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Abstract

A Dislocation Approach to Plate Interaction

by

Raymon Lee Brown, Jr.

Submitted to the Department of

Earth and Planetary Sciences on

August 25, 1975 in partial

fulfillment of the requirements

for the degree of Doctor of Philosophy

A dislocation can be described in terms of a surface of

discontinuity or the line which circumscribes this surface.

We have applied the solutions of Yoffe (1960) and Comninou

(1973) for an angular dislocation line to the problem of

calculating the fields due to general polygonal dislocations.

Next, anumerical method has been developed explicitly

for finite sources (Finite Source Method or FSM) which allows

the computation of fields from a dislocation that penetrates

several layers of a layered half-space. The speed of the FSM

allows the calculation of many models which are not econom-

ically possible by other means. It is used here to model



3

earthquakes in layered media and plate bottom effects due to

the interaction of lithospheric plates.

Finally, the problem of the mutual interaction of

lithospheric plates in relative motion has been posed in

terms of dislocation theory (anti-dislocations). Dislocation

models of various portions of the San Andreas fault in

California are proposed and evaluated by comparing them with

seismic and geodetic data, We find, for example, that fault

creep near Hollister acts to obscure any locking at depth

and that as much as 70% of the fault could be locked (down

to 20 km) and still be consistent with the geodetic data,

The models also suggest that the depth of locking (or

non-slipping portion of the fault) varies from 10 to 80 km

along the San Andreas, Under San Francisco the depth of

locking appears to be 20 to 40 km while just north and south

of this region the locking is from 10 to 15 km deep, Our

models are also indicative of a more northerly component of

motion for the Pacific with respect to the American plate

than would be expected if the San Andreas were a simple

strike-slip fault. South of Cholame the depth of locking

begins a rapid increase and appears to lock to 80 km in the

Tejon bend portion of the San Andreas. We are not able,

however, to distinguish between an actual locking of the

fault, capable of taking high stresses, or simply a low

stress state.

Thesis Supervisor: M. Nafi Toks6z

Title: Professor of Geophysics
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CHAPTER I

INTRODUCTION

1.1 Purpose and Scope of Thesis

For at least 5-25 million years the portion of land

seaward of the San Andreas fault zone in California has been

drifting northwestward with respect to the North American

continent at an approximate rate of 3-5 cm/year. As the two

land masses slide past one another, portions of their interface

lock and internal stress builds up around these locked sections

of the fault. The stress build up results eventually in the

occurrence of an earthquake. The problem to be considered here

is the quantitative description of the above mentioned stress

accumulation and release. In particular, the main objectives

of this thesis are: 1) the development and application of

numerical techniques for computing the static fields of finite

dislocations distributed throughout layered media; 2) the

representation of the problem of plate interaction in terms of

dislocation theory, and; 3) the application of the dislocation

theory of plate interaction to specific regions of California.

The computation of the stress accumulation due to lithos-

pheric plate interaction is of importance because it yields

(1) a quantitative discussion of the amount of locking and

earthquake potential for various sections of the fault,
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(2) a direct test of complex fault models and their effects

upon local strain fields (rather than guessing, as is often

the case), and (3) a more realistic model of earthquake. pre-

stress than the usually assumed constant stress (and therefore

stress drop). In order to handle the complexity of the

dislocations and/or structures required to study the problem

of plate interaction, two computational methods for dislocation

fields are introduced which considerably facilitate the

study of many models. The first of these methods allows for

the quick computation of the exact solutions for arbitrary

polygonal dislocations in an infinite medium or a homogeneous

half-space. The second method allows a fast numerical

solution to the problem of an arbitrary, finite dislocation in

a layered medium. The speed, convenience, and general

applicability of this second numerical method should make it

a useful tool for other areas of geophysics. Because of its

generality, the numerical method for finite sources may be the

most significant contribution of the thesis.

Since the dislocation approach.to the problem of plate

interaction represents a new use for dislocations it is

important to place this new application in perspective. For

this reason a short history of static dislocation theory and

its applications is presented in the second portion of the

introductory chapter.
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In Chapters II and III, the new computational methods

utilized in this thesis for the dislocations and for the

San Andreas fault are described. Chapter II introduces a

computational scheme which is new to geophysics but is well

established in the physics of solids (Yoffe, 1960). The

scheme involves the addition and subtraction of angular

dislocations in order to form general polygonal dislocations.

The primary contributions made by the author in this chapter

are (1) the introduction of a new and more useful multi-valued

term into the solutions of Yoffe (1960) and Comninou (1973)

and (2) the first computation (computations discussed in

Chapter IV) of the fields due to complex dislocations in a

homogeneous half-space using the solutions for an angular

dislocation in a half-space (Comninou, 1973).

Chapter III applies the methods described in Chapter II

in order to calculate primary fields (el&d .ue to a finite

dislocation in an infinite medium' These primary fields are

then used in a new numerical approach (Finite Source Method or

FSM) to compute the secondary fields due to layering. The FSM

requires computation times of a few minutes for problems which

require a few hours using standard techniques. The secret to

the speed of the FSM lies in the elimination of integration

over the fault plane. We apply the FSM to the study of (1) the

effects of realistic crustal structures upon finite earthquake

fields and (2) the effects of soft underlying layers upon plate
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interaction fields. Of particular importance in the con-

clusions of this chapter are the circumstances under which

the effects due to the bottom of the plate may be neglected.

Under these conditions the models may be constructed from

dislocations in a homogeneous half-space thus allowing faster

exact solutions to be used.

In Chapter IV the problem of plate interaction is posed

in terms of anti-dislocations. By a simple subtraction of

relative rigid body motion the anti-dislocation models can

then be computed via equivalent dislocations. The equivalent

dislocations may be constructed using the methods described

in Chapters II and III.

The anti-dislocation models will be used to study two

specific regions of the San Andreas fault in California. The

first region includes a small bend in the San Andreas which

occurs in the vicinity of San Juan Bautista, California and

includes the Hayward and Calaveras faults. The second region

of interest encloses a large bend ("the big bend", Hofmann,

1968) in the San Andreas which extends from Ft. Tejon to

Cajon Pass. The question posed by this chapter concerns the

importance of these features. Are these bends representative

of the interface between the Pacific and North American plates

or are they simply very near surface features which have little

tectonic significance? The answer will be found by comparing

predictions from tectonic models of these regions to the
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seismic and geodetic data available.

Finally, in Chapter V, the fields due to the large

earthquakes (M > 6) in California will be added to the fields

of a tectonic model of California in order to study the present

stress state of California. This addition will yield zones of

high strain accumulation and therefore zones of probable future

earthquake activity. Such calculations will also allow us to

gain a more realistic picture of the tectonic pre-stress that

exists in a region before an earthquake occurs. Thus state-

ments of probable earthquake magnitude, radiation, and slip

could be estimated from theoretical studies (e.g. Andrews,

1975). There will of course be a number of uncertainties in

these calculations but the results should allow us to point

to regions which deserve further study and instrumentation.

1.2 History of Dislocation Theory and ts Alication

The conceptual beginning of dslocation theory occurred

during the 1800's when most scientists thought that space

(the aether) had elastic properties resembling in some

respects those of a solid. In order to explain the motion

of material bodies through space, C.V. Burton (1892) proposed

that matter was made up of modifications (effectively dis-

locations) of the aether. In an attempt to do away with the

"Weberian" concept of action at a distance, Larmor (1897)

proposed that electrons are made up of dislocations ("point
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singularities of intrinsic strain") in the aether. However,

the mathematical foundations of dislocation theory began in

the development of elastic theory.

According to Love (1927), J.H. Mitchell (1900) was the

first to examine the analytical possibility that certain stress

functions may be many-valued (under the condition that the

displacements be expressed by single-valued functions); however

the association of many-valued displacements with multi-valued

displacements was first made by G. Weingarten in 1901, During

the years 1900-1920, the theory of dislocations in an elastic

continuum was developed by the Italian school and by A. Timpe

(Nabarro, 1967). V. Volterra (1907) developed a more general

theory of dislocations with some improvements by E. Cesaro

and described what is known today as the Volterra type of

dislocation (Love, 1927). Volterra referred to dislocations

as "distorsioni". The name "dislocation" was first used by

Love (1927).

When G.I. Taylor (1934) brought these Volterra disloca-

tions into the explanation of the work hardening in aluminum

crystals many people began to devote their efforts to the

fundamental theory of dislocations (Mura, 1968). The most

successful of these was Burgers (1939) who extended Taylor's

(1934) two-dimensional analysis to three dimensions and

introduced the concept of the dislocation line. Taylor

(1934) is credited with the solution of what is known as an
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edge-dislocation and Burgers (1939) found the solution to the

screw dislocation.

While the above work on dislocation theory and its

application to the theory of solids was in progress, geo-

physicists began sking fundamental questions about the nature

of the earthquake mechanism and the system of forces causing

earthquakes. In a study of geodetic data taken before and

after the 1906 San Francisco earthquake, Reid (1910) proposed

a theory of elastic rebound for earthquakes which is concep-

tually similar to dislocations in elastic media. He suggested

that "...external forces must have produced an elastic strain

in the region about the fault line, and the stresses thus

induced were the forces which caused the sudden displacements,

or elastic rebounds, when the rupture occurred. The only way

in which the indicated strains could have been set up is by a

relative displacement of the land on ot csi.t ides of the

fault and at at some distance fror it." Reid's (1910)

proposal is of considerable importance in this thesis and will

later be posed in terms of dislocation theory.

One of the first attempts to study the static fields of

an earthquake mathematically was made by K. Sezawa (1929). He

proposed a point of dilatation and higher order derivatives of

this source as a model of the earthquake. Although his study

was prompted by the availability of geodetic data which

measured the distortion of the land associated with earthquakes,
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he made no attempt to compare his theory with the data to see

which, if any, of his special nuclei of strain applied to

earthquakes.

Whipple (19316), in an effort to extend the work of Honda

and Miura (1935), appears to have been the first to suggest a

point dislocation (strain nucleus) model of the earthquake.

His model did not become generally popular at this time

because of the lack of data to support any strain nucleus as

being the source of earthquakes and because of the general

debate over which nuclei were really applicable (Honda, 1957).

In the meantime the first crack models of earthquakes were

published in the late 1950's (Kasahara, 1957- 1959; Knopoff,

1958; Keilis-Borok, 1959) and represented modified versions

of the cracks studied by Griffith (1921) and Starr (1928).

More recently people have begun to study crack models with

friction (Orowan, 1960; Savage and Wood, 1971; Walsh, 1968).

The current application of static dislocation theory to

the study of earthquakes began with the published work of

Housner (1955), Rochester (1956) and Vvendenskaya (1956).

However, the major emphasis upon the static theory of dislo-

cations began when Steketee (1958a,b) suggested the dislocation

as a model of the earthquake and derived one set of the six

sets of Green's function necessary to calculate the displace-

ment fields for a dislocation in a homogeneous half-space.
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In addition, he was able to show that the solutions for the

Griffith (1921) crack (and therefore other cracks, e.g.

Starr, 1928) could be reduced to those of a Somigliana

dislocation. T. Maruyama (1964) extended

Steketee's (1958b) work by solving for the other five sets

of Green's functions. Chinnery (1961) made a detailed study

of the displacements associated with surface faults using

Steketee's (1958b) results and later used the theory to

calculate the stress drops associated with earthquakes

(Chinnery, 1963, 1964). Since the introduction of disloca-

tions to geophysics the primary application has been to the

change in fields associated with earthquakes (e.g. Savage and

Hastie, 1966; Savage and Hastie, 1969; Plafker and Savage,

1970; Fitch and Scholz, 1971; Canitez and Toks5z, 1972; Jungels

and Frazier, 1973; Alewine and Jungels, 1974).

Other applications of static disloc2atio.. theory include

models of fault creep (Stewart, et al., 1973), rock bursts

(McGarr, 1971), secondary faulting (Chinnery, 1966a, 1966b),

and tectonic stress (Droste and Teisseyre, 1960). When Press

(1965) demonstrated that permanent earthquake strains could

be detected at teleseismic distances and Wideman and Major

(1967) observed the "strain steps" associated with certain

earthquakes many investigators began to study the effects of

a realistic earth model upon the observed strains. These

effects include those of a spherical earth (e.g. Ben-Menahem,
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et al., 1969), layering (e.g, Sato, 1971), and the combinag

tion of these with gravitational effects (Smylie and Mansinha,

1971).

The present state-of-the-art of the application of static

dislocation theory to the description of earthquake fields

consists of putting finite dislocations in more realistic

earth models. This has been done in two dimensions by Jungels

and Frazier (1973) and Alewine and Jungels (1973) using the

finite element technique and in three dimensions by Sato

(1971), Javanovich et al. (1975), and Sato and Matsu'ura

(1973) using a numerical integration scheme on their

resultant integrals. A more detailed description of the

work done in this area will be given in the third chapter.

For a review of the application of dislocation theory in

other areas the reader is referred to the work of Mura (1968).
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Chapter II

Construction of Finite Dislocation Loops

Via Angular Dislocations

2.1 Introduction

In this chapter we present a method for the calculation

of a very general class of Volterra (1907)1 dislocations.

The dislocations will be built from a fundamental unit, an

angular dislocation. The procedure to be used will allow

for the simple computation of the fields of an n-sided poly-

gonal dislocation with an arbitrary Burgers' vector. The

method to be presented represents a building block for the

rest of the thesis. In Chapter III it will be used in the

calculation of fields from dislocations in layered media.

In Chapter IV the problem of plate interaction will be posed

in terms of complex dislocations which can be easily handled

by the methods described here.

In addition to the problems considered in this thesis,

the method described should be applicable to other areas in

geophysics. With the introduction of improved geodetic data

and other means of measuring the displacements and strains of

the earth has come a need for a more sophisticated model of

earthquakes. Greater complexity can be added to the model of

either the source or the media (e.g. the layered media dis-

cussed in Chapter III). Greater source complexity can be
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added.by allowing for variable slip over the fault surface

and/or allowing the fault surface to have more character

than a flat rectangle. Since the technique described here

is not restricted to.planar dislocations nor to simple rec-

tangles it offers a powerful tool for the study of source

complexity via static near-fields. The idea behind the

method is well established in solid state physics (Yoffe,

1960) but this chapter represents, as far as the author is

aware, a first application of the method to obtain the

displacement fields associated with a fixed surface of

discontinuity (solid state physicists are concerned more

with strain energies and interaction energies which depend

upon the dislocation strains).

2.2 Volterra Dislocations

A dislocation is often defined in terms of a cut in an

elastic material. If the two sides of the cut are moved

relative to one another in such a way that neither side of

the cut experiences any distortion (relative rigid body

motion), the dislocation is referred to as a Volterra (1907)

or discrete dislocation. The Somigliana dislocation

Steketee,(1958) is the most general form of a dislocation and

only requires that the final dislocation configuration be

in equilibrium. Of particular interest to us here is the

Volterra dislocation in a half-space.
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The computation of the fields of a dislocation has

usually been accomplished by a numerical (e.g. Canitez and

Toks6z, 1972) or exact (Press, 1965) integration of the

Green's function (Whipple, 1936; Vvendenskaya, 1956;

Steketee, 1958 (a,b); Maruyama, 1964). Recently the exact

solutions for finite, oblique, shear dislocations of the

Volterra type (Mansinha and Smylie, 1971) and of particular

forms of the Somigliana type (Converse, 1974) have been

presented. However, these solutions are restricted to plane

surfaces with the Burgers' vector in the plane of the surface.

A method will now be presented which will allow us to

calculate the exact solution for a general polygonal shaped

Volterra (1907) dislocation (not restricted to being planar)

with an arbitrary Burgers' vector. The need for such

solutions in geophysics will become apparent in Chapter IV.

2.3 Angular Dislocations

The dislocation has been reviewed as a displacement

discontinuity across a surface, since this represents the

popular concept of a shallow earthquake. However, specifi-

cation of the dislocation by means of a surface does not

yield the most general representation of the dislocation.

It is the dislocation line, the line that follows the edge

of all possible surfaces of discontinuity, which allows the

most general representation of the dislocation (Maruyama,
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1964; Mura, 1968). Burgers (.1939) initiated the use of the

dislocation line and this approach to dislocations has found

considerable popularity in the physics of solids.

Because of the recent work of Maria Comninou (1973)

it will be to our advantage to revert to the use of the

dislocation line in our description of dislocations, She

has solved the problem of an angular dislocation in a half-

space. The term angular describes the configuration of the

dislocation lines. As can be seen in Figure 2.1 (a), the

angular dislocation consists of two semi-infinite dislocation

lines which meet at the point A. Her work extends the work

of Yoffe (1960) who solved the angular dislocation in an

infinite medium. The solutions given by Comninou and Yoffe

allow us to construct the exact solutions for arbitrary

polygonal dislocations (Yoffe, 1960). The angular disloca-

tions are used as the primary building blocks. Figure 2.1 (b)

shows the construction of a dislocation (Comninou, 1973)

using two angular dislocations. The dislocations may then

be added to yield an arbitrary polygonal dislocation

(Figure 2.1 (c)). The actual addition requires that the I's

be translated and rotated to the correct coordinate system.

Since there are no restrictions on the polygon being in a

plane, the above method of calculation allows us to calculate

the fields for a very general class of dislocations. There

is, however, a caveat which will be described in the
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following section.

2.4 Dislocation Surfaces and Multi-valuedness

In approaching the problem of constructing a general

polygonal dislocation by means of angular dislocations one

must use care in valuating the displacement fields. If a

dislocation is described via the dislocation line, the

associated surface can be anywhere as long as its edges end

on the dislocation line. The solution given by Burgers

(1939) for a line dislocation is

+ 1 + 1 a 1 + a + 1 + +
2.1 u = b + bx - dl + V I- (b x r).dl

4w 4w r 4r r

where a = , r is the vector from the line to the
A + 2p +

observation point, b i, the Burgers' vector, dl tne line

element describing the dislocation line and

=1 + (
Q 1 ff n . V dE

where n is the normal to the dislocation surface,

The function is the multi-valued term associated

with dislocation fields and is proportional to the solid

angle subtended by the dislocation from the point of

observation (figure 2.2a). It is the only portion of the

solution which allows a discontinuity of values across a

surface. Thus, the multi-valued terms in the solution of a
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line dislocation determine where the effective dislocation

surface is with respect to the line. If the multi-valued

terms in the solution should consist of a series of arc-

tangents of various functions it becomes important to know

the principal values over which the arctangents are to be

evaluated. The particular choice we make will determine the

dislocation surface.

An example of this multi-valuedness may be found in the

solution of the angular dislocation in an infinite medium

shown in Figure 2.2 (b). The solution for the displacement

in the x direction with a Burgers' vector in the x-direction

is (Yoffe, 1960):

2.2 u1 = b + b xy x
8n(l-v) r(r-z) r(r-L)

where b is the Burgers' vector in the x-direction

2 2: 2 2r = x +y + z

L = y sin a + z cos a

and

n = y cos - z sin a
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The multi-valued term is

2.3 - tan 1Y tan 1 + tan x2cs+yn
4'a ~ 4n x c x os + yl

Yoffe (1960) claims that as defined in equation 2.3

"remains single-valued on circling the negative z and i

axes, but increases by unity when its circuit passes once

into the paper between the positive axes". She further

indicates that this discontinuity may occur across the

shaded area in Figure 2.2 (b). However, she does not

describe which principal values should be used for the

arctangents in order to make the multi-valued term behave

as described. In fact, for conventional limits on the

arctangent (either - to or 0 to 2) the function as

described by Yoffe (1960) does not have a single surface

of discontinuity (the shaded region in figure 2.2 (b)).

This can be more easily understood by following Yoffe's

decomposition of this term into the multi-valued terms of

simpler dislocations.

The term tan 1 (y/x) corresponds to one half of the

multi-valued term of an infinite straight line dislocation

along the z axis. By defining the arctangent from - to

E we see that this dislocation has a plane of discontinuity

extending through the z axis along the negative x axis
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(figure 2.3a). Thus the plane of discontinuity is perpen-

dicular to the shaded plane in figure 2.2(b). Similarly, the

term tan- 1 (q/x) represents one half the solid angle that

would be subtended (at the observation point x,y,z) by the

half-plane which cuts through the n axis and the negative

x-axis (figure 2.3 (b)). The third term in equation 2.3

represents the junction of two angular dislocations with

opposite senses. The plane of discontinuity in this case

occurs in the x = 0 plane (figure 2.3 (c)). The sum of

these three terms yields a rather pathological dislocation

surface consisting of two angular wedges extending to

x = - which are capped with surfaces of discontinuity in

the x = 0 plane (figure 2.3 (c)). The dislocations in the

third quadrant cancel yielding zero strain and a rigid body

displacement of the wedge. The wedge in the first quadrant

yields the same strains as the angular dislocations shown in

figure 2.2 (b). However the displacements differ by rigid

body terms from those of an angular dislocation with the

discontinuity in the x = 0 plane.

If we were only concerned with strains it would not be

necessary to discuss these surfaces of discontinuity. However,

in constructing a polygonal dislocation loop via angular

dislocations the construction will be facilitated if the

angular dislocations are discontinuous in the plane of the

angle. We therefore wish to find a which has the same
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derivatives as the given in equation 2.3 but which has a

single surface of discontinuity in the x = 0 plane. This

can be accomplished by adding together straight line dislo-

cations with surfaces of discontinuity in the proper plane.

Thus if we add tan-l(x/-y) and tan-l(x/n) to the multi-

valued term of a junction dislocation with surfaces of

discontinuity complementary to those shown in figure 2.3 (d)

we obtain

- tan-l xs
2.4 tan (x ) + tan (x) - tan xr sina

-x2cosa -yJ

Figure 2.4 shows a schematic diagram of the dislocation

decomposition of equation 2.4. The given in equation 2.4

behaves exactly as Yoffe (1960) claims it should if we

evaluate the arctangents from - to (figure 2.4).

In order to use these results wit? the Iesults obtained

by Comninou (1973) we need only use equation 2.4 for the

dislocation in the half space added to the multi-valued term

for the image dislocation

tan- () + tan - tan 21 x
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Figure 2.5 illustrates the respective positions for

the surfaces of discontinuity obtained by using the above

expressions in Comninou's (1973) solutions.

Now that the surface of discontinuity is in the plane

of the angular dislocation, it becomes a simple matter

to construct a vertical, polygonal dislocation loop in

either an infinite medium (Yoffe, 1960) or a half-space

(Comninou, 1973) in which the plane of discontinuity is in

the plane of the loop (figures 2.6 (a), 2.6 (b)). However,

for the loop oblique to the surface, the use of 

dislocations arranges the surfaces of discontinuity in a

manner which is not very useful for the description of

earthquakes (figure 2.6 (c)). Since Comninou (1973) has

simplified her solutions by requiring that one leg of the

angular dislocation remain perpendicular to the free surface

we must make a slight modification to the results calculated

for the dislocation shown in figure 2.6 (c). The problem

consists of converting the displacement field from the

dislocation given in figure 2.6 (c) to one with any other

surface which ends on the same dislocation line (e.g.

figure 2.6 (d)). Conceptually, it is easy to see that all

that is necessary is a simple addition and/or subtraction

of rigid body motions to the solution for the dislocation

shown in figure 2.6 (c). For the sake of completeness we

present here a short proof of this relation between the
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dislocations in figure 2.6 (c) and 2.6 (d) which has been

given to the author by Comninou (personal communication).

The integral solution for the dislocation in figure

2.6 (c) is (Mura, 1968)

2.5 U (r) = bi ff Cijkl Ukm, (r,r') dsj
1 kml J

where the Cijkl are the elastic constants for a generalized

Hooke's law. The Ukm(3,r') satisfy the equation of equilibrium

2.6 Cijkl Ukm, (') + 6im 6(r-r) = 0

and the free surface boundary conditions if we are solving

the half-space problem. We shall use the convention shown

in figure 2.7 throughout the thesis, of defining the +

surface as that surface on which the linking circuit ends

(Mura, 1968). With this convention thr inte,ral in

equation 2.5 is taken over the S surface and the Burgers'

vector is

bi = U i- U.

If we specify the components of the Burgers' vector to

be bi on the surface composed of the surfaces

SL = + S + S + .. S + S then we have the solution
L 1 2 3 n B

(with bi defined on the S surface).
1



31
2.7

+ + +i CijklUkm, CijklUkmll(r,rl)ds'S1+S2+ .. Sn

where the sense of SL is out of the volume enclosed by all

of the surfaces. An alternative to equation 2.7 may be

obtained by using the divergence theorem in equation 2.5

and exchanging the derivative over the source coordinate

to one over the observation coordinate to obtain

2.8 Um(r) = -bi If Cijkl Ukm,l(rr 1 dV'
V

where V is the volume enclosed by the surfaces. Using

equation 2.6 in 2.8 we obtain

2.9 Um(r) = bi im 6(r-r')

or finally

0 r V
2.10 U (r) = { } +

bm r eV

Now the integral in 2.7 can be written in the form
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2.11 Um(r) = +bi ffC 1iUkm (rT ') ds'2.11 ijkl k m,

Si+S2+S3...S
123' n

-bi 7fCijklUkm,l(r.r') ds'

where we have changed the first integral to one over theb

where we have changed the first integral to one over the

Si surfaces (i=1,2,...n).

Thus, equating 2.10 and 2.11 we find

bi ffCijkl Ukm, l(r,r')ds' = biffCijklUkm (r,r')ds'

Sb S +Si+S +...S

m r V2.12 r V

Equation 2.12 shows that the difference between the

dislocations in figures 2.6 (c) and 2.6 (d) is a rigid

body displacement determined by the Burgers' vector.

2.5 Summary

The ideas presented in this chapter allow us to

construct the fields of a general, polygonal, Volterra

(1907) dislocation in either an infinite medium (Yoffe, 1960)

or a half-space (Comninou, 1973). In applying these ideas it
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is especially convenient to use wr dislocations (Comninou,

1973) as the basic building blocks for polygonal dislocations

in a half-space (figure 2.8). In chapter IV we shall'use

the dislocations to construct complex tectonic models of

the San Andreas fault in California. We will describe the

models by giving the coordinates of the corners of the

dislocations and the Burgers' vector for the models.

In order to compute the displacement fields for the

general dislocations discussed, we have had to modify the

displacement solutions. This was necessary since the multi-

valued terms given by Yoffe (1960) and Comninou(1973) do not

allow a simple representation of earthquake displacements.

In particular, the multi-valued terms were changed so that

one surface of discontinuity would be associated with each

angular dislocation. In our case, we have fixed the surface

of discontinuity to be in the plane of the angular dislocation

and between the acute angle formed by the dislocation lines.

Although the dislocations described in the rest of the

thesis could have been calculated by a numerical integration

of the Green's function for a point dislocation, the speed

and agility of angular dislocation approach should make it

the method most used by future workers in this area. In fact,

we believe that many of the models considered in this thesis

would not have even been approached had it not been for the

power of the methods presented here.
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Figure 2.1

(a) Dislocation line for an angular dislocation. The lines

extend to infinity since a dislocation line cannot end

in the medium without violating equilibrium.

(b) Construction of a dislocation out of two angular

dislocations.

(c) Construction of rectangular dislocation loop out of

- dislocations.
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Figure 2.2

(a) Diagram of the solid angle subtended by a dislocation

circuit .

(b) Angular dislocation with angle-a. Shaded region repre-

sents one of an infinite number of possible surfaces of

discontinuity associated with the angular dislocation

line shown.
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Figure 2.3

Surfaces of Discontinuity (shaded areas) associated with

individual terms in equation 2.3. Arctangents are evaluated

from - to .

-1(a) dislocation line corresponding to term tan (y/x)(b) dislocation line corresponding to term tan- 1 (n/x)

(c) dislocation line Corresponding to term

tanlf
ox2

xr sin a

cos a + yn

(d) dislocation surfaces obtained by putting the expressions

shown in (a), (b) and (c) into equation 2.3.

