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Abstract
There are a great number of engineering problems where direct measurement of forces is not

possible. These situations can arise if the environment where the measurement is to be made is
either hostile or inaccessible for the placement of a force transducer. Under such conditions, we
may be limited to estimating the forces by means of vibration sensors mounted on the structure
remote from the source.

This thesis presents a new technique for estimating forces from vibration signals. The
technique can be used even when the force location is not known a priori. The basic principle
of the technique is that when an impulse force (e.g. an impact) excites a structure, it excites
different vibration modes at unequal levels depending on the location at which the impulse
excites the structure. As a result, the frequency response of the structure creates a different
pattern for each force input location on the structure. Thus, it is possible to determine the
location of the input force, simply by looking at the vibration patterns of the structure in the
frequency domain. To quantify the vibration patterns, a technique known as modal parameter
extraction is used. The technique extracts a modal constant for each mode of vibration in the
frequency range of interest. Modal constants extracted from experimental data can be compared
using pattern matching to a database of known patterns of modal constants, to estimate the
impact location. The magnitude of the experimental force impulse can then be determined by
the relative scaling between the database and the experimentally extracted modal constants.

This force identification technique was demonstrated with an application to quality control
of computer hard disk drives. During operation, the read/write head (slider) of a hard disk
drive is separated from the disk surface by an air bearing. Impacts can occur between the slider
and large asperities on the disk surface. There is currently no way to directly measure these
impact forces, so they must be estimated from vibration signals generated by the head/disk
impacts. The force identification technique was applied to this problem, and found to be able
to determine both the location of impact and the magnitude of the impact force. It was found
that the phase information in the vibration signal is very important in determining the correct
impact location.

Thesis Committee: Dr. Ming-Kai Tse, Chairman
Professor Richard H. Lyon
Professor Ernest Rabinowicz
Professor Derek Rowell
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Chapter 1

Introduction

1.1 General Introduction

In vibration analysis, it is a common situation to be only able to measure the vibration of a
system without being able to directly measure the source of the vibration. It is, in principle,
possible to determine these inputs using a system model and the measured vibration of the
system. This is known as an inverse problem.

This thesis is concerned with vibration problems where the input source location and mag-
nitude are unknown, but the input source is known to be a very short force pulse. This type
of input is fairly common in vibration problems and is typically the result of impact between
two objects. In machine components, it may be the result of gear teeth meshing or parts being
formed. Impact can also result when manufactured parts are dropped into a bin or a chute.
In all these situations it would be difficult or impossible to directly measure the forces cre-
ated at impact. Thus, if these forces are of interest, they must be estimated from vibration
measurements taken at some distance away from the source of the vibration.

Another area where this problem is of interest, is acoustic emission (AE) monitoring. Acous-
tic emission is the name given to the high frequency sound that a piece of material gives off
when it deforms or fractures. For example, when metal is deformed, micro-mechanical de-
formation of the solid occurs. As dislocation lines pass over each other or large particles are
sheared, each deformation event radiates some of the deformation energy away in the form of
structure-borne sound. Unfortunately, these events occur within the body of the solid metal
and cannot be monitored directly. The events can only be monitored by vibration transducers
(AE transducers) mounted on the outside surface of the test specimen. The characteristics and
locations of these events must be estimated from the vibration measurements.

In any of these problems, the goal is to estimate the magnitude of a pulse (or impact)
force source from remote vibration measurements, i.e. to solve the inverse problem. This would
seem like an easy task, considering all that is available in dynamic Finite Element Modeling
(FEM) software, but it is not. When a forward problem is being solved, it is worked from
cause to effect. The force is applied to the body and the vibration response is calculated from
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the equations of elasticity and dynamics. But, when an inverse problem is being solved, it is
worked backward from effect to cause. This has two major difficulties. The first is that small
errors in vibration measurements may become large errors in the calculated force. The second
is that force sources at different locations can result in the same levels of measured vibration.
Thus with an inverse problem, solutions may not be unique.

1.2 Scope of Thesis

In this thesis an alternative way is offered to solve this class of inverse problems (hereafter
referred to as Force Identification Problems). The technique uses the combined techniques of
modal parameter extraction and pattern matching to try to solve problems where the source
is an impulse force with unknown location and unknown magnitude. The key to its ability
to solve the force identification problem comes from the fact that it assumes that the force
source is of a very simple type, i.e. a pulse. A pulse is very simple because, if thought of in the
frequency domain, it is nearly a constant for low frequencies. Thus one can simplify the force
identification process by limiting the form of the solution. The experimental results presented
in later chapters show that the technique can accurately predict impact force magnitude and
location despite substantial noise in the vibration data.

The force identification technique, presented in this thesis, was developed in response to
a need in a specific application, although it may be useful in many other situations. The
application of interest in this research was to identify the impact force in a read/write head
of a hard disk, when the head impacts a bump on the disk surface. This application is of
considerable interest in the magnetic hard disk manufacturing industry and, in-particular, in a
quality control (QC) technique known as glide height testing.

In hard disks, the read/write head (or slider) does not actually touch the disk surface during
operation. It is isolated from the disk surface by a dynamic air bearing. If, however, there are
asperities on the disk surface, then the air bearing may not be able to isolate the slider from the
disk. To assure that the disk is free from unwanted asperities, the disk manufacturers perform
glide height tests on the disks. In glide height tests, a special low-flying head is flown over
each track of the disk. During the test, an AE transducer is used to monitor for high levels of
vibration that indicate that the head has contacted a bump on the disk. The problem is that
the AE vibration is only a very indirect measure of the impact force. As a result it is important
to be able to back calculate" the impact force magnitude from the AE vibration level. This
can be done using the force identification technique developed in this thesis.

1.3 Outline of Thesis

The chapters of this thesis are laid out so that the more general aspects of force identification
technique are separated from the application to glide height testing. The general techniques
are first presented and then the application to glide height testing is shown. Many readers
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may not be interested in the specific application of glide height testing, but the application
demonstrates, in a very concrete way, the strengths and weaknesses of the technique. For this
reason, the reader is encouraged to at least skim the sections on the application.

Chapter 1 of this thesis is the introduction. It is intended to give the reader a brief overview
of the purpose of the thesis. Chapter 2 is a review of the literature with discussions about
the other techniques that have been used to solve force identification problems. Chapter 3
presents some basic information about FEM and modal analysis that is needed for the reader to
understand some of the more complex procedures on modal parameter extraction in Chapter 4.
An FEM model and modal analysis of the read/write head (slider) are also presented in Chapter
3, together with experimental data to verify that the theoretical analysis is correct. Chapter
4 presents the force identification technique developed in this thesis. It shows how modal
parameter extraction and pattern matching can be used to solve this class of inverse problems.
Chapter 5 demonstrates the application of the force identification technique to the problem in
glide height testing. Chapter 6 gives a general discussion of the force identification technique, its
advantages and disadvantages, and assesses its usefulness for the glide height testing problem.
Chapter 7 concludes the thesis with information about what has been accomplished through
this research effort and what needs to be done in the future. At the end of the thesis are a
bibliography, several Appendices and computer program listings.

13



Chapter 2

Literature Review

2.1 Scope

This thesis is concerned with the problem of force identification in general, and the problem of
determining impact forces in glide height testing of computer hard disks in particular. Thus,
the literature related to these two areas will be reviewed. Although the glide height literature
is relatively easy to identify, the general force identification literature is very difficult to isolate
due to the diverse interests of individual researchers.

Researchers in the following fields are interested in force identification, even though they do
not necessarily label their work as force identification per se:

1. Machinery diagnostics

2. Modal testing

3. Impact engineering

4. Acoustic emission

Certainly researchers in these fields are interested in more than just force identification. How-
ever, research on force identification problems shows up in the literature of all four of these
fields. It should be noted that the label of force identification" is the author's choice in this
research, and is by no means universal. Other researchers may use phrases such as inverse
problem", "waveform recovery", "AE source identification", and inverse filters". In any case,
selected research on force identification will be reviewed from all four fields, as well as from
glide height testing, to highlight the state-of-the-art in these areas.

This thesis also makes use of the techniques of modal parameter extraction and pattern
matching. These fields are more well developed and will not be reviewed here. However,
appropriate references are given in Chapters 4 and 5 when the techniques are discussed. There
are some very good books available on these subjects.[ll[2]
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2.2 Force Identification Techniques

When forces on a structure cannot be measured directly, it is possible, in principle, to estimate
these forces from vibration signals measured from a remotely located vibration transducer. To
do this, the relationship between the forces applied at one location and the vibrations produced
at the sensor location, must be known. This relationship is known as the transfer function (or
the Green's function) of the system. If the input force is called x(t), the output vibration y(t),
and h(t) is the transfer function (impulse response), then the relation between them is

y(t) = x(t) * h(t), (2.1)

where the * symbol indicates a mathematical convolution. The convolution symbol is a short-
hand way of writing the convolution integral.

y(t) x(t - r)h(r)dr (2.2)
00

In the frequency domain, the companion relation to Equation 2.1 can be obtained by taking
the Fourier transforms (FT) of the variables, i.e.

Y(w) = X(w)H(w), (2.3)

where, w is radian frequency. Hence, convolution in the time domain is transformed into
multiplication in the frequency domain.

In force identification problems, the vibration signal y(t) or Y(w) is the only measurable
quantity. This vibration signal is affected by both the input force and the transfer function
of the system. The problem is that the input force x(t) and the transfer function h(t) are
inextricably woven together, i.e. they cannot be separated. The obvious solution is to measure
the transfer function h(t) of the structure ahead of time. Then, the input force can be calculated
from

Y(w)
X(w) H(w)' (2.4)

and x(t) can be determined from inverse FT of X(w). Unfortunately, the practical application
of Equation 2.4 is not nearly as neat and clean as the mathematics suggest. The principle
difficulty is with the way that noise or errors affect the calculation of the forces. Structures,
and also their transfer functions, are usually resonant in nature. The magnitude of the frequency
domain transfer function IH(w)l consists of a number of resonant peaks separated by valleys
or anti-resonance regions. The magnitude of IH(w)l in these antiresonance frequency ranges is
very small and the experimentally measured values of IH(w)l in these frequency ranges can be
heavily corrupted by noise. The same is true for the measured vibration signal Y(w). When
X(w) is calculated from Equation 2.4, it can be so distorted by noise that the time domain
force waveform x(t) calculated from it will not be accurate at all.

To improve this condition, the measured transfer function can be smoothed. The smoothing
removes some of the sharp dips in IH(w)l and improves the calculation of x(t). Lyon 1987 [3]
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has demonstrated the effects of smoothing as shown in Figure 2.1. The top pair of graphs
show the effects of using a three-point running average to smooth the transfer function of an
engine block from the valve seat to the engine casing. The bottom pair of graphs show an even
stronger smoothing for the transfer function of the engine block used to recover the combustion
pressure. The figure also shows a comparison between the measured combustion pressure and
the reconstructed pressure calculated from the acceleration signals and the smoothed transfer
function. The agreement is very good and perhaps better than might be expected by the general
application of this technique to other structures or systems. Additionally, Lyon illustrated the
importance of good phase information in the inverse process. It should be noted that the
engine block transfer function has a high modal overlap, i.e. resonant modes are closely spaced
in frequency. As a result, not much of the frequency range of the transfer function is occupied
by the antiresonance regions that can be so detrimental to the inverse process. Thus, this high
modal overlap might be partially responsible for the high accuracy of the recovered pressure
signals in this particular structure. In other work [3], Lyon demonstrated a technique for
separating the output spectrum into the source spectrum and the transfer function spectrum
using a cepstrum windowing technique. The technique works very well for some systems.
However, the general applicability of the technique is still being investigated.

2.2.1 Accelerance Method

Researchers with a background in modal analysis tend to have a different approach to the
force identification problem. There are two different approaches that are demonstrated in the
literature: namely 1) the accelerance model and 2) the modal model (also called the modal
coordinate transformation technique). Both of these methods will be reviewed here.

Okubo 1985 [4] was one of the first researchers to perform force identification experiments
using the accelerance model. As he clearly points out in his paper, the accelerance model is a
simple extension of the direct inverse technique for the use of multiple vibration measurements.
Using multiple measurements, the forces can be estimated using a least squared method.

{X}n = [H]nxm{F}m (2.5)

{F} = [HT H]-'H T {X} (2.6)

where, [H] = the transfer function matrix, accelerance
{(X} = vector of Fourier transform of the acceleration signals
{F} = vector of Fourier transform of the predicted forces
T = the Hermitian transpose, because [H] is complex
m = number of forces to be predicted
n = number of responses measured, m < n

Equation 2.5 is actually a simple extension Equation 2.3 to multiple measurements. The same
is true of Equations 2.6 and 2.4 . Regrettably, there is a notational change which is common
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Table 2.1: Engine forces predicted using accelerance algorithm. (From Starkey 1989) A unit
force is applied at one location, location 4, in the x direction. Forces are predicted at one, two,
and three locations. The difference between the actual and predicted force is the error.

in the literature. The input to the system has changed from X(w) to {F} and the output
from Y(w) to {Y}. The former notation is common among the signal processing literature
and the latter notation is common among the modal testing literature. Since [H] is a function
of frequency, Equation 2.6 must be calculated at each frequency of interest. The accelerance
model uses a greater number of acceleration measurements than the number of forces to be
predicted. The redundant measurements helps to reduce the errors in the calculated forces.

Okubo applied the accelerance method to a computer model of a beam with two vibration
modes. He studied the effects of simulated noise as well as errors in the natural frequencies,
mode shapes and damping factors. The greatest contributor to error, in Okubo's simulations,
was noise in the anti-resonance region of the acceleration signal. However, he only predicted
the magnitude of the forces in the frequency domain and not the phase or the time domain
force signals. In general, the greatest contributor to the time domain error is probably phase
error (for example, see Lyon [3] page 195). Therefore, his conclusion that noise in the anti-
resonance region was the greatest cause of error, may not hold true for time domain waveforms.
Okubo also applied the accelerance model to predicting forces in milling machines, automotive
engines, and air conditioners. Although Okubo claimed that the accelerance model worked well,
the details of the experiments were vague and the success of the technique questionable.

Starkey 1989 [5] investigated the causes of error in the forces predicted using the accelerance
model. He maintained that the "ill-conditioned" nature of Equation 2.6 is due to the fact that
the matrix [HTH] is frequently close to being singular. The condition number' K of [HTH]
was investigated for the example problem of estimating forces in an automotive engine. He
found that the condition number of [HTH] was the worst at frequencies near resonance. He
also found that the condition number became greater (worse) as the number of forces to be
predicted increased. Table 2.1 shows some typical forces predicted using the accelerance model.

'The condition number of a matrix describes how close that matrix is to being singular. A condition number
of 1 is good (far from singular) and the higher condition number is, the closer the matrix is to being singular. If
the matrix is nearly singular, large errors can be expected in the solution.
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# of Forces Condition Fr4 F 4 F F.1 Fyl Fyl 
Predicted (K) Amp. Phase Amp. Phase Amp. Phase
Actual Force 1.000 0.0 0.000 0.0 0.000 0.0

1 1.0 1.400 1.9

2 4.4 0.955 -24.0 0.043 -13.0
3 7.3 0.943 -30.0 0.308 -3.0 0.023 12.0



A 30 Hz sinusoidal force was applied at one location (location 4 in the x direction) in the engine
and acceleration measurements were taken at 12 locations. Then, the accelerance model was
used to calculate the force at one location (F 4 ), then at two locations (F_4 and F, 1), and
finally at three locations (FC4, F.1, and Fyl). The table indicates that the condition number of
the matrix gets increasingly worse as more forces are predicted.

Starkey states that "the results predicted the .. amplitude with reasonable accuracy." The
word reasonable is very subjective, but Table 2.1 shows the objective reality. When only one
force was predicted, the accelerance model estimated a force magnitude of 1.4, 40% error.
When the values for two forces were predicted, the error in force F, 4 was only 4.5% but F 1

was predicted to be 0.043 when it is actually zero. Furthermore, the amount of error in the
predicted phase in of F_4 increased sharply. When three forces were predicted, the error in
force Fx4 was only 5.7%, but force F. 1 was estimated to be 0.308 when it is actually zero. It is
interesting to notice that the estimate of the magnitude of force Fx4 got better when two forces
were predicted, compared to when only one force was predicted. This is exactly opposite of what
would be expected from considering the condition number. Therefore the higher accuracy of
the predicted force F_4 was probably just serendipitous. It should be pointed out that Starkey
set the experiment up under the best possible conditions: 1) force applied at a location were
the accelerance data had the greatest S/N ratio, 2) the frequency of 30 Hz was chosen because
it was away from the resonances, and 3) the signals from 12 accelerometers were used as the
input to the accelerance model. Therefore, tests run under the best conditions still have as
much as 40% error in the predicted forces. Starkey concluded his paper by saying, "less than
five-percent errors in the acceleration can yield meaningless force predictions with well over 100
percent error." Clearly, a better force identification procedure is needed.

2.2.2 Modal Model Method

In the modal model force identification technique, it is assumed that the system dynamics can
be adequately modeled by a modal model. This means that the response of the system in the
frequency domain should be a number of resonant peaks which indicate the different vibrational
modes of the system. The standard equation of dynamics for a structure is usually transformed,
as follows, into modal coordinates:

[M]{(} + [C]{)} + [K]{q} = []T({F} (2.7)

{x} = kk]{M} (2.8)

Here, [M], [C], and [K] are the modal mass, damping, and stiffness matrices, which are all
diagonal. Also, {(} is the acceleration vector in modal coordinates and [] is the matrix of
eigenvectors. The idea of using modal coordinates {q} rather than the actual system coordi-
nates {x} is simply a mathematical convenience. When modal coordinates are used the modal
matrices, such as [M], in Equation 2.7 are diagonal. This simply makes the computation easier.
It is probably best to think of modal coordinates as a mathematical abstraction and not to
try to attach some physical significance to them. It may be useful to note that if this were
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a controls problem, the modal coordinates would be called "state variables." Equation 2.7
can be manipulated, in a similar manner to Equation 2.6, and be used to predict forces from
acceleration data, see Hansen 1990 [6] for details. The advantage of the modal model force
identification technique is that the transformation to modal coordinates reduces the amount of
computation needed. The disadvantage is that a good modal model of the system is needed
before the technique can be used. Any error in the curve fitting (that is part of building a
modal model) will create a systematic error in the predicted forces. It is also important to have
a number of vibration modes within the frequency range of interest.

Hollandsworth 1989 [71 used the modal model technique to predict impact forces on a
991 x 64 x 13 mm (39 x 2.5 x 0.5") cantilever beam. Due to the simple geometry, Hollandsworth
developed his modal model from vibration theory for beams. Figure 2.2 shows the results of
the application of the technique. In the experiments, an impact hammer was used to create
a force pulse at the end of the beam. Three accelerometers were placed on the beam at
various locations. The acceleration signals were used as the inputs to the modal model force
identification procedure. Figure 2.2 shows that predicted force waveforms do show a pulse at
the time that the force impact actually occurs. The magnitude of the predicted pulse was
about 50% smaller than the actual magnitude. Furthermore, the predicted forces show a great
deal of ringing after this pulse. A smoothing parameter was applied to the acceleration data
prior to doing the force identification calculation. Hollandsworth claimed that this smoothing
parameter was very important to getting good results. The justification for the use of this
smoothing parameter and the logic behind the choice of its magnitude were not given in the
paper. The large errors in the predicted forces of this study, make the value of the modal model
technique questionable, at least in its current manner of implementation.

Another paper, written by Hansen and Starkey 1990 [6], investigated the ill-conditioned
nature of the modal model force identification technique. Hansen's experiments were performed
on a 1524 x 51 x 6 mm (60 x 2 x 0.25") free-free steel beam. A series of modal tests were
performed to develop the modal model of the beam. Then, an analysis was performed to study
the condition of the matrix inverse. This is similar to what was done by Starkey 1989 [5]
for the accelerance model. Hansen investigated the effect of placing three accelerometers at
different locations on the beam. He found that the combination of accelerometer placements
made a enormous difference on the condition number of the matrix. For the best combination
of accelerometer locations, the condition number K = 1. For the worst combination, K = 370.
(Recall that K = 1 is good and large numbers indicate that the matrix is nearly singular.)
This means that the placement of the accelerometers is very important to the accuracy of
the predicted forces. Hansen also studied the effects of including different groups of vibration
modes in the model, e.g. modes 3-5 or modes 4-6. Depending on the combination, the condition
number ranged from 1 to 629. Computer simulation of the modal model force identification
technique showed that the errors in the predicted forces ranged from 40% at under the best
conditions (K = 1) to 186% under less favorable conditions (K = 144). The errors were not
calculated for the worst conditions. Unfortunately, there does not seem to be any easy way
to tell which combinations of accelerometer locations and groups of modes will yield the best
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results for a given structure.
The techniques that have been discussed so far, transfer function smoothing, cepstrum

windowing, accelerance method, and modal model method have all achieved some degree of
success at predicting forces in a force identification problem. Unfortunately, most researchers
have indicated that quality of the force identification is poor. Some of the researchers found that
under the best conditions, the predicted forces were in error by greater than 40%. The force
identification technique, presented later in this thesis, takes a very different route to solving
this problem. Although a modal model is used, a pattern matching technique is employed to
do the force identification, rather than through the use of direct calculation. The other key
difference is that the technique developed in this thesis, is only applicable to problems where
the input force is a short duration pulse. But for this type of problems, the new technique
produces encouraging results.

2.3 Acoustic Emission Research

Acoustic emission (AE) research was developed out of the discovery that deforming metal
emitted audible sound. Materials researchers were very interested in the technique because it
could be used to detect the onset of permanent deformation or damage in a sample of material
being tested. Modern AE researchers have a broad range of interests. AE is no longer measured
in only the audible range. In fact, AE is more commonly measured in the 100 KHz to 1 MHz
range by a vibration sensor placed directly on the test system. It is no longer restricted to
testing of materials in a laboratory. AE has been used for in-process monitoring of structures,
proof-testing of pressure vessels, diagnostics of manufacturing processes, and various other
interesting applications.

