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Abstract

To see two expert partners, one leading and the other following, swing dance together
is to watch a remarkable two-agent communication and control system in action. Even
blindfolded, the follower can decode the leader’s moves from haptic cues. The leader com-
poses the dance from the vocabulary of known moves so as to complement the music he is
dancing to. Systematically addressing questions about partner dance communication is of
scientific interest and could improve human-robotic interaction, and imitating the leader’s
choreographic skill is an engineering problem with applications beyond the dance domain.

Swing dance choreography is a finite state machine, with moves that transition between
a small number of poses. Two automated choreographers are presented. One uses an
optimization and randomization scheme to compose dances by a sequence of shortest path
problems, with edge lengths measuring the dissimilarity of dance moves to each bar of
music. The other solves a two-player zero-sum game between the choreographer and a
judge. Choosing moves at random from among moves that are good enough is rational
under the game model. Further, experiments presenting conflicting musical environments
to two partners demonstrate that although musical expression clearly guides the leader’s
choice of moves, the follower need not hear the same music to properly decode the leader’s
signals.

Dancers embody gentle interaction, in which each participant extends the capabilities of
the other, and their cooperation is facilitated by a shared understanding of the motions to be
performed. To demonstrate that followers use their understanding of the move vocabulary
to interact better with their leaders, an experiment paired a haptic robot leader with human
followers in a haptically cued dance to a swing music soundtrack. The subjects’ performance
differed significantly between instances when the subjects could determine which move was
being led and instances when the subjects could not determine what the next move would
be. Also, two-person teams that cooperated haptically to perform cyclical aiming tasks
showed improvements in the Fitts’ law or Schmidt’s law speed-accuracy tradeoff consistent
with a novel endpoint compromise hypothesis about haptic collaboration.

Thesis Supervisor: Eric Feron
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Swing dancing: what’s there to

know?

All the ills of mankind, all the tragic misfortunes that fill the history books,

all the political blunders, all the failures of the great leaders have arisen merely

from a lack of skill at dancing.

-Molière

1.1 And a 1, and a 2: all about swing dance

Millions of people have been dancing to American swing music, for the last seventy-five years,

all over the world. They love the infectious beat and the playful freedom of the dances called

Lindy Hop, Jitterbug, and just plain Swing. But to enthusiasts, partner dancing is much

more than good exercise. To the swing dance fanatics who have invested years of study and

practice, each dance is a conversation. The leader takes pride in choosing the moves that

express the subtleties of a song, while the follower is cheered at each complicated movement

that she can execute properly because she correctly read the leader’s intent.1

While a solo dancer may choose freely from the universe of movement, limited only by

the dancer’s own ability to enact it, the necessity of communication in partner dancing does

constrain its adherents in important ways. In lead and follow partner dances, one partner

1Leaders are not always male, nor are followers always female. In fact, there are talented male followers
and female leaders in competitive swing dancing. This text will label leaders as male and followers as female
for the sake of brevity and simplicity.
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indicates the sequence of moves while the other partner deciphers the signals that tell what

move will come next. Square dancing or ballet partnering are not lead and follow dances,

since in square dancing the moves are called out to all participants and in ballet partnering

the moves are known in advance.

In swing dancing, the only indispensable elements for lead and follow are rhythm and

touch. Touch makes a difficult channel over which to send any sort of message for many

reasons: force perception and proprioception are notoriously inaccurate, forces imposed on

the follower can easily unbalance her, and kinematic redundancy means there are many

different ways that imposing a certain force might move a person’s body. This introduction

will examine what all partner dances share: the elements that enable communication be-

tween the leaders and followers. Throughout the discussion, the primary dance considered

is Lindy Hop or swing dance [8, 13]. Following this dancer’s description of swing, Section

1.2 will review some relevant literature and Section 1.3 describe the contributions of the

dissertation.

1.1.1 Rhythm

The rhythm of a dance is the timing of the motion, its synchronization with the music. In

simple terms, each foot should hit the ground at the same time that the drums or bass or

piano hit the beat. The best dancers usually hit closer to the end of each beat than to the

beginning or the middle, because that makes their dancing look relaxed and natural, where

hitting in the early portion of the beat can make dancing look rushed or mechanical.

Both the leader and the follower can hear the beat and each can entrain his movements

to the external metronome. When people claim to have no rhythm, they probably mean

that they have difficulty entraining to an external metronome, or that they have trouble

hearing where the metronome element is when listening to a song. The common rhythm

between two dancers is the strongest element tying their actions together. The rhythm not

only lets both leaders and followers predict when the current pattern will end, but it allows

each partner to accurately gauge when the other partner plans to step or move. In fact,

dancers who hear music with beats mismatched by the smallest fraction of the interbeat

time will soon find themselves unable to continue.

In lindy hop, the original form of swing dance, the basic rhythm goes 1, 2, 3-and-4, 5,

6, 7-and-8. The 3-and-4 section is syncopated, so that the “and” will be slightly closer in

20



time to the 4 than it was to the 3. Try tapping this on a desk to see if you can syncopate

your tapping. Every count in the rhythm corresponds to one step with a weight change in

the basic footwork, so the basic footwork has ten steps per eight beats.

Swing music and swing dance emphasize the downbeats, which are the 2, 4, 6, 8 of the

above sequence. In fact, a primary chronicler of swing music in its heyday was the jazz

magazine Down Beat, which is still published today. A subtle form of music misinterpre-

tation is to know when the beats are, but to be unable to distinguish the upbeats from

the downbeats. This will very occasionally happen to swing dancers, and the result is one

partner dancing the 1 2 3 4 of a move while the other dances the 2 3 4 5 of that move. This

problem is so disruptive that the pair will have to stop dancing to agree on the downbeat

before they start moving again. If the dancers are off by two beats from each other, then

they are back in agreement about which is the downbeat, and it doesn’t matter very much

whether a section of music is the 1 2 3 4 or the 3 4 5 6. It is true that many dancers try

to begin an eight-count pattern on the 1. In most music, the 1 sounds more emphasized

than the 3 or the 7. However, this alignment is not as essential as the upbeat - downbeat

alignment.

In fact, a bar of swing music is generally four beats in length, so for a musician there

are no numbers beyond 4. “And a 5 6 7 8” is a dancer’s phrase, created to count through

longer moves that cover two bars of music. We will use the term bar to mean a dancer’s

bar, which is 8 counts long.

1.1.2 Positions or poses

An extremely simple dance might have only a single pose. For instance, a couple could dance

an entire waltz without ever changing from the pose or position that they came together in,

the closed position. Figure 1-1 shows a couple in closed position. Closed position is: with

about a 100◦ angle between the partners, the leader’s right hand is around the follower’s

back and the leader’s left hand holding the follower’s right.

Any lindy hop dance will have multiple poses or positions, because the basic move of

lindy hop includes a transition from open position to closed position and back to open

position. Frequent switching between positions is one of the elements that makes lindy hop

a challenging dance. Lindy hop moves use a very few positions. Excepting a few variants,

all of the positions the partners reach will be either closed or open. Figure 1-2 shows a
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Figure 1-1: Closed position

couple in open position. Open position is: with partners facing each other from about three

feet away, the leader’s left hand is holding the follower’s right. Each dancer should have his

elbow bent to about a 150◦ angle and should keep the arm bent throughout the dance to

avoid the singularity that results from a completely straight arm. Sometimes open position

has the leader’s right hand holding the follower’s left, which is called cross hand, or the

leader’s right hand holding the follower’s left, which is called wrong hand.

Dance moves begin and end from one of these fixed positions. This rule allows the

follower to arrive at the place the leader expects her (in either closed or open position) at

the time when he expects her to be there (at the end of the bar, on the downbeat). For

instance, if a dancer leads his partner to spin clockwise and then lets go of her, she will

know that she should end her spin facing him because open position faces him. As she

spins, he will position himself roughly the same three feet away that is standard in open

position. Even if her turn wobbles across the floor, he can track her movement so that the

couple ends the spin in the ideal open position.

1.1.3 Choreography

Each partner dance has a small core of patterns, called moves, that all dancers of that form

are exposed to. Just as square dancing has its do-si-do, Lindy hop has the move called a

swingout. A swingout, also referred to as a whip, is an 8-beat move in which the leader

and the follower start in open position. They approach each other, reach closed position,
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Figure 1-2: Open position

rotate a full 360◦ around each other, and then return to an open position. There are endless

variations on this theme. For example, either the leader or the follower can do extra spins,

in either direction, before or after the closed position rotation.

Having a small set of known moves helps the two dancers coordinate their actions.

Between a leader who knew the moves and a follower who did not, the dance would not be

very successful, although an expert leader could communicate some of the requested motion

to a naive follower. Chapter 5 demonstrates how people can respond more nimbly when

given a specific vocabulary of known moves, in a series of experiments using a simple robotic

leader with a human follower. Lindy hop also has more general “traffic rules”, like the rule

that followers keep moving in the same direction until something makes them stop. Such

rules enable leaders to send experienced followers through moves the follower has never seen

before.

Followers have multiple redundant mechanisms for decoding the leaders’ signals and

deciding which move he is requesting. Since dance is intended to elaborate upon music

through movement, the shared musical environment can indicate whether the next move

should be exciting or mellow, sharp or fluid. This influence of the emotional content of music

is distinct from the rhythmic, metronome input described in section 1.1.1. Sometimes the

music is called “the third partner” in that it may suggest a leader’s likely choice of moves.

Surprisingly, the communication between leaders and followers is robust to disturbances in

the musical meaning of songs, as demonstrated by experiment in Chapter 2.
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Assigning meaning to the songs and dance moves is a quintessentially human task. The

impression of similarity between musical expression and the dance moves that accompany

it is called musicality. After human judges translate their impressions to numerical scores,

a computer can run an optimization algorithm to choose a move sequence with musicality.

Two automated choreographers of this type are described in the thesis: one based on a

shortest-path algorithm with randomization appears in Chapter 3, and a second based on

a two-person zero-sum game model of the interaction between dancers and judges appears

in Chapter 4.

The leader chooses a sequence of moves to satisfy several goals. While a very small and

predictable set of moves may make coordination with his follower easier, a surprising and

novel sequence from a larger set of moves will be more interesting to an audience or contest

judge. In Chapter 4, studies of the dance sequences chosen in national lindy hop contests

reveal that the leader favors surprise when dancing a pre-arranged routine with this regular

partner, and favors predictability when dancing improvised dances with a random partner.

1.1.4 Connection

In open position, the contact between the leader and follower is maintained only at a single

point: the leader’s left hand holding the follower’s right hand. Messages and energy are

transmitted through the connected hands. For instance, if the leader holds the follower’s

hand and takes a step backward, then the leader’s hand has moved back and thus the

follower’s hand will move forward. An expert follower will not let her hand move very

much relative to her body position, and so because her hand has moved forward she will

take a step forward. An inexperienced follower might let her arm extend while she stays

in place, in which case she has lost the opportunity to use the leader’s energy to translate

her center of mass. The inexperienced follower will now have to use her own energy to

move forward and return to the typical open position. In either case, some message is

transmitted through the connection hand. This is in essence how leading happens. Expert

followers and leaders perform very well when deprived of visual cues [blindfolddance.mpg]2,

so the physical connection of hands is a sufficient means of communication between the

partners.

2An accompanying CD contains a number of video and music files. Where each file is referred to in the
text, the filename will appear in brackets like this [filename.mpg]. A complete table of the multimedia files
on the CD appears as an appendix.
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Figure 1-3: Connection: contact without gripping

Ordinarily, gripping an object guarantees that contact can be maintained. That is, to

hold an apple or a piece of paper, a person applies force to one side of the object with

the thumb and to the other side of the object with some fingers. In dancing, one partner

does not grip the other’s hand, and not just because being gripped tightly is uncomfortable.

Mostly, gripping is forbidden because both dancers turn frequently and so one hand needs

to rotate freely within the other. There is an expression, “all thumbs”, describing a clumsy

person, so it is perhaps apt that graceful dancers use no thumbs at all.

Instead of gripping, dancers use a strategy of imposing slight forces on each other’s

hands in the direction that pushes the hands together, as in Figure 1-3. This is the same as

a person’s two handed strategy for lifting a box without gripping, described by Zefran and

colleagues [144]. Even cooperating robots can use this strategy for non-prehensile lifting

[30]. As you can see in the diagram, each partner needs constantly to create a force towards

his or her body in order for the four fingers of the hands to be pressed together. The

partners may do this by leaning very slightly away from each other. The force required is

fairly small, so the difference from each partner balancing on his own is almost imperceptible

visually. However, if dancers in this position were to suddenly separate their hands, each

should have to take a step backwards. In this way, the dancers achieve a shared balance

that is, surprisingly, not at all precarious. If the dancers do not create a force to push their

hands together, then no force will keep his hand touching hers, and so when he moves his

hand she may lose track of it.

There are some swing moves, called breakaways, during which the leader lets go of the

follower. Breakaways are generally very short and the dancers regain contact and shared

balance as each move ends. The rhythm which both dancers hear indicates when the contact

will be regained, while their knowledge of the basic positions assures that they will come

together in a position that transitions to the next move.
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Figure 1-4: Upright stance

Figure 1-5: Laid out stance

1.1.5 Technique

Technique means both the way in which the moves can best be executed and the general

traffic rules alluded to earlier. Dancers might not need advanced technique to lead a small

set of moves to a slower song. However, across many different dances and styles, a large

subset of technique remains valid. The expert lindy hop dancers in Figures 1-4 and 1-5 are

both pictured at the same instant of a swingout. While they make hugely different visual

impressions, they actually maintain very similar forces between their connection hands.

One school of thought among dancers holds that the physics of doing a swingout at various

speeds requires connection forces within a narrow acceptable range.

Probably the most fundamental point of technique is that a leader initiates motion and

the follower responds to motion using translations and rotations of the person’s center of

mass. A follower who lets her arms travel widely with no relation to the travel of her center

of mass is probably following poorly, and this technique problem is called spaghetti arms.

A leader who requests motion from his follower without moving his own center of mass is

probably leading poorly, and this is called an arm lead to contrast it with what would be

better, a body lead.
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Given that where to put the body’s center of mass is the primary concern in partner

dancing, it is unfortunate that many dance teachers describe moves by telling students

where to put their feet. Where a dancer puts his feet should be determined entirely by

where he puts his body, that is, if he commits his weight to the foot he is stepping on.

Putting your left foot on the ground twelve inches forward without moving your center of

gravity twelve inches forward creates no end of trouble in dancing.

All of these are the observations of a community of experienced partner dancers about

balance, technique, and travel. However, introspection is a famously bad method for dis-

covering facts about human motion. How much of this discussion could be made rigorous in

the scientific sense? First of all, a scientist would need to determine whether the description

given by dancers about proper technique in fact matches what expert dancers do. Second,

a scientist could try to explain dance technique by reference to any number of engineering

concepts: stability analysis to ensure the dancers stay upright, information theory to en-

code and decode move signals given the unreliable touch channel, optimization to minimize

energy expenditure while executing a specific move together. Finally, to demonstrate that

a complete understanding of partner dance has been achieved, a Turing test for the skill of

partner dancing would require that an artificially constructed partner convincingly dances

with a human partner.

It may be years or decades before a constructed robot can imitate the skills and com-

petencies of a trained dancer. Even computed simulation of a complex interaction like

lead and follow dancing would require intensive hand-tuning to achieve the fidelity that

would make it useful. We have not taken that route, of quantitative dynamical analysis,

in this work. Rather, we have concentrated on proving simple statements about how hap-

tic communication between partner dancers functions, and on imitating choreography, the

high-level planning of move sequences to harmonize the expressive content of the dance with

the expressive content of the music.

1.2 Related work, applications

We have discussed at length in Section 1.1 the observations of a community of experienced

partner dancers about the skills that enable their dancing. Even with the weight of intro-

spection and experience, at least some of the canards about dancing that dancers embrace
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might contradict available evidence about human motion, and our research takes aim at

validating or invalidating some of these. Our first step is to examine prior work that is

relevant to a principled analysis of swing dancing.

Prior work can be categorized according to what the various investigators would ar-

gue constitutes an understanding of human motion. The spectrum covers: neuroscientific

attempts to identify electrical impulses in the nervous system with specific signals in a

control theory model [92], phenomenological studies of tradeoffs between speed and accu-

racy in small reaches [53], kinematic characterization of arm movements [39], optimization

approaches which explain simplified full-body movements such as balancing or pedaling

[77, 111], and physically-based simulation models for producing animations of human mo-

tion [58]. Many of these efforts explicitly consider motion segmentation into primitive

behaviors [40, 135], and hidden Markov models are frequently used to segment and classify

human movements or intent [86, 108]. Further, investigators have postulated that what

makes a movement look skilled, graceful, or natural is either: minimizing the third deriva-

tive of position (minimum jerk) [14], minimizing the first derivatives of the joint torques

(minimum torque-change) [132], minimizing muscular effort [80], or maximizing use of the

extra degrees of freedom available to a redundant manipulator such as an arm [14], or one

of a number of other suggested criteria.

Experimental psychology studies perception and control of action by direct manipulation

of conditions under which humans are asked to perform specific tasks [53]. In that sense,

Chapters 2, 5, and 6 of this dissertation could be classified as experimental psychology.

Detailed classical mechanics models of the human body are available in the text by

Tözeren [130]. Sports biomechanics researchers have undertaken to measure and explain solo

human capabilities in gymnastics and ballet [84, 85, 103]. Laws’ wide-ranging analysis of the

mechanics of ballet, for instance, can explain why a dancer’s gesture leg in an arabesque turn

might oscillate up and down in a troubling way, and how to repair the turn by slowing the

rate of rotation and exerting an antiphase lift on the leg [85]. Ballet is a more developed art

form than swing dancing, and many of the statements which Laws can prove using mechanics

have long been known to experienced ballerinas. Partner dance is a more challenging

application of these types of models, because the understanding of human interaction and

coordination is in its infancy. For instance, it is not even known how two humans coordinate

their actions in an everyday task like lifting a couch together [113].
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There is a large and varied literature in the quantitative modeling of human motion and

the related task of designing controllers for computer simulations or robots that imitate

human motion [12, 50, 77, 78, 94, 133]. Some authors have undertaken to explain the human

perceptuomotor system by these efforts [38, 39], while others have restricted their domains

to simply producing visually convincing output [58]. We cursorily review this literature here,

but quantitative controller models did not play any role in the novel contributions of this

thesis. Rather, the difficulty of controlling even a single humanoid model is considerable, and

so very few groups have attempted to model interacting humans. Our work instead focuses

on qualitative outlines of the means by which leaders communicate with and influence the

motion of their followers.

1.2.1 Dynamics and control

Forward dynamical simulations of biological motion, using either simple kinematic or richer

physical dynamics descriptions of individuals, have been used extensively in computer graph-

ics for both herds and single actors [18] and these methods are reviewed by van de Panne

[133]. The individual dancers are certainly controlled dynamical systems, with measurable

inertial properties for a simplified rigid-body description of their segments. The dancers’

motion might be described as a closed-loop system with natural F = ma dynamics for the

body segments and, for example, joint torque controllers.

1.2.2 Biological dynamics

Our cavalier description in the first sentence of Section 1.2.1 of a human body as actuated

by linear joint-torque controllers, something like controllers for torque motors in a robot

arm, would not satisfy many biological control researchers. Stiffness control and its general-

ization, impedance control, have long been favored hypotheses about human motor control

systems [59, 94]. Humans can voluntarily generate stiffnesses over a range of two orders of

magnitude by co-contracting muscles on opposing sides of a joint [59].

In fact, swing dancers often struggle with learning to use the appropriate stiffnesses.

As an example, dance followers are sometimes instructed to have “Barbie arms”. Barbie

c©Mattel is a classic doll with fairly stiff plastic arms molded with the upper arms at the

doll’s sides and with the forearms parallel to the floor, held in front of the body. The

message is that a follower should not move her arms much relative to her body, even when
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the leader imposes a force on the arm. Instead of responding to a force on her arm by

moving the arm, a follower should transfer that force to her whole body and use the force

to turn or travel.