I



39

(b)

z

y

X

Figure 2.3

(a)

z

Y

(c)
% -



40

Figure 2.4

Surfaces of Discontinuity (shaded areas) associated with

individual terms in equation 2.4 with a = 0. Arctangents

are evaluated from - to .

(a) dislocation line corresponding to term tan - (x/-y)

(b) dislocation line corresponding to term tan-1 (x/-n)

(c) dislocation line corresponding to term

tan- 1 xr sin .a
2 cos a -yn

(note these surfaces are complimentary to those surfaces

in Figure 2.3c)

(d) dislocation surface obtained by combining the terms in

equation 2.4.
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Figure 2.5

Surfaces of discontinuity (shaded regions) for the

primary dislocation and its image using the multivalued

terms given in the text.
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IMAGE

Figure 2.5
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Figure 2.6

(a) Construction of a polygonal dislocation using angular

dislocations. The surfaces of discontinuity (shaded

regions) are in the plane of the dislocation circuit.

(b) Polygonal dislocation (planar)

(c) Construction of a polygonal dislocation in a half-space

by means of dislocations. The surface of discontinuity

consists of the sum of the surfaces S1,S2 ... Sn for an

n-sided polygonal dislocation.

(d) Same dislocation circuit as in (c) but with a different

surface (SB).
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Figure 2.7

Sign convention for surfaces of discontinuity.

Pointing the thumb of the right hand in the direction of the

dislocation circuit and wrapping the fingers around the

circuit places the finger tips on the positive side of the

dislocation surface.
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Figure 2.8

(a) Addition of the fields of two angular dislocations at

the observation point (XO , YO, Z), The overlapping legs

of the two angular dislocations cancel yielding a dislocation

(Comninou, 1973).

(b) ff dislocations (with vertical legs) between the pairs of

points (P1, P2), (P2' P3), (P3, P4), and (P4 P1) may be

used to construct an arbitrary polygonal dislocation, The

overlapping vertical legs cancel.
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CHAPTER III

FINITE DISLOCATIONS IN FLAT LAYERED MEDIA

3.1 Introduction

In this chapter a numerical approach (Finite Source

Method or FSM) to the problem of a finite dislocation in a

layered half-space is presented. The ultimate goal of the

chapter is the application of the FSM method to the study

of dislocation fields in layered media. This problem is of

interest because we wish to study: (1) the effects of layering

upon static earthquake fields and (2) the effects of layering

and/or a plate bottom upon the internal stress accumulation

due to plate interaction. The plate bottom and its ability

to modify the strain fields due to plate interaction will be

of primary importance to us in Chapter IV.

One of the simplest approaches to the problem of a

dislocation in a layered half-space is obtained if the problem

is restricted to two dimensions. The resultant fields are

quite simple and the method of images may be used to obtain

the effects of layering. This method has been applied by

Rybicki (1971) to study the 1966 Parkfield earthquake and

by Chinnery and Javanovich (1972) to examine the effects of

a buried soft layer.

Rybicki (1971) found that for a soft surface layer over

a more rigid half-space that the displacements and strains
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decay with distance from the fault much faster than those of

the homogeneous half-space. He arrived at essentially the

same results as Kasahara (1964) by concluding that application

of half-space models to a realistic earth (where rigidity

increases with depth in the lithosphere) yields an apparent

depth which is shallower than the actual depth. On the other

hand, Chinnery and Javanovich (1972) were interested primarily

in buried zones of low rigidity and concluded that soft layers

below the source leads to increased displacements with distance

away from the fault in comparison to half-space models.

The first study of the three-dimensional problem of a

point dislocation in a layered media was made by McGinley

(1968). Braslau and Lieber (1968) also made a theoretical

study of the problem but left their results in quadrature.

McGinley's (1968) conclusions on the effects of layering were

essentially the same as those of the later two dimensional

studies mentioned above. Sato and Matsu'ura (1973) have

recently studied in three dimensions the displacement fields

for a finite dislocation in a layered half-space by numerically

integrating the earlier work of Sato (1969). One of the

important results from the three dimensional models is the

sign reversal of certain fields for realistic earth models

in comparison to half-space models (McGinley, 1968; Sato and

Matsu'ura, 1973).

In order to extend the work described above this chapter
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presents a study in three dimensions of finite Volterra

(1907) dislocations in layered media. Of particular interest

to us here are the fields within a few characteristic fault

lengths away from the source. It is this region which allows

geodetic measurement of displacement fields. At distances

greater than this the fields approach those of a point source

and the effect of the media becomes critical (McGinley, 1968;

Sato, 1971; Sato and Matsu'ura,1971; Jovanovich and Chinnery,

1974a,b). Our goal then is to determine under what circumstances

the effect of the media is important in the near-field region

and/or when the effective media is that of a homogeneous half-

space. The only previous calculation of this sort was made

by Sato and Matsu'ura (1973). They calculated the vertical

component of displacement for an oblique thrust fault. Their

numerical procedure required considerable computation time

(approximately one hour) on computers sch as the IBM 360/195

(personal communication from M. Ma u'ura, 1973). This is

approximately the time that would be required on the IBM 370/

168 used by the author. The calculation is time consuming

because it is first necessary to integrate the solution for a

point source at a particular point. Next this result is used

as one point in the integration over the fault plane. This

process has to be repeated for the various components of the

displacements and/or strains. The FSM method to be introduced

here eliminates the time consuming integration over the fault
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plane and simultaneously solves for all components of the

field. The first portion of this chapter is devoted to a

description of the theory and technique used in the FSM.

The chapter concludes by applying the FSM to realistic earth

models.

3.2 Finite Sources in Layered Media

3.2.1 A finite source numerical method in three dimensions

The summation of images for the two-dimensional plane-

layered problem is perhaps the simplest of the numerical

approaches. Jungels and Frazier (1973) and Alewine and

Jungels (1973) have recently applied a two-dimensional finite

element technique to solve for the combined effects of a

complex source and media. Because of the assumption of two

dimensionality these solutions are not especially useful at

distances greater than a fault length away.

In three dimensions the problem becomes complicated.

One numerical approach to the problem consists of making the

calculations using three-dimensional finite elements. However,

finite element node positions must be specified for each model

making the task of studying various models extremely tedious.

In addition, the matrices involved become too large to handle

easily on most computers.

Another approach to the three-dimensional problem involves

reducing the problem to quadrature in a cylindrical coordinate

system. The resulting integrals contain Bessel functions and
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can be integrated using a number of numerical techniques. One

of the most popular approaches consists of fitting the integral

kernels with exactly integrable functions and converting the

integral to a series of exactly integrable integrals, This

method has been applied by McGinley (1968), Ben-Menahem and

Gillon (1970), Sato and Matsu'ura (1973), and others, We

now wish to propose another approach to the study of disloca-

tions in heterogeneous media which should allow for a conven-

ient formulation of the problems in this thesis, The method

is applied in cartesian coordinates and uses the discrete

Fourier transform.

The prime advantage of our numerical scheme lies in the

fast representation of the source (primary) fields in terms

of the fields due to layering and/or a free surface (secondary

fields). It is customary in geophysics to represent point

sources in terms of a discontinuity in the secondary fields

across the plane of the point source (e.g. Saito, 1967). We

modify this approach and represent finite sources in terms of

discontinuities in the secondary fields across the layer

interfaces. Consider the problem of a finite dislocation

embedded in the top layer of a layered medium (figure 3.1).

Inside medium 1 we have primary fields and secondary fields.

The primary fields will be constructed via the angular

dislocations described in Chapter II (using the solutions of

Yoffe (1960) and Hokanson (1963). Continuity of stress and
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displacement across the interface between medium 1 and medium

2 yields the result

P S S
3.1 Y1 +Y Y2

or

s s P
3.2 Y2 Y1 Y1

where superscripts p and s refer to primary and secondary and

the Y's represent. any of the displacements and/or stresses on

the interface. Thus we may represent the source (finite or

point source), in solving for the secondary fields,as a

discontinuity in the secondary fields. In practice, the

solutions will be formulated in k-space so that the Fourier

transform of the source field at the interface will be needed.

This will be accomplished with the fast Fourier transform

(Cooley, and Tukey, 1965). This approach then allows us to

use the matrix method for flat layered media (Haskell, 1963;

Singh, 1970) and to solve the complex problem in which the

source is distributed throughout several homogeneous layers.

Although in this thesis the term primary field will imply

the field due to a finite source in an infinite medium it can

be taken in a general sense to be that field for which a

solution is already available. Thus, for example, if we have

the solutions for a homogeneous half-space then the secondary

field represents the effect of only the subsurface layers.
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Under these circumstances, considerable computational

efficiency (and even accuracy) can be obtained by the

elimination of what is known from the computations.

In our case we have chosen the primary field to be

the solutions due to a finite polygonal dislocation embedded

in an infinite medium. These solutions are constructed using

angular dislocations and the methods described in chapter II.

The displacements and stresses for an angular dislocation in

an infinite medium have been obtained by Yoffe (1960) and

Hokanson (1963) respectively.

Once the primary fields are constructed, we may find

the total solution to the problem of the finite source in a

layered media by adding secondary fields to the primary solu-

tions. The secondary fields must satisfy the static Navier's

(homogeneous) equation and must be chosen so that the total

field obeys all of the necessary boundary coni itions. A

solution to the homogeneous Navier's equation can be con-

structed from vector harmonics (Morse and Feshbach, 1953).

The construction of the secondary fields via vector

harmonics will be described in the following section.

3.2.2 Homogeneous solutions

We now wish to set up the solutions to the homogeneous

Navier's equation,

3.3 V2 u + 1 V(V.u) = 0
1-2a
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where

a - 2(X+)

in a form which can be used to find a matrix solution to the

problem. We follow Morse and Feshbach (1953) , McGinley

(1968), and Ben-Menahem and Singh (1968) and use the three

vector solutions

3.4 M= Vat

N = VX(ezp)

F = G - 26vzN

-~ A - .

where G = 2ez - N

_ 1
3-4a

and p is a solution to the Laplace equation V2 ~ = 0. ez is

the unit vector in the z direction and v is the wave vector in

the z direction. If the z dependence of is separated out and

a transform taken over the transverse cylindrical (Singh, 1970)

or cartesian components we may write the solutions in 3.4 in

k-space. In order to take advantage of the FFT algorithm

(Cooley and Tukey, 1965) we chose to use cartesian coordinates.

Thus, our three solutions in k-space may be written in the form
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+ + - ^ +^

3.5 N- = {ikx i-e x + ik ' e + v-e }

3.6 M = {iky -e x - ikx~-ey}

-+ + ^
3.7 F = {-(1+ 26vz) ikx-}ex

+ {-(1+ 26vz) ikx-l}ey

+ {±v(l +26vz)}e

+ + +VZwhere V2 = k + k2 and i- = A-(kx,ky)e-
x y

We may now write a general solution to the homogeneous Navier's

equation in the form

u= AN++AN + B M + BM + CF + C F

Thus the displacements are

+ -vz -
3.8 ul ikeVZ A= ik e A + ike 

x

+ {-(1+26vz)ikxevz}c+ {-(1-26vz)ikxe }C

u {ik ezA+ -vz -
U2 ={ike A + {ik e }A

y y

VZ + -vz -
{-ik e }B + {-ik e }B

{-(1+26vz)ik e I}C + {-(1-2vzz)ik e }C
Y y
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j = Ve z }A+= { e +}A

+ {0 B+ +

+ -ve-vz}A-

{O} B-

+ {(v%-262z)e Z}c + {-(v+26v2z)e- Z}c

and the stresses are

3.9 P13 = {2pikxve'e z }A + { -2pikxve-Z }A

+ {ipvkyeVZ}B+ + {-ipvkye-VZIB-

+ {-2p6v [2vz+l] ikxeVZ }C

P2 3 = {2pivk eVZ }A + {
23 y

+ {-ipvkxeVZ }B + {

+ {-2p6v [2vz+] ikye
y

-vz+ {-2p6v [2vz-1]ik e
x

-vz -
-2pivk e }A

ipuvk e- vz B -x

VZ C+ + (-2,p6v[2vz-1]ik e-VZ)C

= {2pv 2eVZ }A+

+ {[2Xv2 (1-6)

+ { [2Xv2 (1-6)

+ {2pv2e-VZ }A + {OIB+ + {O}B

+ 2v2 (1-26-26vz) ]e Z IC+

+ 2v 2(1-26 + 26vz) ]e- z}C

Equations 3.8 and 3.9 may be written in the form

Y = E' (z)K'

P33
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where

u3U2

U3
Y =

P13

P23

and

A

B+
K' =

B

C

C

and E'(z) is the matrix of coefficients obtained from equations

3.8 and 3.9. We may rearrange these equations into the form

(Haskell, 1963)

Y = E(z) K3.10
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where

A++ A

A+ -A

B+ +B

B- B

C+ -

The expressions for E'(z) and E(z) are given in the Appendix.

3.2.3 Matrix Approach to Layered Media

We may now use the vector solutions to the homogeneous

Navier's equation to construct solutions to the problem of

static fields in layered media. From equation 3.10 we have

(Zn) (n)K
Yn = n Kn

where n is the layer number. Continuity of displacements and

stresses on each interface requires

(Zn) (Zn)

n n+l

or

E (z )Kn E n+(Zn)Kn+
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Solving for K gives

-1
K = (z )E (z )K3.11

Equation 3.11 gives the relation between the constants in

layer n and the constants in layer n+l. It is easy to find

a similar relation for the Y's since from equation 3.10 we

have

-1

En (Zn)Yn (zn) = Kn

and
-1

En (z ) Y (z ) = Kn n+l1 hn n+l -n

Thus equating the above expressions and using 3.18 we obtain

3.12 Y (z ) = E (z E (Zn+l)Yn+l(n+l
~n n ~n n n 

Following Haskell (1963) we define the matrix

-1
A = E (Zn)E (z 
n n n+1

so that

Y (z ) = A Y (n+lz )-n n n -n+l n+l
3.13
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We may use 3.13 to propagate the Y vector through many layers

to the surface z=0 so that

Y1(0) = A1 A2.""An Yn(Zn)

We may evaluate the An described by temporarily shifting

the origin to z=zn+l so that

-1
An = E (+dn)E (0)

-1
where E (0) and E (z) are given in the Appendix. We are now

n n

ready to put a source into an N-layered media.

3.2.4 A Finite Source Distributed Through Several Layers

Consider now the problem of a dislocation source

distributed through several layers (figure 3.2a). We begin

by examining the fields in the two adjacent layers shown in

figure 3.2b. In each layer we have the primary fields

(denoted by superscript p) which in this case are the fields

which would be observed if no layering were present and the

secondary fields (superscript s) which are a result of the

layering. Continuity of displacements and stresses at

z = z6 yields

YP(z) + YS(z6) Y(z ) + (z6)
Y5 6 Y5 6 6 6 66
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Solving for Y5(z ) we obtain

S S
Y5(z ) = D6 Y 6S(z6)5 6 = 6 6 6

where

P P
D6(z) = Y6(zj) - Y(z6 )

However, from the previous section we have

3.15 5 (z5) = A5 Y5(z 6)

Thus, from 3.14 and 3.15 we obtain

Y5(z5) = A {D (z6 ) + Y" z6)}5 5 6 6 66 

or, in general

3.16 Y (z ) = An{Dn+l(n+l) + (n+n n n+l n+l nl 

Equation 3.16 allows us to relate the solution in one layer to

the solution in an adjacent layer. Repeated application

of equation 3.16 allows us to write the general solution of a

source penetrating n-l) layers of an n-layered medium in the form

3.14
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3.17 YS(z) = G + HK'1

where

3.18 G - D1 + A1 D2 + A1A2 D3 + ...A1A2A3 AAm-Dm

and

3.19 H = A1A2A 3 AnIE n (z n )

In the last layer the boundary condition requiring that

the solutions be finite at z = -a (z being positive up)

simplifies K to

3.20 A+K' -

Substitution of equation 3.20 into 3.17 yields the following

result for the stresses on the free surface



+- +
= G l1 A + 1II B +H4 C

13 L 4 4 4 5

P2 3 (z1 ) = G5 + H51 A + H53 B+ H55 C

P3 (z) = G + H6 A + H63 B + H65 C

where the subscripts on the G's and H's refer to the particular

components of the respective matrices. Since the stresses must

vanish on the free surface we have three equations which allow

us to solve for the three unknowns A+, B , and C+. These

values may then be substituted into the equations for the

displacements which are found by substituting equation 3.20

into 3.17 to obtain

+ +
3.21 Ul(kx,k , z = 0) = G1 + H A + H B + 1H C

U2(k kX z = 0) = G2 + H21 A + H B + H25 C

A+ +
U3 (kx,ky , z = 0) = G + 1 + H33 B + H35 C

The inverse transform of equations 3.21 yield the desired

solutions.

3.2.5 Discrete Fourier Transform

The formalism set up in the previous two sections allows

us to find the displacements in k -ky space for a particular

depth z. The approach is based upon the discrete Fourier
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Transform (Gold and Rader, 1967) which allows us to calculate

the D vector in equation 3.18. The D vector represents the

difference in displacements and tractions on the interface

surface between the sources in the two media. The

representation is in k-space so that the first term in the

D vector would be of the form

9+1 9
AU1 = 1 (kx kyZ l) - U1 (kx,ky,z )

where U1 (kxk ,z ) is the displacement in the xl direction

at the z = z. interface due to the source in the +1 medium

and U1 (kx,ky,zl) is the same field due to a source in medium .

The transforms are evaluated using the Fast Fourier Transform.

Applying this approach to all the components of the D vector

and propagating our solutions to the surface allows us to

construct the solutions Ul(kx,ky,O), U2 (kx,ky, 0), U3(kx,ky ,0).

Our final solutions will be of the form

M-1 N-1 x j i~ yk
U1 yk = 10) y U1 (k k ,O)e e Y

NM m=O n=O x y

where

kn = n2 T
x NAx

km m 27
Y MAy



x' .. j Ax

yk = kAy

The sources of error involved in these calculations will be

of the same nature as those encountered in conventional

signal analysis problems. A detailed comparison of the

discrete Fourier transform with the continuous Fourier

transform and the errors involved may be found in the paper

by Cooley et al. (1970).

3.3 Discussion and Application

We now turn to the actual application of the method

described in section 3.2 to the solution of a dislocation in

layered elastic media. In particular we shall discuss some

of the details necessary to actually get numbers out of the

equations presented in section 3.2 and then make a study of

the effective differences between homogeneous half-space

models and layered half-space models.

3.3.1 Big Numbers

One of the first problems to be faced is the selection of

the sampling lengths Ax, Ay and the number of samples Nx and Ny

to be used. Once this is accomplished a straight forward

substitution in the equations given in 3.2 should allow us to

compute the solutions. However the layer matrix An is made up
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of cosh (vdn) and sinh (dn) terms where dn is the thickness

of a particular layer. Since we expect the sample sizes Ax

and Ay to be smaller than the layer thickness the terms (vd)

will be of the order of 2- >> 1 which causes the elements of
Ax

the A matrix to be very large. Thus in using the A matrices

as they are set up in section 3.2 we end up manipulating very

large numbers to find small numbers. This inevitably leads to

round off errors and scaling problems. We may avoid this

problem by rewriting the solution in the form (for n layers)

3.22 Y = D + cos:h vd a D2 + cosh vd1 cosh vd2 al a2 D3

+ cosh vdl cosh vd2 ... cosh vdn_l 1 aa2anlenednKn

where the ai's represent the layer matrices with the term

cosh vdi factored out and e is the E matrix with the factor

evdn taken out. We may now absorb these multiplicative

constants into the constant vector K' without changing then

problem. Thus 3.22 may be written as

3.23 Y = G + hK'
n

where h = ala 2a 3... a n le n(d n )

and G = D1 + cosh vd1 alD2 + cosh vd1 cosh vd2 ala2D3



70

rnhe constr.:ticam, of th. ht vector in '.23 may now be accomplished

without the use of large numbers. itowever, for a fixed k x and

kyr the G vector still has the terms which increase rapidly

with the layer thicknesses. In the continuous problem these

terms present no trouble since the continuous transform of the

D vectors goes to zero beyond a finite limit. Thus the larger

terms (higher frequencies or shorter wavelengths) are multiplied

by the zeroes in the D vectors. In the discrete case the effects

of aliasing and the finite window size tend to eliminate the

possibility of cancellation. For layers which are thin in

comparison to the total width of the Fourier window - the high

frequency terms offer no problem. For thick layers the less

accurate high k values are amplified out of proportion yielding

considerable error in the solutions. We are therefore forced

to eliminate these high k terms. The approach to this elimin-

ation may be accomplished by a review of the .'iysics of the

problem. The problematic terms in the G vector represent a

layer matrix multiplied by a set of displacements and stresses

applied at the bottom of the layer. If we consider the wave-

length of a stress and/or a displacement on the surface as the

effective area over which the boundary condition is applied then

we may use St. Venant's theory (Fung, 1965) to argue that little

contribution is made to our solution by those displacements

and/or stresses in the D vector with wavelengths shorter than

the thickness of the layer through which the solution is to be

propagated.
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In order to perform the effective filtering described we

multiplied our D vector transforms by the following window

lwhen vd < 2.0
3.24 W(kxky) K 3(vdi-2)2

e vdi >2.0

With the factor described in 3.24 we limit the source vectors

at the bottom of the deep and/or thicker layers to long wave-

length contributions while the source vectors at the bottom of

thin near surface layers contribute at almost all (if not all)

wavelengths to the solution. This filter has been checked by

constructing a model with several identical layers (effectively

a half-space) and comparing the results with exact half-space

results. The comparison of the two results yields accuracies

which are essentially those of the half-space models to be

presented in the next section.

3.3.2 Comparison with half-space solutions

We now proceed to test the program by comparing the

numerical results with the exact results for a dislocation in

a homogeneous half-space. Such a comparison will allow a study

of the errors involved in our numerical approach and will yield

a stringent test of the program itself. Sato and Matsu'ura

(1973) and Sato (:1971) have contented themselves with a dis-

cussion of the fit of the integral kernel with a polynomial.



Such a distress lf!F must Represent inc.irectly the final error

involved in the displacemients but does not test in any way

the correctness of the integral kernel. Similarly, Javanovich

et al. (1974) apply different numerical techniques to

the same integral kernel to obtain the relative error between

the two methods. However, they do not discuss the accuracy of

their numerical method with any closed solution (e.g. a

homogeneous half-space). This again leaves open the question

of the absolute error of the numerical procedure. We shall

assume in this thesis that at least a comparison was made in

the above mentioned papers in order to insure that their

integral kernels are correct.

A straight-forward method of testing the errors involved

in the Fourier transform of the primary fields is to simply

Fourier transform the portion of the aliased primary field which

was neglected (Cooley, Lewis and Welch, 1970' Thus, by summing

up he contributions to the primary field from neighboring

Fourier boxes and Fourier transforming, we may obtain a direct

measure of the error involved in transforming the primary fields.

Unfortunately, we have no means of calculating the aliasing

when we return from the transform space to x, y space. For

this reason we resort to simply comparing our results with the

exact solutions for a homogeneous half-space (Comninou, 1973).

We begin by testing the simple model shown in Figure 3.3.

It is a vertical dip-slip fault with a length and width of
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4 km and a depth (top of the fault) of 4 km. The vertical

fault offers the greatest challenge to the finite source

method because of the rapid changes in some displacements as

one goes from one side of the fault to the next. For this

reason our choice of Ax and Ay must be small enough to sample

the short wavelength changes in displacement near the fault.

In Figures 3.4, 3.5, and 3.6, we have plotted the

displacements for the model in Figure 3.3 calculated by two

methods. The solid line represents the numerical solution

using a 64 x 64 grid and a sampling interval of 1 km. The

exact solution (when different from the numerical solution)

is shown by a dashed line. The U1 displacement in Figure 3.4

has the general form of the second derivative of a Gaussian

distribution while the U2 and U3 displacements shown in figures

3.5 and 3.6 behave like the first derivative of a Gaussian

function. As can be seen by comparing figures 3.4-3.6, the

64 x 64 grid gives the best results for the lower frequency

single derivative fields. Considerable improvement in the

displacementsmay be obtained by decreasing the sample size

and increasing the grid to 128 x 128 points (Figure 3.7). The

changes in U2 and U3 would not be visible in figures 3.5 and

3.6. The improvement in the accuracy is shown in detail in

figure 3.8. The choice of x and y is not optimum so that a

small amount of aliasing exists near the edge of the Fourier



box used . i fi(ure 2 .( a) we have dlotted the difference

between the exact solutions computed via Comninou's results

(1973) and the numerical results obtained by the FSM. It

should be pointed out that the program used to compute

Comnincu's results has been compared with (1) a program which

numerically integrates Maruyama's (1964) Green's triad over

the surface of the fault and (2) a program to compute the

exact solutions for vertical faults given by Press (1965).

All three programs agree to 5 places hich is close to the

numerical accuracy for single precision on the IBM 370/165

used. The interesting point to be made in figure 3.8(a) is

that the difference between the numerical solution and the

exact solution is essentially constant across the Fourier box.

Thus, as can be seen in Figure 3.8(b) and 3.8(c), the relative

error tends to be largest where the displacements are smallest.

This behavior is quite similar to the errc_ of geodetic

measurements and should allow us to use our results even near

the edge of the Fourier box (assuming that the accuracy of the

computation exceeds the accuracy of the data). For the 128

x 128 grid the % error for the single derivative fields remains

less than 1% for at least 3 fault lengths away and is of the

order of .1% for a distance of the order of 1-1/2 fault lengths.

For the double derivative field (U1 in this example) the error

varies from 60% (due to the small exact solution near the

origin) to 5% over the first 3 fault lengths away. The 64 x 64

-�� z.�j
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grid is found to be quite adequate for the single derivative

fields but it forces us to choose too large a sample for the

double derivative fields. For the problems to be considered

in this thesis we have chosen a 128 x 128 grid so that we may

study all components of displacement with reasonable accuracy.

In applying the FSM it is important to remember that the

errors are model dependent. The effects of source size and

depth can easily be taken care of by choosing sample sizes

several times smaller than the fault dimensions and less than

or equal to the fault depth. This effectively pushes the

Nyquist k to a high enough value to eliminate the effects of

the neighboring Fourier boxes in kx-ky space. For a fixed

number of points however we may have difficulty in the x-y

space due to the finite size of the Fourier windows. For

what we wish to call realistic earth models (increasing

rigidity with depth) the fall-off with distance is much more

rapid and the accuracy of such models is increased due to

the fact that these solutions do not feel the edges of the

Fourier box. For models in which the rigidity decreases with

depth the fields extend to greater distances and the edge

effects become more important. For a fixed number of points

and well chosen sample sizes these models tend to be less

accurate. Fortunately this problem can easily be spotted in

the solutions when the solutions and/or their slopes are

significantly different from zero at the edges of. the Fourier

box. It can be eliminated by increasing the number of points.
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3.3.3 Sot surface layer

We now wish to apply the FSM to particular models in

order to examine the effects of layering upon earthquake

displacements. We shall begin with a problem of a soft

(sedimentary) layer overlying a harder half-space (figure

3.10). The soft surface layer is important because it offers

the largest contrast in elastic properties and is nearest to

the surface (for a typical continental crust). We are

especially interested in this problem because of its possible

effects upon vertical displacements and tilts observed near

strike-slip faults. Recent observations of anomalous tilts

by Stuart and Johnston (1974) indicate that the moment of the

precursory slip before a particular earthquake was approximately

10 times that of the subsequent event. We wish to examine here

the possibility that this observation could be an effect of the

media.

In figure 3.10 we show the tw, strike-slip models to be

considered. Model VSTOP (vertical strike-slip in the top

layer) shown in figure 3.10(a) represents a small (LENGTH (L)

= .5 km, WIDTH (W) = .5 km) strike-slip event at a depth (D)

of .5 km. It is embedded in the soft surface layer and is

assumed to have a net slip of 1 meter. In figure 3.11 the U1

displacement for VSTOP (perpendicular to the strike of the

fault) is compared to the same component of motion for a

half-space model with the elastic properties of the harder



high density of small (M < 5) earthquakes between the depths

of 3-10 km and a few events outside of this depth range

(Wesson et al., 1973). Thus, most of the events fall below

the sediment layer in this area.

