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Abstract

This thesis seeks to contribute to the understanding of markets populated by boundedly
rational agents who learn from experience. Bounded rationality and learning have both
been the focus of much research in computer science, economics and finance theory. How-
ever, we are at a critical stage in defining the direction of future research in these areas.
It is now clear that realistic learning problems faced by agents in market environments
are often too hard to solve in a classically rational fashion. At the same time, the greatly
increased computational power available today allows us to develop and analyze richer
market models and to evaluate different learning procedures and algorithms within these
models. The danger is that the ease with which complex markets can be simulated could
lead to a plethora of models that attempt to explain every known fact about different mar-
kets. The first two chapters of this thesis define a principled approach to studying learning
in rich models of market environments, and the rest of the thesis provides a proof of con-
cept by demonstrating the applicability of this approach in modeling settings drawn from
two different broad domains, financial market microstructure and search theory.

In the domain of market microstructure, this thesis extends two important models from
the theoretical finance literature. The third chapter introduces an algorithm for setting
prices in dealer markets based on the model of Glosten and Milgrom (1985), and produces
predictions about the behavior of prices in securities markets. In some cases, these results
confirm economic intuitions in a significantly more complex setting (like the existence of
a local profit maximum for a monopolistic market-maker) and in others they can be used
to provide quantitative guesses for variables such as rates of convergence to efficient market
conditions following price jumps that provide insider information. The fourth chapter
studies the problem faced by a trader with insider information in Kyle’s (1985) model. I
show how the insider trading problem can be usefully analyzed from the perspective of
reinforcement learning when some important market parameters are unknown, and that
the equilibrium behavior of an insider who knows these parameters can be learned by one
who does not, but also that the time scale of convergence to the equilibrium behavior may
be impractical, and agents with limited time horizons may be better off using approximate
algorithms that do not converge to equilibrium behavior.

The fifth and sixth chapters relate to search problems. Chapter 5 introduces models for
a class of problems in which there is a search “season” prior to hiring or matching, like aca-
demic job markets. It solves for expected values in many cases, and studies the difference
between a “high information” process where applicants are immediately told when they
have been rejected and a “low information” process where employers do not send any sig-
nal when they reject an applicant. The most important intuition to emerge from the results

3



is that the relative benefit of the high information process is much greater when applicants
do not know their own “attractiveness,” which implies that search markets might be able
to eliminate inefficiencies effectively by providing good information, and we do not always
have to think about redesigning markets as a whole. Chapter 6 studies two-sided search
explicitly and introduces a new class of multi-agent learning problems, two-sided bandit
problems, that capture the learning and decision problems of agents in matching markets in
which agents must learn their preferences. It also empirically studies outcomes under dif-
ferent periodwise matching mechanisms and shows that some basic intuitions about the
asymptotic stability of matchings are preserved in the model. For example, when agents
are matched in each period using the Gale-Shapley algorithm, asymptotic outcomes are
always stable, while a matching mechanism that induces a stopping problem for some
agents leads to the lowest probabilities of stability.

By contributing to the state of the art in modeling different domains using computa-
tional techniques, this thesis demonstrates the success of the approach to modeling com-
plex economic and social systems that is prescribed in the first two chapters.

Thesis Supervisor: Tomaso Poggio
Title: Eugene McDermott Professor

Thesis Supervisor: Andrew W. Lo
Title: Harris and Harris Group Professor
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Preface

Parts of this thesis are based on published work, and some parts are joint work with others.

In particular:

• Chapter 3 contains material that appears in Quantitative Finance (April 2005), under

the title “A Learning Market-Maker in the Glosten-Milgrom Model.”

• Chapter 4 contains material presented at the Neural Information Processing Systems

Workshop on Machine Learning in Finance (December 2005) under the title “Learn-

ing to Trade with Insider Information.”

• Chapter 5 represents joint work with John N. Tsitsiklis.

• Chapter 6 is based in part on material (joint with Emir Kamenica) that appears in the

Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005)

under the title “Two-Sided Bandits and the Dating Market.”

I use the plural pronoun “we” in chapters 5 and 6 and when referring to work from

those chapters.
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Chapter 1

Introduction

1.1 Overview

There is no doubt that participants in economic and financial markets are not in fact equiv-

alent to Laplace’s demon – that fantastical character with an intellect vast enough that,

in Laplace’s own words, if it “knew all of the forces that animate nature and the mutual

positions of the beings that compose it, ... could condense into a single formula the move-

ment of the greatest bodies of the universe and that of the lightest atom; for such an intel-

lect nothing could be uncertain and the future just like the past would be present before

its eyes.” Yet, those who traditionally study markets in academia, economists and theo-

rists of finance, business and management, have tried to make their models parsimonious

enough that the Laplacian demon for any given domain is not hard to imagine.1 These

models yield elegant solutions, beautiful equations that help us to immediately grasp how

the system changes when one parameter moves around. Nevertheless, we might have

reached a point of severely diminishing returns in building such models. Where can we

go from here?

This thesis argues that we can gain fresh insight into problems involving the interaction

of agents in structured environments by building richer models, in which agents have to

solve harder problems in order to perform as well as they can. This calls for the expertise

of computer science in solving agent decision-problems, in addition to the traditional ex-

pertise of mathematics. To quote Bernard Chazelle (2006), in a recent interview, “computer

1Glimcher (2003) might be the first person to make the comparison between agents in economic theory and
the Laplacian demon.
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science ... is a new way of thinking, a new way of looking at things. For example, mathe-

matics can’t come near to describing the complexity of human endeavors in the way that

computer science can. To make a literary analogy, mathematics produces the equivalent

of one-liners – equations that are pithy, insightful, brilliant. Computer science is more like

a novel by Tolstoy: it is messy and infuriatingly complex. But that is exactly what makes

it unique and appealing – computer algorithms are infinitely more capable of capturing

nuances of complex reality in a way that pure mathematics cannot.”

The approach suggested here should appeal to classical economics and finance because

the agents of this thesis are not irrational – they try to solve problems as well as possible

given their informational and computational constraints. At the same time, the very act of

building complex models presents new algorithmic problems for agent designers to solve.

In addition to the scientific value of modeling, this kind of research can also contribute

to the engineering of autonomous agents that can successfully participate in markets, an

application that should become increasingly important as electronic markets and digital,

autonomous personal assistant agents become more pervasive. This thesis defines a prin-

cipled approach to studying learning in rich models of market environments, and provides

a proof of concept by demonstrating the applicability of this approach in modeling settings

drawn from two different broad domains, financial market microstructure and search the-

ory.

The differences between the approach I suggest here and the more traditional ap-

proaches to modeling from the literatures of economics, finance, and management are

predicated on the existence of complicated learning and decision problems for agents to

solve, problems that will usually turn out to be difficult to solve in a fashion that is guaran-

teed to be optimal. The existence of such problems implies that the models within which

agents operate are significantly more complicated than traditional models, which value

parsimony above almost all else. While building simplified, stylized models has obviously

been a tremendously valuable enterprise in many disciplines, I contend that there are times

when this approach risks throwing the baby out with the bathwater, and we should not be

averse to building more complex models, even if we lose some analytical tractability, and

the comfort associated with the existence of well-defined, unique optimal agent decision

processes or algorithms. The question of which algorithm to use is not simple. Some of the

learning and decision problems that arise in market contexts are intrinsically hard. They
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can involve the agent’s uncertainty about the underlying model of the world, high degrees

of nonstationarity, and dependence on the behavior of other agents.

I will argue in this thesis that we must solve the engineering problem of designing

successful algorithms2 in complex market domains as a first step in the kind of analysis I

propose. The problems of study are then inverse problems at the agent and societal levels.

• What kinds of learning and decision-making algorithms are successful in which

types of markets or social settings? Can we create algorithms that allow an agent

to be successful across a broad range of models and parameters?

• What is the impact on societal dynamics of different learning and decision-making

procedures used by agents?

In addition to providing a principled means of studying equilibrium outcomes in markets,

this methodology also implicitly allows for analysis of market dynamics, instead of just

static outcomes. Thus the “market outcomes” I discuss cover the whole range of market

dynamics, not just steady state behavior. Of course, the idea of studying learning problems

in market domains is in itself not novel. The novelty is in a willingness to consider models

in which agent decision problems are complex enough that they cannot necessarily be

solved optimally, but we can still design good algorithms for them, algorithms which are

better than any others that are known for the same problems. The second chapter will

make this approach and description much more precise and place it in the context of the

existing literatures in computer science, economics, finance, and cognitive science.

The third and fourth chapters look in detail at extensions of two canonical models of

market microstructure, a model of market-making due to Glosten and Milgrom (1985), and

Kyle’s (1985) model of insider trading. The third chapter describes an algorithm that can

be used by a market-maker for setting prices in a dealer market. A market-maker serves

as a liquidity provider in such markets and must quote bid and ask prices at which she is

willing to buy and sell stocks at all times. Glosten and Milgrom framed the problem ab-

stractly, but this chapter provides a real implementation of the price-setting equations that

can be used to set dollar-and-cent prices and study market properties. The fourth chap-

ter studies the problem of how to trade optimally when you possess superior information

about the value of a stock. Kyle solved the insider’s problem in a stylized model, and I

2The question of what “successful” means is addressed in detail in the second chapter.
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extend his model to consider a harder problem that arises when the insider is not aware

of some important environmental parameters. The insider can still learn the equilibrium

strategy, but may be better off using an approximate strategy when the horizon is limited,

and this strategy may have different implications for markets.

Chapters 5 and 6 are focused on a different problem domain, namely search (in the

decision-theoretic and economic sense of the word). Chapter 5 studies a search problem

from the perspective of a single decision-maker who expects offers to appear probabilisti-

cally in a fixed time frame and must decide on each offer as soon as it appears. In particular,

this chapter examines how well an optimal decision-maker performs in the search process

as a function of the level of information available to her about what her options may be.

This chapter actually departs a little bit from the major theme of the thesis in studying a

somewhat more circumscribed problem where optimal behavior can at least be computed

(although closed-form solutions are rarely available) based on the agent’s beliefs. How-

ever, this chapter touches on the applicability of this problem to understanding systems of

two-sided search which are not nearly as tractable. Chapter 6 actually studies a model of

two-sided search in the context of a “dating market” in which men and women repeatedly

go out on dates with each other. The decision problems for agents become very hard and

it is difficult to define “optimal” behavior, but this chapter does allow us to gain some in-

sights into the importance of the matching mechanism from the two-sided perspective, to

complement the one-sided perspective from Chapter 5.

Throughout the thesis, the focus is on computer science problems of algorithms for

online learning and sequential decision-making as well as on the social dynamics and out-

comes of these algorithms. The algorithms developed in this thesis relate closely to work

in online learning, reinforcement learning and dynamic programming.

1.2 Motivation

An understanding of when market institutions fail to achieve efficient outcomes is one of

the most important goals of economics and, more generally, of social science. While the

study of markets has traditionally been the domain of economics and finance theory, dis-

ciplines like computer science are becoming increasingly important because they provide

unorthodox tools for studying dynamic, learning and evolutionary behavior. The fields of
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economics and finance are defined in part by the study of equilibria derived by assuming

rationality among agents who participate in the markets. In recent years there have been

two movements that depart from the assumptions of these models. One of these shifts

has been to move away from models of perfectly rational agents to more realistic mod-

els such as behavioral models, which attempt to replicate the kinds of behavior observed

in humans, and models of bounded rationality, which impose computational and other

constraints on the decision-making routines of market participants. The other important

shift has been a renewed emphasis on nonequilibrium dynamics and the explicit model-

ing of the process of trading and trading frictions. Computational modeling has become

a central tool in studying nonequilibrium dynamics and the process of trading. Exact and

closed-form solutions to the equations that define market dynamics are often difficult to

find except in the simplest models. Approximation and simulation become the methods

of choice for characterizing market properties in such situations.

One of the goals of this thesis is to contribute to the understanding of market imperfec-

tions and market dynamics through explicit models of learning agents that participate in

the markets. This would not only solve outstanding problems, it would also establish the

success of the methodology of modeling bounded rationality through the study of learning

behavior and add to the growing literature on agent-based simulation of market dynam-

ics. The best way to model markets through learning agents is to develop algorithms that

perform successfully in the environments they are created for. Thus, another goal of this

thesis is to develop algorithms that can be used by market participants in real and artificial

markets.

1.3 Bounded Rationality

The methodology used by economists defines the field as distinctly as the problems it

studies. One of the core underlying assumptions that allows analytical derivation of equi-

librium in many problems is that of unbounded rationality and optimizing behavior on

the part of agents. This is a problematic assumption in humans, and even in machines

when problems reach a certain level of complexity.

John Conlisk (1996) surveys the evidence for bounds on rationality at two levels —

rationality tests on single individuals that show humans are subject to biases and the use
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of heuristics, and “confounded” evidence from markets in which conventional economic

theory does not explain market anomalies and theories of bounded rationality provide

possible reconciliations. Brian Arthur (1994) identifies an important set of situations in

which perfect deductive rationality breaks down easily, namely multi-agent situations, in

which agents may not be able to rely on other agents to behave perfectly rationally, and are

thus forced to guess the behavior of the other agents. He defines “complexity economics”

as the study of questions of how “actions, strategies or expectations might react in general

to — might endogenously change with — the aggregate patterns these create” (Arthur

1999). What kinds of models should one build to augment or replace the standard models

of markets built on the assumptions of perfect rationality and individual optimization?

The local and global levels of evidence of bounds on rationality indicate at least two

directions one can follow in modeling systems of interacting economic agents. One is to

directly model the system as a whole. Approaches in this category are typically based on

statistical mechanics. The growing field of econophysics falls in this paradigm, changing

the focus from the decision problems of agents to the modeling of aggregate behavior of

systems in which not much intelligence is required or assumed of the individual com-

ponents (Mantegna and Stanley 2000, Johnson et al. 2003, inter alia). According to Jenny

Hogan (2005), writing in the New Scientist, “While economists’ models traditionally regard

humans as rational beings who always make intelligent decisions, econophysicists argue

that in large systems the behaviour of each individual is influenced by so many factors that

the net result is random, so it makes sense to treat people like atoms in a gas.”

Vince Darley (1999) contrasts this “macroscopic” approach with the “microscopic” ap-

proach in which the agent is the unit of analysis and the model is built by examining

each interaction and behavior at all levels. At the agent level there is no unifying the-

ory of bounded rationality (Gigerenzer and Selten 2001, Conlisk 1996, Arthur 1994, inter

alia). Gigerenzer and Selten (2001) point out that researchers in psychology, economics,

artificial intelligence and animal biology, among other fields, have all studied the prob-

lem and proposed “solutions” of various forms. They also note that the term “bounded

rationality” itself has come to mean different things to different people. These meanings

include constrained optimization, where the costs to perfect optimization outweigh the

benefits; irrationality, mostly in the sense of fallacious reasoning about probabilities and

expectations; and the use of heuristics. For Gigerenzer and Selten, the first two are not
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truly about bounded rationality because they treat optimization as the norm and study

deviations from it as abnormalities or approximations. In this thesis I will use the term

“bounded rationality” in the most inclusive sense, to discuss any departure from full cal-

culative rationality.

Many of the models of economics fall somewhere between the two extremes of micro-

and macro-scopic modeling of systems. For example, the two “gold standard” models of

financial market microstructure, the Glosten-Milgrom model of market-making (Glosten

and Milgrom 1985) and Kyle’s model of insider trading (Kyle 1985) use sophisticated game

theoretic and optimizing models of market-makers and traders with monopolistic insider

information respectively, but model the rest of the order flow with simple stochastic mod-

els. On the other hand, econophysics models typically use low-intelligence models of

agents and focus more on the dynamics of the collective behavior of these agents, trying

to show how complex phenomena can arise from simple agents and simple interactions,

using the tools of statistical mechanics.

This thesis presents models of markets with sophisticated economic agents rather than

econophysics models of low-intelligence market participants. However, in the argument

over the “right” level of sophistication to use in modeling market participants, I will relax

the stringent requirements of economic theory and argue that agents that are engineered

to adapt to their environments and perform “successfully,” if not optimally are the next step to

take in trying to understand market outcomes. On a completely speculative note, this ap-

proach and its relation to the econophysics movement might be thought of as parallel to

the discussion of Highly-Optimized Tolerance (HOT) vs. complex adaptive systems (CAS)

by Carlson and Doyle (2002). HOT emphasizes a view of system complexity based on en-

gineering and design, as opposed to complexity emerging “between order and disorder.”

Similarly, my approach views market dynamics as arising from the complex interactions

of intelligent agents, rather than emerging from the inherent complexities of interactions

between random agents.

1.4 Market Dynamics

Economics in the conventional sense is the study of patterns of behavior in equilibrium.

Arthur (1999) claims that “conventional economic theory chooses not to study the un-
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folding of patterns its agents create, but rather to simplify its questions in order to seek

analytical solutions.” The questions that sometimes get short shrift concern the path dy-

namics of the system. Is it possible that the system will remain out-of-equilibrium? If there

are multiple equilibria, under what conditions will one get selected rather than the others?

For example, suppose new positive information about a stock is relayed to all the partic-

ipants in a stock market. We know that the traded price should go up to reflect the new

information. However, what process will it follow in its rise? Will the increase be orderly

and in small increments or will there be a sudden jump? How will the price process be

affected by different possible market structures? Computational modeling is an ideal tool

for studying the problems which arise very naturally when one thinks about the process

rather than just the outcome. In each of the particular markets I look at in this thesis, I

analyze the dynamics of market behavior in detail. The agent-based simulation approach

is a natural methodology that enables such analysis, because we can look at path dynamics

of systems as a natural part of the research.

1.5 Online Learning and Sequential Decision-Making

The algorithmic questions that arise in the solution of the kinds of problems agents must

solve in complex, uncertain market environments fall under the rubric of online learn-

ing and sequential decision-making, possibly in multi-agent environments. Research in

these areas has been widespread in many different fields, including reinforcement learn-

ing (Sutton and Barto 1998, Kaelbling et al. 1996), stochastic control and neuro-dynamic

programming (Bertsekas and Tsitsiklis 1996), learning theory (Freeman and Saad 1997, Hu

and Wellman 1998), multi-agent learning (Stone and Veloso 2000), and the theory of learn-

ing in games (Fudenberg and Levine 1998).3

Reinforcement learning focuses on the problem faced by an agent who must learn

through trial-and-error interaction with the environment it is placed in while its actions

in turn affect the environment. The only feedback an agent receives is through the reward

it gets after selecting each action. This reward could conceivably only be received after a

whole sequence of actions. Some of the major concerns of the literature which are impor-

tant to this thesis include the exploration-exploitation tradeoff, which asks when an agent

3The citations here are to textbooks and important surveys, with the exception of the online learning cita-
tions, for which I am not aware of a classic survey.
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should forgo immediate reward to learn more about its environment so that it can make

better decisions in the future, learning from delayed rewards, and learning with continu-

ous state and action spaces.

In real markets, agents have to learn “online” without having access to either a com-

plete model of the environment or an offline simulator that they can use to collect simu-

lated experience. Kakade (2003) calls this the most realistic and challenging reinforcement

learning environment, and notes that it is much harder to create successful algorithms in

this setting. Explicitly, the problem becomes one of maximizing the (possibly discounted)

sum of rewards up to some future horizon (possibly infinite). Neuro-dynamic program-

ming often deals with this problem in the context of stochastic control and value function

approximation. An important issue in maximizing total reward is solving the exploration-

exploitation dilemma – when is it right to take a myopically suboptimal action because of

the expected value of learning more about another action? Online learning can also be-

come important in contexts where a learning algorithm forms part of a decision-making

system and it is impractical to memorize each interaction with the environment and then

run a batch learning algorithm to learn the best model at each time step. Instead, it be-

comes critical to efficiently use each example interaction with the environment to quickly

and robustly update agent beliefs.

The theory of learning in games has achieved theoretical credibility for its ability to

forecast the global outcomes of simple individual learning rules in multi-agent settings.

The multi-agent learning community often focuses on simple general algorithms with

guarantees for restricted classes of games (Stone and Veloso 2000, Conitzer and Sandholm

2003). While the theory is powerful in many ways, the algorithms necessary for good per-

formance in the kinds of games and models I examine in this thesis are often too compli-

cated for the present state of the art in providing theoretical guarantees. Even if we could

provide theoretical guarantees, they might prove useless in real markets – proving that

something is no worse than one-sixth as good as the optimal in terms of expected utility

is not nearly as useful as empirically demonstrating performance within a few percentage

points.
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1.6 Contributions

I hope that readers of this thesis will be convinced that the kind of modeling and analysis

it advocates is, in fact, the right approach to thinking about many problems in market

environments. I attempt to present computational and simulation models of markets that

make novel predictions while at the same time staying well-grounded in basic economic

and decision-theoretic notions. Throughout this work I try to maintain an underlying

focus on market structures and how they impact market outcomes. Therefore, in terms of

applications, this thesis should be able to more realistically suggest the impact of structural

changes to market institutions. The important specific technical contributions of the thesis

in different domains are as follows. The next section of this chapter provides more detailed

descriptions of the individual chapters.

• Chapter 3 introduces the first method for explicitly solving the Glosten-Milgrom

equations for real prices, and produces predictions about the behavior of prices in

securities markets. It makes both the engineering contribution of a first step towards

a practical market-making algorithm in the academic literature, and various predic-

tions about market properties that could not have been made without the existence

of such an algorithm. In some cases, these results confirm economic intuitions in a

significantly more complex setting (like the existence of a local profit maximum for

a monopolistic market-maker) and in others they can be used to provide quantita-

tive guesses for variables such as rates of convergence to efficient market conditions

following price jumps that provide insider information.

• Chapter 4 makes a connection between a classic line of literature on insider trading in

market microstructure and artificial intelligence problems of reinforcement learning

by relaxing some assumptions from the finance models. It shows the learnability of

equilibrium behavior under certain conditions in a standard model of insider trad-

ing first introduced by Kyle, but it also shows that the time scale of convergence to

the equilibrium behavior may be impractical, and agents with limited time horizons

may be better off using approximate algorithms that do not converge to equilibrium

behavior. This result may have implications for both the design of trading agents

and for analysis of data on insider trading.
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• Chapter 5 studies a class of search problems in which there is a search “season” prior

to hiring or matching, like academic job markets. It introduces different models and

solves for expected values in many cases, and studies the difference between a “high

information” process where applicants are immediately told when they have been

rejected and a “low information” process where employers do not send any signal

when they reject an applicant. The most important intuition to emerge from the

analysis is that the relative benefit of the high information process is much greater

when applicants do not know their own “attractiveness,” which implies that search

markets might be able to eliminate inefficiencies effectively by providing good infor-

mation, and we do not always have to think about redesigning markets as a whole.

• Chapter 6 studies two-sided search explicitly and introduces a new class of multi-

agent learning problems, two-sided bandit problems, that capture the learning and de-

cision problems of agents in matching markets in which agents must learn their pref-

erences. It also empirically studies outcomes under different periodwise matching

mechanisms and shows that some basic intuitions are preserved in the model.

1.7 Thesis Overview

Chapter 2 seeks to connect the literatures from artificial intelligence, economics, and cog-

nitive science to make the case that not only is the notion of bounded optimality from the

AI literature the right goal for agent design, it can also serve as a principled means for

modeling boundedly rational agents in complex systems like economic markets. While

appealing, this goal leaves open two critical questions. First, bounded optimality is de-

fined over an expected set of problems the agent might face and it is not obvious what

criterion to use for expected problems. Second, it will typically be impossible to design

a provably boundedly optimal agent even given a set of expected problems, because the

agent design problem itself is intractable. These problems become particularly important

when agents must learn from their environments. In order to deal with these questions we

may need to abandon the formalism of mathematics and instead look towards the process

of science and engineering. I argue that it is critical to evaluate agents in terms of the ex-

pected set of problems they would face if they were deployed in the real world, either in

software or in hardware, and the agent programs we use for modeling should be the best
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known program for any given problem subject to the broader expected set of problems the

algorithm might be expected to solve – the algorithm we would choose to use if we had to

hand over control of our own behavior in that domain to an artificial agent.