In terms of the source (force) identification problem, some of the most carefully thought out
research was performed by Hsu et.al. 1981 [8] at the National Bureau of Standards. In these
works, Hsu developed methods to characterize the three main elements of an AE measurement
system: 1) the source, 2) the structure, and 3) the AE sensor. He developed a computer
program to calculate the Green's function (transfer function or impulse response) of an infinite
plate. The program can predict the displacement at any location on the plate surface due to
an impulse at the center of the plate. The program uses ray tracing to follow the paths of the
waves produced at the source and predicts the resulting displacement at the sensor location.
This requires following the paths of the p-waves (pressure), s-waves (shear), and the Rayleigh
waves (surface). It is further complicated by the phenomenon of mode conversion. Each time
a wave hits a surface of the plate, it creates another p-wave and an s-wave. Thus, as time goes
on, more and more waves must be traced. As a result, the program for calculating the surface
deflections of the plate can only be used for calculating short time periods (say 40 ps) following
the impulse force input. After this initial period, not only does the computation become very
intensive, but the resonance of the structure will start to become important due the reflections
of the waves from the boundary of a real (non-infinite) plate. Thus the technique is limited to
processing transient events, e.g. impacts.
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Hsu used the Green's function of plates in a simple deconvolution technique to back-calculate
the applied forces at the center of the plate. This technique is clearly a force identification
method for infinite plates, although it might never be called by that name in the AE literature.
Although Hsu's predicted forces were in good agreement with measured forces, the tests were
performed under the best possible conditions 2 and the technique is limited to infinite plates.

More recently, other researchers have been working to replace the computationally expensive
ray tracing technique with a spectral formulation. The spectral formulation processes waves
in terms of wave number rather than tracing ray paths. Rizzi and Doyle 1989 [9] developed
the spectral formulation and applied it to force identification problems on an half plane. Doyle
and Farris 1989 [10] used a more general spectral formulation for solving force identification
problems on truss structures. Figure 2.3 shows schematic of their experimental setup and the
quality of the results. In the experiments, a force hammer was used to create a short duration
force pulse on the aluminum truss structure. The resulting vibration was measured with both
accelerometers and strain gages. The spectral formulation was used to back-calculate the forces
at the impact location. The lower part of Figure 2.3 shows a comparison between the measured
forces and the predicted forces. The agreement is quite good, especially when the predicted
forces are based on the accelerometer measurements. Although the results are better than have
been seen with either the accelerance modal or modal models, Doyle gave no indication of how
easy or difficult it is to achieve results of this quality. Furthermore, the technique is limited to
truss structures and cannot be used for more general structures.

It should also be realized that the techniques of Hsu, Rizzi, and Doyle, can only be used
for transient events and rely on processing the "first arrival" waves. The resonance of the
structure, that occurs a short time after the impact, is not part of the model. This is the
opposite of the techniques presented earlier which generally ignore the first arrival waves and
concentrate on the structural resonance.

2.3.1 Materials Testing

Researchers who use AE to monitor tensile or compression testing of materials, are also in-
terested in a specialized form of force identification. An AE burst indicates that some form
of micromechanical deformation has occurred inside the specimen. The researchers would like
to be able to determine what form of micromechanical deformation caused the AE pulse. Un-
fortunately, the complex and uncontrollable nature of the deformation combined with the res-
onant nature of the AE transducers usually used, have required that this type of work be
almost entirely empirical. Researchers have repeatedly tested many materials and tried to find
characteristics in the AE signals that can be used to discriminate between different modes of
deformation.

Egle et.al. 1981 [11] claimed to be able to differentiate between different modes of deforma-
tion in nodular cast iron using AE spectral characteristics. Nodular cast iron is often regarded

2 They used a well-characterized broadband displacement transducer and made an extraordinary effort to
polish the surface of the plate used in their experiments.
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as an ideal material for this type of research. Its deformation characteristics are such that
the initial deformation is due to dislocation mechanisms whereas later deformation is due to
fracturing of particles. Thus, the AE signals from two different deformation mechanisms can
be measured in one test, without changing sensors or specimens. Egle's tests showed that dur-
ing the time when fracturing of particles was the dominant deformation mechanism, the AE
spectrum was different than when the dominant deformation mechanism was dislocation mo-
tion. Thus Egle concluded that he could distinguish between the two deformation mechanism
based on the pattern formed by the AE spectrum. While this may be true, there is one other
important factor that was not considered explicitly in Egle's work.

When deformation occurs in a tensile test specimen, the sources of AE come from different
locations inside the specimen. In other words, the source location is moving. This means that
the frequency response function (FRF) between the source location and the AE sensor location
is changing during the test. Thus, it is expected that the AE spectrum would be a function
of the AE source location. Egle's research did not take this into account. Was the change in
spectrum that he saw due to a change in AE source mechanism, or simply due to a change
in AE source location? One possible explanation of his data is the following. Early in the
test, when deformation is coming from dislocation motion, the AE source location is randomly
distributed throughout the body of the test specimen. Later in the test, when the deformation
is coming from particle cracking, the specimen has started to neck down and the AE source
location has become concentrated in one section of the specimen. In this way, the change in
spectrum could have be due to a change in source location and not necessarily due to a change
in source mechanism. Again, this is not to say that Egle's conclusions were necessarily wrong,
it is simply that they are open to interpretation.

Stephens and Pollock 1971 [12] calculated the frequency response function of a particular
tensile test. The frequency response was calculated from 0 to 320 KHz. The vibration modes
remain well separated in this frequency range, i.e. low modal overlap. However, their tensile
test specimens were bonded together at the center so that the AE source location would remain
fixed. In other words, crack propagation and failure occurred at the bond and not at any
other location in the specimen. Even under these conditions (i.e. known FRF and fixed source
location) they were unable to extract useful information about the force source waveform.

It should be clear from the about discussion that AE researchers generally have a different
approach to force identification problems than vibration researchers. AE researchers also have
specialized problems, such as poor understanding of the AE sources, resonant response of most
AE transducers, and the need for analyzing high frequency (say >100 KHz) signals. This is
probably the reason that AE literature is usually separated from vibration literature, even
though the research from the two disciplines overlaps.

2.4 Glide Height Testing Research

The force identification technique developed in this thesis is applied to the specific problem
of glide height testing. Hence it is appropriate to give a review of the glide height testing
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literature.
Before discussing glide height testing, some background information needs to be given about

hard disk drives. Most people who have used computers know that there are two common types
of magnetic storage: floppy disk drives and hard disk drives. But most people are not aware of
the significant differences between these two drive types.

In a floppy disk drive, as the name suggests, the magnetic coating is applied to a flexible
plastic substrate. This is the material that can be seen through the cutaway in the floppy disk.
When the disk is placed in the floppy drive and the door is closed, the read/write heads (top
and bottom heads) come down in direct contact with the surface of the floppy disk. When data
is needed, the computer turns the disk drive on, reads the data, and turns the disk drive off
again. Thus the disk is only spinning a small fraction of the time that the computer is used.

In contrast, in hard disk drives, the magnetic coating is applied to a rigid aluminum sub-
strate. When the computer is turned on, the drive is "spun up" to 3600 rpm (typically) and
left spinning as long as the computer is turned on. The read/write heads are designed to have
a dynamic air bearing form under the two rails which are cut into the bottom of the slider
(read/write head), see Figure 2.4. As the hard disk spins, air very close to the surface of the
disk spins with it. This air is used to lift the read/write head 150 - 500 nm off the surface of
the disk.

In tribological (friction and wear) terms, the floppy and hard disk drives are as different
as night and day. The floppy disk undergoes continuous rubbing as long as the drive is being
used. On the other hand, the head and disk of a hard drive should never come into contact as
long as the computer is turned on. Some contact between the head and the disk surface does
occur in the hard disk when the drive is turned on and off, therefore even the hard disk cannot
be expected to last indefinitely.

For the air bearing to work properly, the surface of the hard disk must be flat and free of
asperities (bumps). If an asperity on the disk surface is larger than the height of the air bearing,
then the asperity will impact one of the slider rails, as shown in Figure 2.5. Repeated impacts
on the asperity could cause a fragment of the asperity to break loose, become lodged between
the slider and the disk, and cause the hard disk drive to fail or "crash." This would result in
the loss of the data on the disk. Thus, eliminating asperities, and the failures they can cause,
is of the utmost importance to hard disk manufacturers.

The hard disk manufacturers pass the disks through several steps during the manufacturing
to make the disks as flat and free of asperities as possible. However, there is always the chance
that some asperities might still get through. Therefore, a quality control (QC) procedure is
needed to check the completed disks for asperities.

One might think that the best way to check for asperities would be an optical technique.
However, there are several reasons why an optical technique is not appropriate. Firstly, the
asperities are very small (sub-micron) in size. On a disk that is 90 - 355 mm (3.5" - 14") in
diameter, there would be a large area to be checked at high magnification. Secondly, the height
of the asperity is not the only factor that determines whether or not a head/disk impact will
occur. The slope of the bump and the runout of the disk are also factors that determine the
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Figure 2.5: Illustration of the slider hitting an asperity on the disk surface.
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possibility of impact. As a result, glide height testing is the preferred technique for checking
the disk surface for asperities.

In glide height testing a special low-flying head is flown over each track of the disk surface.
If an impact occurs between the head and the disk surface, the head gimbal assembly (HGA)
will vibrate. This vibration signal can be detected by means of a vibration transducer (AE
transducer) mounted at the base of the HGA or on top of the slider itself. In general terms, the
detection of an AE burst indicates that an impact has occurred. The locations of impact on
the disk surface can be plotted on a graph to show a udefect map," see Figure 2.6. This type of
graph can be very useful in tracking down the cause of the asperities. For example, if a number
of asperities show up in a line, the disk was probably scratched. Using the magnitude of the
AE signals, a three dimensional plot can be drawn which shows how strong the AE signals were
at the different locations, as shown in Figure 2.6. This type of plot should be interpreted with
caution. The plot looks like the disk topography, but it is not. The strength of the AE signal
is not directly proportional to the height of the asperity. Thus, the 3-D defect map only gives
some general indication of the strength of the impacts.

Because of the relationship between the presence of asperities and the reliability of the hard
disk drive, much research has been done to try to understand glide height testing and the
general nature of head/disk impacts. The research literature can be generally divided into two
areas 1) impact modeling and 2) glide height testing.

2.4.1 Impact Modeling

Most of the research in the impact modeling is really an extension of the modeling that was
done to aid the designing of slider air bearings. The dynamics of the slider can be modeled by
considering the slider as a rigid body, the suspension as a series of springs, and the air bearing as
a non-linear spring whose spring constant must be calculated from Reynolds equation. Using
this type of modeling, computer programs have been written to simulate the flying of the
slider[13][14]. These programs are necessary tools in designing new sliders and adjusting the
flying height of current slider designs.

To simulate a head/asperity impact is much more complicated than simply simulating the
flying of the head. Impact problems in general are very difficult to model. Unless the geom-
etry is very simple, finite element modeling (FEM) is needed. Furthermore, special "interface
elements" are needed to mathematically prevent the two impacting objects from occupying the
same space at the same time. Thus, a complete model of a head/asperity impact must include
the following components, a FEM model of an asperity covered with interface elements, a FEM
model of the slider with the rails covered with interface elements, a fluid model of the air flow-
ing under the slider, and model of the suspension characteristics. This type of model is very
complex and has never been completed.

A simpler approach to modeling a head/asperity impact is to simply consider the impact
as an impulse force. This is a simple addition to the programs that exist for simulating the air
bearings under normal flying conditions. An impulse can be applied (numerically) to the slider
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Figure 2.6: Two dimensional and three dimensional defect maps of the disk surface
determined by glide height testing.
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and its response observed. Unfortunately, the resulting response of the slider might not satisfy
the impenetrability requirement of the slider and the disk. In other works, if a strong upward
impulse is applied to one corner of the slider (to simulate an asperity impact), the slider's
response might be to rotate so that the opposite corner of the slider goes downward below the
height where the disk is suppose to be. This might sound a bit strange, but it really is not.
In the typical air bearing computer simulation, the disk is not truly modeled. The only effect
that the slider "sees" is an air bearing which supports it. If the slider "wants" to penetrate
the space where the disk should be, it simply must have enough kinetic energy to overcome the
air bearing stiffness. Researchers have tried to correct this situation in a very simple way. If
a corner of the slider drops below the height where the disk should be, it is given an upward
impulse proportional to the velocity of the corner. This is, in effect, a coefficient of restitution
model of impact which requires that if a corner of the slider impacts the disk, it will rebound
with a fraction of its initial velocity. The ratio of the rebound velocity to the initial velocity is
the coefficient of restitution, which is always 1 or less to simulate the loss of energy from the
impact. The primary contributors to this research are White 1987 [15] and the team of Benson
and Talke 1987-89[16][17][18]. Figure 2.7 shows some of the results of this type of modeling,
from reference [17]. The four corners of the slider have been labeled A, B, C, and D. A fifth
point has been labeled E. This is a point where the slider rail might re-impact the asperity.
The graphs show the series of impacts that can result from the initial impact with the asperity
at location E. The immediate response of the slider is to rotate diagonally and impact at the
opposite corner D. Depending on the velocity and coefficient of restitution (a) used, the slider
may then either re-impact the asperity or impact one of the other corners. At each impact, a
small amount of energy is lost because the coefficient of restitution is less than one. Eventually,
the impacts cease and the slider continues flying normally.

It is important to realize that this type of model makes some assumptions that are not
necessarily a good model of the physical reality of the impact. The most consequential as-
sumption is that the impacts are of infinitely short duration. Clearly the slider and asperity
stay in contact for some period of time. The question is, what is the length of this contact
time. There are researchers who feel that the contact duration is very long [19]. In fact they
believe that the slider contacts the asperity and rubs along the asperity until the asperity passes
out from underneath the slider. Clearly, if that is the case, the impulse modeling is not very
useful. There is another assumption made in these models. Since it is not possible to directly
measure the impact force, an estimate of the magnitude of the initial impulse is used. Some
researchers [20] believe that the estimated values of these impulses are too large and that no
multiple contacts occur, or at least they may be rare.

Some attempts have been made to experimentally answer this question, through the use
of capacitance probes or optical techniques [21] of measuring the slider's response to impact
with an asperity. A recent study by Hamaguchi and Matsumoto 1990 [22] represents one of the
most comprehensive attempts to answer this question. Their experimental setup consisted a
capacitive-sensor slider and a tangential force sensor. Using a lumped-parameter model of the
slider, suspension, and air bearing combined with the force and displacement measurements,
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the impulse forces created on the slider were back-calculated. Their results showed that the
Z-direction (normal) impulse was about 1.03 x 10-6 N s and the X-direction (tangential) im-
pulse was 1.02 x 10-6 N s. Further experiments were performed using the electrical resistance
technique to determine the contact time between the slider and the asperity. With this tech-
nique, the electrical resistance between the slider and the disk was measured in an attempt to
determine when contact is occurring. From these tests, Hamaguchi and Matsumoto concluded
that the contact time was on the order of 102ys and the contact force tangential to the disk
was on the order of 10-3N.

Unfortunately, there are several problems with Hamaguchi and Matsumoto's study. Firstly,
the accuracy of the dynamic slider model is unknown. Since the model includes a linearized
model of air bearing stiffness, the accuracy of the model may not be very good. As a result, the
predicted magnitude of the impulses may be inaccurate. Secondly, the possible ill-conditioned
nature of the inverse problem (calculation of the impulse forces) is not considered. Thus even if
the model is good, the accuracy of the predicted impulses is not guaranteed. Thirdly, the disks
that were used had either a radial scratch or radially deposited bump. Thus impacts occurred
on both rails nearly simultaneously. Under actual operating conditions, it is probably more
likely that the asperity will be relatively small and impact only one slider rail. Finally, the
contact times and force magnitudes were calculated for the total duration of contact, i.e. from
the initial contact until the asperity passed out from underneath the slider. This was done even
though the electrical resistance data indicated that multiple contacts may have occurred. Thus
the actual impact duration time is much shorter ( 100s) than they concluded.

On the positive side, Hamaguchi and Matsumoto's research did indicate a number of features
of the slider/asperity contact. Their data showed that the flying height had an effect on the
location where the asperity hit the rail. Large asperities (simulated by low flying heights)
tended to hit toward the leading edge of the slider rail. Small asperities (simulated by higher
flying heights) tended to hit toward the trailing edge. The electrical resistance data did not
clearly answer the question of the occurrence of multiple slider/asperity impacts. Some of
the data had the appearance that the asperity impacted the slider and then rubbed along the
slider rail until it passed from underneath the slider. Other data had the appearance that
multiple contacts were prevalent, similar to the simulations of Talke [18]. However, the fact
that the bump was hitting both rails simultaneously may have had a significant effect on these
results. Thus, applying these results to the case of a single rail impact might lead to erroneous
conclusions. Furthermore, the difficulty of making these types of measurements combined with
the issues raised above, means that the data should be viewed somewhat skeptically.

Unfortunately, the research on asperity impact models is generally not conclusive. It is clear
that there are many unknowns. In Figure 2.7, Talke considers coefficients of restitution from
0.5 to 1, with no way of knowing what a typical value might be. There is no consideration
given to the material properties of the disk or slider surfaces. Hamaguchi and Matsumoto only
considered impacts with asperities that impacted both rails nearly simultaneously, and their
electrical resistance measurements are inconclusive. It can be safely said that no comprehen-
sive understanding of slider/asperity impacts exists. For simplicity, it will be assumed in this
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thesis, that slider/asperity impacts are short in duration and that multiple impacts may occur
under some conditions, but not often. However, the true nature of these impacts needs further
research.

2.4.2 Acoustic Emission

Other researchers have been less concerned about the details of the head/asperity impacts, and
more concerned about how to detect the impacts using acoustic emission (AE) transducers.
One of the earliest papers was written by Kita et.al. 1980 [23]. At the time that the paper was
written, only large commercial AE transducers were available. Therefore, the sensor had to be
placed very far from the slider. However, Kita's paper demonstrated that AE monitoring can
be used to detect asperities successfully. Very few details were given as to the characteristics
of the AE signals.

One of the most significant papers on glide height testing was written by Yeack-Scranton
1986 [24]. She demonstrated two new AE sensor arrangements, as shown in Figure 2.8. The
top part of Figure 2.8 shows how a small PZT ceramic sensor was mounted directly on top of
the slider. The bottom half of the figure shows how a piece of PVDF plastic piezoelectric film
was placed on the suspension of the slider. Scranton felt that this combination of sensors would
be very useful. The PVDF sensor mounted on the suspension would measure primarily the
rigid body movement of the slider. On the other hand, the PZT sensor mounted on the slider
would measure the higher frequency plate bending modes of the slider. The paper discusses the
effects of disk speed, burnishing, track accessing, and disk type on the measured AE. However,
the paper lacked any detailed description of the high frequency AE signals.

Also published in 1986, was a paper by Boyer [25]. While it is not a research paper, it does
serve as the practical man's guide to glide height testing. For anyone interested in the basics of
setting up a glide height test facility, the paper is recommended.

Talke published a paper in 1988[26] which investigated the sources AE in a 5 1/4" disk
drive. He claimed that the resonance peaks in the high frequency AE result from the time
duration between the repeated impacts between the head and the disk after an initial asperity
impact. This, however, is not true. As- indicated by Yeack-Scranton in 1986 [24] and others
clearly proved later, the high frequency AE results from the slider vibration (or plate modes).

Since the time that high frequency AE research began for this thesis, some other research
has also been reported in the literature. Mochizuki et.al. 1988[27] indicated that the high
frequency AE resulted from the slider plate modes. However, it was not until May 1989 [28],
that the same researchers published a paper showing the slider modes of vibration and verified
the vibration frequencies experimentally. A paper by Bogy in September 1989 [29] confirmed
Mochizuki's results. The importance of knowing the source of vibration, is that some predictions
can be made about how the AE signal will change if the design of the slider were to change. In
earlier work, such as Kita's [23], the frequency content of the AE signal was not known. Thus
the choice of frequency range monitored during glide height tests was somewhat arbitrary and
experimental in nature.
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In this thesis, the natural frequencies of the slider were also calculated and experimentally
verified, see Chapter 3 for details. More importantly, a modal analysis was performed on the
slider. The modal analysis predicted the frequency response function (FRF) or spectrum of the
slider. The analysis also estimated the effect of both the asperity impact and sensor locations
on the FRF (or AE spectrum). It demonstrated that there are certain locations where an
asperity can impact the slider rail and cause almost no vibration (in certain frequency ranges).
This turns out to be a very serious problem for glide height testing, because it can lead to
asperities going undetected. In Chapters 4 and 5 of this thesis, a force identification technique
is proposed, and its use to solve this problem is demonstrated.

This thesis addresses three important issues related to glide height testing, which have not
been approached by other researchers: 1) quantitative predictions of the frequency response
function of the slider, 2) the effects of impact and sensor location, and 3) proposing a signal
processing technique, based on the fundamental knowledge of the slider vibration, for extracting
information about the asperity impact from the AE signal.

2.5 Summary

In this chapter some of the literature on force identification has been discussed. It has been
generally found that even small amounts of noise makes direct deconvolution impractical. Other
techniques such as transfer function smoothing, accelerance methods, and modal model meth-
ods, can be used to improve this situation. However, researchers frequently find that the error
in the predicted forces is greater than 40%. The force identification technique presented in
this thesis is a significant departure from the techniques developed by other researchers. The
new technique does utilize a modal model of the system, but the force identification is done
by pattern matching and not by the usual inverse techniques. One limitation of the proposed
technique is that it is limited to predicting a force which is a short duration pulse.