The current view holds that muscles act as tunable springs, in which the motor system

selects a length-tension curve [11]. Letting u be an unspecified motor system input, l be the

length of a muscle, and f be the tension or the elastic force attributable to spring stretch

at that length; a length-tension curve has the form f = f(l, u). The static equilibrium

length of the muscle is then l̄ such that f(l̄, u) = 0. Both external forces like those imposed

by a partner, and the inertial and viscous components of force during motion, are distur-

bances to that notional equilibrium. The equilibrium point hypothesis that the human

motor control system actually chooses a final equilibrium point or a sequence of equilib-

rium way-points, rather that specifying a position or force trajectory, is well-developed if

not completely uncontroversial [50]. The equilibrium point hypothesis should also not be

viewed as a monolithic entity, for many different types of controllers have been proposed for

which parameters of the muscle response are tuned by u, and what controller tunes those

parameters in response to what feedback or feedforward model [78, 95, 129].

The impedance view of limb movements actually simplifies in some ways the picture of

how two motor systems interact during a dance. Rather than imagining, for instance, that

the two partners are each control systems trying to stabilize around some nominal trajectory,

or that the leader controls position of their connection points while the follower controls

the force connecting them, the two are simply behaving in standard fashion by tuning their

muscular springs. The skill that dancers have honed, which we call coordination throughout

the manuscript, is prediction of where the total force on their bodies will position them,

which is very different from where each one’s solo equilibrium would position him (probably

on the floor!).

1.2.3 Making complex articulated agents dance together

We have seen that there are myriad different control mechanisms that might drive a human-

like system, and consensus in the debate over which most faithfully represents real human

motor control is unlikely to happen anytime soon [50]. Matarić et al. have compared three

controllers, using them to make the Adonis dynamic human torso simulator dance the

Macarena [94]. The three controllers considered were a joint-space proportional-derivative
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(PD) servo, a Cartesian-space impedance controller, and a joint-space non-linear force field

combination of primitives approach suggested by Mussa-Ivaldi’s biological models [101].

Each of the methods had serious drawbacks in both the visual fidelity of the resulting motion

and in the unintuitive way the Macarena had to be specified. The authors concluded that

there is a tradeoff between believability and hand-tuning effort for these approaches [94].

That is, even dynamically simulating solo dance, specified by waypoints and absent any

standing balance considerations, is still beyond the capabilities of current dynamic models

we have about motor control.

It is certainly not trivial to extend a controller designed for a single person to the problem

of interacting people without taking the unrealistic step of applying a centralized controller.

The specification of the Macarena dance in Matarić et al. is akin to keyframing, specialized

for each of the controllers considered. For partner dance moves, the two generated dancers

must maintain contact at their hands, so one can not solve separately for each dancers’

position as the hands might not stay connected even if they are touching at every keyframe.

Grasping is not permitted, but ideas from non-prehensile, decentralized cooperative robotic

manipulation might be helpful [30]. For instance, one might control the leader’s hand

to compensate for a fixed level of force that the follower will impose [127], or have each

individual attempt an equilibrium position just beyond where the other’s hand is placed, as

in [55]. We are not aware of any existing multi-human simulations of physical interactions

which are similar enough to dancing to be adapted to this domain.

1.2.4 Entangled communication

A further complication of the problem of controlling dynamically interacting but indepen-

dent dancers is the fact that the desired movement is not specified beforehand in lead and

follow dance. A restriction that only the leader knows the desired trajectories for both

the leader and follower is a decentralized information structure constraint [124]. Let each

agent i of n agents be a system with control inputs ui(t) and states xi ∈ X, with dynamics

ẋi(t) = f(xi, ui). If the two or more agents have uncoupled dynamics, then coordination

is simply the problem of choosing achievable and non-colliding finite trajectory n-tuples

(x1, x2, ..., xn)(t) for t = [t0, tn]. Call these n-tuples coordinated primitives, or just moves,

to borrow a phrase from dance. Frazzoli has described the use of coordinated primitives or

moves to facilitate the motion of multiple vehicles [43, 44]. In this framework, transmitted
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communication of a sequence of moves was permitted. Clearly, transmitting choice of an

n-tuple requires much less bandwidth than would transmitting the states continuously.

If transmitted communication is impossible or impermissible, as in covert military op-

erations or human-robot interactions, sensing of the other agents’ positions must function

as a communication and coordination mechanism. See Fax and Murray for a discussion of

transmitted and sensed information flow and its impact on vehicle team coordination [36].

In general, one would not refer to sensing as a communication mechanism. Given a small

vocabulary of moves that might be executed, however, sensed variables can be interpreted as

communicating the choice of one of those n-tuples. A sensed communication channel could

be analyzed in the standard communication framework, where the alphabet is composed of

reference trajectory segments; the alternative is to use the sensed information directly as in

Fax and Murray’s traditional control setting.

Coordination might take place via transmitted or sensed communication. There is

a third, most difficult to analyze possibility, that of entangled communication. When

agents have dynamics that are coupled in non-negligible ways, the problem of coordina-

tion cannot be reduced to the problem of trajectory selection, since there may be mul-

tiple control moves that result in a single desired trajectory move. Given the equations

ẋi(t) = f(x1, x2, ..., xn, u1, u2, ..., un), coordination means that the agents have agreed upon

n-tuples of inputs u1, ...un, control moves, that result in desirable trajectories x1, ..., xn,

trajectory moves.

When the communication of a type of move can not be partitioned from the control

inputs necessary to achieve that move, the term entangled communication applies. This

means that control and communication objectives are necessarily joined. For instance, if

all agents agree to regard a very large u1 as a signal to choose a certain n-tuple, then

that n-tuple must be one where some desirable outcome is achievable given that large

u1. In a sense, widely separated u and x are desirable from the standpoint of minimizing

miscommunications, but may be undesirable actual controls and states. Absent a move

vocabulary, the problem of decentralized control of systems with interconnected dynamics

without transmitted communication has also been addressed in the cooperative robotic

manipulation literature [31].

Daniel and McAree suggested that haptic information can be transmitted to humans

separably from force. They suggested imposing vibrations above 30 Hz to communicate pure
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information when necessary, and reserving lower frequency regions for energetic interactions

[27]. However, the human motor control system is incapable of creating vibrational messages

of this type. In a recent paper, Wagner and Howe attempted to disentangle the signalling

and constraint effects of imposing a force on a subject [137]. Section 5.3.2 contains a fuller

description of their experiment.

The subjects in the haptic dancing experiments discussed in Chapter 5 and Chapter 6

receive entangled communication messages. Haptics is a relatively immature field, and the

two-way nature of haptic interaction makes presenting information to the sense of touch

fundamentally different than presenting information to the senses of sight and hearing.

Extemporaneous lead and follow dancing is an organic resolution of the conflict between

communication and coordination via haptic interaction.

1.2.5 Other work

Dance as a mode of communication has been extensively explored by entomologists studying

the waggle dance of various species of honeybee [33]. It is well established that a honeybee’s

waggle dance communicates the location of a nectar source to follower honeybees, who mimic

the dance of the leader. Robotic honeybees have even been constructed which can recruit

bees to a location via a waggle dance. Cues are passed to the follower honeybees via sounds,

body position as detected visually, vibration of the substrate both bees stand on, and body

position detected tactilely. There is substantial physical contact between the leader and the

follower honeybees during the waggling run. Through that contact the follower honeybees

array themselves behind the leader so that the followers can observe the waggle run angle

by placing themselves at that angle [117].

Dancing, like stable walking, has been a standard challenge problem in the robotics

domain, although different groups have used the term dancing to describe different sorts

of movements. Jalics et al. worked on a solo robot that can dance by stepping to a song’s

rhythm [64]. Sony’s QRIO humanoid robot can dance to techno music or perform a tradi-

tional fan dance. We presume the partner dance problem will prove to be more challenging.

Some elements of robotic partner dance have been achieved: Setiawan et al. have designed

a robot that follows after a human holding its hand [123], and Kazuhiro Kosuge’s group at

Tohoku University created a ballroom dance follower robot on a wheeled platform [75].

Randomness features prominently in our work on automated choreography. For a
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dancer’s perspective on randomness, consider that Merce Cunningham, a giant of mod-

ern dance, has said, “... chance was a way of working which opened up possibilities in

dance that I might otherwise have thought impossible” [19]. Cunningham is recognized as

a pioneer of choreography created both by random choice and by interaction with computer

visualizations of dancers using LifeForms software. “I was working with LifeForms, using

chance means to arrange the arms in a way which I’d never seen before. So I tried them

in a minimal way and saw that they were possible, so I began to use the arms in a much

more complex way” [19]. These are descriptions of unguided chance in creating choreog-

raphy, which might be more sensible in modern dance than in swing dances. Swing dance

still primarily responds to swing music, whereas modern dancers have tried to separate the

dance from its natural dependency on the music [141, 140]. Musicality and randomness will

be considered together in Chapters 3 and 4.

The individual chapters of the dissertation also contain extensive discussions of the

literature related to the specific research questions addressed in each. For a review of

computer graphics for animating human motion and previous applications of computing

to choreography, see Chapter 3. For a review of work in human-robot interaction and

teleoperation, see Chapter 5. For a review of work in the experimental psychology domain

of accurate reaching and Fitts’ law, see Chapter 6.

1.3 Summary

This overview of partner dancing has focused on the way in which partner dancing is unique

among human-human interactions, with the possible exception of martial arts. In partner

dancing, there are a number of moves which both partners know, and an even smaller

number of positions in which they might start or end moves, and the follower is constantly

decoding touch (haptic, tactile, kinesthetic, proprioceptive) cues from the leader. The

questions we pose will require insights from several disciplines, and so we introduced some

fields in which related work has been pursued.

The contributions of this dissertation, in brief, appear in Figure 1-6. The work presented

here will propose and test four hypotheses about partner dance leading and following: that

musical meaningfulness is one mechanism by which followers predict moves (Chapter 2),

that dance sequences are chosen to express musical meaning in an objective sense such that
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musical choreography can be created by an algorithm (Chapter 3), that a shared rhythmic

vocabulary in random sequences can be used to improve interaction (Chapter 5), and that

haptic collaboration enables a two-person team to defeat an individual’s tradeoff between

speed and accuracy of reaching movements (Chapter 6).
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Swing Dancing

Haptic interaction advantages

Followers know 

the moves, which 

increases the value 

of touch information

Chapter 5

Endpoint compromise 

decreases movement 

variability, increases 

movement speed

Chapter 6

High-level planning: 

choreography and musicality

Followers can 

decode moves even 

with faulty music 

cues 

Chapter 2

Leaders choose moves 

that complement music

Chapter 3

Leaders also choose moves 

to surprise the judges:

mixed strategies game

Chapter 4

Figure 1-6: Contributions of the dissertation
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Chapter 2

Separability of musical

interpretation

Sidney Bechet, a famed swing saxophonist, once said, ”Jazz musicians have dance in them,

and jazz dancers have music in them, or jazz doesn’t happen.” Any thorough-going analy-

sis of swing dancing must consider the relationship between the music and the dance that

accompanies it. This chapter reports an experiment in which the shared musical environ-

ment is manipulated to display one song to the leader and a different song to the follower.

We began with the hypothesis that obfuscating the cues in musical meaning would impair

the communication between the leader and the follower, but instead we had the fortu-

nate experience of discovering an unexpected result. Musical cues do indeed indicate the

appropriateness or inappropriateness of specific moves at specific points, but the physical

communication between the leader and the follower is robust to differences in song struc-

ture. Interviews with leaders and followers who participated in the experiments are key to

interpreting the surprising data.

2.1 Introduction

Partnered dance is a successful collaboration mechanism which may point the way to the

design and implementation of novel human-robotic interactions [1]. In improvised partnered

dance, sometimes referred to as social dance, the leader choreographs the dance in realtime

and communicates the chosen moves to a follower. Experiments with a robot leader and

human subject followers show that the follower receives the leader’s haptic signals and at-
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tempts to match her response to his lead from among the moves in her vocabulary (see

Chapter 5) [47]. The leader and follower, then, speak the same physical language in which

small pushes and pulls on the follower communicate which move the leader wishes to per-

form.

Does the follower also use information contained in the music to interpret the leader’s

signals and disambiguate two moves with similar leads but dissimilar musical meaning? It

is a platitude of partnered dance to call the music “the third partner”, implying that the

music cues both leaders and followers to do specific moves. This study investigates that

statement.

Clearly, the follower does use music as an absolute rhythm reference. The measure

markings on the page of music are discernable as time instants to a listener. In early

trials of the experiment discussed in this chapter, some of the music played to the followers

had a beat that was slightly out of phase with the music played to the leaders. This

rhythm mismatch resulted in a complete breakdown of the dance. With this handicap,

the dancers giggled, fumbled, and then stopped dancing, saying, “We just can’t do this.”

Beyond providing a metronome, though, differences in musical expression among bars of

music might be essential to disambiguating similar leads. To determine how important

this latter effect is to partner dances, we conducted an experiment in contradictory musical

cueing.

In Rasmussen’s language of human performance models, skills function at the lowest

level without requiring a person’s conscious attention [112]. Keeping time with the musical

beats must be at this level of performance because timing occurs subconsciously for dancers

and is nearly impossible to consciously alter. Rules, however, function as stored programs,

released in response to familiar signs in the environment [112]. Rules can be articulated

as such by the performer, and indeed, subjects in our experiment can describe how they

reacted to musical meaning cues and why. The question at hand is whether the rule-based

strategies of the follower for decoding the leader’s intent depend critically on the structural

and emotional content of the music that both partners hear. Alternative possibilities in-

clude: that the follower’s rules require only physically communicated signs but not musical

meaning, or that the follower does not require any explicit rules but functions entirely at

the skills level.

The remainder of the chapter contains: background about musical structure and ex-
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pression and how dance moves can complement these in Section 2.2, a description of the

experiment setup in Section 2.3 and results in Section 2.4, and a discussion of the experiment

results in 2.5.

2.2 Background: Musical structure and dance

Lindy Hop is a lead and follow dance composed mostly of a small set of moves that all lindy

dancers recognize. Some of these moves are: swingouts, tuck turns, charlestons, and sugar

pushes. Different moves suit different expressions in the music; for instance, charlestons

are appropriate for very staccato or exciting sections, while sugar pushes and swingouts

suit more mellow sections [musicaldancing.mpg]. The above are generalizations, but they

provide the basis for expecting that the communication between the leader and the follower

may depend in part upon their shared understanding of the music they are dancing to. To

be clear, when we refer to communication between the partners, we are considering the case

of an improvised dance. Within a pre-choreographed routine, both partners should know all

the moves in the dance, and they likely have chosen those moves for musical appropriateness

[45].

Lindy Hop is one of the fastest tempo partner dances, often danced at greater than 240

beats per minute, or 4 beats per second. At this tempo, the follower may be receiving and

reacting to semantic instructions from her leader every 0.5 seconds or so. Anticipating dance

moves based upon the emotional and structural content of the music, if this is possible, may

be presumed to have a high value.

Dancers get various types of information from the musical accompaniment as they dance.

The tempo and the placement of the beats in time determine the tempo and placement of the

dancers’ footfalls. This information is so fundamental that if two swing dancers hear music

differing in tempo or shifted by anything other than an even integer number of beats they

will find it close to impossible to coordinate their movements. The eight-beat bar placement

communicates a different piece of information. Swing moves are usually eight beats in length

and usually the note at the top of an eight-beat bar, called the 1, is emphasized musically

and indicates a time to begin a basic move.

Across larger phrases composed of eight-beat bars, the information contained in dance

music is emotional, stylistic, or structural. For this experiment, it is only the latter type
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of coordinating information that will be obfuscated. The tempo and phase of the music,

and the location of the 1, will be the same for both dancers while the emotional emphasis

will differ. At issue is whether the emotional and structural content of the music help the

follower decode the movement signals she receives from the leader.

Swing music usually has a predictable structure. The traditional structure of swing

songs is AABA, with each letter corresponding to four eight-count bars or a 32-count phrase.

While a musician’s bar contains four counts, a dancer’s bar contains eight counts. Dance

bars in Lindy Hop are usually eight counts in length, so an A phrase contains about four

moves. The A phrase is played once, then the A phrase is repeated, then a B phrase differing

markedly from the A phrase is played, and then the A phrase is reprised.

The outline of a popular swing song, Opus One, the Tommy Dorsey band version, is

provided in Table 2.1. For instance, the last bar of each four bar phrase is emphasized,

and the last two bars of the song are both loud and exciting as would be expected for the

dramatic conclusion to a song. Dancers can use this predictability to extemporaneously

choreograph their moves while on the dance floor. It might be appropriate to use swingouts

and swingout variations during all the A parts of the song and switch to charleston and

charleston variations during the B part of the song.

The rhyme scheme, noted in Table 2.1, does not refer to rhyming lyrics, but rather to

rhyming musical bars. Within each phrase of a swing song, for instance, there will be an

eight-count musical idea, noted a, which repeats twice, for the second and third a s, and

finally the phrase will conclude with a novel eight-count bar, noted b. By virtue of its

differences from the three repeated a bars, the bar b will be emphasized in this song.

A blues song will have a different song structure, an arrangement of six eight-count

bars or 48-count phrases. Table 2.1 includes for comparison a chart of a jump blues song,

See You Later, Alligator by Bill Haley and the Comets. The rhyme scheme in blues songs

differs from that in swing songs. Within each A, for instance, there will be two different

sounding bars, noted a and b, and then those two bars repeat, for another a and b, and

then the final two bars of the phrase will be different, c and d. The last two bars, c and

d, of a phrase with blues structure will be emphasized. An example of this in lyric form

would be:

I knew a girl

who lived up on a hill
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I knew a girl

who lived up on a hill

and if I hadn’t met her

she would be there still.

Most trained Lindy Hop dancers have this level of explicit knowledge of musical struc-

ture, and the few that do not still demonstrate intuitive understanding of these concepts.

The last bar of each phrase is always emphasized, and so dancers emphasize those final

bars with more exciting moves. In our experiment, different songs with different phrase and

rhyme structures will be played to the follower and leader. This experiment is to determine

whether followers need the musical structure, at the phrase level, to decipher the physical

cues they receive from their leaders.

2.3 Musicality experiment

In order to determine whether musical expression plays a role in the follower’s decoding

of signals from her leader, dance experiments and interviews were conducted with 5 ex-

perienced leader and follower pairs. Some of these were regular partners and some were

not.

Hypothesis 1 Experienced followers use emotional or structural information in the music

to interpret signals from leaders and choose which move from a vocabulary is being led.

If leaders and followers are hearing different songs, misinterpreted leads should occur and

therefore both partners should be able to detect that they are hearing different songs.

2.3.1 Procedure

Eight songs which differ significantly in musical structure and style but are all common

among lindy hop dance tunes were standardized to a 169 beats per minute tempo and 36

phrase length (about 1 minute, 40 seconds) using Adobe Audition 1.0 software. Addition-

ally, the bars were matched so that the 8-beat phrases of each song coincided, aligning the 1

of every song. The songs were mixed, one song to the left channel and one song to the right

channel, in a single sound file. Mixing into a single file permitted the songs to be played

synchronously. The right channel was played to both channels of a pair of Sennheiser wire-
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Table 2.1: Opus One versus See You Later Alligator, continues in table 2.2
Opus One (swing) Alligator (blues)

Bar Phrase Rhyme Phrase Rhyme
1 A a A a
2 a b
3 a a
4 b b
5 A a c
6 a d
7 a B a
8 b b
9 B a a

10 a b
11 a c
12 b d
13 A a A a
14 a b
15 a a
16 b b
17 bridge c
18 d
19 B a
20 b
21 A a a
22 a b
23 a c
24 b d
25 A a solos a
26 a b
27 a a
28 b b
29 B a c
30 a d
31 a A a
32 b b
33 A a a
34 a b
35 a c
36 b d
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Table 2.2: Opus One versus See You Later Alligator, continued from table 2.1
Opus One (swing) Alligator (blues)

Bar Phrase Rhyme Phrase Rhyme
37 A a A a
38 a b
39 a a
40 b b
41 A a c
42 a d
43 a B a
44 b b
45 B a a
46 a b
47 a c
48 b d
49 A a B a
50 a b
51 a c
52 b d

less headphones worn by one participant, while the left channel was played to both channels

of another pair of wireless headphones worn by the other participant.