Chapter 3 develops a model of a learning market-maker by extending the Glosten-

Milgrom model of dealer markets. The market-maker tracks the changing true value of a

stock in settings with informed traders (with noisy signals) and liquidity traders, and sets

bid and ask prices based on its estimate of the true value. The performance of the market-

maker in markets with different parameter values is evaluated empirically to demonstrate

the effectiveness of the algorithm, and the algorithm is then used to derive properties of

price processes in simulated markets. When the true value is governed by a jump pro-

cess, there is a two regime behavior marked by significant heterogeneity of information

and large spreads immediately following a price jump, which is quickly resolved by the

market-maker, leading to a rapid return to homogeneity of information and small spreads.

I also discuss the similarities and differences between this model and real stock market

data in terms of distributional and time series properties of returns.

The fourth chapter introduces algorithms for learning how to trade using insider (su-

perior) information in Kyle’s model of financial markets. Prior results in finance theory

relied on the insider having perfect knowledge of the structure and parameters of the mar-

ket. I show in this chapter that it is possible to learn the equilibrium trading strategy when

its form is known even without knowledge of the parameters governing trading in the

model. However, the rate of convergence to equilibrium is slow, and an approximate algo-

rithm that does not converge to the equilibrium strategy achieves better utility when the

horizon is limited. I analyze this approximate algorithm from the perspective of reinforce-

ment learning and discuss the importance of domain knowledge in designing a successful

learning algorithm.

Chapter 5 examines a problem that often arises in the process of searching for a job or

for a candidate to fill a position. Applicants do not know if they will receive an offer from

any given firm with which they interview, and, conversely, firms do not know whether

applicants will definitely take positions they are offered. In this chapter, we model the

search process as an optimal stopping problem with probabilistic appearance of offers from

the perspective of a single decision-maker who wants to maximize the realized value of

the offer she accepts. Our main results quantify the value of information in the following
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sense: how much better off is the decision-maker if she knows each time whether an offer

appeared or not, versus the case where she is only informed when offers actually appear?

We show that for some common distributions of offer values she can expect to receive

very close to her optimal value even in the lower information case as long as she knows

the probability that any given offer will appear. However, her expected value in the low

information case (as compared to the high information case) can fall dramatically when she

does not know the appearance probability ex ante but must infer it from data. This suggests

that hiring and job-search mechanisms may not suffer from serious losses in efficiency

or stability from participants hiding information about their decisions unless agents are

uncertain of their own attractiveness as employees or employers.

While Chapter 5 makes inferences about two-sided search processes based on results

from considering the more tractable one-sided process, Chapter 6 uses simulation tech-

niques to study a two-sided problem directly. Specifically, we study the decision prob-

lems facing agents in repeated matching environments with learning, or two-sided bandit

problems, and examine the dating market, in which men and women repeatedly go out

on dates and learn about each other, as an example. We consider three natural match-

ing mechanisms and empirically examine properties of these mechanisms, focusing on

the asymptotic stability of the resulting matchings when the agents use a simple learning

rule coupled with an epsilon-greedy exploration policy. Matchings tend to be more stable

when agents are patient in two different ways — if they are more likely to explore early

or if they are more optimistic. However, the two forms of patience do not interact well in

terms of increasing the probability of stable outcomes. We also define a notion of regret for

the two-sided problem and study the distribution of regrets under the different matching

mechanisms.

Finally, Chapter 7 summarizes the main results presented in this thesis. While each

chapter contains ideas for future research in its specific area, Chapter 7 casts a wider net

and suggests some important broad directions for future research.
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Chapter 2

On Learning, Bounded Rationality,

and Modeling

2.1 Introduction

Human beings regularly make extremely complex decisions in a world filled with uncer-

tainty. For example, we decide which gas station to refuel at, and whether to put money

into a bank account or a retirement fund, with surprisingly little effort. Designing algo-

rithms for artificial agents in similar situations, however, has proven extremely difficult.

Historically, research in artificial intelligence has focused on designing algorithms with the

ability to solve these problems in principle, given infinite computational power (Russell

1997). Many problems that arise in everyday decision-making are likely to be impossible

to solve perfectly given computational constraints, so this kind of calculative rationality, as

Russell calls it, is not a particularly interesting practical goal. In order to progress towards

designing an intelligent system, we need a better theory of decision-making and learning

when rationality is bounded by computational resource considerations. Not only is such

a theory critical to our understanding of the nature of intelligence, it could also be applied

to study interaction between agents in increasingly realistic models of social and economic

systems by serving as a replacement for the classical economic theory of unbounded ra-

tionality. Russell (1997) discusses two possible theories, metalevel rationality and bounded

optimality. Russell and Norvig (2003) also consider a more general notion of bounded ra-

tionality in the tradition of Herbert Simon’s (1955) satisficing. Bounded optimality is in
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many ways the most appealing of these theories, since it strives to replace agents that al-

ways make rational decisions with rational agent programs. Bounded optimality could also

be a more plausible model of how humans work. We know that human beings do not

make rational decisions, but it is possible that our brains are an optimal or near-optimal

decision-making system for the environments we inhabit.

One of the great attractions of bounded optimality is that it can serve both as a defini-

tion of intelligence meeting the needs of research in AI and as a formal model of decision-

making to replace unbounded rationality. Unfortunately, while bounded optimality might

be the right goal to strive for in agent design, achieving this goal, or even knowing whether

it can be achieved, is difficult when agents are uncertain about the world. This issue be-

comes particularly important in the context of agents that are not fully informed about the

environment they are placed in, and who must learn how to act in a successful manner.

The question of what is meant by boundedly rational learning and how it can be analyzed

is a difficult one that I discuss in some detail below.

The broad plan of this chapter is as follows.

• I start by considering various perspectives on bounded rationality. While Russell

(1997) and Parkes (1999) provide plenty of detail on most of the perspectives related

to agent design, I will consider in more detail the tradition of bounded rationality

research started by Herbert Simon with the notion of satisficing, and continued in

the program of fast and frugal heuristics by Gerd Gigerenzer and others (Gigerenzer

and Goldstein 1996, Gigerenzer and Selten 2001, inter alia).

• After that, I move on to considering how the field of machine learning, and in par-

ticular, reinforcement learning, needs to adapt in order to move towards the goal of

designing boundedly optimal agents for increasingly complex domains.

• In the last major section, I discuss how a theory of boundedly optimal agents may

provide a compelling replacement for the unboundedly rational agents of economic

theory. The notion of bounded optimality can serve as a principled approach to mod-

eling complex systems and address many of the criticisms of bounded rationality

research found in the economics literature.
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2.2 Bounded Rationality and Agent Design

The agent-based approach to AI involves designing agents that “do the right thing” (Rus-

sell 1997). The “right thing” in this context means that agents should take actions that

maximize their expected utility (or probability of achieving their goals). Ideally, an agent

should be perfectly rational. Unfortunately, there is really no such thing as a perfectly ra-

tional agent in the world. As Russell (1997, pp. 6) says, “physical mechanisms take time

to process information and select actions, hence the behavior of real agents cannot imme-

diately reflect changes in the environment and will generally be suboptimal.” Calculative

rationality, the ability to compute the perfectly rational action in principle, given sufficient

time and computational resources, is not a useful notion, because agents that act in the

world have physical constraints on when they need to choose their actions. We are left to

contemplate other options for agent design.

The heuristics and biases program made famous by Kahneman and Tversky studies ac-

tual human behavior and how it deviates from the norms of rational choice. This program

is not in any way prescriptive, as it mainly focuses on cataloging deviations from the pre-

sumed normative laws of classical decision theory. Thus, this program does not provide

any suitable definitions for intelligence that we can work towards, although understanding

human deviations from decision-theoretic norms might prove informative in the design of

good algorithms, as I shall argue later.

Another approach from the literature of cognitive science is the use of “satisficing”

heuristics in the tradition of Simon (1955), who introduced the notion that human decision-

makers do not exhaustively search over the space of outcomes to choose the best decision,

but instead stop as soon as they see an outcome that is above some satisfactory threshold

“aspiration level.” Conlisk (1996) cites various papers in the economics literature that start

from Simon’s notion of bounded rationality, and claims that, within economics, “the spirit

of the idea is pervasive.” In cognitive science and psychology, Gigerenzer and others have

recently popularized the use of “fast and frugal” heuristics and algorithms as the natural

successor to satisficing. Gigerenzer and Goldstein (1996) state their view of heuristics as

being “ecologically rational” (capable of exploiting structures of information present in

the environment) while nevertheless violating classical norms of rationality. They have a

program to design computational models of such heuristics, which are “fast, frugal and
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simple enough to operate effectively when time, knowledge, and computational might are

limited” while making it quite clear that they do not agree with the view of heuristics as

“imperfect versions of optimal statistical procedures too complicated for ordinary minds to

carry out” (Goldstein and Gigerenzer 2002). They reject the Kahneman-Tversky program

because it maintains the normative nature of classical decision theory.

It is interesting that in their 1997 paper, Gigerenzer and Goldstein held a simulated

contest between a satisficing algorithm and “rational” inference procedures, and found

that the satisficing procedure matched or outperformed more sophisticated statistical al-

gorithms. The fact that a simple algorithm performs very well on a possibly complex task

is not surprising in itself, but what is very clear is that if it can be expected to perform

better than a sophisticated statistical algorithm, it must either be a better inference proce-

dure or have superior prior information encoded within it in the context of the environment

in which it is tested. As agent designers, if we had to design an agent that solves a given

range of problems, and had access to the information that a satisficing heuristic was the

best known algorithm for that range of problems, it would be silly not to use that algo-

rithm in the agent, all else being equal. While I will return to this issue later in this section,

the problem with fast and frugal heuristics as a program for agent design is the loose def-

inition of what constitutes a satisfactory outcome, or of what kinds of decision-making

methods are “ecologically rational” in the language of Goldstein and Gigerenzer. How do

we know that one heuristic is better than another? What if our agent has to perform many

different tasks?

Russell proposes two other options for a goal for agent design – metalevel rationality

and bounded optimality. Metalevel rationality involves reasoning about the costs of reason-

ing. An agent that is rational at the metalevel “selects computations according to their

expected utility” (Russell 1997). This is what Conlisk (1996) refers to as deliberation cost,

and both Russell and Conlisk make the explicit connection to the analogous value of in-

formation. Conlisk argues strongly for incorporating deliberation cost into optimization

problems that arise in economics, saying that human computation is a scarce resource, and

economics is by definition the study of the allocation of scarce resources. He suggests that

instead of optimally solving an optimization problem P , a decision-maker should solve

an augmented problem F (P ) in which the cost of deliberation is taken into account. The

problem, as he realizes, is that it is also costly to reason about F (P ), and, therefore, theo-
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retically at least, one should reason about F (F (P )), F (F (F (P ))), . . .. This infinite regress

is almost always ignored in the literature that does take deliberation cost into account,

assuming that F (P ) is, in some sense, a “good enough” approximation.

Economics is not alone in this myopic consideration of deliberation cost. In the AI lit-

erature, the tradition of studying deliberation cost (or the essentially equivalent concept

which Russell calls the value of computation) as part of solving a decision problem dates

back to at least the work of Eric Horvitz (1987), and almost all the algorithms that have

been developed have used myopically optimal metareasoning at the first level, or shown

bounds in very particular instances. The history of metalevel “rationality” in the AI liter-

ature is more that of a useful tool for solving certain kinds of problems (especially in the

development of anytime algorithms) than as a formal specification for intelligent agents.

This is mostly because of the infinite regress problem described above – as (Russell 1997,

page 10) writes (of the first metalevel, or the problem F (P ) in Conlisk’s notation), “perfect

rationality at the metalevel is unattainable and calculative rationality at the metalevel is

useless.”

This leaves us with Russell’s last, and most appealing, candidate – bounded optimality,

first defined by Horvitz (1987) as “the optimization of [utility] given a set of assumptions

about expected problems and constraints on resources.” Russell (1997) says that bounded

optimality involves stepping “outside the agent” and specifying that the agent program be

rational, rather than every single agent decision. An agent’s decision procedure is bounded

optimal if the expected utility of an action selected by the procedure is at least as high as

that of the action selected by any decision procedure subject to the same resource bounds

in the same environment. Of course, we are now requiring a lot of the agent designer,

but that seems to make more sense as a one-time optimization problem than requiring the

same of the agent for every optimization problem it faces. The problem with bounded

optimality is that, for any reasonably complex problem, it will prove incredibly hard to

design a boundedly optimal agent, and it might also be hard to prove the optimality of the

agent program. We have shifted the burden of rationality to the designer, but the burden

still exists.

Nevertheless, bounded optimality seems to be the right goal. If one agent algorithm

can be shown to perform better than another given the same beliefs about the set of prob-

lems the agent may face and the same computational resources, the first algorithm should
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be the one used. Of course, this can be problematic because it is not clear where it must

perform better. What if the prior beliefs of the agents are completely wrong? Again, the

only solution is to analyze this from the perspective of the agent designer. Rodney Brooks

(1991) argues that the real world is its own best model. While I do not endorse the notion

that the task of modeling by simplifying is therefore useless, I do think we should hold

boundedly optimal algorithms to the standard of reality. The performance of algorithms

should be tested on problems that are as realistic as possible.

Let me use this for a quick foray into the broader question of what we should be do-

ing when we design algorithms intended to be boundedly optimal. Let me use this for a

quick foray into the broader question of what we should be doing as artificial intelligence

researchers when we design algorithms intended to be boundedly optimal. The two points

that (Brooks 1991, page 140) makes about the direction of AI research are (quoting directly):

• We must incrementally build up the capabilities of intelligent systems,

having complete systems at each step of the way and thus automatically

ensure that the pieces and their interfaces are valid.

• At each step we should build complete intelligent systems that we let

loose in the real world with real sensing and real action. Anything less

provides a candidate with which we can delude ourselves.

Brooks carries this forward to argue for robotics and immersion in the real physical world

as the most important research program in AI. Oren Etzioni (1993) argues against this view,

arguing that the creation of so-called softbots, agents embedded in software, is perhaps a

more useful focus for AI research, since it allows us as researcher to tackle high-level is-

sues more immediately without getting sidetracked. The concept of designing boundedly

optimal agents is not necessarily tied to either of these research directions. While my later

focus on economic modeling falls more in line with Etzioni’s arguments than Brooks’, the

basic goal of agent design is the same in both areas, and I believe that both are useful

programs of research in AI. This goal is to solve the engineering problem of creating an

agent that will be optimally successful in the environments in which we as agent design-

ers expect it to be placed given the resources available to the agent. The agent could be

a software agent attempting to trade optimally in an online market, or it could be a robot

attempting to navigate many different kinds of terrain, or almost anything else one can
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think of.

One critical caveat needs to be mentioned – eventually, we would like to create agents

that are generally intelligent across a range of domains and problems (holding a conver-

sation, ordering food from a restaurant, buying a plane ticket, and so on). These agents

will have limited computational resources, and therefore, they might not be able to spend

a lot of these resources on any one task. They will need to be boundedly optimal in the

context of all the problems they have to solve, and therefore, they might have to be de-

signed so that they would not be boundedly optimal for any one of those problems given

the same computational resources. This caveat will also apply to modeling economic and

social systems. We cannot assume too much in the way of computational resources or ex-

clusivity of access to these resources when we model using the methodology I propose. In

fact, suppose the human brain itself is boundedly optimal for the environment it inhabits

with respect to some kind of evolutionary survival utility function (or fitness function).

Then the kinds of deviations we see from decision-theoretic norms could be explained by

the fact that even if an algorithm were not optimal for a particular class of problems, if

the agent could perhaps face a significantly larger class of problems, or a better inference

procedure were significantly more costly, it might be boundedly optimal to program the

agent with that algorithm since this would save valuable resources that could be devoted

to other problems. In fact, some of the algorithms described as “fast and frugal heuristics”

(Gigerenzer and Goldstein 1996, Goldstein and Gigerenzer 2002) may well be bounded

optimal in the larger context of the human brain.

2.3 Bounded Optimality and Learning

In the tradition of economics and decision theory, rational learning is understood to mean

Bayesian updating of beliefs based on observations. This definition finesses two major

problems we encounter in agent design.

• It shifts responsibility onto the designer’s beliefs about the set of problems the agent

might face. It could be very hard to design an appropriate prior for an agent that

must make many different kinds of decisions in the world.

• Even if the designer’s prior beliefs are correct, full Bayesian learning is computation-

ally infeasible in all but the simplest cases. There may be no single algorithm that
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provably always outperforms others in selecting optimal actions within the specified

computational limits, or finding such an algorithm may be hard.

First, let us consider a simple illustrative problem that is an extension of the classi-

cal supervised learning framework to a situation where a predictive agent receives utility

from making correct predictions while her actions have no influence on the environment.

Later we will turn to the even more difficult case in which the agent’s actions impact its

environment.

Learning to Predict: Consider a situation in which an agent, call her Mary, receives as

input a real-valued vector X at each time step, and has to predict Y , where Y is known to

be a (probabilistic or noisy) function of X . The two standard cases are regression, where

Y is real valued, or classification, where Y takes on one of a few specific different values.

For simplicity, consider the binary classification case where Y ∈ {0, 1}. Suppose Mary’s

task is to predict whether Y will be 0 or 1. Immediately after she makes her prediction,

she is informed of the true value of Y and receives utility 1 for making the correct pre-

diction, and 0 for making the wrong prediction. Suppose Mary knows that she will see

100 such examples, and her goal is to maximize the utility she receives over the course

of this game. How should she play? The theory of unbounded rationality and “rational

learning” as used by economics would say that Mary starts with a prior Pr(Y |X), makes

her decision based on the particular instantiation X = x that she sees (predicting Y = 1 if

Pr(Y = 1|X = x) > Pr(Y = 0|X = x) and Y = 0 otherwise), and then updates her esti-

mate Pr(Y |X) using Bayes’ rule after the true value of Y is revealed to her. Unfortunately,

even ignoring the issue of how to specify a good prior, performing the full Bayesian up-

dates at each step is computationally prohibitive. This brings us into the sphere of bounded

optimality. What method would achieve as high a utility as possible for Mary given rea-

sonable computational resources? This question does not have a definite answer, even if

we clearly specify the exact resource constraints on the agent. Many different algorithms

for the supervised learning problem, both online and offline, could be applied in this situ-

ation. Mary could memorize all the examples she sees and use a support vector machine

to learn a classifier after each step (even then, she would need to make choices about ker-

nels and parameters), or she could use an ensemble classifier like boosted decision trees,

or an online algorithm like the Widrow-Hoff procedure, but there is no one algorithm that
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is clearly better than the others in terms of expected utility across domains.

2.3.1 Learning How to Act

An agent that acts in the world gains utility from the actions it takes and also learns about

the world through the effects of its actions. It must balance exploration (taking myopically

suboptimal actions in order to learn more) with exploitation of what it has learned. Per-

fectly rational Bayesian learning is only possible for certain families of prior beliefs and

extremely simple problems. The discovery of an optimal algorithm that balances explo-

ration and exploitation for even the “simple” case of the multi-armed bandit problem was

hailed as almost miraculous when it was first published.

The multi-armed bandit problem (Berry and Fristedt 1985, Gittins and Jones 1974, inter

alia) is often considered the paradigmatic exploration-exploitation problem, because the

tradeoff can be expressed simply. A single agent must choose which arm of a slot machine

to pull at each time step, knowing that the arms may have different reward distributions.

The goal of the agent is to maximize the discounted sum of payoffs. It turns out there is

actually an optimal way to play the multi-armed bandit under the assumptions of station-

ary reward distributions and geometric discounting (Gittins and Jones 1974). The optimal

action at any time is to play the arm with the highest Gittins index, a single number as-

sociated with each arm that is based solely on the history of rewards associated with that

arm. The Gittins index is reasonably easy to compute for certain families of reward distri-

butions, but can be difficult in other circumstances.

The multi-armed bandit is an easy problem, though, compared to the kinds of problems

faced by agents in realistic environments. For example, it is hard to define “optimality” in

a nonstochastic bandit problem, where the reward for each arm at each time period may

have been picked by an adversary (Auer et al. 2002), or a nonstationary case, where the

reward distribution for each arm may change over time. Or consider the case where there

are multiple people playing the bandit and the arms of the bandit themselves have agency

and must try to maximize their own reward, which is dependent on who pulls them in

each period (the “two-sided” bandit problem (Das and Kamenica 2005)). Even solving

problems with a Markovian structure can be extremely hard, especially when they are not

fully observable.
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2.3.2 Evaluating Learning Algorithms

While a whole line of literature stresses the importance of resource bounds in understand-

ing computational limitations on rationality in many decision-making environments, the

problem becomes particularly severe when the agent does not have a perfect model of

its environment and must learn this model through experience. The scenarios examined

above raise two fundamental questions for the field of machine learning which parallel

those in the introductory discussion. First, if we are seeking to design a boundedly opti-

mal learning algorithm, what should constitute the expected set of problems against which

it is evaluated? Second, even given such a set of problems, what should we do if we cannot

find a boundedly optimal algorithm, or prove its optimality? I will defer discussion of the

second question to the next section, because it will be important for understanding how

we can use the notion of bounded optimality in modeling complex systems.

Of course it is impossible to definitively answer these questions, but it is important to

keep them in mind as researchers. I believe that it is critical to evaluate algorithms from

the perspective of performance in the real world, given the expected set of problems an

agent would face if it were deployed in the world, either physically or as a software agent.

While there is of course value to the traditional computer science program of proving

worst case bounds and evaluating algorithms on arbitrary problem spaces, at some stage

(not necessarily at the very initial stage of development) algorithms that are designed to

be parts of intelligent agents must face the discipline of the real world.

The problem of learning how to act when an agent gets rewards from its interactions

with the environment has been studied extensively (especially in the Markovian frame-

work) in the reinforcement learning and neurodynamic programming literatures. How-

ever, analysis has typically focused on the ability of algorithms to eventually learn the true

underlying model, and hence the asymptotically optimal decision procedure, and not on

the expected utilities achieved by algorithms in potentially limited interactions with the

environment. This expected utility viewpoint becomes especially important in the true

agent design problem, because our goal must be to design agents that can take the actual

costs of exploration and learning into account. An agent does not have access to an of-

fline model of its environment so that it can improve its performance before acting in the

world. The agent must be able to make tradeoffs in an online manner, where failure or
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poor performance immediately impacts the agent negatively. It is therefore critical from

the perspective of AI research to attack problems of learning how to act from the perspec-

tive of expected utility received in the world, especially keeping in mind the real costs of

exploration. It will probably prove natural to adopt a Bayesian perspective in analyzing

this issue. To quote (Berry and Fristedt 1985, pp. 4) , in their discussion of bandit prob-

lems, “[it] is not that researchers in bandit problems tend to be ‘Bayesians’; rather, Bayes’s

theorem provides a convenient mathematical formalism that allows for adaptive learning,

and so is an ideal tool in sequential decision problems.”

2.4 Bounded Optimality and Modeling

Historically, research on the outcomes of interaction between self-interested optimizing

agents has been the domain of economic theory. Economists place a high value on analyt-

ical tractability and model parsimony. They tend to simplify models until agent behavior

and interactions can be reduced to a set of equations that provide intuition to the person

analyzing the system. In the words of Brian Arthur (1999), “conventional economic theory

chooses not to study the unfolding of the patterns its agents create, but rather to simplify

its questions in order to seek analytical solutions.” These simplified questions have no

need of the notion of bounded optimality, because the decision (and learning) problems

faced by agents are “easy” in the sense that they can be solved efficiently without using

excessive computational resources. If we move to more complicated models, we will nec-

essarily have to examine more difficult agent decision problems, and we need to think

about agent decision-making differently. In a seminal paper, Herbert Simon (1955) identi-

fied the problem:

Broadly stated, the task is to replace the global rationality of economic man

with a kind of rational behavior that is compatible with the access to informa-

tion and the computational capacities that are actually possessed by organisms,

including man, in the kinds of environments in which such organisms exist.

One is tempted to turn to the literature of psychology for the answer. Psy-

chologists have certainly been concerned with rational behavior, particularly

in their interest in learning phenomena. But the distance is so great between

our present psychological knowledge of the learning and choice processes and
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the kinds of knowledge needed for economic and administrative theory that a

marking stone placed halfway between might help travelers from both direc-

tions to keep to their courses.