The fault parameters for the model shown in 3.10(b) are

L = 2 km, W = 2 kin, and D = 3 km. The net slip is one meter

(this allows for easy scaling).

In figures 3.17-3.20 we have plotted a comparison of the

displacements for VSBOT versus those of a half-space with the

elastic constants of the lower half-space in VSBOT. The U1

and U2 displacements show a distinct amplification over the

hard half-space model and a broadening of the peaks. For the

U2 displacement this is essentially the same result obtained

by Rybicki(1971) for a finite two dimensional fault. In

figures 3.19 and 3.20 we show two separate profiles of the U3

displacement in order to point out the small differences (less

than 10% at x2 = .5 km and less than 20% at x2 = 2 km) between

VSBOT and the half-space model. We conclude from these results

that the soft surface layer has an insignificant effect upon

the vertical displacements (and therefore the tilts).

For VSBOT all the fields approach those of the hard

half-space model at approximately eight fault widths (16 km)

away from the fault. This result is expected since most of

the far field energy should be transmitted via the harder

half-space below the soft surface layer.



/I

layer in V 'OP. The p;.,I'ile is taker, at x2 .2 km. The

fault extends from x2 = t.25 km to x2
= -.25 km. The net

effect of the soft layer on this component is effectively

a reduction in amplitude (by a factor of 5) in comparison

to the hard half-, pace model. In figure 3.12 we compare the

solution of VSTOP to a soft half-space (with elastic

constants equal to those of the top layer). The agreement

is excellent in this case and indicates thdt for small events

in the top layer that the displacements in this layer are

essentially those of the source in a soft half-space. The

same conclusion may be reached for the other components by

viewing figures 3.13 through 3.16. A small deviation from this

interpretation may be seen in figure 3.14 in which the U2

displacements for VSTOP have a slightly faster fall-off with

distance than the soft half-space model.

As can be seen in figure 3.15 the ,ron lioice of elastic

co: stants for the half-space can -,'re a considerable effect

upon the vertical displacements and tilts (factor of five for

the case shown). This will be a point of discussion in our

summary.

Now consider model VSBOT (figure 3.10b) in which the

strike-slip fault is below the soft layer. The strike-slip

event below a soft surface layer is of special importance on

that portion of the San Andreas between Parkfield and San

Juan Bautista, California. The region is characterized by a
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In summary, we wish to make the following points about

the effects of a soft surface layer upon strike-slip faults:

(1) if the source is in the top layer the fields behave

essentially like those of a half-space model with the elastic

constants of the soft layer, (2) if the source is below the

soft layer then U1 (perpendicular to strike) and U2 (parallel

to strike) show a maximum amplification of approximately 40%

over the hard half-space model while the U3 displacement is

essentially the same as the hard half-space model. As a

corollary, these results suggest that one possible explanation

of the results of Stuart and Johnston (1974) is that the

precursory slip occurred mostly in the harder half-space

while the earthquake occurred in the softer surface layers.

If the models used to match the data were half-space models

with a Poisson's ratio of .25 (typically used in modeling

earthquake fields) then a good approximation of the precursory

slip would be obtained via tilts while the earthquake slip

would be grossly underestimated.

In conclusion we find that half-space models should be

used with care and a special effort made to determine which

layer(s) contain the source. This conclusion will be

discussed further in the following sections.



3.3.4Continental crustail models vertical faults

We now proceed to study several types of sources

embedded in a typical continental crust in order to examine

the effects of layering upon earthquake near-fields. In

particular,this section compares a typical half-space model

(a = 1/4) to layered models in order to examine the errors

involved when layering is neglected. The only previous study

of a finite fault model of the sort presented here has been

made by Sato and Matsu'ura (1973). They calculated the

vertical component of displacement for a shallow dipping fault

in a four layered half-space (four layers over a half-space).

In figure 3.21 we show a four layered crust with elastic

constants typical of continental crusts which will be used

here to represent what we shall call a realistic crust

(figure 3.21). The intermediate layer in this model does

not appear to exist for certain areas of California (Eaton,

1963) but is a feature of he crust in Japan (Sato

and Matsu'ura, 1973). The effect of leaving out this inter-

mediate layer can be found approximately by comparing the

results of this section to those of the preceding section on

the soft surface layer.

The first models to be considered are vertical faults in

realistic crustal structures. In figure 3.22(a) we show model

RVSS (Realistic Earth, Vertical fault, strike-slip). This

model is 16 km long, 8 km wide, and has a net slip of 1 meter.
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The depth to the top edge of all realistic crustal models

considered will be kept at 3 km. The displacements for RVSS

are shown in figures 3.23-3.25.

The results are surprising since the U1 and U3 displace-

ments are affected in the opposite sense to those for the

simple soft layer over a half-space presented in the previous

section. In figure 3.23 the U1 displacements differ

significantly (approximately 40%) from those of the half-space

values when observed within two fault widths away (16 km). At

distances of 2 to 3 1/2 fault widths away the displacements

fall off at the same rate with the layered model behaving like

a half-space with elastic constants equal to those of the

second layer in the crustal model. At greater distances the

half-space fields fall off faster than the layered model. The

behavior described is expected from such layered models

(McGinley, 1968). These are also the essential features

visible in the U3 displacements in figure 3.25.

The U2 displacements (parallel to the strike of the fault)

shown in figure 3.24 exhibit an amplification (approximately

10% at the peak) over the half-space model as was shown to

be the case for the strike-slip fault beneath a soft surface

layer. Otherwise the fall-off behavior is similar to the U1

and U2 fields. The fall-off in this case, however, is not as

easily distinguished from the half-space due to the rapidity

of the fall-off for both models.



We now examine the model RVDS (Realistic earth, vertical

fault, dip-slip) which is a vertical dip-slip event. It

spreads through the same layers as the strike-slip model

considered above. In this case the U1 and U2 displacements

show the greatest deviation from the half-space model

(figures 3.26-3.28). The U3 displacements (figure 3.29)

are essentially undisturbed by the layering. The U1

displacements of the layered model are greater than those of

the half-space model at distances less than two fault widths

(16 km) away but begin a more rapid fall-off with distance

past this point than the half-space fields. This rapid fall-

off occurs for all the components. The most dramatic change

due to layering occurs in the U2 displacement across the

middle of the fault (figure 3.28). Here the fields differ

not only in amplitude but in sign as well.

To summarize the results obtained for vertical faults

we find that (1) displacements in the primary direction

(i.e. parallel to the burgers vector) do not differ signifi-

cantly from the half-space models while the other components

show large changes (and even sign reversals), (2) the fall-off

with distance for all displacements is faster for the realistic

model than the half-space models for the dip-slip event and

slower than the half-space model for the strike-slip case. We

now study the effects of oblique faulting in a realistic crustal

mode 1.
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3.3.5 Oblique faults

We now wish to examine the special case of a shallow

dipping fault (dip = 300) cutting through the realistic

crust shown in figure 3.21. In figure 3.30(a) a schematic

drawing of model ROSS (Realistic earth, Oblique fault,

Strike-slip) is shown. Three profiles of the displacements

are shown in figures 3.31-3.33. In figure 3.31 the U1

displacements of the layered model show the greatest deviation

from the half-space model when they are observed at a position

which is not directly over the fault (negative values of

distance). Over the fault the difference between the half-

space and layered model is smaller. The U2 displacements for

model ROSS shown in figure 3.32 are greater than the half-space

values (by approximately 20% at maximum) when observed over the

fault. Away from the fault the fall-off with distance is

faster for the layered model. However, the opposite is true

for the fall-off of the U3 displacements in figure 3.33. The

primary point to be observed in figure 3.33 is that the half-

space and layered models do not show any large differences

(i.e. greater than 20%).

In figure 3.30(b) an oblique dip-slip fault model is

shown. The displacements for model RODS (Realistic earth,

Oblique fault, Dip-slip) are shown in figures 3.34-3.37. As

for model ROSS described above the greatest deviations in the
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projection of the top and bottom edges of the fault onto the

surface. Over the fault the fields differ in amplitude but

the general shape of the profile is unchanged. For this

particular model _hne vertical component (figures 3.36 and

3.37) shows the smallest change (especially over the fault)

from the half-space values. The U3 displacements for the

layered model exhibit the reverse area pointed out by Sato

and Matsu'ura (1973) in their study of this component for

an oblique thrust fault. Thus our results agree (at least

qualitatively) for this case.

In summary, we have used the FSM to study a few specific

source models embedded in a layered crust. The size of the

layers and the elastic constants involved are typical of

continental crusts. Because of the variability of the

results between the models it is diffic, It t point to any

particular conclusions which encomnass all of our results.

Even if such conclusions could be drawn from the specific

problems studied they could not be extended to those problems

in which the source penetrates other layers.

We believe that if a detailed study of the source is to

be made that layering cannot be neglected in a near-field

study. If, however, one is able to live with a certain amount

of error then half-space solutions may be used to model

particular components of the field with varying degrees of

success (from 10 to 40%). With the continuing improvement
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in geodetic techniques, however, we feel that layered models

are here to stay.

3.3.6 A hard layer over a soft half-space

In the last chapters of this thesis we shall be

concerned with the computation of the fields due to the

interaction of lithospheric plates. The problem will be

posed in terms of dislocation theory. Because of the speed

and ease with which dislocations in a homogeneous half-space

can be computed it behooves us to examine the effects of

neglecting the bottom of the plate. For the particular

problem of a dislocation embedded in a hard layer (lithosphere)

overlying a soft half-space (asthenosphere) we feel that if

the layer thickness is much greater than the other character-

istic dimensions of the problem (such as dislocation size or

distance from the dislocation) that the effects of the soft

underlying layer may be neglected. However, when all of these

dimensions become comparable the soft layer could play a major

role in our solutions. For this reason we now examine two

dislocations of particular interest embedded in a hard layer

which overlies a soft half-space.

In figure 3.38 we show a schematic of model VASS

(Vertical fault, Asthenospheric model, Strike-slip). The

displacements for this model are shown in figures 3.39-3.42.

The U2 component or primary field (displacement parallel to
2
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the Burgers vector) plotted in figure 3.40 shows what we

consider to be a negligible difference between the layered

and half-space models. The effect of the soft layer is to

amplify the U2 displacements in the near-field (the

amplification is more visible on other profiles not shown).

As we move away from the fault, however, the fall-off with

distance from the fault is less rapid than that for the half-

space. This effectively extends the range of the shear strain

component computed from U2.

The components most affected by the soft layer are U1

(figure 3.39) and U3 (figures 3.41 and 3.42). The U1

component is simply amplified but the U3 component exhibits

reversals in the sense of the motion.

These results indicate that we may use half-space models

(to a good approximation) to get the physics (i.e. the sense)

of the horizontal displacements and the strains computed from

them. The same is not true for the vertical displacements.

Now consider the model described in figure 3.43. It

represents a dislocation in which the two sides are being

pulled away from one another. We shall show in the last

chapter that such a model can be representative of lithospheric

plate collision. Thus model VAC (Vertical fault, Asthenospheric

model, Collision) in figure 3.43 represents (minus relative

rigid body terms to be discussed in Chapter IV) two plates

impinging upon one another across the dislocation interface.



The displacements for this model are shown in figures

3.44-3.48. In the case of model VAC the U1 displacements

shown in figure 3.44 represent the primary field. The effect

of the soft layer upon U1 in this example is a broadening of

the peaks. This will practically double the effective fall-

off distance of the compressive ell strains for this model.

However, the sense of the motion for the layered model is in

agreement with the half-space models. This statement cannot

be made, however, for the U2 components shown in figures 3.45

and 3.46. The U3 components shown in figures 3.47 and 3.48

exhibit a large amplification over the half-space values but

no change in the sense of motion. Thus in this case we may

obtain the sense of motion for model VAC by using half-space

models for only the U1 and U3 displacements and not the U2

displacement. This is unfortunate for it implies the

possibility of obtaining the incorrect sense of the horizontal

motion (U1, U2) and its derivatives (ell, e2 2, e12 ) if we

simply use half-space models.

The two models discussed above represent extreme cases

in which the soft layer is unrealistically soft and the

dislocation penetrates the hard surface layer. In the case

of the San Andreas which has only shallow focus earthquakes

(less than 20 km) a more appropriate model would be one in

which the dislocation penetrates only the upper fraction of
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the surfacce layer. Such a model is shown in figure 3.49 and

the displacements for this model are compared with half-space

displacements in figures 3.50-3.52. The underlying layer in

this model is extremely soft (as for models VASS and VAC).

However, the deviation of these results from those of a half-

space is insignificant. The greatest difference is approxi-

mately 5% and occurs in the U1 displacement shown in figure

3.50. If in addition to making the fault more realistic in

size we also make the soft layer have elastic properties

closer to those of the low velocity zone as determined

seismically by Herrin (1972) then the results approach those

of a homogeneous half-space (figures 3.53-3.55). These

results imply that in the case of shallow faults in a more

realistic structure that half-space models may be used

without a significant loss of accuracy.

In summary, we have examined the proble of a hard

elastic layer over a soft half-space. In the case of the

extremely soft underlying layer we conclude that: (1) half-

space models yield the correct sense of horizontal motion

for a strike-slip fault penetrating the hard layer (with a

significant difference in amplitude), (2) half-space models

for collisional faults of the type shown in figure 3.43 can

predict the wrong sense of motion (depending upon the

component and the model), and (3) the vertical component is

the most sensitive to the soft underlying half-space.
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For those models more directly applicable to California

(i.e. a shallow fault and a moderately soft underlying

half-space), we find that the homogeneous half-space model

differs insignificantly from the layered model. These

conclusions are important and will be used throughout

Chapter IV.

3.4 Conclusions

The problem of computing the fields of a finite source

embedded in a layered media has often eluded computation in

the past because of the necessity of summing many point sources

in the representation of the finite source. We have developed

a numerical technique (Finite Source Method or FSM) which

eliminates the integration over the source and allows for the

fast computation of solutions for a variety of problems. We

have applied the FSM specifically to static dislocations but

it should also be useful in dynamic problems and/or even

electromagnetic prospecting problems.

In particular we have applied the FSM to the problem of

static displacements due to dislocations embedded in layered

media and compared the results to those of a half-space

(a = 1/4). Since an infinite number of models exist for

study we have tried to limit our study (and therefore our

conclusions) to a few particular models. We find that in many

cases the half-space model produces results which are
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significantly different from layered -iodels, We have not

attempted to generalize the results because we feel that

the reader may easily apply the FSM to his own particular

models. The layered models we have presented, however, have

the general features present in previous studies (Rybicki,

1971; Chinnery and Javanovich, 1972; Sato, 1971; Sato and

Matsu'ura, 1973; Javanovich et al., 1974ab),

The conclusions which have the greatest effect upon our

work in the following chapter concern the application of

half-space models to the problem of plate interaction.

Specificially, we find that when the dislocation penetrates

the lithosphere that the half-space models can under certain

circumstances be used to model the sense of the resultant

displacements (and therefore strains). This statement is

especially true for those models more specifically applicable

to California. But we find in the case f an xtremely soft

asthenosphere that the results can 'iffer in amplitude and

even sense of motion, In all cases, however, we find that

the component of motion parallel to the relative plate

motion (Burger's vector) is of the same form as the half-

space solution. For this reason we shall in Chapter IV

consider the plate bottom as a second order effect in

comparison to the interaction across the plate interface.
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Figure 3.1

Schematic diagram of a finite dislocation in a layered

media. Y's represent displacements and/or stresses, Super-

script p is for primary fields and s for secondary fields,

In this thesis primary fields for a particular layer are

defined to be the displacements and stresses due to a finite

dislocation (constructed by means of angular dislocations)

in an infinite medium whose elastic constants equal those of

the layer. The secondary fields represent the effects of

the layering and free surface. Matching of boundary

conditions across the interface between medium 1 and

medium 2 yields a discontinuity in the secondary fields

which is equal to the primary field in medium 1.
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Figure 3.2

(a) Schematic of a dislocation distributed through several

layers.

(b) Source penetrating through a layer interface. In this

case the discontinuity of the secondary fields across

the layer interface equals the difference between the

primary fields in the two media. Definitions of

primary and secondary fields are given in figure 3.1.
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Figure 3.3

Homogeneous half-space model used to demonstrate the

accuracy of the FSM. = 4 x 10" dynes/cm2, = 3.58 x 10"

dynes/cm 2, Depth (D) = 4 km, Length (L) = 4 km, WIDTH = 4 km,

B = (0,0,1), DIP = 900. The Burgers vector B = (B1,B2 ,B3) will

always be given in meters. In this model and all subsequent

models to be discussed the fault is centered on and aligned

with the x2 axis. The dip direction is toward the positive x1

axis. In order to present the results we have chosen to plot

profiles perpendicular to the strike of the fault. The

positions of the profiles are noted by their x2 coordinate.



0
xao

t E
t---.U ---- ~t dJ, ~ m --, -I rn4~---'~pl-4e~~~~~~~0

By~~~~~~~" AHo

* t' He se- Z~~~~~~~~~~~~~~~~~~~~~~~X

ft~~~~

WI~~~

96

w

La.

Co



97

Figures 3.4 - 3.6

Comparison of displacements for exact half-space solutions

(X) of the model shown in figure 3.3 with numerical solutions

(a) obtained via a 64 x 64 grid. Sample sizes used were

AX = 1 km and AY = 1 km. Profiles are taken at x2 = 4 km.

The symbols plotted (X and o) in these and all subsequent

figures are used to differentiate between the respective

curves. They do not represent actual grid points. However,

the symbols are plotted at every fourth grid point and may

be used to obtain a picture of how densely the curves are

sampled. Figure 3.4 (u1 displacement). Figure 3.5 (u2

displacement). Figure 3.6 (u3 displacement).
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Figure 3.7

Improvement in the accuracy of the displacements may

be obtained by increasing the number of points and decreasing

the grid size. Compare the results here for A = .8 km,

AX2 = .8 km, and a 128 x 128 grid with those in figures

3.4-3.6 obtained with a 64 x 64 grid. Profiles taken at

X2 = .8 km, (a) u1 displacement (b) u2 displacement

(c) u3 displacement. Exact half-space solution (x),

Numerical solution (a),
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Figure 3.8

(a) Plot of the differences between the exact solutions for

the half-space model shown in figure 3.3 and the numerical

solutions obtained by the FSM as a function of distance away

from the fault (the difference equals the numerical solution

minus the exact solution). The circles represent points

computed using a 64 x 64 grid, AX 1 = 1 km, and AX2 = 1 km.

The triangles are obtained using the results from a 128 x 128

grid with sample sizes of AX = .8 km and AX2 = .8 km. For

the 128 x 128 grid none of the differences are visible on the

scale shown. The solutions extend to 31 km for the 64 x 64

grid and to 50.4 km for the 128 x 128 grid.

(b) Plot of percent error versus distance for the 64 x 64 grid

(*) and the 128 x 128 grid (A).
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Figure 3.9

Plot of the percent error over the full range of the

solutions for the 64 x 64 grid () and the 128 x 128 grid (A).
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Figure 3.10

(a) Model VSTOP - strike-slip fault embedded in a soft layer·

(X = 112 x 1011 dyne/cm2, = .7 x 1011 dynes/cm 2) over a

hard half-space (A = 2.4 x 1011 dynes/cm 2 , p = 2.58 x 10

dynes/cm2). The fault extends along the x2 axis from

X2 = +.25 to x2 = -.25, has a depth of .5 km (to top edge),

a width of .5 km and a burgers vector B = (0,1,0). The

positive side of the dislocation is viewed from the positive

x1 axis. Sample sizes used in the numerical solutions:

AX1= .2 km, AX2= .2 km.

(b) Model VSBOT - strike-slip fault below the soft layer in

the model described in (a). The depth to the top edge of

the fault is 3 km. The fault extends along the x2 axis from

X2 = +1 to x2 = -1, has a width of 2 km, and has a burgers

vector B = (0,1,0). The sample sizes used in the numerical

solutions are AX1 = .5 km and AX2 = .5 km.
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Figure 3.11

Comparison of u displacements for model VSTOP (o)

with displacements for a hard half-space (X) ( = 2.4 x 10

dynes/cm 2 , = 2.58 x 1011 dynes/cm2 ). X2 = .2 km.
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Figure 3.12

Comparison of ul displacements for model VSTOP (o)

with displacements for a soft half-space (X = 1.12 x 1011

dynes/cm 2 , = .7 x 1011 dynes/cm 2 ). X2 = .2 km.



9

'n" IN3W31jidSIO 0

i, i "

IZ

C,0
Cy2

0)

tri

frH



115

Figure 3.13

Comparison of u2 displacements for model VSTOP (o)

with those of the hard half-space (X). X2 = .2 km.
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Figure 3.14

Comparison of u2 displacements for model VSTOP (a)

with those of the soft half-space (X). X2 = .2 km.
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Figure 3.15

Comparison of u3 displacements for model VSTOP (a)

with those of the hard half-space (X). X2 = .2 km.
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Figure 3.16

Comparison of u3 displacements for model VSTOP (o)

with those of the soft half-space (X). Profile is taken

at x 2 = .2 km.
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Figures 3.17-3.20

Comparison of model VSBOT (a) with a half-space model

(X). Half-space parameters: X = 2.4 x 1011 dynes/cm 2,

p = 2.58 x 1011 dynes/cm 2 (v = .24). Profiles in figures

3.17, 3.18, and 3.20 are taken at x2 = 2 km. Figure 3.19

is at x2 = .5 km.
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i-igure 3.21

Crustal s tructure referred to as a realistic crustal

structure in the text. Thickness of layers in km, X and 

2 11in dynes/cm x 10 , = Poisson's ratio, and V s are p
m/sec, and p is dens

(nn s velocities i km/sec, and p is density in gm/cm 3 .
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Figure 3.22

(a) Model RVSS - a long, narrow strike-slip fault embedded

in the realistic crustal structure shown in figure 3.21.

The fault is 16 km long, 4 km wide, and has a burgers vector

B =- (0,1,0). The depth to the top edge of the fault is 3 km.

Sample sizes used: AX1 = 1 km, AX 2 = 2 km.

(b) Model RVDS - a dip-slip event embedded in the realistic

crustal structure. L = 16 km, W = 8 km, B = (0,1,0), and

D = 3 km. Sample sizes: AX1 = .6, AX2 = 1.5 km.
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Fiqures 3.23-3.25

Comparison of model RVSS (a) with the solutions for a

half-space (X) with elastic properties of the second layer

in the realistic crustal model (v = .24). Profiles are

taken at x 2 = 4 km.
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Figures 3.26 - .29

Comparison of displacements for model RVDS () with

displacements of a homogeneous half-space model (X) with

elastic constants equal to those of the second layer of

the realistic cruE:tal structure (v = .24). Profiles in

figures 3.26, 3.27, and 3.29 are at x2 = 6 km. The profile

in figure 3.28 is at x2 = 1.5 km.
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Figure 3.30

(a) Model ROSS - oblique strike-slip fault embedded in

realistic crustal structure. Fault parameters are

L = 13.5 km, W = 8 km, dip angle = 30° , D = 3 km, and

B = (0,1,0). Sample sizes used in the numerical calculations:

AX 1 = .6 km, AX 2 = 1.5 km.

(b) Model RODS - oblique thrust fault embedded in realistic

crustal structure. The fault parameters and sample sizes

are the same as those in (a). B = (.866, 0, .5).



(I)

(2)

(3)

(4)

(5)
(a)

(b)

Figure 3.30

SURFACE

MODEL

ROSS

i 42

SURFACE

MOtD. L

RODS

(I)

(2)

(3)

(4)

(5)

� _ Lr WI1 _ _ _ Lli _.IIII. I�-DII
.I-__ - --- s�- U·ll

- --

I
"I.- m

-



143

Figures 3.31 - 3.33

Comparison of displacements from model ROSS (o) with

half-space solutions (X).
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Figures 3.34-3.37

Comparison of displacements for model RODS (o) with

those of a homogeneous half-space (X) with v = .24. Note

the aliasing apparent in the u1 component (figure 3.34).

Aliasing in this component will not affect our results for

the other components (compare figures 3.4-3.7 for the test

case).
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Figure 3.38

Model VASS - strike-slip fault penetrating a hard

surface layer ( = 3.12 x 10ll dynes/cm 2 = 3.55 x 10

cynes/cm2) overlying a soft half-space ( = 1.12 x 1011

dynes/cm2, = .3 x 1011 dynes/cm2). The fault parameters

are L = 300 km, D = 15 km, W = 80 km, and B = (0,1,0).

Sample sizes used in the numerical calculation: AX1 = 5 km,

AX 2 = 50 km.
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F. e s 3: , es 3 9- 3 

Compariso-l of displacements of n odel VASS () with

those of a half-space model (x) with elastic constants equal

to those of the hard layer in model VASS. The effect of the

soft underlying lyer is to extend the range of the displace-

ments. This in turn makes our solutions more sensitive to

the edge of the Fourier box. The resultant aliasing is most

apparent in the ul component (figure 3.39). The profiles

for figures 3.39-3.41 are taken at x2 = 50 km. The profile

in figure 3.42 is taken at x2 = 200 km.
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Figure 3.43

Model VAC - dislocation model in which the sides of the

dislocation are pulled away from one another. This dislocation

will be used in Chapter IV to model the collision of

lithospheric plates. The elastic properties are the same

as those used in model VASS. The fault parameters are

L = 80 km, W = 80 km, D = 15 km, and B = (1,0,0). The

sample sizes used in the numerical calculation are:

AX1 = 5 km, AX2 = 5 km.
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Figures 3.44-3.48

Comparison of displacements for model VAC (o) to those

of a half-space model (X) with elastic constants equal to

those of the harder surface layer. Figures 3.44, 3.45, and

3.47 are profiles taken at x2 = 20 km. Figure 3.46 is a

profile at x2 = 80 km and figure 3.48 is at x2 = 180 km.

The field parallel to the Burgers' vector (ul in figure

3.44) is the least affected by the soft underlying layer.

The u2 and u3 components show large changes from those of

the half-space model.
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Figure 3.49

Shallow fault model in a thick lithosphere (80 km). The

fault is 5 km deep and 25 km wide. = (0,1,0) and L = 56 km.

Two cases are examined for this model. The first consists of

a hard lithosphere (A = 8.05 x 1011 dynes/cm 2 , = 6.58 x 1011

dynes/cm2) overlying an extremely soft half-space ( = 1.12 x

10 dynes/cm2 = .3 x 1011 dynes/cm2). The second case

consists of the hard layer over a half-space with elastic

parameters consistent with those of the low velocity zone in

the Basins and Range province as determined by Herrin (1972).

The half-space parameters in this case are = 8.45 x 1011

dynes/cm 2 and = 5.86 x 1011 dynes/cm 2. Sample sizes are

AX1 = 2.5 km, AX2 = 5 km.
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Figure 3.50 - 3.52

Comparison of displacements for the model shown in

figure 3.49' (a) with those of a half-space (X). The elastic

constants for the half-space are the same as those of the

lithosphere. The asthenosphere is extremely soft in this

model. The profiles are taken at x2 = 5 km.
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Figures 3.53-3,55

Comparison of displacements for the lithosphere -

asthenosphere model shown in figure 3,49 (a) with those of a

homogeneous half-space with the same properties of the

lithosphere (X). In this case the elastic properties of what

we are calling the asthenosphere are consistent with seismic

observations ( = 8.45 x 1011 dynes/cm 2, = 5.86 x 1011

dynes/cm 2). Profiles are at x2 = 5 kmin
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CHAPTER IV

A Dislocation Approach to Plate Tectonics

4.1 Introduction

One of the primary goals of any program to predict

earthquakes should be a study of the resultant strain

accumulation due to the interaction of lithospheric plates.

The U.S.G.S. is presently engaged in this problem from a

standpoint of the analysis of geodetic data. Theoretically,

however, little has been done because of the difficulty

involved in posing the problem. We now present a method of

modeling plate interaction in terms of dislocation theory

and apply the method to two regions of the San Andreas fault

system in California.