Participants, all experienced lead and follow lindy hop dancers, danced, in three paired

trials, for a total of six dances. Participants were informed that within each trial, consisting

of a pair of dances, one dance would have the same song for both partners and one dance

would have a different song played to each partner. Participants were asked to try to

detect whether the first dance or the second dance within each pair had conflicting music.

If dancers can detect the mixed-song condition at a rate better than chance, that would

demonstrate that the lead and follow connection is perceptibly altered as a result of the

music mismatch.

An alternative style of experiment would inform the dancers that their partners are

listening to different songs and use a combination of video-tape review and interviews to

count misinterpreted leads. This design was rejected because the data could be difficult to

quantify: among good dancers robustness to small misinterpretations rendered the visual

evidence useless. In preliminary video results from these experiments, misinterpreted moves

were indeed masked by quick resolution. Good dancers sometimes expect the unexpected,

so the interview would likely produce the non-specific response of, “I don’t know whether

a lead was misinterpreted because I don’t know what I meant to lead; I was giving an
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open-to-interpretation lead.”

2.4 Results

Participants were asked to state whether the first dance or the second dance within each

trial was the one with conflicting music. If dancers are not using emotional or structural

information to anticipate moves, then they would be expected to guess correctly about half

of the time, so the test statistics should be distributed as a Binomial(0.5). The results were

unexpected in that although followers could detect the mixed-song condition, leaders could

not detect the mixed song condition. Accordingly, we revised our hypothesis.

Hypothesis 2 [Revised] Experienced followers can use emotional or structural information

in the music to determine the musical appropriateness of each move is led, but the force and

touch cues alone suffice to communicate move choice. If leaders and followers are hearing

different songs, the follower can detect that the moves being led seem unmusical but will still

follow leads correctly, leaving the leader unaware of the mixed song condition.

Hypothesis 2 was confirmed at the p < 0.05 significance level in a one-sided test [116].

The results shown in Table 2.3 demonstrate that the follower is able to detect the mixed song

condition, but the leader is not able detect the mixed song condition. Followers correctly

detected 13 out of 16 mixed song conditions (p = 0.0106). Leaders correctly detected 8 out

of 16 mixed song conditions, so their responses do not differ from the null expectation that

half of the song conditions will be correctly detected.

Although the participants were trying to perform well at this task of detecting which of

the two dances in each trial had the mixed song condition, each individual dancer ultimately

did not receive a valid estimate of whether he or she could detect that mixed condition.

Because each dancer danced only three songs, the resulting statistical test did not have the

power to determine whether individuals could or could not detect the mixed song condition.

2.5 Discussion

It is reasonable that followers should be better able than leaders to detect the mixed song

condition. In interviews, all of the followers expressed that following accurately was of more

value to them than dancing in a musically appropriate way. When these values collided in
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Table 2.3: Detected mixed song condition?
Follower Leader

trial 1 yes no
trial 2 yes no
trial 3 yes yes
trial 4 yes yes
trial 1 no no
trial 2 yes yes
trial 3 yes no
trial 1 yes yes
trial 2 yes yes
trial 3 no no
trial 1 yes no
trial 2 yes no
trial 3 yes yes
trial 1 yes no
trial 2 no yes
trial 3 yes yes

the mixed song condition, each follower tried to hide the clash from her leader by following

accurately and sacrificing musicality. This conscious choice being made alerted followers to

the mixed song condition.

Leaders could not detect the mixed song condition because followers were able to accu-

rately respond to which move was being led, even in the presence of conflicting musicality.

This outcome was unexpected, but is a tribute to the skill of the followers and the leaders in

the experiment and the robustness of the physical signalling system with which the leader

communicates the selection of moves.

In response to a question about whether she considered her role primarily to be dancing

to the music or dancing with her leader, one follower had this to say.

Follower: I would rather follow the leader because he’s the one that’s in charge.

I try to make it work with the music as best I can, but, [I follow the leader

even when his lead seemingly conflicts with the music] because you don’t

want to be all over the place if he’s like, “I’m trying to do, I’m trying to

work.”

Leader: He’s already off. She’s just making it harder for him [if she tries to

match the music when his moves do not]!

The leaders were not often bothered by the conflicting music during the conflicting music
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dances. In general, each leader felt that his follower agreed with him in the interpretation

of the music, even when the music actually differed between them.

Leader: I danced the heck out of those songs. It’s like if you go back and match

it up, I’m like, yeah, I’m rocking this song!

However, one leader did notice that his follower was dancing throughout one dance with

a different feeling than he was getting from his song. Here, the leader is remarking about

the way in which the follower danced the correct moves rather than about which moves she

interpreted from his lead. [interview.mp3]

Leader: Like, the song was kind of Charleston-y, but she wasn’t feeling Charleston-

y, so I kind of I figured they were different, because it was a different feel.

In one notable trial, both partners agreed easily that a particular dance was to the

same song. Within that dance, the follower hijacked a move, taking the leader’s role for

a moment to choose the next move. Follower hijacks are relatively rare in Lindy Hop. A

follower will usually hijack only when there is an extremely compelling musical or emotional

point she wants to make. There were two hijacks observed within the 32 dances of the

experiment. One of these hijacks is shown in an accompanying movie file [hijack.mpg].

Because she hijacked, the leader had the opportunity to receive information about how she

was interpreting the emotional and structural content of the song. In one case, her ideas

matched what he was hearing, so he concluded rightly that they were dancing to the same

song.

Leader: This song, I think it was just because of where she hit a break, so I

figured, there was a break at the same point.

Interviewer: Did you lead a break?

Leader: No.

Follower: She just did it.

Leader: She just did it, but it was in my music. And so like, she did something

separate and there was like something going on in the music, so I figured it

was the same song.
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2.6 Conclusion

This experiment demotes the importance of the musical content of the environment in en-

abling coordination between leader and follower. Shared environmental cues may in some

cases be unnecessary for coordination of agent teams. However, the musical environments

presented to the leader and follower only differed in the highest level information; at the

timing and the bar structure level all the music was synchronized. This implies that envi-

ronmental cues are of more importance in coordinating human actions at the subconscious

skills level, where timing changes clearly disrupted coordination, than at the rules level,

where conflicting cues were successfully handled by the followers [112]. Further, this exper-

iment demonstrates that music can clearly encourage or discourage certain moves, because

followers were able to detect when the moves they were being led into did not correspond to

the music. Rhythm and tone are underutilized communication modes that will prove useful

for human teams, human-machine interaction, and even teams of autonomous agents.
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Chapter 3

An automated choreographer

Musical interpretation is one of the primary axes on which Lindy Hop dancers judge their

performances. Expert Lindy Hop dancers frequently analyze and dissect their musical

motivation for choosing certain moves or for varying their footwork patterns. We leverage

the aesthetic judgments of humans to imbue a computer with the same sensibility. In

particular, musicality, the impression of similarity between bars of music and the chosen

dance moves, can be translated from an aesthetic judgment to numerical concreteness.

Given a concrete model of musicality in dance, an automated choreographer should be

capable of creating dances that demonstrate musicality. Our automated choreographer

selects a sequence of swing dance moves, constrained by the allowable transitions of a finite

state machine shown in Figure 3-3, to complement a piece of music.

The automated choreographer presented here can choose musically expressive dance

moves, with a randomized move selection to preclude prediction by judges or audiences.

Dance moves and music bars are scored on emotional attribute scales. At each bar, an

optimization model ranks the move alternatives on their musical appropriateness, and then

a move is selected randomly from a distribution biased towards the highest ranked moves.

This biased distribution is discovered from performer-created dance routines. The opti-

mization model itself can be validated by consistent bias across routines.

Dances that are carefully choreographed and rehearsed actually have greater entropy,

or unpredictability, than dances that are improvised with an unknown partner. This cal-

culation appears in Chapter 4. This observation suggests that leaders would prefer to be

unpredictable when there is no chance of a miscommunication between leader and follower.
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It may be that dancing with an unknown partner requires a slightly more predictable dis-

tribution to ensure that followers can predict what the leader is doing. Randomizing the

selection of moves while often choosing “good” moves, allows the automated choreographer

to demonstrate musicality without being predictable or repetitive. Then, this automated

choreographer model will find application in any setting in which optimizing some objec-

tive must be balanced with retaining the element of surprise. That the goal of surprising

and entertaining dance justifies some random choices will be formalized with a two-person

zero-sum game model in Chapter 4.

3.1 Related work

Computers could be incorporated into the art of creating dances in myriad ways, and

investigators have been pursuing these multiple lines of inquiry for at least thirty years

[105]. To enable a computer to compose a dance, first, the articulated body structure and

the desirable qualities of human dance must be represented in computational terms, and

second, the computer must produce a dance script which is viewable as an animation, or at

the very least is translatable back to human dancers.

On the first point, investigators have often utilized Laban notation, a full-featured dance

notation system invented by Rudolph Laban in the first half of the twentieth century [52]. A

dance written in Laban notation is analogous to a musical score, even to the level of having

dances written in specific movement keys. Laban notation encompasses both the location

and structure of movement (what foot is the dancer standing on, which arm is raised to

what height, which direction to turn) and the emotive and perhaps intangible qualities of

a movement (is the movement meandering or sharply focused, is the movement delicate

or powerful) [24]. Other approaches to representing dance have separated the emotional

and structural dimensions [118]. For example, Camurri et al. used automated techniques

to recognize the emotions of the dancers as they performed the exact same dance with four

very different emotions [22].

On the second point, computer graphics techniques for generating all types of human

motion have been developing rapidly for the past decade or so. While the earliest attempts

at visualizing computed choreography amounted to little more than showing a few widely-

spaced keyframes between which dancers were free to interpolate [82], modern techniques
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are often capable of producing commercial-quality animation [89, 110]. Obviously, the capa-

bilities of any dance composition and visualization system depend largely on the encoding

chosen for the dances, so the most sophisticated efforts have addressed these problems taken

together.

3.1.1 Motion segmentation and generation

Motion segmentation nearly always underlies the frameworks both for notating and gen-

erating motion. The finite state machine we will describe for swing dancing echoes all of:

Rose’s verb graphs [118], Kovar’s motion graphs [76], Kim’s movement transition graph [74],

Li’s motion texton transition matrix [87], ad infinitum. Automated motion segmentation

is performed in some of these works, and also considered as a unitary problem in many

others [68, 135]. Fod, Matarić, and Jenkins incorporate psychophysical research into the

segmentation and representation of movement primitives [40]. Kim et al. have analyzed

motion-capture of rhythmic dance, discovering the underlying beat for use in segmenta-

tion and calculating Markov transition probabilities between dance moves to generate novel

dance sequences [74].

Generation of animated humans from segmented data or segmented models can take one

of three basic forms: interpolation, procedural generation, or dynamical simulation [118].

Procedural generation, which encodes rules to drive the positions of the limbs, requires

tuning time proportional to the amount of detail needed in the final animation. Dynami-

cal simulation generates motion using controllers and forward simulation of physics-based

models of the body [58, 133]. A more complete review of research in dynamical simulation

of human motion, including neuroscience and motor control aspects of this work, appears

in Chapter 1. Interpolation is the most direct method for reusing motion capture and other

animation data, and numerous interpolation techniques exist for reorganizing, blending,

overlaying, enhancing, and controlling human motions [76].

Interpolation methods which can be controlled at a high level to visualize arbitrary paths

through a state machine are complementary to our work if the methods are compatible

with fixed tempo constraints. An automated choreographer which selects motions from a

vocabulary to suit a piece of music creates a script, and that script can be made viewable by

interpolation. Pullen and Bregler describe a method to control interpolation via keyframing,

allowing a user to fill in missing degrees of freedom directly from motion capture [110]. They
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Figure 3-1: End pose of previous move Figure 3-2: Start pose of next move

applied the method to modern dance, keyframing only a few poses of the legs and generating

full-body motion with realistic texture. Hsu, Gentry, and Popović used a related method

to generate a swing dance follower’s motion to complement the captured motion of a swing

dance leader [60].

Fortunately, swing dancing is structured such that movement segmentation and the

connections in a transition graph are given almost for free. For instance, as discussed in

Section 1.1.2, there are only a few well-defined positions in which any move could begin or

end. This consistency means we may take fewer pains to blend between moves in a sequence

than many other applications might require [76]. Our automated choreographer uses an

elementary form of interpolation to display its output. It simply connects motion-captured

segments by translating and rotating each move. As pictured in Figure 3.1.1, the translation

and rotation is calculated to overlay the center of a line segment (thick line) between the

follower’s sternum and the leader’s sternum, with the centers of the line segments at the

same point (large dot). No blending between motions is performed. We have simplified the

dance from its most general form, most notably in considering all movements as 8-count

rather than the mix of 6-count, 8-count, and other even-count moves that would appear in

Lindy Hop.

3.1.2 Computer notation and representation as choreographer-driven tool

Some investigators have used the computer to interactively try out choreography on computer-

generated dancers rather than real dancers, as with the software LifeForms [19], or to
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translate precise dance notation into graphic images as with the software LabanDancer.

An excellent review of the long history of these two lines of inquiry can be found in [20].

Methods for the inverse task of translating video or motion capture into dance notation are

less developed [21, 145]. In each of these approaches, the computer is ancillary to the actual

task of selecting which movements will comprise the dance performance.

3.1.3 Randomness is often a desirable feature

Randomness has long been considered a desirable feature of computerized choreography.

However, our approach to balancing musicality with unexpectedness, and in particular our

modeling of choreography as a two-player game in Chapter 4 appears to be novel. An

early method of computerized choreography was to randomly assemble keyframes in an

order, then depend on the wisdom of dancers to interpolate between them [82]. Merce

Cunningham used the inverse kinematics solver and random assignments of limb positions

within LifeForms software to give him ideas about novel arm gestures [19]. Cunningham also

embraced randomness as a means of expanding possibility within performances, for example

rolling a die each night to decide the order of pieces for that evening’s show. Perlin, within

a procedural approach to motion generation, uses pseudorandom noise functions to lend an

air of naturalness or personality to CG puppets [109].

Nearly any segmentation and transition graph approach for reusing motion in a novel

sequence can be driven in random fashion. Random transitions between frames can be used

to create infinitely playing video textures of a candle flame or a waterfall, with appropriate

corrections to keep the video texture away from dead ends [122]. Doretto, Chiuso, Wu, and

Soatto perform a similar task, infinite novel video from a finite capture, using ARMA models

to describe each image within a video texture as a realization of a dynamic process driven

by independent and identically distributed noise [32]. Kim et al. produced novel sequences

as realizations of a fixed Markov chain, with transition probabilities between dance moves

estimated from the captured dance data [74].

Approaches like these could certainly generate novel sequences, but even Merce Cun-

ningham filtered out some of the random gestures that LifeForms suggested. That is, a

measure of goodness or appropriateness should also be incorporated into automated chore-

ography. The contribution of this chapter is to incorporate both the desirable excitement

of random selections, and a sense of musicality in that dance moves harmonize with the
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soundtrack, into an automated choreographer. In the following chapter the interaction be-

tween the dancers and their audience or judges is modeled as a game, the solution of which

clarifies why randomness in choreography should be valued.

3.1.4 Stylistic and emotional warping

Dance is often invented with the goal of communicating an emotional or stylistic impression

to the audience. Automated techniques for interpreting the emotional content of dance

have shown some success as judged by concurrence with spectator interpretations [22].

EyesWeb is a system for interpreting the dance content of 2D video data along some custom-

designed style axes, a few of which correspond to Laban parameters [21]. The stated goal

of EyesWeb is to provide live feeds to enable dancers to drive interactive music and staging

enhancements. An installation of this type, like the interactive dance club at SIGGRAPH

[131], creates an automated musician guided by the dance instead of an automated dancer

or choreographer guided by the music.

Consider now producing animation to reflect emotional or stylistic content. Given a

neutral motion captured movement, some groups have attempted to enhance the motion

with emotive accents [6]. Emotional accents directly correlated to Laban notions of effort

and flow have also been added to keyframed movement [24]. Style machines go beyond

fixed descriptions of moves and styles to identify from a collection of motion captured data

both the recurring choreographic elements and the most salient style parameters [17]. The

resulting style machine can be driven with noise, scripts, or video to create new sequences

or to convert novice ballet motion to that of an expert.

3.1.5 Computerized choreography

It is perhaps surprising that in none of the work described above was the musical accompa-

niment to a dance considered at all, except in Kim et al. which made limited use of rhythm

[74]. Instead, works which bear the most similarity to our designs for an automated chore-

ographer are earlier automatic visualizations intended to complement a music soundtrack.

Generally, efforts of this type have either analyzed waveform properties of audio signals, or

interpreted the literal score which a MIDI file encodes. An elementary example of the for-

mer type are the Bars and Waves visualizations available in Windows Media Player, which

display the frequency spectrum of the song or mimic an oscilloscope [26]. Lytle’s Animusic
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is a particularly well-developed example of the latter, in which MIDI files are visualized

with rich animations of musicians playing each note [88, 89]. Wang et al. controlled a cube

of springs according to some MIDI analysis [139]. In the latter category also are interactive

authoring tools such as MIDIArt, which allow users some freedom to alter the visualiza-

tions (here, colored circles and embellishments) of MIDI notes [42]. Cardle et al. combined

MIDI and audio analysis tools to transform a keyframed or motion-captured sketch into

a music-driven final animation [23]. The latter work did not consider the high-level plan-

ning problem of choosing which movements would complement the soundtrack, as does our

automated choreographer.

3.2 Introduction

Choreography is the art of arranging dance moves, usually with the objective of creating a

dance that reflects the music danced to and communicating expressively to the audience.

An automated choreographer might allow hands-off computer animation of large group

dance scenes; or just provide musically meaningful movements for a simple screen display

to accompany the playing of music files. We introduce a model for automated choreography

built from first principles and actual choreography data.

The choreography data available might be the result of an optimization process. The

expert dancers might choose from a set of moves the best moves to complement the mu-

sic, given the constraints that one move must end where the next begins. Then inverse

optimization, which aims to identify optimization parameters from given optimal decisions,

could be applied to determine the leader’s objective function precisely [4, 35]. Given the

leader’s objective, the audience could predict exactly the sequence of moves that a perfectly

optimizing leader would choose for a certain song.

A choreographer, though, should have many musically appropriate outcomes rather than

a single optimal one. An automated choreographer must have a random element, so that it

can produce different dances for the same song, as a real dancing couple would. Our model

uses optimization to rank the possible moves at each bar, and then biases the randomized

move choice toward highly-ranked move transitions. The automated choreographer can be

called a rank-biased randomizer for choosing the next move. The bias, the distribution over

highly ranked moves, is identified from data. The optimization process that produces the
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ranks is based on domain knowledge, and verified by identifying reasonable and consistent

rank distributions from independent datasets.

In fact, what we choose to model as a random element could be the result of inputs we

have not modeled, such as the difficulty of particular moves or the difficulty of particular

transitions between moves. The data in this chapter come from choreographed routines, in

which the dancers have had ample time to consider what moves are musically appropriate.

The influence of musical expressiveness on choreography should be detectable, so that moves

which are particularly appropriate for certain sections of music are more likely to be chosen

than less fitting moves. Recall that Chapter 2 confirmed that among expert dancers, musical

expressiveness is a real phenomenon. In order for followers to experience and detect the

dissonance between their music and the leader’s choreography, leaders would have to have

been leading musically meaningful moves [46].

