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Abstract

Recent developments in telecommunications, frequency metrology, and medical imaging have
motivated research in ultrafast optics.  Demand exists for broadband components and sources
as well as highly nonlinear fibers and materials.  For this thesis, several different devices have
been developed for such applications.  Broadband saturable absorbers based on III/V and Si
materials systems were developed for femtosecond lasers and have high reflectivity over 200
to 300 nm bandwidths.  These absorbers were designed for modulation depths ranging from
0.3% to 18%.  Self-starting modelocked operation with the absorbers was achieved in a vari-
ety of lasers including Ti:Sapphire, Cr:Forsterite, Er:glass, Cr4+:YAG and erbium-doped bis-
muth-oxide fiber.  In tapered microstructure fiber, highly nondegenerate four-wave mixing
was achieved, with a frequency shift of 6000 cm-1 in an interaction length of only 1.4 cm.
Amplification in erbium-doped bismuth-oxide fiber was demonstrated, with gains of 12 dB
achieved between 1520 - 1600 nm in a 22.7-cm length.   With a 55.6 cm length of bismuth-
oxide erbium-doped fiber, an L-band modelocked laser was constructed, tunable between
1570 - 1600 nm.  It produced 288-fs pulses at 1600 nm.  Undoped highly nonlinear bismuth-
oxide fiber was used to generate smooth, controlled supercontinuum between 1200 to 1800
nm.  Pulse compression of 150-fs pulses to 25 fs was also demonstrated.  Finally, the nonlin-
ear refractive index coefficient and two-photon absorption coefficient of Ge-As-Se glasses
were measured.  Ge35As15Se50 is found to have a nonlinearity 900 times that of silica.

Thesis Supervisor:  Erich P. Ippen
Title:  Professor of Physics, Elihu Thompson Professor of Electrical Engineering
Professor of Physics
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CHAPTER 1:  INTRODUCTION

1.1 Motivation

From 1998 to 2001, the telecommunications industry grew tremendously, driven by

the apparent bandwidth demands of the Internet.  In 2001, the ‘bubble’ of growth ended

abruptly, and as of 2005, the telecom industry is still recovering slowly from the downturn.

While the telecom market is still depressed, there is potential for improvement of the next

generation systems.  Integrated optical devices, such as all-optical switches and add/drop fil-

ters, will be important.  Additionally, as bit rates increase, pulsed (modelocked) lasers will

become attractive sources.  In wavelength-division multiplexed systems (WDM) [1][2], chan-

nels are carried by separate colors and in current systems, each channel requires a separate

transmitter.  A modelocked laser could be spectrally-sliced to replace multiple single wave-

length transmitters.    Supercontinuum generated by a modelocked laser may also be an alter-

native for spectral slicing.  High-repetition rate laser systems could replace cw-modulated

laser sources in time-division multiplexed (TDM) communication systems [3][4].

While the promise of telecommunications has driven much of the research in ultrafast

lasers and devices, in recent years, a newly developed field, frequency metrology [5][6][7],

has also had a large effect.  Frequency metrology combines atomic physics and femtosecond

lasers allowing the construction of optical clocks, more accurate than the current time-stan-

dard (cesium clock).  With a modelocked laser locked to an atomic transition, measurements

of frequencies can be made more accurately for impact in the field of physics (e.g. measure-
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ment of the fine-structure constant).  Turnkey broadband femtosecond laser systems are criti-

cal for metrology.  Thus, the development of  broadband saturable absorbers that enable self-

starting operation of such lasers is essential.  Controlled spectral broadening in a highly non-

linear fiber is also an important function for frequency metrology systems.  

In this thesis, a variety of devices and materials for the above applications have been

investigated.  Broadband saturable absorbers have been developed for femtosecond laser sys-

tems.  The unique properties of highly nonlinear microstructure fiber, applicable to frequency

metrology, have been demonstrated in a highly nondegenerate four-wave mixing experiment.

Bismuth-oxide fiber has been used for broadband amplification and controlled supercontin-

uum generation.   Finally, the nonlinearity and two-photon absorption of chalcogenide glasses,

which have potential for highly nonlinear fiber and all-optical switching, have been investi-

gated.

1.2 Modelocked lasers: an overview

Modelocked lasers are the most common method of femtosecond (10-15 s) pulse gene-

artion.   The ratio of one femtosecond to one second is equivalent to the ratio of five minutes

to the age of the earth.   In femtosecond pulses, energy is concentrated in a few optical cycles

and large peak powers are achievable with only moderate pulse energies.  The geometrical

length scale of femtosecond pulses is small: 10 fs corresponds to 3 µm in vacuum.  The large

bandwidth of femtosecond pulses is useful for communication systems and metrology; the

high temporal resolution for ultrafast spectroscopy [8]; the high spatial resolution for optical

coherence tomography (imaging) [9]; and the high intensities for applications such as nonlin-

ear frequency conversion, laser material processing [10], surgery, and high intensity physics.

The generation and application of femtosecond pulses revolves around light-matter

interaction.  When an intense beam of light interacts with matter, both a linear and a nonlinear

response are produced.  The nonlinear response is proportional to the nonlinear susceptibility,

χ(j) where j = 2,3,4 etc.  In optical fibers, due to the material symmetry, the lowest-order non-

linearities result from χ(3) processes.  The topics studied in this thesis: saturable absorption,

spectral broadening, four-wave mixing, the nonlinear refractive index coefficient, and two-

photon absorption, all result from χ(3).

Femtosecond pulse generation, or modelocking, can be achieved by a variety of tech-

niques.  A set of equally-spaced laser cavity modes in the frequency domain is required.    In a

laser cavity, the mode spacing is given by:
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(1.1)

where ∆ν is the mode spacing; c, the speed of light; n(ν), the frequency-dependent

group refractive index; and L, the optical cavity length.

The electric field inside the laser cavity will be a superposition of modes:

(1.2)

where E(t) is the time-dependent electric field; m is the mode number; am, the ampli-

tude of the electric field in the mth mode; and φm, the phase of mode m.  To achieve modelock-

ing, the phases of each cavity mode must be locked together.  One major limiting factor in

short-pulse generation is dispersion, the frequency dependence of the refractive index n,

which causes different wavelengths to propagate at different speeds.  Another factor is the

gain-bandwidth of the lasing medium.

Short femtosecond pulses can be generated by either active or passive modelocking.

In any type of modelocking, a periodic time-dependent loss is added to the cavity.  In active

modelocking, an amplitude or phase optical modulator is placed inside the laser cavity.  The

modulator will shorten the optical pulse until it becomes shorter than the modulation window.

At this point, the modulator will have little effect on the pulsewidth.  In frequency space, the

modulator scatters photons from a cavity mode into adjacent modes, thus locking the phases

of the cavity modes.  High repetition rate operation of an actively modelocked laser can be

achieved by driving the intracavity modulator at a harmonic of the cavity repetition rate.  Pho-

tons are now scattered in modes at a multiple of the cavity repetition rate, determined by the

modulator drive frequency.  The pulsewidth from an actively modelocked laser can be written

as [11]:

(1.3)

where g is the gain; M is the modulator strength; Ωm the modulator frequency, and Ωg

is the gain-bandwidth.  Ultimately, the pulsewidth from an active modelocked laser will be

limited by the speed of the modulator electronics.
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Shorter pulses can be produced by passive modelocking, in which the pulse itself cre-

ates an intensity-dependent loss known as self-amplitude modulation (SAM).  As the pulse

becomes stronger, the peak intensity increases, and SAM becomes larger.  Elements that pro-

duce SAM are referred to as saturable absorbers.  Passive modelocking can be implemented

with a variety of techniques including soliton modelocking, polarization additive pulse mode-

locking (P-APM, fiber lasers), Kerr lens modelocking (KLM, solid-state lasers), and semicon-

ductor saturable absorber modelocking.  The mechanisms can be grouped into two categories:

slow and fast saturable absorbers.   Slow absorbers recover on a longer timescale than that of

the pulse; fast saturable absorbers recover more quickly than the pulse.  In slow saturable

absorber modelocking, the leading edge of the pulse is shaped by the absorber, and the trailing

edge by gain depletion.  In contrast, a fast saturable absorber will shape both edges of the

pulse.  Slow absorbers include soliton modelocking and most semiconductor saturable absorb-

ers.  Fast absorbers include KLM and P-APM. 

Over 150 years ago, J. S. Russell observed the first soliton in an English canal.  Soliton

modelocking in lasers results from the balance of group-velocity dispersion (GVD) [caused

by the frequency dependence of the group refractive index] and self-phase modulation (SPM)

[caused by the intensity dependence of the refractive index].  The master equation of mode-

locking describes the evolution of a pulse in a modelocked laser [12]:

(1.4)

where ϕ is the net linear phase shift; g, the laser gain; l, the linear loss per pass; Ωg,

proportional to the finite bandwidth of the laser gain; D represents the contribution of GVD, δ

is the contribution from SPM; and γ, the SAM, inversely proportional to the loss saturation

intensity.   The exact solution of the master equation is [13]:

(1.5)

where A(z,t) is field, Ao the field amplitude; t is time; τ is the pulsewidth; and β the

chirp parameter.  The soliton pulsewidth and field amplitude follow the area theorem below.
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(1.6)

where β2 is the contribution from GVD and δ, the contribution from SPM.  Thus, in

soliton modelocking, the pulse energy will be limited by the dispersion of the cavity.   High

peak powers and small second-order dispersion yield the shortest pulsewidths.

Polarization additive-pulse modelocking [14] and Kerr lens modelocking [15] both

utilize the nearly instantaneous Kerr effect in the laser medium itself.  P-APM is applied to

fiber lasers as it is compatible with single spatial mode propagation, and KLM, to solid-state

lasers, as it requires free space propagation.   The Kerr effect produces a change in index of

refraction of a material directly proportional to the nonlinear refractive index coefficient and

the optical intensity.  An intensity-dependent index of refraction results from the Kerr effect.

In KLM, a spatial profile with a varying index of refraction is produced, resulting in self-

focusing.  Thus, by placing an aperture appropriately in the cavity, higher intensity pulses can

be favored.  The aperture can either be physical, a ‘hard’ aperture, or ‘soft’, in which KLM

produces better overlap with the gain medium, producing higher gains for higher intensities.

The strongest KLM is produced where the change in intensity-dependent beamwaist is the

largest, often near the edge of the cavity stability regime.  In P-APM, intensity-dependent

polarization rotation is produced by the Kerr effect.  The peak of the pulse will acquire a dif-

ferent polarization state than the lower intensity wings.  By passing the pulse through a polar-

izer, the wings can be eliminated. 

While the shortest pulses are produced through fast saturable absorber modelocking,

such as KLM, semiconductor saturable absorbers can also offer a convenient method of short

pulse generation.  Semiconductor saturable absorbers are a fairly recent technology develop-

ment.  A semiconductor laser was modelocked with a semiconductor saturable absorber for

the first time in 1980 [16].  Several years later, a solid-state color center modelocked laser was

modelocked with a saturable absorber [17].   Today, standard saturable absorbers can be pur-

chased commercially.  Semiconductor saturable absorbers have a section that absorbs until the

interband absorbing transition becomes saturated.  At high intensities, the absorption is fully

bleached (saturated), and this state is favored over a low-intensity higher loss cw-state.  Lasers

can be modelocked purely through semiconductor saturable absorber effects or a saturable

absorber can be used in combination with another modelocking mechanism such as soliton,

KLM, P-APM, or an active modulator.   

Aoτ
β
δ

= 2
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1.3 Outline of thesis

An outline of this thesis follows.  In Chapter 2, research on a variety of semiconductor

saturable absorbers is discussed.  Characterization tools and techniques are presented in Sec-

tion 2.3.  Section 2.4 details the design, characterization and implementation of a high modu-

lation depth saturable Bragg reflector (SBR) for an Er:Yb waveguide laser.  Section 2.5

presents research on ultrabroadband III/V SBRs for an ultrafast Cr4+:YAG laser.  Large area,

500 µm, devices for lasers at 1550 nm, are detailed in Section 2.6.  Section 2.7 is devoted to

the discussion of the design, fabrication, and characterization of an ultrabroadband Si/Ge-

based SBR and its implementation in an Er:glass laser.  Highly nondegenerate four-wave mix-

ing in microstructure fiber is the subject of  Chapter 3.  Section 3.2 gives some background on

the topic, and Section 3.3 describes the highly nondegenerate four-wave mixing experiment.

Chapter 4 describes experiments performed with erbium-doped and highly nonlinear bismuth-

oxide fiber.  Amplification studies of a short length of erbium-doped bismuth-oxide fiber are

presented in Section 4.3.  Section 4.4 describes an L-band laser constructed also with a short

length of erbium-doped bismuth-oxide fiber.  Supercontinuum and pulse compression experi-

ments with lengths of undoped, highly nonlinear bismuth-oxide fiber are detailed in Section

4.5.  In Chapter 5, research on Ge-As-Se chalcogenide glasses is presented.  Measurements of

their nonlinearities and TPA coefficients are detailed in Section 5.3  Finally, in Chapter 6,

conclusions and future work are discussed.  There are two appendices.  Appendix A lists the

SBR samples Professor Ippen’s laboratory, giving the structure and other salient characteris-

tics.  Appendix B is devoted to the discussion of preliminary results of ultrafast pump-probe

on broadband saturable absorbers.
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CHAPTER 2:  SATURABLE BRAGG REFLECTORS

2.1 Abstract

A variety of saturable Bragg reflectors (SBRs) have been developed for use in femto-

second and picosecond laser systems at wavelengths ranging from 800 nm to 1550 nm, using

both III/V and Si-based materials.  Section 2.4 discusses a high modulation depth 1550 nm,

SBR on a conventional GaAs/AlAs mirror that was used to modelock an Er:Yb:glass

waveguide laser.  The structure was fabricated in collaboration with Professor Kolodziejski

and G. Petrich at MIT.  Coatings were deposited by P. O’Brien at Lincoln Labs.  F. Grawert, in

Professor Kaertner’s group at MIT, performed the laser experiments.  An ultrabroadband

monolithic SBR is the subject of Section 2.5.  The SBR was designed, characterized and

implemented in an ultrafast Cr4+:YAG laser, producing 36-fs self-starting pulses.  The

absorber was grown in Professor Kolodziejski’s lab by G. Petrich, and post-growth oxidations

were performed by A. Erchak.  Collaborators in Professor Ippen’s group include D. Ripin and

H. Shen, who incorporated the device in the Cr:YAG laser.  In Section 2.6, an extension of the

ultrabroadband SBR research is described.  Large area SBRs were pursued at a variety of

wavelengths for lasers including Ti:Sapphire, Cr:Forsterite, Cr4+:YAG, and bismuth-oxide

erbium-doped fiber.  Complete, 500-µm-diameter devices were fabricated, characterized, and

implemented.  The absorber was fabricated in collaboration with Professor Kolodziejski’s

group at MIT, with G. Petrich performing the growth of the structure, and S. Tandon imple-

menting the post-growth oxidations.  The structures were implemented in lasers by collabora-

tors in Professor Kaertner’s group, including J.-W. Kim, R. Ell, and T. Schibli, and from
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Professor Ippen’s group, J. Sickler and H. Sotobayashi.  H. Shen collaborated on the design of

the absorbers.  Finally, in Section 2.7, the characteristics of a broadband Si/SiO2/Ge-based

SBR are discussed.  Professor Kimerling’s group at MIT fabricated the device, specifically J.

Liu, S. Akiyama, and K. Wada.  Professor Kaertner’s group, specifically F. Grawert, collabo-

rated on the device design.  The saturable absorber was incorporated in the Er:glass laser by F.

Grawert.  H. Shen collaborated on the pump-probe measurements.

2.2  Background

Ultrafast lasers, producing picosecond and femtosecond pulse trains, have many appli-

cations including frequency metrology [5][6][7], nonlinear optics [8], medical imaging [9],

and laser machining [10].  Often ultrafast lasers are not simply turnkey systems, making them

difficult to utilize for practical applications.  By incorporating a saturable absorber, one can

stabilize such a laser against environmental fluctuations, relax critical cavity alignment con-

straints, and enable self-starting operation.   However, femtosecond laser systems require very

broadband devices that are not available commercially.

The shortest pulses to date have been generated in solid-state lasers with Kerr lens

modelocking (KLM), which relies on a weak nonlinearity to produce an intensity-dependent

loss [18][19][20].  In such systems, modelocking can be difficult to start, as extremely high

peak intensities are required for the nonlinearity to become effective.   Sometimes, even bang-

ing on the table is necessary to start KLM!  Typically, in KLM systems, the laser cavity is

operated near the edge of the stability regime, requiring critical alignment.  However, with the

addition of a saturable absorber, self-starting modelocking can be achieved and the constraints

on cavity alignment can be relaxed [21][22].  If shorter pulses are produced, materials can be

studied with higher time resolution.  The insight gained can be used to design even better

devices. 

The application of saturable absorbers is not limited to solid-state KLM systems.

They can also be used in fiber lasers [23][24][25], as the primary means of modelocking, or

as simply a stabilization element.  For this thesis, their application to both ultrafast solid-state

laser systems: Cr4+:YAG, Cr:Forsterite, and Ti:Sapphire, as well as fiber lasers, is investi-

gated.

Saturable absorbers can either be used in a transmissive or a reflective geometry.  In a

transmissive geometry, care must be taken that the substrate of the absorber does not detri-

mentally influence the laser operation.  To avoid this difficulty, absorbers can be fabricated on
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a mirror, in a reflective geometry.  A reflective saturable absorber is called a saturable Bragg

reflector (SBR).  However, integrating a high quality absorbing layer with a broadband and

highly reflective mirror can be challenging.  

Semiconductor-based saturable absorbers provide an intensity-dependent loss, favor-

ing laser operation with high peak intensities, leading to pulsed, or modelocked output.  Light

at a desired wavelength excites carriers from the valence to the conduction band and is

absorbed.  As the incident light becomes increasingly intense, more and more carriers are

excited.  Eventually all of the states in the conduction band accessible to the incident radiation

become full, and the absorber is "bleached", meaning that incident light is no longer absorbed.

Absorbers are usually characterized by a bitemporal response, with the fast response originat-

ing from intraband dynamics and the slow response, from recombination.

A typical response from an InP/InGaAs absorber integrated with a GaAs/AlAs mirror

is shown in Figure 2.1.  Light is incident on the absorber at normal incidence, and a beamsplit-

ter collects some of the reflected light.  As the fluence incident on the absorber increases, the

absorption saturates and the reflectivity of the device increases by 6%.  

Figure 2.1 Saturation of absorption in a saturable absorber.  Data taken on an InGaAs/InP-based absorber by
E. Thoen.
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Figure 2.2 Time-averaged reflectivity of an SBR as a function of fluence [26].

There are several key parameters of a saturable absorber: nonsaturable loss, saturable

loss or modulation depth, saturation fluence, and recovery time.  Figure 2.2 illustrates two of

these parameters: nonsaturable and saturable loss.  The figure shows the reflectivity of a SBR

as a function of fluence.  In an SBR, nonsaturable loss is independent of power, and is gener-

ally undesirable.  Material quality governs nonsaturable loss.  Saturable loss is defined to be

the difference between the loss measured when the absorption is fully bleached versus com-

pletely unbleached.  One tailors the saturable loss of an SBR for a particular laser system.  In

general, fiber lasers (e.g. erbium-doped fiber lasers) require absorbers with 3% to 20% satura-

ble loss, while solid-state lasers (e.g. Cr4+:YAG, Cr:Forsterite, Ti:Sapphire) may only require

saturable losses on the order of 0.3% to 2%.    Another important SBR parameter is the satura-

tion fluence, which is a measure of the absorber saturability.  The saturation fluence is prima-

rily a material parameter, but can also be influenced by the geometry of a structure.

Generally, it is desirable to minimize an absorber’s saturation fluence.  To do this, absorbing

layers in an SBR should be placed at the peak of the standing wave of the electric field to

maximize the overlap of the electric field with the absorbing region.

The recombination time of an absorber determines whether it acts as a 'slow' or 'fast'

absorber.  A 'slow' absorber recovers on a time scale longer than the pulsewidth in the laser

system, but a ‘fast’ absorber recovers faster than the pulsewidth in a particular laser system.
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In general lattice-matched materials have nanosecond recovery times. However, by introduc-

ing defects through strain  (lattice mismatch), low-temperature growth, or ion-bombardment,

the recovery time can be reduced with only a small penalty in increased nonsaturable loss and

decreased modulation depth.  Defects introduce mid-gap states into the absorber, speeding up

the recombination time.

For a slow saturable absorber, one that recovers more slowly than the pulse, the

absorption, α, can be written as:

 (2.1)

where αns is the nonsaturable loss, αo the saturable loss, Fsat, the saturation fluence of

the absorber and F, the fluence, energy/area, in the absorber. 

Figure 2.2 illustrates some of the key parameters of a saturable absorber: saturable loss

and nonsaturable loss.  The reflectivity of a mirror with an integrated absorber is plotted ver-

sus incident fluence for a typical time-average measurement.  These characteristics determine

laser performance such as the startup modelocking conditions, the resilience of the system

against Q-switching and other instabilities, and the shortest pulse width achievable.

2.3 Characterization tools and techniques

This chapter focuses on the design, characterization, and implementation of a variety

of SBRs in both femtosecond and picosecond laser systems.  In order to guarantee experimen-

tal success, important parameters of the SBRs such as absorber bandgap, modulation depth,

saturation fluence, recovery time and reflectivity as a function of wavelength must be mea-

sured.  Techniques used to determine these parameters for this research will be discussed.