How about bounded optimality as a milestone? With the increasing availability of

huge amounts of computational power on every researcher’s desktop, we can now ana-

lyze models using computational tools, and so it is no longer absolutely critical to simplify

models to the extreme. This means we can study models in which agent decision problems

are no longer easy and computational resource constraints must be taken into account.

This is particularly important, as noted above, in circumstances where agents are not per-

fectly informed of the structure or the parameters of the environments in which they are

placed. How should this kind of modeling proceed so as not to fall into the traps that have

made bounded rationality research anathema to many mainstream economists?

John Conlisk (1996) both raises and answers many of the criticisms of bounded ratio-

nality research. Perhaps the most important and frequent such criticism is that the deci-

sion procedures modeled by those conducting the research are ad hoc. Conlisk summa-

rizes this argument as follows “Without the discipline of optimizing models, economic

theory would degenerate into a hodge podge of ad hoc hypotheses which cover every fact

but which lack overall cohesion and scientific refutability” [pp. 685]. He goes on to say

that discipline comes from good scientific practice, not strict adherence to a particular ap-

proach, and suggests that modeling bounded rationality based on deliberation cost would

enforce a certain discipline. Conlisk’s preferred approach is the equivalent of metalevel

rationality, but I would venture to propose that bounded optimality might be both a bet-

ter model for the purpose of enforcing discipline (given the infinite regress problem) and

a more satisfying model of the processes of actual decision-makers in the world. Maybe

humans and economic firms do take the best actions available, given their capacities for

reasoning about these actions and the knowledge of their environments available to them.

However, from the discussion above, it is clear that very often we will not know if an

agent algorithm is in fact boundedly optimal or not. Does this invalidate the idea that

bounded optimality can serve as a principled replacement for unbounded rationality in

economic models? I would argue that this is not the case, but we have to turn to good

practice in science and engineering rather than relying on the formalism of mathematics.

We should strive to engineer good algorithms for complicated problems, attempting to be
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rational ourselves in the design of these algorithms. The choice of how to model an agent

that is part of a complex system should be made by using the same agent that we would

use if we had to engineer an agent for maximally successful performance in that system

given our beliefs about the system. Hopefully we could eventually reach more and more

realistic models, benefiting both algorithm development and hence the eventual goal of

building an intelligent agent as well as our understanding of complex social and economic

systems. Let me finish by presenting a case study.

2.4.1 Learning in Economic Models

Many economic models already account for learning in an explicit manner. There is noth-

ing particularly novel about suggesting that agents learn from the environment around

them. In an interview with Thomas Sargent, Evans and Honkapohja (2005) explore many

of the issues related to how the program called “learning theory” originated in the macroe-

conomics literature. Let me briefly summarize Sargent’s overview of the development of

this literature in order to draw a parallel to the overall argument of this chapter.

Learning theory in macroeconomics originated in some ways as a response to rational

expectations economics. In the rational expectations literature, there exists what Sargent

calls a “communism of models” in which all the agents share the same model of the world,

and this is the true model, or “God’s model”.1 There is no place for different beliefs in

rational expectations theory. Margaret Bray and David Kreps started a research program

to show what would happen if you endowed agents with different beliefs, learning algo-

rithms, and data on what had happened in the past. Agents should continue to update

their models and then optimize based on their current beliefs. The interesting outcome

was that in many cases, the only possible outcomes of the system were close to rational

expectations equilibria. In some cases, the learning models helped to eliminate possible

rational expectations equilibria because they could not be reached through the learning

dynamic. Further research along these lines has started to examine what happens to equi-

libria when agents can have model uncertainty, not just parameter uncertainty. Along with

equilibrium selection, the theory has also contributed much by helping to understand the

rates of reaching equilibrium in different problems and in characterizing the situations

1Sargent uses the term “model” to mean probability distributions over all the inputs and outputs of the
larger economic model.
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where the system dynamics show serious deviations from expected equilibrium behavior.

Similar research has now become an integral part of the game theory literature as well

(Fudenberg and Levine 1998).

How does this relate to bounded rationality? Learning behavior is not necessarily “ir-

rational,” so why would we have to think of it any differently? Sargent echoes this manner

of thinking in talking about “robust control” (in which an agent explicitly has doubts about

her model of the world and must take these into account in decision-making) when he says

that it is not a type of bounded rationality because “[the agent’s] fear of model misspec-

ification is out in the open” which makes her smarter than a rational expectations agent

(Evans and Honkapohja 2005). The problem that arises with this belief is that it is impossible

to do provably optimal learning in a model in which there is any kind of complexity to the

agents’ beliefs. We must take computational resource constraints into account, and agents

cannot be unboundedly rational. It becomes very hard to even define rationality meaning-

fully in most of these situations. To quote Horvitz (1987), “[Constraints in resources] can

transform a non-normative technique into the ‘preferred choice’ of devout Bayesians, and

can convert the strictest formalists into admirers of heuristics.” We have to think about

what constitutes a “good” learning algorithm and whether it makes sense (both from the

agent-design and the modeling perspectives) to endow the agent with that algorithm. The

learning literature in economics typically focuses on very simple methods of least-squares

learning which might not be the choice we would make as agent designers if we had to

write an algorithm to participate in the world we are modeling.

2.5 Conclusion

This chapter attempts to link the literatures of artificial intelligence, economics, and cog-

nitive science so that those familiar with any of these disciplines will be able to see the

parallels and connections easily. I have argued for a particular methodology for both de-

signing artificial agents and for modeling agents that are participants in a complex system

like an economic market. This methodology is to start by assuming bounded optimality,

or the rationality of the agent program, as the goal in both cases. Since this goal needs to

be defined in terms of the expected set of problems an agent will face, we should design

agents that would perform successfully in the real world, and expect that the set of prob-
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lems the agent will face is the set of problems it would encounter in the world. Finally,

we will not necessarily ever know or be able to show that an agent we have designed

is boundedly optimal. We might have to replace our desire for proving that an agent is

boundedly optimal with a more scientific or engineering based approach, in which we try

to design the best algorithm so far developed for a problem given the computational and

other constraints on the algorithm.

To conclude with an example, suppose we were to design an agent that took care of our

finances. We would want it to successfully trade stocks and bonds, perhaps even foreign

exchange, while at the same time taking care of more mundane tasks like maintaining bank

accounts and paying mortgages. It is not far-fetched to think that we will in the near future

be able to design an agent that is close to boundedly optimal for this problem. Eventually

we might be able to use insights from the design of this financial agent to build a truly

intelligent agent, but in the meanwhile, if we are happy deploying the agent to take care of

our finances, we should use it as our model of an economic decision-making agent when

we model financial markets.
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Chapter 3

A Learning Market-Maker

3.1 Introduction

The detailed study of equity markets necessarily involves examination of the processes

and outcomes of asset exchange in markets with explicit trading rules. Price formation in

markets occurs through the process of trading. The field of market microstructure is con-

cerned with the specific mechanisms and rules under which trades take place in a market

and how these mechanisms impact price formation and the trading process (O’Hara 1995,

Madhavan 2000).

The first market I examine in detail is a stylized version of a dealer market — a mar-

ket in which two-sided prices are set by a market-maker, (bid and ask prices, at which

the market-maker is willing to buy and sell shares respectively) and traders can buy or

sell stocks to the market-maker at these quoted prices. The problem I analyze here is the

dealer’s decision problem under conditions of asymmetric information. Suppose that the

dealer knows that certain traders (“informed traders”) have better information than she

does about the true underlying value of the stock. She does not know if any given trader

is better informed than she is, but she does know the distribution of informed and unin-

formed traders in the market. How should she set bid and ask prices in this model?

The canonical work on this problem in the market microstructure literature is that of

Glosten and Milgrom (1985). However, Glosten and Milgrom only solve the price-setting

equations they derive in extremely simplistic cases (for example, the stock can have two

underlying values, “high” and “low”) which remain analytically tractable, and it is very

hard to derive any general predictions about market properties from their results.
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What if the market-maker had to actually compute prices in a more realistic situation?

The real world imposes certain bounds on what kinds of actions a market-maker can take

and what kinds of reasoning capacities a market-maker has. In particular, quoted prices

must be in integral units, and the market-maker does not have unlimited memory of ev-

erything that has happened. Further, the market-maker must make rapid online revisions

of its beliefs about the true price of a stock. What constitutes optimal behavior in this situ-

ation? I will describe a method that a market-maker can use to actually set prices in a more

realistic framework than that of Glosten and Milgrom, and consider what this implies for

price processes in real markets. Thus, in this chapter, I present an algorithm for explicitly

computing approximate solutions to the expected-value equations for setting prices in an

extension of the Glosten-Milgrom model with probabilistic shocks to the underlying true

price and noisy informed traders. I validate the algorithm by showing that it produces

reasonable market-maker behavior across a range of simulations, and use the algorithm

to study the time series and distributional properties of returns and compare them to real

stock market data.

The model can also be used to study the impact of different parameters on market

properties, and a particularly interesting result that emerges is that there is a two regime

behavior in which extreme heterogeneity of information immediately following a jump in

the true value (characterized by high spreads and volatility) is quickly resolved and the

market returns to a state of homogeneous information characterized by low spreads and

volatility.

In this model, price-taking informed and uninformed traders interact through a price-

setting market-maker. Informed traders receive a (potentially noisy) signal indicating the

true underlying value of the stock and make buy and sell decisions based on the market-

maker’s quotes and the signal they receive. The true value receives periodic shocks drawn

from a Gaussian distribution. Market-makers receive no information about the true value

of the stock and must base their estimates solely on the order flow they observe.

Glosten and Milgrom derive the market-maker’s price setting equations under asym-

metric information to be such that the bid quote is the expectation of the true value given

that a sell order is received and the ask quote is the expectation of the true value given that

a buy order is received. These expectations cannot be computed (except in “toy” instances)

without maintaining a probability density estimate over the true value of the stock, espe-
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cially when the true value itself may change. The major technical contribution of this chap-

ter is the introduction of a nonparametric density estimation technique for maintaining a

probability distribution over the true value that the market-maker can use to set prices. I

also present a method to approximately solve the price setting equations in a realistic situa-

tion with dollars-and-cents quotes and prices. Market-makers using this algorithm in sim-

ulations can successfully achieve low spreads without incurring losses. Market-making

agents are also often constrained by inventory control considerations brought about by

risk aversion (Amihud and Mendelson 1980), so I study the effects of using an inventory

control function that is added as an extra module to the market-making algorithm. The

inventory control module greatly reduces the variance in market-maker profits.

The simulations yield interesting market properties in different situations. Bid-ask

spreads are higher in more volatile markets, market-makers increase the spread in re-

sponse to uncertainty about the true price, the distribution of returns is leptokurtic, and

the autocorrelation of raw returns decays rapidly.

3.2 Related Work

This approach to microstructure problems in dealer markets falls between the traditional

theoretical models, such as those of Garman (1976), Glosten and Milgrom (1985) and Kyle

(1985) and the agent-based or artificial markets approach adopted by Darley et al. (2000)

and Raberto et al. (2001) among others. This extension of the theoretical model of Glosten

and Milgrom into a more realistic setting is nevertheless much simpler than most agent-

based models. The study of price properties in simulated markets is related to the bur-

geoning econophysics literature that studies statistical properties of price movements in

real markets and their departures from the efficient market hypothesis (Gabaix et al. 2003,

Farmer and Lillo 2004, Bouchaud et al. 2004, inter alia). Much of the econophysics work

attempts to work backward from real stock market data and model price impact functions

and thus derive properties of price processes. The approach taken here is complementary

– it makes the traditional theoretical economic description richer and derives properties

from the theory.
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3.3 The Market Model and Market-Making Algorithm

3.3.1 Market Model

The market I analyze is a discrete time dealer market with only one stock. The market-

maker sets bid and ask prices (Pb and Pa respectively) at which it is willing to buy or sell

one unit of the stock at each time period (when necessary the bid and ask prices at time

period i are denoted as P i
b and P i

a). If there are multiple market-makers, the market bid

and ask prices are the maximum over each dealer’s bid price and the minimum over each

dealer’s ask price. All transactions occur with the market-maker taking one side of the

trade and a member of the trading crowd (henceforth a “trader”) taking the other side.

The stock has a true underlying value (or fundamental value) V i at time period i. All

market makers are informed of V 0 at the beginning of a simulation, but do not receive any

direct information about V after that1. At time period i, a single trader is selected from

the trading crowd and allowed to place either a (market) buy or (market) sell order for

one unit of the stock. There are two types of traders in the market, uninformed traders

and informed traders. An uninformed trader will place a buy or sell order for one unit

with equal probability, or no order with some probability if selected to trade. An informed

trader who is selected to trade knows V i and will place a buy order if V i > P i
a, a sell order

if V i < P i
b and no order if P i

b ≤ V i ≤ P i
a.

In addition to perfectly informed traders, the model also allows for the presence of

noisy informed traders. A noisy informed trader receives a signal of the true price W i =

V i + η̃(0, σW ) where η̃(0, σW ) represents a sample from a normal distribution with mean

0 and variance σ2
W . The noisy informed trader believes this is the true value of the stock,

and places a buy order if W i > P i
a, a sell order if W i < P i

b and no order if P i
b ≤ W i ≤ P i

a.

The true underlying value of the stock evolves according to a jump process. At time

i + 1, with probability p, a jump in the true value occurs2. It is also possible to fix the

periodicity of these jumps to model, for example, daily releases of information. When a

jump occurs, the value changes according to the equation V i+1 = V i+ω̃(0, σ) where ω̃(0, σ)

represents a sample from a normal distribution with mean 0 and variance σ2. Market-

makers are informed of when a jump has occurred, but not of the size or direction of the

1That is, the only signals a market-maker receives about the true value of the stock are through the buy and
sell orders placed by the trading crowd.

2p is typically small, of the order of 1 in 1000 in most simulations
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jump.

This model of the evolution of the true value corresponds to the notion of the true

value evolving as a result of occasional news items. The periods immediately following

jumps are the periods in which informed traders can trade most profitably, because the

information they have on the true value has not been disseminated to the market yet, and

the market maker is not informed of changes in the true value and must estimate these

through orders placed by the trading crowd. The market-maker will not update prices to

the neighborhood of the new true value for some period of time immediately following a

jump in the true value, and informed traders can exploit the information asymmetry.

3.3.2 The Market-Making Algorithm

The market-maker attempts to track the true value over time by maintaining a probabil-

ity distribution over possible true values and updating the distribution when it receives

signals from the orders that traders place. The true value and the market-maker’s prices

together induce a probability distribution on the orders that arrive in the market. The

market-maker must maintain an online probabilistic estimate of the true value.

Glosten and Milgrom (1985) analyze the setting of bid and ask prices so that the market

maker enforces a zero profit condition. The zero profit condition corresponds to the Nash

equilibrium in a setting with competitive market-makers. Glosten and Milgrom suggest

that the market maker should set Pb = E[V |Sell] and Pa = E[V |Buy]. The market-making

algorithm computes these expectations using the probability density function being esti-

mated.

Various layers of complexity can be added on top of the basic algorithm. For exam-

ple, minimum and maximum conditions can be imposed on the spread, and an inventory

control mechanism could form another layer after the zero-profit condition prices are de-

cided. I will describe the density estimation technique in detail before addressing other

possible factors that market-makers can take into account in deciding how to set prices.

For simplicity of presentation, I neglect noisy informed traders in the initial derivation,

and present the updated equations for taking them into account later.
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Derivation of Bid and Ask Price Equations

Let α be the proportion of informed traders in the trading crowd, and let η be the proba-

bility that an uninformed trader places a buy (or sell) order. Then the probability that an

uninformed trader places no order is 1− 2η.

In order to estimate the expectation of the underlying value, it is necessary to compute

the conditional probability that V = x given that a particular type of order is received.

Taking market sell orders as an example:

E[V |Sell] =
∫ ∞

0
xPr(V = x|Sell) dx

To explicitly (approximately) compute these values, discretize the X-axis into intervals,

with each interval representing one cent. Then we get:

E[V |Sell] =
Vi=Vmax∑
Vi=Vmin

Vi Pr(V = Vi|Sell)

Applying Bayes’ rule and simplifying:

E[V |Sell] =
Vi=Vmax∑
Vi=Vmin

Vi Pr(Sell|V = Vi) Pr(V = Vi)
Pr(Sell)

The a priori probability of a sell order (denoted by PSell) can be computed by taking advan-

tage of the fact that informed traders will always sell if V < Pb and never sell otherwise,

while uninformed traders will sell with a constant probability:

PSell =
Vi=Vmax∑
Vi=Vmin

Pr(Sell|V = Vi) Pr(V = Vi)

=
Vi=Pb−1∑
Vi=Vmin

[(α + (1− α)η) Pr(V = Vi)] +
Vi=Vmax∑
Vi=Pb

[((1− α)η) Pr(V = Vi)] (3.1)

Since Pb is set by the market maker to E[V |Sell] :

Pb =
1

PSell

Vi=Vmax∑
Vi=Vmin

Vi Pr(Sell|V = Vi) Pr(V = Vi)
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Since Vmin < Pb < Vmax,

Pb =
1

PSell

Vi=Pb−1∑
Vi=Vmin

Vi Pr(Sell|V = Vi) Pr(V = Vi) +

1
PSell

Vi=Vmax∑
Vi=Pb

Vi Pr(Sell|V = Vi) Pr(V = Vi) (3.2)

The term Pr(Sell|V = Vi) is constant within each sum, because of the influence of

informed traders. An uninformed trader is equally likely to sell whatever the market

maker’s bid price. On the other hand, an informed trader will never sell if V > Pb. There-

fore, Pr(Sell|V < Pb) = (1− α)η + α and Pr(Sell|V ≥ Pb) = (1− α)η. The above equation

reduces to:

Pb =
1

PSell

Vi=Pb−1∑
Vi=Vmin

((1− α)η + α)Vi Pr(V = Vi) +
Vi=Vmax∑
Vi=Pb

((1− α)η)Vi Pr(V = Vi)

 (3.3)

Using a precisely parallel argument, we can derive the expression for the market-

maker’s ask price. First, note that the prior probability of a buy order, PBuy is:

PBuy =
Vi=Pa∑

Vi=Vmin

[((1− α)η) Pr(V = Vi)] +
Vi=Vmax∑
Vi=Pa+1

[(α + (1− α)η) Pr(V = Vi)] (3.4)

Then Pa is the solution to the equation:

Pa =
1

PBuy

 Vi=Pa∑
Vi=Vmin

((1− α)η)Vi Pr(V = Vi) +
Vi=Vmax∑
Vi=Pa+1

((1− α)η + α)Vi Pr(V = Vi)

 (3.5)

Accounting for Noisy Informed Traders

An interesting feature of the probabilistic estimate of the true value is that the probability of

buying or selling is the same conditional on V being smaller than or greater than a certain

amount. For example, Pr(Sell|V = Vi, Vi ≤ Pb) is a constant, independent of V . If we

assume that all informed traders receive noisy signals, with the noise normally distributed

with mean 0 and variance σ2
W , and, as before, α is the proportion of informed traders in

the trading crowd, then equation 3.2 still applies. Now the probabilities Pr(Sell|V = Vi)

are no longer determined solely by whether Vi < Pb or Vi ≥ Pb. Instead, the new equations
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are:

Pr(Sell|V = Vi, Vi ≤ Pb) = (1− α)η + α Pr(η̃(0, σ2
W ) < (Pb − Vi)) (3.6)

Pr(Sell|V = Vi, Vi > Pb) = (1− α)η + α Pr(η̃(0, σ2
W ) > (Vi − Pb)) (3.7)

The second term in the first equation reflects the probability that an informed trader

would sell if the fundamental value were less than the market-maker’s bid price. This will

occur as long as W = V + η̃(0, σ2
W ) < Pb. The second term in the second equation reflects

the same probability under the assumption that V ≥ Pb.

We can compute the conditional probabilities for buy orders equivalently:

Pr(Buy|V = Vi, Vi ≤ Pa) = (1− α)η + α Pr(η̃(0, σ2
W ) > (Pa − Vi)) (3.8)

Pr(Buy|V = Vi, Vi > Pa) = (1− α)η + α Pr(η̃(0, σ2
W ) < (Vi − Pa)) (3.9)

Now, we have the new buy and sell priors:

PSell =
Vi=Pb−1∑
Vi=Vmin

[
α Pr(η̃(0, σ2

W ) < (Pb − Vi)) + (1− α)η
]
Pr(V = Vi) +

Vi=Vmax∑
Vi=Pb

[
α Pr(η̃(0, σ2

W ) > (Vi − Pb)) + (1− α)η
]
Pr(V = Vi) (3.10)

PBuy =
Vi=Pa∑

Vi=Vmin

[
α Pr(η̃(0, σ2

W ) > (Pa − Vi)) + (1− α)η
]
Pr(V = Vi) +

Vi=Vmax∑
Vi=Pa+1

[
(α Pr(η̃(0, σ2

W ) < (Vi − Pa) + (1− α)η)
]
Pr(V = Vi) (3.11)

Substituting these conditional probabilities back into the fixed point equations and the

density update rule used by the market-maker by combining equations 3.2, 3.6 and 3.7,
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and using the sell prior from equation 3.10

Pb =
1

PSell

Vi=Pb∑
Vi=Vmin

[
((1− α)η + α Pr(η̃(0, σ2

W ) < (Pb − Vi)))Vi Pr(V = Vi)
]
+

1
PSell

Vi=Vmax∑
Vi=Pb+1

[
((1− α)η + α Pr(η̃(0, σ2

W ) > (Vi − Pb)))Vi Pr(V = Vi)
]

(3.12)

Similarly, for the ask price, using the buy prior from equation 3.11:

Pa =
1

PBuy

Vi=Pa∑
Vi=Vmin

[
((1− α)η + α Pr(η̃(0, σ2

W ) > (Pa − Vi)))Vi Pr(V = Vi)
]
+

1
PBuy

Vi=Vmax∑
Vi=Pa+1

[
((1− α)η + α Pr(η̃(0, σ2

W ) < (Vi − Pa)))Vi Pr(V = Vi)
]

(3.13)

Approximately Solving the Equations

A number of problems arise with the analytical solution of these discrete equations for

setting the bid and ask prices. Most importantly, we have not yet specified the probabil-

ity distribution for priors on V , and any reasonably complex solution leads to a form that

makes analytical solution infeasible. Secondly, the values of Vmin and Vmax are undeter-

mined. And finally, actual solution of these fixed point equations must be approximated

in discrete spaces. Each of these problems must be solved to construct an approximate

solution to the problem.

The algorithm assumes that the market-making agent is aware of the true value at time

0, and from then onwards the true value infrequently receives random shocks (or jumps)

drawn from a normal distribution (the variance of which is known to the agent). The

market-maker constructs a vector of prior probabilities on various possible values of V as

follows.

If the initial true value is V0 (when rounded to an integral value in cents), then the agent

constructs a vector going from V0−4σ to V0+4σ−1 to contain the prior value probabilities.

The probability that V = V0 − 4σ + i is given by the ith value in this vector3. The vector

is initialized by setting the ith value in the vector to
∫ −4σ+i+1
−4σ+i N (0, σ) dx where N is the

normal density function in x with specified mean and variance. The vector is maintained

3The true value can be a real number, but for all practical purposes it ends up getting truncated to the floor
of that number.
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in a normalized state at all times so that the entire probability mass for V lies within it.

The fixed point equations 3.12 and 3.13 are approximately solved by using the result

from Glosten and Milgrom that Pb ≤ E[V ] ≤ Pa and then, to find the bid price, for ex-

ample, cycling from E[V] downwards until the difference between the left and right hand

sides of the equation stops decreasing. The fixed point real-valued solution must then be

closest to the integral value at which the distance between the two sides of the equation is

minimized.

Updating the Density Estimate

The market-maker receives probabilistic signals about the true value. With perfectly in-

formed traders, each signal says that with a certain probability, the true value is lower

(higher) than the bid (ask) price. With noisy informed traders, the signal differentiates be-

tween different possible true values depending on the market-maker’s bid and ask quotes.