This chapter also discussed glide height testing research. Other researchers have devel-
oped the technique, and demonstrated the use of different piezoelectric sensors for detecting
head/asperity impacts. Similar to the research in this thesis, other researchers have identified
the high frequency AE signal as resulting from the vibrational modes of the read/write head
(slider). However, the contribution of this work is that a modal analysis has been performed
and used to: 1) make quantitative predictions of the frequency response function of the slider,
2) study the effect of impact and sensor locations, and 3) develop signal processing techniques.
The next chapter will show how FEM and modal analysis can be used to predict the frequency
response functions (FRFs) of the slider, as well as study the effects of impact and sensor loca-
tions. Chapter 4 will discuss the new force identification technique and Chapter 5 will discuss
how it can be used to interpret the AE signals from glide height testing.
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Chapter 3

FEM and Modal Analysis

3.1 Introduction

The response of a dynamic mechanical system or structure to time varying forces depends, to a
large extent, on the system's modes of vibrations. The force identification technique, detailed
in the next chapter, makes use of this fact to solve the inverse problem of determining input
forces when only the vibrations can be measured. As will be demonstrated, the extent to which
different modes are excited can be used as an indicator of location of the input force. Thus,
understanding the vibration modes of a system is a prerequisite to using the force identification
technique.

The subjects of Finite Element Modeling (FEM) and modal analysis are quite vast, and
cannot be treated here in any great detail. At the same time, the notation and details of the
treatment of the subject can vary from one author to the next. For these reasons, a brief
presentation will be given in this chapter to the subjects of dynamic FEM and modal analysis.
This also gives an opportunity to emphasize the areas of FEM and modal analysis that are
most important to the force identification technique shown in the next chapter.

The later part of this chapter is a presentation of a finite element model and modal analysis
of the read/write head (slider) of a hard disk drive. Verification of the analysis is provided by
experiments performed on the slider and on an enlarged model of the slider.

3.2 Finite Element Modeling of Dynamic Systems

In FEM the continuum of the structure is divided up into small "bricks" or elements (as they
are usually called). These bricks represent a "finite" approximation to the actual structure, as
shown in Figure 3.1. By using these approximate elements, the continuous differential equations
of elasticity are replaced by linear matrix equations. The elastic stiffness of the elements is
represented by a stiffness matrix K, which describes the relative spring stiffness between the
displacement of any two nodes. Similarly, the mass of the elements can be divided up among
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the nodes and a mass matrix M constructed. The two matrices can be incorporated into the
equations of motion for the structure.

Mf + Kx = f (3.1)

where is the vector of displacements at the nodes, is the acceleration of the nodes, and f is
the input forcing vector.

Before one studies the forced vibration of a system, it is first necessary to study the free
vibration problem where no load is applied. For free vibration, the input vector f is set to zero.

M + Kx = 0 (3.2)

To solve problems of this type we should look for solutions of the form

x = Osin(w(t - to)) (3.3)

where is a vector of constants, t is time, and w is the radian frequency of vibration, and to is
a constant. Taking the derivatives of this equation with respect to time,

i = w cos(w(t - to)) (3.4)

x = -w 2 cksin(w(t - to)). (3.5)

Plugging in (3.3) and (3.5) into (3.2)

M(-w 2 4sin(w(t - to))) + K(o sin(w(t - to))) = 0 (3.6)

- w2M + K = 0 (3.7)

K = W2MO. (3.8)

This is a standard eigenvalue problem with n solutions, where n is the size of the square
matrix M or K. The n solutions come in the form of eigenvalue-eigenvector pairs.

(W1~, 2x), (%:, 2),..*.*,X (n On) (3.9)
Physically, the eigenvalues (wl?,W2,... ,w2) correspond to the square of the natural frequencies
of the system. The eigenvectors (l1, 0$2, ... , in) are the displacements that describe the "mode
shapes" (e.g. bending, torsion) of the system.

There are a few customs in defining the eigenvalues and eigenvectors. Eigenvalues are
generally arranged so that

0 < w2 < w2 < ... < 2 (3.10)_< -. . . -
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Arranged this way, wl is the lowest natural frequency. A second convention is that because
eigenvectors are only specified to within an arbitrary constant (i.e. i is as good a solution as
phi, where p is a constant), the eigenvectors are constructed to be M-orthonormalized. This
means that the eigenvectors are othogonal to each other and normalized to one as shown in the
following equation.

4kM~ki={ {0, if ij (3.11)

Here, the superscript t indicates a matrix transpose. It is also customary to define two n x n
matrices

~I, = ['1,2, , n] (3.12)

nQ~~~~2=~~~~~ 2.~ <.(3.13)

/ O ... n

where 4f is the eigenvector matrix, and f12 is the eigenvalue matrix. It can be shown that

K4 = MpfI2 (3.14)

and from Equations 3.11 - 3.14, it can be shown that,

4otK4 = l 2 (3.15)

AtM- = I (3.16)

where I is the identity matrix.
In this way, the model of the structure has been transformed from a spatial model (M and

K) to a modal model (f12 and 4). The transformation is simply a mathematical technique that
presents a new way to think about the same structure. Instead of thinking about the structure
as a collection of masses and stiffnesses, it can be thought of in terms of frequencies and mode
shapes. (See pages 19-21 of Ewins book[1] for a more detailed discussion.)

3.3 Modal Analysis

This type of eigenvalue - eigenvector extraction is useful for determining the resonance frequen-
cies at which a body (or structure) vibrates. However, another technique, known as modal
analysis, can use the eigenvalues and eigenvectors to determine the vibrational response of the
system to various inputs.

In modal analysis, the response at one node (or given location on the structure) is measured
while a sinusoidal forcing function is input at another node. Thus the forced problem of (3.1)
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Mi(t) + Kx(t) = f(t) (3.17)

must be solved. For a sinusoidal input

f(t) = feiwt (3.18)

x(t) = zeit (3.19)

using (3.18) and (3.19) in (3.17) yields

(K - w2M)xeiwt = feiwt (3.20)

X = (K - W2 M)-lf (3.21)

or

z -[a(w)]f (3.22)

where [a(w)] is a n x n matrix called the receptance and defined as

[a(w)]- (K - w 2M)- 1 (3.23)

ajk(w)= () f m = O; m = 1, n; # k. (3.24)

where the subscript j is the location (node) on the structure where the displacement is measured
and the subscript k is the location (node) where the force is applied. The condition on the right
is the requirement that a force only be applied at location k and at no other location. The
calculation of [a(w)] can be simplified as follows.

(K - w 2 M) = [a(w)] - (3.25)

t(K - w2M) = t[a(w)]-l (3.26)

diag[(w2 - w2)] = cit[Ca(w)]-l (3.27)

where diag means a diagonal matrix and the values of w, are the natural frequencies. Therefore

[a(w)] = · diag[(w2 - w2)]- ' t . (3.28)

Noting that
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al 0 ... 0 l/al 0 ... 0

a2 ... O /a2 ... (3.29)

0 ..9. a,) 0 Val

[a(w)] = diag [2 2](3.30)

or

C =jk Z= -- 2 (3.31)
7=1 r

In this way the values of the receptance, a, can be calculated from only the eigenvalues and
eigenvectors. Physically ajk gives the relationship between a sinusoidal force input (fk) at node
k, and the sinusoidal displacement (zj) at node j. It is important to realize that ,j and rk
are scalars and not vectors.

It is common practice to replace the product of the two modal constants j . rk with rAjk
and it is called the modal constant. This substitution is important because experimentally the
individual values of 4ji and k cannot be easily determined, only the product of the two can
be found, rAjk.

In addition to using nodal displacement to characterize a structure's response, as in recep-
tance, both nodal velocity and nodal acceleration are also commonly used. The ratio of velocity
to force is called mobility Y(w) and the ratio of acceleration to force is called accelerance (or
inertance) I(w). Equation 3.31 can be easily modified to express the quantities of mobility and
accelerance.

Yjk() () E _ -W2 (3.32)

() a(w) _ n rAjwIj() W) = -A

n -rAjk
E 1 - (W) (3.33)

The forms of the frequency response functions (FRF), i.e. receptance, mobility, and accel-
erance, presented so far have been for an undamped system. Damping can be modeled in a few
different ways [1], but only proportional structural damping will be considered in this thesis.
Damping can be added to Equation 3.31 by the simple addition of i7,wr in the denominator.

n E _ +7Aj =r 2- +jk 2 (3.34)
r1- W + i
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The parameter 7, is called the loss factor and is the key parameter in structural damping.
The following two sections will show how FEM and modal analysis are applied to modeling

the vibrations of the read/write head (slider) of a hard disk.

3.4 FEM Model of 3380 Slider

Most modern hard disk drives use a particular type of slider known as the 3380 style. Modeling
will be restricted to this type of slider. A diagram of a 3380 slider is shown in Figure 3.2.
The 3380 slider is generally made from a ceramic called alumina titanium carbide, Al20 3-TiC.
This ceramic has a density of 4.28 x 103 kg/m 3 ,an elastic modulus of 3.92 x 101 N/m2, and a
poisson's ratio of 0.35. Using this information it is possible to develop a FEM model.

The particular FEM program used is called ABAQUS and is sold by Hibbett, Karlsson, and
Sorenson, Inc. Figure 3.3 shows a diagram of the slider model and Appendix C is a copy of the
input file. The model consists of 258 20-node brick elements. This results in 1534 nodes and
4602 degrees of freedom. During operation the slider is suspended by a weak spring and an air
bearing. Because the spring and air bearing are so weak, they have little effect on the vibration
modes of the slider. For this reason, the slider was modeled as unsupported, i.e. as if it were
sitting in outer space. This also has the advantage of simplifying the FEM model (because a
mesh does not have to be constructed for the spring), however, it does cause the rigid body
modes to show-up as eigenvalues at zero frequency. This problem can be overcome by instructing
ABAQUS not to look for the lowest eigenvalues. This is done by giving ABAQUS a "shifting
frequency" that is a frequency which tells the software where to look for the first eigenvalue.
This eliminates the rigid body modes of the slider. Since ABAQUS uses an iterative procedure
to find the eigenvalues and eigenvectors, it must be instructed as to how many eigenvalues and
eigenvectors to calculate. For the slider model, the first 6 eigenvalues were calculated.

After about 9 CPU hours on a microVAX (or 2 minutes on a Cray-2 supercomputer),
ABAQUS determined that 6 of the eigenvalues had converged. Table 3.1 shows the natural
frequencies and Figure 3.4 shows the mode shapes.

To try to verify that the vibration frequencies in Table 3.1 are reasonable, four additional
FEM models were used, see Figure 3.5. Three of the models have a courser mesh than the 258
element model, and one model has a finer mesh. These five models can be used to determine
how much the natural frequencies, wr, of the slider change as the mesh is refined. The vibration
frequencies determined by the different models are shown in Figure 3.5. The results show that
the inclusion of the cut-away for the slider rails is an important feature in getting a good
estimate of the natural frequencies. It can be seen that once the cut-away for the rails is
included, as in the 50 element model, very little change occurs in the natural frequencies as
the model is refined to 258 or 512 elements. In the modal analysis in the next section, the 258
element model is used because it gives basically the same results as the 512 element model. The
258 element model also has smaller eigenvectors that are easier to work with on the computer.
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Figure 3.2: Drawing of 3380 slider with dimensions in millimeters.
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Figure 3.3: FEM model of 3380 slider with 258 elements and 4602 degrees of
freedom. (Model name is 33806)
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Figure 3.4: First six mode shapes of 3380 slider estimated using a 258 element FEM
model with 4602 degrees of freedom.
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18 Element Model, Name 33803

50 Element Model, Name 33804 258 Element Model, Name 33806

516 Element Model, Name 338012

33801
33803
33804
33806*

338012

Vibration Frequency in KHz
Model
Name

Number of
Elements

1050
913
909
903
902

392
348
311
305
305

524
458
426
422
422

901
747
666
656
656

1

18
50

258
516

925
764
698
689
687

1086
887
806
787
786

Figure 3.5: Comparison of different FEM models of a 3380 slider.

* This was the model that was chosen for use in the modal analysis.
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Table 3.1: Natural frequencies of 3380 slider.

3.5 Modal Analysis of 3380 Slider

In Section 3.3 the analysis was given for determining the vibrational response of a system to
force inputs at different locations. The system response can be determined using only the
eigenvalues and eigenvectors,

Ijk(w) =-W 2 E Z _ 2 + 2 2 (3.35)

The summation in (3.35) is over the whole range of eigenvectors from 1 to n, that is from the
lowest modes to the highest modes. In most FEM, the higher order modes are of little practical
interest and even if they were of interest they are poorly modeled (A more refined mesh would
be needed to adequately model these higher modes). Therefore it is very common to use a
truncated summation in (3.35), i.e.

m<n

Iik22 2 (3.36)

In this case the matrix of eigenvalues fQ would be m x m and the matrix of eigenvectors would
be n x m.

For the 3380 slider model this truncated summation is the only practical choice. If all
eigenvalues could be calculated, there would be 4602. This is clearly too many to be of practical
value. Furthermore, the vibration frequencies of the modes greater than mode 6, would be above
1 MHz and be very difficult to measure experimentally. Therefore, only the first 6 vibration
modes were used in the modal analysis.

The frequency response function (or accelerance) of a structure is a function of force input
location and sensor location. This is indicated by the two subscripts jk on the accelerance Ijk.
The input locations along the slider are limited to the bottom of the slider rails. It is only
possible for the asperities to contact the slider along the bottom of the rails. The sensor would
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Mode Frequency Mode Shapes (See Figure 3.4)

1 305 KHz Torsion
2 422 KHz Longitudinal Bending
3 656 KHz Transverse Bending
4 689 KHz Second Torsion
5 787 KHz Second Longitudinal Bending
6 903 KHz Side Bending



typically be a small piece of PZT mounted on the top side of the slider, as shown in Figure 3.6.
For modal analysis purposes, it would be convenient if the PZT sensor was small compared to
the size of the slider. For this reason, the PZT sensor will be modeled as if it were a point
sensor. 1 The choice of locations for the sensor and force input are shown in Figure 3.7. The
input locations are listed by the node numbers of 3001 through 3013. The sensor locations used
in the modal analysis are labeled 9251 and 15251. These sensor locations are intended to give
a typical response of a PZT sensor mounted on the top of the slider.

The particular version of ABAQUS used for the FEM model did not have any modal analysis
capabilities. In order to calculate Equation 3.36, the ABAQUS output file was downloaded to
a IBM PC. The goal was to use MATLAB (a general purpose matrix manipulation program)
to calculate Equation 3.36. But first the ABAQUS output file had to be converted to a form
that could be read by MATLAB. A conversion program was written in C to do just that,
see Appendix D for program ABA.READ.C. Inside MATLAB a program, called S380.M, was
written to load the eigenvalues and eigenvectors from the files created by ABAREAD.C. Then
a second program, MODAL.M was written to calculate the accelerance Ijk for a given pair of
input and sensor locations j, k. Finally a third program, FRF.ACC.M, would use the modal
constants from MODAL.M to create a graph of the frequency response function (FRF) for the
pair of nodes j, k, see Appendix D for MATLAB Programs.

Figure 3.8 shows the FRF's for seven different impact locations along one of the slider rails,
see Figure 3.7 for the locations. The seven graphs are arranged in such a way that the symmetry
of the slider response can be demonstrated. The graphs should be viewed top left to bottom
left, then bottom right to top right. Viewed this way the graphs are shown in the order of
impact at the leading edge (3001) to middle (3007) to trailing edge (3013) of the slider. It is
clear from these graphs that the location of the input force causes a very significant difference
in the vibrational response of the slider.

Consider, for a moment, just the torsional mode of vibration, whose resonance frequency is
305 KHz. When impact occurs at the leading edge (3001) of the rail, there is a strong excitation
of the torsional mode. As the impact location moves toward the center (3007), the magnitude
of the torsional vibration decreases to zero. Then as the impact location moves from the center
(3007) to the trailing edge (3013), the strength of the torsional mode increases again.

This change in vibration magnitude with impact location was found to be useful in explaining
unexpected results observed in glide height test data. Figure 3.9 shows some typical glide height
test data. It was found that the low frequency AE had a very linear relationship with flying
height, whereas the high frequency AE had a dip in the AE vs flying height curve. At the time
that the data was taken, there was no clear understanding of what was being measured. The
bandwidth of the AE signal monitored in these tests, was chosen more or less at random. As
it turns out, the high frequency band (200-400 KHz) was monitoring primarily the torsional

1The issue of miniature sensor design for glide height testing is beyond the scope of this thesis. However, it
should be pointed out that there are three main problem with the PZT sensor, 1) it is not small compared to
the slider and should not be considered a point sensor, 2) It is a resonance transducer and does not have a flat
response, and 3) the way it is mounted it may substantially changes the resonance frequencies of the slider.
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Figure 3.6: Schematic of HGA (head gimbal assembly) with PZT mounted on the
slider and AE transducer mounted at the base of the HGA.
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Figure 3.7: FEM model of 3380 slider showing input locations along the rail and
sensor locations along the top of the slider.
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Figure 3.8: Accelerance functions for input forces at locations 3001 through 3013
along the rail. The sensor is located at location 15251. Both the forces and
accelerations are measured in the Z direction.
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mode (305 KHz) of vibration of the slider.
With the benefit of the modal analysis, it is fairly clear- why there is a dip in the AE vs

flying height curve. The read/write head (slider) flies at a slight angle with the leading edge
higher than the trailing edge, as was shown in Figure 2.5. As a result, the change in flying
height tends to change the impact location along the slider rail. For a fairly high flying height
(say 220 nm), the impacts tend to occur at the trailing edge of the slider rail. For a lower flying
height (say 180 nm), impacts occur more toward the center of the slider rail. At still lower
flying heights (say 150 nm) impacts tend to occur at the leading edge of the slider rail. As
previously explained, impacts at the leading and trailing edge of the slider both strongly excite
the torsional vibration mode of the slider, whereas impacts at the center do not excite that
mode. As a result, low levels of AE can be expected in the 200-400 KHz band when impacts
occur at the center of the rail. Since impacts tend to occur at the center of the rail at the 180
nm flying height, it is not surprising to see the dip there.

There is a very practical significance to knowing the impact location along the rail. During
glide height testing, the slider is only flown at a single height. As a result, larger asperities tend
to hit towards the leading edge of the rail and smaller asperities at the trailing edge. Thus,
if the impact location along the rail can be determined, then the size of the asperity can be
estimated.

The frequency response functions (FRF's) show another interesting feature. Because of the
symmetry in the structure of the slider body, an impact at the leading edge (3001) has the same
response as an impacts at the trailing edge (3013). The FRF's at locations 3003 and 3011 are
also the same. It will be shown, in Chapter 5, that this symmetry leads to difficulties in using
the FRF's for diagnostic purposes. Figure 3.10 shows the same FRF's as in Figure 3.8 except
that the data is plotted in a log scale and the phase of the FRF's is included. Plotted in this
way, a difference can be seen between impacts at the leading edge (3001) and at the trailing
edge (3013) of the slider rail. The difference can be seen in locations of the antiresonances.
Furthermore, a difference can be seen in the phase. The most obvious difference is that for
impact locations 3001 - 3005, the phase starts at 180° and for locations 3009 - 3013, the phase
starts at 0 °. This fact will be used in the force identification technique presented in Chapter 5.

In glide height testing, the PZT sensor can be placed at different locations on the top of
the slider. To study the effect of sensor location, the FRF's were recalculated for the sensor
at location 9251 (See Figure 3.7 for node locations). The FRF's for sensor locations 9251 and
15251 are compared in Figures 3.11 and 3.12. The figures clearly indicate the strong effect
that sensor location can have on the measured FRF's. Although it might seem very natural to
place the PZT sensor in the center of the slider, e.g. location 9251, this will make it difficult to
measure certain modes of vibration of the slider. It is probably better to place the PZT sensor
off to the side, as in location 15251, so that more modes can be easily measured.

Earlier, the change in vibration magnitude of the torsional mode with impact location was
discussed. Graphically, there is an easy way to show this behavior. Equation 3.34 shows that
the value of the modal constant, Ajk, determines the magnitude of vibration of the rth mode.
By plotting the modal constant vs impact location, the effect of changing impact location can
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be shown as in Figure 3.13. The modal constants can be both positive and negative. Thus if
the magnitude of vibration is of interest, the absolute value of the modal constants should be
considered. For the torsional mode, as already mentioned, vibration is strong for impact at the
leading edge (3001) and trailing edge (3013) but not for the center (3007). The longitudinal
bending mode has two locations of zero response at approximately 3003 and 3011. The graphs of
the modal constants in Figure 3.13 are simply a more compact way to show the same information
in the FRF's in Figures 3.8 and 3.10.

When the slider hits an asperity on the disk surface, both tangential and normal forces
are created. The normal force is created by the impact and the tangential force is created by
the friction between the slider and disk surface. Up to now, only the normal forces have been
considered. Figure 3.14 shows the modal constants for inputs in the normal (Z direction) and
tangential (X direction). It can be seen that, under most conditions, the magnitude of the
modal constants for the tangential (X direction) forces is less than magnitude of the modal
constants for the normal (Z direction) forces. This is even more true if the acceleration is
considered rather than accelerance, i.e. if the relative magnitude of the X and Z direction
forces are considered.. The measured acceleration from an impact is the superposition of the
results for the tangential and normal forces. Friction tests on the head/disk interface indicate
that the coefficient of friction is about 0.3. Thus, the tangential force is 0.3 times the normal
force. Conceptually this can be thought of by multiplying the X direction modal constants in
Figure 3.14 by 0.3. Thus the contribution of the tangential forces is 0.3 times what it appears
to be from the graphs of the modal constants alone. In other words, the X-direction forces are
not very important. The exceptions to this statement occur when, 1) impacts are locations
where the response from the normal forces is nearly zero, or 2) when mode 6 is considered. At
all other times, the response of the slider is reasonably modeled by considering only the normal
forces.

3.6 Glide Height Tests on Bump Disks

Whenever mathematical models of a system are developed, it is important to have some form
of experimental confirmation of the model. To try to verify the FEM model and modal analysis
of the slider, two types of experiments were performed. The first type of experiment was glide
height tests on "bump" disks. The second type of test was ball impact tests on the slider. The
bump disk tests will be discussed in this section and the ball drop tests will be discussed in the
next section.