Photoluminescence is a technique used to determine the bandgap of the absorbing

regions in an SBR.  The bandgap is generally chosen to coincide with the maximum gain of

the laser system for which the absorber is intended.  The bandgap of the SBR could also be

chosen so that the entire laser spectrum is above the material bandedge.  In this work, no sys-

tematic study of laser performance as a function of absorption bandgap was undertaken, but is

an interesting topic for future investigations.  A schematic of the experimental setup for pho-

toluminescence is shown in Figure 2.3.  A 1 W argon ion laser at 488 nm is used as the signal
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source.  The laser beam passes through a chopper, and is focused onto a sample mounted in a

cryostat.  Two large lenses collect the emission, which is focused into a spectrometer, and

detected with a Ge or Si photodiode.  Photoluminescence measurements can be made from

10K to 295K (room temperature).

Figure 2.3 Schematic of photoluminescence measurement.

The reflectivity characteristics of the SBRs are measured with a Fourier transform

infrared spectrometer (FTIR) [27].  Because the samples studied are small (mm or µm size),

the microscope attachment of the FTIR is necessary.  The instrument is based on a white light

Michelson interferometer.  The sample is placed in one arm, and a mirror is dithered in the

other arm, generating an interferogram.  When a Fourier transform is taken and compared to a

known reference (such as air or a gold mirror), the reflectivity as a function of wavelength can

be determined.  Due to the large cone of angles impinging on the sample and the curved sur-

face of the microscope objective, the absolute reflectivity of samples cannot be determined

from an FTIR measurement.  In the FTIR, the samples are measured with light incident at a

nominal angle of 35 degrees.  For mirrors designed at 1550 nm, this corresponds to a wave-

length shift (to shorter wavelengths) of ~5%.  Of course, to accurately determine this shift,

simulations need to be performed.  Reflectivity measurements at normal incidence are more

desirable, as polarization effects are then eliminated.  A spectrophotometer or microspectro-

photmeter could be used instead to measure the sample reflectivity as a function of wave-

length.  In these instruments, white light impinges on a sample at normal incidence and is sent

to a spectrometer.   By comparing with a reference sample, instrument characteristics can be

calibrated out of the measurement.  However, spectrophotometers often require large (2 cm

diameter) samples for reflectivity measurements.  Micospectrophotometers employ a micro-

scope to perform the measurements and are capable of a small spot size (microns).

The absorber saturation characteristics and temporal dynamics are studied with pump-

probe spectroscopy, a common technique for studying material dynamics.  Pump-probe mea-



SATURABLE BRAGG REFLECTORS 33

surements provide temporal and/or spectral information depending on the specific experimen-

tal implementation.  Time-resolved pump-probe measurements performed with femtosecond

pulses can be thought of as a ‘femtosecond strobe’.  In a pump-probe measurement, the sam-

ple is strongly perturbed or excited from equilibrium by a high intensity pump pulse.  Follow-

ing the pump pulse, at a varying time delay, the probe pulse, much weaker than the pump,

impinges on the sample.  The probe pulse is affected by the sample as it relaxes back to equi-

librium.  By detecting the transmitted or reflected probe pulse, information about a sample

such as the strength of the nonlinearity and two-photon absorption, and the times for carrier-

carrier scattering, carrier-phonon interactions and recombination can be determined [28].  

In the pump-probe studies performed for this thesis, 110-fs to 150-fs pulses from a

Spectra Physics Optical Parametric Oscillator (OPO), tunable between 1.4 and 1.6 µm are

used as the source.  The minimum time resolution of the setup, determined by the source

pulsewidth, is about 155-fs to 212-fs (full-width half-maximum [FWHM] width of the cross-

correlation).  The OPO is synchronously pumped with a Ti:Sapphire at 82 MHz (Spectra

Physics Tsunami) which, in turn, is pumped with a 10 W solid-state frequency-doubled YVO4

(Spectra Physics Millenia).  Typical spectra are shown for the Ti:Sapphire (Figure 2.4) and

OPO (Figure 2.5).  A typical OPO autocorrelation is shown in Figure 2.6.  Figure 2.7 shows

the pump-probe setup, similar to that reported in [29][30][31].  The setup is collinear and

cross-polarized.  The OPO pulses pass through an isolator and are then split into pump and

probe pulses at a beamsplitter.  The pump pulses are passed through a mechanical chopper, a

half-wave plate, and a delay stage.  The probe pulses pass through a half-wave plate, and are

recombined with the pump at a polarizing beamsplitter.  They are focused onto a sample with

an aspheric lens, and a small portion of the reflected probe is focused onto a detector, which is

connected to a lock-in amplifier and computer.  A collinear setup is chosen, as this emulates

the conditions in the lasers, and allows for high fluence measurements.  The resolution limit of

the setup is ~10-3.

To determine the fluence incident on the sample, knife-edge measurements were used

to determine the beam size at various distances from the focusing lens [26].  At a given posi-

tion from the focusing lens, a knife-edge is translated perpendicular to the laser beam.  A

power meter is placed behind the knife-edge, and intensity as a function of position is

recorded.  The data can then be fitted to an error function, the integral of a Gaussian, and the

spot size determined.  If the spot size is measured at several different positions from the focus-

ing lens, we can plot the spot size as a function of distance from the focusing lens.  Using the

relations for the propagation of a Gaussian beam, we can then determine the size of the
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focused spot (beam waist).  The beam size of a Gaussian beam is given by the following rela-

tion [32]:

(2.2)

where wo is the minimum beam waist (radius); λ, the wavelength; z, the propagation

distance from wo; n, the refractive index of the medium through which the light is propagat-

ing, and w, the resulting beam waist (radius).  With the knowledge of the beam waist, we can

then calculate the fluence incident on the sample.  The fluence is given by the following

expression:

(2.3)

where F is the fluence; R, the laser repetition rate; and P, the average power incident

on the sample.  In a pump-probe experiment, the probe beam waist on the sample should be

smaller than the pump beam waist.   In the experiments in this thesis, the probe beam waist

was 50-75% the size of the pump beam waist, allowing for good spatial overlap of pump and

probe beams.

When pump-probe spectroscopy is performed on semiconductors above the bandgap,

the excited carriers undergo processes that contribute to either bleaching or further absorption.

For simplicity, I will first discuss the carrier dynamics that lead to bleaching signals in pump-

probe.  The time constants given are relevant for InP/In0.5Ga0.5As and GaAs/In0.5Ga0.5As

systems.  The bleaching and absorption dynamics are illustrated in Figures 2.8 and 2.9. When

the pump pulse initially excites the system, the carriers form a non-equilibrium distribution.

Within a limited energy range, the number of carriers within the conduction band is increased

(as well as the number of holes in the valence band), creating a spectral ‘hole’ in the absorp-

tion spectrum.  In less than 200 fs, the carriers undergo carrier-carrier scattering and thermal-

ize into a hot Fermi distribution.   Next, the carriers interact with phonons from the lattice and

cool, in ~1 ps to equilibrium with the carriers [33].  Finally, the carriers recombine on a time

scale of picoseconds to several nanoseconds, depending upon the ratio of nonradiative to radi-

ative recombination.   
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Figure 2.4 Typical spectrum of modelocked Ti:Sapphire laser.

Figure 2.5 Typical spectrum of modelocked optical parametric oscillator.
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Figure 2.6 Typical autocorrelation of optical parametric oscillator.  A measurement is shown in the solid line,
a Gaussian fit in the dashed line, and a sech fit in the dot-dashed line.  The pulse shape is in
between that of a Gaussian and a hyperbolic secant (sech).

Figure 2.7 Schematic of pump-probe setup used for characterization of SBRs.
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Figure 2.8 Bleaching dynamics in SBRs and example pump-probe trace.  τ refers to the timescale of the event
(e.g. spectral hole burning, recombination).

Figure 2.9 Absorption dynamics in SBRs and example pump-probe trace.  The pump-probe trace is taken on a
sample that only displays absorption dynamics (the wavelength of excitation is below the material
bandedge).  Generally absorption dynamics occur at higher fluences in SBRs (see Figure 2.2).
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In addition to bleaching, additional absorption can also be caused by the carriers.  The

two main processes contributing to this are two-photon absorption (TPA) and free-carrier

absorption (FCA) [34].  Two-photon absorption can only be observed by the probe when the

pump and the probe are overlapped in time.  In pump-probe, we only detect two-photon

absorption of a pump and a probe photon and thus, TPA-caused absorption recovers on the

time scale of the cross-correlation.   Free-carrier absorption results when hot carriers created

by TPA absorb an additional photon. Since FCA does not depend on a pump and probe photon

being absorbed simultaneously, FCA can continue to be observed after the pump and probe

lose their overlap in time.  

Analytical expressions for the sample response to pump-probe spectroscopy can be

written as follows.   

(2.4)

where f(t) is the time-dependent response of the sample; and Iprobe, the intensity of the

probe pulse.  The change in reflectivity, ∆R,  is measured as a function of delay, τd,  of the

probe pulse from τ0, the time at which the pump pulse hits the sample.  Since electronic detec-

tion is slow, the signal detected will have the  form of Equation 2.4 [28]. The time-dependent

sample response, f(t), is given by the following equation [35]:

(2.5)

where the amplitude factors are given by ai, and the instantaneous response is repre-

sent by the Dirac δ function and the amplitude by ains.  Excited-state dynamics are represented

with exponentials, with relaxation times τi.  Both electron and hole densities contribute when

they have similar relaxation times.  So, in order to extract the sample response, one must

deconvolve the sample response from the cross-correlation.  If the timescales of the signal

response are much larger than the pulse cross-correlation width, the cross-correlation can be

approximated as a δ-function, and then ∆R is directly proportional to the response of the sam-

ple.
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2.4 High modulation depth saturable Bragg reflectors for Er:Yb 
waveguide laser

Fiber lasers are cheap, compact, and recently, have started to offer comparable perfor-

mance to that of solid-state lasers.  However, the maximum gain per unit length of fiber lasers

is determined by the constraints on the doping levels of silica fibers with rare earth ions.

Above a certain concentration, undesirable effects such as clustering and concentration

quenching begin to occur.  Thus, with relatively low gain per unit length, typical fiber lasers

are tens of meters long, with repetition rates in the 10-30 MHz regime.  An alternative, the

phosphate-glass-based Er:Yb waveguide amplifier, has been developed recently (sold com-

mercially by Teem Photonics) [36][37].  In waveguide amplifiers, much higher doping levels

are achievable due to the phosphate glass host, making gains of 15 dB in 5 cm obtainable.

These devices provide amplification over the telecom band, and may be a viable alternative to

standard erbium-doped fiber amplifiers.  

Because Er:Yb waveguide lasers are short (cm’s), they have the potential for high rep-

etition rate pulsed operation.  Currently, high bit rate telecommunications uses cw lasers that

are modulated and then multiplexed together to achieve the high data rates required.  Harmon-

ically modelocked (multiple pulse) fiber lasers could provide an alternative, but a compact

fundamentally modelocked waveguide laser system would be more attractive than either of

these options.  A fundamentally modelocked high repetition rate laser system can be realized

simply by incorporating a saturable absorber into the system.  Since such systems generally

also have high cavity losses, to be effective, the absorber must provide a high modulation

depth. 

In this research, a high modulation saturable absorber was designed, fabricated, and

incorporated into an Er:glass laser [38].  With this absorber, picosecond pulses were produced,

and with the addition of an acousto-optic modulator to the cavity, Q-switching instabilities

were effectively suppressed.
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Figure 2.10 Photoluminescence (room temperature) of R921, a high modulation depth SBR designed for an
Er:Yb waveguide laser.

Figure 2.11 Reflectivity as a function of wavelength for R921 uncoated, antireflection-coated, and resonantly-
coated.
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A saturable absorber with a large adjustable modulation depth for use in a waveguide

laser was designed and characterized.   The structure (growth number R921, Kolodziejski)

consists of a 22 pair GaAs/AlAs mirror, with a λ layer of InP on top containing 12

In0.5Ga0.5As quantum wells.   First, the 22 pair GaAs/AlAs mirror was grown by metal-

organic chemical vapor deposition (MOCVD) and next, the absorbing region was fabricated

by gas-source molecular beam epitaxy (MBE).  (The MOCVD mirrors were purchased, but

the MBE growth of the absorbing layers was performed at MIT).  Before starting growth of

the absorber layer, a 15 minute growth interruption was performed in which the GaAs  mirror

surface was exposed to cracked phosphine as opposed to cracked arsine, to localize defects at

the GaAs-InP interface and ensure high quality quantum wells.  Figure 2.10 shows the photo-

luminescence of the structure, centered at 1635 nm.  The sharp roll-off at longer wavelengths

is caused by the roll-off of the mirror passband.  To enhance the modulation depth, dielectric

coatings were applied to the absorber.  A λ/4 layer of HfO2 was deposited as an antireflection-

coating.  On other samples, a resonant-coating, which acted like a lossy Fabry-Perot [36], cou-

pling more light in at the resonant wavelengths, was applied.  From the top down, the structure

of the resonant-coating was as follows: 288 nm of SiO2, 119 nm of Si, and 577 nm of SiO2.

Reflectivity measurements as a function of wavelength are shown in Figure 2.11 for an

uncoated, antireflection-coated, and resonantly-coated structure.   

To determine other important parameters of the absorber, pump-probe measurements

on the structures were performed, shown in Figure 2.12.  At low fluences, the SBR response

showed a fast saturation due to spectral hole burning and a long recovery time of about 60 ps

due to recombination.  The recovery time was considerably shorter than the nanosecond

recovery times observed in lattice-matched samples.  Defect states at the InP/GaAs interface,

due to the significant 3.5% lattice mismatch, were the most probable cause of this lifetime

shortening.  At higher fluences, an additional non-equilibrium carrier dynamic with a time

constant of ~1 ps became apparent.  The ~1 ps time constant was due to the cooling of hot car-

riers via carrier-phonon scattering that subsequently caused an increase in bleaching by state

filling at the bottom of the band [33].  In the high fluence regime, the effect of TPA and FCA

reduced the spectral hole-burning peak.  The maximum modulation depth at 1560 nm for the

uncoated structure was 7%, for the antireflection-coated structure 14% and for the resonant

structure 18%.  



42 CHAPTER 2

Figure 2.12 Pump-probe of resonantly-coated structure R921 at 1560 nm.

The structure was utilized in an Er:Yb waveguide laser [38], operated in a stretched-

pulse laser configuration.  The laser consisted of an Er:Yb waveguide amplifier from Teem

Photonics with 10 dB of gain over the entire C-band, 5.3 m of single mode fiber (SMF-28),

0.9 m of dispersion compensating fiber with a dispersion of  90 ps2/km, 5% and 10% output

couplers, waveplates for polarization control, a saturable absorber, and an acousto-optic mod-

ulator (AOM).  A schematic of the laser cavity is shown in Figure 2.13.  The amplifier was

pumped at 980 nm with 150 mW and an 18 mm lens focused the light onto the saturable

absorber, to a spot size of 13 µm radius.  Two 50 mm achromatic lenses surrounded the AOM,

which was connected to a feedback circuit that suppressed Q-switching in the laser.  The laser

had a dispersion of -0.02 ps2 and operated at 29 MHz.  The absorber modelocked the laser

producing pulsewidths ranging from 1.55 ps to 30 ps full-width half-maximum.  However,

SBR modelocked lasers are susceptible to additional Q-switching. Lasers with long upper

state lifetimes and high repetition rates are most vulnerable, where the gain dynamics are slow

compared to those of the optical field [39][40].  In such systems, Q-switching can be pre-

vented by either hard saturation of the absorber [36][41], active feedback stabilization via gain

[42], or intracavity loss modulation.  In this particular experiment, Q-switching instabilities in

the Er:Yb waveguide system were suppressed with an acousto-optic modulator [38].

-4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

 

∆
R

/R

Time Delay (ps)

Increasing fluence



SATURABLE BRAGG REFLECTORS 43

Figure 2.13 Schematic of Er:Yb waveguide laser [38].  EDWA (erbium-doped waveguide amplifier), AMP
(amplifier), OC (output coupler), λ/2 (half-wave plate), λ/4 (quarter-wave plate).

2.5 Broadband III/V saturable Bragg reflectors for the Cr4+:YAG laser

Despite the advantages of fiber and waveguide lasers such as cost and compactness,

solid-state lasers still produce the shortest pulses at 1300 nm [43] and 1550 nm [44].   These

solid-state lasers are modelocked with KLM, in which self-starting can often be a problem.

By incorporating a semiconductor saturable absorber mirror, this difficulty has been over-

come in a variety of solid-state lasers [45][46][47].   Since the pulse-shaping mechanism of

KLM, the nonlinear refractive index, is very fast (response of a few femtoseconds in glasses

[48]), the saturable absorber simply starts modelocking.  The SBR becomes a ‘slow’ saturable

absorber once pulses reach the femtosecond regime.  In this section, broadband saturable

absorbers designed to operate in a Cr4+:YAG laser will be discussed.  

Cr4+:YAG, with its broadband gain-bandwidth centered at 1450 nm, is an attractive

material for ultrashort pulse generation at telecommunications wavelengths.  Unfortunately,

Cr:YAG is an extremely low-gain system, and there are significant difficulties in obtaining

laser crystals of sufficient quality.  However, Cr4+:YAG lasers operate at room temperature,

and are therefore a nice alternative to cryogenically-cooled color center lasers.  Despite the

disadvantages of the material, KLM Cr4+:YAG lasers have been used to generate femtosec-

ond laser pulses in the wavelength range from 1300 nm to 1600 nm [49][50][51].  The band-

width required for femtosecond pulses combined with the stringent loss constraints of this
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laser puts high demands on the mirrors used in this system.  Double-chirped mirrors, based on

SiO2/TiO2 materials allow the required bandwidth and reflectivity specifications to be met

[52] and in addition, compensate the dispersion of the Cr4+:YAG laser crystal.  Using these

mirrors, and a purging system to eliminate the water absorption lines in the spectrum, 20-fs

pulses were generated.  These are the shortest pulses ever achieved from the Cr4+:YAG laser

[44].

However, the 20-fs pulses were not self-starting, making the laser difficult to use for

applications.  In Cr4+:YAG lasers, modelocking has been demonstrated with saturable absorb-

ers based on a variety of materials including InGaAs/InP [53], InGaAs/GaAs [54], or InGaAs/

InAlAs [55][56].  In each case, conventional GaAs/AlAs Bragg stacks were used as the mir-

ror.  However, ultrashort pulses (sub-50-fs) will ultimately be limited by the bandwidth of

such a mirror.  For example, a 22-pair GaAs/AlAs Bragg mirror at 1500 nm has a 99.95%

bandwidth of 100 nm.  A solution was designed and implemented by Zhang et. al [57].  An

InGaAs/InAlAs quantum well absorber bonded onto a gold mirror was used to generate 44-fs

pulses from a Cr4+:YAG laser.  Because the intrinsic loss of the gold mirror was too large for

the loss-sensitive Cr4+:YAG laser, the gold mirror reflectivity was enhanced by SiO2/TiO2/

SiO2 dielectric layers [58].  Higher order dispersion rather than mirror bandwidth probably

limited the pulsewidth achievable.  While the pulses produced with the device were short, the

fabrication of the SBR was complex.

In this section, we will discuss a broadband, monolithically-integrated SBR for a

Cr4+:YAG laser.  When incorporated into a Kerr lens modelocked Cr4+:YAG laser, 36-fs

pulses with a FWHM bandwidth of 68 nm were generated  [59].  

The absorber consisted of an In0.5Ga0.5As /InP quantum well absorber on top of a

broadband, high-index contrast oxidized 7-pair GaAs/AlxOy Bragg mirror.  The absorbing

region was made up of a 10 nm In0.5Ga0.5As quantum well centered in a λ/2-thick InP layer.

The mirror center wavelength was chosen to be 1440 nm, well matched to the gain peak of the

laser and the double chirped mirrors (DCMs).  The large difference in the refractive index of

the mirror layers, GaAs (3.39 at 1550 nm), and AlxOy (1.61 at 1550 nm), allow the fabrication

of mirrors that are highly reflective and broadband.  With only 7 layer pairs, the calculated

reflectivity is 99.9% over the wavelength range 1220 - 1740 nm and 99.99% over the range

1300 - 1600 nm. The refractive index and square of the electric field standing wave pattern in

the high-dielectric contrast SBR are shown as a function of position in Figure 2.14.    For con-

trast, in Figure 2.15, the measured reflectivity of a conventional GaAs/AlAs mirror and GaAs/

AlxOy oxidized mirror are shown.
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The saturable absorber mirror and absorber regions were fabricated through gas-

source molecular beam epitaxy with the mirror layers grown as GaAs/AlAs.  Before starting

growth of the absorber layer, a 15 minute growth interruption was performed in which the

GaAs  mirror surface was exposed to cracked phosphine as opposed to cracked arsine, to

localize defects at the GaAs/InP (3.5% lattice mismatch) interface and ensure high quality

quantum wells.  Following growth, a wet-oxidation process was used to convert the AlAs lay-

ers to AlxOy [60].  In the wet oxidation setup, nitrogen gas carried water vapor from a heated

bath to the sample located in a furnace tube.  A cleaved rectangular piece of the Cr4+:YAG

SBR (growth number R885, Kolodziejski) was placed within a wet oxidation furnace at

400oC.  Because the oxidation process converts high-index AlAs to low-index AlxOy laterally

from the edge of the structure, only material near an exposed edge oxidizes.  After 9.5 hours

of oxidation, the resulting AlxOy layers  extended as far as 200 to 300 µm into the structure, a

significantly larger area than previously achieved in VCSELs.  When the AlAs is converted to

AlxOy, a 10 to 20% layer thickness contraction occurs.  The layer contraction, combined with

the weak bonds between the GaAs and AlxOy layers, makes the structures susceptible to

delamination, or layer peeling.    However, the right combination of oxidation time and tem-

perature can prevent the undesirable effects of delamination.  Cross-sectional scanning elec-

tron micrograph (SEM) images of typical unoxidized (as-grown) and oxidized SBR structures

are shown in Figure 2.16(a) and (b).  The irregular appearance of the polycrystalline or amor-

phous AlxOy shown in Figure 2.16(b) was due primarily to the cleaving.  No delamination of

the layers is apparent.  
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Figure 2.14 Refractive index and square of electric field standing wave pattern in the broadband SBR.