The development of the general modeling scheme for plate

interaction is important because it will (1) allow us to gain

a more detailed picture of the nature of the strain accumulation

around a locked fault and (2) give us a means of quantitatively

assessing the strain state of various segments of active fault

zones. We shall first construct dislocation models of the

section of the San Andreas fault in central California. This

area is of interest because of its fault creep and because of

a small bend in the fault just south of San Francisco. The

second area of study will be the "big bend" in the San Andreas

th at occurs in southern California. The influence of this
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bend upon tihe surroundinq regions wigl be the major point of

consideration.

In order to apply dislocation theory to the problem of

plate interaction we will define a special class of dislocations

called nti-disloc;i tions (no relation to those used in the

physics of solids). Once a plate problem has been posed in

terms of anti-dislocations it can be converted to another form

using what we shall call equivalent dislocations. We now wish

to give a derivation of the above process and a discussion of

the assumptions involved.

4.2 Anti-Dislocation Models of Plate Interaction

The development of plate tectonics has given geophysicists

a fundamental understanding of earthquakes in terms of relative

plate motions (Wilson, 1965; Isacks, Oliver, and Sykes, 1968;

Brune, 1968; Wyss and Brune, 1968). A ph'iysic mechanism for

these earthquakes is that of stick-slip proposed and studied

in a series of papers by Brace and Byerlee (1966, 1968, 1970).

Stick-slip offers a sound explanation for the shallow focii of

earthquakes along a fault zone such as the San Andreas (Brace

and Byerlee, 1970) in terms of the depth variation of the lock-

release mechanism with pressure and temperature.

It is the success of stick-slip and the observation that

most of the large earthquakes and relative movement in

California occur on pre-established faults (Allen et al., 1965;
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TOcher, i958) that lead us to assume that the tectonic

mechanism primarily responsible for large earthquakes along

the San Andreas and similar fault zones is the locking inter-

action of plates in relative motion.

The earliest qualitative suggestion of the cause and

nature of the strain accumulation around a locked fault was

made by Reid (1910)1 in an analysis of the geodetic data

collected before and after the 1906 California earthquake.

The first quantitative description of the internal pre-stress

associated with an earthquake was suggested by Whipple (1936).

lie derived the solution for a point strike-slip dislocation

and suggested that the stress release of the dislocation model

must be of the same form (only with opposite signs) as the

pre-stress that exists before the earthquake.

In one of the earliest attempts to study the interaction

of earthquake and tectonic fields Smith and Van de Lindt (1969)

assummed a constant stress boundary condition at the edges of

the plate. However, recent studies of the strain accumulation

(via geodetic data) across the San Andreas fault have led to

the use of the dislocation as a model for the internal strain

accumulation due to strike-slip forms of plate interaction

(Scholz and Fitch; 1969; Savage and Burford, 1970). The

extension of dislocation theory to the problem of general

orms o liate interaction was first made by this author at

.s geinerai examination {M.I,?.E 1972P and presented at he
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*Dr i gr A:i -.. ,1 ct ai 972)e We ow wish to give a

dcetai ed deriv .ion of the results of hose talks. In

particular, we shall examine the problem or plate interaction

and show how to pose the problem in terms of dislocation theory.

Consider the wo elastic plates, A and B, shown in

i;ure 4 (a) v-Yftic>h together form one large plate. We shall

assuiime here th-a the width and length of the combined pates

are iarqe enoL,_< to allow us to eglect the effects of the

edges of the plate. This assumption is not a necessary one

but it simplifies the following discussion. The term "plate"

should be clarified as to its use in this chapter. The top

surface of the plate is a free surface while the bottom surface

is an interface between the plate and an elastic (or an-

elastic) half-space with the same or different elastic (or

anelastic) constants. If the two plates shown in figure

4.1(a) move in opposite directions withoat friction along their

interface we have relative rigid be 'y motion. Since sliding

never occurs in nature without friction, we made allowance for

this fact by defining our zero strain state as that state that

exists when the plates are in a condition of "stable sliding"

(Brace and Byerlee, 1970). With this understanding, plates

that are stably sliding past one another are in relative "rigid"

body motion. "Rigid" will be defined throughout this chapter

in terms of the zero strain state given above. Since stable
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sliding varies according to rock type and temperature (Byerlee

and Brace, 1968), the zero strain state, and therefore the

reference state, should not be uniform over the length of the

fault. In this thesis we neglect these predicted regional

variations of the reference strain state.

The relative "rigid" body motion of A and B in figure

4.1(a) can be simply described by simply stating the displace-

ments of A and B over a period of time. However, it will be

to our advantage to describe this motion by means of disloca-

tion theory. We shall begin by making a short review of

dislocation theory.

Let us make an imaginary cut in an elastic solid, apply

forces to distort the two sides of the cut, and require that

the final configuration be in equilibrium. We define this to

be a dislocation (Maruyama, 1964). In reality, it is nothing

more than a boundary value problem with the displacements

specified on the two surfaces of the cut. If we designate the

surface along which the cut is made as A, the solution is

(Maruyama, 1964)

4. Um= f AuR Wkl V1 dZ
Y A
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' s. ac(-ent d ccont' l l .t ' (Burgers' -.ector) in the k-direction.,

-u is the -corm.ponent of the normal to the surface A and

Wkl is he Green's function for the problem,

We now proceed to formulate the problem of relative "rigid"

body motion in terrs of dislocation theory by merely letting AU

represent the constant displacement discontinuity on the semi-

infinite surface AB (figure 4,1(b). The solution for the

plate A .s

1 A m
4.2 U ={ Auk Wkl V d +{ Uk Wkl V1 d

AB Am
where the Wkl is the Green's function for a homogeneous half-

space (or any other configuration of elastic or viscoelastic

media). The first integral in equation 4.2 represents the

contribution to the displacements from the interface. The

second term represents the effects of the bottom of the plate,

In cssence we have also introduced a dislocation between

plate A and the half-space below (with Uk as the displacement

discontinuity). Implicit in equation 4.2 is the assumption

that the final configuration be in equilibrium (no stress

discontinuities allowed), A similar solution holds for plate

B. We have thus described the relative "rigid" body motion by

making a sem-infinite cut in our half-space (or in any other

form of media) and specifying the relative motion of the two

sides of the car and the bottom of the plate,

~of consider the situation shown in figure 4 (c) C:f two

elastic lates, A and B, attempting relative "rigid' body motion



with a certain portion, of their interface, AB' locked.

The dislocation solution to this problem (for plate A) is

m m
4.3 Um Auk Wkl w d + uk Wkl V d

AB C A

where the first integral is over the unlocked portion of the

interface. This particular kind of dislocation, i.e., one

which would represent relative "rigid" body displacement

were it not for a finite locked portion of the interface, is

defined to be an anti-dislocation. Anti-dislocations are ideal

for modeling the locking interactions of plates in relative

motion.

We can avoid integrating over the surface EAB-7c and the

semi-infinite surface A or B) by adding appropriate rigid

body displacements to each plate. When we add these rigid

body displacements, we must account for the addition by

changing the specified displacements on the interface. We

can therefore convert the anti-dislocation into an equivalent

dislocation on the complimentary surface (the locked portion)

with a displacement discontinuity in the opposite direction to

that of the anti-dislocation (figure 4.1(d)). Thus, an

eqi_>alent soution to that qcven n equation 43 is

4, g = - ? ' , .ukWkl '" dZ I u
,J_~~I



where - i'm '- !rJe added elative rig:id body displacement. By

taking the appropriate derivatives of equation 4.3 with respect

to the observation point, we obtain for the strains due to

the anti-dislocation

_ mn fdAZfVTMmn
~4.5 Emn f AUk Tkl 1 dZ + f Uk Tkl 1 d

ZAB C A

mn, mwhere the Tkl s are the derivatives of the Wkl 's (Maruyama,

1964). The strains obtained from equation 4.5 should be the

same as those obtained by differentiating equation 4.4

4.6 E = - f AU Tmn d
mn Z k kl 1

c

The equivalence of equations 4.5 and 4.6 shows that if we

wish to calculate the strain for an anti-dislocation, we need

merely calculate the negative of the strain f.L.m a dislocation

on the complimentary surface. A different approach to the

above derivation may be found in Chapter II.

The equivalence between the two solutions may be thought

of as the dislocation equivalent of Babinet's principle in

optics for complimentary diffracting surfaces (Sommerfeld,

1964). In fact, we may state the above principle in the

following form: the fields from an anti-dislocation and its

equivalent dislocation add to give relative 'rigid" body motion

(zero strain with respect to our reference .state).
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4.3 Application to Plate Interaction

The above concepts may now be used to calculate the strain

from the locking interaction of plates in relative motion. The

simplest form of plate interaction is of the form shown in

figure 4.1(c) where the plates slide past one another at depth

but are locked near the surface. Figure 4.2 shows the resultant

shear strain profile that would be observed across such a fault

model on the surface. This simple model for strain accumulation

has been used by Scholz and Fitch (1969) and Savage and Burford

(1970) to study strain accumulation along the San Andreas.

We now extend these ideas to more complicated plate

geometries. Consider figure 4.3(a) where plates A and B have

the irregular interface shown. If the displacement of each of

the plates is as shown by the solid arrows then the equivalent

dislocation surface S will have the relative displacements shown

by the dotted arrows. Thus the model of this form of plate

interaction consists of an anti-plane dislocation on the surface

S and simple shear dislocations on the other two surfaces of

the form discussed in figure 4.1. As can be seen from the

example in figure 43(a) the general problem of plate interaction

can require the use of some rather complex dislocations.

It is useful at this point to consider some of the

assumptions inherent in the model shown in figure 4.3(a). The

jog in the interface between plates A and B may be similar to

that of the San Andreas near the Tehachapi Mountains in
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California. If plate B is the Pacifi(c plate and plate A is

the North Ameri.can plate then the area around the bend is one

of anelastic deformation and mountain building (in this case

the Tehachapi Mountains). Figure 4.1(b) shows a side view of

the proposed model. The displacements on the bottom of the

plate are uniform if we are far away from the zone of conver-

gence but gradually decrease to zero as we approach the

anelastic zone. We associate with the anelastic zone two kinds

of strains. The strains denoted eij are elastic strains and

satisfy (along with the strains outside of the anelastic zone)

the compatability conditions (Fung, 1965). The strains

denoted ej are called transformation strains and represent

the anelastic deformation (Eshelby, 1957). By the addition of

relative rigid body displacements the problem in 4.3(b) may be

converted to the one shown in figure 4.3(c). The problem as

posed can be related to the problem of an elliptical inclusion

as studied by Eshelby (1957). Thus, in figure 4.3(c) the

anelastic zone corresponds to an inclusion which has undergone

T
an anelastic expansion. The strain e.. represents the trans-

formation strain or the anelastic strain the inclusion would

experience if it were not imbedded in the elastic medium (in

this case plates A and B). The elastic strain eij is a result

of the interaction of the inclusion with the elastic plates.

If, for the moment, we make the assumption that the fall off of
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displacements on the bottom of the plate takes place over a

distance which is small in comparison to the other dimensions

considered in the problem then we may neglect any integration

over the bottom of the plate. If we also assume that the

thickness of the anelastic zone (inclusion) is small in

comparison with the other dimensions of the problem then the

inclusion problem reduces to a dislocation (Eshelby, 1957)

with the anti-plane displacements shown in figure 4.3(d).

Figure 4.3(d) is a side view of the model shown in figure 4.3(a).

With the assumptions described above a simple model of a

very general class of plate problems can be handled. The

validity of the assumptions depends implicitly on the time scale

of the problem. If we are considering the problem of plate

interaction over a couple of hundred years then the thickness of

the anelastic zone should be a few meters and the assumption of

a thin anelastic zone is justified. Neglect of the effects on

the bottom of the plate may not be justifiable for the same

time periods. In this thesis we restrict ourselves to the

simplest possible models and resort to the inclusion of the

effects of the plate bottom only when the simpler models are

found to be inadequate.

In order to compute the strains from the dislocation

models described we shall use the method described in Chap. II

which is based on the work of Comninou (1973). In particular,

we se he angular dislocation shown in figure 4.4(a) to



construct n ;'ii,:cations figure 4.4(b)). The dislocations

are then used to construct general polygonal dislocations

(e.g. figure 4.4(c)). We shall describe our models by giving

the latitude, longitude, and depth of each corner of the

dislocation in the sequence which will describe the sense of

the dislocation as described in Chap. II (figure 4.4(d)).

The Burgers' vector will be given in a cylindrical coordinate

system referenced to a cartesian coordinate system with the

positive y-axis pointing north, the positive x-axis pointing

east, and the z-axis pointing up. The azimuthal angle

B,, of the Burgers' vector is measured positive clockwise from

North and the radial component, Br is the absolute value of

the toLal horizontal Burgers' vector

2 2 1/2
B = (B L B)
r x y

Two components of strains (x10- 7) from a -odel like the

one shown in figure 4.4(d) are contoured in figures 4.5 and

4.6. The model parameters are given in table 4.1. Figure 4.5

shows the shear strain E12 in a coordinate system with the

positive x axis pointing N450 E and the positive x2 axis

pointing N45°W (negative shear strain corresponds to a right

lateral shear on the San Andreas). Figure 4.6 shows the E22

strain in the same coordinate system. This simple model is

not intended to be a model of the San Andreas but it will be
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constructive at this point to point out the similarities and

differences between the two.

The shear strain pattern (figure 4.5) is probably quite

similar to that of the San Andreas. The E22 component of

strain shows compression in the Tehachapi Mountain - Transverse

Range region of California while the area towards the Basins

and Range Province is put under a NW-SE extension. These

features are in general agreement with the inferred tectonics

of California (Savage and Burford, 1970, other refs.). However,

a major difference occurs off the coast of Santa Barbara where

compression occurs rather than extension as predicted from the

model. This difference is important and will be discussed later

in the chapter. We are now in a position to apply the concepts

introduced in this section to the calculation of the internal

strain generated by the locking interaction of plates in relative

motion.



4.4 Hayw,-rd, C-].averas-,an Andreas nasult Zone

4..1 . ntrodu r: tion

One of the primary goals of surface geodetic measurements

in California is the detection of strain accumulation along

the various portions of the San Andreas. However, the

evaluation of geodetic measurements in regions exhibiting

faulit creep has not yielded a unique interpretation (Scholz

and Fitch, 1969, 1970; Savage and Burford, 1970). One of

the problems consists in making an accurate assessment of

the role fault creep plays in releasing the strain that

would be accumulating if the top 15 to 20 kilometers of the

fault was completely locked. Toward a further understanding

of this problem a fault model of the bend in the San Andreas,

which occurs in the general vicinity of San Juan Bautista,

California (hereafter referred to as the SJB bend), will

be used to determine (a) to what exten the end contributes

to the tectonics of the region a (b) how the strain

accumulation observed by geodetic means is effected by

near-surface fault creep. Of particular importance and

relevance to question (b) is the question of whether or

not strain can be accumulating for a major earthquake and

still not be detected by geodetic measurements. This

question will be studied by allowing the near-surface portions

of the faults in the region to slip while the deeper portions

are locked without slipping. The resultant strains are
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easily calculated and added by the method described in

Chapter II.

4.4.2 The SJB Bend

The particular area of interest to us in this section

is shown in figure 4.7. The data for this figure was taken

from a fault map of California compiled by Hill, et al.

(1969). The major faults in this area are the San Andreas,

the Calaveras, and the Hayward faults. Although most of the

earthquakes and creep occur on these three faults there is

some question as to the role of other faults in the area

such as the Seal Cove-San Gregorio fault (Bolt et al., 1968)

and the Sargent fault (Burford and Savage, 1972).

One of the most puzzling features in this region of

California is the bend in the trace of the San Andreas south

of San Francisco. The SJB bend has been described as a locking

mechanism of the San Andreas fault in central California by

Farrington and Myers (1973). Udias (1964) has suggested that

the bend is responsible for the misalignment of the aftershocks

of the 1963 Salinas-Watsonville earthquakes with the San

Andreas. Bolt et al. (1968) have described the bifurcation

of the San Andreas into the San Andreas and Calaveras as a

possible cause of the earthquake clustering in this region.

Burford and Savage (1972) have described the tectonics of

this region in terms of a crustal wedge caught in between
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i:AlU- San ndr.-m~ ;and the -ayward-Calaveras fault zone. rT!he

feature we ave described can be more clearly seen in

figure 4.8. It is a 112 km long bend in the main trace of

the San Andreas. The southern tip of the bend is 30 km

southeast of Hollister (near Bear Valley) where the San

Anidreas changes from a strike of N400 W to N480W. Near

Black Mountain, which is approximately 105 km to the

northwest, the fault bends eastward to N350W. Farrington

and Myers (1973) suggest that this westward shift

(approximately 20 km) of the San Andreas is an area where

the Pacific and North American plates impinge and do not

slip freely by one another.

However, the surface trace of a fault may not be

representative of the tectonics in a region (Richter, 1969;

Richter and Nordquist, 1951). For example:(l) the seismic

events at depth may not be directly reflected in the surface

geology,(2) the seismic history of a region may not be long

enough to adequately define the secular seismicity and its

relation to the faults in the region, (3) earthquakes may

not occur on pre-existing faults and,(4) from geologic

evidence alone, it is difficult to define the degree of

"activity" of a fault (Allen et al., 1965). In addition,

there is the possibility that the fault trace is an older

feature and is not representative of present day tectonics

(McKenzie, 1969; Raleigh et al., 1970). In order to find
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out:(1) if the bend is a deep seated feature and,(2) if the

bend is responsible for the tectonics of central California,

we now model the SJB bend using the dislocation modeling

scheme presented in Chapter II.

To model the bend the dislocation line is made to follow

the edge of that portion of the interface between the Pacific

and North American plates which is assumed to be locked.

Because the normal forces are going to be greater at the bend

the locked area in this region is expected to extend to

greater depths than in those areas where the relative motion

is simple shear. It is customary to assume that since

earthquakes do not occur below depths of 15 to 20 kilometers

in this region that the fault does not lock below this epth.

However, if the fault locks at approximately the same depth

all along the San Andreas then we shall have a difficult

task of explaining the variation of strain rates along

the fault. For example two stations on opposite sides of

the San Andreas in the area of the Carrizo plains show

little (if any) relative motion (indicating a low strain

rate) whereas just the opposite is true along a neighboring

portion of fault between Parkfield and Cholame (Savage and

Burford, 1970). If we restrict ourselves to the assumption

of locking at a constant depth then we must explain the

variation in strain rates along the San Andreas as a real
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This leads to i rather complicated, nd perhaps unexplainable,

model of the driving forces of the plates. On the other hand,

if we allow the depth of locking to vary along the fault,

then we may explain the variations of strain rates using the

assumption of constant relative plate motion. To be more

specific we assume that the San Andreas locks to a much

greater depth in the Carrizo plains than does the San

Jacinto in southern California.

Implicit in the assumption of variable depth of locking

is the assertion that episodic aseismic slip occurs at

depths below 20 kilometers. Scholz et al. (1972) have found

in the laboratory that a condition of episodically stable

sliding occurs between stick-slip and stable sliding. Thatcher

(1975) has determined from the analysis of geodetic data that

considerable aseismic slip occurred at deptn after the 1906

San Francisco earthquake. When ti:e proposed aseismic slip

occurs at depth before an event it will load the near surface

region: (1) accelerating the surface fault creep (Nason, 1973),

(2) yielding precursory tilts and/or strains (e.g. Allen and

Smith, 1966; Prescott and Savage, 1974; Mortensen and

Johnston, 1974; Johnston and Stuart, 1974) , and will have the

effect of increasing the seismic activity in the region

(Wesson and E.llsworth, 1973). Stuart and Johnston (1974)

hae,. determined that the moments for the precursory slips
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before the earthquakes were approximately ten times the

moments of the earthquakes.

In summary, we propose as a model to be tested for

consistency a fault that is capable of locking to great

depths (greater than 20 kilometers). In making the

proposal we shall assume a modified version of the forms

of slip as a function of depth on a fault that has been

proposed by Scholz et al. (1969). In the near surface

region (zone 1) the fault may slide by stick-slip or

episodically stable sliding. The type of sliding will

depend upon rock type and stress state (and perhaps loading

rate). In zone 2 the sliding is predominantly stick-slip

(earthquakes). Zone 3 represents the deviation from tne

zone of Scholz et al. (1969). We assume that it is a zone

of episodically stable sliding. The deepest zone (zone 4)

is of stable sliding. The depths and widths of these zones

must certainly depend upon the time scales involved. For

example over a period of several thousand years the whole

fault interface could be viewed as a zone of stable sliding.

For time periods on the order of 100 years or less we

propose that all four zones exist. Thus along certain

portions of the San Andreas zone 3 will be in a state of

sliding while in other areas it will be locked. We shall

thus use the depth of locking as a variable in our models.

Earthquakes will then represent one of the later stages of
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uniockin% of : uch lI ar region i/.nderson and Perkins,

1974).

In figures 4.9, 4.10, and 4.11 the tensor strain

contours are plotted for the SJB model given in table 4.2.

The Pacific plate is assumed to have moved 5 meters N45°W

with respect to the North American plate. The difference

in shear strain between this model and a straight fault

are insignificant (figure .9). The primary point to be

noted is the apparent displacement of the maximum shear

(in the coordinate system given) from the main trace of

the San Andreas. This effect shows up in the data of

Savage and Burford (1970) which will be discussed later.

The important difference between a simple shear fault and

the SJB bend model occurs in the ell and e2 2 strains. (All

strains are referred to a coordinate system in which

positive x points N450E and positive x2 points N450W.)

The e22 (figure 4.10) strains indicate a regional N450 W -

S45°E extension. The extension is small and is not altered

significantly by changing the direction of the relative

motion between the plates. On the other hand the ell strains

are very sensitive to the direction of relative plate motion.

Assuming that the Pacific plate moves N450 W with respect

to the North American plate we see in figure 4.11 that the

ell strains are principally N450E - S450 W extension with a

sli'ht compression in the vicinity of the San Andreas. If
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the Pacific moves N300 W into North America then the ell

strains become compressive with the maximum compression

occurring in the vicinity of the San Andreas. Thus, a

primary test of which direction the Pacific is moving

with respect to the North American plate is the principal

stress (or strain) direction determined by the result

(Fung, 1965)

e = tan - 1 [ 2 E12]
Ell- E2 2

For most angles of relative motion (around N450W) the E2

strains are large and negative while the E22 strains are

small and positive. If the relative motion between the

two plates is mostly shear then both Ell and E2 2 are small

and the above equation yields a North-South principal axis

of compression. If the Pacific moves N500 W with respect

to North America then the Ell strains become larger and

positive causing the principal axis of compression to

rotate to a Northwest-Southeast position. If the Pacific

moves into North America at an angle of N30°W then Ell

becomes larger and negative rotating the principal axis

of compression from a North-South position to a NE-SW

position. A point to be discussed later is the fact that

a thin fault (locked to a shallow depth) generates a very

large negative strain. This makes the principal axis of
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compression insensitive to the direction of plate motion.

Thus the thicker the fault the greater the rotation of

the principal axes of compression when the relative motion

of the plates is rotated.

We now attempt to see if any general pattern of

principal compression axes may be developed from earthquake

focal plane solutions for the area. In figure 4.12 we have

plotted the principal axes of compression as inferred by

the author from the works of Bolt et al. (1968), Mayer-Rosa

(1973), Ellsworth (1975), and Green et al. (1973). The

numbered events correspond to those studied by Bolt et al.

(1968). Event 1 is the 1966 Parkfield earthquake. Event 2

is approximately 25 kilometers from the main trace of the

San Andreas. It is consistent with right lateral motion

on a fault parallel to the San Andreas. Event 3 represents

a cluster of events in Bear Valley. It is consistent with

right lateral slip on the San Andreas. Events 4 and 5

occur in the SJB bend area. Both events depart from vertical

planes and dip 65°-75° to the Northeast. Both are consistent

with right lateral slip. The dip-slip component of number

4 could not be determined but number 5 showed a downward

motion of the southwest block. Events 6 and 7 represent

event clusters at the intersection of the Calaveras and

HaTy..ard faults. The pressure axes are consistent with slip

on the-se faults. Event 8 deviates from the fir-t seven
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strike-slip events studied by Bolt et al. (1968). It is

predominantly dip-slip and is consistent with reverse

faulting. Event 9 is coincident with the San Gregorio

fault (figure 4.7.). It is consistent with predominantly

right lateral strike-slip motion with some reverse com-

ponent on a fault steeply dipping to the east. Although

events 10 and 11 are approximately 3 kilometers apart,

their fault plane solutions are significantly different.

Event 10 may be associated with strike-slip motion on the

Pilarcitos (figure 4.7) while event 11 is similar to event

8 which is consistent with a predominantly reverse dip-

slip motion on a near vertical fault dipping to the north-

west. The first motion data in the case of 8 and 11 do not

allow us to firmly distinguish between the normal or reverse

solutions. However, the reverse solutions yield pressure

axes which are consistent with the other events in this

region and these axes are plotted. This is in agreement with

the solution chosen for event 11, the 1957 San Francisco

earthquake, by Tocher (1959). Event 12 represents a cluster

of events associated with the Hayward fault. The fault

plane dips about 500 to the northeast but is predominantly

strike-slip. Event 13 represents the main shock of the

1965 Antioch sequence and is very similar to event 12 but

is consistent with faulting in a more northerly direction

than the Hayward. Events 14 and 15 north of San Francisco

Bay occur in the Northern Coastal Ranges away from the San
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Andreas. -3olth re conistent with o'ight lateral motion with

some reverse component on faults dipping 700-800 to the

Northeast.

Events a, b, and c represent composite focal mechanisms

presented by Mayer-Rosa (1973). Event b represents a

cluster of events on the Silver Creek fault (figure 4.7)

near the intersection of the Silver Creek with the Calaveras

fault. The fault planes for this event are not aligned with

the Silver Creek fault or the Calaveras fault. Events a and

c represent composite focal mechanisms for segments for events

on the Calaveras north and south respectively of the Silver

Creek-Calaveras intersection. These events are consistent

with right lateral motion on the Calaveras.

Events u and v represent a summary of the events in

Bear Valley studied by Ellsworth (1975). The events summarized

by u are coincident with the San Andre s and yield right

lateral strike-slip. However, th se events (v) that occur

between the San Andreas and the Paicines-San Benito faults

(not shown in figure 4.7) show a significant rotation of

the pressure axes with respect to those that occur on the

San Andreas. Ellsworth (1975) explains this in terms of

the local coupling between two parallel dislocations, the

San Andreas and the Paicines-San Benito faults.

Events r and s summarize two event clusters studied

by Crecn a' . (1973) which have occurred in Mon tcreov Bay.
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The pressure axes for both of the events is N-S and these

events represent right lateral strike-slip on a fault

parallel to the San Andreas.

The general pattern of pressure axes seen in figure 4.12

is a rotation of the pressure axes from a predominantly north-

south direction south of the SJB bend to a more northeastern-

southwestern direction in the vicinity of San Francisco and

perhaps a rotation back to a north-south direction north of

San Francisco (event 15). In view of considerations put

forward by McKenzie (1969) and Raleigh et al. (1970), it is

difficult to argue that the pattern in figure 4.12 is

representative of anything more than earthquakes on pre-

established faults. To be more specific, they have shown

that the true principal stress directions can vary by large

angles from those estimated from fault plane solutions when

the earthquake occurs on an established fault. If this is

true then our earthquakes are insensitive to the direction of

the pressure axes. However, events 2, 13, 14, 15, b, and v

have no clear association with pre-established faulting in

their areas. Further confirmation of this apparent trend

comes from the geodetic data of Savage and Burford (1970,

1973). South of the SJB bend area the relative motion of

geodetic sati o n is ipr-marily compressive in a north-south

sense and extensive in an east-west sense (consistent with

right-lateral strain accumulation on the San Andreas).
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(1, 2, and 3 in figure 4.14) have been pointed out by Savage

and Burford (1973) which are not consistent with accumulation

of right lateral shear on a plane parallel to the San Andreas.