Each time that the market-maker receives a signal about the true value by receiving a mar-

ket buy or sell order, it updates the posterior on the value of V by scaling the distributions

based on the type of order. The Bayesian updates are easily derived. For example, for

Vi ≤ Pa and market buy orders:

Pr(V = Vi|Buy) =
Pr(Buy|V = Vi) Pr(V = Vi)

Pr(Buy)

The prior probability V = Vi is known from the density estimate, the prior probability of

a buy order is known from equation 3.11, and Pr(Buy|V = Vi, Vi ≤ Pa) can be computed

from equation 3.8. We can compute the posterior similarly for each of the cases. One

case that is instructive to look at since it is not derived above is the case when no order is

received.

Pr(V = Vi|No order) =
Pr(No order|V = Vi) Pr(V = Vi)

Pr(No order)
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Figure 3-1: The evolution of the market-maker’s probability density estimate with noisy
informed traders (left) and perfectly informed traders (right)

Now,

Pr(No order|V = Vi, Vi < Pb) = (1− α)(1− 2η) + α Pr(η̃(0, σ2
W ) > (Pb − Vi))

Pr(No order|V = Vi, Pb ≤ Vi ≤ Pa) = (1− α)(1− 2η) + α[Pr(Pb − Vi < η̃(0, σ2
W ))+

Pr(Vi − Pa < η̃(0, σ2
W ))]

Pr(No order|V = Vi, Vi > Pa) = (1− α)(1− 2η) + α Pr(Vi − Pa < η̃(0, σ2
W ))

which allows us to compute the prior as well as all the terms in the numerator.

In the case of perfectly informed traders, the signal only specifies that the true value

is higher or lower than some price, and not how much higher or lower. In that case, the

update equations are as follows. If a market buy order is received, this is a signal that with

probability (1 − α)η + α, V > Pa. Similarly, if a market sell order is received, the signal

indicates that with probability (1− α)η + α, V < Pb.

In the former case, all probabilities for V = Vi, Vi > Pa are multiplied by (1− α)η + α,

while all the other discrete probabilities are multiplied by 1−α− (1−α)η. Similarly, when

a sell order is received, all probabilities for V = Vi, Vi < Pb are multiplied by (1 − α)η +

α, and all the remaining discrete probabilities are multiplied by 1 − α − (1 − α)η before

renormalizing.

These updates lead to less smooth density estimates than the updates for noisy in-

formed traders, as can be seen from figure 3-1, which shows the density functions 0, 3
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and 6 steps after a jump in the underlying value of the stock. The update equations that

consider noisy informed traders smoothly transform the probability distribution around

the last transaction price by a mixture of a Gaussian and a uniform density, whereas the

update equations for perfectly informed traders discretely shift all probabilities to one side

of the transaction price in one direction and on the other side of the transaction price in the

other direction. The estimates for perfectly informed traders are more susceptible to noise,

as they do not restrict most of the mass of the probability density function to as small an

area as the estimates for noisy informed traders.

3.4 Experimental Evaluation

3.4.1 Experimental Framework

Unless specified otherwise, it can be assumed that all simulations take place in a market

populated by noisy informed traders and uninformed traders. The noisy informed traders

receive a noisy signal of the true value of the stock with the noise term being drawn from a

Gaussian distribution with mean 0 and standard deviation 5 cents. The standard deviation

of the jump process for the stock is 50 cents, and the probability of a jump occurring at any

time step is 0.001. The probability of an uninformed buy or sell order is 0.5. The market-

maker is informed of when a jump occurs, but not of the size or direction of the jump. The

market-maker may use an inventory control function (defined below) and can increase

the spread by lowering the bid price and raising the ask price by a fixed amount (this is

done to ensure profitability and is also explained below). I report average results from 200

simulations, each lasting 50,000 time steps.

3.4.2 Prices Near a Jump

Figure 3-2 shows that the market-maker successfully tracks the true value over the course

of an entire simulation. These results are from a simulation with half the traders being

perfectly informed and the other half uninformed. The bid-ask spread reflects the market-

maker’s uncertainty about the true value — for example, it is much higher immediately

after the true value has jumped.

Figure 3-2 also demonstrates that the asymmetry of information immediately follow-

ing a price jump gets resolved very quickly. To investigate this further, we can track the
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Figure 3-2: The market-maker’s tracking of the true price over the course of the simulation
(left) and immediately before and after a price jump (right)

average spread immediately following a price jump in a similar market environment (ex-

cept with noisy informed traders instead of perfectly informed ones). The results of this

experiment are shown in figure 3-3. It is clear that the informational asymmetry gets re-

solved very quickly (within thirty trades) independently of the standard deviation of the

jump process.

3.4.3 Profit Motive

The zero-profit condition of Glosten and Milgrom is expected from game theoretic consid-

erations when multiple competitive dealers are making markets in the same stock. How-

ever, since this method is an approximation scheme, the zero profit method is unlikely to

truly be zero-profit. Further, the market-maker is not always in a perfectly competitive

scenario where it needs to restrict the spread as much as possible.

The simplest solution to the problem of making profit is to increase the spread by push-

ing the bid and ask prices apart after the zero-profit bid and ask prices have been computed

using the density estimate obtained by the market-making algorithm. Figure 3-4 shows the

profit obtained by a single monopolistic market-maker in markets with different percent-

ages of informed traders. The numbers on the X axis show the amount (in cents) that is

subtracted from (added to) the zero-profit bid (ask) price in order to push the spread apart

(I will refer to this number as the shift factor).

With lower spreads, most of the market-maker’s profits come from the noise factor of
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Figure 3-3: Average spread following a price jump for two different values of the standard
deviation of the jump process
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Figure 3-4: Market-maker profits as a function of increasing the spread
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the informed traders, whereas with a higher spread, most of the market-maker’s profits

come from the trades of uninformed traders. Different percentages of informed traders

lead to differently shaped profit curves. For example, there is a sharper jump in the tran-

sition from a shift factor of 0 to a shift factor of 1 with fewer noisy informed traders (50%

or 70%) whereas with 90% noisy informed traders the sharper jump is in going from a

shift factor of 1 to a shift factor of 2. With only 50% of the traders being informed, the

market-maker’s profit keeps increasing with the size of the spread.

However, increasing the spread beyond a point is counterproductive if there are enough

noisy informed traders in the markets, because then the market-maker’s prices are far

enough away from the true value that even the noise factor cannot influence the informed

traders to make trades. With 90% of the traders being informed, a global maximum (at

least for reasonable spreads) is attained with a low spread. This is where the tradeoff be-

tween not increasing the spread too much in order to profit from the noise in the informed

traders’ signals and increasing the spread more to profit more from uninformed traders

is optimized. On the opposite end of the spectrum, the market-maker’s profits increase

smoothly and uniformly with the spread when there are only perfectly informed traders

in the market in addition to the uninformed traders, since all the market-maker’s profits

are from the uninformed traders.

It is important to note that market-makers can make reasonable profits with low av-

erage spreads. For a market with 70% of the trading crowd consisting of noisy informed

traders and the remaining 30% consisting of uninformed traders, our algorithm, using a

shift factor of 1, achieves an average profit of 1.17 cents per time period with an average

spread of 2.28 cents. Using a shift factor of 0, the average profit is −0.06 cents with an

average spread of 0.35 cents. These parameter settings in this environment yield a market-

maker that is close to a Nash equilibrium player, and it is unlikely that any algorithm

would be able to outperform this one in direct competition in such an environment given

the low spread. An interesting avenue to explore is the possibility of adaptively changing

the shift factor depending on the level of competition in the market. Clearly, in a monopo-

listic setting, a market-maker is better off using a high shift factor, whereas in a competitive

setting it is likely to be more successful using a smaller one. An algorithm for changing

the shift factor based on the history of other market-makers’ quotes would be useful.
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3.4.4 Inventory Control

Stoll (1978) analyzes dealer costs in conducting transactions and divides them into three

categories. These three categories are portfolio risk, transaction costs and the cost of asym-

metric information. In the model presented so far, following Glosten and Milgrom (1985),

I have assumed that transactions have zero execution cost and developed a pricing mech-

anism that explicitly attempts to set the spread to account for the cost of asymmetric infor-

mation. A realistic model for market-making necessitates taking portfolio risk into account

and controlling inventory in setting bid and ask prices. In the absence of consideration of

trade size and failure conditions, portfolio risk should affect the placement of the bid and

ask prices, but not the size of the spread,4 unless the market-maker is passing the costs

of holding inventory along to the traders through the spread (Amihud and Mendelson

1980, Stoll 1978, Grossman and Miller 1988). If the market-maker has a long position in

the stock, minimizing portfolio risk is achieved by lowering both bid and ask prices, and

if the market-maker has a short position, inventory is controlled by raising both bid and

ask prices.

Inventory control can be incorporated into the architecture of the market-making algo-

rithm by using it as an adjustment parameter applied after bid and ask prices have been

determined by equations 3.12 and 3.13. A simple inventory control technique investigated

here is to raise or lower the bid and ask prices by a linear function of the inventory hold-

ings of the market-maker. The amount added to the bid and ask prices is −γI where I is

the amount of inventory held by the market-maker (negative for short positions) and γ is

a risk-aversion coefficient.

Table 3.1 shows statistics indicating the effectiveness of the inventory control module

for minimizing market-maker risk and the effects of using different values of γ. The figures

use the absolute value of the difference between last true value and initial true value as a

proxy for market volatility. 200 simulations were run for each experiment, and 70% of the

traders were noisy informed traders, while the rest were uninformed. The market-maker

used a shift factor of 1 for increasing / decreasing the ask / bid prices respectively.
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γ 0 0.1 1
Average (absolute) inventory holdings 1387.2 9.74 1.66
Profit (cents per period) 1.169 0.757 0.434
Standard Deviation of profit 9.3813 0.0742 0.0178

Table 3.1: Average absolute value of MM inventory at the end of a simulation, average
profit achieved and standard deviation of per-simulation profit for market-makers with
different levels of inventory control

Shift σ p Spread Profit
0 50 .001 0.3479 -0.0701
0 50 .005 1.6189 -0.1295
0 100 .001 0.6422 -0.0694
0 100 .005 3.0657 -0.2412
1 50 .001 2.3111 0.7738
1 50 .005 3.5503 0.6373
1 100 .001 2.6142 0.7629
1 100 .005 4.9979 0.6340

Table 3.2: Market-maker average spreads (in cents) and profits (in cents per time period) as
a function of the shift (amount added to ask price and subtracted from bid price), standard
deviation of the jump process (σ) and the probability of a jump occurring at any point in
time (p)

3.4.5 The Effects of Volatility

Volatility of the underlying true value process is affected by two parameters. One is the

standard deviation of the jump process, which affects the variability in the amount of each

jump. The other is the probability with which a jump occurs. Table 3.2 shows the result

of changing the standard deviation σ of the jump process and the probability p of a jump

occurring at any point in time. As expected, the spread increases with increased volatility,

both in terms of σ and p. The precise dependence of the expected profit and the average

spread on the values of σ and p is interesting. For example, increasing p for σ = 100 has

a more significant percentage impact on the spread than the same increase when σ = 50.

This is probably because the mean reflects the relative importance of the symmetric and

asymmetric information regimes, which is affected by p.

4One would expect spread to increase with the trade size. The size of the spread is, of course, affected by
the adverse selection arising due to the presence of informed traders.
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3.4.6 Accounting for Jumps

The great advantage of this algorithm for density estimation and price setting is that it

quickly restricts most of the probability mass to a relatively small region of values/prices,

which allows the market-maker to quote a small spread and still break even or make profit.

The other side of this equation is that once the probability mass is concentrated in one area,

the probability density function on other points in the space becomes small. In some cases,

it is not possible to seamlessly update the estimate through the same process if a price

jump occurs. Another problem is that a sequence of jumps could lead to the value leaving

the [−4σ, 4σ] window used by the density estimation technique.

The discussion above assumes that the market-maker is explicitly informed of when a

price jump has occurred, although not of the size or direction of the jump. The problem

can be solved by recentering the distribution around the current expected value and reini-

tializing in the same way in which the prior distribution on the value is initially set up.

The “unknown jump” case is more complicated. An interesting avenue for future work,

especially if trade sizes are incorporated into the model, is to devise a formal mathemati-

cal method for deciding when to recenter the distribution. An example of such a method

would be to learn a classifier that is good at predicting when a price jump has occurred.

Perhaps there are particular types of trades that commonly occur following price jumps,

especially when limit orders and differing trade sizes are permitted. Sequences of such

trades may form patterns that predict the occurrence of jumps in the underlying value.

An example of a very simple rule that demonstrates the feasibility of such an idea is

to recenter based on some notion of order imbalance. Such a rule could recenter when

there have been k more buy orders than sell orders (or vice versa) in the last n time steps.

Table 3.3 shows the results obtained using n = 10 and k = 5 values with the market-

maker increasing (decreasing) the ask (bid) price by 1 cent beyond the zero profit case,

and using linear inventory control with γ = 0.1. The loss of the expectation is defined as

the average of the absolute value of the difference between the true value and the market-

maker’s expectation of the true value at each point in time. While this rule makes a loss,

the spread is reasonable and the expectation is not too far away on average from the true

value. This demonstrates that it is reasonable to assume that there are endogenous ways

for market-makers to know when jumps have occurred.
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Case Profit Loss of expectation Average spread
Known 0.7693 0.7546 2.3263
Unknown −0.6633 4.5616 4.3708

Table 3.3: Average profit (in cents per time period), loss of expectation and average spread
(cents) with jumps known and unknown

3.5 Time Series and Distributional Properties of Returns

We can utilize the market and price-setting models developed so far in order to derive

price properties in the simulated market and compare these properties to what is seen in

real markets by analyzing return data for ten stocks from the TAQ database. Obviously the

simplicity of the model simplicity means that it will not capture many of the features of

real data. This discussion is intended to highlight where the model agrees and disagrees

with real data and to hypothesize why these differences occur and whether they can be

accommodated by additions to the model.

The discussion in this section uses standardized log returns, with fifty discrete time

periods as the length of time for simulation returns and five minutes for stock returns. The

simulation data is averaged over 100 runs of 50,000 time steps each with 70% informed

traders and the market-maker using inventory control with γ = 1 and increasing the ask

price and decreasing the bid price by one cent beyond the zero-profit computation in order

to ensure profitability. The probability of a jump in the true value at any time, p = 0.005

and the standard deviation of the jump process σ = 50 (cents). The stock data from the

TAQ database is for ten randomly selected component stocks of the S&P 500 index for the

year 2002.5

Liu et al. (1999) present a detailed analysis of the time series properties of returns in a

real equity market (they focus on the S&P 500 and component stocks). Their major find-

ings are that return distributions are leptokurtic and fat-tailed, with power-law decay in

the tails, volatility clustering occurs and the autocorrelation of absolute values of returns

is persistent over large time scales (again with power-law decay), as opposed to the auto-

correlation of raw returns, which disappears rapidly6. The recent econophysics literature

5The symbols for the ten stocks are CA, UNP, AMAT, GENZ, GLK, TNB, PMTC RX, UIS and VC. Of these
the first four are considered large cap (with market capitalizations in excess of 6 billion dollars) and the other
six are small cap.

6Liu et al. (1999) are not the first to discover these properties of financial time series. However, they sum-
marize much of the work in an appropriate fashion and provide detailed references, and they present novel
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has seen a growing debate about the origin of power laws in such data, for example, the

theory of Gabaix et al. Gabaix et al. (2003), Plerou et al. (2004) and the alternative analysis

of Farmer and Lillo (2004).

Simulation results show rapid decay of autocorrelation of raw returns (the coefficient

is already at noise levels at lag 1). Bouchaud et al. (2004) discuss how prices are a random

walk because of a critical balance between liquidity takers who place market orders and

create temporal correlations in the sign of trades because they do not wish to place huge

orders that move the market immediately, and liquidity providers who attempt to mean-

revert the price. In this model, all the traders except the market maker are liquidity takers,

and they have an even harsher restriction on the trade size they can place. Explicitly mod-

eling the price-setting process of the liquidity provider shows that the autocorrelation of

raw returns decays rapidly and arbitrage opportunities do not arise.

Looking at the real data, there is a negative serial correlation of raw returns at one lag

for the small cap stocks (Figure 3-5). This may be because of less trading in these stocks.

We do not see this spike in the model presented here if we look at price changes over fifty

periods, but if we look at them over fewer discrete time periods (say one or two) instead

of fifty, we can see a statistically significant negative autocorrelation at one lag as well.

In terms of absolute returns, the real data shows a pronounced daily trend, with the

autocorrelation coefficient spiking at the lag corresponding to one day (figure 3-6). This

one day periodicity probably corresponds to opening and closing procedures (which also

cause the spread to widen). Part of this phenomenon can be replicated in this model by

fixing the periodicity of shocks to the true value. This part corresponds to our intuition of

major information shocks coming at the beginning of trading days, and induces a concept

of the beginning of the trading day among agents in the market. However, it is hard to

model the fact that the autocorrelation coefficient is higher for lags corresponding to, say

three-quarters of a day. This is because the agents do not have a notion of the market

closing, which may be what drives up the coefficient for these lags in real data. Perhaps a

model in which the market-maker is sure that a price jump has occurred at the beginning

of trading days, but also assumes the possibility of unknown jumps later in the day could

explain these facts.

Simulations using the extended model presented here yield return distributions with

results on the power law distribution of volatility correlation.
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Figure 3-5: Autocorrelation of raw returns for small and large cap stocks

Note: The dotted lines represent noise levels computed as ±3/
√

N where N is the length
of the time series.
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Figure 3-6: Autocorrelation of absolute returns for stock data
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Figure 3-7: Distribution of absolute returns for simulation data and stock data, along with
the cumulative distribution of the absolute value of a random variable drawn from a stan-
dard normal distribution

some similarities to stock market data, as can be seen from Figure 3-7. The distribution of

returns is leptokurtic, although it does not decay with a power law tail, suggesting that the

model needs further extensions before contributing to the debate on the origin of power

law tails. A huge proportion of the returns are very small, and virtually all of these occur

in the symmetric information regime, and there are very few large returns, most of which

occur in the asymmetric information regime immediately following a price jump.

The sample kurtosis for the simulation return data is 49.49 (by way of comparison, the

sample kurtosis for the large cap stocks is 19.49 and that for the small cap stocks is 13.18).

The exact shape of the distribution is affected by parameters like artificial inflation of the

spread and inventory control. If the market-maker were to dynamically change the spread

during the course of a simulation based on factors like competition or the need to maintain

market quality, perhaps that would yield power law tails.

3.6 Discussion

This chapter extends the Glosten-Milgrom model of dealer markets by describing an al-

gorithm for maintaining a probability density estimate of the true value of a stock in a

dynamic market with regular shocks to the value and using this estimate to explicitly set

prices in a somewhat realistic framework. The new model explicitly incorporates noise

into the specification of informed trading, allowing for a rich range of market behavior. A
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careful empirical evaluation of characteristics of the market-making algorithm in simula-

tion yields helpful insights for the problem of designing a market-making agent. Further,

this framework allows the development of an agent-based model of a dealer market for

studying time series, distributional and other properties of prices, and interesting interac-

tions between different parameters.

There are two regimes in the simulated markets. Immediately following a price jump,

information is very heterogeneous, spreads are high, and the market is volatile. This in-

formational asymmetry gets resolved rapidly, and the market settles into a regime of ho-

mogeneous information with small spreads and low volatility. Analyzing time series and

distributional properties of returns in the model shows some similarities and some dif-

ferences from real data. The differences, in particular, could serve as a starting point for

further extensions of this model to computationally study the effects of information and

explicit modeling of the true value process in price formation.
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Chapter 4

Learning to Trade With “Insider”

Information

4.1 Introduction

In financial markets, information is revealed by trading. Once private information is fully

disseminated to the public, prices reflect all available information and reach market equi-

librium. Before prices reach equilibrium, agents with superior information have opportu-

nities to gain profits by trading. This chapter focuses on the design of a general algorithm

that allows an agent to learn how to exploit superior or “insider” information.1 Suppose

a trading agent receives a signal of what price a stock will trade at n trading periods from

now. What is the best way to exploit this information in terms of placing trades in each of

the intermediate periods? The agent has to make a tradeoff between the profit made from

an immediate trade and the amount of information that trade reveals to the market. If the

stock is undervalued it makes sense to buy some stock, but buying too much may reveal

the insider’s information too early and drive the price up, relatively disadvantaging the

insider.

This problem has been studied extensively in the finance literature, initially in the con-

text of a trader with monopolistic insider information (Kyle 1985), and later in the context

of competing insiders with homogeneous (Holden and Subrahmanyam 1992) and hetero-

1The term “insider” information has negative connotations in popular belief. I use the term solely to refer
to superior information, however it may be obtained (for example, paying for an analyst’s report on a firm can
be viewed as a way of obtaining insider information about a stock).
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geneous (Foster and Viswanathan 1996) information.2 All these models derive equilibria

under the assumption that traders are perfectly informed about the structure and param-

eters of the world in which they trade. For example, in Kyle’s model, the informed trader

knows two important distributions — the ex ante distribution of the liquidation value and

the distribution of other (“noise”) trades that occur in each period.

In this chapter, I start from Kyle’s (1985) original model, in which the trading process is

structured as a sequential auction at the end of which the stock is liquidated. An informed

trader or “insider” is told the liquidation value some number of periods before the liquida-

tion date, and must decide how to allocate trades in each of the intervening periods. There

is also some amount of uninformed trading (modeled as white noise) at each period. The

clearing price at each auction is set by a market-maker who sees only the combined order

flow (from both the insider and the noise traders) and seeks to set a zero-profit price. In

the next section I discuss the importance of this problem from the perspectives of research

both in finance and in reinforcement learning. In sections 4.3 and 4.4 I introduce the mar-

ket model and two learning algorithms, and in Section 4.5 I present experimental results.

Finally, Section 4.6 concludes and discusses future research directions.

4.2 Motivation: Bounded Rationality and Reinforcement Learn-

ing

One of the arguments for the standard economic model of a decision-making agent as an

unboundedly rational optimizer is the argument from learning. In a survey of the bounded

rationality literature, John Conlisk (1996) lists this as the second among eight arguments

typically used to make the case for unbounded rationality. To paraphrase his description

of the argument, it is all right to assume unbounded rationality because agents learn op-

tima through practice. Commenting on this argument, Conlisk says “learning is promoted

by favorable conditions such as rewards, repeated opportunities for practice, small delib-

eration cost at each repetition, good feedback, unchanging circumstances, and a simple

context.” The learning process must be analyzed in terms of these issues to see if it will

indeed lead to agent behavior that is optimal and to see how differences in the environ-

2My discussion of finance models in this chapter draws directly from these original papers and from the
survey by O’Hara (1995).
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ment can affect the learning process. The design of a successful learning algorithm for

agents who are not necessarily aware of who else has inside information or what the price

formation process is could elucidate the conditions that are necessary for agents to arrive

at equilibrium, and could potentially lead to characterizations of alternative equilibria in

these models.

One way of approaching the problem of learning how to trade in the framework devel-

oped here is to apply a standard reinforcement learning algorithm with function approxi-

mation. Fundamentally, the problem posed here has infinite (continuous) state and action

spaces (prices and quantities are treated as real numbers), which pose hard challenges for

reinforcement learning algorithms. However, reinforcement learning has worked in vari-

ous complex domains, perhaps most famously in backgammon Tesauro (1995) (see Sutton

and Barto (1998) for a summary of some of the work on value function approximation).

There are two key differences between these successes and the problem studied here that

make it difficult for the standard methodology to be successful without properly tailoring

the learning algorithm to incorporate important domain knowledge.

First, successful applications of reinforcement learning with continuous state and ac-

tion spaces usually require the presence of an offline simulator that can give the algorithm

access to many examples in a costless manner. The environment envisioned here is in-

trinsically online — the agent interacts with the environment by making potentially costly

trading decisions which actually affect the payoff it receives. In addition to this, the agent

wants to minimize exploration cost because it is an active participant in the economic en-

vironment. Achieving a high utility from early on in the learning process is important to

agents in such environments. Second, the sequential nature of the auctions complicates

the learning problem. If we were to try and model the process in terms of a Markov de-

cision problem (MDP), each state would have to be characterized not just by traditional

state variables (in this case, for example, last traded price and liquidation value of a stock)

but by how many auctions in total there are, and which of these auctions is the current

one. The optimal behavior of a trader at the fourth auction out of five is different from

the optimal behavior at the second auction out of ten, or even the ninth auction out of ten.