Figure 2.15 Reflectivity as a function of wavelength for a 22-pair GaAs/AlAs mirror (solid black) or an oxi-
dized 7-pair GaAs/AlxOy mirror (dashed gray).
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      (a)                                                                     (b)

Figure 2.16 Typical cross-sectional scanning electron micrograph of a) unoxidized (as-grown)  b) oxidized
SBR structure.

The SBR's optical properties were studied using several techniques.  Mirror reflectiv-

ity was characterized using Fourier transform infrared spectroscopy, and is shown in Figure

2.15.   Qualitatively, the SBR had a stopband from 1300 to 1800 nm.  The exact reflectivity

can be determined accurately through measurements of the device in a laser.  Using the analy-

sis below, we determined the absolute reflectivity of the absorber to be > 99.2% [61].  The

laser threshold condition can be written as:    

(2.6)

where Pth is the threshold power; R is the reflectivity of the output coupler; A is the

cross-section of the beam focus in the laser crystal; ωp is the frequency of the pump light; σ is

the stimulated emission cross-section; τf is the fluorescence lifetime; ηpe is the overall pump

efficiency; and L, the total optical loss in the cavity excluding the output coupler.  When one

element in the cavity is changed, such as a mirror or the SBR, all values remain constant

except for R, L, and ηpe.  To simplify further, we can assume that ηpe is relatively constant, as

the mode in the cavity will not differ significantly with a slightly different mirror such as the

SBR or output coupler.  Equation 2.6 can then be rewritten as:

(2.7)

where T is the transmission of the output coupler, and k is a constant. The approxima-

tion below is used to simplify Equation 2.6.
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(2.8)

which assumes  R ~ 1, and T << 1.  Thus, the insertion loss of one mirror (or SBR) can

be determined from three datasets of laser output power versus input power (L-L curve).   By

determining the laser threshold (onset of lasing) from the L-L curves, we can calculate the loss

of the unknown mirror.  In datasets x and y, the resonator has a known mirror (Mirror A) in

place of the SBR, but has two different output couplers OCx and OCy.  The same output cou-

pler, OCx, is used in datasets x and z, but they have different end mirrors - Mirror A and the

SBR.  In datasets x and y, the loss term, L, remains constant, and T, is known.  The constant in

Equation 2.7 can be determined.

(2.9)

Using k, we can now solve for the loss of the SBR as follows, by comparing the condi-

tions of resonators x and y.

(2.10)

where Lc accounts for cavity losses excluding the output coupler, SBR or end mirror

(Mirror A).  The loss of the SBR is represented as LSBR and that of the end mirror, Lmirror_a.

We can now write:

(2.11)

Thus we can determine the reflectivity of the SBR.

The bandedge of the quantum well, 1540 nm, was determined through photolumines-

cence, and is shown in Figure 2.17.  Typical pump-probe traces at 1540 nm are shown in Fig-

ure 2.18.  From pump-probe measurements as a function of fluence, the saturation fluence is

estimated to be on the order of ~10 µJ/cm2, the maximum saturable loss is 0.3% and the

recombination time, 40 ps.   
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Figure 2.17 Photoluminescence (room temperature) from broadband oxidized absorber.

Figure 2.18 Pump-probe traces as a function of fluence at 1540 nm on the broadband absorber.

The broadband SBR was placed  in a z-fold Cr4+:YAG laser cavity, shown in Figure

2.19.   The cavity consisted of a 2 cm Cr4+:YAG crystal (E. L. S. Co., A. V. Shestakov) with

two 10 cm radius of curvature double-chirped mirrors placed on either side.  One arm of the

cavity contained an output coupler, and the other, a 10 cm double-chirped mirror that focused
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the beam onto the SBR to a spot size of ~50 µm radius.  The Cr4+:YAG crystal was pumped

with an 11 W Nd:YVO4 laser.  The output coupler (OC) had a transmission of 0.7% at 1515

nm and <1.4% transmission from 1420 to 1630 nm.  By changing the radius of curvature of

the DCM closest to the SBR, the fluence on the SBR could be varied, as long as the spot was

still smaller than the SBR oxidized region.   To compensate dispersion in the laser cavity, nec-

essary for ultrashort pulse generation, the laser cavity was designed to have 6 DCM reflec-

tions each cavity round-trip to compensate the normal dispersion of the Cr4+:YAG crystal.

Figure 2.19 Schematic of z-fold Cr4+:YAG laser incorporating the broadband oxidized SBR.

When the SBR was incorporated in the laser, the output power decreased from 600

mW to 300 mW, with 9 W of absorbed pump.  No damage to the SBR was observed during

laser operation and the samples did not appear to degrade over a long period of time in the lab-

oratory.  A birefringent filter was inserted in the laser cavity to tune the center wavelength.

The SBR produced picosecond pulses, tunable between 1400 to 1525 nm but the roll-off of

output coupler reflectivity limited modelocked operation on the short wavelength side of the

spectrum.   Next, the birefringent filter was removed, and the laser cavity aligned to optimize

KLM.  To produce the shortest pulses, the curved mirror separation and the laser crystal posi-

tion were varied.  Because of the water absorption lines in air at wavelengths shorter than

1500 nm, KLM was only possible when the cavity was enclosed in plastic tubes and purged

with dry nitrogen gas to remove water vapor.
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Figure 2.20  Spectrum of  self-starting Cr4+:YAG laser incorporating broadband SBR [59].

Figure 2.21 Fringe-resolved autocorrelation of 32-fs pulse from self-starting Cr4+:YAG laser incorporating
broadband SBR [59].

Modelocked operation yields a spectrum centered at 1490 nm with a FWHM of 68 nm.

A plot of the modelocked optical spectrum is shown on linear and logarithmic scales in Figure

2.20.  The optical spectrum extends from 1200 to >1700 nm, the limit of the optical spectrum
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analyzer.  In Figure 2.21, an autocorrelation, measured by a fringe-resolved two-photon

absorption autocorrelator [62], is shown.  Assuming a secant-hyperbolic (sech)-shaped pulse,

the autocorrelation yields a pulsewidth of 32 fs.  However, it is known that the width of a non-

sech-shaped pulse is often underestimated by a sech-shaped fit.  The measured spectrum cor-

responds to a Fourier limit of 36 fs. 

With this SBR, 35-fs self-starting pulses were produced from the Cr4+:YAG laser, the

shortest self-started pulses to date [59].  We believe that the pulses were not limited by the

mirror bandwidth, but by two-photon absorption (TPA) and free-carrier absorption (FCA) in

the structure itself [29].   Using the operating parameters of the laser, we calculated an intrac-

avity fluence of 1 mJ/cm2 incident on the SBR.  Careful examination of the  pump-probe

traces in Figure 2.18 at a similar fluence indicated that the absorber was overly saturated.

Two-photon absorption caused the SBR to act as an inverse saturable absorber, in which the

loss increased as fluence increased.  While TPA can stabilize lasers against Q-switching insta-

bilities, in this case, TPA and FCA may limit the pulsewidth achievable.  In general, operation

around the saturation fluence of an SBR is desired, as it produces the maximum change in

reflectivity for a given change in fluence and does not suffer from absorption losses (TPA,

FCA).  To mitigate the effects of TPA and FCA, the spot size on the SBR could be increased,

thus lowering the intensity, and therefore TPA, for a given power.   However, the small device

area did not allow a larger spot size.  The fabrication of larger oxidized regions  or the use of

materials with a lower TPA coefficient than that of InP/In0.5Ga0.5As should enable shorter

self-starting pulses.

2.6 Large area saturable Bragg reflectors for lasers including Ti:Sap-
phire, bismuth-oxide erbium-doped fiber, and Cr:Forsterite

Larger area oxidized mirrors were developed, in an attempt to achieve shorter self-

starting pulses from a variety of solid-state lasers.  However, large area GaAs/AlxOy-based

structures could not be fabricated.  Delamination was a persistent problem, caused by the

weak bond between the GaAs and AlxOy and the 10-20% thickness contraction of the AlAs

when converted to AlxOy.  Examples of delaminated structures are shown in Figures 2.22 and

2.23.  Low-temperature oxidation techniques stabilize the mirror layers [59], but limit the

dimensions available for oxidation.   By replacing GaAs layers with Al0.3Ga0.7As layers, the

bond at the interface with the AlxOy layer is strengthened and greatly extends the achievable

oxidation dimensions [63][64].   With this design modification, complete oxidation of 500 µm

diameter mesas was demonstrated (Figures 2.24 and 2.25).
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Figure 2.22 Side view of a delaminated GaAs/AlxOy interface in broadband oxidized absorber (scanning elec-
tron micrograph).

Figure 2.23 Top view of a delaminated mesa structure (microscope image).
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Figure 2.24 Top view of fully oxidized 500 µm mesa consisting of an Al0.3Ga0.7As/AlxOy mirror and an
absorber for the Cr:Forsterite laser (microscope image) [63][65][66]. 

Figure 2.25 Scanning electron micrograph of fully-oxidized 500 µm mesa consisting of an Al0.3Ga0.7As/AlxOy
mirror and an absorbing layer designed for a Cr:Forsterite laser (side view) [63].

Five-hundred micron diameter SBRs for 800 nm, 1300 nm, and 1550 nm were

designed and fabricated.  The devices for 1300 and 1550 nm consist of seven pair

Al0.3Ga0.7As/AlxOy mirrors with a λ/2 layer of InP or GaAs on top, containing one centered

In0.5Ga0.5As quantum well or quasi-bulk absorbing layer.   At 1300 nm, an SBR with a 40 nm

In0.5Ga0.5As absorbing layer placed in a λ/2 layer of GaAs has been demonstrated in a

Cr:Forsterite laser, producing 30-fs pulses used for a frequency metrology experiment [65]

[66].  The measured reflectivity versus wavelength is shown in Figure 2.26, taken with a

microspectrophotometer.    Also plotted, is the spectrum achieved with the 1300 nm SBR in

the Cr:Forsterite laser (growth number R946, Kolodziejski).

500 µm

GaAs/InGaAs

AlxOy
Al0.3Ga0.7As

GaAs substrate



SATURABLE BRAGG REFLECTORS 55

Figure 2.26 Measured and calculated reflectivity spectra for R946.  A modelocked Cr:Forsterite laser spectrum
achieved with the device is shown also.   The structure was oxidized on 4/23/03 for 5 hrs at 410C
[64][65]. 

In the 1.5 µm range, several different SBR devices were fabricated with varying mod-

ulation depths.  Two structures were developed for the low gain Cr4+:YAG laser, with rela-

tively small modulation depths.  Both have a 7-pair mirror, consisting of Al0.3Ga0.7As/AlxOy

layers centered at 1440 nm.  In the first structure (growth number R968, Kolodziejski), a 10

nm In0.5Ga0.5As quantum well was embedded in a λ/2 GaAs layer.  Pump-probe, shown in

Figure 2.27, was performed at 1550 nm.  Reflectivity measurements are plotted as a function

of wavelength, in Figure 2.28.  The structure has a modulation depth of 0.3% and fluence

behavior similar to that of the original Cr4+:YAG broadband absorber.  However, one may

notice that the recovery time is somewhat different - 12 ps versus 40 ps of the original struc-

ture.  In the GaAs/In0.5Ga0.5As-based structure (R968), the strain was concentrated in the

quantum well.  While the structure appears to have less delamination issues than the InP/

In0.5Ga0.5As-based SBRs (i.e. R885), the strain concentrated in the quantum-well region may

cause an increase in nonsaturable loss of the structure, an important consideration when

designing structures for a loss-sensitive laser such as the Cr4+:YAG.  

 

1000 1200 1400 1600 1800

0.0

0.2

0.4

0.6

0.8

1.0

-50

-40

-30

-20

-10

0

10
 actual SBR
 theory for SBR

In
te

n
si

ty
 (

d
B

)

 

N
o

rm
. R

ef
le

ct
iv

it
y

Wavelength (nm)

 Cr:forsterite spectrum

 

 



56 CHAPTER 2

Figure 2.27 Pump-probe traces for an oxidized Cr4+:YAG SBR (growth number R968).  The oxidation parame-
ters were: 410C, 4.5 hr.  The sample was measured at 1540 nm.

Figure 2.28 Reflectivity versus wavelength for Cr4+:YAG SBR (growth number R968).  The data is taken with
an FTIR for a structure oxidized on 4/25/03 at 410C for 5 hrs.
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Figure 2.29 Calculated (black solid line)  and measured (grey dashed line) reflectivity versus wavelength for
R971.  The calculated reflectivity does not include loss.  When loss is included, the bandwidth is
similar to the measured structure.

Figure 2.30 Pump-probe data for R971 versus fluence at 1540 nm.  Data courtesy of H. Shen.

Two-photon absorption in an SBR can limit the achievable pulsewidth.  A saturable

absorber in the TPA regime acts as an inverse absorber, producing an intensity-dependent loss
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opposite to that of an SBR.  The higher the intensity, the more loss is produced by TPA.  To

mitigate these effects, one can defocus on the absorber or utilize materials with relatively

small TPA coefficients.  However, in order to defocus, a large area is required.  The new

GaAs/InGaAs-based SBR structures should suffer less from the effects of two-photon absorp-

tion than the original InP/InGaAs-based Cr4+:YAG absorbers.  The GaAs/InGaAs-based

structures have larger usable areas of up to 1.96x105 µm2 in contrast to the 3.14x104 µm2 of

the original Cr4+:YAG absorber.  Additionally, the new structures are constructed from mate-

rials with lower TPA coefficients (GaAs cladding layers with TPA coefficient 10 cm/GW [67]

versus InP, 90 cm/GW [68]).    

Additionally, an alternate structure was developed (growth number R971, Kolodzie-

jski).  It consists of a λ/2 layer of InP with a 10 nm quantum well embedded in the center on

top of a seven pair AlxOy/Al0.3Ga0.7As mirror.  The strain in this structure is concentrated

around the interface of the top Al0.3Ga0.7As mirror layer and InP absorber cladding layer.

Photoluminescence measurements indicate a bandedge of 1525 nm. Reflectivity measure-

ments are shown in Figure  2.29, and pump-probe traces are shown in Figure 2.30. 

A broadband structure at 1550 nm with larger modulation depth than the previous

structures was designed and fabricated for a broadband bismuth-oxide-based erbium fiber

laser.  When incorporated into the bismuth-oxide laser, 155-fs pulses were produced, with the

potential for shorter pulses [69].  The structure (growth number R981, Kolodziejski) consisted

of a 7-layer mirror centered at 1565 nm, with a λ/2 layer of InP on top, containing six centered

In0.5Ga0.5As quantum wells.  The quantum wells were placed at the center of the λ/2 region to

maximize the overlap with the peak of the electric field.  The large number of interfaces in this

structure result in a device with more strain than the devices previously discussed.  The

increased strain made delamination-free oxidation more difficult.  However, by ramping the

temperature of the oxidation furnace before and after oxidation, 500 µm structures were suc-

cessfully fabricated with minimal delamination as shown in Figure 2.31.   Photoluminescence

measurements determined the bandgap of the quantum wells to be 1550 nm.  Pump-probe per-

formed on the structure yielded a recovery time of 40 ps, with a maximum modulation depth

of 1.3% at 1540 nm.  Pump-probe traces are shown in Figure 2.32, and the reflectivity as a

function of wavelength is shown in Figure 2.33.  The structures were antireflection-coated

with a quarter wave layer of Al2O3, and were proton bombarded, reducing their recovery time

to about 6 ps.   Proton bombardment simply introduces defects into the material, creating mid-

gap states that speed up the recombination time [29][30]. 
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Figure 2.31 Top view of fully oxidized mesa of R981, with 6 quantum wells for a bismuth-oxide erbium-doped
fiber laser (microscope image).

Figure 2.32 Pump-probe traces at 1540 nm on an absorber for a bismuth-oxide laser as a function of fluence
(R981).  The structure was oxidized at 410C for 4 hrs 45 minutes, with a 50 minute ramp on 9/10/
03.
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Figure 2.33 Calculated and measured reflectivity as a function of wavelength for bismuth-oxide laser SBR.
The structure was oxidized at 410C for 4 hrs 45 minutes, with a 50 minute ramp on 9/10/03.  The
calculated reflectivity does not include absorption effects.

By simply changing the material of the high index layer of the mirror from

Al0.3Ga0.7As to InGaAlP, it was possible to fabricate an SBR for the Ti:Sapphire laser,

extending the range of broadband SBR technology into the visible spectrum.  Preliminary

measurements indicate modelocked operation with a spectrum whose Fourier limit was 15-30

fs.  The reflectivities of these 800 nm structures, along with structures designed for 1300 nm

and 1550 nm are shown in Figure 2.34 [63][66].  Mirror reflectivities of all three devices span

the visible to near-IR, 700 nm to beyond 1750 nm. 

In summary, ultra-broadband monolithically-integrated saturable absorbers have been

developed for short pulse (sub-100-fs) solid-state and fiber lasers.  The devices are stable and

do not appear to damage any more easily than conventional SBRs.  The long term stability is

good: no degradation has been observed after many months in the laboratory.  Saturable

absorbers with reflectivities covering the visible to infrared wavelength range were devel-

oped.
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Figure 2.34  Reflectivity versus wavelength for oxidized SBRs covering the visible to the near-infrared.
Absorbers for Ti:Sapphire, Cr:Forsterite, and bismuth-oxide erbium-doped fiber lasers are shown
[63].

2.7 Broadband Si/Ge saturable Bragg reflectors

In addition to investigating monolithic III/V-based broadband absorbers, we have also

designed absorbers based on Si/SiO2 mirrors.  Currently, a 7-pair Si/SiO2 mirror has been

integrated with a 40 nm Ge saturable absorber layer to produce a broadband silicon-based

absorber that was incorporated in an Er:glass laser [70].    Pump-probe was performed at 1550

nm with 150-fs pulses.

The silicon/germanium SBR consists of a silicon/silicon-dioxide (Si/SiO2) Bragg

reflector and a germanium saturable absorber layer (Figure 2.35a). Only six layer pairs of Si/

SiO2 were required to achieve a 99% reflectivity bandwidth of 700 nm, due to  the high

refractive index contrast [n(SiO2)=1.45 and n(Si)=3.5 at 1550 nm). On top of the Si/SiO2

Bragg stack, a 40 nm germanium saturable absorber layer was embedded in a silicon layer of

3λ/4 optical thickness at the center wavelength of 1400 nm. The Ge absorbing layer was

placed at a peak of the standing wave pattern of the electric field.   

The fabrication process is illustrated in Figure 2.35(b).  The structure was fabricated

on a silicon-on-insulator substrate (SOI).  A layer of polysilicon is deposited, and then ther-
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mally oxidized to form a layer pair consisting of a 244 nm SiO2 layer and 100 nm of Si.  This

process was repeated for each of the six layer pairs.   As the structure became thicker, the

roughness in the topmost layers increased, which degraded the quality of the mirror.  To pre-

vent these detrimental effects, the topmost layer was bonded to a Si wafer, and the original sil-

icon handle along with the buried oxide of the SOI substrate etched off.  Thus the layers with

the lowest roughness were now at the top of the structure.  Because the structure was high-

index contrast, incident light did not penetrate far into the structure and mirror reflectivity and

bandwidth are primarily determined by the quality of the topmost layers.    On top of the crys-

talline Si topmost layer, 40 nm of germanium were deposited by UH-CVD [71].  The germa-

nium was passivated with a thin layer of oxide and finally, a poly-silicon cap deposited.    This

process ensures that the germanium layer was grown on a crystalline silicon layer and is crys-

talline itself.  The germanium layer must be crystalline in order to ensure a high quality

absorbing layer.  Germanium deposited on poly-silicon is polycrystalline and has undesirable

optical properties such as low nonlinearity, low absorption, and high loss.  Calculated and

measured reflectivity measurements of the structure are shown in Figures 2.36 and 2.37.  The

comparison between an as-grown structure, with the roughest layers on the surface, and a

flipped mirror structure, with the roughest layers at the bottom is also shown.

The device was characterized in a series of pump-probe measurements with 150-fs

pulses centered at 1540 nm from an OPO, with a pump to probe fluence ratio of 3 to 1.  For

fluences between 10 - 40 µJ/cm2, the germanium layer acted as a fast saturable absorber with

a maximum modulation depth of 0.13% (Figure 2.38).  We observed sub-picosecond recovery

of the bleaching, with the temporal resolution of the measurement limited by the pulse dura-

tion. The fast relaxation process was attributed to intervalley scattering within the conduction

band. It may also be the result of midgap states.  In contrast, for high fluences (e.g., 300 µJ/

cm2), carriers generated by TPA induced FCA, transforming the germanium layer to an

inverse saturable absorber. The strong inverse saturable absorption of the Si/Ge-SBR was due

to TPA in the germanium layer (β= 300 cm/GW at 1500 nm [72]) which is much greater than

that of silicon or gallium arsenide [67].  Higher fluence traces, taken for a constant probe flu-

ence, are shown in Figure 2.39.  To verify that the signals observed were mainly from the 40

nm Ge layer (TPA can also occur in the Si cladding), pump-probe measurements were per-

formed on an identical structure lacking the Ge layer (Figure 2.40).  Pump-probe spectroscopy

was performed for a constant probe fluence, at comparable fluences to the  Si/Ge traces shown

in Figure 2.39.    
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Figure 2.35 (a) Schematic of Si/Ge structure.  The square of the electric field and refractive indices of the struc-
ture are plotted as a function of wavelength.  (b) Fabrication steps for Si/Ge absorber [70].

The signal from TPA and FCA observed in this was an order of magnitude lower than

that observed in the Si/Ge SBR.  Thus, it is reasonable to conclude that the dynamics of the

Ge/Si SBR are dominated by the absorption and bleaching dynamics occurring in the 40 nm

Ge absorbing layer.
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Figure 2.36 Calculated (dotted line) and measured reflectivity (solid line) versus wavelength for the Si/Ge
absorber [70]. 