Hard disk manufacturers have developed a technique for calibrating the AE monitoring
systems for their glide height test facilities. The technique uses special disk called a bump disk.
The disk has an asperity of known height which is vapor deposited on the disk surface. This
bump disk serves as a reference standard. When new glide heads are manufactured, they are
flown over the bump disk. When the glide head hits the bump, the level of AE can be compared
to previous results to determine if the glide head is working properly. The speed of the disk is
varied during the test to create a range of flying heights and a curve like the one at the top of
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Figure 3.9 is generated.
This calibration technique may work well enough for the manufacturer's purpose, but it

presents some difficulties for a controlled study of slider/disk impacts. Before any glide height
tests are run, an interferometry technique is used to determine the speed vs. flying height curve
of the glide head. Then, the speed is used to control flying height, which in-turn controls
the impact location along the slider rails. Unfortunately, this technique not only changes the
flying height, it also changes the approach velocity of the impact. As a result, the higher flying
heights in Figure 3.9 occur at a higher velocity than the lower flying heights. Since impact force
is related to velocity, the impact force changes with flying height.

One way to avoid this problem is to vary flying height by varying the air pressure rather
that the rotational speed of the disk. Experimentally, this is more difficult to do, but it is
really the only way to get good data. Figure 3.15 shows the experimental setup for running
controlled glide height tests. In the setup, a modified Seagate ST212 disk drive was placed inside
a vacuum chamber. Since the slider flies on an air bearing, the flying height is controlled by
controlling the amount (pressure) of air in the chamber. The chamber consists of an aluminum
base plate, a plastic bell jar, and a "blow shield" (not shown). The AE is monitored using
an Acoustic Emission Technologies (AET) "picotransducer" which is mounted at the base of
the head gimbal assembly (HGA) as shown in Figure 3.6. The AE signal is amplified by an
AET amplifier and conditioned by a Krohn-Hite filter. The signal is acquired using custom
software and a Signatec 25 MHz sampling rate data acquisition board. The pressure inside
the chamber is also monitored by the computer but the pressure has to be manually adjusted
using a vacuum regulator valve. To control the timing of the AE sampling, an "index" signal is
monitored by the computer. The index signal pulses once per revolution of the hard disk and is
used to insure that data is always taken from the same location on the disk. The computer also
controls the a Wilson hard disk controller via an RS232 interface. This allows the computer to
turn the disk drive on and off as well as position the read/write head at different tracks on the
disk. A function generator can be used to adjust the speed of the hard disk, but it was always
maintained at the nominal speed of 3600 rpm.

Two types of disks where used in the tests, bump disks and scratched disks, see Figure 3.16.
The bump disks were commercially made by the Plaser Co. in San Jose. The scratch disks
could be made by lightly scratching the surface of a new thin film disk with an X-acto knife.
Due to the accuracy of the their bumps, the bump disks were the disks of choice. But, at $100
per disk for the bump disks, the scratch disks had to be used more often.

The tests were found to be very difficult to control. Figure 3.17 shows some typical glide
height data. It is obvious, that as the pressure in the chamber increases, the level of AE
decreases. Since a wide bandwidth is monitored, the AE vs flying height characteristic is not
expected to be the same as the previous data, i.e. when only the 200-400 KHz range was
measured. Unfortunately, before the full range of pressures (up to 14 psia) could be monitored,
the bump on the disk wore out. Figure 3.17 also shows an FFT of a typical AE signal from
the test. From this figure, three of the vibration modes of the slider could be identified. Most
obvious is the torsional mode (mode 1).
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This type of glide height test has many serious short comings. The first is that the test
could not be run for more than a couple of minutes without the bump on the disk wearing
out. Secondly, when the bump wore out, it left contamination on the bottom of the slider.
This required the slider and HGA to be discarded after each use. As a result, the PZT was
not mounted on the slider because a great number of expensive PZT/sliders would have been
needed. Instead a commercial transducer was mounted at the base of the HGA. Monitoring the
signal in this way is undesirable because the strength of the signal is lower at the base of the
HGA than it is right on top of the slider. This type of glide height test, although useful, requires
very quick response from the computer controlling the experiment so that wear of the bump
is minimized. The experiments also require considerable financial resources for the purchase of
heads and disks.

About the only useful result from the glide height tests was a partial confirmation of the
resonance frequencies of the slider. The disappointing results with the glide height tests led to
the development of the ball impact technique in the next section.

3.7 Ball Impact Tests on 3380 Slider

To better understand the vibrational characteristics of the 3380 slider, a ball impact technique
was developed[30]. The ball impact technique is more than just a substitute for actual glide
height testing. The technique allows precise location of the source of the input force into the
slider. It also allows a quantitative estimate of the impact force to be calculated, a priori,
using Hertzian contact theory. These two features make the ball impact a valuable tool for
understanding the vibration of the slider and the whole HGA as well.

The experimental setup for performing the ball impact tests is shown in Figure 3.18. To
guide the balls into impact with the slider, a glass pipet tube was used. The inner diameter
of the pipet tube was just slightly bigger than the size of the ball. The positioning stage
allowed the HGA to be moved in five directions. The three rotational adjustments of pitch,
yaw, and roll, allowed the HGA to be positioned parallel with the X and Y directions of the
linear positioning stages. Once positioned, the X-Y stage allowed the slider to be moved so
that the ball could impact at any location along the bottom of the slider.

The balls used in the experiments were 0.28 mm (0.011 inch) in diameter and made of
tungsten carbide. The size of the-ball and its material were chosen to made the contact time
(duration) as short as possible. A short contact time is necessary to excite the high frequency
modes of the slider. This contact time and the contact force can be estimated using Hertzian
contact theory, see Appendix A for a detailed discussion. For this size ball the contact time is
estimated to be 0.74 gs. With this contact time, the input excitation force excites all frequencies
up to about 1 MHz fairly evenly, i.e. the magnitude of the force is nearly constant over this
range. This makes the ball impact useful for studying at least the first six modes of vibration
of the slider.

Ball impacts tests were performed at several locations along the slider rails. Figure 3.19
shows typical results for impacts at the leading edge (front) and center of the slider rail. For
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Mode FEM Ball impact Vibration Mode Shape
1 305 KHz 308 KHz Torsion
2 422 KHz 425 KHz Longitudinal Bending
3 656 KHz 605 KHz Transverse Bending
4 689 KHz 690 KHz Second Torsion

Table 3.2: Comparison of natural frequencies of 3380 slider determined by FEM and by ball
impact experiment.

these tests the transducer was the commercial AE transducer mounted at the base of the HGA,
as was shown in Figure 3.6. The graphs clearly identify the first four vibrational modes of the
slider. Table 3.2 shows a comparison between the vibrational frequencies determined by the
experiments and as determined by the FEM. The frequencies of modes 1, 2, and 4 all agree
within 1%. The predicted vibration frequency of the third mode (transverse bending) is in error
by about 7%. There are two possible reasons for this: 1) the value of Poisson's ratio used in the
FEM was in error, or 2) the depth of the cuts adjacent to the rails was incorrectly measured. It
should be noted that it would be reasonable for an error in the Possion's ratio to effect mostly
mode 3. This is because the transverse bending mode (mode 3) depends more than the other
modes on "plate type" (1 - v2 ) stiffening. The same is true of the depth of cut by the slider
rail. It would most strongly effect the transverse bending.

More can be learned in Figure 3.19 than just the vibration frequencies. The effect of impact
location is also obvious. It is clear that the torsional mode (mode 1) is strongly excited by
impact at the leading edge of the slider rail. It is also clear that impact in the center of the
rail does not excite this mode at all. The relative magnitude of the other vibrational modes
also change with impact location. The top graph in Figure 3.19 also shows a strong unexpected
peak at about 300 KHz. Further testing confirmed that this was one of the vibration modes of
the gimbal supporting the slider. It should also be noted that the two graphs in Figure 3.19 are
not plotted on the same vertical scale. In fact, it was found that the magnitude of the vibration
(AE) varied considerably from one ball impact to the next. This was apparently the result of
the ball sticking to the inside of the pipet tube as it fell. As a result, the magnitude of vibration
resulting from an impact at one location cannot be directly compared with the magnitude of
vibration from an impact at another location. This lack of repeatability led to the use of the
enlarged slider model presented in Section 3.8.

One important decision that has to be made in glide height testing is where to place the
transducer. There is a difficult tradeoff that has to be made. If the transducer is placed at the
base of the HGA, rather than on the slider, then it will not have to be replaced each time the
HGA has to be replaced. On the other hand, by placing the transducer directly on the slider,
a higher sensitivity might be achieved.
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To test out the effect of sensor location, a series of tests were performed. First, two PZT
sensors were mounted as shown in Figure 3.20. The sensors were both 2.5 x 0.30 x 0.25 mm in
size and made from PZT-5A. Balls were dropped at different locations along the slider rail and
the signals from both sensors were simultaneously acquired. Figure 3.21 shows the resulting
vibration (AE) signals obtained from impact tests on the leading edge and center of the slider
rail. These tests show a marked difference in the signals measured from the two different sensor
locations.

Firstly, the magnitude of the vibration signal measured from the base of the HGA is about
one tenth of that measured at the slider. So, measurement at the slider is more sensitive. Sec-
ondly, the torsional vibrational mode (305 KHz) is noticeably missing from the signal measured
by the PZT mounted on the slider. This is believed to be the result of the way the PZT is
mounted. The PZT is placed all the way across the back of the slider. Mounted in this way the
PZT is divided in half by the nodal line of the torsional mode of vibration. As a result, when
one half of the PZT is moving upward, the other half is moving downward. The net result is
cancellation of the torsional vibration signal. Also notice that the peak at 600 KHz is detected
by the PZT on the slider but not by the PZT sensor mounted at the base of the HGA. This
is most likely due to the suspension of the HGA not being able to transmit this frequency up
to the base of the HGA. Another result of the PZT being mounted on the slider is that the
vibration frequencies change slightly due to the extra mass of the PZT sensor. Notice the peak
at 390 KHz which had previously been at 426 KHz. Overall, the signal from the PZT mounted
on the slider is cleaner and much stronger than the signal from the PZT mounted at the base
of the HGA.

Due to difficulties in creating a reliable ball impact with the small ball and in mounting the
PZT sensor, the decision was made to use an enlarged model of the slider.

3.8 Ball Impact Tests on an Enlarged Slider

An enlarged slider was machined out of aluminum and scaled 44:1 relative to the actual 3380
slider. The dimensions for this slider are given in Figure 3.22. With the enlarged slider it was
again necessary to determine the range of frequencies to be excited and the size ball necessary
to excite those frequencies. FEM analysis of the enlarged slider indicated that the first six
vibrational modes are in the range of 3-12 KHz. Thus, compared to the 300 KHz - 1 MHz
range needed for the actual 3380 slider, exciting the enlarged slider was relatively easy and
almost any size ball would do. Initial tests with 4.76 mm (3/16") and 6.35 mm (1/4") diameter
steel balls dropped from 305 mm (12") high, showed that plastic deformation of the aluminum
occurred, leaving craters on the aluminum surface after the test. As a result, it was decided to
use a less dense ball material. nylon balls were found to leave the aluminum surface undamaged
and cause a strong enough vibration so that the accelerometer could easily measure the signals.
Fourteen input (impact) locations were chosen along the rail of the enlarged slider. These
locations and the accelerometer location are shown in Figure 3.23. The accelerometer used is a
PCB 303A with 10 mV/g sensitivity and ± 500 g range.

69



PZT mounted
at the base

ge

Suspension,

Slider ,

Voltage

PZT
on

Figure 3.20: Schematic of HGA (head gimbal assembly) with PZT mounted on the
slider and also mounted at the base of the HGA. (after Chang 1990)
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Figure 3.22: Drawing of enlarged model of 3380 slider with dimensions in
millimeters.
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Figure 3.23: Ball drop and sensor locations on enlarged slider.
enlarged slider is turned upside down during ball drop tests.

Note that the
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The first effect to be studied was the effect of contact time on the frequencies excited.
Contact times could be varied by varying either the stiffness of the ball material or the radius
of curvature of the ball. In an actual glide height test, the materials are usually fixed, but the
radius of the bump on the disk may change. So for the tests with the enlarged slider, it was
decided to keep the materials fixed and vary the diameter of the nylon ball. Ball diameters of
6.35, 12.70, and 25.4 mm (1/4", 1/2", and 1") were chosen and the drop height was decided
to be 305 mm (12"). To guide the ball to the appropriate contact point on the slider, 305 mm
(12") long copper tubes of appropriate diameters were used, as shown in Figure 3.24. The
enlarged slider was placed upside down (rails upward) on a piece of low density foam. For the
current set of experiments only the first input location was used, see Figure 3.23. For each ball
size, the ball was dropped six times at the same location so that the repeatability of the ball
drop technique could be determined.

Typical acceleration versus time traces for the ball drop tests are shown in Figure 3.25.
Except for the differences in the magnitude of the acceleration, the time domain response is
very similar for all three ball sizes. However, once the FFT's of these signals are taken, an
additional difference can be seen between the three signals, as shown in Figure 3.26. Because
of its small radius, and resulting short contact time, the 6.35 mm (1/4") nylon ball excites
virtually all frequencies equally in the 0 to 25 KHz frequency range. The 12.70 mm (1/2")
nylon ball, however, seems to start rolling off at around 12 KHz, as can be seen by comparison
with the frequency data for the 6.35 mm (1/4") ball. The magnitude of the frequency data for
the 25.4 mm (1") ball starts its roll off at about 6 KHz and is virtually zero for frequencies above
12 KHz. The same results can be seen in a semilog plot, as shown in Figure 3.27, although the
results are clearer in the linear plot. In order to better understand the relationship between
ball size and frequency response, a Hertzian contact analysis was performed for the nylon balls.

3.8.1 Hertzian Contact Analysis for Nylon Ball Drops

The elastic contact between a ball and a flat surface has a known theoretical solution which
was found by Hertz in the 1881[31]. More recently[32] the dynamic solution for a ball dropped
onto a large flat surface has also been solved. A detailed solution to this problem is presented
in Appendix A and only the results of such an analysis will be given here.

As previously mentioned, we are concerned with the problem of dropping 6.35, 12.70, and
25.4 mm (1/4", 1/2", and 1") diameter nylon balls from a height of 305 mm (12") onto an
aluminum surface. The properties of these two materials are given in Table 3.3. Hertzian
contact analysis for the balls can predict both the displacement of the balls during contact
and the resulting forces, as shown in Figures 3.28, 3.29, and 3.30 for 6.35, 12.7, and 25.4 mm
diameter balls, respectively. The predicted peak forces are 38, 149, and 600 N for the for 6.35,
12.7, and 25.4 mm diameter balls respectively. Also, the contact times are 35, 71, and 141 ks
for the balls in the same order. Also shown in Figures 3.28 - 3.30 are FFT's of the force vs.
time signals. (Note that the signals were padded with zeroes to account for the fact that the
ball experiences no contact forces after contact.) These FFT's show that the 6.35, 12.7, and
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4. ballO

Accelerometer on
back of slider

Figure 3.24: Schematic of ball drop test apparatus for ball drop test on enlarged
slider.
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Figure 3.25: Acceleration signals from enlarged slider. Test conditions were
12.70, and 25.4 mm (1/4", 1/2", and 1") diameter balls dropped from 305 mm
high onto location 1 on the enlarged slider. Sampling rate 50 KHz and
samples. Only half of the recorded time trace is shown.
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6.35 mm (1/4") Nylon ball drop

L i A L 1 1I 1.

Ir16
Frequency (KHz)

12.70 mm (1/2") Nylon ball drop
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Figure 3.26: FFT's of acceleration signals from enlarged slider. Test conditions were
6.35, 12.70, and 25.4 mm (1/4", 1/2", and 1") diameter balls dropped from 305 mm
(12") high onto location 1 on the enlarged slider. Sampling rate 50 KHz and 8192
samples.
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Figure 3.27: FFT's of acceleration signals from enlarged slider. Test conditions were
6.35, 12.70, and 25.4 mm (1/4", 1/2", and 1") diameter balls dropped from 305 mm
(12") high onto location 1 on the enlarged slider. Sampling rate 50 KHz and 8192
samples.
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Displacement of 6.35 mm (1/4") nylon ball during contact

Time (s)

Force on 6.35 mm (1/4") nylon ball during contact
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Figure 3.28: Data from Hertzian contact analysis for a 6.35
dropped from 305 mm (12") onto an aluminum surface.
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Displacement of 12.70 mm (1/2") nylon ball during contact
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Figure 3.29: Data from Hertzian contact analysis for a 12.7
dropped from 305 mm (12") onto an aluminum surface.
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Displacement of 25.4 mm (1") nylon ball during contact
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Force on 25.4 mm (1") nylon ball during contact
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FFT of force on 25.4 mm (1") nylon ball during contact

20
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Figure 3.30: Data from Hertzian contact analysis for a 25.4 mm (1") nylon ball
dropped from 305 mm (12") onto an aluminum surface.
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Property Nylon 66 Aluminum
P 1135 Kg/m 3 2768 Kg/m 3

E 2.75*109 N/m 2 6.89-1010 N/m 2

v 0.4 0.26
k 9.72-10-'1 m s/Kg 4.3110-12m s2/Kg

Table 3.3: Mechanical Properties of nylon 66 and Aluminum.

25.4 mm balls reach their first frequency domain zero at 50, 25, and 12 KHz respectively. This
seems to agree with the results from the ball drop tests on the enlarged slider, recall Figure 3.26.

In a typical modal testing application, the impact force signal and acceleration signal would
be measured simultaneously. Unfortunately, it is not possible to directly measure the contact
forces created during a ball drop tests. A small impact hammer might be used, but the ball
drop technique is preferred. In actual glide height testing, the impact force cannot be directly
measured. So to simulate that condition, the ball drop technique is a good choice for creating the
impact. Even though we are limited to not being able to directly measuring the contact forces,
they can be estimated from the Hertz contact theory, so that accelerance can be calculated, for
comparison with the FEM model. The most obvious way to make use of the Hertzian solution
is to take the force vs time curve, e.g. the second graph in Figure 3.28, pad the signal with
zeroes, and digitize it at the same rate as the acceleration signal was digitized. However, there
is one more small consideration.

In order to obtain the desired frequency spectrum for the acceleration data, the acceleration
signal was digitized at 50 KHz. The contact time for the balls ranges from 35 to 141 s. If the
force vs time curves are digitized at 50 KHz, or 1 sample every 20 As, a very poor representation
of the both the time and frequency domain signals will be obtain. In fact, for the 6.35 mm ball,
the contact force data will be a impulse input, i.e. a positive non-zero value followed by a series
of zeros. This would cause the frequency spectrum to be white, or flat.

The solution to this problem is simply to digitize the force signal at a faster rate than the
acceleration signal. Figure 3.31 shows how the faster sampling rate improves the quality of
both the time and frequency domain signals. One must be certain to keep the length of the
time record the same regardless of the sampling frequency. For the case of the ball drop on
the enlarged slider, 8192 points were taken of the acceleration signal at 50 KHz. This gives
a record length of 163 ms. If the force signal were to be digitized at 400 KHz to give a good
representation of the signal, then 65536 points should be taken to keep the record length at 163
ms. Failure to keep the record length constant can result in the following problems.

1. If the time record length is not fixed then the magnitude of the force FFT will be incorrect,
and

82



Change in the digitized force signal with sampling rate
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Figure 3.31: Effect of sampling rate on Hertz contact force data. Note that higher
sampling rates are needed for accurate representation of time domain and frequency
domain signals. Data shown is for a 25.4 mm (1") nylon ball dropped from 305 mm
onto an aluminum surface.
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Table 3.4: Peak contact forces for nylon balls dropped from a height of 305 mm onto an
aluminum surface.

2. If the time record length is not fixed then the frequency resolution of the force FFT will
not match the frequency resolution of the acceleration FFT.

Keeping the time record fixed at 163 ms, the magnitude of the force FFTs for the 6.35, 12.7,
and 25.4 mm nylon balls are shown in Figure 3.32.

3.8.2 Nylon Ball Drops on Force Transducer

To attempt to verify the contact times and forces predicted from the Hertz contact theory, an
experiment was constructed where the nylon balls were dropped directly onto a force transducer.
The experimental setup for these tests is shown in Figure 3.33. The force sensor used was PCB
model 208A03 which has 2.25 mV/N (10 mV/lbf) sensitivity and ± 2227 N (500 lbf) range.
A small circular aluminum disk, 12.7 diameterx 2.5 mm (0.500" x 0.100"), was threaded to
the top part of the force transducer and a long aluminum rod 16 mm diameter x 610 mm long
(5/8" diameter x 24") was threaded to the bottom of the force transducer. The same 305 mm
(12") long copper guide tubes that were used for the ball drop tests on the enlarged slider, were
used for these tests on the force transducer.

The results for the ball drop tests for 6.35, 12.7, and 25.4 mm nylon balls are shown in
Figure 3.34. Tables 3.4 and 3.5 show that the contact forces and times measured agree with
the values calculated using the Hertz contact theory within 10% error. There is one exception,
the contact duration for the 6.35 mm (1/4") diameter ball. It is obvious from the top graph in
Figure 3.34 that there is some resonance of the transducer effecting the measurement. There is
almost a second bump in the force vs time signal. This is not too surprising since the transducer
is only rated to work up to 10 KHz.