While including the current auction and total number of auctions as part of the state would

allow us to represent the problem as an MDP, it would not be particularly helpful because

the generalization ability from one state to another would be poor. This problem might be
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mitigated in circumstances where the optimal behavior does not change much from auc-

tion to auction, and characterizing these circumstances is important. In fact, I describe an

algorithm below that uses a representation where the current auction and the total number

of auctions do not factor into the decision. This approach is very similar to model based

reinforcement learning with value function approximation, but the main reason why it

works very well in this case is that we understand the form of the optimal strategy, so the

representations of the value function, state space, and transition model can be tailored so

that the algorithm performs close to optimally. I discuss this in more detail in Section 4.5.

An alternative approach to the standard reinforcement learning methodology is to use

explicit knowledge of the domain and learn separate functions for each auction. The learn-

ing process receives feedback in terms of actual profits received for each auction from the

current one onwards, so this is a form of direct utility estimation (Widrow and Hoff 1960).

While this approach is related to the direct-reinforcement learning method of Moody and

Saffell (2001), the problem studied here involves more consideration of delayed rewards,

so it is necessary to learn something equivalent to a value function in order to optimize the

total reward.

The important domain facts that help in the development of a learning algorithm are

based on Kyle’s results. Kyle proves that in equilibrium, the expected future profits from

auction i onwards are a linear function of the square difference between the liquidation

value and the last traded price (the actual linear function is different for each i). He also

proves that the next traded price is a linear function of the amount traded. These two

results are the key to the learning algorithm. I will show in later sections that the algorithm

can learn from a small amount of randomized training data and then select the optimal

actions according to the trader’s beliefs at every time period. With a small number of

auctions, the learning rule enables the trader to converge to the optimal strategy. With a

larger number of auctions the number of episodes required to reach the optimal strategy

becomes impractical and an approximate mechanism achieves better results. In all cases

the trader continues to receive a high flow utility from early episodes onwards.
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4.3 Market Model

The model is based on Kyle’s (1985) original model. There is a single security which is

traded in N sequential auctions. The liquidation value v of the security is realized after

the N th auction, and all holdings are liquidated at that time. v is drawn from a Gaussian

distribution with mean p0 and variance Σ0, which are common knowledge. Here we as-

sume that the N auctions are identical and distributed evenly in time. An informed trader

or insider observes v in advance and chooses an amount to trade ∆xi at each auction

i ∈ {1, . . . , N}. There is also an uninformed order flow amount ∆ui at each period, sam-

pled from a Gaussian distribution with mean 0 and variance σ2
u∆ti where ∆ti = 1/N for

our purposes (more generally, it represents the time interval between two auctions).3 The

trading process is mediated by a market-maker who absorbs the order flow while earning

zero expected profits. The market-maker only sees the combined order flow ∆xi + ∆ui

at each auction and sets the clearing price pi. The zero expected profit condition can be

expected to arise from competition between market-makers.

Equilibrium in the monopolistic insider case is defined by a profit maximization con-

dition on the insider which says that the insider optimizes overall profit given available

information, and a market efficiency condition on the (zero-profit) market-maker saying

that the market-maker sets the price at each auction to the expected liquidation value of

the stock given the combined order flow.

Formally, let πi denote the profits made by the insider on positions acquired from the

ith auction onwards. Then πi =
∑N

k=i(v − pk)∆xk. Suppose that X is the insider’s trad-

ing strategy and is a function of all information available to her, and P is the market-

maker’s pricing rule and is again a function of available information. Xi is a mapping

from (p1, p2, . . . , pi−1, v) to xi where xi represents the insider’s total holdings after auction

i (from which ∆xi can be calculated). Pi is a mapping from (x1+u1, . . . , xi+ui) to pi. X and

P consist of all the component Xi and Pi. Kyle defines the sequential auction equilibrium

as a pair X and P such that the following two conditions hold:

3The motivation for this formulation is to allow the representative uninformed trader’s holdings over time
to be a Brownian motion with instantaneous variance σ2

u. The amount traded represents the change in hold-
ings over the interval.
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1. Profit maximization: For all i = 1, . . . , N and all X ′:

E[πi(X, P )|p1, . . . , pi−1, v] ≥ E[πi(X ′, P )|p1, . . . , pi−1, v]

2. Market efficiency: For all i = 1, . . . , N , pi = E[v|x1 + u1, . . . , xi + ui]

The first condition ensures that the insider’s strategy is optimal, while the second en-

sures that the market-maker plays the competitive equilibrium (zero-profit) strategy. Kyle

(1985) also shows that there is a unique linear equilibrium.

Theorem 1 (Kyle, 1985). There exists a unique linear (recursive) equilibrium in which there are

constants βn, λn, αn, δn,Σn such that for:

∆xn = βn(v − pn−1)∆tn

∆pn = λn(∆xn + ∆un)

Σn = var(v|∆x1 + ∆u1, . . . ,∆xn + ∆un)

E[πn|p1, . . . , pn−1, v] = αn−1(v − pn−1)2 + δn−1

Given Σ0 the constants βn, λn, αn, δn,Σn are the unique solution to the difference equation

system:

αn−1 =
1

4λn(1− αnλn)

δn−1 = δn + αnλ2
nσ2

u∆tn

βn∆tn =
1− 2αnλn

2λn(1− αnλn)

λn = βnΣn/σ2
u

Σn = (1− βnλn∆tn)Σn−1

subject to αN = δN = 0 and the second order condition λn(1− αnλn) = 0.4

The two facts about the linear equilibrium that will be especially important for learning

4The second order condition rules out a situation in which the insider can make unbounded profits by first
destabilizing prices with unprofitable trades.
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are that there exist constants λi, αi, δi such that:

∆pi = λi(∆xi + ∆ui) (4.1)

E[πi|p1, . . . , pi−1, v] = αi−1(v − pi−1)2 + δi−1 (4.2)

Perhaps the most important result of Kyle’s characterization of equilibrium is that the

insider’s information is incorporated into prices gradually, and the optimal action for the

informed trader is not to trade particularly aggressively at earlier dates, but instead to hold

on to some of the information. In the limit as N →∞ the rate of revelation of information

actually becomes constant. Also note that the market-maker imputes a strategy to the

informed trader without actually observing her behavior, only the order flow.

4.4 A Learning Model

4.4.1 The Learning Problem

I am interested in examining a scenario in which the informed trader knows very little

about the structure of the world, but must learn how to trade using the superior infor-

mation she possesses. I assume that the price-setting market-maker follows the strategy

defined by the Kyle equilibrium. This is justifiable because the market-maker (as a special-

ist in the New York Stock Exchange sense (Schwartz 1991)) is typically in an institutionally

privileged situation with respect to the market and has also observed the order-flow over

a long period of time. It is reasonable to conclude that the market-maker will have devel-

oped a good domain theory over time.

The problem faced by the insider is similar to the standard reinforcement learning

model (Kaelbling et al. 1996, Bertsekas and Tsitsiklis 1996, Sutton and Barto 1998) in which

an agent does not have complete domain knowledge, but is instead placed in an envi-

ronment in which it must interact by taking actions in order to gain reinforcement. In

this model the actions an agent takes are the trades it places, and the reinforcement cor-

responds to the profits it receives. The informed trader makes no assumptions about the

market-maker’s pricing function or the distribution of noise trading, but instead tries to

maximize profit over the course of each sequential auction while also learning the appro-

priate functions.

79



4.4.2 A Learning Algorithm

At each auction i the goal of the insider is to maximize

πi = ∆xi(v − pi) + πi+1 (4.3)

The insider must learn both pi and πi+1 as functions of the available information. We know

that in equilibrium pi is a linear function of pi−1 and ∆xi, while πi+1 is a linear function of

(v − pi)2. This suggests that an insider could learn a good representation of next price and

future profit based on these parameters. In this model, the insider tries to learn parameters

a1, a2, b1, b2, b3 such that:

pi = b1pi−1 + b2∆xi + b3 (4.4)

πi+1 = a1(v − pi)2 + a2 (4.5)

These equations are applicable for all periods except the last, since pN+1 is undefined, but

we know that πN+1 = 0. From this we get:

πi = ∆xi(v − b1pi−1 − b2∆xi − b3) + a1(v − b1pi−1 − b2∆xi − b3)2 + a2 (4.6)

The profit is maximized when the partial derivative with respect to the amount traded

is 0. Setting ∂πi
∂(∆xi)

= 0:

∆xi =
−v + b1pi−1 + b3 + 2a1b2(v − b1pi−1 − b3)

2a1b2
2 − 2b2

(4.7)

Now consider a repeated sequential auction game where each episode consists of N auc-

tions. Initially the trader trades randomly for a particular number of episodes, gathering

data as she does so, and then performs a linear regression on the stored data to estimate the

five parameters above for each auction. The trader then updates the parameters periodically

by considering all the observed data (see Algorithm 1 for pseudocode). The trader trades

optimally according to her beliefs at each point in time, and any trade provides informa-

tion on the parameters, since the price change is a noisy linear function of the amount

traded. There may be benefits to sometimes not trading optimally in order to learn more.
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This becomes a problem of both active learning (choosing a good ∆x to learn more, and a

problem of balancing exploration and exploitation.

Data: T : total number of episodes, N : number of auctions, K: number of initialization
episodes, D[i][j]: data from episode i, auction j, Fj : estimated parameters for auction j

for i = 1 : K do
for j = 1 : N do

Choose random trading amount, save data in D[i][j]
end

end
for j = 1 : N do

Estimate Fj by regressing on D[1][j] . . . D[K][j]
end
for i = K + 1 : T do

for j = 1 : N do
Choose trading amount based on Fj , save data in D[i][j]

end
if i mod 5 = 0 then

for j = 1 : N do
Estimate Fj by regressing on D[1][j] . . . D[i][j]

end
end

end
Algorithm 1: The equilibrium learning algorithm

4.4.3 An Approximate Algorithm

An alternative algorithm would be to use the same parameters for each auction, instead

of estimating separate a’s and b’s for each auction (see Algorithm 2). Essentially, this algo-

rithm is a learning algorithm which characterizes the state entirely by the last traded price

and the liquidation price, irrespective of the particular auction number or even the total

number of auctions. The value function of a state is given by the expected profit, which

we know from equation 4.6. We can solve for the optimal action based on our knowledge

of the system. In the last auction before liquidation, the insider trades knowing that this is

the last auction, and does not take future expected profit into account, simply maximizing

the expected value of that trade.

Stating this more explicitly in terms of standard reinforcement learning terminology,

the insider assumes that the world is characterized by the following.

• A continuous state space where the state is v − p, where p is the last traded price.

• A continuous action space where actions are given by ∆x, the amount the insider

chooses to trade.
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• A stochastic transition model mapping p and ∆x to p′ (v is assumed constant during

an episode). The model is that p′ is a (noisy) linear function of ∆x and p.

• A (linear) value function mapping (v − p)2 to π, the expected profit.

In addition, the agent knows at the last auction of an episode that the expected future profit

from the next stage onwards is 0.

Of course, the world does not really conform exactly to the agent’s model. One im-

portant problem that arises because of this is that the agent does not take into account the

difference between the optimal way of trading at different auctions. The great advantage

is that the agent should be able to learn with considerably less data and perhaps do a better

job of maximizing finite-horizon utility. Further, if the parameters are not very different

from auction to auction this algorithm should be able to find a good approximation of the

optimal strategy. Even if the parameters are considerably different for some auctions, if the

expected difference between the liquidation value and the last traded price is not high at

those auctions, the algorithm might learn a close-to-optimal strategy. The next section dis-

cusses the performance of these algorithms, and analyzes the conditions for their success.

I will refer to the first algorithm as the equilibrium learning algorithm and to the second

as the approximate learning algorithm in what follows.

Data: T : total number of episodes, N : number of auctions, K: number of initialization
episodes, D[i][j]: data from episode i, auction j, F : estimated parameters

for i = 1 : K do
for j = 1 : N do

Choose random trading amount, save data in D[i][j]
end

end
Estimate F by regressing on D[1][] . . . D[K][] for i = K + 1 : T do

for j = 1 : N do
Choose trading amount based on F , save data in D[i][j]

end
if i mod 5 = 0 then

Estimate F by regressing on D[1][] . . . D[i][]
end

end
Algorithm 2: The approximate learning algorithm
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4.5 Experimental Results

4.5.1 Experimental Setup

To determine the behavior of the two learning algorithms, it is important to compare their

behavior with the behavior of the optimal strategy under perfect information. In order

to elucidate the general properties of these algorithms, this section reports experimental

results when there are 4 auctions per episode. For the equilibrium learning algorithm the

insider trades randomly for 50 episodes, while for the approximate algorithm the insider

trades randomly for 10 episodes, since it needs less data to form a somewhat reasonable

initial estimate of the parameters.5 In both cases, the amount traded at auction i is ran-

domly sampled from a Gaussian distribution with mean 0 and variance 100/N (where

N is the number of auctions per episode). Each simulation trial runs for 40,000 episodes

in total, and all reported experiments are averaged over 100 trials. The actual parameter

values, unless otherwise specified, are p0 = 75,Σ0 = 25, σ2
u = 25 (the units are arbitrary).

The market-maker and the optimal insider (used for comparison purposes) are assumed to

know these values and solve the Kyle difference equation system to find out the parameter

values they use in making price-setting and trading decisions respectively.

4.5.2 Main Results

Figure 4-1 shows the average absolute value of the quantity traded by an insider as a func-

tion of the number of episodes that have passed. The graphs show that a learning agent

using the equilibrium learning algorithm appears to be slowly converging to the equilib-

rium strategy in the game with four auctions per episode, while the approximate learning

algorithm converges quickly to a strategy that is not the optimal strategy. Figure 4-2 shows

two important facts. First, the graph on the left shows that the average profit made rises

much more sharply for the approximate algorithm, which makes better use of available

data. Second, the graph on the right shows that the average total utility being received is

higher from episode 20,000 onwards for the equilibrium learner (all differences between

the algorithms in this graph are statistically significant at a 95% level). Were the simu-

lations to run long enough, the equilibrium learner would outperform the approximate

5This setting does not affect the long term outcome significantly unless the agent starts off with terrible
initial estimates.
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Figure 4-1: Average absolute value of quantities traded at each auction by a trader using
the equilibrium learning algorithm (above) and a trader using the approximate learning
algorithm (below) as the number of episodes increases.
Note: The thick lines parallel to the x-axis represent the average absolute value of the
quantity that an optimal insider with full information would trade.
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Figure 4-2: Above: Average flow profit received by traders using the two learning algo-
rithms (each point is an aggregate of 50 episodes over all 100 trials) as the number of
episodes increases. Below: Average profit received until the end of the simulation mea-
sured as a function of the episode from which measurement begins (for episodes 100,
10,000, 20,000 and 30,000).
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learner in terms of total utility received, but this would require a huge number of episodes

per trial.

Clearly, there is a tradeoff between achieving a higher flow utility and learning a repre-

sentation that allows the agent to trade optimally in the limit. This problem is exacerbated

as the number of auctions increases. With 10 auctions per episode, an agent using the equi-

librium learning algorithm actually does not learn to trade more heavily in auction 10 than

she did in early episodes even after 40,000 total episodes, leading to a comparatively poor

average profit over the course of the simulation. This is due to the dynamics of learning

in this setting. The opportunity to make profits by trading heavily in the last auction are

highly dependent on not having traded heavily earlier, and so an agent cannot learn a pol-

icy that allows her to trade heavily at the last auction until she learns to trade less heavily

earlier. This takes more time when there are more auctions. It is also worth noting that

assuming that agents have a large amount of time to learn in real markets is unrealistic.

The graphs in Figures 4-1 and 4-2 reveal some interesting dynamics of the learning

process. First, with the equilibrium learning algorithm, the average profit made by the

agent slowly increases in a fairly smooth manner with the number of episodes, showing

that the agent’s policy is constantly improving as she learns more. An agent using the

approximate learning algorithm shows much quicker learning, but learns a policy that is

not asymptotically optimal. The second interesting point is about the dynamics of trader

behavior — under both algorithms, an insider initially trades far more heavily in the first

period than would be considered optimal, but slowly learns to hide her information like

an optimal trader would. For the equilibrium learning algorithm, there is a spike in the

amount traded in the second period early on in the learning process. This is also a small

spike in the amount traded in the third period before the agent starts converging to the

optimal strategy.

4.5.3 Analysis of the Approximate Algorithm

The behavior of the trader using the approximate algorithm is interesting in a variety of

ways. First, let us consider the pattern of trades in Figure 4-1. As mentioned above, the

trader trades more aggressively in period 1 than in period 2, and more aggressively in

period 2 than in period 3. Let us analyze why this is the case. The agent is learning

a strategy that makes the same decisions independent of the particular auction number
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(except for the last auction). At any auction other than the last, the agent is trying to

choose ∆x to maximize:

∆x(v − p′) + W [Sv,p′ ]

where p′ is the next price (also a function of ∆x, and also taken to be independent of the

particular auction) and W [Sv,p′ ] is the value of being in the state characterized by the liq-

uidation value v and (last) price p′. The agent also believes that the price p′ is a linear

function of p and ∆x. There are two possibilities for the kind of behavior the agent might

exhibit, given that she knows that her action will move the stock price in the direction of

her trade (if she buys, the price will go up, and if she sells the price will go down). She

could try to trade against her signal, because the model she has learned suggests that the

potential for future profit gained by pushing the price away from the direction of the true

liquidation value is higher than the loss from the one trade.6 The other possibility is that

she trades with her signal. In this case, the similarity of auctions in the representation en-

sures that she trades with an intensity proportional to her signal. Since she is trading in the

correct direction, the price will move (in expectation) towards the liquidation value with

each trade, and the average amount traded will go down with each successive auction.

The difference in the last period, of course, is that the trader is solely trying to maximize

∆x(v − p′) because she knows that it is her last opportunity to trade.

The success of the algorithm when there are as few as four auctions demonstrates that

learning an approximate representation of the underlying model can be very successful in

this setting as long as the trader behaves differently at the last auction. Another important

question is that of how parameter choice affects the profit-making performance of the ap-

proximate algorithm as compared to the equilibrium learning algorithm. In order to study

this question, I conducted experiments that measured the average profit received when

measurement starts at various different points for a few different parameter settings (this

is the same as the second experiment in Figure 4-2). The results are shown in Table 4.1.

These results demonstrate especially that the profit-making behavior of the equilibrium

learning algorithm is somewhat variable across parameter settings while the behavior of

6This is not really learnable using linear representations for everything unless there is a different function
that takes over at some point (such as the last auction), because otherwise the trader would keep trading in
the wrong direction and never receive positive reinforcement.
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From episode Σ0 = 5, σ2
u = 25 Σ0 = 5, σ2

u = 50 Σ0 = 10, σ2
u = 25

Approx Equil Approx Equil Approx Equil
100 0.986 0.964 0.986 0.983 0.986 0.964
10,000 0.991 0.986 0.990 0.997 0.990 0.986
20,000 0.991 0.992 0.990 0.999 0.989 0.992
30,000 0.991 0.994 0.989 1.000 0.989 0.994

Table 4.1: Proportion of optimal profit received by traders using the approximate and the
equilibrium learning algorithm in domains with different parameter settings.

Note: The leftmost column indicates the episode from which measurement starts, running
through the end of the simulation (40,000 periods).

the approximate algorithm is remarkably consistent. The advantage of using the approxi-

mate algorithms will obviously be greater in settings where the equilibrium learner takes

a longer time to start making near-optimal profits. From these results, it seems that the

equilibrium learning algorithm learns more quickly in settings with higher liquidity in the

market.

4.6 Discussion

This chapter presents two algorithms that allow an agent to learn how to exploit monopo-

listic insider information in securities markets when agents do not possess full knowledge

of the parameters characterizing the environment, and compares the behavior of these

algorithms to the behavior of the optimal algorithm with full information. The results

presented here demonstrate how domain knowledge can be very useful in the design of

algorithms that learn from experience in an intrinsically online setting in which standard

reinforcement learning techniques are hard to apply.

It would be interesting to examine the behavior of the approximate learning algorithm

in market environments that are not necessarily generated by an underlying linear mech-

anism. For example, if many traders are trading in a double auction type market, would it

still make sense for a trader to use an algorithm like the approximate one presented here

in order to maximize profits from insider information?

I would also like to investigate what differences in market properties are predicted by

the learning model as opposed to Kyle’s model. Another direction for future research is the

use of an online learning algorithm. Batch regression can become prohibitively expensive
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as the total number of episodes increases. While one alternative is to use a fixed window of

past experience, hence forgetting the past, another plausible alternative is to use an online

algorithm that updates the agent’s beliefs at each time step, throwing away the example

after the update. Under what conditions do online algorithms converge to the equilibrium?

Are there practical benefits to the use of these methods?

Perhaps the most interesting direction for future research is the multi-agent learning

problem. First, what if there is more than one insider and they are all learning?7 Insiders

could potentially enter or leave the market at different times, but we are no longer guar-

anteed that everyone other than one agent is playing the equilibrium strategy. What are

the learning dynamics? What does this imply for the system as a whole? Another point

is that the presence of suboptimal insiders ought to create incentives for market-makers

to deviate from the complete-information equilibrium strategy in order to make profits.

What can we say about the learning process when both market-makers and insiders may

be learning?

7Theoretical results show that equilibrium behavior with complete information is of the same linear form
as in the monopolistic case (Holden and Subrahmanyam 1992, Foster and Viswanathan 1996).
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Chapter 5

A Search Problem with Probabilistic

Appearance of Offers

5.1 Introduction.

Many job markets are structured in a manner where potential employees submit their ap-

plications to a number of employing firms simultaneously, and then wait to hear back from

these firms. Firms themselves often make exploding offers that employees have to decide

on in a short time-frame. Sometimes the firms will tell potential employees as soon as they

are no longer under consideration, and in other cases they wait until the end of the search

process to provide this information to applicants. The central question that we address

in this chapter is this: How much better off is an applicant if she is told every time she has been

rejected by a firm, as opposed to only knowing when she receives offers?

In order to study this problem, we construct a stylized model in which the decision

problem faced by agents is a version of the problem variously referred to in the literature

as the Cayley-Moser problem, the (job) search problem, the house hunting problem and

the problem of selling an asset (Ferguson (1989)). In the original problem, a job applicant

knows that there will be exactly n job opportunities, which will be presented to her se-

quentially. At the time each job is presented, she observes the utility she would receive

from taking that job offer (one can think of it purely in terms of wages), and must decide

immediately whether to accept the job offer or not. If she declines the offer, she may not

go back to it. If she accepts it, she may not pick any of the subsequent offers. What is the
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strategy that maximizes her expected utility? This problem has been addressed for var-

ious distributions of offer values, and much of that work is summarized by Gilbert and

Mosteller (1966).

The problem we consider is a variant of the above problem in which the total number

of possible offers is known, but each offer appears only with a certain probability. This

problem is motivated in part by models of two-sided matching markets like labor mar-

kets or dating markets. In particular, a problem considered by Das and Kamenica (2005)

is one in which men are asked out on dates by women, and must respond immediately,

but, while they have priors on the values of going out with particular women, they do not

know the order in which women are going to appear, so they are not aware of whether or

not a better option might come along in the future. This is because a better woman than

the one currently asking a man out might either have already appeared in the ordering

and not asked him out, or might appear later and not ask him out, or might appear later

and ask him out. A similar problem can arise in faculty hiring processes for universities

and colleges. Universities may not know whether applicants will definitely take positions

that are offered, and, conversely, applicants do not know if they will receive an offer from

any given university with which they interview. This chapter only looks at one side of this

process without considering the dynamics involved when multiple agents interact, poten-

tially strategically. Another motivation comes from thinking of the offers as investment

opportunities (Gilbert and Mosteller (1966)). In particular, the continuous-time variant we

discuss can be interpreted in terms of investment opportunities that arrive as a Poisson

process where the decision-maker wants to choose the best one. To simplify the analysis,

we assume that the probability that a particular offer appears, p, is the same across all of-

fers and is independent of the actual value of the offer. The value of p may or may not be

known to the applicant, and can be thought of as a measure of the “attractiveness” of the

applicant or decision-maker.