Figure 2.37 Calculated and measured reflectivity of the Si/Ge absorber (zoomed in).  The reflectivity of the as-
grown structure, with the roughest layers on top (dashed line) and the flipped mirror structure, with
the roughest layers at the bottom (solid line) are shown [70].

1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

 measured reflectivity
 calculated reflectivity

 

 Wavelength (nm)

 R
ef

le
ct

iv
it

y 
(%

)

1000 1200 1400 1600 1800 2000
98.0

98.4

98.8

99.2

99.6

100.0

 mirror as deposited
 mirror flipped
 theory R

ef
le

ct
iv

it
y 

(%
)

 

 

Wavelength (nm)



SATURABLE BRAGG REFLECTORS 65

Figure 2.38 Pump-probe traces as a function of fluence for the Si/Ge absorber.  The dashed line is the cross-cor-
relation of the pump and probe pulse.

.

Figure 2.39 Pump-probe of Si/Ge absorber with constant probe fluence at 1540 nm.
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Figure 2.40 Pump-probe of structure similar to the SBR, but without the Ge layer, at 1540 nm with constant
probe fluence. The signals are an order of magnitude lower than that of the SBR.  

Figure 2.41 Diagram of proposed band-structure producing pump-probe dynamics in Figures 2.38 and 2.39.
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We hypothesize that the Ge band structure has four levels accessible to pump and

probe, producing the dynamics observed in Figure 2.41.   We can now write rate equations to

describe the population in each state as follows.

(2.12)

(2.13)

(2.14)

where No is the population of the ground state; N1 is the population of the state which

exhibits absorption bleaching (giving rise to the positive signals in the pump-probe traces); τ1,

the lifetime of those carriers in the state; N2 the population of the state to which the carriers

from N1 relax to; τ2, the lifetime of this state; and N3, the population of the highest excited

state.  The transition between N2 and N3 cannot be bleached, meaning that the lifetime in state

N3 is very short.  The absorption cross-section between states x and y is denoted as σxy, and

the absorption coefficient as α.  S represents the incident photon flux and βtpa, the TPA coeffi-

cient. 

The Si/Ge SBR (Figure 2.35(a)) was placed in a bulk Er:Yb:glass laser.  The laser

crystal was phosphate glass (Kigre QX/Er) co-doped with 2.3x1020 Er-ions/cm3 and 2.1x1021

Yb-ions/cm3.  The crystal was flat-Brewster polished and the flat end of the crystal acted as a

0.2% output coupler.  The laser, a four element cavity with -0.02 ps2 of dispersion, was

pumped with a single mode 980 nm 450 mW diode.  A schematic of the setup is shown in Fig-

ure 2.42(a).  
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Figure 2.42 (a) Schematic of laser cavity.  (b) Modelocked optical spectrum.  (c) RF spectra of modelocked
laser.  (d) Autocorrelation [70].
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The main pulse-shaping mechanism in the laser was the intensity-dependent loss of

the saturable absorber.  The laser produced 220-fs pulses (after external dispersion compensa-

tion), and had a spectrum with a FWHM of 11 nm centered at 1550 nm.   The pump power

was 360 mW, with an intracavity average power of 8.7 W.  The repetition rate was 169 MHz,

and no evidence of Q-switching was seen.  Figure 2.42 shows a typical optical spectrum, RF

spectrum, and autocorrelation.    To the best of our knowledge, these are the shortest pulses

obtained from an Er:Yb:glass laser to date. The previous record from a soliton modelocked

laser was 380 fs [73].  From a saturable absorber modelocked Er:Yb:glass laser, the previous

record was 2.5 ps pulses [74].

Ultrashort pulse generation was enabled by the high reflectivity and fast dynamics of

the Si/Ge saturable absorber.  No Q-switching behavior was observed regardless of pump

power level despite the long upper-state lifetime and the small emission cross section of the

gain medium. We attribute the high stability against Q-switching to the inverse saturable

absorption in the Si/Ge-SBR at high intensity [34][41].  With bandwidth comparable to the

broadband III/V absorbers presented in the previous section, this absorber may be suitable for

ultrashort pulse generation in the Cr4+:YAG laser system, which has a significantly broader

gain-bandwidth than the Er:Yb:glass laser.

2.8 Conclusion

In conclusion, a variety of III/V and Si-based saturable absorbers have been discussed.

A 16% modulation depth absorber modelocked an Er:Yb waveguide laser.  Broadband oxi-

dized monolithic broadband III/V absorbers were used to produce 32-fs pulses from a

Cr4+:YAG laser, 30-fs pulses from a Cr:Forsterite, and 155-fs pulses from a bismuth-oxide

erbium-doped fiber laser.  Finally, a broadband silicon-germanium absorber was developed,

and applied to an Er:glass laser, producing 220-fs pulses. 
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CHAPTER 3:  HIGHLY NONDEGENERATE FOUR-WAVE 
MIXING IN MICROSTRUCTURE FIBER

3.1 Abstract

Tapered microstructure fiber, with a nonlinearity approximately fifteen times that of

single mode fiber at 1550 nm (i.e. Corning SMF-28) and an engineered dispersion profile, was

used to demonstrate highly nondegenerate four-wave mixing.  Frequency shifts of ~6000cm-1

were achieved in an 18 cm tapered microstructure fiber, using a pump at 810 nm with 100-fs

pulses and a signal at 1540 nm with 150-fs pulses.  Idler light was generated at wavelengths

between 535 nm and 575 nm with 10% efficiency.  Due to the walkoff between pump and sig-

nal pulses in the fiber, the interaction length in the tapered fiber was only 1.4 cm.  Background

is given in Section 3.2, and a highly nondegenerate four-wave mixing experiment is detailed

in Section 3.3.  The tapered microstructure fiber was fabricated and developed at OFS/

Furakawa, New Jersey by R. Windeler, C. Kerbage, and B. Eggleton.  The experiments were

performed in collaboration with K. S. Abedin.

3.2  Background

Four-wave mixing (FWM) can be an efficient and simple way to generate new fre-

quency components. It occurs when photons from one or more optical waves are annihilated

and new photons are created at a different frequency while conserving energy and momentum.  
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Four-wave mixing and other such parametric processes are caused by the nonlinear

response of bound electrons to an applied optical field.  When an optical field is applied, the

polarization induced in the medium is nonlinear but contains terms directly proportional to the

nonlinear susceptibilities, as seen below, in Equation 3.1.

 (3.1)

where P is the polarization; εo is the vacuum permittivity; E, the electric field; and χ(j),

with j = 1, 2, 3 … the jth order susceptibility.  Third-order parametric processes such as four-

wave mixing depend on χ(3) and  involve interaction between four optical waves.  If we con-

sider only contributions to the nonlinear polarization from χ(3) and sum up four electric fields

of the form:

 (3.2)

 where kj and ωj represent the wavevector and optical frequency of the jth wave,

respectively.  Substituting into Equation 3.1 considering only the terms from χ(3), we obtain

[75]:

(3.3)

 P4 can be expressed as [75]:

(3.4)

where 

(3.5)
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(3.6)

Four-wave mixing is caused by the terms not proportional to |E4|2 in Equation 3.4.

The effect of the remaining terms in producing coupling between P4 and E4 is determined by

θ+ and θ-, or similar angles.

In order to have efficient four-wave mixing, it is important that energy and momentum

be conserved.  Momentum, k, is defined as:

 (3.7)

From Equation 3.4, one can see that two types of four-wave mixing exist: (1) three

photons transfer their energy to a single photon (2)  two photons at ω1 and ω2 transfer their

energies to two photons at ω3 and ω4.  In the first case, if the three photons have the same fre-

quency, the process is known as third-harmonic generation. However, it is the second case

that is explored in the experiment below.  In our case, the four wave mixing is partially degen-

erate, with ω1= ω2.

For a discussion on highly nondegenerate FWM in optical fibers, it is important to

understand some key properties of the medium: dispersion and nonlinearity.   When light

interacts with a dielectric, the medium response is usually frequency dependent.  This gives

rise to the frequency dependence of the index of refraction, n, and is known as chromatic dis-

persion.  The propagation constant of light in a medium β(ω) is defined as n(ω)ω/c and can be

expanded as a Taylor series.

 (3.8)

where

  (3.9)

When a pulse propagates through a fiber with dispersion, different colors travel at dif-

ferent speeds, as defined by β and its derivatives.   A pulse envelope propagating down a fiber
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will move at a group velocity of (β1)-1, while β2 is referred to as group velocity dispersion,

and causes a pulse to broaden.  If n increases with frequency, the dispersion is normal, and β2

is positive.  If n decreases with frequency, the dispersion is anomalous, and β2 is negative.     

In a fiber, the dispersion has contributions from two sources: material, (chromatic dis-

persion), and waveguide geometry.  The propagation constant in a waveguide is frequency

dependent meaning that the waveguide itself is dispersive, independent of the material disper-

sion.    Thus, in order to determine the total dispersion of a fiber one must add the material and

waveguide contributions to the dispersion.  In standard single mode fiber at 1550 nm, disper-

sion is dominated by the material contribution.  A calculation of the fiber dispersion versus

wavelength for standard single-mode fiber (SMF-28) is shown in Figure 3.1.  The contribu-

tion of the waveguide dispersion is small in standard fiber.  However, in specialty fibers such

as microstructure and photonic crystal fiber, the waveguide dispersion is substantial due to the

small core and high index contrast of  these fibers.   

Figure 3.1 Dispersion as a function of wavelength in standard single-mode fiber.  The material (solid grey),
waveguide (dotted black), and resulting total dispersion (solid black) are shown.

In addition to dispersion, nonlinearity is another important fiber parameter.   While

χ(3) is responsible for four-wave mixing, third harmonic generation, and parametric amplifica-

tion, it is also responsible for nonlinear refraction.  In nonlinear refraction, the index of refrac-

tion depends on intensity as:
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 (3.10)

where n2 is the nonlinear index coefficient, and I, the optical intensity inside the fiber.

One of the most common effects of nonlinear refraction is self-phase modulation (SPM), in

which the pulse experiences a self-induced phase shift as it propagates down the length of the

fiber of the following magnitude. 

 (3.11)

where

 (3.12)

and L is the fiber length; λ, the wavelength; and φ, the induced phase shift.  

The interaction of self-phase modulation and dispersion can lead to different regimes

of pulse propagation through a fiber.  A pulse propagating in fiber can be described by the

nonlinear Schroedinger equation [75].

   (3.13)

where α represents loss and A(z, t) is the slowly varying envelope of the electric field,

E(r, t), written as

(3.14)

 where F(x, y) is the spatial mode profile; ω, the frequency of the wave; and γ a mea-

sure of the nonlinearity of the fiber, defined as:

(3.15)
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where Aeff is the effective area of the fiber.

Using the split-step Fourier method [75], this equation can be solved numerically with

just a few lines of code.   In the split-step method, the pulse is propagated through a small

length segment.  In the frequency domain, the effects of dispersion are analytically added to

the pulse.  Then, a Fourier transform is taken, and the effects of self-phase modulation on the

pulse are included in the time domain.  

3.3 Four-wave mixing in microstructure fiber

Four-wave mixing has many applications including wavelength conversion  [75][76],

phase conjugation [77], squeezing [78][79], frequency metrology [5][6][7][80], and spectros-

copy [28].   In some situations, FWM can be detrimental.  It can cause crosstalk between

wavelength-division multiplexed channels of a communications system, causing degradation

of the bit-error rates.  However, FWM has been the subject of extensive research and has been

demonstrated in many media including gases, semiconductors, crystals, and optical fibers.  In

particular, the large bandwidth, low loss, and long interaction lengths of optical fibers make

them attractive for FWM.   

In 1974, FWM with a frequency shift of 2800 cm-1 was observed in a 9-cm SiO2:B2O3

clad waveguide, with a peak pump power of 100 W [81].  A frequency shift of 2900 cm-1 was

observed in 1 m of graded index multimode fiber, in 1981 [82].  Recently, a frequency shift of

100 cm-1 was observed in 6.1 m of microstructure fiber, which had a small core (1.7 µm) for

nonlinear enhancement [83].  Wavelength conversion of femtosecond pulses from 1.5 µm to

1.3 µm has also been demonstrated [84].    However, four-wave mixing with femtosecond

pulses is made difficult by the existence of material and waveguide dispersion, which contrib-

ute to phase mismatch and group velocity differences.  The advent of fiber with “engineered”

dispersion and nonlinearity profiles such as microstructure fiber has mitigated these problems.

Microstructure fiber is fiber with a pattern of air holes that is able to guide light by

index contrast. This fiber took the world by surprise a few years ago, with its high profile

application to frequency metrology [5][6][7][80].  Microstructure fiber can be used for many

nonlinear processes including supercontinuum generation, four-wave mixing, and high har-

monic generation [85][86][87][88].  However, the loss of these fibers, which can be orders of

magnitude higher than the 0.2 dB/km loss of conventional fiber, and the loss in coupling into

them make it difficult to use them in lasers.  They can also be difficult to splice with losses

lower than 2-3 dB/splice due to mode mismatch.
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In this work, tapered air-silica microstructure fiber with losses as low as 0.3 dB/taper

(18 cm length) was used.  The fiber can be spliced reliably to standard silica fiber with rela-

tively low losses of 0.1 dB/splice [89][90].  Untapered, the fiber behaves similar to SMF;

tapered, the fiber has a nonlinearity an order of magnitude higher and a unique dispersion pro-

file.  These properties enabled highly nondegenerate four-wave mixing between 800 nm and

1550 nm femtosecond pulses, the subject of this section.  

The microstructure fiber used consisted of a tapered air-silica microstructure fiber (T-

ASMF) and untapered air-silica microstructure fiber (ASMF) section [90][91]. The fiber used

in this experiment is tapered from an outer diameter of 132 µm to an outer diameter of 10 µm,

with a length of 18 cm and a core diameter of 3 µm and is shown in Figure  3.2.  The unta-

pered section was composed of a 8 µm diameter germanium-doped silica core surrounded  by

an undoped silica inner cladding of diameter 40 µm.  The index difference between the core

and cladding was approximately 0.35%.  A ring of six air holes encircled the core and inner

cladding, giving the fiber a grapefruit-like cross-section.  Surrounding the air holes was a 14

µm ring of silica.  The total diameter of the untapered fiber was 132 µm.  When the fiber was

not tapered, the air holes played little role in guiding the mode.  Instead, the mode was guided

by the index difference between the germanium-doped core and the inner cladding.  The fiber

was tapered by heating it in a flame with a weight attached to the end.  The temperature was

chosen so that the air holes did not collapse, but the fiber stretched without breaking [89].  The

tapering process caused the germanium in the 8 µm core to diffuse through the entire central

silica region.  The mode is now guided by the index difference between the silica and air,

~0.3.  

The dispersion and nonlinearity of the tapered fiber were very different from that of

the untapered section.  Because of the small core size in the tapered section, ~3 µm diameter,

the nonlinearity of the fiber was enhanced by a factor of ~15 [90].   The large index difference

between the core and cladding (air to silica) in the tapered section of the fiber, 0.3, and the

small core size dramatically increase the waveguide dispersion contribution to the total fiber

dispersion.   The resulting unique dispersion profile of the T-ASMF allowed phase matching

between highly nondegenerate waves in the lowest order mode.
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Figure 3.2 Schematic of tapered and untapered air-silica microstructure fiber [89].

Figure 3.3 shows the experimental setup.  Pulses from a femtosecond optical paramet-

ric oscillator (1540 nm), the signal, and from a Ti:Sapphire laser (810 nm), the pump, were

launched into a tapered microstructure fiber.  Since the OPO is synchronously pumped by the

Ti:Sapphire, the repetition rates of the two lasers were automatically locked.  Timing jitter

between the two lasers has been shown to be as low as 13 fs [92].  The fiber consisted of an 18

cm long tapered section, with short sections of untapered microstructure fiber on each side.

The ASMF sections allowed light to be coupled into the core more easily than the tapered sec-

tion, and can be spliced with relatively low loss.    The pulses from the OPO passed through an

isolator, and a variable time delay, used to adjust the relative timing of the OPO and Ti:Sap-

phire pulses.  The Ti:Sapphire pulses also passed through an isolator, which is critical, since a

backreflection from the front surface of the fiber can cause the Ti:Sapphire laser to stop mod-

elocking (also stopping the OPO).  A dichroic mirror was used to combine the OPO and

Ti:Sapphire beams, which are then launched into the ASMF with an 18 mm aspheric lens.

Before reaching the tapered region, the pulses propagated through a 25 cm ASMF region.

The pump pulses, initially 190 fs FWHM were estimated through split-step simulations to

broaden to 620 fs after 25 cm ASMF because of the fiber’s normal dispersion. The signal

pulses, 150 fs to start, were compressed to ~100 fs, through soliton effects (the fiber has

anomalous dispersion).

Diameter:132 µm
∆n = 0.005

Diameter: 10 µm
∆n = 0.3

Adiabatic Tapering*

Diameter:132 µm
∆n = 0.005

Diameter: 10 µm
∆n = 0.3

Adiabatic Tapering*
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Figure 3.3 Experimental setup for highly nondegenerate four-wave mixing [91].

Maximum incident average powers on the tapered fiber were: 180 mW (pump) and

120 mW (signal).  Coupling efficiencies of the signal and pump ranged from 30% to 40%.

The relatively low air-to-fiber coupling efficiency was due to the differing spot sizes for the

two wavelengths, and the wavelength dependence of the lens focal length and anti-reflection

coating.  After propagation through the T-ASMF and AMSF, the FWM idler wave was sepa-

rated from the pump and signal with a color glass filter and focused onto a silicon photodetec-

tor.  

The pump and signal pulses are femtosecond pulses widely separated in wavelength.

As they propagate through the T-ASMF fiber, they walk-off from each other, due to differing

group indices, ng.   The group index is inversely proportional to the group velocity, vg, and

directly proportional to first-order dispersion coefficient, β1(ω) as follows.

(3.16)

By determining the group index, the interaction length of signal and pump can be

obtained.  The parameters were determined in the T-ASMF and ASMF through numerical

simulations.  In the tapered section, we assume a step-index fiber with an index difference of

0.3 and a core diameter of 3 µm.  Because the germanium-doping diffuses throughout the cen-

tral silica region in the T-ASMF, the material dispersion in the T-ASMF is calculated using the

Sellmeier equation of bulk silica [93].   The ASMF is assumed to have a core-cladding index

difference of 0.35% and material dispersion is calculated using the parameters for Ge-doped
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silica.  The group index and group velocity dispersion versus wavelength for both the T-

ASMF and the ASMF are shown in Figure 3.4.  The calculations agree well with a measure-

ment performed by Ye et. al. [94].  All calculations are performed for the lowest order HE

mode in the T-ASMF.  The mode propagation is solved for iteratively, and the group-index

and group velocity calculated [32].  In the tapered fiber, the difference in index between the

mode of the Ti:Sapphire and that of the OPO is 0.0157, giving an interaction length of 1.4 cm.

The zero dispersion wavelength was estimated to be ~858 nm. 

Figure 3.4 The group-velocity dispersion (left axis) and group index (right axis) versus wavelength for the
tapered microstructure fiber (solid line) and untapered microstructure fiber (dotted line) [91].

When the signal pulse propagated without the pump, soliton self-frequency shifting of

the input was observed.    Large soliton self-frequency shifts in this fiber were observed due to

the large anomalous dispersion and small third order dispersion (β3).  Soliton self-frequency

shifting causes a red-shift of the pulse and is an effect induced by the pulse itself [75].  The red

portion of the pulse spectrum is amplified through Raman gain that is fed by the blue compo-

nents of the spectrum.  Energy is transferred from the blue components of the pulse to the red

components, causing a red-shift of the pulse.  The result is a red-shift of the soliton spectrum

that increases with propagation distance.

 In the T-ASMF, third-harmonic generation (THG) from the input 1540 nm light and

soliton self-frequency shifted light also occurred [87].  Because the third-harmonic was in the

visible, this can be observed in the lab without room lights.  As the pulse propagated progres-
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sively further through the taper, the input light continued to undergo soliton-self-frequency

shifting.  Thus, the third-harmonic wavelength also shifted.  The fiber at input glows green

(THG of input 1540 nm light), then yellow (THG of 1710 nm), and finally red (THG of 1950

nm).  

When the pump pulse is launched alone, self-phase modulation causes the 10 nm spec-

trum to broaden to 55 nm FWHM. When pump and signal propagate together, we observe

idler due to FWM with wavelengths ranging from 537 nm to 575 nm.  A typical optical spec-

trum of the idler is shown in Figure 3.5.  In Figure 3.6, the signal power is kept constant and

the idler power is plotted as a function of the incident pump power.  The parabolic dependence

clearly demonstrates the FWM process in which two photons of Ti:Sapphire are annihilated to

generate one photon of idler as well as an additional signal photon.   The energy relation is

shown below:

(3.17)

where ω represents the frequencies of the pump, signal and idler optical waves.

Figure 3.5 Spectrum of: inset (a) signal; inset (b) pump; and idler  after propagation through 18 cm of tapered
air-silica microstructure fiber [91].

ω ω ωsignal idler pump+ = 2



82 CHAPTER 3

Figure 3.6 Power dependence of idler on pump power, with constant signal power [91].

With a maximum incident pump power of 180 mW and signal power of 80 mW, we

were able to produce ~4 mW of idler.   The coupling efficiency of the pump beam was 33%

and that of the signal, 44%. The efficiency of the FWM process, defined as Pidler/Psignal, was

~10%  (-10 dB).  The green output power is ~9% of the maximum power obtainable, calcu-

lated from the Manley-Rowe relations of photon conservation.  The idler is not constrained to

the lowest order mode and may instead have converted to higher order modes, degrading the

efficiency. 

 An expression is derived for the parametric gain coefficient of highly nondegenerate

FWM following the approaches of Ref. [75], [95], and [96].  We assume an undepleted pump,

a weak signal, a constant value for the nonlinear refractive index n2, a single effective overlap

integral, and no loss.  