Overall, the agreement between Hertzian theory and experiment is really better than could
be hoped for. There is probably a fairly large error in the value of the elastic modulus used in
the Hertz contact theory, because its was obtained from DuPont literature and not measured ex-
perimentally. DuPont lists the elastic modulus of nylon 66 as 400,000 psi. This is apparently an
indication of only one digit of precision in the measurement of the elastic modulus. Considering
this fact, the agreement in the results may be better than can be reasonably believed.
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Figure 3.32: FFT's of nylon ball drop forces calculated from Hertzian contact theory,
plotted in linear (top graph) and semilog (bottom graph) scales. Forces calculated
based on 305 mm (12") drop of nylon balls onto an aluminum surface.
The 6.35 mm (1/4) data is calculated based on 262144 points sampled at 1600 KHz. The 12.7 mm (1/2") data based on
131072 at 800 KHz. The 25.4 mm (1) data based on 65536 at 400 KHz.
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Force 3.33: Schematic of ball drop test apparatus for ball drop test on force
transducer. Transducer is PCB model 308A03.
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Figure 3.34: Ball drop forces for nylon balls dropped on force transducer mounted on
605 mm lon x 16 mm diameter (2' x 5/8") aluminum rod. Ball drop height is 305 mm
(12"). Sampling rate is 1.6 MHz and signal is 12 pole low pass filtered at 700 KHz.
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Ball size 6.35 mm (1/4") 12.70 mm (1/2") 25.40 mm (1")
Experiment 40.9 As 61.2 s 121 s

Theory 32.2 As 64.4 s 128 ps
error 27 % -5 % -5 s%

Table 3.5: Contact time for nylon balls.

3.8.3 Calculation of FRF's Based on Hertz Contact Force Data.

Since the contact forces have been determined from Hertzian theory and confirmed by experi-
ment, it is now possible to calculate the frequency response functions, specifically the acceler-
ance, of the enlarged slider. Using the force FFTs shown in Figure 3.32 and the acceleration
FFTs shown in Figure 3.26, the accelerance can be calculated by dividing the acceleration FFT
by the force FFT.

The accelerance calculated for 6.35, 12.7, and 25.4 mm diameter nylon balls are shown
in Figures 3.35 and 3.36 in linear and logarithmic scales, respectively. It can be seen from
the figures that at low frequencies (<7 KHz) there is very good agreement between the FRFs
calculated for the different size balls. At higher frequencies, however, the agreement becomes
very poor, particularly for the 25.4 mm ball. This is most likely due to the error in the contact
time predicted by the Hertz contact theory. Errors in the contact time effect the frequency rolloff
of the force FFT and result in significant errors near the frequencies where the magnitude of the
force FFT reaches zero. As a result, the FRF based on the 6.35 mm diameter ball is probably
the most accurate, especially at higher frequencies.

3.8.4 Comparison of FEM/Modal Analysis and Ball Drop Data.

Having previously discussed both the theoretical FEM/modal analysis technique and the ex-
perimental ball drop/Hertzian contact technique for calculating FRFs, it is time to compare
them to see how well they agree. One such comparison is shown in Figure 3.37.

The theory and experiments seem to agree reasonably well over three orders of magnitude.
The agreement can be seen not only near the peaks, but in the regions between the peaks as well.
However, there are some significant differences to be considered. First, as discussed earlier, the
FEM/modal analysis uses an undamped model. Thus, the FRF magnitude is actually infinite
at the resonant frequencies. (The graph shows a truncated peak because the curve was drawn
from discrete points, not a continuous curve.) Thus the magnitudes of the FRF exactly at the
peaks should not be compared, but near the peaks, the curves follow each other very closely.
A second difference is that the experimental and theoretical frequencies are not exactly the
same. The first peak has the best agreement at 0.25% error and the second peak has the worst

88



i An FRF for 6.35 mm (1/4") nylon ball droo

40

20

00

80

60

40

20

0 5 10 15 20 25

Frequency (KHz)

60 FRF for 12.70 mm (1/2") nylon ball drop

40

20

00

80

60

40

20

00 5 10 15 20 25

Frequency (KHz)

FRF for 25.4 mm (1") nylon ball drop
60

40

20

00

80

60 

40 

20-

nA '' 
vo 5 10 15 20 25

Frequency (KHz)

Figure 3.35: Frequency Response Functions (FRF) for 6.35, 12.7, and 25.4
(1/4", 1/2", and 1") nylon ball dropped on the enlarged slider. The FRF
calculated using force FFT's calculated from Hertzian contact theory. The ball
dropped at location 1 on the enlarged slider and the acceleration was measured
an accelerometer.
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Comparison of modal analysis theory and ball dropD
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Figure 3.37: Comparison of theoretical modal analysis and ball drop on enlarged
slider. The theoretical analysis is based on the 258 element FEM model of the
enlarged aluminum slider.
The input is at location 3013z along the rail and sensor is at location 15251z on the back of the slider. The experimental data is
based on 1/4" diameter nylon ball dropped from 12" above one of the rails of the enlarged aluminum slider. The force spectrum
is based on Hertzian contact analysis sampled at 1.6 MHz for 164 ms. The acceleration is measured using PCB 303A
accelerometer on the back of the slider sampled at 50 KHz for 164 ms.
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Table 3.6: Comparison of natural frequencies of enlarged slider determined by FEM and by
experiment.

agreement at 2.7% error, see Table 3.6. The most likely cause of this error is inadequate mesh
refinement in the FEM model. A third obvious difference is the poor agreement between the
two FRF's before the first peak and after the sixth peak. This is the result of using only the first
6 vibrational modes in the theoretical modal analysis. The higher modes would increase the
magnitude of the high frequency part of the theoretical FRF and the rigid body modes would
increase the magnitude of the low frequency part of the theoretical FRF. A fourth significant
difference between the two curves is the antiresonance predicted by the theory between the
second and third peaks. The experimental data shows no such antiresonance. The cause of
this difference is most likely due to the poor quality of experimental data in the antiresonance
region.

Although the agreement between the theoretical and experimental FRF's is reasonable, it
certainly could be improved by doing the following.

1. Refine the FEM mesh.

2. Include higher frequency vibrational modes in the FEM/modal analysis.

3. Use a 16 bit A/D converter for measuring the acceleration data.

3.9 Summary

This chapter has presented the basic techniques of FEM and modal analysis and demonstrated
their use in one particular application. The results of an FEM model are a set of natural
frequencies (eigenvalues) and mode shapes (eigenvectors). These results are used in the modal
analysis equation,

Ik() = -W2 W2 _ W2 + iW. 2 (3.37)

to predict the frequency response function (FRF) of the structure.

92

Mode FEM Ball impact Vibration Mode Shape
1 3562 Hz 3649 Hz Torsion

2 5003 Hz 5139 Hz Longitudinal Bending
3 7726 Hz 7922 Hz Transverse Bending
4 8225 Hz 8288 Hz Second Torsion
5 9374 Hz 9485 Hz Second Bending
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This location is unknown and the objective of the force identification technique is to predict the
location of the source (impact) and the force magnitude. An acceleration signal is acquired, from
an accelerometer mounted on the structure, and transformed into the frequency domain using
the fast Fourier transform (FFT). Using the frequency domain acceleration signals, the modal
constants for each vibrational mode of the acceleration signal can be extracted. For the purposes
of the current discussion, the modal constants can just be considered as the magnitude of each
resonance peak in the acceleration signal. These extracted modal constants can be considered as
a pattern, i.e. they are the main features of the acceleration signal and represent a "fingerprint."
Prior to running this test, a number of tests had been run to determine the patterns of modal
constants for each likely input location and a database was built. A comparison is made
between the pattern of modal constants from this test and the patterns of modal constants
in the database. The pattern in the database that best matches the experimental pattern,
indicates the expected location of impact and also the magnitude of the impact force.

There is one significant assumption in this force identification technique. Since the modal
constants are being used to identify the impact location and force magnitude, there must be a
unique relationship between impact locations and a given set of modal constants, for the tech-
nique to work properly. If two locations have the same set of modal constants, then confusion
can arise about the likely location of impact. This is apt to be a problem with structures that
are symmetric. This situation is known as a uniqueness problem, and is a common difficulty
faced in many inverse problem solving techniques. Uniqueness will be discussed further, later
on in this chapter and in the next.

Overall, the force identification technique is constructed in the same way as any other
pattern matching problem, e.g. fingerprint matching. The success of the technique depends
largely on how well the extracted features discriminate between different classes of inputs. For
example, if the values of the resonance frequencies were used in the pattern matching, the
pattern matching would be useless. This is because the values of the resonance frequencies
do not change with input location or input force magnitude. On the other hand, the modal
constants (or magnitude of vibration) are likely to change a great deal with input location, as
will be demonstrated later.

Having presented this brief description of the force identification technique, it is now time
to present the details of the technique. First, the techniques of modal parameter extraction will
be presented. Two types of modal parameter extraction will be illustrated. One technique uses
only the magnitude of the acceleration signal while the other technique uses both the magnitude
and phase. After discussing the modal parameter extraction techniques, the pattern matching
technique will be explained. Finally, a summary is given of the whole force identification
procedure.

4.2 Modal Parameter Extraction

In modal testing, the frequency response functions (FRF's) must be fit to some form of modal
equation to extract out the necessary modal parameters. These modal parameters usually
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include natural frequencies wr, loss factors Oir, and modal constants rAjk. The usual reason for
extracting these modal constants is to experimentally deduce the mode shapes. This is done by
extracting the modal constants from a set of FRF's with different input locations. The modal
constants associated with a single mode can be graphed to view the mode shape. The modal
constants can also be assembled to create a modal model of the structure which can be used to
predict the response of the structure to different inputs. The modal model can even be used to
predict the response of the structure to simple modifications.

For the force identification technique, there needs to be a modal model of the structure for
use in the database for the pattern matching. The modal model needs to have data about all
the likely input locations.

When the force identification technique is being used, there is, by assumption, no a priori
knowledge about the force magnitude or location. Only the acceleration signal is available from
a single test. This represents a problem for the modal parameter extraction techniques because
the accelerance (a(w)/f(w)) ,which is usually used in modal parameter extraction, cannot be
calculated. The force f(w) is usually needed before any modal parameter extraction can be
performed. For an input source which is a short duration force pulse, however, this problem
can be overcome by a slight change in the modal parameter extraction technique.

Consider, for a moment, the typical equation, from Chapter 3, for the calculation of the
accelerance.

a(w) - Z rAjk
Ijk(W) = - E 2z _ (4.1)f(W) rW= +l - LO

This would be the form of the equation to which the experimentally measured data would have
to be fit. If the force f(t) is a short duration pulse, then the force is nearly a constant in the
frequency domain, i.e.

f(w) - constant for w small. (4.2)

Taken to the mathematical limit, if the force is an infinitely short duration impulse, the mag-
nitude of the force would be exactly equal to a constant. For physically realizable force pulses
to be considered short duration, they must be of short duration compared to the resonance
frequencies of the modes used in the analysis. Specifically,

2~r
td < 2r (4.3)

Wm

where wm is the natural frequency of the highest frequency mode used in the modal analysis
and td is the time duration of the force pulse. Once this restriction is made, Equation 4.1 can
be rewritten as follows.

a(w) = -w 2 Z 2 Ak (4.4)
=l W2 - 2 + i7,W2

where

rAk = f(w)rAjk (4.5)
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The values of Ak will be called the uncorrected modal constants. They are called uncorrected
because they must be divided by the (nearly constant, but unknown) force, f(w) to get the
correct modal constant.

The idea of using the uncorrected modal constants rAk is a simple, but important, addition
to the modal parameter extraction techniques presented in the literature. This technique allows
the modal constants to be extracted even though the force is not known. As will be shown later,
this force can be determined using a pattern matching technique with a database of modal
constants. It is important to realize that the input forces must be known when developing
the database or modal model. However, the forces do not need to be known for later tests.
Therefore, Equation 4.1 is used when the modal model is being created and Equation 4.4 is
used for the force identification technique.

There are many modal parameter extraction techniques available [1]. Some of them curve
fit in the time domain and some fit in the frequency domain. Some techniques, known as
SDOF (single degree of freedom) techniques, fit only one resonance peak at a time and other
techniques, known as MDOF (multiple degree of freedom) techniques, fit all resonance peaks at
once. The two modal parameter extraction techniques used in this thesis will be demonstrated
in the next two subsections. The first technique is a MDOF technique and it has been modified
to use only the magnitude of the FRF. The second modal parameter extraction technique
is a SDOF technique that uses both the magnitude and phase of the FRF to determine the
modal constants. It should be noted that, while neither of these modal parameter extraction
techniques are totally new, both of them have been modified to account for the fact that the
force cannot be directly measured. Particularly important is the additional steps necessary
for extracting the phase information under this condition. The explanations given in the next
two subsections are developed using accelerance or receptance as the FRF. However, the same
modal parameter extraction technique can be used on the acceleration signals to extract the
uncorrected modal constants rAk. When additional steps are needed to process acceleration
signals, it will be clearly noted.

4.2.1 Magnitude Only Technique

The rational for selecting the following modal parameter extraction was, in a word, simplicity.
For the force identification technique to be useful as an on-line (or in-process) tool, the computer
processing should be kept to a minimum. The technique is not as elegant as some other modal
parameter extraction techniques, but it does provide an accurate set of modal constants.

The modal parameter extraction technique is adapted from a technique developed by Ewins
(1982) [33]. The approach is to assume that for lightly damped structures, only a small error is
made if the damping is neglected completely. This means that Equation 4.1 can be rewritten
as

n rAjk
Ijk(W):=2 (4.6)

r=l r -
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or
ik(w) = E1 2-rAjkr 1k() 1-(W/I)2' (4.7)

In this way the complex Equation 4.1 is replaced by a real equation. The modal parameter
extraction technique must fit the experimentally determined accelerance data pairs, (wi, Ii) into
the form of Equation 4.7.

For each of the n vibrational modes in the modal analysis, there are two unknowns, the
natural frequencies wo and modal constant rAjk. The natural frequencies can be easily deter-
mined by looking for peaks in the magnitude of the accelerance I(w)l. The peak detection
scheme could be very simple, such as looking for a value of I(w)l that is larger than its three
neighboring points on each side, i.e.

I(w)I) > II(w - 36w)l

> I(w - 26w)I

> II(Wo- 16w)l

> II(w + 16)1
> II(w + 26w)

> II(w+36w)l

where 6w is the frequency spacing between samples. Once the resonance frequencies have been
determined, the only unknowns are the values of the modal constants in Equation 4.7.

Consider a specific pair of data points, fi, I(Q;), where Qi is the frequency of an individual
sample. For this pair of data points Equation 4.7 can be rewritten in a vector form.

{ 2) -1 ) -1
I(Qj) = , a_ )Q? !a?2

1Ajk
2Ajk

nAjk I
However, this is only one equation with n unknowns. If a total of n individual
measurements are used, then a matrix equation can be assembled as follows.

I(Qa)

I(Q 2)

1I(Qn) I

(~_g- (1 )

(1- 41
(10

(- 4 )
(1 a)

(1 -0W2) 

1 _ 2 -1

.. (1- 0>1
... (1-j

1 2 \ -112 -1

1 _ 2 -. .)j

1Ajk
2Ajk

nAjk

(4.8)

accelerance

i

(4.9)

or
{I(f)}nx = [R]nxn {rAjk}nx1 (4.10)
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Note that the subscripts such as nxl indicate the size of the vector or matrix. The solution
to this matrix equation can be obtained from a simple matrix inversion,[R]- , and the modal
constants, {rAjk}nxl, can be determined.

One of the difficulties with this modal parameter extraction technique is selecting a rea-
sonable set of n points, {Qln,I(ln)}, for doing the curve-fitting. Since there are n modes, or
peaks, and n sets of points, there is one data point per peak. Ewins 1982 [33] suggests selecting
one point from the anti-resonance region between each pair of peaks. But, this is far from the
optimal use of the data because there is frequently hundreds of data points to choose from.

Fortunately, there is a relatively straight forward way to make the best use of all available
accelerance data. First, the above matrix equation can be expanded to include all available
data points.

{I(Qf)}mx1 = [R]mxn Ajk)}nxl (4.11)

Here we have assumed that there are m data points and n vibrational modes. Now, we have
m equations and n unknowns, where m > n. In other words, the system of equations is
over-constrained. There is no exact solution to such equations, although an estimate of the
modal constants, {Ajk}, can be obtained using a least-squares or pseudoinverse solution[34].
The pseudoinverse solution to Equation 4.11 is the following,

{Ajk} = ([R]T [R])-1[R]T {I(n)} (4.12)

where the superscript T indicates a transpose and superscript -1 is a matrix inverse. The
resulting estimates of the modal parameters, {Ajk}, can be used in the original accelerance
formula, Equation 4.7, to generate a reconstructed FRF for comparison with the raw accelerance
data. In this way, the quality of the curve fitting process can be visually checked.

One of the biggest advantages of this modal parameter extraction technique is that by
neglecting the effects of damping, the accelerance data can be considered as real rather than
complex. This greatly reduces the amount of curve fitting that needs to be done, since only the
real part of the accelerance needs to be curve fit. Other techniques require simultaneous curve
fitting of the real and imaginary parts of the accelerance data.

The difficulty with this technique is that the frequency domain accelerance data is not
truly real. The frequency domain accelerance is calculated from the FFT's of the time domain
acceleration and force signals and the result is a complex FRF. If the damping is low, than the
imaginary part of the accelerance will be small, except near the resonance and anti-resonance
regions. In order to make the accelerance real, the imaginary part can simply be discarded.
However, the data points with a large imaginary component (near resonance or anti-resonance)
should not be used in the curve fitting process.

Additional difficulties are encountered if acceleration data is being curve fit, rather than
accelerance data, recall the discussion surrounding Equation 4.4. The phase information in
the acceleration signal is corrupted by a linear phase taper and thus cannot be used directly.
Appendix B and subsection 4.2.2 discuss the detailed nature of this problem, for now it is enough
to known that the phase is corrupted. Faced with this fact, the frequency domain acceleration
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data must still be converted from complex to real in order to extract the modal constants. One
way to do this, is to use what will be called assumed phase. Each time a resonance peak occurs
in the frequency domain, there is a 1800 drop in the phase. Also, each time an anti-resonance
peak occurs in the frequency domain, there is a 180° increase in the phase. Thus it might be
possible to reconstruct the phase of a lightly damped structure using only the magnitude of the
frequency domain acceleration data, la(w)l.

Unfortunately, the determination of the location of anti-resonances is much more difficult
than the determination of resonances. Because anti-resonances, by their very nature, have
low signal strength, their presence or absence is frequently masked by noise in the signal. An
assumed phase can be still be constructed, however, by creating a 1800 drop in the phase at
the location of each resonance in the frequency domain. Assumed phase constructed in this
way assumes that there are no anti-resonances in the acceleration data. The result of this
assumption is that although the magnitude of the extracted modal constants I,Ajkl will be
correct, the sign (+/-) will not necessarily be correct. Although this would be unsatisfactory
for most purposes of modal analysis, it is perfectly acceptable for use in the pattern matching
technique of the force identification procedure.

To graphically illustrate this modal parameter extraction procedure, a sample data set will
be used. The data happens to be from a ball drop test on the enlarged slider model (see Chapter
5), but all the steps are general. It will be assumed that the phase information is corrupted by
a linear phase taper and an assumed phase must be constructed. The sample accelerance data
is shown in Figure 4.2.

The first step in the modal parameter extraction is to locate the resonance peaks. This is
done by looking for points that are greater in magnitude than their three nearest neighboring
points. The locations of the resonances have been marked with a x in the figure. False peaks
are some times detected as a result of poor quality data. This is particularly true when the
magnitude of the accelerance II(w)l is low, this is a result of the limited dynamic range of the
instrumentation. To overcome this problem, the regions of the accelerance data I(w) where the
magnitude is small are not searched for resonance peaks. The peak detection searching can
be greatly simplified if a priori knowledge is available for the peak locations. As a result, the
searching for peaks can be limited to a narrow frequency range where a peak is expected. This
is done in the force identification procedure, because a modal model of the structure is already
available.

The second step in the modal parameter extraction is to convert the complex accelerance
into real accelerance. As indicated earlier this can be done by constructing an assumed phase,
where the phase drops 1800 at each resonance peak. The assumed phase for the sample data
is shown in Figure 4.3. The assumed phase has not been unwrapped, so in some places it looks
like it increases by 1800 even though it actually drops by 180°.

The third step is to select the points to be used in the curve fitting of Equation 4.12. It is
prudent to eliminate the data points that are of poor quality, which can occur in the frequency
ranges where there is low vibration levels. Figure 4.4 shows the sample data to be used in the
curve fitting. Note that the data is now real and hence no phase plot is given.
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The fourth and final step is to assemble the [R] and {I(w)} matrices in Equation 4.12, calcu-
late the pseudo-inverse, and determine the estimates of the modal constants {Ajk}. Figure 4.5
shows how the reconstructed data compares with the experimental data. The curves lay so
close to each other that no difference can be seen between the two on the linear plot. On the
log plot, the limited dynamic range of the instrumentation is evident. Also note that if there
was an anti-resonance between two of the peaks of the measured FRF, it would not be properly
identified in the reconstructed FRF because the assumed phase was used.

This modal parameter extraction technique has the distinct advantage of being more compu-
tationally efficient than other available techniques. The location of the peaks and construction
of the assumed phase is only a few quick steps. The only significant computations are the
initial FFT calculation and the pseudo-inverse. In terms of the force identification procedure,
the biggest short coming of the technique is the lack of proper phase information, or more
specifically, the fact that the proper sign (+/-) of the modal constants Ajk is not known. The
next subsection will present an alternative technique for extracting the modal constants, which
also uses the phase information.

4.2.2 Magnitude and Phase Technique

By using the magnitude and phase of the accelerance (or acceleration) data, more information
can be obtain than simply using the magnitude alone. However, the trade-off is that more
computation is needed and the quality of the data becomes more important. Although the
magnitude and phase information could be used in the previously presented modal parameter
extraction technique, a new modal parameter extraction technique will be used in this section.
Part of the reason for the use of a different modal parameter extraction technique is that some
of the results, from the processing needed to correct the phase information, can be used in the
new modal parameter extraction technique. This will be clarified later.