Most of the previous research on search models focuses on solving an agent’s infi-

nite horizon optimal stopping problem when there is either a cost to generating the next

offer, or a discount factor associated with future utility (the book by DeGroot (1970) pro-

vides an account of much of this line of research). The problem we study here is a finite-

horizon search problem with no cost to seeing more offers and no search frictions. The

basic questions we pose and attempt to answer relate to how much the expected utility of
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the decision-maker changes between different information sets and different mechanisms.

The question with regard to information sets can be thought of as follows. Suppose you

interview with n firms that might want to hire you. Then the companies get ordered ran-

domly and come along in that order and decide whether or not to make you an offer. How

much would you pay to go from a situation in which you only saw which companies made

you an offer (the low information variant) to a situation in which you saw, for each company,

whether or not they chose to make you an offer (the high information variant)? Generalizing

the two informational cases to continuous time provides good approximations for large n

and insight into the value of information in these cases. It also allows us to make an in-

teresting connection to a closely related problem called the secretary problem. We will also

discuss the difference in expected utility between two different mechanisms. The explod-

ing offer mechanism can lead to a substantial decline in the expected utility of a job-seeker

compared to a mechanism in which she sees all the offers she will receive simultaneously

and can choose from among them. What if you could pay to see the entire set of offers

you would get simultaneously so that you could pick among them? How much should

you be willing to pay? We will explicitly compare the expected loss in value in going from

this simultaneous choice mechanism to the sequential choice mechanism that generates the

stopping problem.

5.1.1 Related Work.

In the classical secretary problem (CSP), a decision-maker has to hire one applicant out

of a pool of n applicants who will appear sequentially. Again, the decision-maker must

decide immediately upon seeing an applicant whether to hire her or not. The key differ-

ence between secretary problems and search problems, as Ferguson (1989) notes, is that

in secretary problems “the payoff depends on the observations only through their rela-

tive ranks and not otherwise on their actual values.” The most studied types of secretary

problems are games with 0-1 payoffs, with the payoff of 1 being received if and only if the

decision-maker hires the best applicant. The decision-maker’s optimal policy is thus one

that maximizes the probability of selecting the best applicant.

A historical review of the early literature on secretary problems, including important

references, can be found in the chapter by Gilbert and Mosteller (1966), as can solutions

to many extensions of the basic problem, including the search problem (with finite and
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known n and no search costs) for various different distributions over the values of appli-

cants. Many interesting variants of the original problem, mostly focusing on maximizing

the probability of hiring the best applicant, have appeared in intervening decades. For

instance, Cowan and Zabczyk (1978) introduce a continuous-time version of the prob-

lem with applicants arriving according to a Poisson process, which is closely related to

the continuous-time problem we describe in Section 5.4. Their work has been extended by

Bruss (1987) and by Kurushima and Ano (2003). Stewart (1981) studies a secretary problem

with an unknown number of applicants which is also related to the problem we consider,

but differs in the sense that he assumes n to be a random variable and the arrival times of

offers to be i.i.d. exponential random variables, so that the decision-maker must maintain

a belief distribution on n in order to optimize.

There has been considerable interest in explicitly modeling two-sided search and match-

ing problems in the economics community. In particular, Burdett and Wright (1998) study

two-sided search with nontransferable utility, which is relevant to our model because we

assume exogenous offer values, implying that an employer cannot make her offer more

attractive by, for example, offering a higher salary. While these issues are considered in

greater detail in the next chapter, the book by Roth and Sotomayor (1990) and the chap-

ter by Mortensen and Pissarides (1999) both provide excellent background on this line of

literature in economics.

5.1.2 Contributions.

This chapter introduces a model of search processes where offers appear probabilistically

and sequentially without explicit costs to sampling more offers, but with a limited number

of possibilities that cannot be recalled. This is a good model for various job search and

hiring processes where offers are “exploding” and search takes place during a fixed hiring

season. Our main contributions can be summarized as follows:

a) We introduce two possible search processes, a “high information” process in which

agents find out whether an offer appears or does not appear (this can also be thought

of as agents being accepted or rejected) at each point in time, and a “low information”

process in which agents only receive signals when an offer appears, so they do not

know how many times they might have been rejected already.
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b) We solve for the expected values of the low and high information processes for uni-

form and exponentially distributed offer values when agents know the underlying

probability of offer appearance. We show that the expected utility in the low in-

formation process comes very close to the expected utility in the high information

process, and that the gap is widest in a critical range of expected number of offers

between four and six.

c) We show that when agents do not know the true probability of offer appearance the

expected utility in the low information process declines substantially relative to the

high information process. This shows that the most important informational value of

rejections lies in helping decision makers estimate their own “attractiveness,” when

this attractiveness is measured in terms of the probability of offer appearance.

d) We introduce continuous time versions of the search processes, characterized by

Poisson appearance of offers, and obtain closed form solutions for expected values

of the high information processes. The solutions have a surprisingly simple form,

which helps us gain insight into the dependence of the expected value on the offer

arrival rate.

e) We evaluate the “competitive ratio” (in the sense used in computer science (Borodin

and El-Yaniv 1998, e.g.)), which quantifies the relative reduction in the expected

value, compared to the case where all offers are received simultaneously. We com-

pare the competitive ratios of expected values in the stopping problem and the “si-

multaneous choice” problem to the ratios of expected values in the high and low

information cases.

5.2 The Model.

We consider a search process in which a decision-maker (job-seeker) has to choose among

n potential total offers, which appear sequentially. At each point in time, an offer either

appears (with probability p), in which case its value w is revealed to the applicant, or

does not appear (with probability 1 − p). If an offer does not appear, the applicant may

or may not be told this fact. For the purposes of this chapter, we assume that all offers

have an identical probability of appearance p, and that the values w are independently
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and identically distributed. We will consider two cases for the distribution of w, namely

uniform and exponential. The job-seeker must decide immediately upon seeing an offer

whether to accept it or not. If she accepts the offer, she receives utility w, and if she rejects

it she may not recall that offer in the future.

We consider a number of variants of this process for the two distributions mentioned

above. The two axes along which we parameterize the process are (a) whether or not

the decision-maker knows the probability p of getting an offer; and (b) whether or not

the decision-maker receives a signal when an offer does not appear. In the first case, the

question is whether or not the decision-maker has to learn p. The second case essentially

embodies two informational variants of the decision problem. In the high information

variant, the decision-maker is told at each of the n stages whether an offer appeared or

not. Therefore, she always knows the exact total number of possible offers that may yet

appear. In the low information variant, the decision-maker is only informed when an offer

appears — if the offer does not appear the decision-maker is not informed of this event.

Thus, the decision-maker does not know how many offers are potentially left out of the n

total offers. We will begin by showing results about the informational variants assuming

that the decision-maker knows p. In each case we will consider two distributions over the

offers wi, one a uniform [0, 1] and the other an exponential distribution with rate parameter

α. For calibration, when we report numerical results, we assume α = 2 so that the expected

values of draws from both distributions are the same (0.5).

5.2.1 An Example Where n = 2.

As a motivating example, let us consider the case where n = 2, offer values are uniformly

distributed in [0, 1], and offers arrive with probability p. Later we will derive the expected

values for general n. We can compute the expected value for an agent participating in

the search process in the high and low information cases. In general, we will denote the

expected value of the high information search process with n possible offers as Hn and the

value of the low information process with n possible offers as Ln.

First, in the high information case, the agent knows that there are two time periods t in

total, and she knows which time period she is in. At t = 1 the reservation value of an agent

is her expected value if she declines the offer, which is just her expected value in the one

period process. In the one period process, the agent should always accept any offer she
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receives, so the expected value is just the product of the probability that an offer appears

and the expected value of that offer, or 0.5p. Therefore, at t = 1, the agent should accept an

offer only if it is greater than 0.5p. Since offer values are distributed uniformly in [0, 1], the

probability that this is the case is 1 − 0.5p. The expected value of the offer given that she

does accept it is (1 + 0.5p)/2. The expected continuation value of the process if she rejects

the offer is 0.5p. Given that an offer arrives at t = 1 with probability p, the expected value

of the search process is:

H2 = p

(
(1− 0.5p)

1 + 0.5p

2
+ 0.5p(0.5p)

)
+ (1− p)(0.5p)

=
1
8
p3 − 1

2
p2 + p

The low information case is somewhat more complicated. The major difference from

the high information case is that the decision-maker’s threshold for stopping at the first of-

fer to appear changes. When the decision-maker sees the first offer (assuming she ever sees

an offer and has to make a decision), she does not know if the offer is first in the ordering or

if the offer is second in the ordering and the first offer did not appear. The probability that

she will see another offer is then the probability that a second offer will appear given that

one has appeared. Suppose we denote realized appearance/non-appearance outcomes by

vectors of zeros and ones where the zeros indicate non-appearance and the ones indicate

appearance. The total space of outcomes is {[0 0], [0 1], [1 0], [1 1]}. The appearance of one

offer reduces the possible space of outcomes to {[0 1], [1 0], [1 1]}. The probability that a

second offer appears given that a first has appeared is then p2/((1− p)p + p(1− p) + p2) =

p/(2− p). Therefore the threshold for the decision-maker to stop at the first offer to appear

is p/(4− 2p).

The four possible cases for the low information process when n = 2 can be analyzed

as follows (where, as in Section 5.2.1 0 denotes non-appearance of an offer and 1 denotes

appearance):

1. [0 0] : Occurs with probability (1− p)2 and has value 0.

2. [0 1] : Occurs with probability (1 − p)p. The offer which appears is accepted with

probability 1− 1
2

p
2−p , and if rejected, the utility received is 0. Therefore, the expected
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value is:

Pr
(

w >
p

2(2− p)

)
E[w|w >

p

2(2− p)
]

=
(

1− p

2(2− p)

) (
p

2(2− p)
+

1
2
(1− p

2(2− p)
)
)

=
3p2 − 16p + 16

8(2− p)2

3. [1 0] : Precisely the same argument as the previous case, with the same probability

and expected value.

4. [1 1] : Occurs with probability p2. In this case, if the first offer to appear is rejected,

the second offer is automatically going to be selected. Therefore the expected value

will be the sum of the above expected value and the expected value of the second

given that the first is rejected (weighted by the probability of the first being rejected).

The additional term is then:

(1− Pr(w >
1
2

p

2− p
))(1/2)

=
p

4(2− p)

Adding this to the expected value for the previous case and simplifying gives:

p2 − 12p + 16
8(2− p)2

Then the total expected value is:

L2 = p(1− p)
3p2 − 16p + 16

8(2− p)2
+ p2 p2 − 12p + 16

8(2− p)2

=
−5p4 + 26p3 − 48p2 + 32p

8(2− p)2
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Figure 5-1: Expected value of the difference between the high and low information cases
as a function of p for n = 2 and values independently drawn from a uniform [0, 1] distri-
bution.

The Value of Information

Simplifying the difference in expected values between the high and low information pro-

cesses for n = 2, D2 = H2 − L2, we find that:

D2 =
(p− 1)p3

8(p− 2)

By setting the derivative to 0, we find that the difference is largest for p = 0.7847. Figure

5-1 shows the values of D2 for p between 0 and 1.

5.3 The Search Process for General n.

This section provides the recursive solutions for the expected values of participating in

the high and low information search processes. Solving for the expected value of the high

information case is trivial, but it will serve as a point of comparison for the low information

cases and will allow us to generalize to an interesting continuous time variant.

5.3.1 The High Information Case

This section derives the equations for computing the expected value of participating in the

high information search process for general n and arbitrary p. In both cases, the base case
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is the expected value when n = 1, which is given by the product of the probability of an

offer appearing (p) and the expected value of the offer given that it does appear (0.5 when

offers are distributed uniformly in [0, 1] and 1/α when offers are distributed exponentially

with rate parameter α). Also, in all cases when there are n possible offers remaining, the

threshold for accepting an offer should be the expected value of the search process with

n− 1 possible offers. Let w denote the value of the offer:

Hn = p [Pr(w > Hn−1)E(w|w > Hn−1) + (1− Pr(w > Hn−1))Hn−1] + (1− p)Hn−1

Uniform [0, 1] Distribution

In this case,

Pr(w > Hn−1) = 1−Hn−1

E(w|w > Hn−1) = Hn−1 +
1−Hn−1

2
=

1 + Hn−1

2

This gives us:

Hn = p((1−Hn−1)
1 + Hn−1

2
+ H2

n−1 + (1− p)Hn−1

= p
1 + H2

n−1

2
+ (1− p)Hn−1 (5.1)

and we know that, in the base case H1 = 0.5p.

Exponential Distribution with Rate Parameter α

In this case,

Pr(w > Hn−1) =
∫ ∞

Hn−1

αe−αx dx

= e−αHn−1

E(w|w > Hn−1) =
∫ ∞

0
αe−αx(x + Hn−1) dx (Using the memorylessness property)

=
1
α

+ Hn−1
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Therefore,

Hn = p[e−αHn−1(
1
α

+ Hn−1) + (1− e−αHn−1)Hn−1] + (1− p)Hn−1

= p[
1
α

e−αHn−1 + Hn−1] + (1− p)Hn−1

= p
1
α

e−αHn−1 + Hn−1 (5.2)

and we know that in the base case, H1 = p 1
α .

5.3.2 The Low Information Case

In the low information process with n total possible offers, any state at which the decision-

maker has to take a decision can be completely characterized by n and by the number of

offers that have appeared thus far, denoted by k. The expected value of not stopping at

offer k (state (n, k)) is given by the product of the probability that state [n, k + 1] will be

reached (if not, the decision-maker sees no more offers and gets utility 0) and the expected

value L(n, k + 1).

The probability that state (n, k + 1) is reached given that (n, k) was reached is:

qk =
∑n

i=k+1

(
n
i

)
pi(1− p)n−i∑n

i=k

(
n
i

)
pi(1− p)n−i

The continuation value of the process (the expected value of not stopping) is qkL(n, k + 1).

We know that L(n, n) = 0.5 for offers distributed uniformly in [0, 1] and L(n, n) = 1/α for

offers distributed exponentially with rate parameter α, so we can compute the expected

value recursively. Let zk = qkL(n, k + 1) and w be the value of the kth offer to appear.

Then, for the case where offers are distributed uniformly on [0, 1]:

L(n, k) = Pr(w > zk)E[w|w > zk] + Pr(w < zk)zk

= (1− zk)
1 + zk

2
+ z2

k

=
1
2
(1 + z2

k)

Similarly, for the case where offers are distributed exponentially with rate parameter
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α:

L(n, k) = Pr(w > zk)E[w|w > zk] + Pr(w < zk)zk =
1
α

e−αzk + zk

The expected value of the n offer low information process is then Ln = L(n, 0).

5.3.3 The Value of Information

Figure 5-2 shows the value of information for various different n and for the two distri-

butions we consider. We can see that the critical region where the value of information is

highest is reached at lower p for higher n – this happens when the expected value of the

process is in an intermediate range. A rule of thumb is that the value of information is

highest when the expected number of offers, np, is in the range of 4 to 6. We formalize this

in a continuous time setting in the next section. The most important observation is that the

information does not appear to be critical to making a good decision. Even in the worst

of all the cases in Figure 5-2, the loss from participating in the low information process is

only about 3%. Therefore, it seems clear that participants do not suffer great declines in

expected utility from not being told when they are rejected, as long as they know the true

probability p of offers appearing. In Section 5.5 we consider the case where p is unknown

and show that the loss can be significantly higher.

5.4 Continuous Time Variants.

The natural continuous time limits of the process introduced in Section 2 involves Poisson

arrivals of offers over a limited time horizon. We assume that offers arrive according to

a Poisson process with arrival rate λ in the time interval [0, 1]. Again, the offer payoffs

are sampled from either a uniform [0, 1] distribution or an exponential distribution with

rate parameter α, and the decision-maker has to decide upon seeing each offer whether to

stop and accept that offer or continue searching. These continuous time variants allow us

to abstract away from the particular number of possible offers and think in terms of the

expected number of offers. We show that the high information processes have closed form

solutions for the expected value at any point in time that allow us to gain insight into the

dependence of the expected value on the expected number of offers. In this section we
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Figure 5-2: The ratio of the expected values of the low and high information processes for
different values of n and p, for offer values drawn from the uniform [0, 1] distribution (left)
and the exponential distribution with rate parameter 2 (right).

study and solve for the expected values of a decision-maker in the high and low informa-

tion continuous time search processes, and discuss the relation between these processes

and the discrete variants discussed above.

5.4.1 The High Information Variant

In the high information variant, each time an offer appears, the decision-maker gets to see

both the value of the offer, say w, and the precise time of appearance, t. The decision-

maker should stop if w is greater than the continuation value v(t). At any time t, to derive

the continuation value we need to consider when the next offer will be received. At time t,

the probability density function of the time of the next offer arrival (if any) is λe−λ(x−t) for

x ≤ 1 (any density after 1 effectively “gets lost”). The value of receiving an offer at time x

can be derived as in Section 3.
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Uniform Distribution

Let w be the random value of an offer received at time x. The value of receiving such an

offer is:

Pr(w > v(x))E[w|w > v(x)] + Pr(w < v(x))v(x)

= (1− v(x))(v(x) +
1− v(x)

2
) + v2(x) (because w ∼ U [0, 1])

=
1
2
(1− v2(x)) + v2(x)

=
1
2
(1 + v2(x))

The continuation value at time t must satisfy:

v(t) =
∫ 1

t
λe−λ(x−t) 1

2
(1 + v2(x)) dx

Therefore,

e−λtv(t) =
1
2
λ

∫ 1

t
e−λx(1 + v2(x)) dx

Differentiating with respect to t,

(−λv(t) + v′(t))e−λt = −1
2
λe−λt(1 + v2(t))

Since v(1) = 0 and v ∈ [0, 1],

v′(t) = −1
2
λ(v(t)− 1)2

Or

(
− 1

v(t)− 1

)′
= −1

2
λ

Integrating from t to 1,

1
v(1)− 1

− 1
v(t)− 1

=
1
2
λ(1− t)
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Which gives us the solution:

v(t) =
1− t

2
λ + 1− t

(5.3)

Therefore the value of a process with arrival rate λ is v(0) = λ/(λ + 2).

Exponential Distribution

The logic is exactly the same as above, except that with an exponential distribution with

rate parameter α the continuation value at time t must satisfy

v(t) =
∫ 1

t
λe−λ(x−t)(

1
α

e−αv(x) + v(x)) dx

Differentiating with respect to t, we get:

⇒ v′(t) = −λ

α
e−αv(t)

or

v(t) =
1
α

log(−λt + c)

where c is a constant of integration. Using the boundary condition v(1) = 0

v(t) =
1
α

log(−λt + λ + 1) (5.4)

Therefore, in this case the value of a process with arrival rate λ is v(0) = log(1 + λ)/α.

5.4.2 The Low Information Variant

In the low information variant of the continuous time process, the decision-maker knows

only the number of offers she has received, not the precise time t at which any of the offers

were received. Therefore, any time that a decision has to be made, the state is completely

characterized by the number of offers received so far. Let the value of a process in which

k offers have been received so far (but the decision-maker has not yet seen the value of

the kth offer) be denoted by v[k]. Let w be the (unknown) value of the current offer. The
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continuation value of the process can then be computed in a manner exactly analogous to

the discrete time case. Let

qk = Pr(At least one more offer will be received | k offers were received)

zk = qkv[k + 1]

Then

v[k] = Pr(w > zk)E[w|w > zk] + Pr(w < zk)zk

For offers distributed uniformly in [0, 1], we have

v[k] =
1
2
(1 + z2

k) (5.5)

For offers distributed exponentially with rate parameter α, we have

v[k] =
1
α

e−αzk + zk (5.6)

There are two differences from the discrete case. First, qk must be computed differently,

because we now have Poisson arrivals. Let f(k) be the Poisson probability mass function

(the probability of getting exactly k offers) and F (k) be the cumulative distribution func-

tion, for a particular value of λ. Then

qk =
1− F (k)

1− F (k − 1)

= 1− f(k)
1− F (k − 1)

These are easily computed since we know that f(k) = e−λ λk

k! and F (k) =
∑k

i=0 e−λ λi

i! .

The second difference from the binomial case is that we do not have an obvious base

case, such as the case where n offers out of n are received, from which we can start a
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Figure 5-3: Expected values of the high and low information processes in continuous and
discrete time holding λ = pn constant (at λ = 4).

Note: Dashed lines represent the values of the continuous time processes and solid lines
the values of the discrete time processes

backwards recursion. However, we can show that limk→∞ qk = 0.

lim
k→∞

qk = lim
k→∞

1− F (k)
1− F (k − 1)

= lim
k→∞

−f ′(k)
−f ′(k − 1)

(Applying L’Hospital’s Rule)

= lim
k→∞

λ

k
= 0

Therefore, it is reasonable to approximate the actual value by assuming some threshold

K such that qK = 0 (the threshold K may depend on the particular value of λ). To convey

a sense of the practical value of the threshold K we should note that a threshold such as

K = 200 enables us to compute the expected values to a high degree of precision for λ as

high as 100, since the probability of getting more than 200 offers is completely negligible

for λ = 100. For higher λ values one would need to use higher thresholds.

5.4.3 Relation to the Discrete Time Process

Figure 5-3 shows that the expected values of the discrete time processes converge to the

expected values of the continuous time variants as n →∞, while holding λ = pn constant

(other values of λ yield similar graphs). We can also show formally that the expected value
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of the continuous time high information process serves as a lower bound for the expected

value of the discrete time high information process when offer values are distributed uni-

formly in [0, 1].

Theorem 1. The value of the high information discrete-time process for given p and n is greater

than the value of the high information continuous-time process with λ = pn, when offer values are

drawn from a uniform [0, 1] distribution.

Proof. Let us denote the value of the discrete-time process by H[i], where i is the number

of offers that have appeared in the past, and the continuation value of the continuous time

process at time t by v(t). We want to show that, when λ = pn, H[0] > v(0). We shall

proceed by induction, showing that, for given p and n,

H[i] > v(i/n), ∀i < n

We know that

v(t) =
1− t

2/λ + 1− t
=

λ(1− t)
2 + λ(1− t)

For i = n−1, we have H[n−1] = 0.5p because the value is sampled from the uniform [0, 1]

distribution, and

v

(
n− 1

n

)
=

λ(1− n−1
n )

2 + λ(1− n−1
n )

=
λ
n

2 + λ
n

=
p

2 + p
(because λ = np)

<
1
2
p (because p ∈ [0, 1])

= H[n− 1]

Now, given that H[i] > v(i/n) we have to show that H[i−1] > v ((i− 1)/n) for integral
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i ≥ 1, which will complete the proof. Let X = v(i/n). Then

H[i− 1] = p

(
1
2
(1 + H[i]2)

)
+ (1− p)H[i]

>
1
2
p +

1
2
pX2 + (1− p)X (inductive hypothesis)

=
1
2
p(1 + X2 − 2X) + pX + X − pX

=
1
2
p(1−X)2 + X

In order to complete the induction step, it is therefore sufficient to show that

1
2
p(1−X)2 > v ((i− 1)/n)−X

Simplifying the right hand side, we get

v ((i− 1)/n)−X =
2λn

(2n + λn− λi + λ)(2n + λn− λi)

=
2λn

(2n + λn− λi)2 + λ(2n + λn− λi)

<
2λn

(2n + λn− λi)2

=
1
2
p(1−X)2

which completes the proof.

Conjecture 1. The value of the high information discrete-time process for specified p and n is

greater than the value of the high information continuous-time process with λ = pn when offer

values are drawn from an exponential distribution.

We also conjecture that the low information expected values for the continuous time

variants may also serve as lower bounds for the discrete time cases. The intuition is that

the continuous time versions have a higher variance for the number of offers appearing

(np as opposed to np(1−p)), which is why they yield lower expected values, especially for

high values of p (corresponding to lower n since the product is held constant).

Interestingly, a difficult variant of the secretary problem (with the goal of maximizing
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the probability of selecting the best candidate) has been proposed and solved in continu-

ous time by Cowan and Zabczyk (1978), and generalized by others (Kurushima and Ano

(2003), Bruss (1987)). Our problem bears the same relation to this problem as the search

problem with non-probabilistic appearance of offers (Gilbert and Mosteller (1966)) (recov-

ered by using p = 1 in our case) does to the classical secretary problem.