Ultimately, an algorithm for choreographing musically expressive dance must turn to

artistic judgement for validation. Lindy Hop has a restricted set of named movements that

the leader sequences to create choreography. A move transcription of a 2001 American

Lindy Hop Championships (ALHC) routine to Frenesi is used here as both: training data

to fit a probability distribution, and validation data for the a priori optimization model.

A move transcription of a 2003 routine to Yes, My Darling Daughter for the same contest

validates the rank probabilities learned from the ALHC training set.

The remainder of the chapter is organized as follows: a description of the automated

choreographer in Section 3.3, data fitting and model validation in Section 3.4, and discussion

and applications in Section 3.5.

3.3 Optimize, then randomize

To create a ranking of the musical expressiveness of moves, an optimization model ranks

each of the move choices separately for each bar of music. To match movement to musical

expression, attributes of both the movements and the music are evaluated on numerical

scales. We have chosen the attributes loud, exciting, staccato, emphasized and assigned

numerical values between 1 and 10 to each eight-count bar of music and, independently,

each eight-count piece of choreography. The assigned scores for the song Frenesi are in

Table 3.1. The attribute emphasized refers to a break in the music; a 10 on the scale
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of emphasis might be a very loud drum hit followed by a few beats of silence. Dance

moves high on the emphasis scale might involve a dramatic pose held for a few beats. The

musicality parameters for each song and dance are fixed. The transcribed dance data are

used to estimate a probability distribution over the most musical moves as ranked by an

optimization procedure.

The optimization move ranking model restricts consideration to a set of 42 Lindy Hop

moves, which are listed in Table 3.2 with each move’s assigned musicality scores.

3.3.1 Optimization model to rank moves

Using the weights wj for the attributes indexed by j, let the distance or dissimilarity between

a move with attribute scores mj and and a bar of music with attribute scores sj be:

d(m, s) =
∑

j

wj ∗ (mj − sj)2 (3.1)

The squared distance was chosen to penalize large deviations in one of the dimensions, say,

just in the staccato dimension, more heavily than small deviations in many dimensions. Let

a dance M , for a song S with N bars, be a sequence of N moves. Let the attribute scores

for the nth move and nth bar of music be snj and mnj . The total dissimilarity between the

dance M and the song S is:

d(M, S) =
∑

j

wj ∗
N∑

i=1

(mij − sij)2 (3.2)

Lower and better scores on this metric are assigned to dances which have attribute scores

similar to the song’s attribute scores, subject to the attribute weighting.

The optimal dance for a song S, might be defined as the feasible dance M minimizing the

metric d(M, S). Only some sequences of moves M are feasible. For instance, a lindy circle

finishes in closed position, with the dancers standing very close and the leader’s right arm

wrapped around the follower. A whip, which starts from open position in which the dancers

are at arm’s length and facing each other, could not follow a lindy circle. See Figures 1-1

and 1-2 for the two main poses in which moves may start and end: closed position and open

position. See Figure 3-3 for a state machine linking the 42 moves used in our model.

Minimizing d(M,S) subject to move continuity restrictions can be posed as a shortest
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Table 3.1: Song attribute scores (abbreviated)
Song: Frenesi Loud Ex. Stc. Emph.

bar 1 4 3 4 3
bar 2 4 3 4 3
bar 3 4 3 4 3
bar 4 4 5 5 7
bar 5 4 3 4 3
bar 6 4 3 4 3
bar 7 4 5 4 3
bar 8 4 6 5 7
bar 9 6 7 7 8

bar 10 6 7 7 8
bar 11 6 7 7 4
bar 12 6 8 8 9
bar 13 4 3 4 3
bar 14 4 3 4 3
bar 15 4 3 4 3
bar 16 4 5 3 5
bar 17 2 2 2 1
bar 18 2 2 2 1
bar 19 2 2 2 1
bar 20 2 2 2 8
bar 21 9 9 10 5
bar 22 9 9 10 5
bar 23 9 9 10 5
bar 24 9 10 10 7
bar 25 4 4 3 3
bar 26 4 6 6 4
bar 27 4 4 3 3
bar 28 4 6 6 4

...
bar 49 7 5 4 3
bar 50 7 5 4 3
bar 51 7 5 4 3
bar 52 7 8 5 8
bar 53 5 5 5 3
bar 54 5 5 5 3
bar 55 5 5 6 3
bar 56 4 4 8 8

58



Table 3.2: Move attribute scores (abbreviated)
Lindy Hop move Loud Ex. Stc. Emph.

foxtrot 3 3 1 1
circle 5 7 2 4
freeze 5 10 5 10

swingout 5 8 6 4
closedfootwork 5 8 7 7

popturntoclosed 4 4 3 3
20sCharleston 6 8 9 7

Balboa 1 1 1 2
crosshandcircle 4 3 3 5

charleston 7 8 8 7
flashkicksjockey 7 5 7 8

eastcoast 4 3 3 3
promenade 3 4 6 2

sendout 5 6 5 4
popturn 4 5 3 2
tuckturn 5 3 6 6

whip 5 5 3 4
whipleaderspin 5 7 4 5
whipinsideturn 4 4 4 4

whipoutsideturn 6 6 4 7
underarmturn 3 3 3 2
hegoesshegoes 5 7 8 2

sugarpush 4 4 7 7
rightsidepass 3 3 3 4

...
pizzatoss 8 8 6 8

texastommy 5 5 4 8
crosshandwhip 4 7 5 4

judoflip 8 10 8 10
knickerbocker 8 10 6 10

getbackhere 6 5 3 4
promenadeopen 6 5 5 4

shortygeorge 4 5 6 5
tabbythecat 6 6 4 8

sugarpushfreeze 5 7 6 8
switches 5 5 4 3

circleduckunder 6 8 6 9
leadersplits 5 6 6 6
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pizza toss

circle

Texas tommy

crosshand whip

freeze

charleston

promenade

east coast
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Closed
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whip outside turn whip
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swingout
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footwork
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crosshand circle

pop turn

knickerbocker

judo flip

open promenade shorty tabby sugar push freeze switches

circle duck

get back hereeggbeater

open footwork
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Figure 3-3: Dance choreography is a finite state machine. Reciprocal links exist between
all moves in each self-linked box.
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path problem. Let flow at a node [nk] represent the choice to use dance move k from the

dancers’ vocabulary during musical bar n. Allowable transitions are connected with arcs,

so that if move a ends in the state that move b starts from then the arc connecting node

[na] with node [(n + 1)b] will be present for all n < N . The node costs are the one-step

distance metric d as in (3.1), while the arc costs are all zero.

At each bar of music, a shortest path problem starting from the current dance move

must be solved. These small linear programs can be solved quickly and reliably using

AMPL/CPLEX [41]. In Section 3.3.3, we will consider randomizing the choice of move

rather than selecting the very shortest path.

3.3.2 Horizon h repeated shortest paths method

The optimization horizon in the repeated linear programs solved above is the remaining

length of the song, from n...N . The state machine is highly connected, because there is at

most one intermediate move separating any start move from any desired target move. In this

section we consider whether a shorter optimization horizon would suffice. If, for example,

there were a direct link between every pair of moves in swing dance, then optimization

horizon h = 1 would suffice, because each move would impose no restrictions on the possible

moves to follow.

The shortest path problem arranged in stages could be solved by a sequence of horizon

h shortest path problems. Specifically, a horizon h shortest path problem derived from

the optimal dance setup would insert a dummy node after h bars of music, and solve the

resulting shortest path problem. Then, after committing to the first dance move on the

shortest path with horizon h, a new horizon h shortest path problem would be created from

music bar 2 to music bar h + 1. This is illustrated in Figure 3-4.

In experimenting with shorter planning horizons, we have found that using a horizon

of h = 5 is sufficient to find the optimal choreography, while horizons of h = 4 or less

sometimes result in a suboptimal choreography path. However, this result is only a quirk

of the particular distance metric and set of dance moves chosen, as will be shown. Figure

3-5 shows the ratio of the cost of a dance planned with a shortened optimization horizon to

the minimum cost found by planning with horizon N . The cost does not always decrease

monotonically with increased horizon, and the penalty for shorter horizons is not larger

than 12% in these examples. No randomization step was used, so the scores shown are
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Figure 3-4: Choreographer as sequence of horizon h shortest path stages. The move
selected at each bar of music sn is that chosen by a shortest path solution up to bar sn−1+h.

those of the horizon h shortest path.

Davis and Impagliazzo have applied competitive analysis techniques from the online

algorithms literature to prove bounds on the approximation ratio achievable by various

classes of algorithms for graph problems [15, 29]. A fixed priority algorithm is one that,

given the input instance, chooses a fixed order in which to examine the data items and

make an irrevocable decision for that item. For instance, an edge might have to be irre-

vocably included or not included on the short path to be reported by the fixed priority

approximation algorithm. An adaptive priority algorithm may rearrange the order in which

to examine data items depending on what it has seen. Davis and Impagliazzo show that

no fixed priority algorithm can even approximate the solution to a shortest path algorithm.

Djikstra’s algorithm for shortest path is an adaptive priority algorithm.

The horizon h repeated shortest paths method fits the definition of a greedy algorithm

given in [16]. The horizon h repeated shortest paths method is nearly a fixed priority

algorithm for the overall shortest path, except that an additional fixed set of data items Hh

is available before the irrevocable decision is made on each edge. Let Dn be the set of data

items pertaining to music bar n, that is, a list of the edges from moves at music bar n− 1
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Figure 3-5: Shorter optimization horizons result in higher total dance cost. The ratio of
horizon h cost to minimum cost is shown, for three sample choreography problems.

and their weights d(m, sn) from equation 3.1. Then Hh = {Dn, Dn+1, . . . , Dn−1+h} is the

data available at the time the irrevocable decision about which move to choose for music

bar n is made. By counterexample, we demonstrate that even the special structure of the

choreography problem in which any two moves are separated by at most one additional move,

does not enable shortening the optimization horizon in the general case. This does not rule

out the use of an estimated cost-to-go function, as in approximate dynamic programming

[10].

Theorem: The horizon h repeated shortest paths method for the general choreography

problem can not be guaranteed to find the optimal choreography path, for any non-trivial

h. A non-trivial h is an h less than the full length of the song.

Proof: We demonstrate a problem instance in which the Solver will have committed to

a suboptimal path, with a total number of stages N that is 1 greater than the optimization

horizon h. Consider a simple example, in which there is only one move of each of the

following types: Begin Closed-End Closed (BCEC), Begin Closed-End Open (BCEO), Begin

Open-End Closed (BOEC), Begin Open-End Open (BOEO). The instance is drawn in

Figure 3-6 for any horizon size greater than 2. The solid lines each have weight 0, the
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Figure 3-6: Problem instance in which a horizon h shortest paths method will commit to
a suboptimal path. The weight on each solid line edge is 0; the weight on each dotted line
edge is 1; and the weight on each dashed line edge is 3h. All edges are directional from left
to right.
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dotted lines each have weight 1, and the dashed lines each have weight 3h. The solution to

the horizon h shortest path problem ending at th is to follow the path across the top of the

diagram through the BCEC node at every bar of music, with path length zero. The true

shortest path is the path marked by dotted lines across the bottom, through the BOEO

node at every bar of music. The generalization of this counter-example to a horizon length

which is any fraction of the song length N is trivial.

3.3.3 Rank-biased randomization

In order to create surprising dances, the automated choreographer will randomly choose a

move at each bar of music. At the first bar, the optimization model will rank all the available

move choices. None of the moves are eliminated from consideration by the connectivity

constraints because the dance may start either in closed or open position. Call the resulting

list of ranked moves r1, and let a probability distribution {r1(i), p(i)} with p(i) ≥ 0 and
∑

i p(i) = 1 be given. The distribution presumably favors highly-ranked moves, which are

the most musically appropriate. Later we will identify this distribution for Lindy Hop from

data.

The distribution p(i) is given over the ranks of moves rather than over the moves directly.

A new rank-ordered list of moves r2 will be calculated for the alternatives at the second bar

of music. The automated choreographer will again select from the distribution p(i) over the

new list r2.

Choreographing a dance to a song, then, requires sequential randomizing over the ranked

alternatives to a linear program with some stochastic data. The stochastic datum at each

stage is the move chosen for the previous bar of music. An accurate ranking of moves would

require solving a multistage stochastic linear program (MSSLP) [69]. We take the shortcut

of solving deterministic linear programs at each nth bar of music. Given the move chosen

at bar (n−1), we assume that the single best move will be chosen for the remaining bars of

the song. Since the connectivity of the state machine in Figure 3-3 is high, committing to

any particular move at any stage does not heavily restrict choices later than the immediate

successor.

At each stage n, the automated choreographer chooses a move in the rank-ordered list

rn from a discrete distribution {(rn(i), p(i))}. See Figure 3-7 for a graphical outline of the

automated choreographer algorithm. For instance, if at the first bar the randomized move
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Figure 3-7: Choreographer as sequence of shortest path move ranking stages. The random-
ized move selection at each bar of music sn is biased by the ranks assigned by optimization.

chosen is m41 = circle, then the next step is to minimize (3.2), a shortest path problem,

from bar 2 to bar N . The move chosen at bar 2 must be a feasible successor move to a

circle. This constraint is implemented by setting node [1,41] as the source for the next

shortest path problem minimizing (3.2), where the sum is taken from i = 2.

The move that best fits bar 2, say, m8 = swingout, is then removed from the problem

by eliminating node [2,8]. (The choice shown in Figure 3-7 at bar 2 is different.) Solving

again the shortest path problem minimizing (3.2) from bar 2 to bar N identifies the second

best successor move, say, m6 = closed footwork. Ranking all move alternatives for bar 2 is

called optimization stage 2 in Figure 3-7. Each optimization stage n repeats these steps:

solve a shortest path problem and then remove the node chosen as best at bar n; until the

shortest path problem is infeasible. In implementation, the automated choreographer first

selects the rank i of the move to be used for bar 2, and then the iteration described in this

paragraph is halted after i steps, that is, after the move ranked ith has been identified.
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3.4 Data fitting and model validation

The shortest path model described in Section 3.3 suggests a method for ranking moves

from an actual dance routine according to the musical aptness of the moves in the routine.

Transcriptions from video of two routines from the ALHC, one to Frenesi and one to Yes,

My Darling Daughter, were taken, and from these the ranking of the actual moves danced

was calculated. From each actual move in the transcribed dance data, say, a sendout in

bar 2, all possible next moves were ranked. Say the actual move danced in bar 3, a whip, is

ranked fourth among alternatives. Then the sequence of the ranks of the observed moves

comprises a new dataset, the routine’s ranks. If the musicality optimization model has

merit, then the ranks of the observed moves should be biased towards the highly-ranked

alternatives. In Chapter 4, we consider a uniform distribution over a set of highly-ranked

alternatives, but then show that these different models are not mutually contradictory.

The automated choreographer requires only a few parameters to be fit from the data;

these are the observed probability distribution over the move rankings. How frequently is

the very best next move chosen, and how frequently is the second-best next move chosen?

This probability distribution will be used to propagate move choices in the automated

choreographer.

3.4.1 Results: optimization model validation

The ranks of the moves in the Frenesi routine were calculated, using equal weights wj = 1

for j = 1, 2, 3, 4 in distance metric (3.2). For comparison, a random feasible dance unrelated

to the musical structure of the song Frenesi was compiled from the same set of 42 moves, and

the ranks of the moves chosen in that random dance were calculated. Table 3.3 demonstrates

that the Frenesi routine chooses transitions that rank high in musicality, while relatively few

moves in the random dance rank high in musicality. Table 3.3 also shows that unmusical

moves very distant from (dissimilar to) the music bars are rare in the actual dance and

occurred frequently in the random dance.
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Table 3.3: Musical moves are highly ranked
Frenesi dance Random dance

Among best 5 30 of 56 13 of 56
Among best 10 42 of 56 22 of 56
Among best 15 49 of 56 30 of 56
Distance > 50 2 of 56 16 of 56

3.4.2 Results: bias towards highly ranked moves is consistent across rou-

tines

A second move and song transcription from the same contest were used to rank the moves

chosen by a different pair of dancers, using the musicality optimization model and weights

of the previous example. This test data routine was danced to the song Yes, My Darling

Daughter as performed by the Eddie Reed Big Band. The distribution of musicality ranks

of the dancers’ chosen moves was compared to the calculated rank distribution from Frenesi,

and both were also compared to the distribution of musicality ranks of a random dance.

The nonparametric Kolmogorov-Smirnov two-sample test was used to determine how

likely or unlikely would be each pair of observed datasets if they came from any identical

underlying distribution. The Kolmogorov-Smirnov test is formulated for continuous dis-

tributions. However, the discrete move ranks as calculated by the optimization model are

ordered over the range from 1 to 30, so they are similar to continuous values known to

very low precision. The K-S test is conservative in the case of discrete data, so the actual

p-values are somewhat lower than those calculated [25].

Table 3.4.2 shows that the null hypothesis, that the Frenesi dance routine’s ranks and the

Darling dance routine’s ranks are drawn from the same distribution, can not be rejected

(p =.4144). The random dance routine ranks are extremely unlikely to have come from

the same distribution as either the Frenesi ranks or the Darling ranks (p =0.00003918,

p =0.0042). This demonstrates similarity between the rank biases of the Frenesi dancers

and the Darling dancers that can not be an artifact of the optimization model’s ranking.

That is, the bias toward highly ranked moves is consistent across the routines, but the

random dance was likely not drawn from the same distribution over move ranks.
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Table 3.4: Two-sample K-S test with null hypothesis that both datasets come from the
same distribution

Darling ranks Random ranks
Frenesi ranks 0.4144 0.00003918
Darling ranks . 0.0042
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Figure 3-8: Frequency of moves at each rank, of 105 choreographed moves (line with
markers) and Weibull approximation for frequency (solid line)

3.4.3 Results: Weibull fit to rank distributions

The raw distribution of move ranks within the 105 choreographed moves from two dance

performance transcriptions appeared noisy. Rather than apply this distribution directly

when invoking the automated choreographer, we fit a Weibull distribution to the entire

dataset. The data are consistent with a Weibull (0.105, 1.17) distribution of ranks, as shown

in Figure 3.4.3. This approximation, rounded to the next larger integer or rounded down

to the maximum number of moves available from a given pose, is the actual distribution of

move ranks that the automated choreographer employed.

69



3.4.4 Results: Musicality of choreographed versus extemporaneous dances

The minimization objective (3.2) can be used directly, to evaluate actual dance performances

for their musicality. In twelve minutes of improvised dancing transcribed from the 2001

ALHC Jack and Jill contest, there were 235 moves with an average cost of 14.56 points per

dance move. In the two transcribed dance routines which were choreographed specifically

for the music, there were a total of 105 moves with an average cost of 14.82 points per move.

It is curious that these costs are nearly the same, when one might have expected to

see a higher cost for the improvised dancing than for the carefully crafted routines. This

particular Jack and Jill contest had an unusual feature: there were only two different music

selections for all 11 couples, so most of the competitors got to hear their music in advance.

All the dancers were advanced competitors with extensive experience at improvised dancing.

As was described in Section 2.2, dancers can easily predict swing music’s texture changes

and moments of emphasis. It may be that for expert dancers, improvised dancing is in fact

no less musically appropriate than pre-choreographed dancing. We will revisit the issue of

musicality in improvised and pre-choreographed dancing, and consider the effect of possible

communication errors in improvised dancing, in the next chapter.

3.5 Discussion

Creating an automated choreographer required modeling mathematically something that

most viewers and indeed most dancers can conceive of only aesthetically. Because the

dances considered here are carefully composed routines, each move likely has been consid-

ered carefully for its musical appropriateness.

The data fitting described here can only indirectly validate the optimization model that

ranks alternatives. However, having attempted, and failed, to fit a deterministic optimiza-

tion model exactly to the dances observed, we take the consistent bias (in the Kolmogorov-

Smirnov test sense) towards highly-ranked moves as validation for the optimization model.