Instead, lines 1 and 3 (see the lines in figure 4.14)

show extension while line 2 shows compression in a more north-

west direction. Thus the rotation of the pressure axes is

consistent with the geodetic results (even though the first

motion data must be contaminated by the pre-established

faulting). However, the rotation may be exaggerated in the

geodetic data by creep on the Hayward fault. In figure 4.13a

we show the theoretical pressures axes for the SJB bend model

given in table 4.2. However, Lhe Pacific is ssumed to rituve

N25°W (B = 1550) with respect to North America in order to

rotate the pressure axes in the clockwise direction from north-

south. A schematic of the model is show- in 13b. This

model shows the apparent sensitivity of the direction of the

pressure axes to the deeper section of locking on the SJB bend.

However, this model does not significantly rotate the pressure

axes in the vicinity of San Francisco Bay as is observed both

in the fault plane solutions and the geodetic data. By allowing

the northern section of the fault to lock to a greater depth

(40 km) the amount of the rotation is increased in the Bay area

and the agreement between this model and the data is as well as

can e e-ected for such a simple model (Figure 4. 4) . The
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depth of locking must begin to increase in the general area

on the San Andreas north of Watsonville and reach a maximum

depth under San Francisco. North of San Francisco Bay the

data is scarce but te depth of locking must be shallow in

the vicinity of Fort Ross (near Ross Mountain in figure 4.12)

in order to explain the high strain rates (.55p strain/year)

reported by Meade (1971) (Savage and Burford, 1973). The

depth of locking in this area is 9 km (Savage and Burford,

1973) assuming 3 cm/yr of relative motion between the plates

or 15 km assuming 5 cm/yr. The north-south pressure axis of

event 15 agrees with this general interpretation. Thus we

conclude that the fault locks to shallow depths near

HoullisteL and F. Ross but extends to deptLis of at least

40 km in the area of San Francisco. This result will be

discussed further in the next section on fault creep.
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4. 4.3 Strain Release of Fault Creep

We now wish to consider the role of fault creep in

central California and its effects upon the geodetic

measurements. In particular we pose the question of how

much of a fault can be locked and still be undetectable

by geodetic measurements.

One of the earliest observations in California of

fault slip without earthquakes was made at the Buena Vista

thrust fault near Taft, California when Kock (1933) reported

the bending of oil pipes. However, an active interest in

the subject did not develop until fault slip was discovered

at the Cienega Winery near Hollister, California (Steinbrugge

and Zacher, 1960). The first instrumental recording of fault

creep was made by Tocher (1960). The earliest report of

fault creep on the Haywa.-d fault was made by Bonilla (1966).

A comprehensive review and compilation of the observations on

fault creep in California may be found in the thesis by Nason

(1971). For completeness we include here a presentation of

the data for central California as presented by Nason (1971,

1973). In the discussion on the Hollister region the most

recent measurements by Spieth et al. (1974) will be used.

The actively creeping faults are shown on the map in

figure .15. The northernmost portion of the n Andreas
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is locked from Pt. Arena to Watsonville with the possible

exception of a small segment near Daly City. From Watsonville

to San Juan Bautista the creep rate increases gradually from

.3 cm/yr to .5 cm/yr. Just south of San Juan Bautista the

creep rate shows a rapid increase from .5 cm/yr to 1.2 cm/yr.

South of this rapid increase in creep rate the rate continues

to gradually increase until it reaches a maximum (5 cm/yr?)

approximately halfway between San Juan Bautista and Parkfield.

North of San Francisco Bay the path of the Hayward

fault is unknown. It is thought to join the Rogers Creek-

Healdsburg fault north of San Pablo Bay. From San Pablo to

Fremont the Hayward is actively creeping. South of Fremont,

however, the path of the Hayward is uncertain. It may join

the Silver Creek fault southeast of San Jose.

The Calaveras fault is apparently locked from San

Francisco Bay all the way to the vicinity of Anderson

Resevoir. At Anderson Resevoir the creep rate is 1.2 cm/yr

and increases southward until it reaches a point just north

of Hollister. An interesting point that should be noted

in this data is that the creep rate on the San Andreas picks

up in the vicinity where the creep rate decreases on the

Calaveras. This is indicative of a coupling between the two

systems which will be explored later. South of Hollister,

the path of the Calaveras becomes uncertain. It may become

the Paicines fault (not shown in figure 4.7) which is 2 km
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We now present some simple models of fault creep in order

to examine the effects of creep upon surface geodetic

measurements.

In figure 4.16 we show the shear strain year profile

expected across the middle of a 300 km long fault which is

locked to a depth of 20 km. Slip is assumed to occur below

20 km at the rate of 5 cm/yr. Curve A represents the model

with no fault creep. If we allow for 3 cm/yr of slip on the

top 10 km of the fault the strain over the fault develops a

trough which can even give the appearance of a strain

accumulation in the opposite sense to that which is accumulating

at depth on the locked section (curve b in figure 4.16).

To further investigate this effect we wish to present some

simple two dimensional models of a locked fault with surface

creep. The models will be constructed from srew dislocations.

Thest simple models will allow s to clearly state the effects

of fault creep in terms of analytic solutions.

The displacement for a screw dislocation in an infinite

medium is (Weertman and Weertman, 1964).

4.7 W(x,y) b tan-l(x)
2 Y

where b is the burgers vector and the dislocation line is

parallel to the z axis. If tan- 1 is taken from - to ,
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then the surface of discontinuity for this solution points

along the negative y axis. If we allow the positive y axis

to point down into the half-space, the half-space solution

may be obtained by subtracting an image with a surface of

discontinuity pointing in the same direction (figure 4.17a).

This reduces the stresses on the free surface to zero and

yields

4.8 W(x,y) - 2 [tan (y-d) tan (y)]

for the displacement and

4.9 Ezx = i/2 w b y -d (Y+d)
4 9 E =1/2 ax 4 [(y-d)2 + x (y+d) 2 + X2

for the shear strain. The depth to the dislocation line

is d. The result is a dislocation in a half-space on

which slip occurs from the dislocation line to the surface.

Next we find the solution for a screw dislocation in

which the surface of discontinuity (or slip) points down

into the half-space away from the free surface (along

positive y). For this problem we use the source term

4.10 W (x,y) 2btan- , x)
2,R -y

with he surface of slip pointing down into the half-space.
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The image which cancels the stresses (by addition) on the

free surface is of the form given in 4.7 with the surface

of slip pointing up. Thus the solutions for a dislocation

in a half-space with the surface of slip pointing down into

the half-space away from the free surface are

W -2 [tan - X + tan-l (X )

4.1]1

= b [ - (y-d) _(y+d)

Ezx 4- (y-d)2 + x2 (y+d) + x

Adding the two solutions yields an ideal model for slip

at depth, iocKJng at an intermediate deptn, anc slp in

the near-surface region (figure 4.17 c). Thus assuming b

cm/yr f creep down to a depth of d, locking below d1 to

a dept'>. of d 2, and finally a slip of 2 cm/l below d2 we

may ob:ain the displacements anyv'here in the halfspace by

i bl [tan-l x tan- 
T Y-d 1 v+d,

4.12
b2 -1 ( x _x+ 2- tan( ) + tan 1 )X

d2 -Y y+d 2

and tho strains by



b1 Y-dl
E =4 Y l + 2

zx 4,n (y-dl) 
4.13

b 2 -(y-d2)
4+ (Y-d2)2 + x2

(y+dl )
(y+d1)2 + x

(Y+d2)
(y+d2 )

2+ x2]
(y+d 2 + x2

Now, defining the parameters

Z = x/d 3

= bl/b 2

and

y = dl/d 2

we may write equation 4.12 in the form

4.14
E = ( ± 2 ] ~ P 1
Ezx 1 _ I
....f- = Iz ] ¥ [l+(z/¥) Z']E o +z 0

where z is the distance away from the fault in terms of

the depth to the bottom portion of the locked zone, is

the ratio of fault creep to the relative plate motion,

and y is the measure of the percentage of the fault which

is creeping. E is determined by

209
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4.15 L = o 2 rd

and represents the strain that would be observed directly

over the fault f the fault were locked to a depth d2 o

This simple expression shows the foundation of the assumptions

described in the first section: faster strain rates are

observed over shallow faults. EzX represents the actual

strain.

Iii figure 4.18 we have lotted the ratio of the two

straina- as a function of z = x/d 2 for various values of the

parameters and Y . Curve A represents the ratio of

strain ror a colnmpletely locked fauit (i.e. down to a depth

d2). urve E on the other hand shows the case of 80% of the

total ;:ult (d2 ) creeping at a rate of 90% of the relative

plate -otion at depth. The dashed lin: at xy/e = .2xy

repres nts the maximum value of t - best fitting strain

that ours in the vicinity of the Sar Andreas north of

Holi.is--r as r'esented by Savage and Burford (1970). The

vio Lue ..s ti-.iined1 by taking their engineering strain ove'r

32 yea-.s Lor tie i-ollister arc, converting it t.- :ensor

..:_i ( clIvic) :i by 32 years to con-vert it c .. ,:ar

't,:,rn'.- , i: ally dl'I ir this nmber br an . t-lc't-d'

- .a; a- --
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near Ft. Ross should yield a good estimate of the strain

rate at Hollister without creep. The highest dashed line

at ex/eo approximately equal to .4 was obtained in the

same manner from the error bar of the data point used for the

lower dashed line. It represents an estimate of the maximum

strain allowable within the noise of the data.

The simplest model allowed by the data is relative

rigid body motion (Savage and Burford, 1970). However, the

data also allows as much as 70% of the fault to be locked

as can be seen in figure 4.18. The possible contamination

of this estimate by creep on the Calaveras could raise the

estimate to 80%.

in figures 4.19 and 4.20 we have plotted the strain

components

1 = Eee Enn

and

Y =F +E2 = Ene en

of the geodetic data across the Hollister arc (Savage and

Burford, 1970). The subscripts n and e refer to north and

east respectively and are used to describe the sense of

the engineering strain components (twice the tensor strain)
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1n order Lo match the observations with a theoretical

model t is necessary to decide upon the relative plate

motion between the Pacific plate and the North American

plate. Unfortunately there is no general agreement on the

rate of motio.':. Both the geologic (Dickinson et al., 1972)

aii-f the geoce'-ie data (Savage ani Burford, 1973) yield

estiim.eas i i proimatelv 'x',r for central California.

In the Gulf of California the r-,iative motion between the

two p,- tes has been determined to be 6 cm/yr (Larson et

al., 19'8) wh:i. le Minster et al. (1974) have determined a

gross elative motion between the Pacific and North America

to De Cm /vr t Is .Lmlortdnt to koi)Lnt. out that eac of

t:he ab :re measurements is associate wi-th - different

times s :ale. owever,

,eccLaus, of theH local natre of both t.:. geci..g ic and geo-

teit j . asurere-ents, they may only .a-.resent a portion of the

r,::.t:i d;ate motion. For example c eoioqic Ketermi nat ions

..re o r -- sicted to single f.ault whi 1e there is

i.:c:. ~- , t -:ve L. a . ii itn!ct: -(oc)ks have ImCVe .e e t r th es i

-t~.t, : LW.; t t: t ne North American p late t 1 arL , L30) 

r-' d.sj re a M- L 'e mot on :e-twe-en the S linian -c,- n'" d .. 'he

xc:,e,. - ca C': ossi b CIar fo th- F . fCr
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can be made. For measurements across a completely locked

fault to represent 90% of the relative motion the stations

on each side of the fault must be at least 6.3 D away from

the fault where D is the depth of locking (Savage and

Burford, 1973). In the area of Hollister, however, it has

been suggested that the strain is negligible (Savage and

Burford, 1970) and that most of the relative motion

(X3 cm/yr) between stations in this area can be accounted

for by fault creep.

C.A. Whitten in a personal communication to Bolt et

al. (1968) determined that Farallon Light House has moved

at the rate of 46 mm/yr with respect to Mt. Diablo, Sonoma

iviountain, ana Ross Mountain (see figure 4.12). The direction

of the motion would have the Pacific moving N140W with respect

to North America. Savage and Burford (1973) suggest that

Whitten's estimate may be biased by the proximity of Ft. Ross

to the 1906 earthquake. Thus the assumption of fixed distance

between Ft. Ross, Sonoma Mountain, and Mt. Diablo may not be

valid. Savage and Burford (1973) have determined that

Farallon L.H. moves 21+12 mm/year with respect to Sonoma

Mountain assunLiny right lateral motion and a fixed azimuth

between Sonoma Mountain and Mt. Diablo).

If the results of the previous section hold then the

:-ea-surement by Savage and Burford (1973) could represent

-.. a fraction of the total motion between the plates.



IW; i:' : 'L '- tS ot f iLdav -,j. ir: Bur 19 7 3)

,lssuXmihg i-J:at. ,.The fau .: locks to 40 kilometers in the area

between Mt. Dablo, Sonoma Mountain, and Farallon L.HI.

(fiqure 4.12) then equation 4.12 may be used (assuming

no creep i.e. b 1 = 0) to obtain the total motion across

the fault (b2 ). With Sonoma Mountain at 32 kilometers

and Farallon ',.H. at 37 kilometers from the fault, equation

4.1 2 yields a total motion between the Pacific and North

AJmnerican plates of 4.6 cm/vear. This value is in excellent

agrteernent wi in the 5 cm/year (!etermined by Minster et al.

(1974). We shall therefore use 5 cm/year as the relative

plate v!elocity between the Pacific and North American

plates for the rest of our models.

"'tv ' F-3]rt 4.19 and 4.?O .F'.'- -
theoretical. strain accumulation due to a completely locked

bend mdel (table 4.3 or figure 4.14 b with B = 1550).

Theorel ical curves are calculated usinc the '3dels described

Ji tab:.e 4.3. Profiles of and i -. were taken between

.)(inlt /. (Latitulde = 36.59, Longitude = 121.86) and point 

(Latitlie = 3fi.93, Longitude = 121.24). The direction

(",7:.5vW) ,P.'1 :,1:T, t (,) i-ile p.rr ? L it, * 'r' lci( t ' :'.L:)/ tfn]

as neaJ as :,--;i-: :c' to the Holli.st;c-r arc (

rf$ or ( 1. 9j(; . The San A.ndreas as 1 ocat-:C, on his

t ]. . anc . ! , 1te wer :1,ot. t- LL. as dis tat 's f rom

,,:~s , ;r tt -_ . A . 1,- 1 . . .

1n ; * -
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4.20 represents the inclusion of creep (see table 4.3)

on the top 6 km at the rate of 2 cm/year (Spieth et al.,

1974). The general feature of the maximum Y1 (figure 4.19)

being displaced from the trace of the fault cannot be

explained by a straight vertical fault model but is consis-

tent with the SJB bend model. The displaced maximum could

also be explained by a fault dipping to the southwest.

However, Healy et al. (1972) have shown that the San Andreas

fault in this area dips to the northeast (87°). Their

results are in excellent agreement with the slight dip to

the northeast for the source mechanisms determined by Bolt

et al. (1968). Further confirmation of a slight dip to the

noi S±east has Comlie £lom a three dimensional juSali inversion

of this area. Aki (Keiiti Aki, personal communication, 1975)

has determined a slight dip to the northeast of the crustal

structure across the San Andreas. We feel, therefore, that

a dipping fault to the southwest cannot be used to explain

the displaced maximum.

The match between the best fitting data of Savage and

Burford (1970. and te theoretical model of the SJB end

with creep (curve B) is indicative of a locked fault at depth

(20 kinm) with only a fraction (%6 km) of the near surface

region creeping at 2 cm/year). This conclusion is based on

the assumption that the Calaveras is creeping at 20 mm/year

(Spieth et al., 1974).



Tile c. : >c :p.-onent hown in figure 4.20 is extremely

erratic and n-: simple model could match this data. Fault

creep o-n the San Andreas raises the value of y2 in the

vicini'y of the San Andreas. The addition of fault creep

on the Calaveras is not required for the description of

the Y1 component (shear on tile fault). This requires that

:ither the creep on the Calaveras be very shallow (1 km or

less) in order to avoid creating negative troughs in the

coroT'onent o;f the strain or very deep (20 km or greater)

so tha.t the reduction of 1 from creep on the Calaveras is

minimized. These conclusions are based on models including

the Calaveras. Since creep on a fault raises 2 in the

viciniy of a fault the data is suggestive of fault creep

on the Calaveras (and perhaps the Sargent and Vergeles

faults We shall res rict ourselves at this point to the

simplest of models and only note that the trend of the models

Ji,, sim lar to that of the data for the 2 component. y2

become signiL'icantly negative awa3y from the fault in both

direct ons (N45°0 - S450 W compression or N45°W - S45cE

.9:>:ns on) b ,i l, ocomes small in the vicinity of the San

Andrea.

T'I.e decis-ion on whether the Caiaveras extends to great

aie- _' tw kr; : the narture rf te m1'.";:nim cr.-r. : s...q-e on

e:. ~Tfl K iCtI V C r .,
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nature as the one driving creep on the San Andreas), then (1)

the creep rates on the Calaveras should be independent of

creep rate on the San Andreas and (2) the depth of the slipp-

ing on the Calaveras should be of the same order of magnitude

(%5 km) as the slipping surface on the San Andreas. The

second requirement is rather weak, but the y1 data presented

earlier is not consistent with creep at intermediate depths

(2-15 km). The first requirement is the strongest and can

be tested in the region from Bear Valley to Anderson

Resevoir. A passive mechanism (in particular coupling

between the San Andreas and the secondary faults) requires

(1) slip on a deep surface (20 kilometers) so that the

__nda- a- t f 1 C- -a

San Andreas) and (2) that slip on the Calaveras be related

to slip on the San Andreas. If coupling is the driving

mechanism of creep on the Calaveras the following process

is imagined to occur: the primary fault locks to some depth

(r,20 km) and remains locked while below that depth the

plates continue to slide loading the locked fault and the

surrounding volume until the shear stress reacnes te

frictic.-- i stress on pro-establshed faus in t1s area.

From this point in time until the locked region slips the

plate motion at depth on the primary fault drives the motion

on the secondary fault.



218

ze r,-:. o)f creep on the secondary fault due to coupling

should be a nction of the applied stress, the frictional

stress on the secondary fault, and the area of the secondary

fault. In figure 4.21 we have drawn a schematic of the

coupling between the San Andreas (SA) and the Calaveras

faults. The stress which is applied to the Calaveras is

a function of dl,d 2, the rate of motion below d2 (plate

motion) and the rate of motion above dl (creep). To pose

this probl.emL mathematically we could use dislocations to

model the applied stress due to slip above and below the

locked portion of the San Andreas. However, to solve for

the mo':ion on the Calaveras (and/or Hayward) we would have

to solve a three dimensional crack (since the distance

bctwee, the two faults is not constant) with a variable

stress drop. This problem is beyond the scope of the thesis.

We can however, point to certain features in the creep data

which re indicative of the coupling rocess described.

figur: 4.22 we have plott.d3 the observed fault creep

for va ious faults on the ordinate axis. On the abscissa the

faul;t ::eparatLion distance (AX i.n figure 4.21) is plotted.

This ( stance represents the distance between the observa-

tion o. creep on the two faults. In the case of fault creep

c,.: th, ."a A:rea we have lotted it as a fnction Cof i ts

:i.,sta .e -ron: t:.he Calaveras fault. 'IThe creep ra-ies for all

a ' -A .5.. uti fi..5r 4,2 ., W-L [.lotted : : :.'tilor
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of distance from the San Andreas. The primary feature to

be noted in this plot is the transferral of creep to the

Calaveras as creep on the San Andreas drops off. This is

exactly the behavior expected for the coupling model

described above. The effect is due (at least in the model)

to the increased area of locking which effectively extends

the region of influence of the loading fault (the San Andreas

in this case). Further to the north the fault separation

between the Hayward and the San Andreas is about 32 km while

for the Concord fault the separation distance is 52 km. The

only fault being loaded by a creeping section of the San

Andreas is the Calaveras. The apparent fall off of creep

on the Calavera= and subsequent pick-up of creO- o;- the

Hayward and Concord faults can be interpreted as being a

result of the deeper locking under San Francisco which was

discussed in the previous section. Unfortunately, this

interpretation for the creep distribution is not a unique

one. It is, however, based on a simple hypothesis which is

consistent with other data for this area.

4.4.4 Discussion

In summary we have applied some simple models to find

out a reat eal about the tectonics of central California.

The models are based on the assumption that faults are

capable of locking to great depths. It was found that



r,c:.i.r Am d c-'th, has ihe a.bility to rotate the pressure

axes ( :iockwise from i _rth if the pates are impinging on

one ar ther). The mode1 predicts that the pressure axes

will r ;tate bck to a north-south direction when the locked

section becomes thin (a possible means of predicting earth-

quakes.

The consistency of the SJB bend model with the earth-

quake and geodetic data implies that the observed trace of

the Sa. Andreas is a deep-seated feature and is possibly

responsible for a number of special features such as (1) the

transfrral of seismicity from the San Andreas to the Hayward

and Ca averas faults (Bolt et al., 1968) (2) the transferral

oftc~ '- ar tht Iyward . l&<_ ,, u
1971) 3) Extensional faulting north of Hollister (Rogers,

1967) nd (4) folding and uplift near San Juan Bautista

(Nason 1971). In order to make the S;JB be. consistent

. i t X Z data it was necessary to jive the Pacific a

collis -! omponent of ntion with respect to Nnorh America.

T,. :J ..-ris rsonable in view of the thrust component of many

o ir ....''- t-s ir t_ region (everts 8 1i , iand 4 . An

r: -, ...-the SJ, bl,.i model is locr -t she alow

;,:-C.h's 2 .- SoarB . ..et .ll.. te and locr i r- to ces-i. !e a . I..c- -

near San Francisco. The gyreater dept.hl of

-' ' i In / <-' - - 1 i.· r ii
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of the pressure axes from a north-south position to a

northeast-southwest direction and (2) the wider zone of

fault creep near San Francisco (if coupling is assumed to

drive the creep on the Calaveras), and (3) the geodetic data.

Finally, it was found that fault creep is an effective

means of hiding strain accumulation on a locked fault at

depth. This is especially true when the assumption of

homogeneous strain is made (Savage and Burford, 1973). We

find as little as 30% of the top 20 km of the San Andreas

could be slipping and still be consistent with the geodetic

data (Savage and Burford, 1970). Thus we suggest that this

area is one of rapid strain accumulation on a narrow strand

of fault. We are unable to predict how this strain will be

released. If the creep on the San Andreas is not effectively

reducing the strain at depth it might be thought that creep

on the Calaveras is releasing the strain. Using equation

4.13 evaluated at the center of the locked fault with an

extra term to include creep on a nearby fault (see figure

4.21) we find that the strain rate is reduced by only

10-20% in the area near Hollister where the maximum coupling

occurs. Thus it appears that fault creep in central

California could have a negligible effect upon the accumula-

tion of strain on the San Andre;s.



Ti'ABLE 4.1

DISLC'ATION PARAMETERS FOR SHARP

Latitude

39.00

34.89

35.44

32.25

32.25

35.44

35.44

34.89

34.89

39.00

-' vector

. meters

Longitude

123.7

119.3

118.5

115.0

115.0

118.5

118.5

119.3

119.3

123.7

B. = 140'
z = 

222

BEND

(km)Ccrn{

1

2

3

4

6

7

8

9

10

Depth
0

0

20

20

60

60

20

20

Burge
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TABLE 4.2

PARAMETERS FOR SJB BEND MODEL

Latitude

39.00

37.25

36.50

34,90

34.90

36.50

36.50

37.25

37.25

39.00

Burgers' vector

B = 2.5 meters
r

Longitude

123.70

122.08

121.25

119,27

119.27

121.25

121.25

122.08

122.08

123.70

Depth

0

0

0

15

15

20

20

15

15

B = 1350 B = 0z

Corner

1

2

3

4

5

6

7

8

9

10
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TABLE 4.3

Pa mrreters for SJ3 bend with
a' ? 'rant !. - co

deep locking under

Cor :;er Number

,

Latitude

39. 00

_:7 2. )

36 . 'i

34.90

5

6

7

34.90

36.50

36.50

i. 
37.25

Longi tude

123.70

122.08

121.25

119.27

1.19.27

121.2?5

121.25

i22. 0b

122. 0 

12 .. 70

Depth (km)

(,I

0.

0.

10.

20.

40.

40 ..

6 ? tIers

tA., JfIflG - 3 y ir7-C y a s 
1- oi- I,., irS
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Fault creep on the bend

37.25

36.50

36.50

37.25

122.08

121.25

121.25

122.08

0.

0.

6.0

6.0

Br = .64 meters B -48 °
B~

(Assuming 2 cm/yr of creep for 32 years.)

Fault creep south of bend

1

2

3

4

36.50

34. 900

34.90

36.50

121.25

119. ,

119.27

121.25

Br = .64 metersr

0.

0.

4.

4.

Bz = 0

1

2

3

4

Bz = 0

B - 41'



Figure 4.1

V(a R Lative "rigid" body motion between plates A and B.

S,C .le iding is assumed to oc,>'-,]r on the ir!!::er:ifac

EAB3

(b) Relative "rigid" body motion posed in terms of dislo-

ction theory. The boundary conditions consist of

displacements (shown by arrows) on the bottom of the

plates and the interface between the two plates.

(c) Anti-Dislocation. When the dislocation problem is

posed so that all but a finite portion of the inter-

face is displaced, we define this to be an anti-

d- locatIon. The anti-dislocation will be used as the

m{i el for the internal stress accumulation which causes

e: . tiua es.

equiv-l-ent dislocation to the anti--'slocation

owq i-i c). The displacements differ by rigid body

t,: :ms ant the strains are identical.
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Figure 4.2

(a) Shear strain (in the plane of the fault) across the

simple strike-slip fault shown in (b).

(b) Fault model in which fault creep occurs below a depth

of 20 km at the rate of 5 cm/yr. The top 20 km is

completely locked. The shear strain in (a) represents

the one year accumulation that would be observed on

the surface.
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(a'. i'. L. in'. .--action cross an irreqular interface. The

pc., .ion rjo the inte-t ace between the two plates de-noted

blI the .leLter S .-:epresents the area i¥, which the lates

arl in dire ollision. The dotted arrows pointing

aw :y from S epresent the relative displacements for

lr. ec.ii: ' . nt di.sl.ocation to the anti-dislocation model

( S vie .c :;f what is a:mied to happe.l in the area

around S. Constant displacements on the bottom of the

pl te begin to decrease to zero as a transition zone

is reache-. The region between the two sides of S

rep resents a finite volume in which both elastic (eij)

,A . I 1i.l ... I ;.. . j .. -. '. . . .

re; resent the permanent deformation de to plate collision.

(c) Ch: nging the frames of reference for tie problem in i(b

Th- dispilcements on the bottoms th. Lates decrease

u'-i er, a--y from the transii -i zone. rThe displace-

,,.-. :~ r he sur face of thc anelastic zone are qual

an .T.. : " e to the assumed motions of the plates. In

&i :<'Z .... ' · f Lei-rC:'tC L±ch ,'Lm ' .. lt t..

i.i. .'.-:iIl ]'ias :i.ertj'e an fJiar x's-, i'$ ': .

(F ilc !by 1957). insilde the inclusion (anelastic zone)

t.· * . S+ ' a trinn .. a resuilt of t. lt .. nt.imet

.;i. . ? S' . . . .... t: . - _ r a t o t_.e :':.('} . i f'r. . .: :
'c`· ': :r " ;- i r-.: ..~~~~~~~~~~~,,: · <
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(ci<; >: .- i ai:l, tSha thie -ALl oof4 t.hSe displacement- on

t- rw:~ttti&, c the plate takes place over a very short

distance in omparison to other distances in he

problem, the displacements on the bottom of the plate

may be neglected. (This assumption may not always be

justified and will be discussed later in the text.)