The phase mismatch in four-wave mixing is defined as:

(3.18)

where kj is the wavevector of the jth optical wave defined in Equation 3.7.  In this

experiment, the pump waves are degenerate so ω1=ω2 and k1=k2.  Assuming the mode over-

∆k k k k k= + − −3 4 1 2
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lap integrals are the same for the frequencies of pump, idler and signal, the coupled equations

governing the amplitudes of the four waves involved can be written as:

(3.19)

(3.20)

(3.21)

(3.22)

where Aj is the amplitude of the jth wave.  [Note that for our case A1=A2].  Also, n2 is

the nonlinear refractive index coefficient; ωj, the frequency of the jth wave; Aeff, the mode

effective area (inverse of overlap integral); and ∆k, the phase mismatch, defined in Equation

3.18.  Equations 3.19 and 3.20 can be solved to obtain (assuming undepleted pump waves):

(3.23)

(3.24)

where Pj=|Aj, z=0|2 and

(3.25)

∂
∂

= + + + +
A

z

in

cA
A A A A A A A A e

eff

i kz1 2 1
1

2

2

2

3

2

4

2

1 2 3 42 2
ω e j{ }* ∆

∂
∂

= + + + +
A

z

in

cA
A A A A A A A A e

eff

i kz2 2 2
2

2

1

2

3

2

4

2

2 1 3 42 2
ω e j{ }* ∆

∂
∂

= + + + + −A

z

in

cA
A A A A A A A A e

eff

i kz3 2 3
3

2

1

2

2

2

4

2

3 1 2 42 2
ω e j{ }* ∆

∂

∂
= + + + + −A

z

in

cA
A A A A A A A A e

eff

i kz4 2 4
4

2

1

2

2

2

3

2

4 1 2 32 2
ω e j{ }* ∆

A P ei P P z
1 1

21 1 2= − +γ ( )

A P ei P P z
2 2

22 2 1= +γ ( )

γ
ω

j
j

eff

n

cA
= 2



84 CHAPTER 3

We substituted Equations 3.23 and 3.24 into Equations 3.21 and 3.22, assuming that

A3,A4 << A1,A2.  We obtain:  

(3.26)

(3.27)

where 

(3.28)

We now introduce the variables B3 and B4 as follows.

(3.29)

(3.30)

We substitute Equation 3.29 into Equation 3.26, and Equation 3.30 into Equation 3.27.

We obtain:

(3.31)

(3.32)

where κ is defined as:

(3.33)
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We now solve Equations 3.31 and 3.32, assuming solutions of the form:

(3.34)

(3.35)

We obtain the parametric gain:

(3.36)

where

 (3.37)

where λi is the idler wavelength; λs, the signal wavelength; Aeff, the effective mode

area; and  Pp=P1+P2, the peak pump power.  The parameter κ is the phase mismatch

(3.38)

Here, the term 2γpPp is the induced pump nonlinearity with 

 (3.39)

The efficiency of four-wave mixing depends on the wavevector mismatch between the

signal, idler, and pump, ∆k:

  (3.40)

where ks is the signal wavevector, ki the idler wavevector, and kp the pump wavevec-

tor.  In an optical fiber, ∆k results from the bulk medium (∆km) and the waveguide (∆kw).

The coherence length can be defined as:
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   (3.41)

where ∆k is the maximum wave-vector mismatch that can be tolerated.  If the length is

less than the coherence length, significant FWM can occur.  

In standard silica fiber, with an index contrast of 0.005 at 1550 nm, the wave-vector

mismatch from material can be as large as 408 cm-1.  The waveguide contribution to the dis-

persion in this fibers cannot compensate the large wavevector mismatch.  The wavevector

mismatch from material and waveguide for FWM in standard silica single-mode fiber is plot-

ted in Figure 3.7.  However, in a large index contrast, small-core fiber such as the T-ASMF

fiber, the material contribution can be compensated with the waveguide contribution.  In Fig-

ure 3.8, the waveguide ∆kw, material ∆km, and total phase mismatch, ∆k, terms for T-ASMF

are plotted versus signal wavelength, assuming a constant pump wavelength of 810 nm.  The

phase mismatch is very sensitive to the core diameter of the taper, so we have plotted the

curves for T-ASMF of three different core diameters: 2.5, 3.0, and 3.5 µm.  The calculations

are performed using a vectorial analysis of a step-index fiber with an index difference of 0.3,

and with all waves in the lowest order mode, HE11.  For T-ASMF fibers with diameters of ~3

µm and core-cladding index differences of 0.3, it is clear that the material contribution, ∆km,

can be compensated by the waveguide contribution, ∆kw.  To improve the accuracy of the sim-

ulations, one should include the weak dependence of the effective index difference on the

wavelength [97].  The fiber is not single-mode at the pump wavelength so higher order modes

may also be excited, but their phase velocities do not allow phase matching.   Because of the

strong dependence of ∆k on the core diameter, it is difficult to precisely determine the coher-

ence length.  Using the curves in Figure 3.8, we calculated the value of Lcoh as 0.06 cm, 0.44

cm, and 0.06 cm for core diameters 2.5 µm, 3.0 µm, and 3.5 µm, respectively.

An upper bound for the maximum conversion efficiency was calculated with the for-

mula below, from the solution of Equations 3.31 and 3.32.

  (3.42)

  where λs is the signal wavelength; λi, the idler wavelength; γeff defined in Equation

3.37; Pp, the peak pump power; g defined in Equation 3.36; and L, the interaction length.  This

assumes an undepleted pump, a weak signal, a wavelength-independent value for nonlinearity

(n2), a single effective overlap integral, and no loss [75][95].  

L kcoh = 2π / ∆

η λ λ γ= s i eff pP g gL/ / sinhb gd i b g2 2



HIGHLY NONDEGENERATE FOUR-WAVE MIXING IN MICROSTRUCTURE FIBER 87

Figure 3.7 Wavevector mismatch and resulting coherence length versus signal wavelength for a constant
pump wavelength at 810 nm in standard single-mode fiber.  

Figure 3.8 Wavevector mismatch for highly nondegenerate FWM in tapered microstructure fiber for three dif-
ferent core diameters 2.5, 3.0, and 3.5 µm.  Contributions to the mismatch from the waveguide,
material, and total dispersion are plotted versus signal wavelength.  The pump wavelength is kept
constant at 810 nm [91].
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Using Pp = 1168 W, n2 =  3.2 x 10-20 m2/W,  Aeff = 5 µm2,  L = 1.4 cm, and  κ = 0, we

calculate a maximum conversion efficiency of 168%.  Because the conversion efficiency is

defined as Pidler/Psignal, it can easily exceed 100%.  Deviations in phase matching, uncertainty

in the value of mode overlap integrals and in the value of  n2, and loss due to higher-order

mode coupling and scattering probably contribute to the differences between experiment and

theory.  By adjusting the core diameter of the T-ASMF, further enhancements in conversion

efficiency can likely be obtained.

3.4 Conclusion

In conclusion, we have demonstrated highly nondegenerate FWM with frequency

shifts as large as 6000 cm-1 in T-ASMF fiber.  A conversion efficiency of 10% was obtained

in an interaction length of only 1.4 cm.  This was possible because of the enhanced nonlinear-

ity of the T-ASMF, the unique dispersion profile of the T-ASMF, and the high peak power of

the femtosecond pulses used.  Similar interactions in such fibers could be used for applica-

tions in squeezing, frequency metrology, and wavelength conversion.  
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CHAPTER 4:  BISMUTH-OXIDE FIBER

4.1 Abstract

Bismuth-oxide-based fiber was investigated for amplification and supercontinuum

generation.  The work was performed in collaboration with Asahi Glass Company in Japan,

who developed and gave us the bismuth-oxide fiber.  At MIT, H. Sotobayashi, J. Sickler, and

H. Shen collaborated on the experiments.  Section 4.3 describes a study of the amplification

properties of bismuth-oxide erbium-doped fiber (BiEDF).  In a 22.7 cm piece of BiEDF, gains

of 12 dB were demonstrated over an 80 nm (1520 to 1600 nm) gain-bandwidth.  A passively

modelocked L-band bismuth-oxide-based fiber laser is demonstrated in Section 4.4.  The laser

was tunable between 1570 to 1600 nm, with 288-fs pulses produced after external compres-

sion at 1600 nm.  The subject of Section 4.5 is highly nonlinear bismuth-oxide fiber. The fiber

was used to generate smooth unstructured supercontinuum from 1200 nm to 1800 nm.  Pulse

compression of 150-fs pulses to 25-fs was demonstrated with a 2-cm piece of this fiber. 

4.2  Background

Glass fibers were first fabricated during Roman times, but optical fiber for communi-

cations was only developed in 1970 by researchers at Corning.  In 1977, Chicago became the

one of the first cities in the world to have an optical communications system.   By the mid-

1980’s, single-mode fiber had been laid across large portions of the US for telecom traffic
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[98].  With the discovery of fibers for telecom and the advent of the internet, more and more

demand developed for high bandwidth systems.  By the late 1990's, the telecom industry was

expanding at an unhealthy rate.  The bubble increased, exceeding the highest expectations, but

in 2001, burst and the mad joyride was over.  Today, in 2005, the telecom industry is making a

slow recovery.

Information on telecom systems can be encoded in two different manners.  Time-divi-

sion multiplexed telecom systems (TDM) allot each channel a time slot to send and receive

data.  Each channel is interleaved to form the composite signal.  In wavelength-division multi-

plexed (WDM) systems, each channel is carried by a different color of light.    Thus, to be

cost-effective, a high capacity WDM system requires broadband components rather than mul-

tiple narrowband devices with different center wavelengths.   One major area of research is

the development of broadband amplifiers and signal sources that are not simply confined to

the C-band (1530 to 1570 nm) of optical communications.  Several types of amplifiers that

provide continuous C-band and L-band (1570 to 1620 nm) amplification have been investi-

gated, including bismuth-oxide erbium-doped amplifiers.  Additionally, a broadband source

for WDM systems could be produced by spectrally splicing supercontinuum spectra. Super-

continuum is generated when high peak powers (i.e. short pulses) are injected into a length of

highly nonlinear fiber.  Bismuth-oxide fiber is one of many nonlinear fibers showing promise

for spectral broadening. In this chapter, research on erbium-doped bismuth-oxide amplifiers

and highly nonlinear bismuth oxide fiber will be presented.

Bismuth-oxide fiber is a newly developed fiber from Asahi Glass Company, in Japan

[99][100][101][102][103].  It has several advantages over other types of non-standard, non-

silica fiber.  Bismuth-oxide fiber has a high refractive index, leading to a high nonlinear

refractive index of 1.1 x 10-18 m2/W.  In contrast to chalcogenides, it does not contain any

toxic elements, and is relatively easy to handle.  The fiber has good mechanical and thermal

stability.  It can be fusion spliced [100] and has a fast response when used as a Kerr switch

[99].  It can be doped with erbium to a much higher concentration than standard silica fiber,

without the negative effects of concentration quenching and clustering. 

4.3 Amplification properties of bismuth-oxide erbium-doped fiber

Bismuth-oxide erbium-doped fiber has a broader gain-bandwidth than conventional

silica erbium doped fiber [104], with the potential to provide more efficient amplification in

the L-band.  The broader gain-bandwidth is a result of the high erbium concentrations possible
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in the fiber.  Figure 4.1 contrasts the amplified spontaneous emission (ASE) spectra of a con-

ventional silica-based and BiEDF-based amplifier.  In conventional communications systems

today, separate C- and L-band erbium-doped fiber amplifiers (EDFAs) are used, but continu-

ous amplification across several wavelength bands (ex. C- and L-band) is desirable.   Amplifi-

cation over several telecom wavelength bands can be achieved with newly developed rare-

earth-doped fiber amplifiers using novel host materials. Thulium-doped fiber amplifiers can

provide gain in the 1480-1510 nm wavelength band, allowing access to wavelengths shorter

than those of conventional silica-based EDFAs [105]. Tellurite-based erbium-doped fiber

amplifiers have a gain-bandwidth of 76 nm that covers not only the conventional gain band of

the silica-based EDFA but also somewhat longer wavelengths [106].  Bismuth-oxide amplifi-

ers are newly developed device that can provide amplification in both the C and L wavelength

band of communications.   Previous work on bismuth-oxide erbium-doped fiber amplifiers

includes a demonstration of C- and L-band amplification with a cw-source [99] [100] and a

study of the dispersion and amplification of 250-fs pulses at 1550 nm in a Bi-EDFA [101].

Figure 4.1 ASE spectra from a conventional silica EDF and a bismuth-oxide EDF.   Data courtesy of J. Sickler.

 In this work, the amplification properties of a 22.7 cm length of BiEDF (type T2M)

were studied [107][108].   Key properties of the bismuth-oxide fiber are listed in Table 4.1.

Figure 4.2 shows the experimental setup for amplification. To study the amplification proper-

ties of this fiber, an optical parametric oscillator was used as a signal source, producing 150-fs

pulses at 82 MHz, tunable between 1.4 to 1.6 µm.  The OPO was spectrally spliced with a tun-

1450 1500 1550 1600 1650
-40

-30

-20

-10

0

 

 

P
o

w
er

 (
d

B
)

Wavelength (nm)

 Silica EDF
 Bi

2
O

3
 EDF



92 CHAPTER 4

able 4.5 nm filter, producing 1.0 to 1.3 ps pulses.   These were coupled into the BiEDF

through a WDM.  The 22.7 cm length of BiEDF is bidirectionally pumped with two 975 nm

laser diodes, producing a maximum of 260 mW each.  It was important to include isolators to

prevent lasing from small back reflections.  The output was either sent to an optical spectrum

analyzer, collimated and sent to an autocorrelator, or inserted into a power meter.

Figure 4.2 Experimental setup for studying amplification properties of BiEDF [107][108].

Table 4.1  Key characteristics of type T2M bismuth-oxide erbium-doped fiber.

Characteristic Value

Codopants La, B

Peak absorption @ 980 nm 127 dB/m

Peak absorption@ 1530 nm 141 dB/m

Max. background loss @ 1300 nm < 1 dB/m

Max. loss/splice < 1 dB/m

Numerical aperture 0.2

Mode field diameter @ 1550 nm 6 µm

Cutoff wavelength < 1450 nm

Cladding diameter 125 µm

Coating diameter 250 µm

Refractive index of core/cladding 2.03/2.02

Erbium doping concentration 6470 ppm
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The gain as a function of average input power at 1530 nm is shown in Figure 4.3.  The

pump powers were set at 260 mW per diode.  Gains as high as 17 dB were measured; an input

power of 226 µW generated an output power of 11.7 mW.  However, the large normal disper-

sion of this fiber (estimated through simulation to be 140 ps2/km) may cause pulse distortion

in BiEDFA's to be a concern.  To study the effects of dispersion on pulse shape, autocorrela-

tions were performed before and after amplification.  Figure 4.4 shows several typical auto-

correlations at a signal wavelength of 1530 nm.  The two pumps set at 260 mW and the signal

powers were varied over an order of magnitude from 55 to 562 µW.  No pulse distortion is

seen under small-signal or saturated amplification conditions.  While the dispersion of the

fiber is large, the short length of the BiEDF prevents the fiber's nonlinearity and dispersion

from affecting the  signal pulses. 

Figure 4.5 shows the gain versus signal wavelength for a  signal power of 70 µW and

pumps powers set at 260 mW per diode.  Gains of greater than 12 dB were observed over the

entire 80 nm range and gains greater than 20 dB were observed between 1530 - 1555 nm.

The gain peak is at 1530 nm.   The pulsewidth and spectral width versus wavelength before

and after amplification are shown in Figures 4.6 and 4.7.   Over the entire wavelength range,

there was very little change in pulsewidth from input to output.   Self-phase modulation at

1530 and 1535 nm causes the variation in spectra width.

In order to perform picosecond pulse amplification with conventional silica-based

EDFA's, the dispersion of the fiber must be compensated.  Conventional EDFA's are often

tens of meters long, causing the accumulated dispersion to be large and the pulses to broaden.

However, because  Bi-EDF lengths can be only tens of centimeters, picosecond signals can be

amplified without pulsewidth broadening over a large wavelength range.

In conclusion, ps-pulse amplification has been demonstrated over an 80 nm bandwidth

(1520 - 1600 nm) in a 22.7 cm length of Bi2O3-based EDF. The pulses are not distorted over

the entire 80 nm bandwidth, making this a suitable fiber for high bit rate telecommunication

applications spanning the C- and L-bands.
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Figure 4.3 Gain as a function of input power at 1530 nm [107][108].

Figure 4.4 Autocorrelations before and after amplification as a function of input power for pump powers of
260 mW/diode  [107][108].
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Figure 4.5 Gain versus wavelength for a constant input signal power of 70 µW [107][108].

Figure 4.6 Input and output pulsewidth versus wavelength for an input signal power of  70 µW.  The step at
1575 nm is caused by a filter change [107][108].
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Figure 4.7 Input and output spectral width versus wavelength for an average input power of  70 µW
[107][108].

4.4 Passively modelocked L-band bismuth-oxide fiber laser

L-band laser sources are of interest for high volume WDM telecommunications sys-

tems.  A solution can be offered by bismuth-oxide erbium-doped fiber, with gain in the C- and

L-band.  It is possible to construct an L-band laser from a conventional silica-based EDFA,

with a careful balance between fiber length, erbium doping concentration, and pump power

[109].  However, construction of an L-band laser from bismuth-oxide fiber is simplified by the

broad gain-bandwidth and high gain of BiEDF. In this section, an L-band modelocked laser

incorporating bismuth-oxide erbium-doped fiber and an SBR is discussed [110].    

A schematic of the laser cavity, constructed in a linear configuration, is shown in Fig-

ure 4.8.  A 55.6 cm length of fiber (Type T2M, Asahi Glass Company)  was used as the gain

medium for the L-band fiber laser.  Two WDMs allowed bi-directional pumping of the bis-

muth-oxide erbium-doped fiber with two 975 nm laser diodes.  One end of the cavity was

formed by a Faraday rotator mirror.  On the other side of the gain medium, light passed

through a 10% output coupler, a collimator, a 15 nm tunable filter, 2 waveplates, and an

aspheric lens which focused onto a saturable absorber, acting as the other cavity end mirror.

The high doping of erbium in the 55.6 cm BiEDF, 6470 ppm, allowed for sufficient gain in the

L-band.  The BiEDF was fusion spliced to standard silica fibers, with a loss per splice of less

than 1 dB.  The mode field diameter at 1550 nm was 6 µm, the maximum background loss at

1300 nm, less than 1 dB, and the cutoff wavelength  shorter than 1450 nm.  
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A semiconductor saturable absorber was used as the modelocking mechanism for the

laser. Since the cavity dispersion was normal, soliton effects did not play a role.  The saturable

absorber consisted of a 22-pair Bragg mirror grown by MOCVD containing alternating layers

of AlAs/GaAs (Growth number R730, Kolodziejski, nickname: ‘SBRV’).  On top of this, an

absorbing layer and cladding region were grown by gas-source molecular-beam epitaxy.

These layers consisted of a half-wave layer of InP containing six centered In0.5Ga0.5As quan-

tum wells, with a bandedge of ~1580 nm.  In order to reduce the recovery time, the sample

was proton bombarded with 1014 protons/cm2 at an energy of 40 keV [29].  This introduced

mid-gap states into the material, speeding up the recombination time.  To increase the modula-

tion depth, the structure was anti-reflection coated with a λ/4 layer of Al2O3.  The modulation

depth was ~5%, the recovery time ~3 ps, and the saturation fluence ~3.5 µJ/cm2.   A sche-

matic of the absorber structure is shown in Figure 4.9 and typical pump-probe traces are

shown in Figure 4.10.

Figure 4.8 Schematic of laser cavity for L-band modelocked bismuth-oxide laser [110].

The laser was tuned with an optical filter and modelocked at center wavelengths from

1570 to 1600 nm.   In Figure 4.11, modelocked spectra of the laser at 3 different wavelengths

1570, 1586, and 1600 nm are shown, with spectral widths from 9.1 to 9.8 nm.  Sampling oscil-

loscope traces are shown at these wavelengths in Figure 4.12.  An RF spectrum is shown in

Figure 4.13, with the fundamental at 16.56 MHz, and 60 dB of noise suppression.  The laser

pumps were set to 255 and 168 mW, in order to achieve fundamental modelocking and avoid

multiple pulsing [111].  The output powers when the laser was at the fundamental repetition

rate were 596 mW at 1570.0 nm, 421 mW at 1586.0 nm, and 340 mW at 1600.1 nm, respec-

tively.  Autocorrelations, shown in Figure 4.14, measured pulsewidths directly from the laser

of  2.20 ps at 1570.0 nm, 2.26 ps  at 1586.0 nm, and 2.16 ps  at 1600.1 nm.  
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Figure 4.9 Refractive index and square of the electric field as a function of position for the SBR used in the L-
band laser [110].

Figure 4.10 Typical pump-probe traces as a function of fluence at 1540 nm for the absorber used in the L-band
laser (SBRV, antireflection-coated, 1014 protons/cm2, 40 keV).
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Figure 4.11 Modelocked spectra from L-band BiEDF laser at wavelengths of 1570.0 nm, 1586.1 nm, and
1600.1 nm [110].

Figure 4.12 Sampling oscilloscope traces of modelocked operation at 1570 nm, 1585 nm, and 1600 nm [110].

The pulses exiting the laser are chirped.  By externally compensating the dispersion

with 100 m of large-area non-zero dispersion shifted fiber (dispersion of -0.0356 ps2 at 1600

nm), pulses were compressed to 288 fs at 1600 nm, yielding a time-bandwidth product of

0.35, assuming a sech-shaped pulse.
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Figure 4.13 RF spectrum of modelocked L-band laser at 1600 nm [110].

Figure 4.14 Autocorrelation of the laser output (pulsewidth of 2.16 ps), and after external chirp compensation
(pulsewidth of 288 fs) at 1600 nm [110].