Phase Taper Removal

Before the new modal parameter extraction technique can be used, the phase of the acceleration
(or accelerance) must be corrected. When acceleration signal is acquired from an accelerometer,
it is acquired in what is called pretrigger mode, see Figure 4.6. In the pretrigger mode, some
data is acquired before the force pulse occurs. In the time domain graph, this shows up as a
time offset from time t = 0. In the frequency domain, there is no effect on the magnitude but
it creates a linear increase in the phase with frequency as shown in Figure 4.6. The effect can
also be seen in a Nyquist plot (a plot of real vs imaginary parts of the Fourier transform). The
resonance peaks in the Fourier transform usually show up as circles with their centers lined up
with ±90° . However, with the pretrigger information included, the centers of the circles do not
line up, as can be seen in the figure. In order to correct the phase data, this linear phase taper
must be removed.l

'The problem of the linear phase taper is not an issue in normal modal analysis. Accelerance is normally
used in modal analysis. Since accelerance is the ratio of acceleration to force, even though both signals have a
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Fundamentally, the cause of the linear phase taper can be understood as a basic property
of Fourier transforms (FT). Let a typical acceleration signal be called a(t) and its Fourier
transform A. This can be written in the following short hand way.

a(t) - A (4.13)

The symbol is simply a short hand way of showing that A is the FT of a(t) and a(t) is the
inverse FT of A. If the acceleration signal is delayed by a small amount of time, to, like it is
when the pretrigger information is included, then it can be shown that the FT is the following.

a(t - to) - Ae- jwto (4.14)

It is the e- jwto term that is responsible for the linear phase taper. The time delay has no effect
on the magnitude of the FT, it just affects the phase.

There are three different ways to think about removing the linear phase taper from accel-
eration signal: 1) the time domain, 2) the frequency domain Bode plot, and 3) the frequency
domain Nyquist plot. Each one of these domains can be obtained from the other domains, but
removing the phase taper involves different processing in each domain. To illustrate the pro-
cessing involving in removing phase taper, an example vibration signal was created as shown in
Figure 4.7. The system has four vibrational modes and has the properties shown in the figure.

In the time domain, the digital sampling has a significant effect on the signal, as shown in
Figure 4.8. The top part of the figure shows the time domain acceleration signal that might
result from an impact on the example structure. The lower part of the figure shows a "blow-up"
of the initial part of the signal, including the pretrigger data. The lower part also shows the
effect of sampling of the signal. Two different sampling are shown and labeled signals A and
B. In signal A, the sampling is taken in such a way that a sample is taken at the exact time of
impact, t = 0. In signal B, a sample is not taken exactly at t = 0, but shortly before and after.
Certainly, in real life, signal B is more typical. The implication of such sampling effect on our
modal analysis technique is described below.

One way to attempt to remove the phase taper is to remove some of the pretrigger infor-
mation. This can be done by simply removing the first few samples of the acceleration signal.
(The right hand side of the signal will have to be padded with zeros to keep the record length
constant.) The sets of three graphs in Figure 4.9 show the amount of phase taper that is
created when various numbers of pretrigger samples are included in the time domain signal
A. The top set of graphs shows that a negative phase taper is created by including pretrigger
samples. The bottom set of graphs shows that a positive phase taper is created by removing
too many pretrigger samples. The middle set of three graphs shows the expected result when
no pretrigger samples are included, there is no phase taper and the circles in the Nyquist plot
all line up with ±90. But this was for signal A. Figure 4.10 show the results for signal B. The
results are similar to the previous case, except now there is no sample at t = 0. In this case,
no matter how many pretrigger samples are included, the linear phase taper can never be fully

linear phase taper, the taper cancels out when the acceleration FFT is divided by the force FFT.
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removed and the circles in the Nyquist plot never line up with ±900. It might be possible to
interpolate the data in the time domain in order to exactly find t = 0 but it would be very
difficult. In realistic acceleration signal, which have noise, it is very difficult to find the exact
time when the signal begins. Overall, working in the time domain is not a good approach to
removing the linear phase taper.

Another way to think about removing the phase taper, is using Bode plots in the frequency
domain. This is perhaps the most obvious because the time delay of to adds a phase taper
of slope to to the phase signal, recall the e- jw t° term in Equation 4.14. Therefore, a simple
approach might be to try to perform a linear curve fit on the phase vs frequency plot to
try to determine the value of to. Although this technique might work well with theoretically
determined signals, such as in Figure 4.9, experimentally determined phase signals may not
be appropriate for this type of curve fitting. Figure 4.11 shows the effect of adding a small
amount (1% of the peak acceleration magnitude) of white noise. Although the magnitude plot
is not strongly effected, the phase signal becomes very noisy, especially in the frequency ranges
between the resonance peaks. Thus a small amount of noise can make removing the phase taper
very difficult.

The third way to think about removing phase taper is in the frequency domain using Nyquist
plots. Although most engineers have a better intuitive feel for Bode plots than Nyquist plot,
Nyquist plots have some particularly nice properties for working on vibration problem. The
most significant property is that for lightly damped system, the resonance peaks form circles
in the Nyquist plot. As a result, the Nyquist plot emphasizes the frequency ranges near the
resonance peaks, which usually have a higher signal to noise ratio than other frequencies. The
fact that noise introduces very little error in the resonance peaks can be seen in the magnitude
and phase plots of Figure 4.11. It is clear from this figure that the phase has the least error
near the resonance peaks, thus, the frequency range near the resonance peaks is the best place
to curve fit to remove the linear phase taper. Conveniently, the resonance peaks can be curve
fit to a circle in the Nyquist plot.

Making use of the properties of the Nyquist plot, a procedure can be developed to remove
the phase taper from the acceleration signals. This procedure is outlined in Figure 4.12. Once
again, the acceleration signal from the example system is used. This time the effect of sampling
is unimportant and either signal A or signal B can be used. To start the procedure off, the
FFT of the acceleration signal is calculated with the pretrigger samples included, see the top of
Figure 4.12. The resulting Nyquist plot consists of a set of four circles. Notice that the circles
in the Nyquist plot do not line up with ±90. A circle is curve fit to the first resonance peak (it
is the largest circle in this example). Since the circle should line up with ±90, enough phase
taper is subtracted from the data to have the first circle line up with ±90. Lets say that the
first circle has to be rotated counterclockwise through an angle of AO for it to line up with
either +900 or -90 ° . Then the amount of phase taper that should be removed is,

(W) = A, (4.15)

where w is frequency in radians/sec and wl is the natural frequency of the first resonance peak.
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Figure 4.12: Demonstration of a procedure to remove linear phase taper from
acceleration signals.
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Once the phase taper +(w) has been subtracted from the phase of the acceleration signal, the
Nyquist diagram is replotted and circles are fit to all the resonance peaks, as shown in the third
graph of Figure 4.12. If the centers of the circles of all the resonance peaks lie close to ±90° ,
then the phase taper has been fully removed. If the peaks do not line close to ±900, then the
procedure is repeated until they do. This is simply checking for consistency in the data in the
Nyquist plot. For a lightly damped system, the vibration signals must be circles which line up
with ±90. All the procedure does is keep subtracting a linear phase taper until this condition
is reached. This procedure was found to work well with experiment data. It is very important
that the phase taper be properly removed before it is used in a modal parameter extraction
routine. The presence of phase taper might cause the sign (+/-) of the modal constants Ajk to
be misinterpreted. This would cause the pattern matching routine and the force identification
technique to fail.

Modal Parameter Extraction

With the phase taper removed from the acceleration signals, modal parameter extraction, using
the magnitude and the phase, can begin. As previously mentioned, a different modal parameter
extraction technique will be used in this subsection than was used in the previous subsec-
tion 4.2.1. The new technique is called the circle fit method. The circle fit method has been
around for a while [1]. Montalvao e Silva and Maia 1988 [35] have written an excellent review
paper on the method including suggestions for speeding its implementation. Obviously, speed
is important if the force identification technique is to be used as part of an in-process system.
So in adapting the circle fit method for use as part of the force identification technique, every
opportunity was taken to keep computation to a minimum.

It can be demonstrated that FRF's create circle-like curves in the frequency domain when
plotted in a Nyquist plot. In fact, if the system exhibits structural damping, then exact circles
are created in the Nyquist plot when receptance (displacement/force) is plotted. When a
system is lightly damped, virtually all forms of FRF's (receptance, mobility, accelerance, and
acceleration) form circles in the Nyquist plot. It is this fundamental fact that makes the circle fit
technique useful for modal parameter extraction. The following discussion will use receptance
a(w) as the FRF, but the technique can easily be modified for other FRF's.

When a force is applied at location k on a structure and the displacement is measured at
location j, the equation for receptance is the following.

(v ( =Ajk
cajk() = f(W) EW2 _- W2+ (4.16)

or

n=1Wrjkei"~s (4.17)orjk(U = E 2 2 + 2 (4.17)

Here, the change from rAjk to rCjke ir q jk has been made to facilitate the circle fit procedure. In
this way, instead of working with the complex constant rAjk it has been separated out into a
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real modulus Cjk and a phase angle ei-iJk. It will be shown that the quantity Cjk is directly
proportional to the diameter of the circle in the Nyquist plot.

The frequency response function (FRF) of a structure is usually only measured over a limited
range of frequencies. Under these circumstances, the modes of vibration outside the range can
be modeled by including residuals in the receptance equation.

aik 4-=~ ICjkei~J' I I (4.18)
2 - W2 + i2 Kjk 2Mjk(4.18)

Here Kjk and Mjk represent the residual stiffness and mass of the receptance which are created
by the modes outside the range of frequencies measured.

In a narrow range for frequencies around a resonance peak, the frequency response function
can be approximated by the response of one mode plus a constant to account for the other
modes.

rCjkeirOjkajk w -w2 + i7 , 2 + rDjk (4.19)
The value .Djk is a complex constant that can approximately account for the contributions
of other modes in the frequency range surrounding a single resonance peak, as shown in Fig-
ure 4.13. The circle-fit procedure relies on this approximation to extract the modal parameters
(r Cjk , j, w,, and qr) of each individual mode r.

Circle Fit Procedure

In order to fit a circle to the receptance data, it is convenient to consider the real and imaginary
parts of the receptance as a set of (,,ys) data pairs, as shown in Figure 4.13. The goal of the
circle fit procedure is to find the circle that which best fits that data by minimizing the square
of the error.

el = E - (x - XO)2 + (. - YO)2] (4.20)
8=1

In other words, the circle fit procedure must find the values of xo, yo, and R that make
the error el a minimum. The difficulty with this procedure is that Equation 4.20 cannot be
manipulated to create an explicit calculation for the values of xo, yo, and Ro. As a consequence,
an iterative procedure must be used for solving this equation. This is very time consuming and
not appropriate for the real time needs of the force identification technique.

This difficulty can be overcome if a non-least squares error function is used[35]. A small
change in the error function in Equation 4.20 leads to a new error function.

n

e2 = E {Ro - [(X. - XO)2 + (. - yO)2]}2 (4.21)
s=1

This equation can be rewritten to form,
n 2

= {c -[x + ax + by, + Y2,} (4.22)
s=1
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Figure 4.13: Nyquist plot of receptance showing the circle-fit method. (After
Montalvgo e Silva and Maia 1988.)
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where
a = -2xo, b = -2 yo, c = R - - y. (4.23)

The new error function can be minimized relative to the parameters, a, b, and c, leading to a
matrix equation for the circle fit process.

2 Ya -Ex, a -(Ei: ;Y ) 1
Esys E y2 - . b = _(E y3 + E Z2ys) (4.24)

-E X -Ey n c )y E y2

or
[Af]{Xf } = {Bf} (4.25)

Hence, the values of a, b, and c in the vector {Xf} can be determined from a matrix inversion.

{Xf} = [Af] -1 {Bf} (4.26)

Then the values of xo, yo, and Ro can be determined from

a b
Xo = -2' YO = -2, Ro = c + X2 + y . (4.27)

The resulting values for xo, o, and Ro represent the best circle that fits the data (Xz, y.)
according to the new error function e2. The important advantage of the new error function e2
over the least squares error function el is that it can be calculated directly without the expense
of iterative procedures. It can be shown that new error function e2 does not fit the data as well
as the least squares error function e[35]. However, the difference in the results from the two
error functions is very small and in practice the new error function works about as well as the
least square error function.

Determining Resonance Frequency

Determination of the precise location of the resonance frequency is important to the circle fit
procedure of modal parameter extraction. It is not enough to simply find the frequency at
which the magnitude of the receptance is a maximum. In fact, this is a very poor estimate of
the resonance frequency. A preferred technique is to use the frequency spacing technique. The
phase angle of the receptance for a single mode, excluding the effect of the residual ,Djk, is the
following.

8 = tan-l{,./[1 - (w/,) 21]} (4.28)

It can also be shown that d(w2)/dS, is a minimum when w = w,; i.e.,

d d(W2)] = = w =W. (4.29)
dw dO,]
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Table 4.1: Finite difference table for determining the location of the natural frequency.

In words, this means that the phase angle of the receptance is changing most rapidly when the
frequency is equal to the resonance frequency. This is probably fairly obvious when looking a
the phase plot of a Bode plot. The phase angle quickly drops 1800 at resonance.

It is evident from Figure 4.14, that minimizing d(w 2)/d,. is equivalent to minimizing
d(w2 )/d 7. One way to locate the resonance frequency, when the frequency spacing is fixed
(always the case when the receptance is determined by an FFT), is to construct a table of finite
differences as shown in Table 4.1. There will be a change in sign of A27 when the frequency
is equal to the resonance frequency. In this way it can be determined between which two data
points the resonance frequency occurs. Unfortunately, with lightly damped systems, the points
along the circle are widely spaced and there is still significant uncertainty of the location of the
resonance frequency.

One way to reduce this uncertainty is to create a second order interpolation function using
Newton's divided differences formula.

f(v) = f(vo) + (v - vo)f(vo, vl) + (v - vo)(v - vl)f(vo, vl, 2) (4.30)
+ + - )( - Vl) ... ( - v,,-l)f(VO, v, V2, ..., vn)

where

f(vo , vlv2,-n)...,n) f(VO, VV2,,Vn-1)-f(VlV2, ... , Vn) (4.31)
V0 - Vn

For the current purposes v = w2 and f(v) = 9(w 2), where is the phase angle. If one is
looking to minimize d(w2)/dO, this is equivalent to trying to maximize dO/d(w 2) or df(v)/dv.
If two data points are selected from before the resonance and two are selected from after the
resonance, then it can be shown [35] that Equation 4.30 can be maximized by,

v = [(VO0 + l + 2 ) - f(vo, Vl, 2)/f(vo, l1, 2, V3)]. (4.32)
3
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Thus by using Equation 4.32 and four data points from the receptance, the value of w2 can be
determined by a second order interpolation.

Accurate location of the natural frequencies w, is very important since correct determination
of the loss factors 7r, (and subsequently the modal constants Cjk) is strongly dependent on the
value of natural frequencies used.

Determination of Loss Factors tl

Determination of the loss factor can be made by considering Equation 4.28 and Figure 4.15. If
one considers two data points, one below the resonance frequency at w, and one above at wb,
then the following equations can be written.

tan(7/2) = [1 - (/tw) 2]/ 7, (4.33)

tan(7b/2) = [1 - (Wb/Wr)2 ]/r. (4.34)

These equations can be combined into a single equation for determining the loss factor.

W2 -2 1

, = ~W tan(7a/2) + (7b/2) (4.35)

It can be seen that this equation become the familiar formula for the halfpower relationship
when 7a = 7yb = 900

Obviously, one can choose from many different points a and b. This fact can be used to check
for consistency in the value of loss factor q7r calculated. If one takes the five points below the
resonance frequency and the five points above the resonance frequency, then twenty five values
of 7r can be calculated. These values can be conveniently displayed in a three dimensional plot
as shown in Figure 4.15. A little bit of variation in the calculated values of r, is probably only
an indication of some variation in the measured data. However, a systematic trend in the 3-D
plot (such as a slope) is probably an indication that value of w, was not determined accurately.
In the absence of any systematic errors in the 3-D plot, the average value of all the loss factors
calculated can be taken to be the true" value of rlt.

Determination of the Modal Constant

With the 'values of natural frequencies w, and loss factors nr. determined, calculation of the
modulus ,Cjk and phase angle jk is easy. As shown in Figure 4.13, the value of ,.Cj can be
determined by,

rCjk = 2Row 7r7 (4.36)

where 2Ro is the diameter of the circle. Also, rjk can be determined from

r jk = tan-l{(-o - zXD)/(Y - YD)}, (4.37)

where XD and y are the values of the displaced origin as shown in Figure 4.13. In lightly
damped systems, the value of rjk is always close to +90°.
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1988.)
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Summary

The procedure of the circle-fit method can be summarized by the following steps,

1. Fit a circle to the data points near a resonance peak to determine xo, Yo, and Ro.

2. Find the approximate location of the resonance frequency by using a table of finite dif-
ferences. E

3. Accurately determine the location of the resonance frequency by using an interpolation
function of e(w2 ).

4. Determine the value of the loss factor m7 using a few points before and after the resonance.

5. Calculate the modulus Cjk and phase angle O#jk using the location and size of the circle.

Although the circle-fit procedure seems very complicated, there is very little computation
involved. The only computationally intensive operation of the five steps listed above, is fitting
a circle to each resonance peak. Even this step is not as bad as it seems because only a few
data points (perhaps 10 - 50) are used in each circle fit. As a result, the extraction of the modal
parameters can probably be done in less time than the computation of the FFT.

It can be seen that the circle-fit modal parameter extraction method is quite different
then the procedure used in Subsection 4.2.1 where only the magnitude was used. The circle-
fit method requires that damping be included in the model, whereas the previous technique
assumed no damping. The biggest advantage of the circle-fit method is that it only uses data
from near the resonance peaks. This data is usually of the highest quality, especially for impact
testing. The biggest problem with the circle-fit procedure is that the determination of the
value of the modulus Cjk, or modal constant .Ajk, is strongly dependent on the accuracy with
which the natural frequency, w, and loss factor ri, are determined. As a result, small errors
in w, and 7r tend to propagate into larger errors in Ajk. Overall the circle-fit procedure is
computationally efficient, but may not be as accurate as other methods.

4.3 Pattern Matching

Once the modal constants have been extracted from the acceleration signals, the next step in
the force identification technique is to use pattern matching to determine the location of the
source and its magnitude. The task of the pattern matching is to compare a set of extracted
modal constants (from an impact at an unknown location) with a database of modal constants
from impacts at many locations on the structure. The best match will indicate the most likely
impact location.

The subject of pattern matching has been around for many years and is quite well developed.
Books such as Tou's Pattern Recognition Principles[2] provide a good introduction to the basic
principles of pattern matching and its applications. Common applications include finger print
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matching, reading the numbers off checks, and receiving data over a computer modem. It is
important to realize that there is one very significant difference between the last two examples
and the first. In the cases of reading checks and receiving data, the source is created and
controlled by humans, even if the noise introduced is outside of human control. As a result, an
important part of pattern matching, in these cases, is to devise a set of patterns (e.g. the way
that the check numbers are written) which are easily distinguishable from each other even in
the presence of noise. Thus the nature of pattern matching for these types of problems is very
different from problems such as finger print matching. In finger print matching, much of the
effort goes into determining the appropriate features of the finger print to use in the pattern
matching. Obviously, many features of finger prints are very similar from one person to the
next, such as size and spacing of the ridges. The biggest advancement in finger print matching
was the discovery that the locations of the beginnings and ends of the ridges on the finger, are
unique to every individual. Thus, in pattern matching problems where the features cannot be
controlled, finding an appropriate set of features to use in the pattern matching is vital to the
success of the technique.

In the case ot, he force identification problem, the features of the vibration signal cannot
usually be manipulated for the purposes of improving the ability to distinguish between different
impact locations. The features of the vibration signal are governed by the dynamics of the
structure and it is unlikely that the designers of the structure will be willing to change the
structure simply to improve pattern matching. In fact, it seems unreasonable to think that the
structure should be modified just for this purpose. Therefore, the best that can be done is to
extract the features of the vibration signal that best distinguish between sources at different
locations. As was seen in Chapter 3, the modal constants rAjk are the only modal parameters
that have strong variation with impact location, and as a result, they are the only reasonable
choice as features for the pattern matching. 2

Once the choice of features has been decided, one must still choose from the many different
pattern matching techniques available. Methods available range from the classical Bayesian es-
timation techniques to modern methods such as neural networks and adaptive (self-adjusting)
techniques. It is not the objective of this thesis to determine the best pattern matching tech-
nique, or get involved with the subtleties of these techniques. The main objective is to deter-
mining whether or not pattern matching can be combined with modal parameter extraction to
properly identify input force magnitude and location. For this reason, a very simple approach
is taken to pattern matching.

The first step in the pattern matching is to assemble a database of modal constants for all
impact (source) locations of interest. It will probably be the case that there is a continuous

2The way the impact problem is studied here is as a vibration problem and the only vibration parameter that
changes significantly with impact location is the modal constant rAjk. If the impact problem was treated as a
wave propagation problem, then different features could be used in the pattern matching. In wave propagation
problem, the relative arrival times of different waves could be used as a feature to distinguish different impact
locations. This approach was not taken in this thesis because of the difficulties involved in getting good data of
initial wave arrival, particularly in the presence of noise.
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range of locations that are of interest. The database need not contain a very large number of
source locations. There only needs to be enough source locations so that the spatially varying
nature of the modal constants is clear. One this condition has been satisfied, then the modal
constants for the other source locations can be determined by interpolation.

The database of modal constants can be determined either from an FEM model (if it has
been verified to be of good quality) or from experimental modal tests. The experimentally
determined modal constants are probably preferable because they are less likely to be in error.
The database of modal constants can be represented by the following matrix.

1Ajl 1Aj 2 1Aj 3 ... 1Ajm

2 Ajl 2 Aj2 2 Aj 3 ... 2Ajm
3Ajl 3 Aj2 3Aj3 . 3Ajm (4.38)

nAjl nAj2 nAis ... nAjm

Recall that the r subscript on Ajk indicates the vibration mode, j indicates the node of the
sensor location, and k is the force input location. So in the database of Equation 4.38, there
are n modes being measured, m different impact locations of interest, and the sensor is fixed
at node j. Each column in this matrix represents the modal constants extracted from a test at
one force input location. These columns can be though of as patterns or sets of features of the
vibration signals. Each row in the matrix represents the mode shape (or eigenvector) for the
rth mode.