If we also assume that the volume of the inclusion is

vanishingly small then the inclusion may be shown to

reduce to the dislocation shown in (d) (Eshelby, 1957).
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'.;:,lurt As 4. 4

(a) IAngila.r il.-ication in a half-space (Comninou, 1973).

(b) Constructicti of a dislocation from two angular dislo-

cations.

(c) Construction of an oblique rectangular dislocation from

w dislocations.

(d) Convention used to describe fault models. Latitude,

longitude, and depth of the corners are given in a

particular sequence so as to define the direction of

the dislocation line. The Burgers' vector represents

the motion of the positive side of the dislocation with

respect to the negative side. It will be given in

cylindrical coordinates (Br, B, Bz), The Br and B

components will be in meters. B is the azimuthal

angle in degrees (positive clockwise) from the positive

Y-axis (North).
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' o , +7e ar b m xShear st-r!in co--.: urs (x i ) for the sharp bend model given

in tab3 4,1. Te positive X2- points N450W and the posi-

tive X- axis points N45°E. Negative E2 represents a

right lateral strain on a fault striking N450W.
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' s EX!l " for the sharp bend model. Posi-

tive I-- axis p:Lnts N450 W. Negative E2 indicates com-

pression. This model yields NW-SE extension in the Basin

and Range Province and the Santa Barbara channel-Point

Arguello Canyon area. NW-SE compression occurs in the trans-

verse range province.
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PF.ig ate 4.7

Al lusp c. ' tlting i he vicinity of San Francisco.

Fault:s Dire talk>- from a map compiled by Hill et al. (1969).

Faults shown are:

(1) San Andreas

(2) Calaveras

(3) Hayward

(4) Sulphur Springs, Concord, and Greenville

(5) nameless

(6) Silver Creek

(7) nameless

(8) Sargeant

(9) Sargent

(10) Pilarcitos

(11) Seal Cove-San Gregorio

(12) Ben Lomond

(13) Butano

(14) Vergeles
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Figure 4.8

The SJB (San Juan Bautista) bend represents a change

in the strike of the San Andreas in the area just south of

San Francisco. South of a point just north of Bear Valley

the average trend of the San Andreas is N400W. To the north

from Bear Valley the San Andreas trends approximately N480W.

Finally, in the vicinity of Black Mountain the San Andreas

bends back to a more northerly strike (N35W).

.1
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Figure 4.9

+7
Shear strain contours (X1O ) for the SJB bend model

described in table 4.2.
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Figure 4.10

E22 strain contours for SJB bend model (table 4.2). Note

the general NW-SE extension in the area.
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Figure 4.11

El1 strain contours for SJB bend model (table 4.2). Note

the reduced normal strain in the vicinity of the Hayward

and Calaveras faults and on the southwestern side of the

San Andreas.
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Figure 4.12

Inferred principle compressive stress axes from earth-

quakes in central California. Events 1-15 () are from Bolt

et al. (1968). Events U and V (o) are taken from Elsworth

(1975). Events a, b, and c (&) represent the results of

Mayer-Rosa (1973). Events r and s (O) summarize two event

clusters studied by Green et al. (1973). The important

feature of this plot is a change of the pressure axes from a

north-south direction in the southern portion of the map to

a northeast-southwest direction near San Francisco.
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FIGURE 4.13

(a) Contours of pressure axes (principal axis of

compression) for SJB bend model.' Note the change

in direction from north-south to northeast-

southwest associated with the SJB bend.

(b) Schematic diagram of SJB bend model used to

calculate the pressure axes in (a).
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FIGURES 4.14

(a) Contours of pressure axes for SJB bend model with

an increased depth of locking on the northern

section.

(b) Schematic diagram of a model used to calculate

the pressure axes shown in (a).
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FIGURE 4.15

Areas of fault creep (shown by dark wavy lines on faults)

on the San Andreas-Calaveras-Hayward system. The numbers

beside the faults represent the fault creep in cm/year as

presented by Nason (1971). His results have been modified

recently by Nason (1973) and Spilth et al. (1974). North

of Anderson Resevoir the fall-off from 1.2 cm/year to 0.0

is uncertain, i.e., the creep occurs in patches (Nason,

1973). North of Fremont the creep rate picks up on the

Hayward. Northeast of San Pablo fault creep has recently

been observed on the Concord fault (Nason, 1973).
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FIGURE 4.16

(a) Yearly shear strain accumulation across a fault

completely locked to a depth of 20 km and

slipping at 5 cm/year.

(b) Yearly shear strain accumulation for the same

fault as (A). but with the addition of 3 cm/year

of slip on the top 10 km.
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FIGURE 4.17

(a) Subtraction of two screw dislocations in an infi-

.nite med:Lum to obtain the solution for a dislo-

cation in a half-space with the surface of slip

extending from the dislocation line to the surface

(surface fault creep).

(b) Addition of two screw dislocations with their

surfaces of discontinuity pointing in opposite

directions to obtain the solution for a screw

dislocation in a half-space with the surface of

discontinuity pointing away from the surface

(locked fault with a slip below d2).

(c) Addition of (a) and (b) yields a model for a fault

slipping in the near surface region, locked at

intermediate depths, and slipping below the locked

region.
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FIGURE 4.18

Plot of shear strain E versus distance X from a fault model.

The strains are divided by E = b2/(27d2) and the dis-

tances by d2. Lower dashed line represents the maximum

shear strain in the vicinity of the San Andreas as deter-

mined by Savage and Burford (1970). Their measurement is

-6
divided by E = .55 x 10 found by Meade (1971) on a com-

pletely locked section of fault near Ft. Ross. The upper

dashed line represents the maximum shear strain within one

standard deviation of the data point used for the lower line.

The data allow 70% of the fault to be locked.
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FIGURE 4.19

Y component of strain (equivalent to shear strain across

a fault oriented N 450 W) across the Hollister arc as

determined by Savage and Burford (1970) (solid circles).

Curve A represents the y1 strain across a completely locked

SJB bend model. Curve B is the theoretical y1 strain across

an SJB bend model in which the top 6 km creeps at the rate

of 2 cm/year. The time period represented in the plot is

32 years.
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FIGURE 4.20

Y2 component of strain for the Hollister arc (see figure

4.19). A and B represent SJB bend models without and with

fault creep respectively (table 4.3).
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Figure 4.21

Model of fault locked between depths d and d2 with

slip above and below the locked section. The locked section

will, after a period of time, begin to drive a secondary

fault that extends to a depth d3. The rate of creep on the

secondary fault will be a function of the applied stress

from the locked fault, the area of the secondary fault, and

the frictional properties of the secondary fault.

10
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Figure 4.22

Plot of fault creep on various faults in central

California as a function of distance from the San Andreas

fault. The fault creep on the San Andreas is plotted as a

function of its distance from the Calaveras. The apparent

relation between creep on the Calaveras and San Andreas faults

can be explained by elastic coupling of the two faults. The

pick up of creep on the more northerly faults can be inter-

preted as being the result of deeper locking on the San

Andreas near San Francisco.
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4. 5 The Fort Tejon Bend and Its Role in the Tectonics of
Southern California

4. 5. 1 Introduction

One of the more salient features of a fault map for

California is a "big bend" (Hofmann, 1968) in the San Andreas

fault (figure 4.23). Because much of the bend is coincident

with the faulting of the 1857 Fort Tejon earthquake we shall

refer to the bend as the Tejon bend. The origin of such a

feature is still uncertain but several explanations may be

proposed. Hill aLnd Dibblee (1953) have explained the origin

of the bend in terms of the transverse motion on the Big

Pine and Garlock faults (figure 4.23). On the other hand

the direct alignment of the Tejon bend with the Murray

fracture zone off the coast of California suggests that the

bend may be a result of motion on the Murray fracture.

However Von Huene (1969) has shown that there is no apparent

physical connection between the two features.

In an analysis of fault splaying and secondary faulting

Chinnery (1966 a,b) found that the direction of new faulting

around the end o an existing fault is dependent upon the

angle between the fault and the principle axes of the

tectonic stress. Thus it is possible that the Tejon bend

was created by a local (or even regional) variation in the

principle tectonic stress direction.



272

Our interest in this problem is not concerned with the

origin of the Tejon bend but with its present importance in

the tectonic picture of Califcrnia. If it is anything more

tianr a surface feature then it must represent an area in

which the continent of North America is in direct collision

with the Pacific plate. For this to happen the plates must

interact throughout the thickness of the plates. Thus the

equivalent dislocat'on for a model of plate collision should

extend through the lithosphere. Under these conditions the

stress fields at the surface may be strongly affected by

either (a) a change in material property across the bottom

of the plate (interface between lithosphere and asthenosphere)

and/or (b) a change in boundary conditions on the bottom of

the plate. For this reason the first section o our study

will be focused on the plate bottom effects. It will be

shown that the change in boundary condition on L bottom

of the late is the largest of the two late bottom effects

'when earth models consistent with seismic data are used).

Next, three models of the Tejon bend will be presented

and valuated in terms of their resultant strain patterns

and principle stress directions. All three of the models are

made to follow the Tejon bend but each differs in character

below the surface. The first model represents a shallow

auLt (]5 km). The other two represent deep faults an one
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of these includes additional boundary conditions on the bottom

of the plate. These models will give us an understanding of

the strain accumulation around the Tejon bend and will allow

us to predict the principle stress directions in remote areas

where little or no information is available (e.g. off the

coast near Pt. Aguello).

4.5.2 Plate bottom effects

Consider now the model VBAS shown in figure 4.24 (a).

It represents a strike-slip fault penetrating an earth model

consistent with seismic observations in the Basin and Range

province (Herrin, 1972). In figures 4.25-4.27 we compare

the displacements for this model with those of a half-space

model with elastic parameters equal to those of the second

layer in model VBAS. The effects of what we choose to call

the plate (top 80 km) in this model are negligible. In

the first 200 km away from the fault the U1 displacement

of the layered model in figure 4.25 is sensitive to the top

layer (crust). However as we move further away from the

fault the layered solutions begin to fall off at the same

rate as the half-space solutions. The same behavior may be

observed in the U 2 and U3 displacements shown in figures

4.26 and 4.27 respectively.

In figure 4.24 (b) we show model VBAC which is the

equivalent dislocation for a collisional type interaction
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between two plates. It is embedded in the same earth model

as VBAS. The displacements for this model are compared with

a half-space model in figures 4.28-4.30. Generally the

results differ by 10% or less (except for the U3 component

at x2 = 0).

From a study of these two models we conclude that the

effects of the low velocity zone (asthenosphere) are negli-

gible. Implicit in our conclusion, however, is the assumption

that the elastic constants determined by seismic means are

close to those of the asthenosphere. This will depend heavily

upon the loading rate (plate velocity) and asthenospheric

viscosity (Sleep, 1975). Since there have been no observations

in California of time dependent deformation of the sort found

in Japan which can be associated with the asthenosphere (Nur

and Mavko, 1974), we shall assume that the above conclusions

are valid. Even if we are incorrect in our assumption and the

asthenosphere is extremely soft, those .eld~. arallel to the

direction of plate motion (the Iar--st in the near field) will

be of the same form as the half-space solutions (see Chapter

III). We believe, therefore, that this plate bottom effect is

of second order over a period of 100 years or less,

The second plate bottom affect is associated with the

additional boundary conditions which may be introduced on the

bottom of the plate. These boundary conditions may be due to

either the drac or the push of the asthenosphere on the

iithosphere. i3ca3use of the localized nature (in

comparison to -e lateral dimensions of plates) of the
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internal deformation due to plate motion the author feels

that the plates must be driven by the asthenosphere. However,

we admit the question of the driving mechanism is still an

open one.

In view of the author's personal bias and recent observa-

tions (Aki, 1975), we shall discuss the boundary conditions on

the bottom of the plate with the implicit assumption that the

plates are driven from below. This assumption allows us to

specify constant displacements on the bottom of the plate.

Far away from the interface between two plates in relative

motion this assumption should be a valid one. However, as we

approach the interface between the two plates the contrary

flows under the plates must be retarded and approach zero at

the plate interface. This boundary layer or transition zone

will effectively introduce an equivalent dislocation on the

bottom of the plates (see figure 4.31). The Burgers' vector

for this dislocation should be a maximum near the plate

interface (equal to the plate displacement at distances far

from the interface). At the far edge of the transition zone

the Burgers' vector must fall off to zero. The width of this

zone will necessarily be dependent upon the viscosity of the

asthenosphere. For a low viscosity asthenosphere the width

of the transition should be small (making the material change

across the lithosphere-asthenosphere interface more important).

For a high viscosity asthenosphere (which we are assuming) the

effective width of the transition zone will be significantly

larger.
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We now model the plate bottom boundary conditions shown

in figure 4.3 by assuming a constant Burgers' vector on

dislocations coincident -with the bottom of the plate and

extending approximately a plate thickness away from the

interface. This model should be interpreted as an extreme

case for the plate bottom effect. In figure 4.32 we compare

the strains E E2 2 and E12 for this model with those of a

simple half--srace model. It appears that although the two

models differ in amplitude that the half-space model is

quite representative of the problem even when the boundary

conditions on the bottom of the plate are applied over a

region comparable to the plate thickness.

Now consider the model of plate collision shown in

figure 4.33. We may model this problem with the same dis-

location geometry as that shown in figure 4.31. In this case,

however, we use a Burgers' vector whi`J is rpendicular to

the interface between the two p- s. The strains for this

model are compared with those of a simple half-space model

in fiure 4.34.

Tihe E22 and E2 strains of the two models differ by a

small amount. However, over the region of the transition

zone (150-375 km in figure 4.34) the component of strain

parallel to the Burgers' vector is changed significantly.

r-l-c ti-.S %'we conclude that n consideration of poblems in

·w:- i iates re in col isi or; that the effects de to the
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boundary conditions on the bottom of the plate must be

considered. For the strike-slip case, however, we may use

half-space models without much loss of information.

4.5.3 Models of the Fort Tejon Bend

At first glance the faulting in the vicinity of the

Tejon bend appears extremely complex and impossible to

describe with any simple models (figure 4.23). Even the

bend itself is not absolutely established. The northern

portion of the bend extends northward from Ft. Tejon. In

the region of the bend the San Andreas is the youngest of

the faults and represents the only throughgoing feature in

the Transverse Range Province. South of Cajon Pass, however,

the activity of the San Andreas fault seems to have trans-

ferred to the San Jacinto fault (Hileman, et al. 1973). We shall

follow Rogers and Chinnery (1973) and define the Tejon bend

as the San Andreas fault north of Cajon Pass and the San

Jacinto fault south of this point.

We may gain a clearer picture of the tectonics in the

vicinity of the Tejon bend by considering the tectonic map

in figure 4.35. In this figure we have drawn geologically

determined displacement directions on various faults (see

e.g. Ellsworth, 1973) in the region and the inferred

pressure axes for a number of earthquakes. Surprisingly,

these data allow us to form a simple consistent picture of
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the pressure axes for this region (figure 4.36).

In figure 4.36 the principle compressive stress

directions are contourea to be north-south in the vicinity

of the Tejon bend. This direction is consistent with the

faulting and most of the earthquakes in the region (see

figure 4.35). This characteristic north-south compression

may also be inferred from recent studies of the geodetic

data for this region (Hofmann, 1968; Scholz and Fitch, 1969;

Savage and Burford, 1970).

In the northeast corner of figure 4.36 the principle

compressive stress axes are drawn in a northeast-southwest

direction. This direction is consistent with the observed

northwest-southeast extension (Smith and Kind, 1972; Guniper

and Scholz, 1971) and the right lateral motion on the north-

south trending faults (figure 4.35). It also agrees with

the sense of motion of the 1872 Owens -all_ arthquake

(E-vent I in figure 4.35).

The primary feature to be noted in figure 4.36, there-

fore, is the approximately 450 degree rotation of the

pressure axes from a north-south direction in the immediate

vicinity of the bend to a northeast-southwest direction in

the area north of the junction of the Sierra-Nevada fault

and the arlock fault. Unfortunately, only a small amount

of data exists for the ffshore regions of Ca ifornia aicd

{- A: 7-> -- : Tido a -~ Car resentation ot; r1 I", ,S ic
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axes for this region. The U.S.G.S. is currently undertaking

an extensive study of this offshore region (Ellsworth, 1975)

and a more complete picture should soon be available.

Tentatively, we conclude that the pressure axes are more

north-south near the shore and begin a rotation to a north-

east-southwest direction further out in the Sanat Barbara

Channel (figure 4.36). This rotation is consistent with

the more oblique thrust faulting near the shore (on east-

west trending faults) changing to left lateral strike-slip

faulting out in the Santa Barbara Channel (Hamilton et al.,

1969; Lee and Vedder, 1973; Ellsworth et al., 1975).

One of the most important regions necessary for our

understanding of the tectonics around the Tejon bend is the

offshore region near Point Arguello. Unfortunately, less is

known about the earthquakes and faulting in this area than

any other region in California. Although the Murray fracture

zone (Menard, 195-9) lines up offshore with the Santa Ynez

fault zone, no connecting fault has been found (Von Huene,

1969). The only large earthquake to be recorded for this

area is the 1927 Point Arguello event (M = 7.5) (Byerly,

1930; Richter, 1958). It could be associated with the

northeast-southwest trend of activity in this region pointed

out by Vrana (1971). We shall describe later why this

offshore area (and perhaps the 1927 earthquake) is of

primary importance in resolving between the various models



280

of the Tejon bend. Fortunately a detailed study of the

1927 event is currently being made (Gordon Stewart,

personal communication, 1975).

Consider now the shallow fault model (Tejon 1) of the

Tejon bend shown in figure 4.37. It represents a modified

version of the dislocation model for this region presented

by Rogers and Cninnery (1973). he primary modification

consists in the Burgers' vector. Their model is made up of

shear dislocations while ours includes the component of

plate motion perpendicular to the fault. The strains

(Ell, E22, E12), the maximum shear stress and the sum of the

stresses Tkk (sum over k) are contoured in figures 4.38-

4.42. In figure 4.43 the principle stress directions for

Tejon 1 are plotted. The components of srains lotted

(for all models) are computed in a coordinate system in

which the positive x2 axis points 45 .' ana he positive

xi axis points N45°E. With this ordinate system the E 1

strains represent compression (-) or extension (+) perpen-

dicular to faults which are oriented N450W, the E22 strains

represent compression or extension perpendicular to faults

oriented N45°E, and a negative E12 strain will be associated

with a right lateral strain accumulation on a fault oriented

The rimary point to be observed in the E 1 and F,..

· (.i- .-(irs :'. 8 nd 4. ;9) .is the compr,,::ss ,"'-: L-; Fe

1CI .n Tt e bend. r'I- e comlpression, however, ':urns to
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extension along the northern leg of the model. The E2

strains shows little character and simply follows the fault

(figure 4.40) .

In figure 4.41 and 4.42 we have plotted the maximum

shear stress and the sum of the stresses Tkk for model Tejon 1.

As expected for such a shallow fault model the maximum

shear stress is concentrated primarily on the fault. We

argue against the shallow Tejon 1 model for this reason.

Hoffmann (1968) has deduced from the geodetic data that the

strain accumulation in the vicinity of the Tejon bend is of

a regional character (north-south compression) and does not

seem to be associated with any one fault in the area. We

believe this eliminates the shallow Tejon 1 model. Following

Rogers and Chinnery (1973) we have also plotted the sum of

the stresses (Tkk). They have interpreted regions of

negative Tkk (compression) and/or low maximum shear stress

as regions less likely to have future seismic activity. With

this interpretation applied to the Tejon 1 model the northern

leg of our model is the most likely region for activity.

In figure 4.43 we have plotted the principle stress

directions for model Tejon 1. Straight lines represent

compression and lines with balls at the end represent

extension. These results should be compared to those of

figure 4.36 in which we have plotted the principal com-

pressive stress direction inferred from geodetic, geologic,
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and seismic data. The agreement with the rotation of the

pressure axes in the northeast portion of the map is not

very satisfactory although there is some rotation in the

northeast corner of the map shown in figure 4.43. On the

northern and southern legs of the bend the north-south

compression (with east-west extension) is in excellent

agreement with the inferred principal stress. However,

near the intersection of the Garlock and San Andreas faults

(see fault map in figure 4.23) the principal stresses rotate

to a northwest-southeast orientation. This orientation is

not in agreement with those inferred in figure 4.36 or with

geodetic observations for this area (Hofmann, 1968; Scholz

and Fitch, 1969).

In the southern region of the principal stress map both

principal stresses are compressive (off the coast of southern

California). Off the coast of Point Arguel on the eastern

side of the principal stress map both principal stresses are

tensional. These features will be apparent in all the Tejon

bend models and represent an important predictive test of

our models which will be discussed later.

For now we conclude on the basis of (1) the localized

nature of a shallow fault and (2) the misalignment of the

principal stress directions that the model Tejon 1 is not a

satisfactory one. It does, however, exhibit some of the

-rinci al s: -ress characteristics of the subsequernt models
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to be studied indicating that the geometry of the bend

plays an important role in the tectonics of the neighboring

region.·

Now consider model Tejon 2 shown in figure 4.44. It is

a model of the interaction throughout the thickness of the

plate (80 km). In this case, however, we neglect the

addition of possible boundary conditions on the bottom of

the plate.

The strains and stresses for Tejon 2 are shown in

figures 4.45-4.50. The primary features to be noted in the

Ell and E22 strains are the large neighboring lobes which

subject te region to short wavelength variations. The

shear strains (figure 4.47), however, are relatively smooth

and have a broad regional effect as would be expected for a

deep fault model. The lobes for the Ell and E22 strains are

a result of the rapid increase of the depth of locking in

the vicinity of the bend.

It is surprising at first to find that the Tejon bend

represents the region of the lowest maximum shear stress

accumulation on the San Andreas (figure 4.48). This is

effectively.a feature of the depth to which the plates are

interacting. This lower rate of shear stress accumulation

spread over a larger region is most likely responsible for

the general tectonic behavior in this region.
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In figure 4.49 the sum of the stresses for model Tejon 2

are plotted. The regions most likely for fracture (Rogers and

Chinnery, 1973) are the areas of tension (positive Tkk).

This implies that likely areas of high activity for this

model are the eascern edge of the Mojave desert, the northern

leg of the San Andreas, and the area near the intersection of

the White Wolf and San Andreas faults (in the general vicinity

of the Kern County earthquake of 1952). North and South of

the bend, however, are regions of compressive stresses. The

compressive stresses on the southern leg of the San Andreas

and the tensional stresses on the northern leg of the Tejon

bend can be explained by the different orientations of these

legs with respect to the direction of relative motion

assumed for the plates (Pacific plate moves N45W) with

respect to North Ameria. The northern leg of the San

Andreas strikes N400 W while the San Jacinto fault in

southern California strikes N45°W.

The principal stress directions for Tejon 2 are plotted

in figure 4.50. The agreement with the inferred principal

stress directions in figure 4.36 is as good as could be

expected from such a simple model. The desirable features

of this model are (1) the rotation of the pressure axes in

the northeast portion of the map (2) the near north-south

compressive axis throughout much of the vicinity of the bend,
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(3) north-south compression on the northern and southern

legs of the San Andreas fault zone and (4) a rotation of

the pressure axes from north-south near Pt. Mugu (Ellsworth

et al., 1973) to a northeast-southwest position further out

in the Santa Barbara Channel (Lee and Vedder, 1973; Hamilton

et al., 1969).

Again, as for model Tejon 1, the pressure axes further

out in the Santa Barbara channel and off the coast of Point

Arguello become tensional. The reality of this effect cannot

be checked here because of the apparent lack of interest in

this region in the past.

Now consider model Tejon 3 in figure 4.51 in which

additional boundary conditions are added to the bottom of the

plate. We do not pretend to know what these conditions are in

reality, but include a possible example in order to examine

the kinds of changes that take place when these effects are

included. The strains and stresses for model Tejon 3 are

shown in figures 4.52-4.57.

In figure 4.52 we see that the only major change due

to the plate bottom boundary conditions is a shift to the

east of the northernmost negative lobe (from the southern

portion of the Sierra Nevada fault to the Great Valley-

Carrizo plain area). Otherwise the only effect is a general

broadening of the features present in model Tejon 2.
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In figure 4.53,the E22 strains for Tejon 3 show only

slight changes from those for Tejon 2. One significant

difference exists however in the small negative lobe

extending off the coast around the end of the Santa Ynez fault,

Probably associated with this lobe is the lobe of left

lateral strain (positive E12) in figure 4.54.

The maximum shear stress contours (figure 4.55) show

the least change of all the fields studied. The sum of the

stresses Tkk plotted in figure 4.56 show a southward displace-

ment of the region of positive Tkk which was over the area of

the Kern County earthquake for model Tejon 2.

The principal stress directions (figure 4.57) for model

Tejon 3 show distinct differences from those of Tejon 2. In

the vicinity of the bend the principle compressive axis

rotates from the north-south direction of Tejon 2 to a

position more in line with the San Andreas fault. The most

important change, however, occurs along the Sierra-Nevada

fault where the northwest-southeast tension in model Tejon 2

is replaced by a northwest-southeast compression. This is

definitely in disagreement with the observations presented

in figure 4.36. For this reason the Tejon 3 model may be

eliminated as a satisfactory model of the Tejon bend.
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4.5.4 Discussion

In summary we have made a study of Tejon bend models in

which the depth of fault penetration and plate bottom

boundary conditions could be important. We find that the

effect of the plate interface is the most important feature

of such models and that the fields of this feature can be

adequately described by half-space models. However,

localized regions can undergo large changes in strain

pattern when the boundary conditions on the bottom of the

plate are considered and this should be kept in mind during

future studies of the Tejon bend.

The success of model Tejon 2 in matching the main

features of the principle stress field lead us to believe

that the Tejon bend really represents an effective interface

between the continent of North America and the Pacific plate.

The real test of our model, however, lies in the prediction

of a region of tension off of Point Arguello. This region

does have dip-slip events of either the thrust or normal

type (since Tsumanis have been generated by many of them

(e.g. 1812 Santa Barbara, (Richter, 1953);1927 Point Arguello

(Byerly, 1930)). Fortunately, the U.S.G.S. is currently

interested in this offshore region and our predictions can

be tested. If the predicted region of tension is not

observed we may conclude that either (a) the Pacific moves

in a more northerly direction with respect to North America
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than the N45°W direction used in our Tejon models or

(b) the Tejon bend is riot the primary cause of the tectonics

of the offshore region. In either case this region is

important in the tectonic scheme of California and deserves

further study.
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Figure 4.23

Fault map of the Tejon bend region and some of the major

faults in the area. Points of common .reference in the text

are Tejon Pass (near the intersection of the Garlock and San

Andreas faults), Cajon Pass (at the intersection of the San

Andreas with the San Jacinto fault), and Point Arguello (the

point on.the coast toward which the Santa Ynez fault is

aligned).
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Figure 4.24

(a) Model VBAS - a vertical strike-slip fault embedded

in a Basins and Range type structure (Herrin, 1972). The

elastic constants ), and p are given in dynes/cm2 x 1011 and

the layer thicknesses are in kilometers. The fault is

25 km deep, 260 km long, and 70 km wide. The Burgers' vector
4-

for this model is B = (0, 1, 0). The solutions are obtained

by the FSM using a 128 x 128 grid, AX1 = 25, AX2 = 40 kilometers.