In conclusion, a passively modelocked L-band fiber laser tunable between 1570 to

1600 nm was demonstrated.  It generated a 16.56 MHz, 2.2-ps pulse train.  With external dis-
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results are promising for applications in telecommunications, photonic processing, and optical

sensing that utilize the L-band of optical communications. 

4.5 Highly nonlinear bismuth-oxide fiber for smooth spectral broadening 
and pulse compression

The subject of this section is highly nonlinear bismuth-oxide fiber.  In the past few

years, there have been significant advances in the fabrication of highly nonlinear fiber.  After

the enabling technology of photonic crystal and microstructure fibers was developed, the field

of frequency metrology was born in 2000 [5][6][7][80].  Such fibers enabled laser spectra to

be broadened to an octave external to a laser cavity, allowing for phase-stabilized lasers, and

their high profile application, metrology.   In addition, broad spectra, or supercontinua, have

many applications such as medical imaging [9], characterization of broadband devices

[112][113], pulse compression [114], spectroscopy [8], and communications systems.  

 These applications sparked a great deal of research dealing with nonlinear fibers such

as photonic crystal fibers [115][116], microstructure fibers [88], and other highly nonlinear

solid-core fibers [117][118][119][120].  The nonlinearity of such fibers results from small

core sizes (enabled by high-index contrast) and in some cases, material composition.  These

fibers often have unique dispersion profiles resulting from the contribution of waveguide dis-

persion to the total fiber dispersion.  In contrast, standard single-mode fiber at 1550 nm has a

dispersion profile dominated by that of the material, shown in Figure 3.1.   In this section, an

alternative to microstructure and photonic crystal fiber will be presented: solid-core highly

nonlinear, normally dispersive bismuth oxide fiber.  Its application to supercontinuum genera-

tion and pulse compression will be discussed [120].

Broad spectra, or supercontinua, can be produced with ultrafast modelocked lasers or

highly nonlinear fiber.  At 1550 nm, 20-fs pulses have been produced from a Cr4+:YAG laser,

with a spectrum corresponding to 190 nm FWHM [44].  An optical parametric amplifier

stretcher/compressor system has been used to generate 14.5-fs pulses at the same wavelength

[121].   Twenty-fs pulses were generated by a semiconductor laser, producing 1-ps pulses at 2

GHz, followed by four stages of soliton compression [122].  A less complex solution is

offered by highly nonlinear, normally dispersive fiber such as nonlinear bismuth-oxide fiber.    

In fiber, there are several techniques for supercontinuum generation.  The broadest

spectra are generated in anomalous dispersion fiber, but they are often noisy and structured

due to modulation instability, pulse breakup and other nonlinear effects [123].  Spectral broad-
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ening in normal dispersion fiber offers a nice alternative.  In normal dispersion fiber, modula-

tion instability and pulse breakup do not occur.  The result is smooth, unstructured spectra,

with broadening ultimately be limited by dispersion [123][124].  Bismuth-oxide-based glass

fiber is a newly developed fiber with sufficiently high nonlinearity to permit stable supercon-

tinuum generation at low powers under conditions of normal dispersion [102][103].

Spectral broadening in a normal dispersion fiber will be governed by the ratio of

(Ld/Lnl)
0.5, where Ld is the dispersive length, and Lnl, the nonlinear length [114][124].  The

dispersive length can be written as 

 (4.1)

 where τ is the pulsewidth parameter and βav is the average second-order dispersion.

The nonlinear length is defined as

(4.2)

 where Po is the peak power of the input excitation, and γ, the nonlinear index coeffi-

cient.  Thus,   

(4.3)

  The nonlinearity of the fiber, γ, is defined in Equation 3.15.  By increasing the nonlin-

ear index coefficient, γ, of the fiber, or by using pulses with high peak powers, spectral broad-

ening can be improved.  The use of a material with a large nonlinear index coefficient or a

reduction in fiber effective area will also increase the nonlinearity.  Dispersion will limit the

maximum amount of spectral broadening possible, but the use of highly nonlinear fiber miti-

gates these effects.  Although normal dispersion hinders spectral broadening, the supercontin-

uum generated in normal dispersion fiber is smooth and controlled.

The highly nonlinear bismuth-oxide fiber used in these experiments has a nonlinearity

of 1100 (W-km)-1 +/-15%.  The fiber shares many properties of  photonic crystal and micro-

structure fibers, but in a solid-core geometry.  The small effective area of the fiber, 3.3 µm2,

and high nonlinear refractive index coefficient of the bismuth-oxide glass, 1.1 x 10-18 m2/W,

produce a very high nonlinearity, about 500 times that of standard dispersion-shifted single-

mode fiber.  The refractive index of the core was 2.22, and that of the cladding 2.13.  The

Ld o av= τ β2 /

L Pnl o= 1/ γ

L L Pd nl o o av/ ( ) /= τ γ β2
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high-index contrast makes the small core size of the fiber, 1.7 µm, feasible.  The refractive

index of the core is increased by doping it with In2O3.  Adding In2O3 also increases the differ-

ence in glass transition temperature and crystallization temperature for the material, which is

important for fabrication.   A cross-section of the fiber is shown in Figure 4.15 [125].

The refractive index of the core versus wavelength is plotted in Figure 4.16.  The dis-

persion relation is below [125][126].

 (4.4)

 with a = 1.0, b = 3.93225, c = 0.04652, and d = -0.00796.

A simulation of the fiber dispersion is shown in Figure 4.17, with contributions from

the material and waveguide plotted separately.  The dispersion of the fiber is calculated for the

lowest order HE mode, assuming a step-index fiber with a core-cladding index difference of

0.09.  The mode propagation constant is solved iteratively and  the mode index and dispersion

of the fiber [32] are calculated in turn. The small core size and high-index-contrast of the fiber

lead to a substantial contribution from the waveguide dispersion.  Thus, the dispersion of the

waveguide balanced that of the material resulting in relatively flat total dispersion between

1200 to 1800 nm.  The simulation result was fairly close to the measured dispersion of the

fiber at 1550 nm, -250 ps/nm/km [103].
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Figure 4.15 Cross-sectional image of highly nonlinear bismuth-oxide fiber [125].

Figure 4.16 Index of refraction versus wavelength for nonlinear bismuth-oxide fiber [125].
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Figure 4.17 Dispersion as function of wavelength for: (a) bismuth-oxide glass (material) (b) waveguide (c) total
dispersion of the fiber [125].

Simulations (under similar conditions to the experiments shown in Figure 4.20(d)) of

supercontinuum generation are shown in Figure 4.18.  The input excitation was at 1540 nm,

with a 3-dB width of ~20 nm, and the fiber length was 2 cm. The input pulses were 150-fs

duration sech-shaped and had a peak power of 2.6 kW.  The split-step method was used to

solve the nonlinear Schroedinger equation, including the effects of nonlinearity and second

order dispersion [75].  In this case, the dispersion length was 0.0258 m, and the nonlinear

length was 3.9x10-4 m. The resulting 3-dB spectral width was 200 nm, corresponding to a

spectral broadening factor of 10. The spectral shape was smooth and flat, and was suitable for

pulse compression.
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Figure 4.18 Simulation results for supercontinuum generation in 2 cm of bismuth-oxide fiber with 2.6 kW of
peak power incident at 1540 nm [125].

The experimental setup for supercontinuum generation is shown in Figure 4.19. The

OPO, producing 150-fs pulses tunable between 1400 to 1600 nm, was used as the signal

source.  The signal  passed through an isolator, and was then spatially filtered with a 3 cm

length of single mode fiber.   This fiber was short enough that the pulses are not significantly

distorted: the time-bandwidth product was within 20% of the transform limit.  The pulses

were coupled into a length of highly nonlinear bismuth-oxide fiber with an aspheric lens and

the output collimated with an aspheric lens or reflecting objective.  An optical spectrum ana-

lyzer, autocorrelator or grating compressor were used to characterize or further compress the

output.   The reflecting objective had ~30% loss, but eliminated chromatic dispersion.  Two

lengths of highly nonlinear bismuth-oxide fiber were investigated: 2-cm and 1-m.  The ends of

the 1-m length of fiber were prepared using a standard fiber cleaver at low tension (80 g).  The

2-cm piece of fiber was embedded with wax in two connected ceramic ferrules and the ends

were polished.

1300 1400 1500 1600 1700 1800
-100

-80

-60

-40

 

 

P
o

w
er

 (
d

B
)

Wavelength (nm)



BISMUTH-OXIDE FIBER 107

Figure 4.19 Experimental setup for supercontinuum generation in highly nonlinear bismuth-oxide fiber [125].

In Figure 4.20,  spectra from a 2-cm length of fiber as a function of power are plotted.

The coupling loss was 6 dB, and the OPO input was centered at 1540 nm.  For an output aver-

age power of 32 mW, supercontinuum is produced from 1200 nm to > 1700 nm, and a 3 dB

width of 170 nm.  (The optical spectrum analyzer had a ranged limited to <1700 nm).   For an

average power of 32 mW exiting the fiber, the pulsewidth was 865 fs; for a power of 21.4

mW, the pulsewidth was 759 fs; for a power of 14 mW, the pulsewidth was 724 fs; and for a

power of 7 mW, the pulsewidth was 488 fs.  The interference seen in the center of the spectra

was caused by insufficient attenuation of cladding modes.  Optical wave breaking [75] is

responsible for the shoulders apparent in the spectra.  This effect occurs in the normal disper-

sion regime when the effects of self-phase modulation are much larger than that of group-

velocity dispersion.  The chirp resulting from group velocity dispersion is linear, while that

resulting from self-phase modulation is not.  Red-shifted light near the leading edge of the

pulse overtakes unshifted light at the leading edge of the pulse.  Blue shifted light at the trail-

ing edge of the pulse travels more slowly than the unshifted light at the trailing edge.  Interfer-

ence results at the leading and trailing edges of the pulse because of the two different

frequencies present.  This gives rise to the shoulders seen in the optical spectra and oscilla-

tions near the pulse edges.    

Next, the input wavelength of excitation was varied.  Typical spectra, generated with

2-cm of fiber, are shown in Figure 4.21, for three different input wavelengths: 1450 nm, 1500

nm, and 1540 nm.    The power was kept constant for the three measurements.  The spectra are

almost identical, indicative of the flat dispersion profile of the fiber.  In order to obtain a more

complete evaluation of the spectra for the case of the 1540 nm input, the measurements were

extended to 1850 nm with a spectrometer.  
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Figure 4.20 Spectra from a 2-cm piece of fiber generated by 1540-nm excitation at average powers exiting the
fiber of: (a) 7 mW (b) 14 mW (c) 21.4 mW (d) 32 mW.  The interference at the center of the spectra
is due to insufficient attenuation of cladding modes. 

Figure 4.21 Spectra from a 2-cm length of fiber of input wavelengths of: (a) 1540 nm (b) 1500 nm (c) 1450 nm.
The spectra were taken up to 1700 nm with an optical spectrum analyzer, and the measurement
from 1700 - 1900 nm was taken with a spectrometer with the assistance of P. Rakich.  The spectra
were all taken for comparable powers and are vertically offset for ease of viewing.
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Pulse compression experiments were performed for spectra generated with the 1540

nm input.   The dispersion of the 2-cm piece of bismuth oxide fiber was compensated with a

grating pair, with 75 lines/mm and separated by 8.5 cm [114].   The compressor, shown in Fig-

ure 4.22(a), had 5 dB of loss, with 6 mW of average power exiting the grating pair.  The effi-

ciency of the gratings as a function of wavelength is shown in Figure 4.23.  The compressed

pulses were measured with a broadband low-dispersion autocorrelator, shown in Figure

4.22(b).  It consisted of two metallized beamsplitters, a speaker to dither the delay, a parabolic

mirror to focus light onto a detector, and a GaAs LED used as a two-photon absorption detec-

tor.  Figures 4.24 and 4.25 show a typical autocorrelation and spectrum.  Pulses were com-

pressed to 25 fs, and fitted with the PICASO phase retrieval algorithm [127].    The transform

limit of the spectrum was 16 fs, and the time-bandwidth product of our compressed pulses,

assuming a sech pulse envelope, was 0.49.  Higher order chirp compensation probably limits

the pulsewidth, as well as the roll-off in spectral efficiency of the gratings for wavelengths

shorter than 1500 nm.

Figure 4.22 (a) Grating compressor used to compress pulses from 2 cm of highly nonlinear bismuth-oxide fiber.
(b) Low dispersion broadband autocorrelator used to measure compressed pulses [125].
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Figure 4.23 Efficiency of 75 line/mm gratings, as a function of wavelength.

Figure 4.24 An interferometric autocorrelation of compressed pulses produced with 2 cm of fiber and a grating
compressor.  The PICASO phase retrieval algorithm was used to fit the data, and a pulsewidth of 25
fs is extracted. (Solid line: experimental result, black dots: retrieved autocorrelation.) [125]
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Figure 4.25 Spectrum corresponding to 25-fs compressed pulses.

A longer length of highly nonlinear bismuth-oxide fiber may be used if only broad

spectra are required for an application.  A spectrum produced from a 1-m length of highly

nonlinear bismuth-oxide fiber is shown in Figure 4.26.  The coupling loss is 4 dB, and the

fiber has 2 dB of loss.   The input excitation was 1540 nm and the maximum average output

power 34 mW, and the corresponding pulse energy, 0.41 nJ.    At this power, we estimate ana-

lytically an output pulsewidth is 80 ps.   The pulse was too long to measure in our ultrafast

autocorrelator. However, with the knowledge of the spectral 3-dB width and pulsewidth after

2 cm of fiber, we used the analytical formalism for the propagation of a chirped pulse through

the additional 98 cm as follows [75].

(4.5)

where T1 is the pulsewidth after propagation (1/e point for a Gaussian), T0 is the initial

pulse width (1/e point for a Gaussian), C is the chirp parameter, z is the propagation distance,

and β2, the second-order dispersion.  The chirp parameter can be determined from the follow-

ing relation
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(4.6)

where ∆ω is the spectral half-width at To (at 1/e intensity point).

The spectrum generated, from 1200 to >1700 nm, is very similar to that produced in

the 2-cm length, but the cladding modes are effectively suppressed with the longer 1-m length.

After 2 cm, the pulse broadens to 800 fs and the effect of SPM is greatly decreased.  Neverthe-

less, in the additional 98 cm, some additional spectral shaping is evidenced by the reduction of

the shoulders due to optical wavebreaking.  

The spectral broadening and pulse compression experiments described have all uti-

lized fiber with cleaved or polished ends.  However, it may be more convenient for some

applications to use connectorized and spliced nonlinear fiber.  The highly nonlinear fiber can

be spliced to single mode fiber with a splicing loss of ~1.76 dB/spice.  

Figure 4.26 Spectra as a function of input power produced in a 1-m length of fiber at an input wavelength of
1540 nm.  Average input powers and pulse energies were:  (a) 10 mW/0.12 nJ (b) 20 mW/0.24 nJ
(c) 34 mW/0.41 nJ [125]. 

∆ω =
+1 2 0 5

C

To

c h .

1300 1400 1500 1600 1700
-75

-70

-65

-60

-55

-50

-45

-40

-35

 

 

a

b

P
o

w
er

 (
d

B
)

Wavelength (nm)

c



BISMUTH-OXIDE FIBER 113

In conclusion, highly nonlinear bismuth-oxide fiber has been used to generate smooth

unstructured spectra at telecommunications wavelengths in very short lengths.  Pulses have

been compressed from 150 fs to 25 fs, using a 2-cm length of this fiber.  Broad, Gaussian-like

spectra, suitable for applications in medical imaging have been produced with a 1-m length of

this fiber.  A spliced length of this fiber was shown to produce continuum also.  Highly non-

linear solid-core bismuth oxide fiber is a promising tool for applications requiring broad spec-

tra and/or short pulses at telecommunications wavelengths.  Potential applications include

frequency metrology, spectroscopy, communications, characterization of broadband devices,

and medical imaging techniques such as optical coherence tomography.

4.6 Conclusion

Bismuth-oxide fiber is a newly developed fiber with applications in broadband ampli-

fication and spectral broadening at telecom wavelengths.  Bismuth-oxide amplifiers can pro-

vide continuous C- and L-band amplification unlike conventional silica-based EDFA’s.

Amplification in the L-band is more efficient than that of conventional silica-based EDFA’s.

The material composition of the bismuth-oxide-based glass host allows for higher doping with

erbium.  Thus gains of 20 dB are achievable in a 23-cm length of bismuth-oxide fiber, doped

with 6470 ppm of erbium, between 1535 - 1555 nm.  Gains of greater than 12 dB are mea-

sured between 1520 to 1600 nm.  A 55.6 cm length of bismuth-oxide erbium-doped fiber was

used as the gain medium in an L-band modelocked laser, producing 288-fs pulses at 1600 nm.

Undoped, highly nonlinear, bismuth-oxide fiber can be used for smooth supercontinuum gen-

eration and pulse compression at telecom wavelengths.  Supercontinuum with a full-width-

half-maximum of 170 nm was generated in a 2-cm length of fiber, and 150-fs pulses were

compressed to 25 fs.
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CHAPTER 5:  THIRD-ORDER NONLINEARITIES IN GE-
AS-SE-BASED GLASSES

5.1 Abstract

The third-order optical nonlinearities of Ge-As-Se-based glasses were studied.  The

glasses have high melting and glass transition temperatures and can be integrated with tradi-

tional compound oxide glasses into highly nonlinear, high-index-contrast fibers.  Two key

parameters of  the glasses: the nonlinear refractive index and two-photon absorption coeffi-

cient, were measured with z-scan and femtosecond pump-probe techniques at telecommunica-

tion wavelengths.  Nonlinearities as high as ~900 times that of silica were measured at 1540

nm, in Ge35As15Se50, with a glass transition temperature of 380°C.  Section 5.2 gives back-

ground on chalcogenide glasses and Section 5.3 discusses the experiments.  The chalcogenide

glasses were fabricated at Omniguide Corporation with collaborators W. King, M. Shurgalin,

and V. Flufygin and M. Soljačić (MIT/Omniguide).

5.2 Background

In the previous chapters, highly nonlinear fibers such as bismuth-oxide-based fiber

and microstructure fiber were discussed.  These fibers owe their high nonlinearity mainly to

their small effective areas, made possible by high-index-contrast.  An alternative approach

involves fiber and devices fabricated from materials with intrinsically high nonlinear refrac-
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tive index coefficients, such as chalcogenide glasses.  While optical telecommunications sys-

tems with bit rates as high as 40 Gb/s have been commercialized, the systems are by no means

'all-optical'.  Some key functions, such as switching, are still performed electronically.  In the

future, it is maybe expected that optical devices will supersede their electronic counterparts.

Nonlinear materials will play a key role in these developments.  

In materials, the optical Kerr effect causes a change in index of refraction that is pro-

portional to the optical intensity, I, and the nonlinear index coefficient, n2 (see Equation 3.10).

The strength of n2 is directly proportional to the third-order nonlinear susceptibility.  While

the Kerr effect is weak because it is a nonresonant effect, this also  produces an ultrafast time

response.  Thus, the optical Kerr effect can be utilized for  modelocking and nonlinear fiber or

devices.  In addition, an all-optical ultrafast switch with low switching energy can be designed

based on the Kerr effect.  To design such an all-optical switch, a Kerr material can be placed in

one arm of a Mach-Zender interferometer, causing an intensity-dependent phase shift.  Ulti-

mately, such a switch will be limited by TPA, which occurs when the photon energy is above

half-gap in the material.  If a switch is fabricated from a glass-based material, absorption tails

will lead to some TPA below half-gap.  This limits the maximum phase shift achievable.  For

such a switch, a figure of merit, n2/βλ [128], where n2 is the nonlinear refractive index, and β,

the two-photon absorption coefficient, can be defined to assess the material properties rele-

vant for efficient optical switching.  To achieve a nonlinear optical phase shift of π, necessary

for a Mach-Zender optical switch, with a nonlinear transmission loss of 20%, a figure of merit

of ~2 is required [129].  This figure of merit may not be the only applicable measure of the

feasibility of such a switch.  Depending on the regime of operation, it is possible that linear

losses could provide the ultimate limit on performance.

In communications systems, the nonlinearity of optical fiber, due, in part to the nonlin-

ear refractive index coefficient of silica glass, is often undesirable.  However, the nonlinearity

of standard silica used for telecom fiber, n2 = 2.6 x 10-20 m2/W, is too low to allow fabrication

of compact devices based on nonlinearities.  Nonlinearities several orders of magnitude

greater than silica at 1550 nm can be achieved in other materials such as semiconductors and

chalcogenide glasses [129].  Chalcogenide glasses, glasses fabricated with elements from

groups II, IV and VI of the periodic table, have been the subject of much research, with high

nonlinearities at 1550 nm  and transmission into the far infrared region [130][131][132].

Many different compositions fall under the chalcogenide family of glasses including As-Se,

Ge-Se, As-S-Se, Ge-Se-Te, Ge-Se-Sb, and Ge-As-S-Se.  There have been a number of studies

of the nonlinearity of chalcogenide glasses [129][130][131][132] as well as the fabrication of

fiber [133][134][135] and waveguides [136][137][138].  In particular, the Ge-As-Se chalco-
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genide system is of interest due to high nonlinearity, high refractive index (2.4-2.65), suitable

optical transmission at 1.55 µm and relatively broad glass formation region.  This glass family

also shows promise for fabrication into high-index-contrast highly nonlinear fiber for 1.55 µm

applications.   