Key inputs to the model were the numerical scores of dance moves and bars of music on at-

tributes such as exciting. These inputs were constructed by the author based on extensive

domain knowledge. Ranking alternatives lessens the dependence on the exact numerical

values of the objective function, which seems proper when applying mathematical models

to aesthetic judgments.
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The primary challenge in fitting a model to data in this context is the variability in

actual dance performances. Ultimately, the best an automated choreographer can hope

for is the best a real dance couple could hope for: creativity in combining moves with

the music that occasionally reaches the pinnacle of expression. It is said that the best

swing dancers can make an audience hear things in the music that weren’t noticed before.

Merce Cunningham’s quote bears repeating in this context; “Chance was a way of working

which opened up possibilities in dance that I might otherwise have thought impossible” [19].

Our automated choreographer randomizes its choice of ranked alternatives in the hope of

sometimes hitting the exactly right emotional chord. Its strategy is a balancing act between

honoring the music and honoring the intelligence of the adversary, the audience and judges.

Predictable dancing, like predictable war-making, can rarely achieve the highest success.

3.5.1 Applications

The obvious application for an automated choreographer is to create musically expressive

animations of dancing characters that could replace the abstract visualizations provided in

many computer music players. A number of expert Lindy Hop dancers contributed to this

effort by dancing in a VICON motion capture studio to create source data for an anima-

tion. The VICON setup captured three-dimensional position data at 120 Hz for 41 markers

each on two partners. The captured moves were scored on the attribute scales described in

Section 3.3.1. Also, a few songs, distinct from the songs the dancers heard in the motion

capture studio, were scored on the same scales. Visualization code created by Lukasz Hall

rearranged the motion capture data to create animations of the automated choreographer’s

novel sequences of dance moves. An example of the final animation, showcasing the musi-

cality of dances created by the automated choreographer, is in a video file accompanying

this document [autodance.avi].

When surprise is valued, plans that optimize a particular objective may be inappropriate

because the optimal actions could be predicted via inverse optimization methods [4]. The

automated choreographer is a novel generator of close-to-optimal, yet unpredictable actions.

A ranked alternative randomizer could be used to play games or to solve military resource

allocation problems, the latter of which would make this model reminiscent of the origin of

mathematical programming.

Further, the ranking method for determining how musically appropriate certain moves
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are could be used to objectively judge dance performances. Such a judge could not detect

the musicality of the manner in which a move is performed, but only whether the moves

chosen were broadly similar to the music. Indeed, if a traditional move is done in a very

distinctive way then it might be appropriate to categorize the new version as different move.

While a single fixed dance can not be the correct output of an optimal choreographer, there

is certainly a difference between choreography which does and does not reflect the music,

as demonstrated in Section 3.4 and in Chapter 2. An objective metric for this phenomenon

could help train dancers and judges alike.
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Chapter 4

The game of choreography

The previous chapter suggested that incorporating random move selections may be desirable

for an automated choreographer, or for a human one. This chapter examines a game

formulation of the choreographer’s problem, in which the other game participant is a judge

or an audience, to motivate that design choice. Randomizing over options with differing

musicality scores is an optimal strategy for the dancers in the two-player zero-sum game

described in this chapter.

We do not argue that dancers actually calculate a matrix for, and solve, a two-player

game for every bar of music to be choreographed. Kahneman, in addressing whether hu-

mans are consistently rational, distinguishes between intuition, which is fast, effortless,

and associational; and reasoning, which is slow, effortful, and rule-governed [67]. While

choreographed routines certainly have been subjected to slow and effortful analysis, impro-

visational dancing is clearly outside the scope of direct reasoning behavior. Further, human

decisions and judgements, even where deliberation is encouraged, deviate from purely ratio-

nal behavior for a wide variety of tasks [96]. The development here supports the choice of

randomization as a component of the automated choreographer. Validation is by analysis of

the input - output similarity between the game model and the actual dance moves selected

by experts for specific songs.

4.1 Predictability in music and dance

Music theorists have long held that tonal music creates schematic expectations in the lis-

tener, and that pleasing music must contain unexpected or surprising elements that some-
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times violate those expectations [99, 66]. Likewise, dance performance should usually har-

monize with the music but should also sometimes surprise the observer.

The information theory concept of entropy, a quantity that measures the unpredictability

of a sequence of symbols, is a fitting way to measure the unpredictability of a dance. The

dance language we considered for the entropy calculations consisted of 42 symbols.

First, we calculate the theoretical maximum entropy that could be realized by a dance

language with the constraints on transitions that apply to Lindy Hop. The allowable tran-

sitions are shown in Figure 3-3. The entropy H of a first-order Markov process [3], with

transition probabilities pij to state j from state i and steady-state distribution pi, is:

H(s) = −
∑

i

pi

∑

j

pij log2 pij (4.1)

Assume the maximum entropy Markov probabilities, which make all allowable transitions

out of every state equally likely and therefore achieve a uniform steady-state distribution of

pi = 1
42 = 0.0238. Let EC be the set of indices i of dance moves (states) that end in closed

position, and let EO be the set of dance moves that end in open position. Further, let BC

be the set of dance moves that begin in closed position, and let BO be the set of dance

moves that begin in open position. Note that these four sets are not mutually exclusive;

every move is in either BO or BC and also in either EO or EC. The only transitions

which have non-zero probability are those between sets EC and BC and sets EO and BO.

The cardinalities of these sets are 12, 30, 13, and 29, respectively. Then the theoretical

maximum entropy of this subset of Lindy Hop is 4.49 by the following calculation.

H(s) = −
∑

EC

pi

∑
sBC(pij log2 pij) +

∑

EO

pi

∑
sBO(pij log2 pij) (4.2)

= 12(
1
42

)(13 ∗ (
1
13

) log2(
1
13

)) + 30(
1
42

)(29 ∗ (
1
29

) log2(
1
29

)) = 4.49 (4.3)

There are 1026 transitions in this matrix, and we have a corpus of only a few hundred

moves. Rather than computing transition probabilities from an insufficient corpus, we

calculate the entropy of the actual data from the observed single-move probabilities. The

entropy, or unpredictability, of the choreographed dances here transcribed was 2.84, while

the entropy of a transcribed collection of moves from improvised dances between people

who were not regular partners was 1.86. Both transcriptions are from performances in the
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American Lindy Hop Championships.

The choreographed and rehearsed dances were significantly less predictable than the

improvised dances. It might be more difficult for the leaders to mentally access infrequently

used moves during the extemporaneous performances. More likely, the leaders in an impro-

vised setting may fear errors in communicating the more complex or less frequently used

moves to an unknown partner. The leaders may choose to use a few basic moves more fre-

quently, resulting in the lower entropy score for improvised dance. This latter argument will

be formalized in Section 4.3 in a game matrix that considers the possiblity of communication

errors.

4.2 Game theoretic model of dancers and judges

As an illustration, we draw a simple two-player zero-sum matrix game for a dance team

and a judge. The dance couple may do a swingout to score 85 points or a charleston for 76

points. The judge guesses which move the couple might dance, and if the judge is correct

he deducts 50 points for the predictability of their dance. The resulting payoff matrix for

the dancers looks like 


35 85

76 26




Since this game contains no pure strategy saddle point, at the Nash equilibrium the dancers

should use a mixed strategy and randomize its choice of move [28]. In fact, the dancers

should do either a swingout or a charleston with equal probability of 0.5.

The score for performing a move is assigned based on the musicality distance metric

of the previous chapter. Both Chapters 2 and 3 demonstrated that swing dancers place

a high value on musicality. The number of points a couple will score with a particular

move depends upon how well the move complements that bar of music. Then, one can

view choreographing a song as a sequence of games, each with a different payoff matrix

because each bar of music is different. Actually, choreographing a song is a multi-stage

game because future payoffs are linked to present strategies, and this complete problem is

outlined in Section 4.4 The score earned by move m in bar s in this section is 100−d(m, s),

where d(m, s) is as in (3.1).

Other factors that might contribute to a judge assigning a move score are the move’s
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difficulty and the intangible style or grace with which the move is executed. The dancers’

grace can be assumed to apply to each move equally, so that component of the score has

little influence the choice of choreography. The difficulty of a move might be important to

scoring, but we neglect that component of judges’ scores.

Consider the leader’s choice of a move for bar 12 of the song Frenesi. The move danced

in bar 11 ends in closed position. There are 13 moves that start in closed position to choose

from for bar 12. The moves and their musicality scores are shown in the first three columns

of table 4.1. The judge also knows the vocabulary of moves and the structure of the music,

and the judge again deducts 50 points if he guesses correctly which move the leader will

dance. The one-step zero-sum payoff matrix for dancing to this bar of music is




−12 38 38 38 38 38 38 38 38 38 38 38 38

91 41 91 91 91 91 91 91 91 91 91 91 91

76 76 26 76 76 76 76 76 76 76 76 76 76

25 25 25 −25 25 25 25 25 25 25 25 25 25

78 78 78 78 28 78 78 78 78 78 78 78 78

85 85 85 85 85 35 85 85 85 85 85 85 85

74 74 74 74 74 74 24 74 74 74 74 74 74

71 71 71 71 71 71 71 21 71 71 71 71 71

69 69 69 69 69 69 69 69 19 69 69 69 69

85 85 85 85 85 85 85 85 85 35 85 85 85

90 90 90 90 90 90 90 90 90 90 40 90 90

70 70 70 70 70 70 70 70 70 70 70 20 70

88 88 88 88 88 88 88 88 88 88 88 88 38




and the optimal strategy for the leader is to choose one of the moves: closedfootwork,

charleston, flashkicksjockey, sendout, swingout, or tuckturn; each with probability 1
6 . This

is a maximum entropy distribution over the moves with musicality scores greater than or

equal to 76. The optimal strategy for any of these choreography games will always be of

a simple form: Choose each of the moves that is “good enough” with equal probability.

The moves which are good enough are the g highest-scoring moves, where g is defined

implicitly by inequality to be introduced later 4.9. Just as infinite video loops try in a

sense to maximize information flow to a viewer [32, 122], so the dancers try to maximize
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the information communicated by their dance. The following theorem gives the general

solution for the above-described choreography game.

Theorem: Two-player zero-sum games with a payoff matrix of the form




a1 − j a1 . . . a1

a2 a2 − j . . . a2

...
. . . . . .

...

an an . . . an − j




(4.4)

have optimal row strategy that uses the g moves with highest ai, each with probability 1
g ,

where g satisfies inequality (4.9).

Proof: Without loss of generality, order the rows and columns by increasing score ai.

The proof is by the matrix form of the simplex algorithm on the column player’s problem.

The penalty to the dancer if the judge guesses correctly is j, and let y1, . . . , yn be the

judge’s (column) strategy. Add yn+1, . . . , y2n slack variables to get the program: Minimize

M, subject to

(a1 − j)y1 +a1y2 . . . +a1yn +yn+1 = M

a2y1 +(a2 − j)y2 . . . +a2yn +yn+2 = M
...

...
...

...
...

any1 +any2 . . . +(an − j)yn +y2n = M

y1 +y2 . . . +yn = 1

y1, y2, . . . , y2n ≥ 0

(4.5)

where M is the maximum dancer (row) payoff. We first re-order the variables slightly and
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perform a few elimination steps to reach the tableau form from [28], page 292:

Constants yn yn+1 . . . y2n−1 y2n y1 y2 . . . yn−1

1 1 0 . . . 0 0 1 1 . . . 1

an − a1 − j 0 1 . . . 0 −1 −2j −j . . . −j

an − a2 − j 0 0
. . . 0 −1 −j −2j . . . −j

...
. . .

...
. . .

an − an−1 − j 0 0 . . . 1 −1 −j −j . . . −2j

Cost c 0 0 . . . 1 0 j j . . . j

(4.6)

The first column of the tableau is referred to as b, the row below the lower line as c, and

the remainder of the tableau above the lower line as P . Consider the basis B consisting

of the columns {yn, yn+1, . . . , yn+r, yr+1, yr+2, . . . , yn−1} of P , with r being the number of

moves the dancers will not dance. Then g = n− r is the number of moves the dancers will

choose from, and g takes integer values between 1 and n. Let γ be the components of c

corresponding to the basis columns. Recall that the basis B is feasible if B−1b ≥ 0, and

optimal if the reduced costs c̄ = c− γB−1P ≥ 0.

Then B−1 has the block structure

B−1 =




1 0 . . . 0 1
gj

1
gj . . . 1

gj

0 1 . . . 0 −1
g −1

g . . . −1
g

...
. . .

...
...

...
...

0 0 . . . 1 −1
g −1

g . . . −1
g

0 0 . . . 0 − (g−1)
gj

1
gj . . . 1

gj

0 0 . . . 0 1
gj − (g−1)

gj . . . 1
gj

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 1
gj

1
gj . . . − (g−1)

gj




(4.7)

where the dimension of the upper left block is (r+1)-square and the dimension of the

lower right block is (g-1)-square. This structure enables closed-form calculation of the

required quantities. The reduced costs are positive, because

c̄ = [
r+1︷ ︸︸ ︷

0 . . . 0

g︷ ︸︸ ︷
1
g

. . .
1
g

r︷ ︸︸ ︷
j

g
. . .

j

g

g−1︷ ︸︸ ︷
0 . . . 0] (4.8)
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so the basis B proposed is optimal, provided that it is feasible. The 2, 3, . . . , (n + 1) com-

ponents of c̄, which are those corresponding to variables yn+1, . . . , y2n, are the optimal

probabilities for the n moves in the dancers’ (row player’s) strategy [28]. Each of the g

highest-scoring moves is equally probable.

The basis B is feasible if g can be set to satisfy B−1b ≥ 0. Note an−g+1 is the score

of the lowest-scoring move that will be chosen with non-zero probability in the optimum

row strategy. Call the differences between the best move and each of the other moves

∆k = an − an−k, so that ∆k increases with k, 0 ≤ ∆1 ≤ ∆2 ≤ . . . ≤ ∆n−1. Interpreting the

≥ sign component-wise, the simplified set of inequalities to be satisfied is




1
g + 1

gj [∆1 + ∆2 + . . . + ∆g−1]

∆n−1 − 1
g [j + ∆1 + ∆2 + . . . + ∆g−1]

∆n−2 − 1
g [j + ∆1 + ∆2 + . . . + ∆g−1]

...

∆g − 1
g [j + ∆1 + ∆2 + . . . + ∆g−1]

−1
j ∆g−1 + 1

gj [j + ∆1 + ∆2 + . . . + ∆g−1]

−1
j ∆g−2 + 1

gj [j + ∆1 + ∆2 + . . . + ∆g−1]
...

−1
j ∆1 + 1

gj [j + ∆1 + ∆2 + . . . + ∆g−1]




≥ 0 (4.9)

All terms in the first component of (4.9) are positive, so the first component is positive.

The parallel forms of the following r terms of (4.9) guarantee that all of these terms are

positive if the last one is positive, ∆g − 1
g [j + ∆1 + ∆2 + . . . + ∆g−1] ≥ 0. Likewise the last

g−1 terms in (4.9) will be positive as long as the first one is positive,−1
j ∆g−1 + 1

gj [j +∆1 +

∆2 + . . . + ∆g−1] ≥ 0.

Let f(g) = 1
g [j + ∆1 + ∆2 + . . . + ∆g−1], so f(g) is the average of j and the g − 1

differences betwen the best move score and the g − 1 next best dance move scores. Then

the inequalities to be satisfied can be simplified to

∆g−1 ≤ f(g) (4.10)

and

∆g ≥ f(g) (4.11)
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At the extreme values of g, if g = 1 only ∆1 − j ≥ 0 (4.11) must be satisfied, and if g = n

then only ∆n−1 ≤ 1
n [j + ∆1 + ∆2 + . . . + ∆n−1] (4.10) must be satisfied.

There will always exist at least one g that satisfies the required inequalities. If only one

move is to be included in the strategy, g = 1, then ∆1 ≥ j, and so the second-best move’s

score must be more than j points away from the best move’s score. By definition of an

average, if a number ∆ is smaller than the average of a set K of numbers, then the average

of set K ∪ {Delta} is smaller than the average of set K. We will use this property in what

follows. By finite induction on k ∈ {1, 2, . . . , n − 1}, there will be a valid g. It is easy to

show that if (4.11) is false for g = k, then (4.10) will be true for g = k + 1. If (4.11) is false

for g = k then ∆k < f(k). Then, (4.10) must be satisfied for g = k + 1 because the average

f(k + 1) now incorporates ∆k and ∆k was smaller than the previous average f(k). At the

last step, if k = n− 1 does not yield a valid g, then the inequality (4.10) for g = n will have

been satisfied, and since the inequality (4.11) for g = n does not apply, g = n satisfies (4.9).

We do not argue uniqueness of g; there may be degenerate cases in which more than

one g satisfies the inequalities, in which case there are multiple solutions to the LP and

multiple optimum row strategies.

4.3 Communication errors in improvised dancing

The leader’s choice of choreography in an improvisational Jack and Jill contest is also likely

to be influenced by the relative difficulty of communicating various moves. In a Jack and

Jill contest, not only are the dance moves chosen on the fly, but the partners might never

have danced together before. Table 4.1 shows the probabilities of an error for the moves

feasible at the 12th bar of music. The probabilities and penalties in Table 4.1 are based on

the author’s Jack and Jill and social improvised dance experience.

When errors of this sort do happen, the penalty is relatively large. The penalty also

depends upon the particular move, because some moves are unlikely to go drastically wrong

while others will look very awkward if they don’t go smoothly. The product of the proba-

bility of and the penalty for an error is the expected number of points the couple will lose

for miscommunications that are visible to the judges.

After accounting for the expected penalty for miscommunications, the game matrix for

improvised dancing to the 12th bar of the song Frenesi is
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Table 4.1: Move scores and probability, cost, and expected penalty for communication
errors

Move Score p(error) c(error) E(penalty)
foxtrot 38 0.01 800 8

closedfootwork 91 0.04 500 20
popturntoclosed 76 0.04 500 20

Balboa 25 0.02 200 4
charleston 78 0.005 200 1

flashkicksjockey 85 0.01 500 5
freeze 74 0.02 800 16

eastcoast 71 0.005 400 2
promenade 69 0.01 500 5

swingout 85 0.01 400 4
sendout 90 0.01 500 5
popturn 70 0.03 500 15
tuckturn 88 0 100 0




−10 30 30 30 30 30 30 30 30 30 30 30 30

71 31 71 71 71 71 71 71 71 71 71 71 71

56 56 16 56 56 56 56 56 56 56 56 56 56

21 21 21 −19 21 21 21 21 21 21 21 21 21

77 77 77 77 37 77 77 77 77 77 77 77 77

80 80 80 80 80 40 80 80 80 80 80 80 80

58 58 58 58 58 58 18 58 58 58 58 58 58

69 69 69 69 69 69 69 29 69 69 69 69 69

64 64 64 64 64 64 64 64 24 64 64 64 64

81 81 81 81 81 81 81 81 81 41 81 81 81

85 85 85 85 85 85 85 85 85 85 45 85 85

55 55 55 55 55 55 55 55 55 55 55 15 55

88 88 88 88 88 88 88 88 88 88 88 88 48




The solution to the above game is that the leader should choose one of the moves:

charleston, flashkicksjockey, sendout, swingout, or tuckturn; each with probability 1
5 . A

similar strategy was optimal for the pre-arranged dance game in Section 4.2, except that

for the pre-arranged dance the move closedfootwork was also included in the leader’s set.

The error penalty and probability of error for the move closedfootwork are high, so the leader

should not consider this move for an improvised dance even though he would consider it for
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a choreographed dance.

It is not clear whether this communication penalty will result in a dance with lower

entropy, as would be expected from the difference discovered between the entropies of actual

choreographed and improvised dances in Section 4.1. To define a condition on the musicality

scores and communication penalties which would guarantee this inequality holds is left to

future work.