(b) Model VBAC - a vertical collisional fault in the

Basins and Range like structure described in 4.24 (a). The

fault is 25 km deep, 120 km long, and 70 km wide. The Burgers'

vector is B = (1, 0, 0). A 128 x 128 grid was used with sample

sizes of AX = 25 and AX2 = 20 kilometers.
1 
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Figures 4.25-4.27

Profiles of the displacements (at x2 = 160 km) for

model VBAS (). The solutions are compared to those of a

half-space model (x) with elastic properties equal to those

of the second layer in model VBAS.
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Figures 4.28-4.30

A comparison of the displacements of model VBAC ()

to those of a half-space (X) with elastic parameters equal

to those of the second layer of VBAS (figure 4.24 (a)). The

profiles are taken at x 2 = 15 km.
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Figure 4.31

A schematic of displacement boundary conditions on

lithospheric plates. The large open arrows indicate the

direction of plate motion. On the bottom of the plate the

boundary conditions are constant (equal to open arrows) until

the counter flows near the interface begin to slow down

reducing the effective displacements on the bottom of the

plate near the interface. The equivalent dislocation motions

(smaller dark arrows) which result are shown in the shaded

region.
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Figure 4.32

Strain profiles for a model of the type shown in

figure 4.31. The elastic parameters are = 8.05 Ell dynes/

cm2 and 1 = 6.58 E:Ll dynes/cm 2. The profile is taken from

point A (latitude = 36N, longitude = 1220 W) to point B

(360 N, 1160 W). The point A corresponds to 0 km and point B

to 550 km on the profile shown.

Three dislocations are used to construct the model. The

corners of the dislocations are:

Latitude Longitude Depth (km)

1st dislocation

37 ° 1190 0

340 1190 0

340 1190 80

370 1190 80

2nd dislocation

370 119.50 80

37 119.00 80

34 119.00 80

34 119.5 80
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Latitude Longitude Depth (kim)

3rd dislocation

37

37

34

34

118.5

119.0

119.0

118.5

The Burgers' vector components are Br =

The X's are placed on the solution for the first dislocation

only while the o's are placed on the sum of the three

dislocations.

80

80

80

80

1, B = 0° , B = 0.
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Figure 4.33

Schematic diagram of lates in collision. The large

open arrows indicate the sense of motion for plates A and B.

The dark arrows rel resent the equivalent dislocation vectors

for the model. On the bottom of the plate the Burgers' vector

of the equivalent dislocation is non-zero over the transition

zone beneath the plates. This effect will be approximated in

the following figure by a constant dislocation over a distance

comparable to the plate thickness.
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Figure 4.34

Strain profiles for model shown in figure 4.33. The

dislocation and profile parameters are the same as those in

figure 4.32. The Burgers' vector, however, is perpendicular

to the fault (Br = 1, B = -90, B = 0).
Z
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Figure 4.35

Tectonic map of the Tejon bend region. Arrows on faults

indicate sense of inferred motion (see e.g. Ellsworth, 1973).

Thrust faults and their direction of dip are indicated by

faults with dark triangles pointing in the direction of the

dip. The principal stress directions inferred from earthquakes

are denoted by circles with a bar through them indicating the

direction of the principal compressive stress. Events A through

F represent smaller (M < 6) events studied by Hamilton et al.

(1973), Lee and Vedder (1973), and Ellsworth et al. (1974).

Event G represents the San Fernando (1971) earthquake (see

e.g. Cannitez and ToksBz (1971)). We have considered this event

inconsistent with the regional trend. It is, however, consistent

with the local geology. Event H is the 1952 Kern County earth-

quake and event I is the 1872 Owens Valley earthquake (Hileman

et al-., 1972).
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Figure 4.35
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Figure 4.36

Contours of directions of principal compressive stress

inferred for southern California from seismic (see figure 4.36)

and geodetic data (Hofmann, 1968; Scholz and Fitch, 1969;

Savage and Burford, 1970). A more detailed description of

how these directions are obtained may be found in section

4.4.3.
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Figure 4.36
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Figure 4.37

Schematic view of model Tejon 1. The corners of the

dislocation are chosen to follow the profile of the San

Andreas in the north and the San Jacinto in the south. Dark

areas represent the locked portion of the fault. The corner

positions for Tejon 1 are:

Latitude

39.00

35.23

35.00

34.94

34.90

34.76

34.64

34.17

32.69

32.69

34.17

34.27

34.64

34.76

34.90

34.94

Longitude

124.00
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119.46
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Figures 4.38-4.43

Strains (X10+7) stresses (bars), and principal stress

directions for mcdel Tejon 1 in figure 4.37. Tkk represents

the trace of the stress matrix Tij (i.e. Tkk = T11 + T22 +
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Figure 4.44

Schematic diagram of model Tejon 2. This model penetrates

the thickness of the plate in the region of the Tejon bend.

The first 9 corners of the dislocation model are identical to

those for Tejon 1. The rest of the corners for Tejon 2 are:

Latitude

32.69

34.17

34.27

34.64

34.76

34.90

34.9 

35.00

35.23

35.23

35.90

35.90

39.00

Longitude

115.00

117.34

117.45

118.23

118.55

119.23

119.27

119.46

119.64

117.64

120.40

120.40

124.00

Depth (km)

10

25

80

80

80

80

80

80

40

20

20

10

5

Br= 1, B = 1350,
r cb

Corner

10

11

12

13

14

15

16

17

18

19

20

21

22

0



L
:

tmn

I !



326

Figures 4.45-4.50

Strains (X10+ 7 ) stresses (bars), and principal stress

directions for model Tejon 2 in figure 4.44.
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Figure 4.51

(a) Schematic diagram of model Tejon 3 and the additional

displacement boundary conditions for the "bottom" of the plate.

This miodel is identical to model Tejon 2 except for the two

following dislocations on the bottom of the plate.

Corner Latitude Longitude
Bottom A

1 35.00 119.46

2 34.94 119.27

3 34.90 119.23

4 34.76 118.55

5 34.64 118.23

6 34.27 117.45

7 34.023 118.02

8 34.08 118.50

Bottom B

1 35.00 119.46

2 35.12 118.89

3 35.22 118.16

4 34.27 117.45

5 34.64 118.23

6 34.76 118.55

7 34.90 119.23

8 34.94 119.27

Burgers' vector for all dislocations: Br

(b) Top view of Tejon 3
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Figure 4.52-4.57

Strains (X10+7) and stresses (bars) and principal

stress directions for model. Tejon 3 shown in figure 4.51.
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CHAPTER V

Models of the Stress History of California

5.1 Introduction

One of the ultimate goals of any program to model the

stress distribution in the lithosphere is the prediction of

earthquakes. In this chapter we shall use the tectonic

modeling discussed in Chapter IV to calculate the stress

history of California.

In particular a dislocation model of California will be

proposed and discussed in terms of the present day tectonics.

The model will be speculative and w;ill not be comprehensive

but is intended to account for the major tectonic features

observed.

The strain fields from this tectonic model will then be

added to the strain release of the large earthquakes that have

occurred in California since 1812. The resultant additions

allow us to make a study of the strain history of California.

A similar study was made for southern California (using a

plate model) by Smith and Van De Lindt (1969). Their primary

concern was with the interaction of earthquake fields. We

are interested in the mutual interaction of the tectonic and

earthquake fields.

Because of the uncertainties in initial conditions and

mode.1 parameters, the deterministic approach to earthquake

prediction to be presented does not offer immediate hope for
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a self-contained approach to earthquake prediction. However

a study such as presented in this chapter offers:(1) a basic

understanding of the nature of the strain accumulation and

relaxation for our tectonic models,(2) a method which should

allow us to point to regions of high strain accumulation that

deserve further study,and (3) a method which, when used in

conjunction with ther approaches to earthquake prediction,

could offer a viable system of earthquake prediction.

5.2 Tectonic Model of California

The tectonic model to- be used for California will consist

of the Tejon 2 model presented in Chapter IV with a few

additional features (figure 5.1). The most important change

is the introduction of the Great Valley plate, This plate

will allow us to account for a proposed differential motion

between the northern and southern portions of the San Andreas

(Atwater, 1970; Minster et al., 1974), produce a region of

more concentrated northwest southeast tension (Smith and Kind,

1972; Gumper and Scholz, 1972) than that predicted by model

Tejon 2 and therefore allow our model to be more compati-

ble with the large earthquakes that occur in the California-

Nevada tectonic zone, (Ryall et al., 1966). However, the

introduction of the Great Valley plate forces us to put a

Mojave plate into our model (figure 5.1). Without the Mojave

plate it would be necessary to introduce a local rotation of

the North American plate with respect to the Great Valley
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plate in order to explain the tension along one portion of

the interface (Basin and Range province) and compression

along another portion (Tehachapi Range), We eliminate this

possibility because of the lack of the predicted thrust or

normal faulting that would occur on various strike slip

portions of the San Andreas.

We shall assume that the Mojave plate is moving slower

to the southwest (in a relative sense) than the Great Valley

plate. This will introduce compression across the interface

between the Mojave desert and Great Valley. In addition, we

will assume that the North American plate is moving faster to

the southwest than the Great Valley plate, thus producing

tension between these two plates and right lateral shear

between the eastern portion of the Mojave and the .orth

American plate.

A less important change to our model consists of the

introduction of the San Jacinto place wedged between the San

Andreas and San Jacinto faults in the south. This plate is

introduced to take account of the geodetic observations of

Savage and Burford (1970) and Scholz and Fitch (1969). They

find a broad zone of deformation across the San Andreas and

San Jacinto faults with most of the strain accumulation being

associated with the San Jacinto fault. There is however, a

concentration of strain associated with the San Andreas fault

which is indicative of slip at depth on this fault. We will
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construct our model so that.the relative motion between the

San Jacinto plate and the North American plate (the San

Andreas fault) is small. Therefore, most of the motion between

the North American plate and the Pacific plate will be taken

up on the San Jacinto fault. The presence of the San Jacinto

plate could be related to the existence of proposed spreading

centers in southern California (Elders, et al,, 1972).

Thus, in our model, the Mojave plate is being squeezed

slightly to the east by the San Jacinto and Pacific plates

from the south and by the Great Valley plate from the north

(Anderson, 1971). The relative motions across the interfaces

are determined by the imposed requirement that the Pacific

plate move at a rate of 6 cm/year with respect to the North

American plate and 5 cm/year with respect to the Great Valley

plate (N450 W). Thus, the net movement in our model across the

southern portion of the San Andreas will be consistent with

that determined in the Gulf of California (Larson et al., 1968).

The extra 1 cm/year will be taken up in the Basin and Range

region (between the Great Valley and North American plates)

(Minster et al., 1974).

In figure 52 we have drawn an oblique view of the fault

model described above. The model parameters are given in

table 5,1. The view is shown with the Pacific plate cut away

so that depth of locking on the San Andreas may be shown.

Locking is defined here to mean little or no motion with
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respect to the slipping portion of the fault (shown in white).

Thus the locked sections of the fault shown in figure 5,2

could represent either (a) portions of the fault which are

especially resistant to slip or (b) portions of the fault

which are at a low stress state (and therefore unable to

overcome the local frictional forces). We cannot distinguish

between the two possibilities but e speculate that the deeper

sections of locked fault under San Francisco and the Tejon bend

are related to a low stress state in these areas which resulted

from the 1906 and 1857 earthquakes respectively.

The depth of locking in the vicinity cf San Francisco is

essentially that inferred in Chapter IV. Northwest of Bodega

head (near Forth Ross) the high strain rates (Meade, 1971) are

indicative of shallow locking (10-20 km). Southwest of San

Juan Bautista (between SJB and Cholame) the agreement between

fault creep and geodetically determired strain rates indicate

very shallow or no locking (0-12 kr, (Savage and Burford, 1970;

Wesson et al., 1973). This conclusion is supported by the low

strain rates observed south of SJB at the Salinas net (Robert

Nason, personal communication, 1975). A recent analysis of

triangulation arc data in the vicinity of Point Reyes (between

Bodega Head and San Francisco) led Thatcher (1975) to conclude

that the depth of locking in this region is deeper than that to

the northwest of Bodega Head or to the southwest of SJB. This

supports our conclusion of deeper locking in the San Francisco

area based on the rotation of the pressure axes in this region
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and the slower relative motion of geodetic stations across the

San Andreas near San Francisco.

South of Cholame we have the depth of locking increase

rapidly as we move into the Carrizzo plains area. Based upon

the arguments presented in Chapter IV,we estimate the depth of

locking in the Carrizzo plains - Tejon bend region to be from

60 to 100 km. We have chosen 80 km as the depth of locking for

this region. In fact,all zones of interaction for the Mojave

plate are assumed to extend to 80 km. This depth of inter-

action will extend the range of influence of the Mojave plate

but will minimize its effect upon the local fields in the

vicinity of the Tejon bend. Southwest of the Tejon bend we

assume that both the San Jacinto and San Andreas faults lock

to 15 km.

The zone of interaction between the North American plates

and the Great Valley plate is assumed to extend to 80 km.

Because of the relative motion between the North American plate

and the Great Valley this interface represents a region in which

the plates are being pulled apart. The interaction extends

throughout the thickness of the plates (in this case 80 km)

and should result in a broad region of strain accumulation (and

therefore earthquake activity).

We wish now to examine two versions of the model described

above. The first version (model TCALS) has the Mojave plate

moving primarily in a northwest-southeast direction (parallel
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to other plate motions). The second model (TCALF) has the

Mojave moving toward the east much more rapidly than in model

TCALS. The major effect of the faster easterly moving Mojave

will be a rotation of the Burgers vector (or relative motion

motion vector) across the Tejon bend.

In figures 5.3-5.7 we have contoured the strains and

stresses that would accumulate from the model TCALS over a

period of 100 years (without earthquakes), The principle stress

directions are plotted in figure 5.8. The El contours in

figure 5.3 show that this model puts the Hayward Calaveras

fault zone, the offshore region near point Arguello, the San

Andreas in the vicinity of the Tejon bend, the eastern edge of

the Mojave desert, and the San Jacinto and San Andreas faults

in the south under northeast southwest tension. On the other

hand,the (1) Monterey Bay, (2) offshore los Angeles and,

(3) Sierra Nevada areas are subjected to nortn ast southwest

compression.

The E22 strains contoured in figure 5.4 indicate that the

Tejon bend is subjected to northwest-southeast compression while

the eastern Mojave, the Sierra-Nevada fault region, the coastal

side of the San Andreas between Cholame and Santa Barbara, and

the Hayward-Calaveras zones are subjected to northwest-southeast

extension. The shear strain and maximum shear stress in

figures 5.5 and 5.6 respectively show the highest shear

accumulation on the portion of the San Andreas between SJB and

Cholame. There is, however, considerable debate over whether
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or not this stress is being released by fault creep (see

e.g. Scholz and Fitch, 1969; Savage and.Burford, 1970). The

sum of the stresses kk = ll+T22+33 contoured in figure 5.7

allow us to see the effective lobes of extension (+) and

contraction (-) associated with the variable depth of locking

along the San Andreas. These lobes are important and their

existence should be looked for in future studies of the

geodetic data, Data suggestive of the edge effect near Cholame

may be found in the papers by Cherry and Savage (1972), Greens-

felder and Bennett (1973), and Howard (1968).

The principal stress directions for model TCALS are shown

in figure 5.8. As expected (at least by the author), the

principal stress directions and signs are essentially those of

the Tejon 2 model described in Chapter IV. The two models

differ on the northeastern edge of the Mojave plate where

model TCALS has tension in both a north-south and east-west

direction while model Tejon 2 had compression. on the north-south

axes in this region.

In figures 5.9-5.11 we show contours of E 1, E22, and

Tkk for model TCALF in which the Mojave plate is being pushed

more rapidly in a N45°E direction. The shear strain and

maximum shear stress profiles are not shown for this model

since they are essentially the same as those shown for model

TCALF. The major difference in the two models for the Ell

strain occurs on the southern portion of the San Andreas and on
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the San Jacinto fault, For model TCALS these faults were

under compression in this direction (figure 5,9), In the case

of the E22 strains the model TCALF broadens the region of

northwest-southeast compression which was originally off the

coast of Los Angeles and pulls it up to the Santa Barbara

channel region. The interesting effect to be noted in the

Tkk is the large positive region which includes the areas of

the 1857 Tejon earthquake, 1952 Kern County earthquake, and

the 1971 San Fernando earthquake (see Table 5,2).

The principle stress directions for model TCALF are shown

in figure 5.12. It is interesting to note that the region of

extension off the coast (Point Arguello) is now primarily

compression in a north south sense with extension in an east-

west direction. Thus it appears that one of the most important

factors in the tectonics of the offshore area in this region

is the direction of relative motion across t Tejon bend,

However, in the Santa Barbara channel region, model TCALF would

predict right lateral motion on the east-west trending faults.

This contradicts the observations for the Santa Barbara

Channel region (see eg. Ellsworth, 1975). The purely tensional

feature on the northeastern portion of the principal stress map

for this region does not seem to agree with the observations

for this area (Smith and Kind, 1972; Priestly, 1974). If the

motion of the Mojave plate is fast enough in a N450 W direction

(and it is for model TCALF) then the Mojave plate will be

pulling away from the San Jacinto plate in the Banning Mission
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Creek area (intersection of San Andreas and San Jacinto faults).

Under these circumstances we would expect to see east-west

tensional features in this area. Geologically this area is

characterized more by a north-south compression (Allen et al,,

1965; Sharp, 1967). However recent fault plane solutions for

this region indicate normal faulting with an almost north-

south strike (David Hadley, personal communication, 1975).

However, because this seems to be one of the few desirable

features of model TCALF we shall be content with model TCALS

for the purposes of this chapter.

5.3 California Earthquakes

Now that we have a model of the mechanism which generates

internal stress in California, we wish to examine those

mechanisms which allow the strain to be released, We shall

categorize them in the following manner: (1) large earthquakes

(M>6) (2) small earthquakes (M<6) (3) fault creep and

(4) diffusion creep. The only strain release mechanism

included in our calculation will be that of the large earth-

quake. Neglect of small earthquakes is justified on the basis

of energy considerations (Richter, 1958). As shown in

Chapter IV,we are able to model fault creep in terms of

dislocations (see eg. Stewart et al., 1973; Nason and

Weertman, 1973), but the total amount of fault creep and the

contribution it makes to the strain released is uncertain.
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However, because of our results in Chapter IV, we believe

that fault creep could play a minor role in the release of

strain. Diffusion creep in the crust should not effect our

calculations as long as we consider time periods on the order

of a hundred years. Asthenospheric relaxation could signifi-

cantly alter our results if the plate is thin or the viscosity

is low. In consideration of the results presented in

Chapters III and IV we shall assume the effects due to the

plate bottom are negligible.

Even restricting our studies to the strain release of

large earthquakes does not help us much. This is due to the

lack of data on many of the large events being studied.

Often, the only data available for past earthquakes are the

locations and the observations of the fault. Magnitudes for

these historic events ar, generally assicned from the intensity

scale based on the amount of shaking felt by people at various

distances from the source (Richter, 1958). We begin accounting

for earthquake strain release in the year 1812 and attempt to

take account of all large earthquakes that occurred from that

year to the present. The magnitudes and locations of many of

the events were taken from the book by Gutenberg and Richter

(1954). This data was complimented by data on USGS and NOAA

tapes.

The magnitudes are then used to calculate the lengths of

the earthquakes on the basis of an empirical magnitude-length
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relation found by Tocher (1958).and later explained by means

of seismic scaling (Aki, 1968). The equation used is

L = 10 59M-2.24

where M is the earthquake magnitude and L is the length of

the earthquake in kilometers. All of the earthquakes were

assigned a common width of 15 km and depth of 0 km. This is

unreasonable in terms of individual earthquakes but allows us

to put a limit on the effective range of earthquakes. The

width of 15 km used is consistent with the shallow depth of

California earthquakes (Allen, et al.. 1965; Brune, 1968;

Richter, 1958; Wyss and Brune, 1968).

In order to choose the net slip for each event we make

the assumption that the stress drop for all events is the

same (Aki, 1967; Chinnery, 1968; Aki, 1972). The general

expression for stress drop is (Aki, 1972)

5.1 Aa = c A

where c is a constant dependent upon the fault geometry, 

is the elastic rigidity, A is the average slip, and S is the

surface area of the fault. C varies from 2.4 (circular crack)

to 5. We have chosen c on the assumption that all earthquakes

drop 50 bars of stress (Smith and Van De Lindt, 1969) and that
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the 1906 San Francisco earthquake is representative of

California earthquakes, We thus use L = 435 km and A = 5

meters (Chinnery, 1961) for the 1906 earthquake to determine

the value of 2.69 for c from equation 5.1( = 3 x 1011 dynes/

cm2 ). With c determined, equation 5.1 may now be used to

determine the slip for other California earthquakes. Because

our method of choosing lengths, widths, and average slips

tends to overestimate the seismic moments, our earthquakes

will not obey empirically determined magnitude-moment relations

(Brune, 1968). However, it is not clear that the static

moment determined seismically gives an accurate representation

of the permanent deformation associated with an earthquake

(Allen and Wyss, 1967; Thatcher, 1975). The rakes, strikes,

and dips of the events wre assigned on the basis of geologic

and seismic observations (Allen, et al., 1965 Gumper and

Schclz, 1971; Richter, 1958; Bolt and Miller, 1968; Bolt

et al., 1968; fault map, California division of mines and

resources; Hileman et al., 1974),. For example, if an earth-

quake occurred in the northern or southern most portions of

the San Andreas it was treated as a vertical strike slip

fault with right lateral motion, If on the other hand the

earthquake occurred in the Tehachapi Range it was given an

almost pure thrust mechanism with a slight left lateral motion.

The dip angles used for a region considered to be under

predominant compression or tension was 45°. If an earthquake
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occurred in an intermediate region, the dislocation parameters

were scaled according to the position of the earthquake

between the two extreme regions. When other data was avail-

able none of the above rules were used (see e.g. Allen et al.

1965; Richter, 1958; Tocher, 1958; Hileman et al., 1972).

The dislocation parameters are given in table 5.1. The

strike direction () is measured positive counterclockwise

from north and represents the direction of the Y-axis along

which the fault is aligned. The dip direction is toward the

positive x-axis. The x and y axes form a right handed

coordinate system so that z points out of the earth. Thus,

for example, an earthquake with a strike of 450 and a dip of

200 will be dipping toward 45E with a dip of 200. Many of

the larger events listed in table 5.1 have been plotted in

figure 5.13.

5.4 Initial Conditions

One of the most difficult (if not impossible) aspects

of our problem is that of choosing the initial conditions

with which to start our models of California. We may guess

that some fraction of the existing stress field that existed

in 1812 (which is the time at which our model will begin)

will have originated from the tectonic strain accumulation

due to relative plate motion over some period of time. To

model this portion of the initial field we have assumed a

100 year accumulation from a modified form of the tectonic



356

model discussed in the previous section (TCALS). The

modification was made on the portion of the San Andreas

which extends northward from the Tejon bend. Instead of the

variable depth of locking (figure 5.2) we have assumed that

this portion locked uniformly to a depth of 40 km. This

depth of locking will yield a low prestress associated with

the northern leg of the San Andreas. In fact, we shall

assume that this smoother tectonic model is in effect until

the 1906 earthquake. After 1906, the variable depth of

locking shown in figure 5.2 is assumed. Implicit in this

assumption is the speculation that the post-seismic slip

associated with the 1906 earthquake (Thatcher, 1975) repre-

sents the initiation of our model TCALS. Thus, rapid strain

accumulation on that portion of the San Andreas between SJB

and Cholame is not assumed to have begun until 1906. Any

estimates of stress on this portion of the f lt will then

represent an underestimate since we neglect the possibility

of rapid strain accumulation before 1906. On the other hand,

our calculations will represent an overestimate since we

are neglecting the possibility of fault creep and small

earthquakes (M<6). The only way to test these assumptions

is to compare the predictions of our models with the obser-

vations.

The second portion of the initial stress field that

existed in 1812 must have been related to the past earthquakes
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and their effect upon the tectonic fields. At first glance

the assignment of this portion of the initial stress appears

impossible since little is known about earthquakes in

California before this time. We may, however, make an

educated guess at this portion of the field by using our

knowledge of events subsequent to 1812. To do this we

simply place a dislocation model at the site of a future

earthquake with the same parameters as the earthquake which

is to occur. However, we put the net slip equal and opposite

to that of the future earthquake. If we do this for all the

earthquakes which are to occur after 1812,then our model

will give us nothing more than the fields due to the tectonic

model. On the other hand, if we completely ignore the fact

that strain had already accumulated for some earthquakes in

1812. then our initial conditions will not even be approximately

correct. We have compromised and used the anti-moments

(Andrews, 1975) for the 1812, 1857, 1872, and 1906 earthquakes

(figure 5.13). The maximum shear stress and kk for the

initial conditions described above are shown in figures 514

and 5.15 respectively. The future sites of the large earth-

quakes (1812, 1857, 1872, and 1906) may be easily seen in

the maximum shear stress profiles (figure 5.14) but the Tkk

do not show any consistent sign relation (at least for strike-

slip events) with the site of future events as would be

expected from a rock mechanical point of view (Chinnery and
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Rogers, 1973). For this reason we shall simply plot the

maximum shear stress contour in the following study of the

stress history of California.

5.5 Stress Histor" of California

We now wish to turn our model on, so to speak, with the

initial conditions shown in figures 5.14 and 5.15. The

development of the maximum shear stress from 1812 to the

present is of interest to us here and will be shown in the

years 1915, 1935, 1954, and 1973. During the first time

period the depth of locking on the portion of the San Andreas

north of the Tejon bend will be the same as that used in the

model for the initial conditions. After 1906, however,

model TCALS (figure 5,2) will be used.

In figure 5.17 we have plotted the maximum shear stress

contours that result from the addition o (1) 'he tectonic

stre ss accumulation (1812-1915), (2) the initial conditions

(figures 5.14 and 5.15) and, (3) the earthquake strain

release (1812-1915). The earthquakes for this time period

are plotted in figure 5.16. As expected, the regions where

the 1812, 1857, 1872, and 1906 earthquakes occurred are

areas of low maximum shear stress at the end of the year

1915. Regions of high shear for the year 1915 are concen-

trated near the SJB bend and the Parkfield-Chalome region on

the portion of the San Andreas north of the Tejon bend.
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These high stress regions are probably end effects of the

1906 and 1857 earthquakes. By comparison,the southern

portion of the model exhibits a rather uniform distribution

of high shear (mostly along the San Jacinto fault) with the

highest stresses being in the Borrego Mountain-Superstition

Hills fault area (along the San Jacinto fault). However,

local highs are associated with the intersection of the San

Jacinto and San Gabriel faults and the region between the

San Jacinto and San Andreas faults which is just south of

the Banning-Mission Creek area.

The high shear region in the southern portion (south of

32°N) of our map (figure 5.17) represents a region in which

our model is a failure. This may be seen by comparing

figure 5.17 (1915) to figure 5.18 (1935). During the time

period 1915-1935 no large earthquakes occurred in this

region, yet the shear stress diminished. Thus, the high

shear in figure 5,.17 represents only the stress release due

to earthquakes in this area and does not represent a stress

accumulation. From the shear stress map in figure 5.17 we

would choose the Sierra-Nevada fault region and the Santa

Barbara Channel area as unlikely spots for future activity.

This is seen to not be true in figure 5.18 where we have

plotted the earthquake activity (M>5) for the period 1916-

1935. In fact, we may consider the coastal events and the

Sierra-Nevada events as a proof of the failure of either our
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initial conditions (figures 5.14-5.15) or the tectonic model

(figure 5.2). On the other hand, the events on the San

Jacinto and near Parkfield occur in regions of high shear

predicted by our model.

We now add to the fields described above the strain

accumulation due to model TCALS (figure 5.2) over the period

1916-1935 and the strain release for the large earthquakes

of this period (table 5.1 and figure 5.18). The resultant

shear stress for the end of 1935 is shown in figure 5.19.

The high stress region near 320N, 116.5°W is now diminished

from its value for the year 1915. As described earlier this

results from the earthquakes releasing more strain than was

available from either the initial conditions or the tectonic

model. The same argument may be put forth for the offshore

high near Point Arguello (1927 M = 7.5 Point Arguello earth-

quake; Byerly, 1930) and the northernmost high near the

Nevada-California border (this high is associated with the

1932 M = 7,3 Cedar Mountain earthquake; Richter, 1958),

However, the high shear on the California-Nevada border

lasts through the next two time periods and represents what

we believe to be a high stress region. This area is about

30-40 km due east of Mono Lake and is probably an end effect

of the 1932 event. The stress could be even higher for this

region than indicated since we have effectively eliminated

the end effects of the 1872 event by our choice of initial
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conditions. Just south of this high is another local high

which we believe to be the result of the high strain release

in this area (concluded from strain contours not shown).

