−1D′Q) ≥ 0. For simplicty, we let P =
√
QD and equivently prove that

P (R+ P ′P )−1P ′ ≤ I (B.6)

The proof of (B.6) is spanned over the three subcases presented in the following

sections. In each, we denote the dimensions of P as p×m and the dimsensions of R

as m×m.

B.2.1 P is Invertible

If P is invertible, we can easily simplify (B.6) to

(

(P ′)−1RP−1 + (P ′)−1P ′PP−1
)−1 ≤ I

⇐⇒σmin

(

(P ′)−1RP−1 + I
)

≥ 1

⇐⇒σmin (M + I) ≥ 1

(B.7)
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Let the vector v correspond to the minimum singular value of (M + I), which is the

same as the minimum eigenvalue since the expression is symmetric. Expanding (B.7)

by multiplying by v, we get

σmin (M + I)2 = v′M ′Mv + v′MIv + v′Iv ≥ v′Iv (B.8)

which is true since M is positive semi-definite.

B.2.2 P is Square and Non-invertible

For the case of P square and non-invertible, we let P̃ = (P + ǫUV T ) where U and V T

correspond to the singular value decomposition of P (P = UΛV T ). Therefore, for all

ǫ > 0, P̃ is invertible and so the previous result gives that

P̃ (R+ P̃ ′P̃ )−1P̃ ′ = (M̃ + I)−1 ≤ I (B.9)

Taking the limit as ǫ→ 0 gives (B.6) since the singular values of the (M̃+I)−1 (which

are equal to the eigenvalues since the matrix is symmetric) change continuously as a

function of M̃ , which in turn changes continuously as a function of ǫ.

B.2.3 P is not Square

To resolve the case of P not square, we simply append P with an appropriately-sized

0-matrix to make it square. We then apply the previous results to conclude that (B.6)

is true.

Consider the case of p < m (P is “wide”). Let P̂ =
[

P 0
]T

be a square matrix

of dimension m×m. Because P̂ is square, we know that

P̂ (R+ P̂ ′P̂ )−1P̂ ′ ≤ I (B.10)

Therfore, we only need to show that this expression is equivelent to (B.6). Simple
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substition and basic algebra reveal this to be true

P̂ (R+ P̂ ′P̂ )−1P̂ ′

=





P

0







R +
[

P ′ 0
]





P

0









−1
[

P ′ 0
]

=





P

0



 (R+ P ′P )
−1

[

P ′ 0
]

=





P (R+ P ′P )−1P ′ 0

0 0



 ≤ I

(B.11)

Of course, the above inequality is true if and only if (B.6) is true.

For the case of p > m (P is “tall”), we need to manipulate R as well. Let

P̂ =
[

P 0
]

be a square matrix of dimension p× p, and let R̂ =





R 0

0 I



 also be

a matrix of dimension p× p.

Because P̂ and R̂ are each square, we have

P̂ (R̂+ P̂ ′P̂ )−1P̂ ′ ≤ I (B.12)

Once again, we need to show the above inequality is equivalent to (B.6). Simple

substitution and simplification give that

P̂ (R̂+ P̂ ′P̂ )−1P̂ ′

=
[

P 0
]









R 0

0 I



 +





P ′

0





[

P 0
]





−1 



P ′

0





=
[

P 0
]









R+ P ′P 0

0 I









−1 



P ′

0





= P (R+ P ′P )−1P ′ ≤ I

(B.13)

The two expressions are equivalent and, therefore, for general P , (B.6) is true.
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B.3 Convergence of Matrix Parameters

The solution S∞ to the ARE (3.28) “stabilizes” the matrix Ax in that (Ax +BxS∞) <

0. Furthermore, the approximation of S(t) as S∞ for small t allows us to approximate

the solution for Θ(t) governed by (3.26). Specifically, for some large final time (τ+T )

(where the signifigance of τ is given in 3.5.1), we approximate Θ(t) as follows

Θ(t) = exp

[
∫ τ+T

t

Ax +BxSdt

]

≈ exp

[
∫ T

t

Ax +BxS∞dt+

∫ τ+T

T

Ax +BxSdt

]

= exp

[∫ T

t

Ax +BxS∞dt

]

exp

[∫ τ+T

T

Ax +BxSdt

]

(B.14)

For any T ≥ 0 (corresponding to the final time (T + τ) from which S(t) is computed

backwards), the exponential on the right is a constant whereas the exponential on the

left is comparitively easy to compute. More importantly, by the negative definiteness

of (Ax + BxS∞), small t and large T will yeild θ(t) ≈ 0. The same may be said of

W (t) since W = Θ′.

It is further apparent by the ODE governing Φ that a large final time yields

Φ̇(t) ≈ 0 for small t, so that Φ(t) approaches a constant as t→ −∞.

To prove Z(t) converges as t → −∞, we examine the dynamics of the unit so-

lutions xi(t) = Z(t)ei, where [ei]j = 1 if i = j and 0 otherwise. We then write

Z(t) =
[

x1(t) x2(t) . . . xn(t)
]

. For each i, the dynamics of xi(t) for small t are

given by

ẋi(t) ≈ −(A′
x + S∞Bx)xi(t) + (−S∞Ex + Eλ)ei

= Ãxi(t) + ui

(B.15)

where ui is a constant. Because the dynamics of (B.15) are integrated backwards

in time, the positive-definiteness of Ã yields that the system is stable, implying that

xi(t) will converge to some constant.

Since, for small t, W (t) is zero and Z(t) is a constant, Σ(t) converges to a constant

as well.
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