5.4.4 The Value of Information

As n increases, the continuous time processes become a better approximation to the dis-

crete time cases, and give us an opportunity to study general behavior without worrying

about the specific interactions of n and p. Figure 5-4 shows the difference in expected value

between the high and low information processes in continuous time expressed as a ratio.

We can see that information is most important in a critical range of λ (between around

λ = 3 and λ = 10, peaking between 4 and 6) for both distributions and the importance

of information drops off quickly thereafter. Information is also not particularly important

if the expected total number of offers is very small. This confirms our intuitions from the

discrete time cases.
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5.5 What if p is Unknown?

In some search problems of the kind we have been discussing, the decision-maker may not

have a good estimate of the probability p that any given offer will appear. In this case the

decision-maker must update her estimate of p while also making decisions as before, with

each decision based on her current estimate. This can greatly change the complexion of the

problem, and especially of the value of information, because now knowing when an offer

will not appear is not only useful for the decision problem, it is also useful for the problem

of learning p to help in future decisions.

We will assume that a decision-making agent starts with a prior on p. In the experi-

ments we report here, this prior always starts as a uniform [0, 1] distribution. First, let us

consider the high information case and two possible ways of representing and updating

the agent’s beliefs about p.

5.5.1 The High Information Case

Using a Beta Prior

One possibility is to use a parameterized distribution. The ideal one for this case is the Beta

distribution, because the two possible events at each time are success and failure, and the

Beta distribution is its own conjugate and is particularly easy to update for this case. If the

prior distribution on p before seeing the outcome of a binary event is a β(i, j) distribution,

then the posterior becomes β(i + 1, j) in the event of a success and β(i, j + 1) in the event

of a failure. The β(1, 1) distribution is uniform [0, 1], and so the agent can start with that as

the initial prior. Then, in order to compute the expected value of the game at any time after

s successes and f failures have been seen, the agent only needs to additionally know the

distribution of offer values and the total possible number of offers. However, the dynamic

programming recursions are somewhat different than those in earlier sections. An agent

who receives an offer and rejects it has a different expected value than an agent who does

not receive an offer, due to the informational difference in her next estimate of p.

The value function is parameterized by n, the maximum number of possible offers

remaining, s, the number of successes seen so far, and f , the number of failures seen so far.

For offer values distributed uniformly in [0, 1] the expected value of the game is given
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by:

V (n, s, f) =
∫ 1

0
η(x, s+1, f+1)

(
x

1
2

(
1 + V 2(n− 1, s + 1, f)

)
+ (1− x)V (n− 1, s, f + 1)

)
dx

where η(x, s + 1, f + 1) represents the density function of the Beta (s + 1, f + 1) distri-

bution at x, that is the posterior after seeing s successes and f failures when starting with

a Beta (1, 1) prior.

Similarly, for offer values distributed exponentially with rate parameter α, the expected

value is given by:

V (n, s, f) =
∫ 1

0
η(x, s + 1, f + 1)

(
x

(
1
α

e−αV (n,s+1,f) + V (n, s + 1, f)
)

+

(1− x)V (n− 1, s, f + 1)
)

dx

To actually compute these values, we can use a discrete approximation to the integral

along the probability axis. V can be computed recursively backwards.

Using a Discrete Non-parametric Prior

Another option is to simply use a discrete prior to begin with, and use the appropriate

belief vector for subcomputations. The key to making this computation efficient is to note

that an agent’s beliefs will always be the same when s successes and f failures have been

observed, regardless of the path. Therefore, the posterior at this time can be computed as:

Pr(p = x | s, f) =
Pr(s successes out of s + f |p = x) Pr(p = x)

Pr(s successes out of s + f)

Here Pr(p = x) is the original prior.

5.5.2 The Low Information Case

In the low information case, the only information available to update the decision-maker’s

beliefs about p is the number of offers made so far. In this case, she must update as follows:

Pr(p = x | s offers) =
Pr(at least s offers | p = x) Pr(p = x)

Pr(at least s offers)
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The probability of getting at least s offers given that p = x can be computed using the

cumulative distribution function of the binomial distribution. Also note that the agent’s

beliefs about p will be the same every time that s successes have been observed.

5.5.3 Evaluating Performance

In order to estimate the expected utility received, we need to specify the form of learn-

ing the agent uses, the information available to the agent, and the true probability p of

offer appearance. Then for particular values of p and n we can proceed by evaluating the

expected value of a Markov chain in which states are characterized by the number of suc-

cesses and failures seen so far. In either the high or low information cases, the agent will

have a certain reservation value at each state that is completely dependent on the number

of successes (in both cases) and failures (in the high information case) observed thus far.

Then the expected value of being in that state can be computed based just on the agent’s

reservation value and the true underlying distribution of offer values and probability of

offer appearance.

For a given true underlying p and n and a given initial prior we can describe the process

as a Markov chain whose state consists of the number of past successes and failures (s

and f , respectively). In the high information case, the reservation value of an agent is

dependent on s, f , and n, while in the low information case, the reservation value only

depends on s and n. Suppressing the dependence on n, denote the reservation value in the

high information case by Rh(s, f) and in the low information case by Rl(s). The reservation

value at state s is the expected value of the process if the agent does not accept an offer that

appears. This is important because the appearance of the offer is itself informative.

Let w be the value of an offer that does appear. Let Vs denote the value of state (s+1, f)

and Vf denote the value of state (s, f + 1). The value of state (s, f) is 0 when s + f ≥ n.

Then in the high information case, the value of state (s, f) is:

p
(
Pr(w > Rh(s, f))E[w|w > Rh(s, f)] + Pr(w < Rh(s, f))Vs

)
+ (1− p)Vf

In the low information case, the value of state (s, f) is (the decision-making agent does
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offers are drawn from a uniform [0, 1] distribution (left) or an exponential distribution with
rate parameter α = 2 (right).
Note that the y-axis is significantly different in the two cases.

not have access to f , but we use it when evaluating the chain):

p (Pr(w > Rl(s))E[w|w > Rl(s)] + Pr(w < Rl(s))Vs) + (1− p)Vf

The actual reservation values at any given state can be precomputed and stored in a

table, since they are completely independent of the value of the state. Then the Markov

chain can be evaluated based on this table and the known true probability p.

There is no difference in the expected values for the high information game when using

the Beta prior and when using the nonparametric prior, so we report results only from the

use of the Beta prior. We first report results when agents start with a uniform prior over

[0, 1] for p.

Figure 5-5 shows results in terms of the value of information (corresponding to those in

Figure 5-2 for the case of known p) for the uniform [0, 1] distribution and the exponential

distribution with α = 2. There are three cases shown in each graph, corresponding to three

true underlying probabilities. The first important thing to note is that there are much larger

differences in the expected value between the high and low information cases than there

were in the case where agents knew p beforehand. For the case of the uniform distribution,

in both cases expected values are increasing and are bounded by 1, so the difference does
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not become as dramatic as for the exponential distribution. The reason why the ratios of

expected values are so different is because in the high information case it is “easy” to learn

p by updating your estimate based on seeing both when offers appear and they do not. In

the low information case, the only information available does not help the agent nearly as

much in updating her estimates.

A second interesting effect we see in the graphs is that the ratio declines precipitously

for higher true values of p, especially for the exponential distribution. The reason for this

huge decline is the tradeoff that an agent must make in her estimate – if there is a larger n

then the agent is of course likely to receive more offers, so her threshold should be higher.

However, the higher value of n could also “explain away” the appearance of more offers,

so that the agent does not realize that the true underlying p is higher. Consider an agent

receiving her fourth offer when n = 50. Her threshold for accepting the offer cannot

depend on p because she does not know p. This leads to decisions that look relatively

“better” for different true underlying values. The same rule makes the agent perform

better (relative to the high information case) for p = 0.5 than for p = 0.1 when n = 5, but

much worse when n = 20. When p = 0.1 and n = 5, the agent is not sufficiently willing

to accept offers, because a large part of the mass of her probability beliefs is on p > 0.1.

However, when p = 0.5 and n = 20, the agent becomes too conservative and not risky

enough in rejecting offers, because the appearance of offers does not necessarily tell her

that p is higher, it might just be a function of the fact that there are a large number of total

possible offers. She thus becomes more likely to take an offer that is not actually of high

enough value.

A question that arises in this context is that of what happens when the agent has a less

diffuse prior. In many ways this might correspond to a more realistic situation. Suppose

she knows that her true probability of receiving offers is definitely between 0.4 and 0.6

when it is actually 0.5. We studied this question by calculating the ratios of expected

values of the low and high information processes when the agent starts with a uniform

prior on [0.4, 0.6] (modeled using discrete probability masses, and using the nonparametric

technique in the high information case as well as the low information case). The results

are shown in Figure 5-6. We can see that the ratio actually appears to remain constant

(and significantly higher than before) as n increases, showing that the expected value goes

down much less as we move to the low information case, as we would expect given that
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Figure 5-6: Ratio of expected values of the high information and low information search
processes when p is unknown, the agent starts with a uniform prior over [0.4, 0.6] on p, and
offers are drawn from an exponential distribution with rate parameter α = 2.

the case of known p is the limit of concentrating the prior.

5.6 Comparison of Mechanisms: Sequential vs. Simultaneous Choice

So far, we have considered the loss from lack of information within a particular mecha-

nism, a sequential choice mechanism which introduces a stopping problem for the deci-

sion maker. In this section we ask a different set of questions – namely, what is the loss

from using the sequential choice mechanism itself? This has been an important considera-

tion for previous work on secretary problems and on optimal stopping more generally. We

will focus on the difference between the high information case with sequential choice and

what we call the simultaneous choice case, in which all offers appear simultaneously, and

the decision maker can simply choose the best one. In continuous time, the simultaneous

choice case is simply one in which all the appearances are realized, and then at time 1, the

decision maker gets to choose the best out of all the realized options. It can also be thought

of as allowing the decision-maker to backtrack to previous choices.

First let us consider the continuous time case. What is the expected value of partic-

ipating in a simultaneous choice process with arrival rate λ? It is the sum over all k of

the probability that exactly k offers appear and the expected value given that exactly k

offers appear. For all continuous time models, offers arrive as a Poisson process, and the
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probability of exactly k offers is given by e−λλk

k! .

For offer values distributed uniformly in [0, 1], if k choices are available, the expected

value is k
k+1 (from the order statistic of the uniform distribution). Then the expected value

of the process is:

∞∑
i=0

Pr(i successes)
i

i + 1
=

∞∑
i=0

e−λλii

i!(i + 1)

=
e−λ

λ

∞∑
i=0

[
(i + 1)λi+1

(i + 1)!
− λi+1

(i + 1)!

]
= 1− 1− e−λ

λ

The expression for the expected value for offers distributed exponentially with rate

parameter α is slightly more complex. First note that the distribution function for the

maximum of k such random variables is:

f(x) = k[1− e−αx]k−1αe−αx

Therefore the expected value of the maximum is:

kα

∫ ∞

0
[e−αx(1− e−αx)k−1x] dx =

Hk

α

where Hk represents the kth harmonic number.

Then the expected value is given by:

∞∑
i=0

Pr(i successes)
Hi

α
=

e−λ

α

∞∑
i=0

λiHi

i!

=
1
α

[γ + Γ(0, λ) + log(λ)]

where γ is the Euler constant and Γ represents the (upper) incomplete gamma function.

We already know the expected values of the sequential choice high information pro-

cesses for both distributions. Figure 5-7 shows the differences in expected values between

the simultaneous and sequential choice cases. Note that the difference can be an order of

magnitude higher in this case than it was between the high and low information variants

with known p (Figure 5-4), revealing that the difference in expected value changes much
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Figure 5-7: Ratio of expected values of the simultaneous choice mechanism and the se-
quential choice mechanisms with high information as a function of λ for the continuous
time processes.

more dramatically when going from one mechanism to another than it does when going

from the higher to lower information variant of the sequential choice process. However,

the difference can be of the same order of magnitude when going from high to low in-

formation in the case where p is unknown. Also note that the shape of the graph is very

similar to Figure 5-4, and the greatest differences are achieved for similar values of λ.

5.6.1 Some More Search Processes

These results bring up some more questions, which we will pose and answer for the uni-

form distribution in order to illustrate the differences between the mechanisms we have

discussed and some other possible variants. Therefore, results in this section are confined

to cases where offer values are generated from a uniform [0, 1] distribution.

The first question that arises is how the expected values of the processes we are consid-

ering compare to the expected values in a comparable non-probabilistic case, in which the

total number of appearances is fixed and the decision-maker knows this number? Gilbert

and Mosteller discuss the latter case and present a recurrence relation that is also easily

derived by setting p = 1 in equation 5.1:

Hn+1 =
1
2
(1 + H2

n)
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Figure 5-8 shows the ratios of expected values in three different processes. The first is

the high information continuous time process with arrival rate λ. In the other two cases,

let us postulate the existence of a Gamesmaster, who first stores all the offers generated

according to the Poisson process, and then informs the decision-maker of the total number

of offers that appeared. The Gamesmaster then presents the offers to the decision-maker,

either sequentially or simultaneously. Obviously, the expected value of the simultaneous

process is highest, since it is the best decision that the job-seeker can make retrospectively (or

if she were omniscient with respect to what offers she would receive). The expected value

of the sequential process with a known number of offers is also bound to be significantly

higher since it eliminates uncertainty about the exact number of offers the decision-maker

will receive. Figure 5-8 shows the ratios of expected values of these three processes. The

continuous-time process has a substantially lower expected value than the sequential pro-

cess with a known number of offers for values of λ below 10, but approaches it much more

rapidly than either of the sequential mechanisms approaches the simultaneous mechanism

in terms of expected value. The dropoff in expected value between the continuous-time

and the sequential process with known n is particularly dramatic for very small λ, indi-

cating that knowing the exact number of offers you will receive is much more important if

you only expect to receive 1-3 offers.

Figure 5-8 focuses on processes generated from an underlying process with Poisson of-

fers arriving in continuous time, and therefore we (as the experimental designers) possess

a fundamental uncertainty about the number of offers arising in each case. In contrast to

this, Figure 5-9 shows the difference in expected values between two sequential processes,

one with a fixed and known number of offers pn and the other one with n possible of-

fers that each appear with probability p. While the expected value ratios are substantially

smaller when pn is smaller, this is mostly because of the large probability of getting no

offers. The tradeoff of possibly getting more offers is clearly not worth it in expectation,

but much more so for lower values of pn. An interesting question to ask in this case is, for

example, whether it is better to have one offer for sure, or 10 possible offers, each with a

20% chance of appearing (the latter, by a hair: it has expected value 0.5183, as opposed to

0.5 for the former).
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Figure 5-8: Ratios of expected values in three processes: the high information continuous-
time process with Poisson arrival rate λ (denoted “High”), and two processes in which the
number of offers are known beforehand after being generated by a Poisson distribution
with parameter λ. The decision maker has no recall and must solve a stopping problem in
the sequential choice process (denoted “Seq”), but chooses among all realized offers in the
simultaneous choice process (denoted “Sim”).
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5.7 Conclusions

This chapter is intended to highlight the importance of the information structure in search

processes, particularly processes that run over a fixed period of time, such as academic job

markets. It is common practice in markets of this kind for employers or job candidates to

not keep the other side fully informed about the decisions they have made. For example,

universities will often not send rejections to candidates until they have completed their

search, even if they were no longer seriously considering a candidate much earlier in the

process. In order to study the expected loss of participating in such a process compared to

a process in which both sides immediately make decisions and have to inform each other

about those decisions, we have introduced a stylized model of this process that analyzes it

from a one-sided perspective. Our main result is that the loss from participating in the low

information process is not significant unless the decision-maker is not well-informed about

her own “attractiveness,” measured by the probability of receiving an offer. This suggests

that the costs to changing the structure of markets that operate in the “low information”

manner may not be worthwhile. If applicants are poorly informed about their own attrac-

tiveness to employers, one could imagine mechanisms to improve signaling rather than

restructuring the market (of course, this assumes that employers, who participate in these

processes repeatedly, can estimate their attractiveness to employees well).

The model we have introduced simplifies the problem along some dimensions. We

do not incorporate two-sided strategic considerations, which may become important; for

example, less attractive employers may be more inclined to make exploding offers, while

more attractive employers are unlikely to do so. Further, the assumption that the proba-

bility p of receiving an offer is independent of the value of the offer may be unrealistic for

some markets. Future studies should focus on these directions for extending our model.
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Chapter 6

Two-Sided Bandits and Matching

Markets

6.1 Introduction

This chapter analyzes the learning and decision problems of agents in matching models.

We first define a class of problems in multi-agent learning and decision-making called

two-sided bandit problems. This class of problems is intended to capture the essence of

two-sided matching scenarios in which agents must learn their preferences through expe-

rience, rather than knowing them a priori. Two-sided bandit models can be applied to a

wide range of markets in which two different types of agents must match with each other,

including the market for romantic partnerships (“dating markets”) and labor markets in

which employers and employees must first learn their preferences. We present empirical

and theoretical results on an example dating market modeled in this manner.

Consider a repeated game in which agents gain an uncertain payoff from being matched

with a particular person on the other side of the market in each time period. A natural ex-

ample of such a situation is the dating market, in which men and women repeatedly go

out on dates and learn about each other. Another example is spot labor markets, in which

employers and employees are matched for particular job contracts. A matching mecha-

nism is used to pair the agents. For example, we can consider a mechanism in which all

the men decide which woman to “ask out,” and then each woman selects a man from her

set of offers, with the rejected men left unmatched for that period.
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Standard models of matching in economics (Roth and Sotomayor 1990) almost always

assume that each agent knows his or her preferences over the individuals on the other

side of the market. This assumption is too restrictive for many markets and the model

introduced here is driven by the need to relax this assumption. The existing literature

on two-sided search with nontransferable utility (Burdett and Wright 1998, e.g.) assumes

matching is exogenous and random. The problem discussed here is more deeply related

to bandit problems (Berry and Fristedt 1985), in which an agent must choose which arm

of an n-armed bandit to pull in order to maximize long-term expected reward, taking into

account the tradeoff between exploring, that is learning more about the reward distribution

for each arm, and exploiting, pulling the arm with the maximum expected reward. Berry

and Fristedt (1985, pp. 5) recount “this aspect prompted Whittle (1982, pp. 210) to claim

that a bandit problem ‘embodies in essential form a conflict evident in all human action’.”

Two-sided bandit problems extend the standard multi-armed bandit model by giving the

arms of the bandit agency — they can decide whether to be pulled or not, or whom to be

pulled by, and they themselves receive rewards based on who the puller is. This adds an

enormous degree of complexity to the problem.

It is prohibitively difficult to solve for game-theoretic equilibria in all but the simplest

two-sided bandit problems. In fact, even defining what would constitute optimal behav-

ior with unbounded computational resources and a perfect model of the world is hard to

do. For comparison, consider the history of the search for optimal algorithms for the tra-

ditional multi-armed bandit problem. Berry and Fristedt (1985, Chapter 1) provide a fasci-

nating summary of the history of bandit problems, which were first introduced in 1933 by

Thompson (1933). It was not until 1974 that Gittins and Jones (1974) showed the existence

of an optimal strategy in a Bayesian framework for multi-armed bandits with independent

arms and geometric (sometimes referred to as exponential) discounting . The difficulty of

finding an optimal strategy for a significantly simpler class of problems illustrates how

hard it might be to find one in two-sided bandit problems. The focus of research should

be on good algorithms and what we can show about these algorithms in general settings.

This approach is also related to the theory of learning in games (Fudenberg and Levine

1998), which considers more generally how individual learning rules affect outcomes in

games and whether agents reach static equilibria.
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6.1.1 Outline

We first give a general introduction to two-sided matching with learning and consider

various different kinds of payoff and information structures and matching mechanisms

that can be used. We then present a dating market modeled in this manner.

6.2 Modeling Choices: Defining Preferences, Payoffs and Match-

ing Mechanisms

Various choices have to be made in modeling a two-sided matching game with learning.

These choices relate to the structure of repetition in the game, the payoffs agents receive

and when they receive them, how agent preferences over the other side of the market are

defined, how much information agents have about themselves and others, what the space

of actions available to agents is, and how agents are matched based on the actions they

take. Let us consider each of these issues briefly.

• The structure of the repeated game: While the number of choices is limitless, two

basic options present themselves. First, the game can be repeated either a fixed or

infinite number of times, with agents seeking to maximize their total reward over

the course of the game (appropriately discounted for the infinite case). In this case,

payoffs are received in the same manner at each time period, agents face a dynamic

programming problem and have to make the exploration-exploitation tradeoff at all

time periods, so decision-making can be treated similarly at each tick. This is a nat-

ural model of markets with repeated long horizon learning interactions, like women

and men going on dates. It can be made more realistic by incorporating switching

costs or some other notion of commitment.

Another natural model would be one where agents on both sides of the market have

a small amount of time to learn about each other and then must settle down. The cost

of exploration in the initial learning phase is small, but the cost of a bad match in the

second phase, where agents are expected to settle down, can be very high. This is

an appropriate model for some labor markets like the academic job market for junior

faculty, with job applicants on one side of the market and employers on the other

side.
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• Defining payoffs and preferences: For simplicity, I will consider a few important

types of preferences in a situation where all agents on both sides of the market have

a type that is a real number between 0 and 1. The payoff an agent receives (either

at each time period or at the second phase matching) is a function of the agent’s

own type and the type of the agent it is matched with. Suppose the two sides of the

market contain agents denoted by Ei and Ai. Let the type of agent Xi be VXi where

X is either E or A. Some possibilities for the preference structure are:

1. Completely symmetric heterogeneous preferences: The utility received by Ei

and Aj when they are matched is the same. A simple example would be for the

agents both to receive a payoff that is a function of (VEi −VAj )
2. This can model

a case where agents prefer to be with those who are similar to themselves.

2. Completely homogeneous preferences: An agent receives a utility that is a

function of the type of the agent it is matched with. Consider a matching be-

tween Ei and Aj . In this case, the utility to Ei would be a function of VAj and

the utility to Aj would be a function of VEi . Then VXk
is a measure of intrinsic

quality and the value someone gets from being matched with an agent is just a

function of that intrinsic quality.

3. Mixed preferences: An agent receives a utility that is a mixture of its similarity

to the agent it is matched with and the intrinsic quality of that agent. In this

case, the utility to Ei of being matched with Aj could be of the form κ1f1(VAj )+

κ2f2((VEi − VAj )
2).

4. Discontinuous preferences: As a motivating example, suppose that the ideal

match for an employer is an employee that is sufficiently qualified for the job,

but not overqualified. Suppose 0 is the worst type and 1 is the best. An example

of such preferences would be if the utility received by employer Ei for hiring

employee Aj could be f1(Ei −Aj) for Aj ≤ Ei but f1(Aj − Ei)− κ for Aj > Ei,

where κ > 0.

Of course, the actual payoffs received at any time can be noisy.

• Information availability: Agents may possess extremely varying degrees of infor-

mation. There may or may not be an asymmetry in terms of the information available
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on both sides of the market. For example, in a dating market, we would expect that

men and women are both similarly (un?)informed about both their own types and

the types of those on the other side. However, in the academic job search market,

applicants who have all been selected for interviews at the same schools presum-

ably know their preferences among these schools better than the schools know their

preferences among those they have called for interviews.1

• Matching mechanisms: There are many different ways of actually performing the

matching at each time period. For example, the National Resident Matching Program

matches medical school graduates to their first hospital appointment by running a

matching algorithm on submitted ranked lists. On the other hand, dating typically

works on an informal setup where individuals ask each other out (the role of the

matching mechanism is explored in detail for a dating market in the next section),

students starting graduate school in the US have to decide by a specific date among

all the offers they receive, and job offers in the financial sector are typically “explod-

ing” take-it-or-leave-it offers.

• What to study: When we study learning algorithms in the two-sided bandit frame-

work, we have to keep in mind what kinds of properties we are interested in for a

particular system. There can be differences between individual incentives and stable

matchings. Consider a 2x2 case with symmetric heterogeneous preferences where

the types of two job applicants are 0 and 0.1 and the types of the two employers

are 0 and 1. Both applicants would rather be with employer 1 in this case. There-

fore, if employer 1 didn’t learn the types of the employees properly, or if applicant 1

didn’t learn the types of the employers properly, we could end up with an unstable

matching.