The activity in this area is most likely due to an end

effect of the 1872 Owens Valley event. A readjustment of

initial conditions would probably allow our model to be more

compatible with the activity in this region,

The virtual inactivity of the northern portion of the

San Andreas during the period 1915-1935 resulted in a

general tectonic strain accumulation over this period

(figure 5.19). The same is true for the San Jacinto fault

in the south even though three M = 6+ events occurred in its

vicinity during the 1916-1935 period (figure 5,18).

The earthquakes (M>4) for the following time period

(1936-1'955) are shown in figure 5.20. It is during this

time period that activity in the Borrego Valley high shear

area appears to increase. This is probably due to increased

detection capabilities. However, the local high around the

intersection of the San Jacinto and San Andreas faults is

still inactive. The high shear region between SJB and

Parkfield are also relatively inactive during this period.

The same is true for the high shear region west of Mono

Lake.

In 1955 (figure 5.21) we have essentially the same high

stress regions that were present in 1935. The major difference
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is the lower stress near the intersection of the White Wolf

fault and the San Andreas. This is due primarily to the

1952 Kern County earthquake (Richter, 1958),

Now, however, the high shear regions represent areas of

high future activity (M>4) as shown in figure 5,22, The

exception seems to be the high shear zone west of Mono Lake

which is virtually surrounded by activity but is quiet

during the 1956-1973 period. The same is true for a portion

of the high shear zone between SJB and Cholame.

Adding the stress accumulation of our tectonic model

and the stress release of the earthquakes over the next time

period we obtain the present day shear stress contours for

our model (figure 5.23). The primary high shear regions are

(1) SJB (2) Parkfield-Cholome (3) the area 30-40 km east of

Lake Mono (4) Borrego Valley (5) Superstition Mountain and

(6) the area where the San Jacinto interjects he San Andreas

(Cajon Pass region). These high order areas have existed

since at least 1935 (figure 5,19) and represent regions of

probable future activity (in terms of our model).

We are, of course, unable to predict that any of the

high shear regions listed above will be the site of future

large earthquakes. We do believe, however, that these areas

deserve further study. This statement is especially true

for the SJB-Parkfield and the Borrego Valley-Superstition

Mountain regions since they represent the most extensive
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high shear areas. Because of its proximity to San Bernadino,

however, the high shear region near the intersection of the

San Andreas and the San Jacinto faults could be the most

potentially dangerous of all the high shear regions. The

predicted highs for southern California (especially in the

San Bernadino region) were also regions of high strain

accumulation in the model presented by Smith and Van De Lindt

(1969).

5.6 SJB-Cholame High Shear Zone

One of the major problems with neglecting certain forms

of stress release (such as small earthquakes and fault

creep) in a calculation aimed toward finding regions of high

stress is the possibility that these other mechanisms-may

indeed release most of the stress in this region. The

argument for creep and small earthquakes releasing most of

the stress accumulation between SJB and Cholame has been put

forth by Savage and Burford (1970) and Wesson et al. (1973).

The most convincing piece of evidence in favor of this being

the case is the general agreement between the fault creep

(measured at the fault trace by alignment arrays) and the

relative motion of geodetic stations located several kilometers

apart on opposite sides of the fault (see top of figure

5.24). However, the uniqueness of this interpretation is

open to question since the geodetic stations are all essen-

tially the same distance away from the fault (about 7 km),
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What is needed for this region is a high resolution tri-

angulation arc which is capable of detecting thin zones of

locking.

In the bottom of figure 5.24 we have plotted an al-

ternative model to the non-locking model. This model was

obtained using the two dimensional equations for a creeping

fault which were derived in Chapter IV. Those results allow

us to write the relative motion W of two stations a distance

X on opposite sides of the fault in the form

5.1 2tan AW r- 2 tan( X) + _ 2 tan
b, · d2 5 d

where = bl/b2, b1 = fault creep, b2 = relative plate

motion at depth below the locked fault, d = depth of the

creeping section, and d2 = depth to the bottom of the locked

section. Given the observations AW (gecdimet._ data), b1

(fault creep measured by alignment array), and the assump-

tion that b2 = 5 cm/year, we may use equation 5.1 to find a

range of d and d2 which are consistent with the observations.

We have chosen instead to find those dl's and d2 's which are

consistent with the creep and geodimeter data and which

allow the fault creep to release all of the stress at the

surface (on the fault trace). The additional constraint

that the stress vanish on the fault at the surface is at

least approximately true near Hollister (see figure 4.18)

and we propose that it exists all along the creeping section
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of the San Andreas from SJB to Cholame. This constraint is

equivalent to the assumption that

b 1 b2
5.2 1 2

d1 - d2

The zone of locking obtained in this manner (trial and

error solution of 5.1 and 5.2) is shown in the bottom of

figure 5.24.

The region of locking just north of Parkfield (area of

1934 Parkfield earthquake) and the area between Parkfield

and Cholame (1966 Parkfield earthquake is very narow and

would perhaps be non-existent if we had assumed a slower

plate motion than 5 cm/year. On the other hand our model is

indicative of at least 5 km of locking in the region ex-

tending northward from Bear Valley. South of Cholame the

geodimeter data are indicative of a rapid increase in the

depth of locking. The reader is reminded at this point that

locking is intended to mean little or no motion with respect

to the slipping section of the fault.

The pattern of locking described above is in general

agreement with the pattern of microearthquake activity for

this region (figure 5.25). It is impossible to argue,

however, that this agreement of the microearthquake pattern

with our pattern of partial locking is in support of our

model,.
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The only two trinagulation arcs in this region of

California fall at the northern (Hollister arc) and southern

(Cholame arc) ends of the region of interest. The data from

the Cholame arc (figures 5.27 and 5.28) is indicative of the

edge effect that would be expected from the rapid increase

in the depth of locking inferred to occur near Cholame

(figure 5.24). Savage and Burford (1970) have suggested

that this effect could be due to slip on a large surface

associated with the 1934 earthquake (top of figure 5.26).

Two alternative models are shown in the center (solid line

in figures 5.27 and 5.28) and bottom (dashed line in figures

5.27 and 5.28) of figure 5.26.

The center model represents slip in the region of the

1934 earthquake and 10 km below the region where the 1966

Parkfield earthquake occurred (between Parkfield and Cholame).

The bottom model represents a thin (5 k loc d zone (in

general agreement with the shallow depth determined by Aki

(1967)) with a deep edge south of Cholame.

The point to be made with these models is that (a) the

component which is the component indicative of an edge

effect, does not allow us to determine whether the edge is

north or south of Cholame and (b) the Cholame arc data is

consistent with (but not proof of) a rapid increase in the

depth of locking south of Cholame, As pointed out earlier,

the observations of Cherry and Savage (1972) and Howard

(1968) may also be indicative of the edge effect near Cholame,
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5.7 Conclusions

In summary, we have made dislocation models which we

consider to be representative of at least a portion of the

tectonics in California, Although the models presented are

plagued by a large number of assumed parameters (and extra

plates), the major features will be ontributed by the San

Andreas-Tejon bend-San Jacinto portion of the tectonic

model. The microplates used (Great Valley, Mojave, and San

Jacinto plates) are hypothetical and are introduced to

explain a portion of the zone of activity extending from the

Santa Barbara channel into Nevada and the eastern Mojave

desert. It was tempting at this point to include the possible

effects of other plates such as a Salinian block (Clark, 1930)

that could be used to explain much of the coastal activity

(from Point Arguello to San Francisco) which seems to end in

the vicinity of San Francisco Bay (Bolt et al., 1968). We

have, however, avoided this temptation and have restricted

ourselves to a model which represents a minor change from

the Tejon model presented in Chapter IV. The point that we

have concluded from the models presented, however, is that

the direction of relative plate motion in the vicinity of

the Tejon bend is an important parameter in determining the

tectonics of the offshore region (Santa Barbara channel-

Point Arguello area).

In testing our model by adding to it the stress release
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of the large earthquakes we find, naturally, that our model

is incapable of explaining the offshore activity. We

cannot, however, eliminate our model for the interface

between the Great Valley and North American plates since the

problems we have there may be due to our initial conditions.

Our computation of the stress history of California has

predicted several high shear zones which we believe deserve

further study. In particular we believe that a high reso-

lution triangulation arc (with elements of 1 km or less)

should be established across the San Andreas between the

Holister arc and the Cholame arc (see Savage and Burford

(1970)). A likely area would be north of Bear Valley and

south of SJB (figure 5.24). The establishment of this arc

would aid in the resolution of thin zones of locking. The

possibility that many of the large events in this region

could have been very thin (e.g. the 1906 San ancisco

earthquake has been suggested to hre been 3 km (Knopoff,

1958) to 5 km (Chinnery, 1961) wide while the 1966 Parkfield

earthquake (Aki, 1967) could have been of a similar width)

must be taken into account.

In terms of populated areas we believe the San Jacinto-

San Andreas intersection could be the dangerous of the high

shear regions predicted because of its proximity to the San

Bernadino region.
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Tectonic Model of California

Latitude Longitude

Pacific-Great Valley

Cholame
Cholame

Bodega Head

1 39.00
2 37.25
3 36.50
4 35,25

5 35,00.
6 34,94
7 34,90
8 34.90
9 34.94

10 35.00
11 35.25
12 35,72
13 35.72
14 36.50
15 37.25
16 37.25
17 38.30
18 38.30
19 39. 00

B = 5,, B, = 1350, B = 0
(assiuming 5 cm/yr for 106 years)

Great Valley-North America 1 35.74
2 40.00
3 40,00
4 35,74

B.r = 1. B = -450, B = 0
(1 cm/yr for 100 years)

Pacific-San Jacinto 1 34.17
2 31.00
3 31.00
4 34.17

Br = 4. B = 135 °, Bz = 0
(4 cm/yr for 100 years)

San Jacinto-North America 1 33.90
2 31.00
3 31.00
4 33.90

116.25
112,85
112. 85
116.25

B = 2., B = 135 0.
r (2 cm/yA for 100 years)

Plates Depth

124,00
122,0Q8
121.25
119.64
119, 46
119..27
119,23
119.23
119.27
119.46
119.64
120,26
120.26
121.25
122,08
122.08
123.22
123.22
124.00

118,25
118,86
118,86
118, 25

117, 34
113.70
113.,70
117.34

0 ,

0,
0.
0.
0,

0.
0,

80.
70,
60.
40.
40.
10.
10.
20.
40.
40.
15.
15.

0.
0.

80.
80.

0.
0,

15.
15.

0.

0.

15.
15.



Table 5.1 (cont'd)

Great Valley-Mojave

Model TCALF - B = 1,12,
Model TCALS - Br = 509,

Moj ave-North America

Model TCALF - B = 180,
Model TCALS - Br = 150

Pacific-Moj ave

Model TCALF - B = 4.61,
Model TCALS - Br = 4.50,

r

Mojave-San Jacinto

1 34.90 119.23
2 35.74 118.25
3 35,74 118,25
4 34,90 119,23

B= 710, B = 0.
B = 124 ° = 0,

= Z

1 35.74
2 33.90

3 33,90
4 35.74

118,25
116.25
116, 25
118.25

= 101.3 ° , Bz = 0.
= 1310, B = 0,

1 34,90
2 34.76

3 34.64
4 34,17

5 34.17

6 34.64
7 34.76
8 34.90

119. 23
118,55
118.23
117.34
117.34
118.23
118.55
119.23

= 122,5 °, B z = 0.
= 134 ° B = 0.

1 34.17
2 33.90
3 3j.90

4 34.17

117.34
116.25
116 25
117.34

Model TCALF - B = 1.12, B = 71 ° B = 0
Model TCALS - Br = .51 B = 1240, B = 0.

0,

0,

80.
80,

0.

0.

80.
80.

0.

0.

0,

0.

80.
80.
80.
80.

0.

0.

80.
80.

B
B
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Figure 5.1

Microplate structure for tectonic model of California.

The primary features of the model are along: (1) the San

Andreas fault in the north (2) the San Jacinto fault in the

south and (3) the San Andreas in the Tejon bend region.

Secondary features used to explain seismicity and/or strain

accumulation determined geodetically include (1) the Great

Valley plate, (2) the Mojave plate and (3) the San Jacinto

plate. The most important variable in this model is the

direction of relative motion across the Tejon bend. Two

versions of this model will be presented.
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Figure 5.2

Oblique view of tectonic model of California. Shaded

areas-are used to represent locking. Two versions of the

model are considered in this chapter. Model TCALS represents

the case in which the motion of the Mojave plate is primarily

in a direction parallel to S450E. Model TCALF considers the

case in which the Mojave plate moves in a more easterly

direction.
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Figures 5.3-5.8

Strains, stresses, and principal stress-directions for

model TCALS (figure 5.2).
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PRINCIPAL STRESSES

Figure 5.8
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Figure 5.9-5.12

Strains (El, and E2 2), Tkk, and principal stress

directions for model TCALF.
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Figure 5.13

Plot of many of the large earthquakes since 1812 (see

table 5.1 for assigned earthquake parameters and event

numbers). Events 1, 4, 8, and 10 are used to set up the

initial stresses contoured in figures 5.14 and 5,15.
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Figures 5.14 and 5.15

Maximum shear stress (bars) and Tkk for initial

conditions (1812). High shear regions in figure 5,14 are

sights of future earthquakes (1812, 1857, 1872, and 1906

events in Table 5.1).
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Figure 5.16

Locations of large earthquakes in California during the

period 1812-1915. Dark circles represent events of magnitude

greater than or equal to 6 and less than 7, triangles

represent events of magnitude greater than or equal to 7

and less than 8, and squares are for events of magnitude 8

or greater.



393

Figure 5.16
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Figure 5.17

Maximum shear stress contours for model TCALS + initial

conditions + earthquakes (1812-1915). High shear regions near

SJB, Parkfield, San Bernadino, Borrego Valley, and Superstition

Mountain are areas which survive subsequent earthquake stress

release and may be present today.



397

MAXIMUM SHEAR STRESS (BARS)
1915

1220 120 ° 1180 1160
LONGITUDE

Figure 5.17

38°

36°

0

1-

340

32°



39 

Figure 5.18

Earthquakes during 1916-1935 period. Plus represents

an earthquake with magnitude greater than or equal to 5 and

less than 6.
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Figure IT. 19

Maximum shear stress contours computed for the year 1935.

Stresses are calculated by adding initial conditions (1812),

earthquakes (1812-1935), and 1935-1812=123 years of our

tectonic model (TCALS).
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Figure 5.20

California earthquakes (M>4) during the period 1936-1955.

X represents the location of 5<M>4 events. The other symbols

are defined in figures 5.16 and 5,18,
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Figure 5.20
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Figure 5.21

Maximum shear stress accumulation for the year 1955.

Stresses are computed by adding the initial conditions (1812)

shown in figures 5.14 and 5.15, the earthquake stress release

(1812-1955), and 1955-1812=143 years of our tectonic model

(TCALS).
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Figure 5.22

California earthquakes (M>4) during the period 1956-1973.
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Figure 5.22
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Figure 5.23

Maximum shear stress contours for the year 1973, Stresses

are computed by adding the initial conditions (1812),

earthquakes (1812-1973), and 1973-1812=161 years of our

tectonic model (TCALS), High shear regions near SJB, Parkfield,

San Bernadino, Borrego Valley, and Superstition Mountain have

existed since 1915 (figure 5.17),
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Figure 5.24

Top-figure compares relative motion (AW) of geodetic

stations (Geodimeter data) on opposite sides of the fault

(stations are approximately 7 km from the fault) to fault

creep (alignment array), Geodimeter data for the period

1967-1971 and alignment array data for the period 1968-1971

were taken from Wesson et al. (1973), Geodimeter data for the

period 1959-1965 may be found in the report by Hofman (1968).

Bottom-zone of locking inferred from two dimensional

model described in text and the data described above. Depths

d1 (distance from surface to bottom of creep zone) and d2

(distance from surface to bottom of zone of locking) are fixed

so that the strain on the fault is zero at the surface (a

condition which is approximately true near Hollister -

figure 4.19). This additional constraint is equivalent to

the requirement that

b1 (fault creep) b2 (relative plate motion)

d2 (depth of creep) d2 (depth to bottom of locking)
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Figure 5.25

Depth of small earthquakes along the San Andreas from SJB

to Parkfield are indicative of possible locking along this

portion of the fault. Figure is from Wesson et al, (1973) and

was furnished to the author by W,L. Elsworth.



sao Juon sootlota
25 0

A AA&A A ,. 

5; ~ " x

al, k *

X

.X .'
Maognitude

.<I .1 X2 0

_ _
X ( X

3 04 0x .JUNE 

3 04 05 JAN.-JUNE 1969

A AAAA A .
X .

x . * x .

x
.X

'~ * x *'

o ; X

15

A A .A . . .

. -A ... . .
X

X X
X.

X XX

JL X

JULY - DEC. 1969Ox
++ x

A A . 4 4 A _A

, . X . + X X.:° x .' ' . + '.xx * x

0 .
15,

A A A& . A A .A A

.*x- - .1 
.
I x x x

JAN. - JUNE 1970

· * , *. A A.

. X .

"~< x * *

.

.· . * .... . f (p 
14 x 4i - I :" s

X~ x - . .. . X; .
V. X . - O*X# X.

xX JULY0EC. 1970
JULY--DEC. 1970

. . 4 4 &A A

·... : . 4 X 0

0 

.A A&.A A . . &A .A *. A. A .A 4

*a* 
Y I'

7~~~~~~~~~~~~~~~~~~~~
· . .v' :1( . V 1x: '*.. .-· * .** ~.x . * .* , I N ·*·; T B , ( 1v j. - 4 ,. X X r.,4'44 .--- 

JAN.- JUNE 1971

. d ̂  A .

0x

JULY - DEC. 1971

_AA .- . ,- , . .IL A. A- A

JAN.- JUNE 1972

.A A A A . . A. 4, . , ,A 

. X
,"X' 'x ; 

x. X'AL . r:% I
kAAk A A AAA A- & A .. A. 4

. ?, l . . '.dio. ~"...' *.~

.o - * :.% v ~ *w s
0'' Ne t -ya

'5

JULY - DEC. 1972

A AA

. I

-x 

JAN.- APRIL 1973

E'icgure 5.25

Beer ValIy
50 100

'13

Parkftkld
150 KM'

5t 

x
Is

A. A A .& A . A
E-i

I

5,

id

Is

lol

,, 

5

10

Is

5

+0 

......... = _ . . ._L_

,--L . ,*, 

- , �C" I-

.or 

LL-1-ILI_- ~ .I

._ 

X .

A , .

r- --~

.

I t~

X., X
X. 1*

,I 0,Jlr

n



414

Figure 5.26

Top-model of slip and locking near Parkfield from 1932-

1962 suggested by Savage and Burford (1970). They suggest

that the slip was associated with the 1934 Parkfield earth-

quake.

Center-Model of slip and locking suggested for the

period 1932-1962. The zone between Parkfield and Cholame is

the eventual site of the 1966 Parkfield earthquake. Slip is

assumed to occur at 5 cm/yr. The strain components y1 and

Y2 for this model are plotted in figures 5,27 and 5.28.

(solid line).

Bottom-alternate model with deep locking to the south

of Cholame (dashed line in figures 5.27 and 5.28), Shear

strain component ( 1) falls off too rapidly because of the

thin wedge assumed. Slip rate assumed to be 2.5 cm/year,
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Figures 5.27 and 5,28

'(1 and 2 strain components for the triangulation arc

near Cholame, California (Savage and Burford, 1970), The data

represents the period 1932-1962, Solid and dashed lines

represent center and bottom models respectively, in figure 5.26.
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CHAPTER VI

Summary of Thesis

The foundations of this thesis are built upon the

angular dislocations of Yoffe (1960) and Comninou (1973),

In order to apply their solutions to displacement fields

we have had to modify the multi-valued terms in their

solutions. Angular dislocations allow us to easily compute

the solutions for finite angular dislocations.

In Chapter III a numerical method for the solution of a

finite dislocation distributed throughout a layered half-space

was developed. The Finite Source Method (FSM) is based upon

the Fast Fourier Transform (FFT) algorithm (Cooley and Tukey,

1965) and allows for a rapid computation of the fields due to

finite sources. In fact, for the same amount of information,

more conventional schemes would take 18 to 100 years of

computer time! This statement is based upon the assumption of

a 5 second (Javanovich et al., 1975) to 11 minute (Ben-Menahem

and Gillon, 1970) computation time per point of data per point

source. To construct a finite source out of many point sources,

integrate a set of integrals for each source, and finally

to repeat this process for the displacements, strains, and

tilts over a large array (e.g. a 128 x 128 grid) is quite

time consuming. The FSM allows all of this to be done at

once.

Next, the FSM was applied to a series of particular
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problems concerning layered earth models, We found that it

is most important to know the properties of the layers in

which the source is imbedded (when modeling earthquake

displacement fields).

In Chapters IV and V we applied a tectonic modeling

scheme (in terms of dislocations) to various sections of the

San Andreas fault in California. Our models yielded several

important results which deserve further study First, the

depth at which slip is continuously taking place on the San

Andreas must extend to greater depths (40 km) under San

Francisco than in surrounding areas. Secondly, we suggest

that fault creep serves to obscure locking at depth from

surface geodetic measurements and that the SJB-Cholame

section of the San Andreas cannot be eliminated as a

potential earthquake site.

South of Cholame the apparent depth of l king deepens

and probably extends through the thickness of the plate (80 km

in model Tejon 2) in the vicinity of the Tejon bend. Our

primary support for this model rested upon the agreement of

the principal compressive stress directions with the

directions inferred by this author from geodetic and seismic

data. Our confidence in this model is further enhanced by

recent strain measurements near Palmdale, California (Jim

Savage, personal communication, 1975).
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Finally, by the addition of our tectonic model to the

large California earthquakes we have predicted possible

high stress regions which deserve further study. The most

populated of these areas (San Bernadino) has also been

predicted by Smith and Van de Lindt (1969).
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APPENDIX

THE E MATRIX, Ti'S INVERSE, AND TIHL: E' MATRIX

In solving the problem of a dislocation in a flat layered

half-space we have found it convenient to use the matrix ap-

proach used by Thompson (1950) and Haskell (1963). The matrix

relation between the Fourier coefficients K and motion-stress

vector Y is:

Y = E (Z) K
"iJ~.~~ a.~~ a, ~(Al)

where

U1

U

Y = !3 (A2)

13

P
33/

and

A+ + A-

A+ - A

B++ B-
K= (A3)

B+ - B

C+ + C-

C+ - C-
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The resulting E(z) matrix is obtained from the expressions

given in the text for the displacements and strains. The com-

ponents of E(z) are:

E = ik cosh(vz)11 x

E2 = ik sinh(vz)

E =ik
13 y

E =ik
14 y

cosh (v )

sinh (vz)

E = ik
15 x

[-cosh (vz) - 26vz sinh (vz)]

E = ik
16 x

[-26vzcosh(vz)-sinh (vz)]

E21 = ik cosh(z)2 1 '-': y

E = ik
22 Y

sinh (vz)

= -ik cosh(vz)
x

= -ik sinh(vz)
x

E25 = ik [-cosh(vz) - 2vz sinh(vz)]

E26 = ik [-26z26 Y
cosh (vz) - sinh(vz)]

E = v sinh(vz)
31

E32 = v cosh(vz)

E = 0
33

= 0



4A= -26Sv2z cosh(vz) + sinh(\z)

= cosh(\)z) - 26, 2 z sinh (z)

= 2i\)ik sinh(vz)

= 2ik x v cosh(vz)

ivky sinh(vz)
Y

= itky cosh(vz)

- [ - 4p 2 6 z cosh (v z)-2 S 

= [- 2 6v cosh(vz)-4pv 2 6z

= 2uivk sinh (vz)
y

= 2Livk cosh (vz)

= -iuvkx sinh(vz)

- -ipvk x cosh(vz)

= [-46v2 z cosh(Vz) - .6

= [- 2 6 v ccsh (vz -4ol\ v2 z

= 2 2, cosh (uz)

- 2v 2sinh (z)

sinh ( z) ] ik
x

sinh ( z) ik
x

sinh (vz) ik

s nh ( z ) ] i k
2

J

= 0

= 0

[2= , (1-6)+±2 v2 (1-26) ] cosh (z)

- 4 3 6z sinh(,;z)

E35

E36

E41

E42

E43

E44

E45

E46

E51

52

E53

E5 4

E55

£56

E61

62

E
63

E
64

E
65
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E6 6 = -4pv3 6z cosh(vz)

+ 2v 2(1-26) + 2v 2(1-26)]sinh(vz)

where v = (kx + k )/

6 = 1/(3-4a)

and a = /2(X+p)

In order to use the above matrix to relate solutions in

one layer to those in the next layer it is necessary to evaluate

the matrix product

An = En (Zn) E (n+ l) (A5)

If the origin of our coordinate system is temporarily trans-

lated to the n+l interface, this matrix becomes

-l
An = E (dn)E + (0) (A6)

where d is the thickness of the nth layer. Shifting the
n

origin in this manner simplifies taking the inverse of the

6 x 6 E matrix. The non-zero components of B = E (0) are:

Bll = (-aikx)/[2(c + 2)] (A7)

B12 -= (-aiky)/[v2(a + 2)]

B16 = 1/[(a + 2p!v 2 ]



B2 3 = 6/v(1+6)

B24 = k/[2piv 3 (1 +6)]

B2 5

B3 1

= -iky/[2lv 3 (1 + 6)1]

-ik /v 2
y

B3 2 = ikx/v 2

B4 4 = ky/(ibu 3)

B4 5 ikx/ (v 3 )

B51 = (2pikX)/[(a +

B52 = (24iky)/[(a +

B5 6

B63

2i) v 2 ]

2pi) v2 ]

= l/[( + 2)v 2]

= +1/[ (l +6)

£64 = ikx/[2Uvu(1 + 6) 

B6 5 = ik /6 Y

=a 2 [ (1-6)

[2rV3 (1 + 6)]

+ (1-26) ] (A8)

and the other variables are defined in the text.

and B matrices given above allow us to calculate

tne laiaer matrices via equation A6. In the derivation qfiTven in

the tc:-t we found that the Y vector or, the surface (0)
la to t

could be

related to the E' (z.) matrix where Zn is the depth t the last

4 4 6

where

The (z)
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interface.

Y () = A1A2A3 . . A E'(z)n-1 n n

E' (z) is defined so that

Y(z) = E'(z)

The components of E' are:

z
' = ik e
E11 x

A

B

B

C+

\eI

-zE = ik
E' = ikx e12x
E3 = iky eVZ

E14 = iky e z -(1 + 2
1' =-(1 + 2xz) ik e
15 x

E' = -(1 - 26vz) ik eZ
16 x

EBi = iky e
y

-vz
E2 = iky e
22 Y

vz
E' = -ik e

(A9)

(A10)
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32

E'3

E34

E35

E ;6
36
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= -ik e

x

= --(1 + 26Vz)ik
y

= -(1 - 2vz)iky

e

e

vz

-vz
= -ve

= 0

= 0

= (-26v2z)eVZ

= -(V + 26v2z)e VZ

E41 = 2ikxve
41 X

E 242
- ) Z

= -2pik e

vz
E3 = ipvkye

-v Z
EB4 = -i\vkkye

EB'

46

= -2pv [2vz++l] ik ev
x

= -26 )[2vz-1]ik e Zx

yZ
= -21iivk e

y
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E2 = -2pivkye e

E;3 = -ivk, e
E53 x

E54 = ipvkxe

E;5 = -26pv[2vz+l]ikye

E 6 = -26pv[2vz-1]ikye- vz

E'j = 2Nv2eo z

E62 = 2Pv2e VZ

E~3 = 0

E' = 0
64

E65 = {2Xv2 (1-6)+2ipv2 (1-26-26vz) } e

E4 = {v 2 (1-26)+2p2 (1-26+2 6vz) }ez