 Chalcogenide glasses have much lower softening and melting temperatures (100-

400oC) than standard glasses such as fused silica (900-1100oC).  Standard fabrication tech-

niques cannot be used to make chalcogenide devices.  The low melting temperatures also

make it difficult to co-process chalcogenides with other glasses with lower indices and nonlin-

earities.  However, glasses in the Ge-As-Se family have glass transition temperatures in the

range of 150-390οC making them suitable for integration with low refractive index com-

pound-oxide glasses into high-index-contrast solid-core fiber.  Low-index-contrast highly

nonlinear chalcogenide fiber can be fabricated with a chalcogenide core and cladding

[133][134].  However, high-index-contrast fiber offers the advantages of smaller modal vol-

ume, higher nonlinearity and greater range of achievable dispersion.  While considerably

more complex than low-index-contrast chalcogenide fibers, high-index-contrast solid core

fibers offer perhaps a simpler alternative to 'holey' structures, in which air is used as the low-

index-contrast material.  Examples of these include photonic bandgap fiber [135] and micro-

structure chalcogenide fiber.   However, the fabrication of solid-core high-index-contrast fiber

does pose some challenges.   The chalcogenide glasses used in the fiber core must have a glass

transition and softening temperature compatible with that of lower index glasses used for the

cladding.  

5.3 Z-scan and pump-probe measurements of Ge-As-Se glasses

The glasses investigated in this research were specifically selected for their high non-

linearity and high glass transition temperatures ranging from 292oC to 380oC.  The glasses

investigated were: Ge33As12Se55 (commercially available as AMTIR-1, from Amorphous

Materials), Ge35As15Se50, Ge25As10Se65, and Ge22As20Se58 (commercially available as

GASIR1, from Umicore).  The glasses are found to have nonlinearities between 200x - 900x

that of silica, and figures of merit, n2/βλ, as high as 3.2 [139].  Table 5.1 lists some of the

common properties of Ge33As12Se55 (AMTIR-1) [140].
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The samples of Ge33As12Se55, Ge35As15Se50, and Ge25As10Se65, were prepared at

Omniguide Corporation as follows.  For each glass composition, 5N (99.999%) purity amor-

phous selenium shot, 7.5N (99.999995%) purity crystalline lump arsenic, and 6N (99.9999%)

purity single crystal germanium were batched into a fused quartz looped tube along with a

magnesium metal strip (4N purity).  A schematic of the quartz tube is shown in Figure 5.1.

The tube was placed into a two-level furnace, with the looped portion of the tube, containing

the As, Se and magnesium metal strip, in the hotter furnace zone.  Over ~12 hours, the As and

Se components melted and were distilled from the loop into the lower part of the tube contain-

ing the Ge.  During this process, the Mg strip getters any oxygen contaminants along with any

other non-volatile contaminants. After distillation, the lower portion of the tube was sealed,

creating the melt vessel, and the loop containing impurities was discarded [141].  The melt

vessel was placed into a rocking furnace at 900°C for 12 hours, homogenizing the glass melt.

The melt was then placed into a second furnace at the expected glass transition temperature.

This furnace was switched off, allowing the glass to cool slowly to room temperature. The

Table 5.1 Properties of Ge33As12Se55.

Characteristic Value

Density 4.4 g/cm3

Thermal Expansion 12x10-6/oC

Hardness (Knoop) 170

Rupture Modulus 2700 psi

Young’s Modulus 3.2x106 psi

Shear Modulus 1.3x106 psi

Poisson’s Ratio 0.27

Thermal Conductivity 6x10-4 cal/(cm-s-K)

Specific Heat 0.07 cal/(g-K)

Resistivity 2x1012 cm @ 100 
Hz

Glass Transition Tempera-
ture

362 oC

Index of Refraction (1.5 µm) 2.5469
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glass boules were cut into flat disks of about 3 mm thickness and the facets were ground par-

allel and polished to optical quality.  Samples of Ge33As12Se55 prepared in this manner were

found to have similar n2, β, and bandgap energy to commercial samples purchased from

Amorphous Materials.  The sample of Ge22As20Se58, a 3 mm thick sample with polished par-

allel faces, was purchased from Umicore.

Figure 5.1 Looped quartz tube used to fabricate chalcogenide glasses from raw ingredients.  Courtesy of W.
King.

Linear transmission measurements were performed to characterize the optical bandgap

of the samples.  A spectrophotometer was used, in which a white light source was passed

through the samples at normal incidence.  Behind the samples a spectrometer scanned, and

collected, transmission information versus wavelength.  The signal was compared to the trans-

mission through an identical blank reference compartment.  By taking the ratio of the signal to

the reference, one can determine the absolute transmission of the glasses versus wavelength.

Because the chalcogenide glasses studied were amorphous, they did not have a sharp absorp-

tion edge.  Thus, the point at which the absorption changed from a quadratic dependence on

energy to an exponential dependence on energy (Urbach tail region [142]) was defined as the

bandedge.  In this region, the absorption obeys the relation:
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(5.1)

where α(ω) is the absorption coefficient as a function of frequency, Eg, the energy gap,

hω/2π, the energy of the incident photons, and Eu, a measure of the steepness of the absorp-

tion edge [143].  A typical value of the absorption coefficient, α(Eg), at this point is 1000

cm-1 [129] and was used here for the definition of the optical bandgap.    Fits of the data to an

exponential in the Urbach tail region yield the bandgap.  The absorption coefficient is related

to the linear transmission of a sample as follows:

(5.2)

where T is the transmission and L, the sample length.  A typical measurement is shown

in Figure 5.2.

Figure 5.2 Typical linear transmission measurement of Ge35As15Se50.  From this measurement, the bandedge
was determined to be 639 nm.

Z-scan and pump-probe measurements were used to characterize the nonlinear refrac-

tive index (n2) and two-photon absorption (β) coefficients of these glasses.   The z-scan tech-

α ω α ω( ) ( ) ( )/= − −E eg
E Eg uh

α = ln( ) /T L
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nique is a simple technique allowing the measurement of the change in phase caused by n2

and the change in absorption caused by TPA.  In the z-scan technique [144], a collimated

Gaussian beam is focused onto a sample.  The sample is translated through the beam focus

and the transmission through an aperture behind the sample is measured.  The nonlinear

refractive index, n2, causes a transverse variation of the index across the sample.  Thus, the

sample acts as a lens with an intensity-dependent focal length.  When the sample is placed at

the focus of the Gaussian beam, there is no change in transmission through the aperture.

When the sample is moved further away from the focusing lens, in the case of a positive non-

linearity, it collimates the beam, increasing the transmission through the aperture.  When the

sample is moved closer to the focusing lens, it causes the beam to diverge (in the case of posi-

tive nonlinearity), and the transmission through the aperture decreases.  Simply removing the

aperture allows only the absorption caused by two-photon absorption to be measured.   A

schematic of the z-scan method is shown in Figure 5.3.

Figure 5.3 Schematic of the z-scan method.

Analytical expressions have been developed, allowing one to extract the value of n2

and β from the z-scan traces.  The data in these studies was fitted using the simplified expres-

sions for open and closed aperture scans below [144][145].  
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where β is the two-photon absorption coefficient; Io, the peak on-axis intensity; L, the

sample length; x = z/zo, where z is distance and zo, the confocal parameter defined as

   (5.5)

 with ωo defined as the beam waist; S, the aperture transmission; and ∆φo the time-

averaged peak-on-axis phase change defined as 

(5.6)

The expression for the open aperture scan assumes a Gaussian pulse shape.  These

expressions are valid for small phase shifts ∆φ << 1.  Otherwise, one must use the exact for-

mulas in  [144].

Figure 5.4 shows the experimental setup.  The z-scan formalism assumes a Gaussian

beam.  To ensure this, the OPO output beam was coupled through 3 cm of standard single

mode silica fiber terminated with a collimator (Corning SMF-28) for spatial filtering.  The 3

cm of SMF does not chirp the pulse significantly. Even at average powers as high as 150 mW,

both the spectrum and pulsewidth are within 20% of the transform limit for a Gaussian pulse.

However, with such short pulses at such high power, 3 cm is likely to be close to the maxi-

mum length of fiber that can be tolerated without distortion.  After propagation through the

SMF, the beam is recollimated and focused onto the sample, with a 50 mm lens.  The optical

length of the sample should be smaller than that of the beam's confocal parameter for the anal-

ysis above to be valid.  Thus, with 3 mm sample thickness, we are limited in spot size by the

above constraint.  To measure n2, a 200 µm aperture is placed after the sample (closed-aper-

ture scan), and a lens images the apertured spot onto a large area Ge photodiode, connected to

a lockin amplifier and a computer.  By simply removing the aperture, the two-photon absorp-

tion coefficient can be measured (open-aperture scan).  To account for inhomogeneities in the

samples, traces at attenuated intensities were also taken and subtracted from the high intensity

scans.    The z-scan setup was calibrated with samples of Si, GaAs, and As2Se3, whose n2 and

β are known from the literature [146][147].
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Figure 5.4 Experimental setup for z-scan measurements.

Z-scan is usually performed with lasers at low repetition rates (kHz), so that thermal

lensing, which produces similar effects to that of self-focusing, is not a concern.  With the 82

MHz laser used in this experiment, thermal lensing effects can occur.  To prevent this, one

must lower the average power.  Pulse picking with an acousto-optic modulator is one alter-

ative; another is performing the z-scan experiment with pulses of two different widths.  Ther-

mal effects are only sensitive to average power, not peak power.  With long pulses, the signal

will be dominated by thermal lensing effects.  However, with short pulses, effects from both

thermal lensing and nonlinearity will be observed.  By comparing the two results, one can

determine if there are any significant thermal lensing effects in the sample.  In our study, z-

scan measurements were performed with 150-fs pulses and 1.5 ps pulses.  The 1.5 ps pulses

were produced by replacing the 3 cm of SMF with 50 cm of dispersion compensating fiber

(DCF), with a dispersion of -74 ps/nm/km.    To ensure that the spot size incident on the sam-

ple was the same for both 1.5-ps and 150-fs pulses, identical collimators were spliced on to

the ends of both fibers. 

Because the Ge-As-Se samples had small TPA coefficients, it was difficult to accu-

rately determine their values with z-scan.  A pump-probe technique, which has higher sensi-

tivity than that of z-scan, was used to verify some of these values.   In the z-scan technique, a

single beam is focused through a sample and onto a detector.  As the sample is translated,

small changes in the DC signal on the detector are observed.  The sensitivity of z-scan is lim-

ited by linear scatter from the sample surface and the signal-to-noise ratio of the detector is

degraded by the large unchanging DC background.  In pump-probe, two beams are focused

onto a sample and only probe photons that have interacted with modulated pump photons are

detected.  Thus, in pump-probe, one detects a small signal, indicative only of the change in the

sample, enhancing the sensitivity.  However, determination of the fluence incident on the sam-
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ple in pump-probe can be more difficult than that of z-scan, since one needs to account for the

overlap of the pump and probe beams on the sample.  If the overlap of pump and probe is not

perfect, it will lower the effective fluence on the sample.  The pump-probe measurements on

the chalcogenide samples were performed with a setup similar to that described in Chapter 2.

A schematic of the setup used for these measurements is shown in Figure 5.5.  The induced

changes in absorption observed are dominated by two-photon absorption because the laser

wavelength, 1540 nm, is well below the bandgap.  With knowledge of the incident intensity,

the two-photon absorption coefficient can be determined from the data.  The fluence in the

pump-probe setup was calibrated with a sample of known TPA.  Measurements were taken at

several different fluences to ensure that no other nonlinear effects appeared at the highest flu-

ences.  To determine the TPA coefficients of the chalcogenide glasses, a combination of

pump-probe and z-scan measurements were used.

Figure 5.5 Schematic of pump-probe setup used to determine the TPA coefficients of the chalcogenide glasses.

Typical z-scan closed- and open-aperture traces are shown in Figures 5.6 and 5.7.  At

1540 nm, the nonlinear refractive index (n2) of Ge33As12Se55 was measured to be 15x10-18

m2/W +/- 25% and the two-photon absorption coefficient (β), 0.4 cm/GW +/- 25%.   Values of

n2 in the other materials investigated ranged from 6.0 to 24x10-18 m2/W, and that of β, from

0.4 to 0.5 cm/GW.   Fresnel losses on the front sample surface were included (~18% loss),

when determining incident intensity.  No evidence of thermal effects for any of the glasses can

be seen in the data.   Data was taken with intensities as high as 170 MW/cm2, and no damage
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to the samples was observed.   A typical pump-probe trace on  Ge35As15Se50 is shown in Fig-

ure 5.8.

Figure 5.6 Closed-aperture scan of Ge33As12Se55 [139].

Important characteristics of the chalcogenide glasses investigated such as nonlinearity,

two-photon absorption coefficient, bandedge, glass transition temperature and figure of merit,

are summarized in Table 5.2.   At 1540 nm, the value of n2 measured ranges from 200 to 900

times that of fused silica, 2.6 x 10-20 m2/W.   While As2Se3, a previously characterized chalco-

genide glass, also has a nonlinearity 900 times that of silica, its glass transition temperature is

quite low, 188°C.  Upon first examination of Table 5.2, trends may not be apparent.   With

increasing Ge content, the bandgap energy of the glasses decreased and the nonlinearity and

glass transition temperature increased.  The two-photon absorption coefficient increased also,

but slowly.  Thus, with increasing Ge content, the figure of merit increases, making the

glasses more suitable for fiber-based applications.  Unfortunately, the Ge-As-Se glasses

become more prone to crystallization with high Ge content [148].  The nonlinear figure of

merit, n2/βλ, was approximately 3.2 for Ge35As15Se50, the highest value reported for glasses

that can be codrawn into fiber with low index glasses (i.e. glasses with relatively high melting

temperatures). 
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Figure 5.7 Open-aperture scan of Ge33As12Se55 [139].

Figure 5.8 Typical pump-probe trace on Ge35As15Se50.
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The glasses listed in Table 5.2 have only small compositional variation, but these dif-

ferences have a large effect on the value of n2.  In contrast to the fourfold variation with com-

position of the nonlinear refractive index coefficient, the two-photon absorption coefficient

does not vary much at all.   Resonant effects cause both the two-photon absorption and nonlin-

ear index coefficient to increase as the wavelength of operation approaches half-bandgap.

Because the glasses exhibit an Urbach absorption tail below the bandgap, n2 increases faster

than β below half-gap, leading to a maximum in the figure of merit slightly below the half-

bandgap [130].

As the composition of binary chalcogenide glasses such as GeSe is varied, the effects

on the nonlinearity of the material is relatively well-understood [131][132]. The ‘lone electron

pair’ approach is used to explain these correlations.  According to this theory, the nonlinearity

of the chalcogenide glasses increases with the concentration of the highly polarizable lone

electron pairs [131][132].  However, this model does not satisfactorily explain the variations

of the non-linear response we have observed.  For example, in this study, the glass with the

lowest number of lone electron pairs, Ge35As15Se50, had the highest value of n2. We have also

observed an unexpected rise of nonlinear refractive index for compositions in which part of

selenium is substituted with arsenic: compositions Ge22As20Se58 and Ge33As12Se55 versus

composition Ge25As10Se65   (Table 5.2).  The trends we observe  are similar to that made by

Quémard et. al. [132] for the same family of chalcogenide glasses.  Apparently, the contribu-

tion to polarizability from the lone electron pairs is not the predominant factor influencing the

nonlinear properties of ternary Ge-As-Se glasses.  Additional factors, such as glass structure

Table 5.2  Properties of Ge-As-Se glasses.

Material
Bandedge

(nm)
+/- 4%

n2 x 10-18 
m2/W 

+/- 25%

β (cm/GW)
+/- 25%

Glass 
Transition 

Temp (oC)

Softening 
Transition 

Temp (oC)

Figure of 
Merit
n2/βλ

Ge35As15Se50 639 24.6 0.5 380 474 3.2

Ge33As12Se55 600 15 0.4 362 476 2.4

Ge22As20Se58 614 9.2 0.4 292 unknown 1.5

Ge25As10Se65 585 6.0 0.4 305 436 1.0
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or density, the presence of unpaired electrons[148], and the presence of defect states must be

taken into account.  While the structure of the amorphous chalcogenide glasses can be viewed

as an assembly of different structural units, such as GeSe4 and AsSe3, the situation is further

complicated  by the opportunity for both homopolar (e.g., Ge-Ge) and heteropolar bonds (ex.

Ge-Se).  This leads to a variety of 'defect' gap states, which can contribute to the nonlinearity.

For the glasses reported herein, the smallest nonlinearity is seen for Ge25As10Se65, which is

expected to be closest to the stoichiometric ideal, highlighting the importance of 'defect' gap

states. 

5.4 Conclusion

In summary, we have investigated several Ge-As-Se chalcogenide glasses with high

melting temperatures suitable for high-index contrast, high nonlinearity fiber.  Ge35As15Se50

has a nonlinearity of 24 x 10-18 m2/W, and a figure of merit of 3.2.  Such materials show great

potential for telecom applications that might use highly nonlinear, high-index-contrast fiber.
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CHAPTER 6:  CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this thesis, four major topics of research were presented: semiconductor saturable

Bragg reflectors for a variety of ultrafast solid-state and fiber lasers, microstructure fiber for

four-wave mixing, bismuth-oxide fiber for amplification and supercontinuum generation, and

Ge-As-Se glasses with high nonlinearities for highly nonlinear fiber or integrated optical

switches.  The third-order nonlinearities in these devices and materials have been character-

ized to assess their suitable for applications in or with ultrafast lasers.  The author hopes that

this work will be useful for other researchers in the field of ultrafast optics.

Advances towards ultrabroadband saturable Bragg reflector design, fabrication, and

implementation in femtosecond solid-state lasers have been presented both in III/V and Si-

based materials.  The III/V structures were fabricated using a modification of a process com-

monly used for VCSELs, the oxidation of AlAs; and the Si-based structures were fabricated

with standard Si-CMOS compatible techniques.  In contrast to other previously reported solu-

tions, these structures were robust and stable, and the fabrication less complex.  Self-starting

femtosecond pulse operation has been achieved with broadband SBRs in Cr4+:YAG, Cr:For-

sterite, Ti:Sapphire, Er:glass and bismuth-oxide erbium-doped fiber lasers.  These advances

should allow the development of turnkey ultrafast laser systems with uses in frequency

metrology, ultrafast spectroscopy, medical imaging, and other applications of nonlinear

optics.  
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Ultrafast lasers are useful for their short pulses, broad spectra, and high peak powers,

enabling nonlinear experiments.  However, highly nonlinear fiber can be used to easily gener-

ate broad spectra.  Microstructure fiber was used, not for continuum generation, but instead to

generate new frequency components through four-wave mixing.  In a tapered microstructure

fiber, highly nondegenerate four-wave mixing with a frequency shift of 6000 cm-1 in a length

of 1.4 cm was achieved.  These experiments were really a proof of concept, showcasing the

fact that with increasing nonlinearity and unique dispersion profiles, microstructure fibers are

an important newly developed medium for nonlinear optics. 

Broadband amplification and controlled supercontinuum generation have been demon-

strated with bismuth-oxide fiber.  Bismuth-oxide fiber amplifiers may be a candidate for con-

tinuous C- and L-band amplification and laser sources in WDM communication systems.

Amplifier efficiency in the L-band is significantly higher than that of conventional erbium-

doped amplifiers.  High doping concentrations of erbium allow for short lengths of fiber to be

used, enabling the construction of compact fiber amplifiers and lasers.  Amplification with a

22.7 cm piece of fiber has been demonstrated between 1520-1600 nm.  Undoped, highly non-

linear bismuth-oxide fiber can be used for controlled supercontinuum generation.  Fibers with

some of the highest nonlinearities reported, 1100 (W-km)-1 have been fabricated.  While the

nonlinear index coefficient of bismuth-oxide glass is two orders of magnitude larger than

fused silica, chalcogenide glasses have even higher nonlinear index coefficients.  However,

bismuth-oxide glass is a nice stepping stone between fused silica and chalcogenides.  Fused

silica’s nonlinearities are too low to allow the fabrication of compact devices, while chalco-

genide glasses are extremely difficult to process due to their softness, brittleness, and low

melting temperatures.  A short length of nonlinear bismuth-oxide fiber, 2 cm, has been used to

generate spectral broadening of a 20 nm FWHM spectra to a 200 nm FWHM, and subse-

quently to compress 150-fs pulses to 25 fs.  Applications are similar to those of SBRs: fre-

quency metrology, medical imaging, and ultrafast spectroscopy.

This brings us to the final topic of this thesis: chalcogenides.  Chalcogenide glasses

have been the subject of extensive research for many years.  They were first known for their

transmission in the infrared, but more recently,  have been the subject of research for fibers

and devices that utilize their high nonlinearity.  While there are still significant fabrication

hurdles to be overcome, progress is being made [138].  The addition of Ge to As-Se-based

chalcogenide glasses increases the glass transition temperature without degrading the nonlin-

earity.  For Ge35As15Se50, nonlinearities 900 times that of silica have been measured, with a

figure of merit of 3.2.  These glasses show promise for highly nonlinear fiber and integrated

all-optical switching.
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 In summary, a variety of devices and materials for use in or with ultrafast lasers have

been studied.  Saturable Bragg reflectors have been demonstrated in a variety of self-starting

laser systems producing femtosecond pulses.  Microstructure fiber has been used to demon-

strate highly non-degenerate four-wave mixing.  Broadband amplification and an L-band laser

have been demonstrated with erbium-doped bismuth-oxide fiber.  Highly nonlinear bismuth-

oxide fiber has been used for pulse compression and supercontinuum generation.  Finally,

chalcogenides glasses with nonlinearities almost three orders of magnitude larger than fused

silica have been studied.  

6.2 Future work

Research never stops, and so there is always more to be done.  This seems to be in part

the reason for the average time of an MIT Ph.D. thesis: 6 years.  With the four topics dis-

cussed, I will outline improvements and future experiments that can be performed.  The work

to be performed is collaborative - not all of the suggested improvements can be implemented

solely by the Ippen research group.

To more fully understand the dynamics of the semiconductor saturable Bragg reflec-

tors, further ultrafast pump-probe spectroscopy could be performed.  With ultrafast pulses, the

time constant of the carrier-carrier scattering that is responsible for the fast time constant in

SBRs could be resolved.   This ultrafast time constant plays a major role in pulse shaping

especially inside purely saturable-absorber modelocked lasers.  The dynamics in the Si/Ge

absorber, in particular, appear to be very fast.  More information about the dynamics of this

device could be extracted with ultrafast pump-probe measurements.  A device should be fabri-

cated with a thicker Ge layer.  This will probably improve laser performance and will enable a

more careful characterization study of the device with pump probe.