When a vibration signal is acquired, the modal constants must be exacted (using the one of
the techniques from subsections 4.2.1 or 4.2.2) before the pattern matching can be used. Also
recall that because the force signal is not measured, only the uncorrected modal constants, .A!k
can be extracted. Also recall that the uncorrected modal constants are related to the modal
constants by the following relationship.

1Ajk 1A;k
2Ajk 2 A;k 
3Ajk k = 3Ak (4.39)

4Ajk 4Aljk
SAjk 5 A 3 k J

or

{,Ajk}Fk = {rAk} (4.40)
Here, Fk is the magnitude of the source (impact) force which is unknown but approximately a
constant for the frequency range of interest.

For the pattern matching, the column vector on the right hand side of Equation 4.39 {rA!k}
must be compared with each column vector in the database of Equation 4.38. The simplest
way to make this comparison (or match patterns) is to use a linear regression formulation.

Fi = ({7Aji}T{(,Aji})-'{Aji}T{?A*k} (4.41)= {,.Aji} {,.Aja}~~~~~
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The vector {,Aji} is the ith column of the database in Equation 4.38 and {,Aji}T is the
transpose of this vector. The error in the fit can be determined from the following.

{e} = {,Aji}Fi - ({Ak} (4.42)

or

ei = ll{e}112 = e})te} (4.43)

The column of the database that produces the least error ei indicates that i is the most probable
location of the force source and Fi is the estimate of the magnitude of the input force Fk.

minimum(el, e2, e3 ,..., em) = Fk (4.44)

If the pattern matching is to be reliable, it is important that there be a significant difference
between the minimum error ei and the next to least error. If these two values of error are close
in magnitude then confusion could arise over the predicted source location.

4.4 Summary

The overall force identification process can be described as follows. A sensor location j must be
chosen and remain fixed throughout the whole process. Then, modal tests must be performed
at all the likely input locations k to build a database of modal constants. Once the database is
assembled then the force identification technique is ready to be used.

When a source event occurs (e.g. an impact), the resulting vibration signal a(t) is acquired,
as shown in Figure 4.16. The time domain signal a(t) is then converted to a frequency domain
signal a(w) using a fast Fourier transform (FFT). Next, the uncorrected modal constants rAk
are extracted from a(w) using either the magnitude only modal parameter extraction technique
or the magnitude and phase technique. The extracted uncorrected modal constants are then
compared with the patterns of modal constants in the database. The pattern that is most
similar (in a least squares sense) to the extracted uncorrected modal constants, indicates the
most likely input location and the force magnitude Fk.

The next chapter will demonstrate the use of the force identification technique in one par-
ticular application, glide height testing. A discussion of the robustness and limitations of the
force identification technique will be presented after its use is demonstrated.
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Figure 4.16: Block diagram of force identification process. The different patterns in
the database are the modal constants rAjk for m different source locations.
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Chapter 5

Application to Glide Height Testing

5.1 The Use of Force Identification in Glide Height Testing

One application where direct measurement of impact force is not possible is in glide height
testing. As the glide head (slider) flies over the surface of the disk, it may encounter an asperity
which is too large to fly over. This situation will result in an impact between the bottom of the
slider rails and the asperity. Asperity impacts are likely to occur at many different locations
along the bottom of the slider rails. Thus, the impact location (position on the rail) is not
known a priori. Since no one has figured out how to put an array of force sensors along the
slider rails, we are faced with complication of trying to "back calculate" the impact force and
location from vibration signals.

The glide height testing problem fits the basic requirements of the force identification tech-
nique. The input force is a short duration pulse, i.e. it is an impact between the slider and an
asperity. Although the time duration of the impact cannot be directly measured, experimental
data indicates that it is of short enough duration to excite the five lowest vibrational modes
of the slider, i.e. up to 1 MHz in frequency. Even though it was the goal of this thesis to use
the force identification technique on actual glide height tests with the slider, it was simply too
difficult to conduct the experiments, as was discussed in Chapter 3. Even the use of the ball
drop technique with the small slider proved difficult, when it was found that the repeatability
of the small ball impact was very poor. As a result, all the experimental results in this chapter
were performed with ball drop tests on the enlarged slider. The enlarged slider is a scaled model
of the actual slider and the results should be representative of the results that would have been
obtained with the actual slider, if the tests could have been performed.

The next two sections of this chapter, will present experimental data from force identification
studies on the enlarged slider. The first section uses the magnitude only modal parameter
extraction technique and the next section uses the magnitude and phase modal parameter
extraction technique. After the two techniques are presented a discussion is given of the relative
merits of the two techniques and what might be done to improve the techniques.
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5.2 Results of the Magnitude Only Technique

The experimental setup for conducting the ball drop tests on the enlarged slider is shown in
Figure 5.1. Fourteen equally spaced locations were marked along the middle of one of the
slider rails. The marks are 12.7 mm (1/2") apart and are used at the locations for the input
force, i.e. ball impact. The impact force is created by dropping a 6.35 mm (1/4") nylon ball
through a copper guide tube onto the locations marked on the slider rail. In order to vary the
magnitude of the impact force, three different length copper tubes were used. The tubes were
76, 152, and 305 mm (3, 6, and 12") long. The impact force created from the impact of the
nylon balls can be predicted from Hertzian contact theory, as shown in Figure 5.2. The forces
were experimentally verified by procedure outlined in Chapter 3. The magnitude of the impact
forces created by the ball drop are related to the square root of the height of the ball drop. This
is because the impact velocity v = Vm/ii7. As a result, the relative magnitude of the impact
forces are 1, 0.707, and 0.5 for the 305, 152, and 76 mm drop heights respectively, as can be
seen from Figure 5.2.

The vibration signal is measured from an accelerometer mounted on the back of the slider,
see Figure 5.1. The accelerometer is model 303A made by PCB Corp. The output signal from
the accelerometer is sent to the PCB power unit model 480A10. Then the signal is passed
through a Tektronix AM502 differential amplifier then filtered by Krohn-Hite 3202 filter which
was set as a 12 pole low pass filter at 22 KHz. Finally, the signal is acquired by a Compaq 386
computer using Metrabyte 12-bit DASH-16 board and Unkelscope software. The Metrabyte
board was set to acquire 8192 samples at 50 KHz. After each test the acceleration data was
stored on the hard disk for future (off-line) processing.

Before the force identification technique could be used, a database of modal constants had
to be assembled. To do this, a series of 14 tests were run by dropping the ball from 305 mm
(12") onto each of the 14 locations marked on the enlarged slider. The frequency response
functions (accelerance) for each of the 14 tests were calculated using the acceleration signal
and the theoretically predicted force signal. The modal constants ,Ajk were extracted from
the frequency response functions to create a database. Only the first five vibration modes were
included in the database. The resulting database is a 5 x 14 matrix.

Ajl Aj2 A j 3 Aj4 ... 1Aj14
2 Ajl 2 Aj 2 2 Aj 3 2 Aj 4 ... 2Aj14

3Ajl 3Aj 2 3Aj 3 3Aj 4 ... 3Aj14 (5.1)
4 Ajl 4 Aj2 4Aj 3 4 Aj 4 ... 4Aj14

5Ajj 5Aj 2 5Aj 3 5Aj 4 ... 5Ajl4

The subscript j in this matrix is the location of the accelerometer and the numbers 1 - 14
are the input locations along the slider rail. Because the magnitude only modal parameter
extraction technique was used on the data, the sign (+/-) of the extracted modal constants
might not be correct. For this reason, the modal constants in the database are all made to be
positive.
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Figure 5.1: Schematic of ball drop test apparatus used for testing the force
identification technique. Guide tubes of 76, 152, and 305 mm can be used.
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Once the database was constructed, the force identification technique could be tested. A new
series of tests were performed on the enlarged slider. The 6.35 mm nylon ball was dropped from
76, 152, and 305 mm height onto the first seven locations marked on the slider. (Locations 8-14
were not tested to reduce the number of tests required.) The acceleration signals were acquired
the same way as before. This time, however, the accelerance was not calculated. It was assumed
that neither the location nor the magnitude of the input force was known. The acceleration
signals were transformed into the frequency domain using an FFT and the uncorrected modal
constants A*k were extracted using the magnitude only modal parameter extraction technique.
Once again, since the sign (+/-) of the uncorrected modal constants might not be correct, so
all the uncorrected modal constants were made to be positive.

Once the uncorrected modal constants, from a single test, were extracted, they were run
through the pattern matching process. Figure 5.3 illustrates the pattern matching process using
a series of graphs. The fourteen graphs on the left represent the database of modal constants.
The one graph on the right represents a set of uncorrected modal constants extracted from
an impact at a certain location along the slider rail. The pattern matching must compare the
one graph on the right to the fourteen graphs on the left to determine the most likely impact
location. The force of the impact is determined by the relative scaling (or ratio) of the matching
graph to the graph at the right.

The results of the pattern matching are shown in Figures 5.4, 5.5, and 5.6 for the ball drop
tests from heights of 76, 152, and 305 mm respectively. By comparing the three figures, it can
be seen that the pattern matching is not affected by the drop height, or more fundamentally,
the impact force. The figures show that there is a uniqueness problem in the pattern matching.
This is a result of the symmetry of the slider geometry. Consequently, an impact at location
1 on the slider might be misinterpreted as an impact at location 14. The same is true for the
combinations of locations 2 and 13, 3 and 12, ... , 7 and 8. If the pattern matching is limited, for
a moment, to location 1-7, then the magnitude of the impact force can be estimated from the
pattern matching, as shown in Figure 5.7. For convenience, Figure 5.7 shows the impact force
relative to the impact force created by the nylon ball dropped from 305 mm (12") high. Scaled
this way the three lines should be located at 1, 0.707, and 0.5 for the ball drops from 305, 152,
and 76 mm height, respectively. The impact forces predicted from the pattern matching agree
well with this expected result. It is also worth noting that even if the wrong impact location is
selected due to a symmetry problem, the estimate of the force magnitude will still be correct.

5.3 Results of the Magnitude and Phase Technique

In order to use the magnitude and phase modal parameter extraction technique, the experimen-
tal setup needed a slight modification, as shown in Figure 5.8. A small photoelectric sensor was
added to the guide tube. The output from the sensor was used to trigger the data acquisition
system. It was necessary to drill a small hole through the guide tube so that the sensor could
"see" the ball. The addition of the photosensor was necessary to get the pretrigger acceleration
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Figure 5.3: Patterns of modal constants extracted using the magnitude only modal
parameter extraction technique. The pattern of uncorrected modal constants at the
nght comes from an impact at an unknown location.
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Figure 5.4: Results of pattern matching (using the magnitude only modal parameter
extraction technique) from the drop of a 6.35 mm diameter nylon ball from a height of
76 mm.
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Figure 5.5: Results of pattern matching (using the magnitude only modal parameter
extraction technique) from the drop of a 6.35 mm diameter nylon ball from a height of
152 mm.

136

I.-2

ID

10

8

0

0t
6

4

2

0



Impact at Position 1

Impact at Position 3

I.

0
a,

Impact at Position 5

Impact Position

Impact at Position 7

Figure 5.6: Results of pattern matching (using the magnitude only modal parameter
extraction technique) from the drop of a 6.35 mm diameter nylon ball from a height of
305 mm.
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Figure 5.7: Impact forces predicted from pattern matching algorithm using modal
parameters extracted using magnitude only modal parameter extraction technique.
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Figure 5.8: A photo sensor is added to the ball drop test apparatus so that pretrigger
acceleration signals could be acquired. A small hole had to be drilled in the copper
guide tube.
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data that is important to getting the proper phase information out of the acceleration signal. 1
It would appear that by measuring the time of impact of the ball, we are violating the

condition that nothing about the impact can be measured (Recall that the whole purpose of
force identification is to determine the impact force when it cannot be directly measured.)
But really all we are doing is making up for deficiencies in the hardware that was available to
the research program. More expensive hardware, would have enabled us to acquire pretrigger
information without the use of the photosensor. More advanced systems continuously acquire
data in what is called a circular memory buffer. Thus, acceleration information is available for
the time before the event even happens. The key point is that the photosensor is not necessary,
if the right data acquisition system is available.

The procedure for running the ball drop tests is about the same as before. A database
was assembled from ball drop tests on each of the 14 input locations. The only difference this
time is that the phase taper was removed from the accelerance data and the magnitude and
phase modal parameter extraction technique was used to extract the modal constants. With
the database built, more ball drop tests were run for use in the force identification procedure.
Balls were dropped at each of the 14 input locations along the slider rail from drop heights of 76,
152, and 305 mm. After removing the phase taper, the uncorrected modal constants ?Ak were
extracted using the magnitude and phase modal parameter extraction technique. For each test,
the set of uncorrected modal constants, (Ajk, 2 Aj*,3 A;k,4 Ak) was run through the pattern
matching process to predict the impact force magnitude and location.

Graphically, the pattern matching is illustrated by Figure 5.9. Since the phase information
is now used, the sign of the modal constants can be determined. Thus, some of the values of the
modal constants are positive and some are negative. This makes the pattern matching process
easier both visually, and numerically. As a result, there is less chance for error. The results of
the pattern matching are shown in Figure 5.10 for impact locations 1-7 and in Figure 5.11 for
locations 8-14. In both of these figures, the drop height is 305 mm. The results of the pattern
matching are basically the same for the 76 and 152 mm drop heights.

The error graphs clearly show that the pattern matching can detect the impact location
accurately. In addition, the previous problems with symmetry are gone, i.e. an impact at
location 1 can be easily distinguished from an impact at location 14. This is very clear from
Figure 5.9. The distinguishing feature between locations 1 and 14 is that the modal constant
for the torsional mode (mode 1) is negative at location 1 and positive at location 14. Thus, the
pattern from location 1 is easily distinguished from the pattern at location 14, whereas they
look very similar if the sign of the modal constant is unknown, see Figure 5.3.

The forces predicted by the force identification technique are shown in Figure 5.12. Once
again the force is plotted on a normalized scale so that the lines should be at 0.5, 0.707, and
1.0 for the 76, 152, and 305 mm drop heights, respectively. The agreement with this expected

1The author was puzzled for some time about the fact that the sensor did not seem to be able detect the
nylon ball passing through the tube. Repeated checking of the electronics showed them to be fine. Finally it
was determined that even though the nylon ball appears off-white in color, it is transparent to the infrared light
used by the sensor. The nylon balls were colored using a black marker and the problem was solved.
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Figure 5.9: Patterns of modal constants extracted using the magnitude and phase
modal parameter extraction technique. The pattern of uncorrected modal constants
at the nght comes from an impact at an unknown location.
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Figure 5.10: Results of pattern matching from the drop of 6.35 mm diameter nylon
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matching were extracted from the magnitude and phase information in a(co).
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result is fairly good, but not as good as it was when the magnitude only modal parameter
extraction technique was used, compare with Figure 5.7. This is probably a reflection of the
fact that the magnitude and phase modal parameter extraction technique is more complicated
than the magnitude only technique. As result, the modal constants from the former technique
are probably less accurate then the ones extracted from the latter technique. In either case,
the error in the predicted forces might also be reduced by improving the pattern matching
technique, as will be discussed later.

One important question is what happens if an impact occurs between two of the input
locations, rather than exactly at one of the input locations. To answer this question, an impact
was created directly between locations 2 and 3. The results of the pattern matching are shown
in the top graph of Figure 5.13. As might have been expected, the pattern matching algorithm
finds the best match with one of the nearest locations to the actual point of impact, in this
case, location 2. Thus, the question then becomes, how much accuracy is need for the particular
application.

There is, however, a straightforward approach to increasing the accuracy of the predicted
impact location. The accuracy can be improved by simply performing an interpolation on
the database of modal constants to estimate the values of the modal constants at locations
where they were not measured. For the current database, a linear interpolation was performed
changing the 4 x 14 database into a 4 x 53. The pattern matching was then repeated and
the results are shown in the middle and bottom graphs of Figure 5.13. With this interpolated
database, the impact location accurately predicted to be halfway between locations 2 and 3.
This interpolation works because the modal constants-were taken at enough locations to capture
the spatially varying nature of the mode shapes. If higher order mode shapes were used, testing
would have to be done at more than 14 locations. Otherwise, the linear interpolations would
give poor estimates of the modal constants at the intermediate locations.

5.4 Comparison of the Two Techniques

There are significant differences in the results obtained from the force identification technique
when the magnitude only modal parameter extraction technique is used versus when the mag-
nitude and phase technique is used. Perhaps the biggest difference is that the magnitude and
phase technique can properly identify the impact location without confusing symmetric loca-
tions along the rails, e.g. locations 1 and 14. Even though the magnitude only technique appears
to predict the force magnitude better, this does not seem to outweigh the problems that the
technique has with symmetry. However, these are not the only considerations.

The tests presented in this chapter were performed with an enlarged model of the slider,
an accelerometer, a 12 bit data acquisition system, and processing that was done off-line at
a time which was convenient. Actually glide height tests are performed with a 4 x 3 x 1 mm
slider, a resonant PZT transducer, an 8 bit data acquisition system, and processing must be
done on-line in about 10 milliseconds per contact and be able to process hundreds of contacts
per disk. Under these conditions, use of the phase information in the vibration signal might
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be impossible. Thus, although the magnitude and phase technique might be preferred when
the testing conditions are good, the magnitude only technique may be the only choice when
test conditions are not so good. Simply put, without a good accelerometer, it is very easy for
the phase to become distorted and ruin the possibility for using it reliably in any diagnostic
processing.

The big advantage of the magnitude only technique, for glide height testing, is that it is not
strongly dependent on the characteristics of the transducer. Even though the force identification
technique has only been shown as using modal constants, this is not the only way that it can
be used. For example, if the PZT sensor used in glide height testing had neither flat magnitude
transfer function nor a flat phase transfer function, the magnitude only technique might still be
used. The only requirement is that the modes of vibration still show up as resonant peaks. The
magnitudes of these peaks might then be used as the pattern for use in the pattern matching.
Thus, as long as the transfer function of the transducer did not change over time, the force
identification procedure might still be used. On the other hand, the magnitude and phase
modal parameter extraction technique is so dependent on the principles modal analysis that
there is probably no simple modification that can be made to make it work without a good
(flat response) accelerometer. Thus, it may not be possible to use the magnitude and phase
technique in conjunction with the sensors that are currently available for glide height testing.

Although PZT sensors are the only ones currently being used for glide height testing, this
might change in the not too distance future. Recently, a number of researchers have begun
to make micro-accelerometer out of silicon using chip manufacturing technology[36][37]. These
sensors are small enough to be placed right on top of the slider. Currently, the accelerometers
are being manufactured as cheap vibration sensors for the automotive industry and not as high
precision devices. Perhaps, in a few years they may become readily available and be precise
enough to allow the magnitude and phase modal parameter extraction technique to be used in
force identification for glide height testing.

It is still too early to tell if force identification (using magnitude only or magnitude and
phase) will be practical for use in glide height testing. More work has to be done with tests on
the actual, not enlarged, slider. The characteristics of the PZT sensors need to be determined
and other types of sensors explored.

5.5 Summary

In this chapter, the force identification technique has been demonstrated with one particular
application, glide height testing. The technique was demonstrated by performing ball drop
tests on an enlarged model of the slider. Both the magnitude only as well as the magnitude
and phase modal parameter extraction techniques were tested.

The magnitude only technique was able to accurately determine the impact force magnitude
and location, but it was unable to distinguish between symmetric input locations. In other
words, it could not distinguish between an impact at the leading edge of the slider and an
impact at the trailing edge.

147



The magnitude and phase technique could determine the input location and had no sym-
metry problem. The predicted magnitude of the impact force was not as accurate with the
magnitude only technique. This is believed to be the result of the introduction of the errors
into the modal constants because of the lengthy processing needed for the modal parameter
extraction procedure.

Overall, the force identification technique performed well with the tests on the enlarged
slider model. However, additional work is needed to apply this technique to actual glide height
testing.

148



Chapter 6

Discussion

The force identification technique presented in this thesis is not derived based on the funda-
mental principles of mechanics. Instead, it is put forth as a proposition to be contemplated.
The technique's demonstrated success in identifying impact force magnitudes and locations on
the read/write head (slider) indicates that the technique is of some value. The real question is,
what is the general value of the new force identification technique? This is a difficult question to
answer, as it is usually not possible to draw conclusions about a general problem by looking at
the results of a specific problem.' However, this does not prevent one from carefully examining
the results of a specific example, determining what factors effect the results for the specific
case, and speculating how those same factors might effect the general case. That is the purpose
of this chapter. The results of the specific application of the force identification technique to
glide height testing will be examined and the more general application of the technique will be
contemplated.

6.1 Strengths and Limitations of the New Technique

The first point, which must be reiterated, is that the technique is not applicable to all force
identification problems. The force input must be a short duration pulse. This is a necessary
requirement for the technique to work. The identification technique assumes that the magnitude
of the force in the frequency domain is nearly constant in the frequency range of the vibration
modes. Without this constraint, the technique cannot tell the difference between a change in
the acceleration spectrum, due to change in source location, from a change in the acceleration
spectrum due to a change in the force spectrum.

In practice, this constraint may not be difficult to meet. The lowest vibrational modes
for a machine or structure might be below 100 Hz. Thus, if the impact time duration was
around 1 ms, the condition of having a short duration pulse would be met. Of course, it would
always depend on the particular application, but it does seem that the condition might be

1This statement is true even for force identification procedures such as deconvolution.
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met fairly easily. In AE research, the force source tend to be from propagating cracks and
similar deformation mechanisms. These event are of very short duration (on the order of ps),
and the short duration pulse requirement should easily be met for most structures undergoing
AE testing. The precise time duration of the impacts in glide height testing are not currently
known, as was discussed in Chapter 2. However, they appear to be of short enough duration to
excite at least the first four vibration modes of the slider. The precise contact duration needs
further investigation.