4.4 Multi-stage choreography game

Choreographing an entire song with M bars is a finite multi-stage game with one stage

per bar of music. Due to the move continuity restrictions, future payoffs depend upon the

decisions made at every stage. It is not sufficient to solve the one-step game as described

in Section 4.2 at each bar of music. The multi-stage game can be solved with a dynamic

programming approach by working backward from the final stage at the final bar of music

[7, 9]. Let the one-step payoff matrix for each bar i of music where the previous move was

k be Ri,k. Let the expected future payoff from stage i to stage n if the move at stage i is k

be V(i)(k). Then Vi(k) is the value of the game with matrix

Ri,k +




Vi+1(1) Vi+1(1) . . . Vi+1(1)

Vi+1(2) Vi+1(2) . . . Vi+1(2)
...

...
...

Vi+1(n) Vi+1(n) . . . Vi+1(n)




(4.12)

Note that because Ri,k has the form (4.4), the payoff matrix (4.12) also has exactly the

same form (4.4). Calculating the optimal strategy for the game with payoff matrix (4.12)

is a simple linear program provided one can calculate Vi+1(k),∀k. This multi-stage game is

easily solved by backward recursion, starting with the initialization step that V(M+1)(k) =

0, ∀k.

4.5 Game model versus optimization model

Both the game model of this chapter and the optimization model discussed in Chapter 3

assigned scores to dance moves for their musical appropriateness, and both explicitly require
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Figure 4-1: Smoothed probability of actual ranks of moves (solid line) compared with game
theory model prediction if good-enough moves are equally probable (line with markers), for
the song Frenesi.

some random element in the choice of moves. At first glance, though, the game model’s

predicted uniform distribution over moves that are “good enough” seems incompatible with

the biased distribution over ranked dance moves from Chapter 3.

However, recall that a different game matrix will be generated for each bar of music.

Perhaps some bars will have the dancer choosing with equal probability from the 20 best

moves while other bars of music will have him choosing with equal probability from only

the 3 best moves. Then the overall probability of choosing moves with particular ranks

would appear biased towards highly-ranked moves. As an illustration of this, we calculated

the number of good-enough moves, moves within 20 points of the highest ranked move, for

every bar of music and starting pose for the actual Frenesi dance. Assigning a uniform

distribution over the number of good-enough moves and summing over the 56 bars of music

in the song, we found a distribution biased toward highly-ranked moves that appears similar

to the actual distribution over the move ranks, as shown in Figure 4.5.
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4.6 Conclusion

The game model of musically expressive and entertaining choreography presented here is

admittedly simple. There are many aspects of dance and judging which have been neglected.

Further, showing that a model can predict reality, even if it does so perfectly, does not prove

that the model describes the actual mechanism that is operating. Still, this investigation of

dancing for judges offers a model in which leaders, making rational decisions, will randomize

their choice of move rather than select the single optimal dance move.

The dancer takes an adversarial relationship to the judges or the audience, in that the

dancer always aims to surprise while remaining musically expressive. Military planning

problems, the subject of decades of sustained research, likewise have a primary objective

with the side objective of achieving surprise. The wide applicability of a good decision-maker

that evades prediction makes modeling choreography a difficult but worthwhile enterprise.
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Chapter 5

Robot leader experiments

Partner dancers can coordinate actions between human leaders and followers, who share a

rhythmic motion vocabulary, by haptic (touch) signaling with an audio metronome. This

chapter asks whether human-robot cooperative tasks might benefit from the use of rhyth-

mic motion vocabularies similar to those found in human-human dance interaction. To

determine the effect of a shared motion vocabulary in a dance-like task, this study uses a

PHANToM haptic robot to lead a dance followed by human subjects. The data demonstrate

that the subjects’ understanding of the motion as a random sequence of known vocabulary

elements allows them to follow using prediction of the lead. This type of interaction is

fundamentally different from closed-loop pursuit tracking because the subject could at least

in principle recognize the current state of the high-level automaton, as described in Chapter

3. We found that subjects do use their knowledge to react to upcoming input, defeating

the physiological minimum delay for closed-loop pursuit.

5.1 Background, and relevance of human-robot dance

The leader and follower dancing model is a useful instance of the multi-agent systems frame-

work for cooperative tasks between man and machine [81]. Observations from the successful

haptic collaboration system that exists between dancers can be used in designing human-

robot haptic collaboration. Other researchers are interested in human-robot collaboration

in a dance setting: Setiawan et al. have designed a robot that follows a walking human [123],

and Kazuhiro Kosuge’s group at Tohoku University created a ballroom dance follower robot

on a wheeled platform [75].
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Human-robot haptic cooperation tasks are tasks that place the human and robot in

contact with each other, or enable both to exert forces on a shared tool. This class includes

strength-extending wearable robots [71] and teleoperator systems [125, 126].

Teleoperation systems have a master device operated by a human and a remote slave

device which manipulates an environment [125]. They are useful in domains where the

human would not directly perform the task because it is either too far away, too dangerous,

or at too small a scale, or has too restricted a workspace as in minimally invasive surgery

[107]. Creating telepresence, the sense that the user is actually performing the task, has

usually taken the form of reflecting forces between the slave device and its environment

to the master device [83]. Bilateral teleoperation refers to the various forms of feedback

from the environment (position feedback, force feedback, impedance reflection) that use the

master to impose forces on the user. Haptic feedback has been shown to reduce tissue-

damaging errors in a telesurgical dissection [138]. Haptic virtual reality systems have a

similar goal of presenting forces to the user, although in this latter case the environment

is only simulated [56]. Only the kinesthetic (force) component of haptic information is

communicated in the vast majority of systems, as programmable tactile (texture) displays

are not yet practical.

Bilateral teleoperation and haptic virtual reality are focused on providing kinesthetic

feedback to the user, which is exactly the type of information which we will argue is valuable

to swing dancers in the structured task of dancing. A virtual fixture is a simulated addition

to a teleoperated environment that can aid performance of a skilled task [91, 120]. The

experiment reported here demonstrates the usefulness of a specific style of touch cues,

which suggests a novel virtual fixture that leads the proper motion primitive from a known

set. A dancing game with the robot as leader could also add excitement and interactivity

to repetitive movement robot rehabilitation [114].

Bilateral teleoperation is notoriously problematic because of the possibility of energy

being injected by the master and slave controllers [72], with the seemingly obvious position-

forward force-feedback approach having serious stability problems when the slave contacts

a rigid environment. Most resolutions of the stability problem have utilized the notion of

passivity to prevent the (perhaps virtual) environment and devices from adding energy to

the master [56, 2, 83]. Passivity is not a reasonable assumption for swing dance partners,

who depend upon a transfer of energy to complete their movements. In fact, the PD control
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loop which ran the PHANToM haptic device as a dance leader in the present experiment is

active, injecting energy to move the participants’ hands. The energy added was not great

enough to enable participants to perform acceptably by letting the PHANToM drag their

hands around.

Human-human contacts do not exhibit the stability problem seen in teleoperation sys-

tems, because human limbs are in fact tuned to act as passive impedances [59, 102]. Al-

though there is no actual delay in the mechanical interaction between two human limbs,

there is a long-loop delay for each person before cognitive processing can take place and

muscle tension settings can be adjusted. Wave variables, which enable graceful degradation

of performance with delay in teleoperation [104], have been theorized to perform the same

function in the human motor control system [92]. One of the conclusions of the present ex-

periment is that in dance-like tasks that allow communication of the upcoming vocabulary

input, a person’s response to kinesthetically-communicated direction reversal need not wait

for the long-loop delay.

Our PHANToM robot plays the role of the leader with a human subject as follower. A

robot leader with a human follower could act as a teacher [37, 49], or as a virtual experience

guide for playback of haptic or touch recordings, as in [142]. The roles of leader and follower

are not always sharply drawn, because dance leaders will often adjust to accommodate a

follower’s style or a mistake made. In dance, followers occasionally take charge to decide

what move will come next [46].

In fact, rhythm, timing, and to a lesser extent move vocabularies have often been ne-

glected in human-robot interaction work. Dancers embody a gentle interaction, in which

each participant extends the capabilities of the other by cooperation facilitated by a shared

understanding of the motions to be performed. Such concepts could make robot assistants

more welcome, for instance, in the operating room or the living room.

Human-robot team surgery is a meaningful prospective application for rhythmic motion

vocabularies. Surgeons use telemanipulation to improve surgical outcomes and minimize

incisions. Further, surgery requires precision movements that have been categorized, for

example, into grasping, spreading, and sweeping tissue [119], and the choices made among

these movements correlate to surgical skill. A robot assistant might train novice surgeons

to choose the proper sequence of actions in a simulated surgical environment.

The daVinci surgical robot, in use today, enables surgeons to teleoperate tiny laparo-
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scopic instruments with articulated wrists. Currently the device uses no force feedback

[54]; miniaturized, tissue-compatible, and disposable 6-axis force sensors are prohibitively

expensive [107]. Fictional force feedback from a purely visual force sensing system has

recently been proposed [73]. Literal force sensing for feedback might be replaced by force

feedback from virtual fixtures [120], if registration can be resolved and fixtures which im-

prove performance of real surgical tasks can be designed. With the surgeon as leader, a

virtual fixture follower might follow expert surgeons through a procedure to compensate for

a lack of haptic feedback and speed up sewing, prevent injury of vital nerves or vessels, or

reduce hand jitter [128], all without removing control from the surgeon and conditioned on

the recognition of the surgeon’s current movement. An intent recognition system based on

hidden Markov models is described in Li and Okamura [86].

5.2 Overview

Partnered dancing requires coordination of actions between two humans by haptic, or touch-

based, communication. Previous work on haptic interfaces between a cooperating pair of

humans found that haptic-only cooperation was inferior to visual-only cooperation and

found that haptic-plus-visual cooperation was not superior to visual-only cooperation. The

task was for subjects to teach one another how to draw an unfamiliar Japanese calligraphic

character using a pair of bilateral teleoperated PHANToM haptic devices [106]. However,

experienced swing dance followers have demonstrated in our lab the correctly identify moves

and to follow them while blindfolded. The critical difference between these tasks is the

highly structured nature of swing dance. Swing dancers share a synchronizing audio grid

and a rhythmic move vocabulary, with one of these known moves assigned to each bar of

music. Dance interactions appear more robust to visual deprivation than less structured

cooperative tasks.

One goal of this study was to demonstrate improved human-robot interaction by re-

striction of the cooperative task to sequences of known moves. This study is primarily

to investigate the participants’ interaction strategies in the specific context of improvised

dance, but also aimed to test general ideas about the nature of human-robot haptic com-

munication. Our results show that delay before responding to robot cues is reduced with

known moves. The study investigates whether dance followers use mental models of each
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move.

We hypothesize that dance followers will recognize each move as it is led, and that

recognition will enable some open-loop or predictive control. The primary metrics used to

determine whether followers have recognized a move are the length of time delays and the

frequency of position errors. Time delays and position errors are measured at a direction

reversal within the dance pattern. A direction reversal is where a clockwise tracing of a

circle switches to counterclockwise tracing of that circle, or vice versa. Reversals are either

predictable if the move has been recognized, or unpredictable if the reversal is at one of

the random transitions between moves. If dance followers do not use their knowledge of

the vocabulary of dance moves, then none of the reversals should be predictable and there

should be no difference between the time delays and position error frequencies observed

within moves and at move transitions.

Hypothesis 3 Subjects in the dance following experiment will use open-loop or predictive

strategies when they have recognized an element from the dance move vocabulary. Subjects’

performance at direction reversals, measured by time delay and position error frequencies

and variance in position traces, will therefore be different depending upon whether the di-

rection reversal was predictable as part of a move or unpredictable at a move transition.

5.3 Prior experiments

5.3.1 Manual tracking

In the literature on manual tracking tasks, central nervous system delays on the order

of 160 ms have been observed [34]. Long-loop delays have a strict lower limit of about

100 ms, because nerve impulses require a finite travel time to and from the brain. The

short-loop stretch reflex of muscle can have a shorter delay, on the order of 60 ms. The

length of long-loop central nervous system delays make for poor performance of proportional

control strategies. Fuzzy controllers, which have some commonality with the dance move

recognition postulated here, can reduce settling time when delays are of the order of central

nervous system delays [51].

A brief review of a number of classical results in control system modelling of human

operators can be found in Hess [57]. These results are formulated for random or random-

appearing inputs or disturbances. A random sequence of dance moves is not a random-
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appearing input, because the moves are known and transitions between moves are con-

strained to happen at specific times during a dance. Move transitions land on the beat of

the music that both partners hear.

More closely related to the current study are Jagacinski’s experiments [63]. His subjects

repeatedly tracked identical 20 second segments with a position control joystick via visual

display of error. With practice, subjects were able to reduce the effective delay of their

responses from about 126 ms to about 32 ms. Effective delay was calculated as the best fit

τ in a Taylor-series approximation to an input reconstruction model x(t) = β0 + I(t − τ),

where x(t) is the subject’s position and I(t − τ) is the input τ seconds prior. As 32 ms

delays in visuomotor loops are physiologically infeasible, this effective delay reflects learning

of the input signal I.

Then, the current experiments can be seen as exploring the space between exactly

repeated tracking tasks and apparently random input tracking tasks. In this work, as in

extemporaneous partner dance, repeated moves are sequenced in either novel or predictable

ways.

5.3.2 Haptic modality

Classical research on human tracking ability considered mostly tracking visual displays of

error using a joystick. The presentation of error here is novel. While the subjects can see the

path of the PHANToM’s stylus, they can only perceive error levels haptically, interpreting

greater forces as greater errors. It is to be expected that position error is higher in this

haptic-display movement task than it would be if the task included a visual error display,

because the fidelity of the haptic sensing system is lower. Weber’s law holds that just

noticeable difference (JND) is a pure number, the percent change in the magnitude of any

signal that will be reliably perceived as different from the standard signal. The traditional

JND=0.02 for visual discrimination of luminance. Just noticeable differences are larger for

kinesthetic signals than for visual ones, with JND = 0.10 [5]. Humans can maintain what

they believe to be a constant force with their elbow joint only to within a mean error of

4.5N with haptic feedback, but can improve that to 0.76N with visual plus haptic feedback

[65].

Although visual display is superior to haptic display, there will be applications in which it

is best to minimize visual demands upon the user. Jagacinski et al. compared visual display
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of error to tactile display of error and found visual display to be generally superior [62].

Jagacinski et al. used a different type of haptic display than the one considered here. Their

device rolled across the subject’s fingertip to indicate position errors, or combined position

and velocity errors, but the PHANToM device instead imposes forces that contribute to the

motion of the stylus.

Wagner and Howe distinguished between force feedback as a physical constraint on

motion and force feedback as a means of displaying information [137]. They compared

reversals of direction when subjects encountered a virtual wall implemented as either: a

spring of varying stiffness, or a vibration which transferred no energy. Subjects could not

respond to the vibratory wall until after a 150 ms delay, but the spring force acted as a

physical error correction that reduced the subjects’ incursion into the virtual wall. Wagner

and Howe also use a second-order model of the hand and arm to estimate the subjects’

desired trajectory absent the physical interaction with the force. They conclude that higher

spring constants not only reject the incursions physically, but also reduce the time delay to

reversing the subjects’ desired trajectory.

Our experiment instead compares apples to apples, that is, both the predictable and

unpredictable direction reversals in our experiment use the same controller and reference

trajectory. We investigate whether the subjects’ performance in these two categories differs,

to show whether subjects are actively predicting reversals within the randomly sequenced

dance moves. Unlike Wagner and Howe [137], we do not separate the following possible

subject strategies: (1) setting certain parameters of the limb differently for a predicted

direction reversal so that the PHANTOM forces the limb in the reverse direction, and (2)

incorporating the predicted direction reversal into the desired trajectory.

5.3.3 Successive organizations of perception and internal models

The successive organizations of perception theory of humans as controllers describes three

levels of behavior: compensatory, pursuit, and precognitive [90]. In compensatory tracking,

the subject’s control input is the perceived error. In pursuit tracking, the subject’s control

inputs are perceived error and perceived or estimated target. Even if, as in this experiment,

the target is not displayed, experienced subjects estimate it from the displayed error and

behave as if it were present [63]. In precognitive tracking, the subject mentally describes a

pattern for the target and tracks in a precognitive, or open-loop, fashion.
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The question this study asks is whether the subjects will use precognitive controls when

presented with repeated moves sequenced unpredictably.

Neuroscience researchers have investigated internal model hypotheses about how the

motor control system predicts consequences of motor commands. In particular, Karniel

and Mussa-Ivaldi trained people on two novel force environments, and subjects were able

to gain control of their movements under these force fields with practice. However, their

subjects were unable to maintain both models and switch between them on successive trials,

even though the simple alternation of models was predictable [70]. Our study differs from

Karniel and Mussa-Ivaldi’s in that our subjects are exposed to a random sequence of known

moves or trajectories, and our subjects probably do not require novel central nervous system

models of motor control to follow these moves. We found evidence that our subjects were

able to adjust their intended trajectories after recognizing the move.

5.4 Experiments

The PHANToM 1.5, a commercial haptic device shown in Figure 5-1, presents a force at its

stylus endpoint which is a function of its sensed position. The PHANToM is a very high-

end desktop device which is capable of 1000 Hz precision force-feedback [93]. The device

provides the Cartesian coordinates of the end-effector through the software development kit.

The programmer computes the force to be output at the end-effector. There are no force

encoders at the end-effector. The force commanded is the only force that can be recorded,

and is assumed to represent the interaction force although these are probably not identical

since the device is in motion. Other haptic display devices are available [134]. This study

used the PHANToM to implement a dance-like game with the robot as leader and human

as follower [47, 48].

The PHANToM leads a human follower in unknown sequences of known moves. The

device follows a trajectory with a modified proportional-derivative (PD) feedback controller.

The force F imposed on the end-effector, is a function of the error signal ep and ev in x

and y, the differences respectively of position and velocity of the stylus from the reference

position and velocity. The moves are two-dimensional circular and semi-circular shapes in

x and y, with z controlled but not constrained to a fixed value. Here, positive x is the

direction to the right of the user, positive y is the direction towards the ceiling, and positive
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Figure 5-1: PHANToM haptic device

z is perpendicular to x and y axes and pointing toward the user.

The control force which the user feels is

F = kzez + (1 + kg|ez|)(kpep + kvev) (5.1)

with kz = 0.03N/mm, kg = 0.01N/mm, kp = 0.005N/mm, kv = 0.0005N-s/mm. The first

term enforces a preferred plane for the moves, and the second term is the PD feedback, with

the overall gain increasing with distance from the preferred plane due to the kg term. The

justification for increasing the gains with distance from the preferred plane is addressed in

Section 5.5.4.

Using these gains, the forces imposed are gentle and could not drag a subject’s hand

through the moves without the subject’s active participation. Although the device’s dy-

namics surely influenced the hand’s dynamics as in Wagner and Howe’s experiment [137],

the haptic dance is designed to encourage active participation and, if possible, prediction.

The forces imposed were everywhere less than .7N, and averaged about .24N. With no user

touching the robot as it led these moves, the stylus will move in space, but the feedback

gains are so small that the total motion covers a circle smaller than the reference trajectory

(see Figure 5-2). If a user failed to add his own strength to the movements led but added

mass to end-effector, these too-small circles would have become even smaller. None of the

subjects used this passive strategy.
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Figure 5-2: Without user intervention (dotted line), the circles traced were smaller than
the reference trajectory (thick solid line). With user interaction, the circles traced were
larger (thin solid line).
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5.4.1 Dance vocabulary

The haptic dance has syntactic content, as do the standard forms of partner dance. Moves

are selected from a set of four moves: two clockwise circles, two counterclockwise circles,

four upper half circles, and four lower half circles, all of which are executed in the frontal

plane. The frontal plane goes left-right and up-down, excluding toward-away from the

subject. The moves are illustrated in Figure 5-3.

The reader can view an MPEG movie file of the author dancing with the PHANToM

[movetitles.mpg]. The movie displays the move numbers and descriptions as the randomly

sequenced moves are danced.

The dance moves last eight beats and are performed to a soundtrack of a well-known

song at 120 beats per minute. Each move takes four seconds. Perceptuomotor delays are

known to be below 350 ms, so this dance occurs slowly enough that it is possible for the

subject to be replaying an open-loop motion program through most of the duration of each

move. The choice of upcoming move is not signalled in any way before the new move begins.