Additionally, heterodyne pump-probe could be performed on all the structures

described.  The pump-probe setup in this thesis could only measure changes in the absorption,

not changes in index.  Heterodyne pump-probe will allow us measure index changes and

determine what role they play in laser modelocking.   Complete studies of the large area III/V

oxidized SBRs should be performed.  Currently, pump-probe has only been performed at 1550

nm.  This should be done at 1300 nm and 800 nm, so that the characteristics of the absorbers

at different wavelengths can be compared.  The SBRs should be systematically tested in

lasers, including the Cr4+:YAG, and measurements of the nonsaturable loss should be per-

formed.
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The efficiency of the highly nondegenerate four-wave mixing demonstrated in micro-

structure fiber could be improved with the design of an improved fiber.  A redesigned fiber

should maximize the interaction length of signal and pump (preferably to the full length of the

18 cm taper).  The nonlinearity could be enhanced with the use of a different materials system

also.

Research on bismuth-oxide fiber should focus on several issues.  Excited-state absorp-

tion limits the efficiency and power output of the amplifiers.  While the efficiency of these

amplifiers is greater than that of conventional amplifiers in the L-band, it is below conven-

tional amplifiers in the C-band.  By improving this, bismuth-oxide amplifiers could become

very attractive for telecommunications applications.  The highly nonlinear bismuth-oxide

fiber was quite fragile, and difficult to prepare, due a core and cladding asymmetrically placed

in an outer jacket.  Additionally, it was difficult to suppress unwanted cladding modes.  The

high normal dispersion of the fiber placed the ultimate limit on spectral broadening, while

controlling the supercontinuum generation.  Fiber, which still has normal dispersion, but less

of it, will probably enable even broader supercontinuum.

Devices and fibers should be fabricated out of chalcogenide glasses.  The nonlineari-

ties measured are almost three orders of magnitude larger than that of fused silica.  The real

advantage of chalcogenides may be in the fabrication of devices for integrated optics such as

switches.  

While this a long list of future work, the author hopes that the experiments described

in this thesis will make a contribution to the field of ultrafast optics. 
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APPENDIX A:  SATURABLE ABSORBER SAMPLE 
DETAILS

A.1 Abstract

Details of the saturable absorbers fabricated for this thesis are listed below.  For each

structure, I have listed the growth number (record locator for the fabrication group), the fabri-

cation location, the exact structure layer by layer, and summarized characterization results

succinctly.  
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A.2  Saturable absorber structures

Table A.1  SBR structures: name and layer thicknesses.  Structures are listed from the surface downwards.

Growth 
number

Fabrication 
Location/Fabricator

Structure

R577 (‘SBR I’) Kolodziejski (Koontz) 15 nm InP
6 nm In0.5Ga0.5As

7 nm InP
6 nm In0.5Ga0.5As

210 nm InP
tunable 1.55 µm mirror OR

MOCVD 22 pairs: 
115 nm GaAs/133 nm AlAs

R579 (‘SBR II’) Kolodziejski (Koontz) 15 nm InP
5.5 nm In0.5Ga0.5As

7 nm InP
5.5 nm In0.5Ga0.5As

210 nm InP
tunable 1.55 µm mirror OR

MOCVD 22 pairs: 
115 nm GaAs/133 nm AlAs

R581 (‘SBR III’) Kolodziejski (Koontz) 112 nm InP
6.6 nm In0.5Ga0.5As

7 nm InP
6.6 nm In0.5Ga0.5As

7 nm InP
112.2 nm InP

tunable 1.55 µm mirror OR
MOCVD 22 pairs: 

115 nm GaAs/133 nm AlAs
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R582 (‘SBR IV’) Kolodziejski (Koontz) 98.6 nm InP
6.6 nm In0.5Ga0.5As

7 nm InP
6.6 nm In0.5Ga0.5As

7 nm InP
6.6 nm In0.5Ga0.5As

7 nm InP
6.6 nm In0.5Ga0.5As

98.6 nm InP
tunable 1.55 µm mirror OR

MOCVD 22 pairs: 
115 nm GaAs/133 nm AlAs

R730 (‘SBR V’) Kolodziejski (Koontz)
*also overgrown with 

20 λ/2 layer of InP 
(growth no. R787)
*additionally, some 
pieces proton bom-
barded with 40 keV 

1013, 1014, 1015 pro-

tons/cm2

70 nm InP
10 nm In0.5Ga0.5As

7 nm InP
10 nm In0.5Ga0.5As

7 nm InP
10 nm In0.5Ga0.5As

7 nm InP
10 nm In0.5Ga0.5As

7 nm InP
10 nm In0.5Ga0.5As

7 nm InP
10 nm In0.5Ga0.5As

70 nm InP
MOCVD 22 pairs: 

115 nm GaAs/133 nm AlAs

R749 (‘SBR VI’) Kolodziejski (Koontz)
*also overgrown with 

20 λ/2 layer of InP 
(growth no. R787)
*additionally, some 
pieces proton bom-
barded with 40 keV 

1013, 1014, 1015 pro-

tons/cm2

64.4 nm InP
102 nm In0.5Ga0.5As

71 nm InP
MOCVD 22 pairs: 

115 nm GaAs/133 nm AlAs

Table A.1  SBR structures: name and layer thicknesses.  Structures are listed from the surface downwards.

Growth 
number

Fabrication 
Location/Fabricator

Structure
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R885 Kolodziejski
(Petrich/Erchak)

*post-growth 
oxidation to convert 

AlAs->AlxOy

111 nm InP
10 nm In0.5Ga0.5As

111 nm InP
7 pairs:

106 nm GaAs/240 nm AlAs

R921 Kolodziejski
(Petrich)

73.5 nm InP
6 pairs: 

10 nm In0.5Ga0.5As/7 nm InP
147 nm InP

6 pairs: 
10 nm In0.5Ga0.5As/7 nm InP

73.5 nm InP
MOCVD 22 pairs: 

115 nm GaAs/133 nm AlAs

R968 Kolodziejski 
(Petrich/Tandon)

*post-growth 
oxidation to convert 

AlAs->AlxOy

102 nm GaAs
10 nm In0.5Ga0.5As

102 nm GaAs
7 pairs:

111 nm Al0.3Ga0.7As/240 nm AlAs

R971 Kolodziejski 
(Petrich/Tandon)

*post-growth 
oxidation to convert 

AlAs->AlxOy

109 nm InP
10 nm In0.5Ga0.5As

109 nm InP
7 pairs:

111 nm Al0.3Ga0.7As/240 nm AlAs

R981 Kolodziejski 
(Petrich/Tandon)

*post-growth 
oxidation to convert 

AlAs->AlxOy
*additionally, some 
pieces proton bom-
barded with 40 keV 

1014 protons/cm2

68.4 nm InP
6 pairs:

10 nm In0.5Ga0.5As/ 7 nm InP
68.4 nm InP

7 pairs: 
119 nm Al0.3Ga0.7As/259 nm AlAs

119 nm Al0.3Ga0.7As

Table A.1  SBR structures: name and layer thicknesses.  Structures are listed from the surface downwards.

Growth 
number

Fabrication 
Location/Fabricator

Structure
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R1014 Kolodziejski
(Petrich/Tandon)

*post-growth 
oxidation to convert 

AlAs->AlxOy

68.4nm InP
    6 pairs:

    10nm In0.5Ga0.5As/7nm InP
68.4nm InP

7 pairs:
  119nm Al0.3Ga0.7As/259nm AlAs

119nm Al0.3Ga0.7As

R1021 Kolodziejski 
(Petrich/Tandon)

*post-growth 
oxidation to convert 

AlAs->AlxOy

50 nm GaAs
6 pair:

12 nm In0.5Ga0.5As/9 nm GaAs
50 nm GaAs

7 pairs:
119 nm Al0.3Ga0.7As/259 nm AlAs

119 nm Al0.3Ga0.7As

R1023 Kolodziejski 
(Petrich/Tandon)

*post-growth 
oxidation to convert 

AlAs->AlxOy

109 nm InP
10nm In0.5Ga0.5As

109 nm InP
7 pairs:

111 nm Al0.3Ga0.7As/240 nm AlAs
111 nm Al0.3Ga0.7As

R1027 Kolodziejski 
(Petrich/Tandon)

*post-growth 
oxidation to convert 

AlAs->AlxOy

67 nm InP
100 nm In0.5Ga0.5As

67 nm InP
7 pairs:

119 nm Al0.3Ga0.7As/259 nm AlAs

SOI-PBG3
(Si/Ge absorber)

Kimerling 
(Akiyama/Liu)

70 nm poly-Si
30 nm SiO2
40 nm Ge

196 nm SOI (c-Si)
5 pairs:

244 nm SiO2/100 nm poly-Si
244 nm SiO2

600 µm bonded Si-wafer

Table A.1  SBR structures: name and layer thicknesses.  Structures are listed from the surface downwards.

Growth 
number

Fabrication 
Location/Fabricator

Structure
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Table A.2 Additional details about the SBR structures listed in Table Table A.1.  AR= antireflection-coating, Res= resonant-
coating, AR/HR=antireflection-coating (1550nm)/ high-reflection-coating (980 nm).

Growth 
No.

Intended
Laser Ref. PL

Mod. 
Depth/

Recovery 
time

Coatings
Laser

Results

R577 Cr4+:YAG 
laser

1450 nm 0.4% @ 1450 
nm

150 ps

none

R579 Cr4+:YAG 
laser

1490 nm 0.6% @ 1470 
nm

100 ps

none

R581 Er-fiber 
laser

[26] 1547 nm Res:
213 nm Al2O3

117 nm Si
213 nm Al2O3

117 nm Si
416 nm Al2O3

----------------
AR (1550 nm)
λ/4 Al2O3

------------------
AR/HR:

AR 1550 nm
HR 980 nm

306 nm Al2O3 

444 nm TiO2

λ/8 950 nm Si
λ/4 950 nm 

Al2O3

λ/4 950 nm Si
λ/4 950 nm 

Al2O3

λ/8 950 nm Si
λ/4 1550 nm 

TiO2

R582 Er-fiber 
laser, Er:Yb 
waveguide 

laser

[31][33][36] 1530 nm 2%@1540 
nm, AR

14%@1540 
nm, Res

AR, Res 
coatings of 

R581

1 ps pulses 
with Er:Yb 
waveguide
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R730 Er-fiber 
laser

[29][110] 1650 nm 3% @1540 nm 
(nonAR)

6%@1540 nm 
(AR)
40 ps 

non-proton 
bombarded

AR 
λ/4 Al2O3

288 fs 
pulses at 
1600 nm 

(L-band bis-
muth-oxide 

laser)

R749 Er-fiber 
laser

[29][36] 1580 nm 3% @1540 nm 
(nonAR)

6%@1540 nm 
(AR)
40 ps 

non-proton 
bombarded

AR 
λ/4 Al2O3

1 ps pulses 
with Er:Yb 
waveguide 

laser

R921 Er:Yb 
waveguide 

laser

[38] 1620 nm 7%@ 1540 nm 
(no coating)
16%@1540 

nm (AR)
18%@1560 

nm (Res)
60 ps

AR λ/4 HfO2

Resonant:
288 nm SiO2 

119 nm Si
577 nm SiO2

1-30 ps 
pulse from 

Er:Yb 
waveguide 

laser

R885 Cr4+:YAG 
laser

[59] 1540 nm 0.3%@
1540nm

40 ps

none 35 fs from 

Cr4+:YAG

R968 Cr4+:YAG 
laser

too strained 
to see pl

0.3%@
1540nm

12 ps

none

R971 Cr4+:YAG 
laser

1525 nm 0.3%@
1540nm
>20 ps

none

Table A.2 Additional details about the SBR structures listed in Table Table A.1.  AR= antireflection-coating, Res= resonant-
coating, AR/HR=antireflection-coating (1550nm)/ high-reflection-coating (980 nm).

Growth 
No.

Intended
Laser Ref. PL

Mod. 
Depth/

Recovery 
time

Coatings
Laser

Results
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R981 bismuth-
oxide er-

doped fiber 
laser

[69][63] 1550 nm 1.3%@
1540 nm 

40 ps

AR
λ/4 Al2O3

155 fs from 
bismuth-

oxide 
erbium-

doped fiber 
laser

R1014 bismuth-
oxide er-

doped fiber 
laser

1525 nm none

R1021 bismuth-
oxide er-

doped fiber 
laser

too strained 
to see pl

none

R1023 Cr4+:YAG 
laser

1400 nm none per-
formed - 
bandedge 

too short for 

Cr4+:YAG

none

R1027 ultrafast 
pump-probe

3.25%@
1540 nm

none

SOI-PBG3
(Si/Ge 

absorber)

Er:glass 
laser,  

Cr4+:YAG 
laser

[70] 0.13%@15
40 nm
<1 ps

none 220 fs from 
Er:glass 

laser

Table A.2 Additional details about the SBR structures listed in Table Table A.1.  AR= antireflection-coating, Res= resonant-
coating, AR/HR=antireflection-coating (1550nm)/ high-reflection-coating (980 nm).

Growth 
No.

Intended
Laser Ref. PL

Mod. 
Depth/

Recovery 
time

Coatings
Laser

Results
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APPENDIX B:  PULSE COMPRESSION AND ULTRAFAST 
PUMP-PROBE

B.1 Abstract

In the experiments reported here, pulses have been compressed from 150-fs to 35-fs

extracavity.  A low-dispersion broadband autocorrelator/pump-probe setup was constructed.

Preliminary measurements of ultrafast pump-probe on broadband saturable absorbers will be

presented.  The fiber was designed and developed by T. Kato, Sumitomo Japan.  The broad-

band absorbers were fabricated by G. Petrich, S. Tandon, L. Kolodziejski, J. Liu, S. Akiyama,

F. Grawert, and L. Kimerling.  The experiments were performed in collaboration with H.

Shen, H. Sotobayashi, and A. Motamedi.

B.2 Background

In Chapter 2, saturable Bragg reflectors were discussed and numerous pump-probe

traces were plotted.  The different absorbers all have a bitemporal response: a fast component

due to carrier-carrier scattering (< 300 fs) and a slow component due to recombination (ps -

ns).  When pulses are produced from pure saturable absorber modelocking, this fast compo-

nent plays a major role in pulse shaping.  However, the OPO which was used to characterize

many of these absorbers produces 150-fs pulses, too long to resolve this fast time constant.  
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There are not many studies of the relaxation time of carrier-carrier scattering at 1550

nm as short pulses at this wavelength (sub-100-fs) are difficult to achieve.  The ultrafast

dynamics of GaAs/AlGaAs materials systems have been studied with the aid of colliding-

pulse mode-locked dye lasers [149] and Kerr lens modelocked Ti:sapphire lasers [150][151].

Hall et. al  [152] investigated ultrafast dynamics with a pump-probe heterodyne technique in

1.5 µm semiconductor optical lasers and amplifiers, extracting an ultrafast time constant of

150 fs, on the order of the color-center laser pulses used.  Ogawa et. al. extracted a 100-fs car-

rier-carrier scattering time in an InP/InGaAs structure, using 150-fs optical parametric oscilla-

tor pulses [153].   

B.3 Pulse compression and preliminary ultrafast pump-probe results

Short pulses at 1550 nm can be produced through extracavity compression.  Several

pulse compression techniques exist including soliton compression and fiber-grating compres-

sion.  In soliton compression, pulses propagate through an anomalous dispersion fiber.  The

spectrum broadens, while the pulse is compressed through soliton effects.  Using this tech-

nique, 1-ps pulses were compressed to 20 fs at 1550 nm [122].  However, soliton compressors

often suffer from poor pulse quality [75].  An alternative is the fiber-grating compressor.

Highly nonlinear normal dispersion fiber is used to broaden the spectrum.  The normal disper-

sion causes the pulse to broaden also, but has the beneficial effect of linearizing the chirp

acquired by the pulse.  This chirp can be easily compensated with a standard grating compres-

sor (see Figure 4.22 for example) [114].

In this research, a fiber-grating compressor was used to compress the 150-fs OPO

pulses.  One meter of highly nonlinear fiber from Sumitomo was used (Sumitomo fiber

031512AA-5-1).  It had a second order dispersion of 5.4 ps2/km, a third order dispersion of -

0.03 ps3/km, a mode field diameter of 5.6 µm, an effective area 24 µm2, an attenuation 0.22

dB/km and a cutoff wavelength of 943 nm (all values at 1550 nm).   Simulations using the

split-step Fourier method to solve the nonlinear Schroedinger equation for pulse propagation

through this fiber were performed.   A simulation and experimental spectra are shown in Fig-

ure B.1.  Good agreement is observed between theory and measurements.
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Figure B.1 Simulated (grey) and measured (black) spectra from 1 m of Sumitomo fiber, with an input excita-
tion at 1540 nm with an average power of 70 mW.  

The OPO light passes through an isolator, and is focused with an aspheric lens into the

fiber.  A coupling efficiency of 67% was achieved.  Another aspheric lens collimates the out-

put, which is sent to an optical spectrum analyzer, grating compressor, or autocorrelator.  Fig-

ure B.2 shows the spectral broadening achieved as a function of input power.  Table B.1 gives

the output pulsewidth and spectral width, as a function of input power.  After the fiber, the

light is sent to a grating compressor consisting of a pair of parallel gratings separated by 7.0

cm, with 75 line/mm ruling.  The compressor is similar to that shown in Figure 4.22.  The dis-

persion of the compressor exactly compensates the second-order dispersion of the fiber, but

the achievable compressed pulsewidth is limited by the mismatch in third-order dispersion

between the compressor and the fiber (+1.35 x 104 fs3, compressor versus -3 x 104 fs3, fiber).  
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Figure B.2 Output spectrum versus input power for 1 m of highly nonlinear fiber from Sumitomo.  The input
excitation is 150-fs pulses centered at 1540 nm.  Average input powers were: (a) 10 mW (b) 30 mW
(c) 50 mW (d) 70 mW (e) 100 mW.

 

A broadband low dispersion pump-probe setup is used to measure the pulsewidth and

perform pump-probe experiments.  A schematic of the setup is shown in Figure B.3.  Light

impinges on a 3 mm thick wedge of CaF2.  A Fresnel reflection from the front surface is used

as the probe beam; the pump passes through the wedge.  The pump passes through a mechan-

ical chopper and a delay stage.  The probe passes through a broadband half-wave plate.  A

Table B.1   Input power versus spectral width, pulsewidth, and Fourier limit of spectrum.

Input Power (mW)
Output pulsewidth 

(fs)
Spectrum FWHM 

(nm)
Fourier limit of 
spectrum (fs)

100 723 150 21

70 602 110 26

50 510 100 31

30 422 70 41

10 295 20 57
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parabolic mirror focuses the two beams onto either a photodiode (cross-correlation measure-

ment) or a reflective sample (pump-probe).  For the pump-probe measurements, the sample is

angled, and the reflected probe beam is focused through a Glan-Thompson polarizer to reject

any additional scattered pump and onto a GaAs LED detector.  The pump and probe powers

are in a ratio of ~ 20:1.  A typical cross-correlation, with a FWHM of 37 fs, is shown in Figure

B.4.

Figure B.3 Setup of ultrafast pump-probe.  CaF2 BS = calcium fluoride beamsplitter, Polarizer = Glan Thomp-
son polarizer, Detector = GaAs LED.

Figure B.4 Typical cross-correlation of compressed OPO pulse at 1540 nm.  The FWHM is 37 fs, at an average
power of 30 mW.
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With these pulses, pump-probe was performed on a variety of  SBRs.   In Figure B.5,

Figure B.6, and Figure B.7, typical traces on several III/V broadband SBRs are shown below,

with the cross-correlation of pump and probe superimposed.  Figure B.8 shows the laser spec-

trum superimposed on the passband of a typical broadband 1550 nm III/V SBR.  It is clear that

the mirror does not filter the spectrum.

Figure B.5 Pump-probe of R981 oxidized 6/9/04 at 410C for 4.5 hours with 2 temperature ramps.  The struc-
ture consists of 6 quantum wells embedded in a λ/2 layer of InP on top of a 7-pair AlxOy/
Al0.3Ga0.7As mirror.
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Figure B.6 Pump-probe of R981, oxidized 9/10/03 410C, 4 hr 45 minutes with a 50 minute ramp.  The struc-
ture was proton bombarded with 40 keV protons at a dose of 1014 protons/cm2 and was antireflec-
tion-coated with a λ/4 HfO2.  The structure consists of 6 quantum wells embedded in a λ/2 layer of
InP on top of a 7-pair AlxOy/Al0.3Ga0.7As mirror.

Figure B.7 Pump-probe of R1027, oxidized 6/5/04, 410C for 2 hours with 2 ramps.  The structure consists of a
λ/2 layer of InP containing 100 nm of In0.5Ga0.5As on top of a 7-pair AlxOy/Al0.3Ga0.7As mirror.
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Figure B.8 For growth number R981, the measured and calculated reflectivity, the photoluminescence, and the
37-fs laser spectra (dotted grey).

By deconvolving the cross-correlation of pump and probe with the impulse response

of the sample, one can extract the fast time constants.  Preliminary deconvolution fits indicate

a time constant between 40-100 fs, similar to the width of the cross correlation.  The measure-

ment should be repeated at a shorter wavelength of excitation so that the absorption edge of

the samples does not filter the spectrum.  Additionally, pump-probe could be performed with

compressed pulses that are shorter or with an ultrafast source, such as the Cr4+:YAG directly.

B.4 Conclusion

The 150-fs OPO pulses have been compressed to 37 fs using 1 m of highly nonlinear

fiber and a standard grating compressor.  A low dispersion broadband pump-probe setup was

constructed, and ultrafast pump-probe performed on some ultrabroadband SBR samples.  Pre-

liminary results indicate a time constant for carrier-carrier scattering on the order of the pulse-

width.
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