There can also be a difference between socially optimal and stable matches in this

scenario. In a 2x2 case where the types of the two applicants are 0.5 and 1 and the

types of the two employers are 0 and 0.5, the stable match is the one where applicant

1 is matched with employer 2. However, the other match has greater social welfare

if we use a utility function of subtracting the square difference in types from 1 (the

1Even if they may change their preferences after seeing some of the schools — this is just a relative argu-
ment!
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stable matching gives a utility of 1 to two players and 0 to the other two, whereas the

unstable matching gives a utility of 0.75 to everyone).

Roth has argued persuasively that stability is the right concept to think about in

terms of the social outcome (Roth and Peranson 1999, Roth and Xing 1994, inter alia).

Therefore we would like to identify the kinds of problems that are interesting when

we think about learning and stability. For example, we could study whether learning

algorithms convergence to stable matchings and how long such convergence takes

in different cases.

6.3 Dating Markets as Two-Sided Bandits

6.3.1 Overview

This section models a dating markets as a two-sided bandit problem and describes three

important matching mechanisms. We define regret as the difference between actual re-

ward received and the reward under the stable matching, i.e. a matching such that there is

no pair that would rather be with each other than with whom they are matched. We exper-

imentally analyze the asymptotic stability and regret properties when agents use ε-greedy

learning algorithms adapted to the different matching mechanisms.

The Gale-Shapley mechanism (Gale and Shapley 1962) yields stability when informa-

tion is complete and preferences are truthfully revealed and converges quickly to sta-

ble matchings, whereas mechanisms that are more realistic for the dating example, in

which men make single offers to the women, do not always converge to stable matchings.

Asymptotically stable matches are more likely when agents explore more early on. They

are also more likely when agents are optimistic (again, early on) — that is, they assume

a higher probability of their offer being accepted or an offer being made to them than is

justified by the past empirical frequencies of these events. However, increased optimism

does not interact well with increased exploration in terms of stability, and the probability

of stability is actually higher for lower exploration probabilities when optimism is greater.
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6.3.2 The Model

There are M men and W women, who interact for T time periods. vm
ij is the value of

woman j to man i, and vw
ij is the value of man j to woman i. These values are constant

through time. In each period, men and women are matched to each other through a match-

ing mechanism. A matching is a pairing between men and women in which each woman is

paired with one or zero men and each man is paired with one or zero women. Formally, a

matching mechanism is a mapping from agents’ actions to a matching. If man i is matched

with woman j in period t, he receives vm
ij + εm

ijt, and she receives vw
ji + εw

jit. If unmatched,

individual i receives some constant value Ki.

For our empirical analysis we put some structure on the reward processes and the

matching mechanism. First, we make the strong assumption of sex-wide homogeneity

of preferences. That is, every man is equally “good” for each woman and vice versa —

there are no idiosyncratic preferences and there are no couples who “get along” better

than others. Formally, vm
ij = vm

j ∀i and vw
ij = vw

j ∀i. We also assume that ∀i,Ki = K with

K � minj vz
ij∀i, z ∈ {m,w} and that the noise terms ε are independently and identically

distributed. Extensions to more general preferences are straightforward. Note that there

is always a unique stable matching under this preference structure. With multiple stable

matches, we would need to use a different notion of regret, as discussed later.

We consider three matching mechanisms. Without loss of generality, we assume that

women always ask men out.

Gale-Shapley matching Each agent submits a list of preferences and a centralized match-

ing procedure produces a matching based on these lists. The Gale-Shapley algorithm

(Gale and Shapley 1962) guarantees a matching that is stable under the submitted

preferences. The man-optimal variant yields the stable matching that is optimal for

the men, and the woman-optimal variant the stable matching that is optimal for the

women. We use the woman-optimal variant.

Simultaneous offers Each woman independently chooses one man to make an offer to.

Each man selects one of the offers she receives. Women who are rejected are un-

matched for the period, as are the men who receive no offers.

Sequential offers Each woman independently chooses one man to make an offer to. The
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offers are randomly ordered and the men must decide on these “exploding” offers

without knowing what other offers are coming. If an offer is rejected the woman

making the offer is unmatched in that period. A man is unmatched if he rejects all

offers he receives.

Intuitively, it is useful to think of the simultaneous choice mechanism as capturing a

situation in which women ask men out over e-mail and each man can review all his offers

before making a decision, while the sequential choice mechanism captures the situation

where women ask men out over the telephone. We are particularly interested in these

two matching mechanisms because they are more plausible descriptions of reality than a

centralized matchmaker, and do not require agents to reveal their preferences to a third

party.

6.3.3 The Decision and Learning Problems

We initially describe the decision problems men and women face at each time step if

they want to optimize their myopic reward in that time step. After this we discuss the

exploration-exploitation issues men and women face under the different matching mech-

anisms and describe specific forms of the ε-greedy algorithm.

Let Q
{m,w}
ij denote man (woman) i’s estimate of the value of going out with woman

(man) j, pw
ij denote woman i’s estimate of the probability that man j will go out with her if

she asks him out and pm
ij denote man i’s estimate of the probability that woman j will ask

him out under the sequential choice mechanism.

The Woman’s Decision Problem

Under Gale-Shapley matching, the woman’s action space is the set of rankings of men.

Under the other two mechanisms, the woman chooses which man to make an offer to. She

must base her decision on any prior beliefs and the history of rewards she has received

in the past. She has to take into account both the expected value of going on a date with

each man and (for the non Gale-Shapley mechanisms) the probability that he will accept

her offer.

Under the woman-optimal variant of the Gale-Shapley mechanism the dominant my-

opic strategy, and thus the greedy action, is for woman i to rank the men according to the
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expected value of going out with each of them, Qw
ij . For the other two mechanisms, the

greedy action is to ask out man j = arg maxj(pw
ijQ

w
ij).

Arms With Agency: The Woman’s Decision Problem

The action space of men, the arms of the bandit, may be constrained by the women’s ac-

tions. The decision problem faced by a man depends on the matching mechanism used.

Under the woman-optimal Gale-Shapley mechanism, men may have an incentive to mis-

represent their preferences, but since the sex-wide homogeneity of preferences ensures a

unique stable matching (Roth and Sotomayor 1990), this is less likely to be a problem.2 So,

the greedy action for man i under Gale-Shapley is to rank women based on their Qij ’s.

With the simultaneous choice mechanism, in each time period a man receives a list of

women who have made her an offer. He must decide which one to accept. This is a bandit

problem with a different subset of the arms available at each time period. The greedy

action is to accept the woman j = arg maxj Qm
ij

Under the sequential choice mechanism, a man might receive multiple offers within a

time period, and each time he receives an offer he has to decide immediately whether to

accept or reject it, and he may not renege on an accepted offer. The information set he has

at that time is only the list of women who have asked him out so far. For each woman who

has not asked him out, it could either be that she chose not to make him an offer, or that

her turn in the ordering has not arrived yet. We can formulate the man’s value function

heuristically. Let i be the index of the man, let S be the set of women who have asked him

out so far, and let h be the woman currently asking her out (h ∈ S).

V (S, h) = max{Qm
ih,

∑
k/∈S

Pr(k next woman to ask i out)V (S ∪ {k}, k)}

The base cases are V (X, h) = Qw
ih where X is the set of all women. The greedy action

is to accept an offer when

Qm
ih >

∑
k/∈S

Pr(k next woman to ask i out)V (S ∪ {k}, k)

2If the submitted rankings satisfy sex-wide homogeneity man- and woman-optimal algorithms yield the
same matching and truthtelling is the dominant myopic strategy for men.
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The relevant probabilities are:

Pr(k next woman to ask i out) =
∑

T∈Perm(S′)

 1
|S′|

 ∏
j preceding k in T

(1− pm
ij )

 pm
ik


where S′ = X \S. Solving the dynamic programming problem takes exponential time,

which could lead to interesting issues as to how to best approximate the value function

and the effect the approximation might have on market outcomes when there are large

numbers of agents.

The Exploration-Exploitation Tradeoff

Women and men both have to consider the exploration-exploitation tradeoff (summarized

by Sutton and Barto (1998)). Exploitation means maximizing expected reward in the current

period (also called the greedy choice), and is solved as above. Exploration happens when

an agent does not select the greedy action, but instead selects an action that has lower

expected value in the current period in order to learn more and increase future rewards.

The one-sided version of the exploration-exploitation problem is central to n-armed

bandit problems (Berry and Fristedt 1985, Gittins and Jones 1974)[inter alia]. An n-armed

bandit is defined by random variables Xi,t where 1 ≤ i ≤ n is the index of the arm of the

bandit, and Xi,t specifies the payoff received from pulling arm i at time t. The distribution

of some or all of the Xi,t is unknown so there is value to exploring. The agent pulls the

arms sequentially and wishes to maximize the discounted sum of payoffs. In our model, if

there is a single woman and n men, the woman faces a standard n-armed bandit problem.

One of the simplest techniques used for bandit problems is the so-called ε-greedy algo-

rithm. This algorithm selects the arm with highest expected value with probability 1 − ε

and otherwise selects a random arm. Although simple, the algorithm is very successful

in most empirical problems, and we therefore use it in our experiments. We have also ex-

perimented with alternatives like softmax-action selection with Boltzmann distributions

(Sutton and Barto 1998, Luce 1959) and the Exp3 algorithm (Auer et al. 2002). These do not

improve upon the empirical performance of ε-greedy in our simulations.

Under each matching mechanism the exploratory action is to randomly select an action,

other than the greedy one, from the available action space. Since the value of exploration
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decreases as learning progresses, we let ε decay exponentially over time which also ensures

that the matchings converge.

At this stage we cannot solve for the perfect Bayesian equilibrium set. We believe,

however, that if the agents are sufficiently patient and the horizon is sufficiently long, the

matchings will converge to stability on the equilibrium path. Solving for the equilibrium

set would enable us to explicitly characterize the differences between the payoffs on the

equilibrium path and the payoffs under the ε-greedy algorithm.

The two-sided nature of the learning problem leads to nonstationarities. Under the se-

quential and simultaneous mechanisms the women need to consider the reward of asking

out a particular man, not the reward of going out with him. The reward of asking out a

particular man depends on the probability that he will accept the offer. Thus, the reward

distribution changes based on what the men are learning, introducing an externality to the

search process. The same applies to men under the sequential mechanism since the prob-

ability that a particular woman will ask a man out changes over time. There is a problem

of coordinated learning here that is related to the literature on learning in games (Fuden-

berg and Levine 1998) as well as to reinforcement learning of nonstationary distributions

in multiagent environments (Bowling and Veloso 2002). Some recent work by Auer et al.

(2002) on “adversarial” bandit problems, which makes no distributional assumptions in

deriving regret bounds is relevant in this context.

Since the underlying vij ’s are constant we define Qij as person i’s sample mean of the

payoff of going out with person j. In order to deal with the nonstationarity of pij ’s, on the

other hand, we use a fixed learning rate for updating the probabilities which allows agents

to forget the past more quickly:

pij [t] = (1− η)pij [t− 1] + ηI[offer made / accepted]

where η is a constant and I is an indicator function indicating whether a man accepted

an offer (for the woman’s update, applied only if woman i made an offer to man j at time

t) or whether a woman made an offer to a man (for the man’s update, applied at each time

period t).
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ε Simultaneous Choice Sequential Choice Gale-Shapley
Pr (stability) Score Pr (stability) Score Pr (stability) Score

.1 0.318 0.4296 0.050 0.9688 1.000 0.0000

.2 0.444 0.3832 0.054 0.9280 1.000 0.0000

.3 0.548 0.2920 0.050 0.8560 1.000 0.0000

.4 0.658 0.1880 0.058 0.8080 1.000 0.0000

.5 0.788 0.0992 0.096 0.7448 1.000 0.0000

.6 0.856 0.0672 0.108 0.7064 1.000 0.0000

.7 0.930 0.0296 0.130 0.6640 1.000 0.0000

.8 0.970 0.0120 0.164 0.5848 1.000 0.0000

.9 0.998 0.0008 0.224 0.4912 1.000 0.0000

Table 6.1: Convergence to stability as a function of ε
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Figure 6-1: Probability of a stable (asymptotic) matching as a function of the initial value
of ε

6.3.4 Empirical Results

Our simulations involve a market with 5 women and 5 men. The agents use η of 0.05

for updating their probability estimates and the probability of exploration evolves with

time as εt = εt/1000. Agents have true values vm
0 = vw

0 = 10, vm
1 = vw

1 = 9, vm
2 = vw

2 =

8, vm
3 = vw

3 = 7, vm
4 = vw

4 = 6. The noise signals ε
{m,w}
ijt are i.i.d. and drawn from a normal

distribution. Unless otherwise specified, the standard deviation of the noise distribution

is 0.5. Reported results are averages from 500 simulations, each lasting a total of 30,000

time steps. Initial values of Qij are sampled from a uniform [6, 10] distribution and initial

values of pij are sampled from a uniform [0, 1] distribution.

Our experiments show that settings in which agents are matched using the Gale-Shapley

mechanism always result in asymptotically stable matchings, even for very small initial
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values of ε such as 0.1. After a period of exploration, where the agents match up with many

different partners and learn their preferences, agents start pairing up regularly with just

one partner, and this is always the agent with the same ranking on the other side. Interest-

ingly, even if only one side explores (that is, either men or women always pick the greedy

action), populations almost always converge to stable matchings, with a slight decline in

the probability of stability when only men explore (under the woman-optimal matching

algorithm women’s rankings can have a greater effect on the matching than men’s rank-

ings).

The probabilities of convergence under the simultaneous and sequential choice mecha-

nisms are significantly lower, although they increase with larger initial values of ε. We can

see this behavior in Figure 6-1, which also reveals that the probability of convergence to a

stable matching is much higher with the simultaneous choice mechanism. Table 6.1 shows

these probabilities as well as the score, which is a measure of how large the deviation from

the stable matching is. If men and women are indexed in order of their true value ranking,

the score for a matching is defined as 1
M

∑
i∈X |i− Partner(i)| where Partner(i) is the true

value ranking of the man woman i is matched with, and X is the set of all women.

It is also interesting to look at who benefits from the instabilities. In order to do this,

we define a notion of regret for an agent as the (per unit time) difference between the re-

ward under the stable matching and the actual reward received (a negative value of regret

indicates that the agent did better than (s)he would have done under the stable matching).

This definition is unambiguous with sex-wide homogeneity of preferences since there is

only one stable matching, but could be problematic in other contexts, when there could be

more than one. In this case it might make sense to analyze individual agent performance

in terms of the difference between average achieved reward and expected reward under

one of the stable matchings depending on context.

In the case of sex-wide homogeneity of preferences we of course expect that regret

will be greater for more desirable agents since they have more to lose when their value

is not known. Table 6.2 shows the distribution of regrets for simultaneous and sequential

choice. The regrets are averaged over the last 10,000 periods of the simulation. Under

simultaneous choice, the worst woman benefits at the expense of all other women while

the worst two men benefit at the expense of the top three. Under sequential choice, other

agents benefit at the expense of the best ones.
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ID Simultaneous Regret Sequential Regret
Woman’s Man’s Woman’s Man’s

0 0.126 0.126 0.578 0.552
1 0.090 0.278 -0.023 0.009
2 0.236 0.136 -0.153 -0.148
3 0.238 -0.126 -0.005 -0.024
4 -0.690 -0.414 -0.171 -0.187

Table 6.2: Distribution of regret under simultaneous choice (ε = 0.1) and sequential choice
(ε = 0.9) mechanisms
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Figure 6-2: A “phase transition”: men and women are ranked from 0 (highest) to 4 (lowest)
with -1 representing the unmatched state. The graph shows the transition to a situation
where the second highest ranked man ends up paired with the lowest ranked woman
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σ Pr (stability) Score
0.5 0.658 0.1880
1.0 0.636 0.1952
1.5 0.624 0.2120
2.0 0.600 0.2328

Table 6.3: Convergence to stability as a function of σ with simultaneous choice and initial
ε = 0.4

Figure 6-2 shows interesting dynamic behavior in one particular simulation in which

the second best man ends up paired with the worst woman. The graph shows which

man is matched with which woman at each time period. The lines represent the men,

and the numbers on the Y axis represent the women. The value -1 represents the state of

being unmatched in that period for a man. The men and women are ranked from 0 (best)

to 4 (worst). Initially, the second best man is paired with the best woman so he keeps

rejecting offers from all the other women. These women thus learn that he is extremely

particular about who he dates and there is no point in asking him out. When the best

woman finally learns that she can get a better man this triggers a chain of events in which

all the men sequentially move to the woman ranked one higher than the one they were

seeing. However, all the women have such a low opinion of the second best man that he

ends up getting matched with the very worst woman. The matching shown at the end

of the graph is the final asymptotic matching in this simulation. An interesting point to

note is that the asymmetry (only women are allowed to ask men out) precludes this from

happening to a woman.

Another question to ask is how the probability of stability is affected by the noise dis-

tribution. We expect that there will be less convergence to stability when the signals are

less precise. We ran experiments in which the standard deviation of the noise distribution

was changed while holding other factors constant. We used an initial ε of 0.4 and the same

underlying values as above. Table 6.3 shows the results using the simultaneous choice

mechanism. We vary the standard deviation from one half of the distance between the two

adjacent true values (0.5) to twice that distance (2.0), and the probability of stability falls

by less than 10%. This suggests that the instabilities arise mostly from the structure of the

problem and the nonstationarity of probability estimates rather than from the noise in the

signals of value.
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Figure 6-3: The mechanism of stability with optimism: agents keep trying better ranked
agents on the other side until they finally “fall” to their own level

6.3.5 Optimism and Exploration

The insight that instabilities arise mostly from the structure of the problem and that agents

are generally successful at learning their preferences, suggests an alternative method for

engineering asymptotic stability into the system. Suppose agents are initially optimistic

and their level of optimism declines over time. This is another form of patience — a will-

ingness to wait for the best — and it should lead to more stable outcomes.

Optimism can be represented by a systematic overestimation of the probability that

your offer will be accepted or that an offer will be made to you. We explore this empir-

ically with the sequential choice mechanism. Instead of using the learned values of pij

as previously defined, agents instead use an optimistic version. At time t, both men and

women use the optimistic probability estimate:

p′ij = αt + (1− αt)pij

in decision making (the actual pij is, however, maintained and updated as before). αt

should decline with time. In our simulations α0 = 1, αT = 0 (where T is the length of

the simulation) and α declines linearly with t. There are no other changes to any of the

decision-making or learning procedures.

Figure 6-3 shows the process by which agents converge to asymptotic matchings (in

this case a stable one) with the optimistic estimates. The structure of the graph is the
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Figure 6-4: Probability of convergence to stability for different initial values of epsilon with
all agents using the optimistic algorithm versus all agents using the realistic algorithm

same as that in Figure 6-2. Essentially, each agent keeps trying for the best agent it can

match with until the optimism parameter has declined sufficiently that it “falls” to the

equivalently ranked agent on the other side of the market. Figure 6-4 shows that agents

are considerably more likely to converge asymptotically to stable matchings using this

algorithm for any value of the initial exploration probability. Of course, this convergence

comes at the expense of utility achieved in the period before the agents settle down.

The surprising feature in Figure 6-4 is that stable matchings are more likely with smaller

initial exploration probabilities. The V-shape of the graph shows that the probability of

stability actually declines with increasing exploration up to an initial ε value of 0.6, be-

fore starting to increase again, in contrast to the monotonically increasing probability of

stability without optimism. This can be explained in terms of the fact that a small level

of exploration is sufficient for agents to learn their preferences. Beyond that, waiting for

the best that an agent can achieve is taken care of by the optimism rule, and additional

exploration is not only not useful, it becomes counterproductive because the probability

estimates at the key stages become less reliable.

6.3.6 Summary

We have defined two-sided bandit problems, a new class of problems in multi-agent learn-

ing and described the properties of three important matching mechanisms with ε-greedy

learning rules. Two-sided bandit problems are of great relevance for social science in gen-
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eral and the search for marriage partners in particular. The social norms governing explo-

ration before marriage have been changing rapidly over the last few decades and until now

we have had no formal structure within which to study the sources and consequences of

these changes. Our model is also more generally applicable to two-sided markets in which

agents have to learn about each other.

This chapter only scratches the surface of a large and potentially fruitful set of theoret-

ical and empirical questions. It is important to explore learning algorithms that would al-

low agents to perform well3 across a broad range of environments without having to make

assumptions about the decision-making algorithms or learning processes of other agents.

Another direction of research is to explicitly characterize equilibria in simpler settings. We

are also interested in more complex versions of the problem that allow for a greater di-

versity of preferences and a larger number of agents. Finally, the insights gained from the

one-sided problem discussed in the previous chapter should be examined more formally

within the context of a two-sided model with a separate preceding search-and-matching

period.

3In the sense of regret minimization.
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Chapter 7

Conclusion

7.1 A Framework for Modeling and its Successes

The main argument of this thesis is that we need to build richer models of economic and

social systems, and we can do this in a principled way by solving engineering problems

of designing good algorithms, and translating success in that task into scientific success in

analyzing systems using computational techniques. The main technical contributions are

in specific domains that can benefit from this approach, namely market microstructure and

search. Within market microstructure I have shown how explicitly modeling the learning

processes of agents can yield valuable insights into both price properties in markets and

the likelihood that real agents faced with informational and computational constraints will

eventually learn classical equilibrium behavior. In search models, the main contribution

of this thesis is to show how we can learn more about the properties of different market

mechanisms by explicitly modeling agents that solve complex learning and decision prob-

lems that are rarely analytically tractable. Richer models can yield new insights into famil-

iar settings, and they can also allow us to ask new types of questions about systems, like

questions about non-equilibrium behavior, system dynamics, and rates of convergence.

7.2 Future Work

While each chapter specifies directions for research within its domain, I would like to paint

a broader picture in this final section. This thesis should serve as a starting point for future

work in different fields and application domains. First, of course, I hope it stimulates fur-
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ther computational modeling of complex systems in which agents attempt to be as close

to optimal or rational as possible. While there has been plenty of research on modeling

complex systems with many different types of agents, I think there is a renewed need for

the discipline of optimization (or at least something close to it) in many of these mod-

els. Instead of modeling participants as largely random, we should explicitly incorporate

their uncertainties, their learning processes, and the computational and other resource con-

straints imposed on them within the framework of far more complex models than those

of traditional economics and finance theory. This approach will become important not

just for analyzing existing economic and social structures, but even more so for analyzing

more and more electronic marketplaces as they become increasingly important in the com-

ing years. Participants in these markets will often be artificial agents endowed with the

best algorithms their creators can think of, and we need to have an established program of

research in place for understanding the possibilities as this trend continues.

In order to pursue the first goal stated above successfully, the state of the art in think-

ing about and modeling bounded rationality must move forward. Progress will inevitably

come from different disciplines, including artificial intelligence, cognitive science, and eco-

nomics, but I think it is especially important to continue to think about algorithms in terms

of whether or not they are boundedly optimal for their environments (even if this is hard

or impossible to determine), and to move towards designing more general purpose agents

that have to take decisions over a range of problems, not just a few they are specifically de-

signed for. It is also critical to take cues in the design of algorithms from human behavior.

Clearly we have evolved to be very well-designed for the environments we inhabit – what

can this teach us about fast and efficient algorithms for problems that we eventually want

artificial agents to solve?

Finally, on a different and more application-domain specific note, this thesis is largely

composed of exercises in modeling. While I have mentioned that this kind of modeling will

become more important as electronic societies and marketplaces become more important,

the models presented here could also be useful in understanding markets and systems

that exist in the real world today. The next step then is to calibrate and test these models in

the real world. The third chapter takes some basic steps in this direction, and the models

in the other chapters may yet be too stylized to easily be testable, but extensions should

definitely be put to the test of the world so we can learn what the models get right, what
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they get wrong, and where we should go from here.

143



144



Bibliography

Amihud, Y., H. Mendelson. 1980. Dealership market: Market-making with inventory. Journal of

Financial Economics 8 31–53.

Arthur, W. Brian. 1994. Inductive reasoning and bounded rationality (the el farol problem). The

American Economic Review (Papers and Proceedings) 84.

Arthur, W. Brian. 1999. Complexity and the economy. Science 284 107–109.
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