The timing of a move transition, though, is evident from the soundtrack. For about the first

100 to 350 ms after a move transition, the subject may be doing one of two things: playing

a motion program without knowing whether it corresponds to the correct movement; or

reacting through the prior settings of impedance parameters on his limb. If it is the latter,

the subject can only cognitively react to the sensed input after a minimum long-loop delay.

That is, immediately after a move transition the subject can have no valid prediction of

which move is being danced.

The random move transitions are a realization of a Markov chain connecting the moves.

The transition matrix that generated our PHANToM leader’s dance is

P =




0 0.5 0 0.5

0.5 0 0.5 0

0 0.5 0 0.5

0.5 0 0.5 0




(5.2)

This transition matrix does not allow move repetitions, which helps subjects recall that

move transitions are scheduled to happen every 8 beats. Every move is equally likely. Also,

at the move transition points, the leader is equally likely to reverse direction or to continue
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“   Fly me    •     to the      •      moon       •   and let me”

“   Fly me    •     to the      •      moon       •   and let me”

“   Fly me    •     to the      •      moon       •   and let me”

“   Fly me    •     to the      •      moon       •   and let me”

1. two clockwise circles

2. two counter-clockwise circles

3. four upper half circles

4. four lower half circles

Figure 5-3: Dance moves
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in the same trajectory around a circle.

There are three direction reversals within moves 3 and 4, and the very first direction

reversal within each move might be predictable, but only if the subject has learned the

structure of the transition matrix P . The second and third direction reversals within moves

3 and 4 should definitely be predictable if the subject has learned moves 3 and 4, even

absent an understanding of the transition matrix P . In Section 5.5.1, the within move

reversals discussed are only the definitely predictable ones. In Section 5.5.2, the question of

whether subjects learn the transition matrix is discussed with reference to both definitely

predictable and perhaps predictable reversals.

5.4.2 Protocol

The subjects for this experiment were not experienced partner dancers. Perhaps experienced

dancers would perform better than the actual subjects did at this dance task, but we aim to

apply this novel human-robot interaction idea to more than a small population of trained

dancers.

Five subjects volunteered, four male and one female, all of whom were graduate students

and researchers familiar with the PHANToM and haptic feedback for virtual environments.

The subjects were instructed to try to follow the PHANToM’s lead. Subjects were told that

the dance was synchronized with the music and consisted of four moves: two circles in each

direction, or four half-circles on the upper part of a circle or the lower part of a circle. The

subjects first trained for 60 seconds each on the four moves from Figure 5-3. The subjects

then trained for 90 seconds each on four two-move fixed sequences, such as two clockwise

circles followed by four lower half circles.

The subjects then followed randomly generated move sequences lasting 120 seconds.

Participants expressed varying levels of entertainment and frustration in trying to follow

the moves.

5.5 Metrics and Results

In pursuit tracking experiments with pseudorandom smooth inputs, researchers have used

metrics such as time to task completion, where the task is to move a pointer to within a

certain tolerance of zero for 20 seconds, or total mean squared error over the task [34]. For
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the dance sequence following task, these metrics are inappropriate. Mean squared tracking

error sums two sources of error that should be separated: move confusion error and tracking

error for executing a move in the case that the move type is known. Another possible metric

is time to task completion, where the task is to infer the correct move transition. It is not

clear how to calculate the time to task completion metric for our dance, although automatic

segmentation and classification methods such as hidden Markov models might be applied

to the continuous trajectories. The relevant metrics chosen for the current experiment are

time delay in reversing direction, position errors, and variance in position traces.

5.5.1 Reversal Delays

Both at move transitions and within moves, sudden direction reversals are led. Because

the transitions between one move and the next move are random, subjects have no way to

precognitively or open-loop control the direction reversals at move transitions. However, a

direction reversal within a move should be wholly predictable if subjects learn the moves as

trajectories. We define the time between reference position reversal and actual y direction

(up-down) reversal as the time to task completion. This metric is called delay within this

section.

The Mann-Whitney-Wilcoxon rank sum test [116] was applied to determine whether

the move transition delays and the within move delays could have been sampled from the

same distribution. The p-values for the rank sum test were calculated separately for each

individual, and the overall p-value for the hypothesis that the distributions were the same

was p = .029. We conclude that delays at within move reversals are distributed differently

than delays at move transitions, so the hypothesis 3 is confirmed.

In Figure 5-4, the distribution (median, interquartile range box, and outliers) of all

subjects’ move transition and within move direction reversal delays is shown. There are

180 data points for each category included, for 360 total observations. A direction reversal

between moves will happen at only about half of these move transitions and is thus un-

predictable. The data demonstrate that shorter delays are achievable if the reversal was

predicted. Subjects can predict the within move reversals only if they have recognized the

current move from their vocabulary of dance moves. Note that the interquartile ranges

(IQRs) for these two categories, from the 25th percentile to the 75th percentile, do not

overlap.
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Move

Move

Transition

Figure 5-4: Interquartile range boxes, medians, whiskers and outliers of delay. MT,
move transitions, are unpredictable direction reversals, while WM, within move direction
reversals, should be predictable.

The separation of the IQR boxes indicate recognition of the dance moves. Subjects often

predicted and planned for the direction reversal but in some instances reverted to long-loop

feedback response, even for within-move reversals, perhaps because they were still novices

at the dance. There may also be some artificially low delays included in the move transition

delays, reflecting places where a subject erroneously assumed he could predict a direction

reversal at a move transition and was, by chance, correct.

The reference velocity jumps at direction reversals, and inertia prevents exact tracking

of these sudden velocity changes, even if they are perfectly predicted. The inertia-mandated

delay is not known for this setting, though it could be estimated by a multi-joint dynamic

model. Also, all of the direction reversals, both within move and at move transitions, are

predictable in a sense because they all fall on even beats of the music. If direction reversals

can be prepared for, say, by trying to reduce the hand’s effective mass, then subjects could

prepare for even unpredictable direction reversals (where reversals and non-reversals are

equally likely).

Young noted that the most rapid adaptation to sudden control system changes is

achieved when subjects know both the pre-change and post-change inputs well and where

the transitions are accompanied by an audible signal [143]. That is, even the task at the

move transitions should allow rapid response, so the separation observed between move

transition and within move delays is significant.
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5.5.2 Position errors

If a human follower believed the move to come would be move 1 but in fact it was move 2, the

resulting error should be distinguished from simple tracking error. Move misclassifications

were clearly recognizable in our data. Examples of a desired response and an obvious

misclassification in this experiment’s data are shown in Figures 5-5 and 5-6. The data in

these figures are from the last reversal within vocabulary element 3, the move with four

upper half-circles.

The Figures 5-5 and 5-6 also illustrate that the position traces generally did not track

nominal position well. Remember that no visual display of the desired position or the

position error was ever given to the subjects. Perhaps because our robot leader penal-

ized velocity error more strongly than position error, the shape of the moves the subjects

performed was generally accurate but the placement with respect to the nominal position

varied by amounts on the order of a few centimeters.

Defining an error at any reversal as an error in phase with square larger than twice the

mean squared error, we counted position errors in the data. Unexpectedly, the frequency of

position errors was greater within moves, where the reversals should have been predictable,

than at move transitions, where reversals were unpredictable. Table 5.1 shows the average

of the subjects’ rates of position errors, by trial number and by whether the reversals were

predictable. See Section 5.4.1 for an explanation of the difference between reversals that

are predictable and those that may be predictable.

Subjects showed learning effects in that error frequency decreased in later trials. The

reversals that were not predictable had the lowest error rate, while reversals that may be
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Figure 5-5: Desired reversal (solid line shows position trace, dotted line shows reference
position trace)

100



−100 −50 0 50 100
0

20

40

60

80

100

120

140

160

180

mm
m

m

Figure 5-6: Anticipated reversal mistakenly (solid line shows position trace, dotted line
shows reference position trace)

predictable and reversals that are predictable had significantly higher error rates. Subjects

may have made errors more frequently within a known move because they had a high degree

of confidence about the movement. Conversely, they may have made fewer errors when they

were aware that they could not predict whether a reversal would occur. Subjects hedged

their bets at transitions between moves because they knew they could not predict the tran-

sition. Verner et al. found a similar “confidence increases errors” effect in a different task.

When gripper-only force feedback was provided in a gripping and manipulation task, errors

rose dramatically relative to both the no force feedback and the full force feedback condi-

tions [136]. While it seems that making more errors is a disadvantage of vocabulary-based

haptic interaction, the large difference between error rates within moves and at transitions

does indicate that subjects altered their strategies once they recognized a move.

Considering the first two trials as practice and the last four trials as valid data, the

average rate of position errors by subject appears in Table 5.2. These data are very hard

to interpret. All subjects except subject E made no errors at the unpredictable move

Table 5.1: Average large error frequency by trial and predictability

Not Predictable May Be Predictable Predictable
Trial 1 16% 45% 42%
Trial 2 2% 28% 15%
Trial 3 0% 20% 8%
Trial 4 0% 17% 15%
Trial 5 2% 21% 5%
Trial 6 3% 8% 11%
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Table 5.2: Average position error frequency by subject and predictability

Not Predictable May Be Predictable Predictable
Subject A 0% 53% 8%
Subject B 0% 4% 1%
Subject C 0% 19% 12%
Subject D 0% 2% 7%
Subject E 5% 6% 20%

transitions. Subjects A and B made more errors at the “may be” predictable reversals

than at the predictable reversals, but subjects D and E made more errors at predictable

reversals than at the “may be” predictable reversals. This could indicate that subjects A

and B were beginning to learn the transition matrix P , which would allow them to predict

not only the second and third reversals of moves 3 and 4, but also the very first reversal

within moves 3 and 4. Subjects D and E, conversely, performed about the same on these

may be predictable reversals as they did on the unpredictable reversals, so these subjects

only felt confident about the definitely predictable reversals.

5.5.3 Variance

If subjects are using precognitive tracking in predictable reversals, but can not use pre-

cognitive tracking in unpredictable reversals, one might expect to see greater variance in

performance at unpredictable reversals. The move density plots in Figures 5-7 through

5-10 each show 20 recorded 1-second intervals after reversals at the right side of the figures,

with brighter density where movements coincide. The individual in Figures 5-7 and 5-8

is also the individual with the highest mean phase errors of the five participants, and the

distinction between the two plots is obvious to the eye. The individual in Figures 5-9 and

5-10 had smaller mean phase error and less obvious distinction between the two plots. The

remainder of the individual variance plot pairs were between these extremes.

These plots were created by gridding the observed x-y positions of recorded 1-second

post-reversal intervals with z = 1. The falloff functions from the x-y positions were gener-

ated by interpolation with zeroes (z = 0) randomly placed elsewhere across the grid. The

sum of 20 such grids is shown in each figure, with brightness scaled to maximize contrast.

These figures may also be explored quantitatively. For instance, the average z value, ex-

cluding black grid points, across Figure 5-8 is 7.5 and the average z value, excluding black

102



|                                 |                            |

-100                             0                               100

mm

m
m

-1
0
0
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 0
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 1
0
0

| 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
| 
  
  
  
  
  
  
  
  
  
  
  
  
  
 

|

Figure 5-7: A’s predictable reversals
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Figure 5-8: A’s unpredictable reversals
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Figure 5-9: B’s predictable reversals
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Figure 5-10: B’s unpredictable reversals
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Figure 5-11: Connection: contact without grasping

grid points, across Figure 5-7 is 11.1. This may be interpreted that the average position

trace is near to 7.5 other traces in the first case and near 11.1 other position traces in the

second case. Grid points at which z = 0 are excluded from this calculation because z = 0

points would lower the mean if more empty area were gridded, but in fact only the parts of

the grid containing traces (z > 0) are of interest.

Subject B, whose traces are shown in Figures 5-9 and 5-10, clearly had a different

and flatter half-circle in mind than did the former individual in Figures 5-7 and 5-8. This

intra-subject variation with relative inter-subject consistency, noted by the authors between

all of the subjects, further suggests that individuals respond to an internal model of the

trajectory in this dance task. Each subject apparently traced the shape his internal model

calls a half-circle.

5.5.4 Connection in z direction

The kg term increasing the feedback gains is intended to mimic the feel of connection in

dance. In partner dancing, the partners’ hands remain in contact throughout their motion,

even though grasping is not permitted, because each partner imposes a force on the other’s

hand in opposite directions (see Figure 5-11). An experimental study of a similar type of

non-grasping human movement, picking up and moving a box by pressing with an open

palm on either side of it, is detailed in Zefran [144], and explored for cooperating robots in

Desai [30]. One common connection exercise for partner dancers is for each of them to hold

one end of a piece of cloth, and to keep it taut throughout their dance so that the follower

can feel small hand movements of the leader which would be imperceptible if the cloth were

not taut.

The parallel to dance connection in the PHANToM game is the subject pulling back or

pushing in the z direction away from the target plane. The kg term in (5.1) was intended to
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encourage subjects to consistently pull away from the target plane in order to get stronger

directional signals.

However, no consistent use of the z plane mechanism to increase the force feedback

through by the factor kg was observed. Instead, the z value oscillated with small magnitude

at frequencies unrelated to the x and y plane error and position. Subjects did not regulate

z position actively, perhaps because grasping the PHANToM stylus is permitted. Subjects

did not, therefore, need dance-type connection to maintain contact with the PHANToM. If

grasping the stylus had been impossible, subjects would have had to pull or push in the z

direction to maintain contact. No participants noticed the small oscillations in z.

5.6 Conclusions

Subjects dancing with the PHANTOM clearly altered their following strategy once they rec-

ognized the current move. Subjects reverted to longer-delay, closed-loop or pursuit tracking

methods during move transitions at which prediction was not possible. The 75th percentile

of the within move delays was lower than the 25th percentile of the move transition de-

lays, indicating that in most cases the within move reversals were predictable because the

move had been recognized. Position traces from the experiment showed large intra-subject

variability contrasted with strong inter-subject consistency. This suggests that individual

conceptions about the circular shape of the move varied, and those conceptions shaped the

subjects’ interaction with the robot. Responses to unpredictable direction reversals were

more variable than responses to predictable direction reversals.

Human-robot interaction designers should exploit the dancing metaphor, because people

already demonstrate to great effect their natural skill at haptic coordination in dance. A

successful dancing couple is in fact leading and following using a vocabulary of known moves

sequenced unpredictably and a musical soundtrack to align timing. A robot facilitated the

human experiment in the current work, but the numerous applications of partner dance to

human-robot interaction are largely unexplored.
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Chapter 6

Haptic collaboration in cyclical

Fitts’ tasks

Chapter 5 defined haptic collaboration as cooperation between two agents who are physically

in contact, whether directly, through a mechanical apparatus, or via a teleoperation system.

Dancing Lindy Hop depends critically on the two partners’ assisting each other through the

moves. The essential move of Lindy Hop is the swingout or whip, which requires the partners

to travel from open position to closed position, rotate 360◦ around each other, and travel

back to open position within 8 beats, which is less than 2 seconds at high tempos. This

move and many others simply can not be performed by one person without the momentum

imparted by the other. Lindy Hop works because the partners exchange energy through

their shared dynamics, and so the communication between leaders and followers about what

move comes next is not the whole story. The communication and coordination between

the partners could not be replaced by pure information transmission, because one partner

extends the other’s control envelope by adding forces over that same haptic communication

channel. In this chapter we focus on a haptic collaborative task which is similar to dancing

in that communication happens via forces imposed on a lever the partners share, and in

which partners do affect each other’s dynamics to extend each other’s capabilities.

Understanding how humans assist each other in haptic interaction teams could lead

to improved robotic aids to solo human dextrous manipulation. Inspired by experiments

reported in Reed et al. [113], which suggested two-person haptically interacting teams could

achieve a lower movement time (MT) than individuals for discrete aiming movements of
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specified accuracy, we report that two-person teams (dyads) can also achieve lower MT for

cyclical, continuous aiming movements. We propose a model, called endpoint compromise,

for how the intended endpoints of both subjects’ motion combine during haptic interaction;

it predicts a ratio of
√

2 between slopes of MT fits for individuals and dyads. This slope

ratio prediction is supported by our data.

6.1 Introduction

A previous study demonstrated the superior performance of two-person haptically interact-

ing teams in a one-dimensional discrete aiming task, also referred to here as a Fitts’ task

[113]. A discrete aiming task asks a person or a team to move a pointer to a target as

quickly as possible with the constraint that the pointer must stop inside the target for some

minimum time. In the present experiments, we expand this result to the cyclical aiming

domain. Cyclical aiming movements do not require the pointer to come to rest in the tar-

get. Instead the pointer should alternate between two targets as quickly as possible without

overshooting or undershooting. The task is not continuous tracking. The best strategy for

low-difficulty cyclical aiming movements is to move in a smooth sinusoidal pattern. Because

the pattern of muscle activation required should be substantially different between discrete

and cyclical tasks, better performance for dyads in discrete tasks does not imply better

performance for dyads in cyclical tasks.

Also, cyclical aiming requires timing coordination between the participants that is not

required in discrete aiming. In a discrete aiming task, both people get a visual signal to end

one aim and start the next. In cyclical aiming, there is no signal of when to finish aiming at

one target and start aiming at the other, except the signals the subjects give to each other

by pushing on the device that they share.

6.2 Background

Fitts’ law predicts that when humans perform minimum-time aiming tasks of distance D

with accuracy specified by the target’s width W , the movement time (MT) achieved is

MT = A log2(
2D

W
) (6.1)

108



, where the term log2(
2D
W ) is referred to as the index of difficulty (ID). Higher difficulty,

more accurate movements require longer aiming time. Fitts’ law is quite general, in that

it has been shown to hold for single-joint and multiple-joint movements, on many scales,

across differing pointing devices, and across differing feedback conditions [53]. Fitts’ law

and its variants have been extensively investigated over the past half-century [61]. This

trade-off between speed and accuracy in human motion is an ideal testing ground for exper-

iments elucidating both the limits of human performance and the means by which human

performance might be improved by cooperation with other individuals or with well-designed

haptic devices.

Discrete Fitts’ task performance can be improved by applying a cubic centering force to

a joystick used to capture the target [115]. A cubic centering force increases greatly when

the joystick is very near the target and tends to push the user back out of the target in

the direction from which he entered, making it a virtual fixture. A virtual fixture functions

like a ruler, allowing a person substitute what is easy, to hold a certain minimum force

against a barrier, for what is difficult, to visually supervise and correct his drawing back to

a straight line [120]. Repperger et al. used a cubic centering force to help users accomplish

a very simple task [115]. Perhaps humans act as flexible virtual fixtures for each other;

this chapter both demonstrates that they enhance each other’s performance and suggests a

mechanism for how that fixture functions.

6.2.1 Discrete versus cyclical

Fitts first formulated his law for the cyclical case, in which a person is asked to aim succes-

sively at each of a pair of targets as rapidly as possible. In the alternative, discrete case, a

person is asked to aim at and come to a stop within a given target.

Cyclical Fitts’ tasks display an interesting phase shift [53]. Easy cyclical aiming has

a harmonic or sinusoidal character, with the maximum acceleration corresponding to the

extreme point of each movement. However, as the difficulty of the task increases, cyclical

aiming comes to resemble discrete aiming in that each aim comes nearly to a full stop before

the following aim begins. Discretization of the movements begins at an index of difficulty

between 4 and 5. Guiard has demonstrated that, physically rather than informationally,

sinusoidal motion gives cyclical aiming an MT advantage over discrete aiming [53]. This

is because sinusoidal motion permits storage and re-use of the kinetic energy a human has
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generated. Lower movement times are possible for cyclical tasks than for discrete tasks,

but only at low difficulty when harmonic motion allows the subject to recycle energy. At

higher difficulty, when harmonic motion can not be made accurate enough to hit the target,

cyclical aiming has slower movement times than discrete aiming.

Note that harmonic motion has a distinct rhythm. Dyads especially might need to use

rhythmic toeholds to enable collaboration, because if each partner started his next aim at

an unpredictable time, each would have difficulty predicting the effect of his force input on

the device’s position. This coordination issue does not arise in the discrete context because

in discrete aiming, the start time is displayed to both individuals. Because the present

experiments were intended to explore the space of cyclical, harmonic motion in dyads, the

index of difficulty was deliberately kept low. IDs of 2.5 to 4.5 were tested in increments of

0.5.

6.2.2 Two-person Fitts’ tasks

Mottet et al. first explored two-person, or dyad, cooperative Fitts’ tasks [100]. In their

design, cooperation was purely informational: one person controlled the motion of the

pointer, and another person controlled the motion of the target. Neither could feel the

motion of the other; they could only watch the motion of both the cursor and the target on

a display. The investigators compared the performance of a dyad, with each subject moving

either the target or the pointer, to the performance of a solo subject moving the target with

one hand and the pointer with his other hand. Dyads performed the two-handed motion

faster than individuals did. This finding was attributed to an information-processing cost

to the individual of anti-phase coordination as the individual’s two hands moved in opposite

directions. However, dyads did not have any advantage over solo subjects who moved only

the pointer, with just one hand.

Reed et al. had two subjects move a single pointer into a target region and stop the

pointer’s motion there [113]. Each of the subjects had a handle to turn the same physical

crank, enabling haptic interaction. Dyads performed the movement faster than individuals

could. Specifically, the limited data in this experiment suggested that the slope of the

Fitts’ law curve was the same for dyads and individuals. The dyads aimed an average

of 140 milliseconds faster than did individuals. The haptic cooperation speedup was not

conclusively explained, though the experimenters speculated that triphasic bursts of effort
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(agonist for takeoff, then antagonist and agonist for stopping [79]) could be more closely

timed if different individuals took responsibility for different phases. Since the pattern of

muscle activation for cyclical aiming tasks differs from the sketch above, we experimented

with haptically coupled cyclical aiming tasks.

6.2.3 Alternatives to Fitts’ model

Fitts’ account of the relation

MT = A + B log2

(
2D

W

)
(6.2)

that he discovered in his data was based on Claude Shannon’s information theory. The

greater the information needed to specify exactly where to stop, Fitts reasoned, the longer

the time a human would take to generate that movement. Fitts’ law could not explain

the variability of movement endpoints, and many other models have been proposed for the

speed-accuracy tradeoff [97, 98].

Schmidt et al. found a very different shape for the speed-accuracy tradeoff when subjects

were asked to tap alternately across a given distance at a given tempo [121]. Schmidt

measured the velocity D
MT and the standard deviation σ of the movements’ endpoints, and

the data suggested that the latter was proportional to the former: σ ∝ D
MT . That is, a

movement’s endpoint was approximately normally distributed, and its variance increased

with the velocity of the movement. Interpreting the standard deviation of the movements’

endpoints as the effective target width We, in Schmidt’s task there is an approximate linear

tradeoff

MT = A + B

(
D

We

)
(6.3)

instead of a logarithmic one.

Our data were best explained by (6.3), using the actual target width, which yields the

expression

MT = A + B

(
D

W

)
(6.4)

.
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6.3 Adapting Schmidt’s law for dyads

Schmidt’s law can make no predictions concerning dyadic performance without a model

for how individual movement variabilities would combine during haptic interaction. The

individuals are holding the same device, so are constrained to move at the same velocity

and share the same movement endpoint. A simple and appealing model is endpoint com-

promise. With the endpoint compromise assumption, the individuals move to capture two

independently selected movement endpoints, with the result that the pointer stops at the

average of the endpoints. We do not offer a physical justification for this assumption, we

do hope to address that issue in future work. If σd is the standard deviation of the average

of two endpoints each with standard deviation σs, elementary calculations give

σd =
1√
2

σs (6.5)

For fixed target width W0, the individual or dyad is asked to adjust movement time until

the probability that the movement endpoint lands outside the target width is less than

5%, but not to move too slowly or aim more accurately than necessary. Lower variability

should result in faster movement. Percentiles of the movement endpoint’s (normal) distri-

bution scale with standard deviation. Then, for a fixed target width W0 the solo and dyad

movement times MTs and MTd should approximately satisfy MTd = 1√
2
MTs. Endpoint

compromise would predict that

Bd =
1√
2
Bs (6.6)

where Bd is the slope of (6.4) for MTd, and the corresponding definition is made for Bs.

6.4 Experiment Protocol and Equipment

Five subjects participated in the experiment; two males and three females, all right-handed

except one female was left-handed. Each subject used his dominant hand for all parts of

the experiment. The subjects were not paid and had either no or little prior exposure to

haptic devices.

Each subject performed a one-dimensional cyclical Fitts’ task, aiming alternately at

two targets. They used a standard computer driving wheel fixed to a desk, with a 4 ft long

wooden dowel attached to create a lever, as pictured in Figure 6-1. The movements were
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Figure 6-1: Aiming device; one subject stood on either side of the wheel

error good good

targets

pointer

Figure 6-2: Pointer should reverse direction while inside a target

approximately in a plane parallel to the wall behind the desk, so that the subjects aimed

alternately up and down at the targets. The two targets were displayed on the computer’s

screen as sectors of a circle, with the current position marked as a pointer. The display

always showed both stationary targets. An indicator in the upper left corner of the screen,

colored green or red, corresponded to success or failure of the previous aim. A schematic of

the task appears in Fig. 6-2.

Five levels of difficulty were tested. The two targets were fixed at D = 30◦ apart, and

the target widths used were W = 10.6◦, 7.5◦, 5.3◦, 3.75◦, and 2.65◦, with index of difficulty

(ID), defined as log2(
2D
W ), of 2.5, 3.0, 3.5, 4.0, and 4.5. All of the solo and dyad trials were

conducted on the same day.

Solo trials

The solo experiment had two practice sessions, each session consisting of five blocks of 60

aims for each of the five difficulty conditions. After each block of 60 aims, the error rate
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for that difficulty level was displayed. Participants were asked to try to keep their error

rates below 5%, but to minimize movement time within that constraint. After the practice

sessions, data was collected for 120 aims between the stationary targets for each level of

difficulty. During the solo experiment, the subjects all used the left side of the apparatus.

Each solo trial lasted between twelve and fifteen minutes.

Dyad trials

Following the solo experiments, each participant was paired with every other participant

in the experiment, for a total of ten dyads. Each dyad performed the cyclical aiming task

together, with one person on either side of the rotating handle. Because the subjects were

on opposite sides of the wheel, when one subject was moving the handle down, the other

subject had to be moving the handle up. During the dyad tasks, each person had his own

targets and pointer display, corresponding to the position of the handle on his side of the

apparatus. The targets always corresponded exactly; there was no conflict between the

information displayed to each subject. Subjects were assigned an equal number of times to

the left side and to the right side of the apparatus, in alternating order.

The dyad experiment had a single practice session consisting of five blocks of 60 aims for

each of the five difficulty conditions. After each block, the error rate for that difficulty level

was displayed. The instructions to minimize movement time subject to an error rate below

5% were the same as in the solo experiment. After the practice sessions, data was collected

for 120 aims between the stationary targets for each level of difficulty. Each dyad trial lasted

between seven and ten minutes. Subjects did not complain of fatigue. Although subjects

were invited to rest between any of the blocks of the experiments, only one individual and

two dyads stopped for a break during the experiment.

6.4.1 Data Analysis

A computer timer with 10 milliseconds of precision measured the movement durations. The

extreme point of each movement marked the end of one aim and the beginning of the next

aim. If the extreme point of a movement was within the target sector, then the move was

successful; otherwise, the movement was marked as an error. Within the 120 aim trials, the

first 20 movements were discarded as warm-up. The remaining movement durations were

averaged for each solo and dyad trial.
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Table 6.1: Fit of MT (ms) to Fitts’ law and Schmidt’s law
Solo log2(

2D
W ) D

W

Slope 428.2 102.1
Intercept -658.3 189.7

R2 0.9320 0.9813

Dyad
Slope 307.1 76.6

Intercept -496.4 90.9
R2 0.8109 0.9250

The angular position of the joystick was recorded as the program ran, but the capture

rate was very low, only 12 Hertz. Each movement, therefore, might have had as few as 3 or

4 recorded positions. The harmonicity of the overall movement, however, was clearly visible

even with the low capture rate.

A linear least-squares fit between ID and MT, along with an R2 value, was calculated

separately for all five solo trials and all ten dyad trials to assess the validity of Fitts’ law

with respect to our data. The slopes and intercepts for all solo trials and all dyad trials were

averaged. Also, a linear least-squares fit between (D/W ) and MT was calculated separately

for each trial to assess the validity of Schmidt’s law with respect to our data. The slopes

and intercepts for all solo trials and all dyad trials were averaged. A summary of these

results appears in Table 6.1.

6.5 Results and Discussion

The linear least-squares fit to our movement time data was calculated for Fitts’ log2

(
2D
W

)

and Schmidt’s D
W . Table 6.1 shows that the fit to the term D

W is better for both the solo

and the dyad conditions. The term D
W explains 98% of the data for individuals and 93% of

the data for dyads. The results are most similar to those Schmidt obtained in experiments

which were both time-constrained and space-constrained, in which people attempted to

move an approximate distance at a given tempo. Table 6.2 contains average movement

times, in milliseconds, for every subject and dyad.

No instructions were given regarding verbal negotiation, and a small amount of verbal

negotiation did occur. All the conversations surrounded the tempo of the dyad’s motion:

either, “You’re slowing me down,” or “We can do this faster.”
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6.5.1 Errors

None of the individuals or dyads was able to achieve the requested 5% error rate in the

difficult tasks. The number of errors and corresponding error rates for all trials are shown in

Table 6.3. As in nearly every Fitts’ law experiment in the literature, higher error rates were

observed for higher difficulty levels. The error rates for dyads and individuals are similar

except at the two highest difficulty levels tested, where dyads committed more errors than

individuals. This higher error rate might contaminate the finding of lower movement time

for dyads, because the dyads did not move as accurately as the solo performers. Future

experiments could reward accuracy and provide longer practice times to attempt to remove

the accuracy gap between solo and dyad performers.

6.5.2 Movement harmonicity

The angle capture rate was too low to allow estimation of angular position derivatives.

Because of the low capture rate, measurements of harmonicity based on time profiles of

acceleration as in [53] were not available. The angular traces do afford a qualitative look at

the harmonicity of the movements of each individual and dyad.

The range of difficulties in the experiment included tasks difficult enough that harmonic

motion was no longer possible for individuals. Figure 6-3 shows a typical trace of an in-

dividual doing the most difficult task. Although individuals used inharmonic, discretized

motion for the ID = 4.5 task, many dyads achieved harmonic motion for the most difficult

task. For instance, Figure 6-4 is an example of fairly smooth sinusoidal motion in the most

difficult task. Obviously these characterizations of the traces as harmonic or inharmonic

are crude, and some traces seemed to contain a mixture of some harmonic reversals and

some discretized reversals, as in Figure 6-5. The profiles which were almost perfectly sym-

metric about the reversals of direction can be classified as harmonic, while the profiles with

significantly more observations (shown as dots in the figures here) before the reversals than

after the reversals can be classified as inharmonic.

All individual and dyad traces for the most difficult task, ID = 4.5, were viewed and

grouped into three categories: harmonic motion, mixed, and non-harmonic or discretized

motion. Of the 5 individual traces, 3 were discretized and 2 were mixed. Of the 10 dyad

traces, 5 were harmonic, 3 were mixed, and only 2 were discretized. The categorizations
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Figure 6-3: Subject B, ID=4.5, inharmonic motion
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Figure 6-4: Dyad D+B, ID=4.5, harmonic motion
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Figure 6-5: Dyad A+B, ID=4, mixed harmonic and discretized
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appeared to be unrelated to the error rate. Dyads were sometimes capable of harmonic

motion in the hardest task, but no individuals were. This finding is consistent with the

observation in Guiard [53] that movement harmonicity is related to high peak velocities.

Movement harmonicity only indirectly decreases with the task difficulty because more dif-

ficult tasks must be done with lower peak velocities. The peak velocities observed in dyads

were usually higher than those observed in solo trials.

6.5.3 Line fits

Dyads’ intercepts are roughly 100 milliseconds lower than individuals’ intercepts. The aver-

age difference between individual and dyad MTs was 99 milliseconds with a 95% confidence

interval of (13, 184) milliseconds. The t-distribution (df =18) of this difference was esti-

mated using 20 observations, each a difference between an individual’s and one of his dyads’s

intercept fits. The average MT’s for every individual subject appear in Figure 6-6.

Our slope hypothesis, as formulated in Section 6.3, was that the slope of the best fit to

MT data for individuals would be larger than the slope of the best fit to MT data for dyads,

by a factor of
√

2 ≈ 1.414. Our data are consistent with this hypothesis. The observed

ratio between the solo and dyad slopes was 1.37, with a 95% confidence interval of (1.22,

1.51). The t-distribution (df =18) of this ratio was estimated using 20 observations, each a

slope ratio between an individual’s and one of his dyads’ slope fits. This finding of different

slopes is not consistent with the identical slopes reported for the discrete pointing task in

[113].

6.5.4 Practice effects and mechanical advantage

Angle and movement time data were collected for all practice phases of the experiment. No

significant learning effects were noted in movement harmonicity or error rates. For the solo

experiment, movement times increased slightly from the first practice blocks to the final

blocks. For the dyad experiment, movement times decreased slightly from the first practice

blocks to the final blocks. In both cases, the changes affected primarily the intercepts and

not the slopes of the line fits. Since practice tended to make differences between dyad and

solo performance larger, it is unlikely practice effects confounded the results. Figure 6-7

shows plots of the average line fits to practice (dashed lines) and actual (solid lines) MTs.

The force required to move the handle did not fatigue the subjects. Still, it is difficult
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to rule out that the dyads performed better because two people could apply a larger force

on the handle to reach a higher peak velocity than was possible for some of the individuals.

In Figure 6-6, the lowest individual times were not achieved by the seemingly strongest

individual subjects. A refined experimental apparatus might scale by a factor of two the

force necessary to move the handle for the dyad case to resolve this question.

6.6 Conclusion

Dyads performed significantly better at a minimum-time cyclical aiming task than individ-

uals. This finding extends the result on two-person improvements for discrete aiming tasks

reported by Reed et. al [113]. The slope of the fit to Schmidt’s law is lower for dyads than

for individuals, and to explain this we propose the endpoint compromise hypothesis. Addi-

tionally, dyads sometimes maintained a sinusoidal motion at a higher difficulty level than

any individual did in these experiments. A physical, dynamical justification for endpoint

compromise is left to future work.

Accurate aiming, then, is a task which two haptically-interacting people can perform

better than one. By investigating a simple reaching task, we probed the lower level com-

munication and coordination mechanisms that might be at work between expert partner

dancers. It is conceivable that an endpoint compromise mechanism assists dancers in accu-

rately reaching the desired poses at the required times at fast tempos (see Section 1.1.2).

We enrolled non-dancers in the studies in chapters 5 and 6 to demonstrate that even

those without the coordination skills which expert dancers develop can benefit from dance-

like haptic interaction with a robot or another person. The haptic-interaction discrete

aiming task investigated in prior work [113] lacked the rhythmic coordination challege that

the cyclical aiming task imposed. Since dance, like dyadic cyclical aiming, is a rhythmic

and communicative task involving shared forces, it would be interesting to repeat this

experiment with expert dance partners and compare the dancers’ performance to that of

non-dancers.
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Figure 6-6: Dispersion of average movement times for each subject (plus sign) and each
dyad (dash), and averaged line fits for individuals (solid) and dyads (dashed).
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Figure 6-7: With practice, the difference between solo and dyad performance becomes
more pronounced. (Solo practice, thick dashed line; solo trials, thick solid line; dyad prac-
tice, thin dashed line, dyad trials, thin solid line)
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Chapter 7

And the beat goes on

The contributions of the dissertation are two-fold: first, we designed two automated chore-

ographers, and in the process developed useful quantitative models for the high-level chore-

ography decisions that swing dance leaders make. The choreography of a swing dance has a

particularly simple structure, since the moves that comprise swing dance and the allowable

transitions between moves are actually a finite-state machine. Others have modeled dance

and indeed more general human motions as state machines [74, 76], but our state transi-

tions were guided by music interpretation. A novel game theoretic analysis of the interplay

between judges, who would prefer to be surprised by the dance choreography, and dancers,

who aim for musical appropriateness with each move, in Chapter 4 showed randomness to

be an essential feature of pleasing choreography.

Second, we conducted a number of studies addressing the mechanisms of swing dance

interaction. This work can be considered elementary scientific inquiry which aimed to

characterize touch communication and dynamic interaction between humans and between

humans and robots. In Chapter 2 we directly answered the question of whether musical

expressiveness is a necessary cue to experienced followers about the intentions of their

leaders, at least in Lindy Hop. An experienced follower can detect departures from musical

expressiveness, but even when musicality cues are confused she can follow the leader’s

movements robustly enough that he will not detect any deterioration in the quality of their

connection.

Touch communication between partners is necessarily entangled with dynamic interac-

tion. Yet humans performed differently in the two conditions of the experiment in Chapter
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5, which specified the dynamics of the robot leader to be exactly the same whether the

vocabulary element was predictably or unpredictable. That experiment showed that even

non-dancers can make use of a specified motion vocabulary, even in a lead-and-follow situa-

tion where elements in that motion vocabulary are led in an unknown order. For the more

general task of fast and accurate aiming with two-person haptic interaction considered in

Chapter 6, subjects improved each others’ solo performance and, interestingly, generated

between them a coordinating rhythm that was not provided by a soundtrack.

7.1 Future Work

We have suggested some experimental modifications for exploring alternative explanations

of the results we obtained. A number of these were previously described, within the chapters

containing each experiment to which these suggestions relate. The automated choreogra-

phers we have designed are ready for use in a number of applications beyond the obvious

one of musically-tuned dancing figure software widgets.

This research has been able to address only the broadest and most qualitative questions

about how leaders and followers swing dance together. A field we would like to pursue,

but which we believe may require drastic advances in the modeling of human motor control

systems executing whole-body movements [94], is quantitative dynamical analysis of swing

dancers and the forces each must exert on each other at a minimum to enable swing dance

movements. That is, if it were possible to simulate general multi-person movements of

a class that would include most of Lindy Hop, then by searching the parameter space

of inputs one could locate the outputs that are similar to movements of experienced and

inexperienced dancers. This information would guide dance instructors and judges who

currently teach and evaluate on the weight of experience and intuition with little concrete

data. Recommendations might even be tuned to an individual dancer’s body and strength.

It would be exciting to use such a system to classify aerial and acrobatic dance moves

according to how well each couple could perform them, so that a couple could concentrate

on moves they have the best chance of perfecting.

In fullest generality, we hope that the scientific understanding of partner dances can be

advanced on many fronts. A clearer picture of an activity that is one of the wonders of

human physical cooperation would be of value to both the dance community and the wider
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world.
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Appendix A: Multimedia additions

to the thesis

Audio and video files are included on a CD-ROM that should accompany this thesis. All

of the files are noted in the text, near the concepts they illustrate, in square brackets like

this: [file.xxx]. Table 1 lists the filenames, file types, and chapter references, along with a

short description of what each should contain.
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Table 1: Multimedia files

Filename File Type Chapter
Description

blindfolddance.mpg Movie (.mpg) 1.1.4
blindfolded follower dancing

musicaldancing.mpg Movie (.mpg) 2.2
example of musical dance move choices

interview.mp3 Audio (.mp3) 2.5
leader interview on musicality experiment

hijack.mpg Movie (.mpg) 2.5
follower hijack reveals song to leader

autodance.avi Animated movie (.avi) 3.5.1
dance created by automated choreographer

movetitles.mpg Movie (.mpg) 5.4.1
robotic dance movie with text
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