As was found by other researchers who used a modal model as part of their force identifica-
tion procedure, the quality of the modal parameter extraction procedure is very important the
accuracy of the predicted forces. First of all, it is important that the behavior of the structure
or system have a response that is primarily modal in nature. Nonlinear and other effects would
not be properly represented in a modal model of the system. Once the structural response has
been determined to be primarily modal, a modal parameter extraction technique must be cho-
sen. The two modal parameter extraction techniques used in this thesis were chosen for their
simplicity. The accuracy of the curve fitting was only verified graphically. This was done by
overlaying the reconstructed FRF over the experimental data. The accuracy of the fitting was
not checked numerically, or verified by a second curve fitting using a different modal parame-
ter extraction technique. Hansen 1990 [6] did find it necessary to use a combination of single
degree of freedom (SDOF) and multi-degree of freedom (MDOF) modal parameter extraction
techniques during the development of the modal model for his force identification procedure.
But no detailed study was done to determine how errors in the modal parameter extraction
effected the force identification procedure.

In general, it is expected that better modal parameter extraction will lead to better accuracy
in the force identification. So it is important that the most accurate modal parameter extraction
technique be used. Two different modal parameter extraction techniques were used in Chapter
5. With the circle fit method, the error in the predicted forces was much greater than with the
least squared technique, compare Figures 5.7 and 5.12. This increased error is most likely due
to the fact that the circle fit technique is less accurate. It can be particularly difficult to apply
the circle fit method to lightly damped structures, such as the enlarged slider. Furthermore,
the circle fit method does not work well when modes are very close together. Most commercial
software for modal parameter extraction uses the MDOF rational fraction polynomial (RFP)
technique. This is because it achieves reasonable accuracy over a wide range of experimental
situations. However, RFP is not necessarily the best technique and other SDOF techniques
yield better results for some situations. Unfortunately, there is no single technique that gives
the best results under all situations. So, different modal parameter extraction techniques must
be tried on experimental data, and the technique that works best for the given structure should
be incorporated into the force identification procedure for that structure.

Another very important influence on the accuracy of the force identification procedure is
the quality of the pattern matching algorithm. The pattern matching used in this thesis is the
simplest pattern matching that exists, a least-squares comparison. It is literally a single line of
computer code. Considering this fact, it is reasonable to suggest that more sophisticated pattern
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matching algorithms can only improve the accuracy of the predicted forces and locations.
The biggest problem with the least squares technique is that it equally weights all modal

constants during the pattern matching. It is certainly the case that some modal constants
are more reliable than others. Modes of vibration with a low amplitude are likely to have
less reliable modal constants. Hence, these modal constants should be weighted less. When an
impact occurs at node point for a certain vibration mode, the modal constant for that mode will
be small and inaccurate. Hence, it should be weighted less. Some pattern matching algorithms
use a form of Bayesian estimation to optimize the weights used in the pattern matching. For
the force identification procedure, this would require setting up not only the database of modal
constants, but a database of variances of these modal constants as well. Obviously, the modal
constants that showed the least variance would be weighted the most in the pattern matching.
This technique could significantly improve the accuracy of the predicted forces and locations.

It is important that a "good" location is available to place the transducer. If the transducer
is placed on a nodal line of a mode (stationary point), then it will be insensitive to the mode.
Thus it may be necessary, or advisable, to locate the transducer at a location that is not on a
line or axis of symmetry. Furthermore, some difficulties may be encountered with modes where
the vibration motion is mostly orthogonal to the sensing direction of the transducer. The modal
constants extracted from these modes will not be very accurate.

The question of transducer location also has associated with it the question of whether
more than one transducer should be used. Having more than one transducer is one good way
to reduce errors. Separate databases of modal constants will be needed for each transducer
position. However, the consistency of results from the various transducers can be compared to
make sure that no significant error has been made in the estimates of the impact location and
impact force magnitude. The use of multiple transducers may be most useful in cases where
one transducer is not sufficiently sensitive to certain modes.

The final question about transducers is what kind of transducers can be used. Because modal
parameter extraction techniques can be performed on displacement, velocity, and acceleration
signals; displacement transducers, velocity transducers, and accelerometers can all be used. In
AE work, however, the AE transducers are never true displacement, velocity, or acceleration
transducers. Since the magnitude only modal parameter extraction technique uses does not use
the phase information, its curve fitting is probably robust enough to handle an AE transducer
that does not have a very flat response over the frequency range of interest. Yet, if the transducer
has a strong resonance peak in the frequency range of interest, it may be difficult to measure
the modal constants at all because the measurement will be overwhelmed by resonance of the
transducer itself. The magnitude and phase modal parameter extraction technique, on the
other hand, is strongly dependent on having good phase information. This technique is not
simply fitting a bunch of peaks. It assumes that the peaks will form circles in the Nyquist plot.
Thus, it is important that a flat response vibration transducer be used. It should be noted
that recent improvements in accelerometers may soon make it possible to manufacture a true
accelerometer with a flat response up to 1 MHz. This would allow the magnitude and phase
modal parameter extraction technique to be used for many AE applications.
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The issue of uniqueness of solution is always present in any inverse problem solving, and
force identification is no exception. It has been shown that for impacts on the read/write
head (slider), the solution is not unique unless the phase information is used. This uniqueness
problem comes from the symmetric shape of the slider. If only the magnitude of the vibration
is used, then an impact at each of the four corners of the slider would all look the same. If the
phase information is used, then each corner causes a different phase pattern and the impact
location can be identified.

One interesting question is how many vibrational modes must be included in the pattern
matching for the solution to be unique. This is a difficult question to answer in general, but
it can be determined for the case of the slider. Figure 6.1 shows graphical depictions of the
slider phase for different vibration modes, called phase diagrams. A phase diagram is sort of
a two dimensional mode shape drawing. The part of the mode shape that is deformed upward
is unshaded (or marked with +). The part of the mode shape that is deformed downward is
shaded (or marked with -). The shaded and unshaded parts could be drawn reversed, because
the sign is arbitrary. The main point is to see which parts of the slider move in-phase and
which move out-of-phase. Consider the first two modes of vibration of the slider, torsion and
longitudinal bending, shown in the upper left of the figure. Also consider an impact at each
of the four corners of the slider, labeled A, B, C, and D. Due to the symmetry, the magnitude
of vibration will be the same for each impact. The only way to distinguish between the four
corners is the phase. Note that for the torsional mode (mode 1), corner pairs (A,B) and (C,D)
can be distinguished by phase, but (A,D) and (B,C) cannot. In the longitudinal bending mode
(mode 2), all four corners have the same phase and thus cannot be distinguished by using the
phase information. Now consider monitoring both the torsional and longitudinal bending modes
(modes 1 and 2). This combination gives four possible phase combinations (1+,2+), (1+,2-),
(1-,2+), and (1-,2-), as shown at the top right of the figure. It can be seen that no additional
phase information is gained by combining the two modes. It is still not possible to distinguish
corner pairs (A,D) and (B,C). The figure shows that the same is true for combining the torsional
mode with the transverse bending mode (modes 1 and 3). However, when the torsional mode is
combined with the second torsional mode (modes 1 and 4), all impact locations become unique.
The graph at the bottom right of the figure shows this combination. The four corners of the
slider have different sign combinations, and thus can be distinguished by phase. Therefore, the
inclusion of the second torsion mode in the force identification procedure is vitally important
to the uniqueness of the solution.

Addressing the question of uniqueness for more general structures is very difficult. In
general, the inclusion of more modes should improve the uniqueness. It might also be noted
that the more symmetric a structure is, the more likely that uniqueness will be a problem. It is
conceivable that inclusion of orthogonal modes of vibration, e.g. longitudinal, transverse, and
side bending of the slider, may be useful in reducing symmetry problems. However, a general
answer to the uniqueness question may be unknowable.
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6.2 Summary

All of the issues discussed above, including the choice of modal parameter extraction algorithm,
choice of pattern matching algorithm, placement of the transducer, and selection of modes, all
have their part to play in the reliability of the force identification procedure. While one might
speculate forever about the general application of the technique, it is probably far better to
simply try the technique with a given application and determine if the technique works well
for that application. For identifying impact locations and force magnitudes on the slider, the
technique worked well, particularly if the phase information was included. The technique had
a good ability to distinguish between different impact locations along the rail, and gave a
reasonable estimate of the impact force magnitude. When the phase information is included
in the pattern matching, there is a very sharp minimum in the error plot. This indicates that
it is very unlikely that the force identification technique will make a mistake about the impact
location along the rail. While it is not possible to draw general conclusions from the specific
application with the slider, it would be most unusual for the technique to work so well for one
application and not be found useful for other applications.
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Chapter 7

Conclusions

It has been the main goal of this thesis to develop and demonstrate a technique for determin-
ing input force magnitude and location, using the acceleration signals from an accelerometer
mounted on a structure. The force identification technique developed in this thesis, presents a
new approach to solving this problem. The technique works from the observation that short
duration "impulse type" forces on a structure excite different vibration modes unequally, de-
pending on the impact location. Thus, the magnitude of the different vibrational modes can
be used as a pattern" (or fingerprint) to determine the impact location. The magnitude of
the different vibrational modes is determined by modal parameter exaction. The pattern of
modal constants extracted are compared, using pattern matching, with a modal model of the
structure. The result of the pattern matching is an estimated impact location and impact force
magnitude. The technique has demonstrated that the frequency domain acceleration signals
a(w) (vibration spectrum) can be used as a "pattern"' to identify the impact location, when
the input force is a short pulse.

The conclusions of the thesis regarding force identification can be summarized as follows

* Deconvolution, inverse filtering, and cepstrum windowing techniques have limitations that
make the new force identification technique a valuable alternative.

* The new technique can properly identify input force locations, when the location of the
input force is unknown.

* The new technique can identify the magnitude of the impact force.

* The technique was applied to the problem of identifying impacts in glide height testing
and found to work well on an enlarged model of the slider.

* The technique has also been shown to properly identify the impact location even when
the impact occurs at a location that is not in the database. This works provided that the
database has information about the points on either side of the impact (to provide for
interpolation).
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* The new technique may have many applications (e.g. AE monitoring in material research)
where the source location cannot be determined a priori, but the force magnitude and
location of the source is of interest.

* Because the technique curve fits in the frequency domain only near the resonance peaks,
a high S/N ratio can be expected. This should result in better robustness than other
techniques that use the whole frequency spectrum directly.

* A reliable technique for removing phase taper from noisy vibration signals has been de-
veloped.

The nature of the force identification technique is such that it can only be used under the
condition that the input force is a short pulse. It also cannot recover the complete time domain
input waveform. It, therefore, offers only a partial solution to the problem of force identification.
However, it does have the important ability to determine the magnitude of the input force, even
when the location of the input force is not known a priori.

The conclusions of the thesis regarding glide height testing can be summarized as follows

* The high frequency (> 300 KHz) AE in glide height testing is primarily the vibrational
response of the slider due to impact.

* The location of asperity impact along the slider rail is an important factor in the resulting
vibration spectrum.

* Likewise, the sensor location is also an important factor in the measured spectrum.

* Simple measures of AE do not take into account the effect of impact location, and can
give misleading results that can lead to missed asperities.

* The force identification technique presented may provide a valuable new technique for
processing AE signals from glide height testing.

While the force identification technique worked well for ball impacts on the enlarged slider,
testing of the technique on the actual slider awaits further improvements in glide height test
equipment and sensors.
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Appendix A

Hertzian Contact Analysis

One way to simulate an impulse force input into a dynamic mechanical system is to drop a
small ball onto the system. Since such a contact is typically elastic, the ball inputs a force
pulse over time that can be approximated by half of a sine, see Figure A.la. The two most
important features of this force pulse are its contact time (to) and the maximum force (Pmaz).
The Fourier transform of this time signal shows the ability of the ball drop to excite different
frequencies, see Figure A.lb. At frequencies lower than ( l/to), the frequency response is flat
and at higher frequencies the amplitude rolls off at -20 dB/decade. Therefore, if the system
vibrational frequencies of interest are lower than l1/t, then the ball drop is effectively an
impulse input.

In order to estimate t and Pmaz, elastic Hertzian contact analysis can be used [32]. Because
of the relatively simple geometry involved, an exact solution is available for the static stresses
created when two balls (or a ball and a flat surface) are pressed against each other. By combining
the static Hertzian solution with Newton's second law (F = m a), it is possible to calculate
the forces created during a ball drop.

From the static Hertzian contact analysis, the relationship between the contact force (P)
and the relative displacement of the two bodies (a) can be calculated. This relationship is given
by the following equations.

P = na3/ 2 (A.1)

/16 R 1R 2

9712 (k + k2)2(R + R 2) (A.2)

1 - v2 1 - 22
l 1 k2 =1- (A.3)

rE 1 rE 2

In these equations E is the Young's modulus, v is the Poisson's ratio, R is the radius of the
ball, and the subscripts 1 and 2 indicate whether the property is for ball 1 or ball 2. To analyze
the contact between a ball and a fiat surface just let R 2 - oo.
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For the dynamic aspects of the problem, consider two balls of different sizes coming into
contact with each other, as shown in Figure A.2. The upper ball has an initial velocity vl
and the lower ball has an initial velocity v2 . Through the application of Newton's second law
(F = ma), it can be determined that

mldv - P dv2 = - P (A.4)
dt dt

where ml and m 2 are the masses of the two spheres. Since a is the deformation between the
two bodies, d! is the relative velocity of the two ball once they have made contact or

& = vl + v2 (A.5)

Taking the derivative of this and combining with Equation A.4,

ii = l + V2 = - P (A.6)
ml 

or by rearranging,

& = l + m2 (A.7)
mim2

Using the following notation, Equation A.7 becomes

mi + m2a = -Pni n l + = (A.8)
mim2

or using Equation A.1

a = -nnla 3/2 (A.9)

This is the differential equation of motion for dynamic contact as long as the balls are in contact.
To solve this equation, start by multiplying both sides by &,

aa = -&nnla3/ 2 (A.10)

d& da 3/2
&dt= d nnla3/2 d(A.11)

d(&)2 = -nnla 3 /2 da (A.12)
2

By integrating,

1 _ V)2 2-d )= -- nnia10 2 (A.13)
2 5
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Ball 1

Ball 2

Figure A.2: Diagram of two balls colliding with each other.
V is the velocity.

P is the contact force and
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Where v is the initial approach velocity of the two balls. By setting the relative velocity to zero
a = 0, the maximum compression amax can be found

(5 v2 \2/5
amax 4 nnl) (A.14)

Using the value calculated from this equation and Equation A.1, the maximum force (Pma:)
can be calculated.

For calculating the contact duration of the impact (to), we can rewrite the equation of
motion, Equation A.13 as

da
dt = (A.15)

V2 - nna 5 /2

or using a/amax = x and Equation A.14, we find that,

dt = ama dx (A.16)
v V/1 -7 x/2

By integrating this equation the contact time (to) can be calculated

Mama:! 1 _ d amat 2aax I 1 dx = 2.94 ama: (A.17)
v uJ /75 v

A.1 all Drop on a Semi-infinite Elastic Half-Space

If the contact is not between two balls but between a ball and a large flat surface, then the
equations can be modified by letting R2 -+ oo and m2 -- oo. As m2 --+ oo Equation A.8
becomes

1
a = -Pni nl = (A.18)

ml
and as R2 -+ oo Equation A.2 becomes

16 R1
n = 9r2 ( k k2 )2 (A.19)

By simply substituting these equations into Equation A.14, the maximum compression (amax)
for a ball and a flat surface can be calculated.
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Property Carbide Al20 3TiC
p 14950 Kg/m 3 4280 Kg/m 3

E 6.761011 N/m 2 3.92-1011 N/m 2

v 0.26 0.35
k 4.39-10-13m s2/Kg 7.13.10-13m s2/Kg

Table A.1: Mechanical Properties of Tungsten Carbide and A1203 TiC.

A.2 Analysis for a 0.28 mm Ball Drop on 3380 Slider

In order to simulate an impulse input for the 3380 slider, a 0.28 mm diameter carbide ball is
used. The slider is made of a ceramic called alumina titanium carbide A1203TiC. The properties
of these materials are shown in Table A.1.

The mass of the carbide ball can be calculated from its volume and density.

47rR 3

ml = P1 (A.20)

4r 0.000143
14950

= 1.72 10- 7 Kg

The initial velocity (vl) of the ball can be calculated from the potential energy at 0.305
meter (12") drop height.

v1 = 2V.f gh(A.21)

= /2. -9.8 0.305

= 2.44 m/s

Using Equations A.19 and A.18 the values of the constants n and nj can be calculated.

16 R1n = 9(kl +k2)2 (A.22)

l16 0.00014

n = 9 2 (4.39. 10 - 13 + 7.13 .10-13)2

= 4.36-109 Kg
/'s2
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n = (A.23)
ml

1

1.72* 10- 7

= 5.82 106 
Kg

Using Equation A.14 the maximum compression can be calculated

ama = ( 2 ) (A.24)

5 2.442 2/5

4 4.36 109 5.82 .106

= 6.13 10-7m

and the maximum force

Pmax = na 3/2 (A.25)

= 4.36* 109 (6.13 10-7)3/2

= 2.09 N

The contact time can be calculated from Equation A.17

t = 2 .94 amax (A.26)
v

= 6.13 10- 7

2.44
- 7.37. 10-7s

Although the peak force (Pmax) and contact time (tc) are the two key parameters from the
contact analysis, sometimes the shape of the force vs. time or deflection vs. time curves are of
interest. The time at which a given deflection is reached can be calculated from the following.

t = a jJi. dX (A.27)
where x is, the normalized deflection x = a/amax. The equation is only valid in the range
0 < x < 1. Figure A.3 shows the deflection vs. time for the 0.28 mm carbide ball and the FFT
of the time domain signal. Note that to calculate the FFT, it is necessary to re-interpolate the
time domain data to even time increments. Using Equation A.1, the force vs time curve can
be calculated from the deflections. Figure A.4 shows the results for the 0.28 mm carbide ball.
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Appendix B

FFT's on Transient Signals

There are a number of subtleties involved in calculating FFT's [38]. Most of these subtleties
are the result of differences in the way an FFT calculates frequency information for discrete
waveforms versus the way the Fourier Integral calculates frequency information for continuous
waveforms, Equation B.1 shows the formula for the Fourier integral. The limits of integration
are -oo and +oo, i.e. all time from the beginning of time to the end of all future time. In con-
trast, Equation B.2 shows that for a DFT (discrete Fourier transform), the limits of summation
are limited to the number of points (N) in the acquired waveform, or from time 0 to time T.
Beyond the number of point (N), for the DFT or FFT, there is an assumption of periodicity,
i.e. that the signal keeps repeating itself in the same way that it did in the N points. This
assumption of periodicity is the cause of some subtle problems.

X(f) = 10 x(t)e-j2 rftdt (B.1)
00oo

1 N-1

Xd(k) = N E x(n)e j2rkn/N (B.2)
n=O

To illustrate one such subtlety, consider the simple second order spring-mass-dashpot system
shown in Figure B.la. The receptance (x/F) of this system can be readily calculated by the
following.

F-Fk-F, = mi (B.3)
F, =c
Fk k

F = mi+ci+kx (B.4)
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Figure B.1: A) Second order spring-mass-dashpot system and B) its receptance for
m = 1, k= 1,andc=0.1
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F = ms2x+csx+kx
x 1

F ms2 + cs + k

where s is the Laplace operator. By replacing the Laplace operator s by j, the frequency
response can be determined.

z 1
(B.5)F m(jw)2 + cjw + k (5)

z 1
(B.6)F = k - w 2 + jc B6

The frequency response (receptance) in Equation B.6 is shown in Figure B.lb. This demon-
strates how the Fourier Integral can be used to determine the frequency response of a system
analytically.

In the real world, frequency responses are usually determined experimentally. To illustrate
this process, some simulations were performed using MATLAB. The second order system, dis-
cussed above, was used with m = 1, k = 1, and c = 0.1. The response of the system to a unit
impulse input was simulated and results plotted in Figure B.2. In Figure B.2a the results are
shown for a time step of 0.5 and 256 points were calculated. Figure B.2b shows the FFT of this
waveform. Figures B.2c and B.2e show simulations calculated for longer times with 512 and
1024 points. The FFT's of these signals are shown in Figures B.2d and B.2f. Notice that the
magnitude of the FFT decreases as more points are included. This seems reasonable from the
standpoint that as more time is included in the waveform, there is proportionally less energy in
the signal. If the simulation where continued for very long times, there will be a proportional
decrease of energy in the signal.

The problem is that the signal is transient. With a continuous waveform, as more time is
included, more energy is added to the signal. This keeps the magnitude of the FFT independent
of the number of points used in the calculation. The same is not true for transient signals. As
more points are added, very little additional energy is added and the magnitude of the FFT
decreases. Therefore, if confusion is to be avoided, care must be used when examining FFT's
of transient signals.

For modal testing (and analysis) there is another way to address this issue. Since, in modal
analysis, we are usually concerned with a quantity that is a ratio, e.g. receptance (z/F), the
FFT can be calculated as the ratio of two FFT's. To illustrate this more carefully, consider
Figure B.3. This figure illustrates, in more detail, the simulation discussed above. In Figure B.3a
the impulse force input is shown and its FFT is shown in B.3b. Once again the displacement
response (B.3c) and its FFT (B.3d) are shown. By considering both the FFT of the input and
FFT of the response, the actual receptance can be calculated. This is done by dividing the
FFT of the response by the FFT of the input. (Note that this is a complex division.) The
result is shown in (B.3e) and the Fourier integral result is shown in (B.3f) for comparison. We
now see that the results are in good agreement. An important feature about Figure (B.3e)
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Figure B.:2: This is a demonstration of the effect of including more time domain
points in a transient signal. A), C), and E) show the response of a second order
system calculated for 256, 512, and 1024 points, respectively. B), D), and F) show
the FFT's for these signals. Notice how the magitude of the FFT's decrease as more
points are included.
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Figure B.3: Simulation of receptance calculation. a) Shows the unit impulse force
input 1 second wide and b) its FFT. c) Shows the simulated displacement response
to the impulse force input and d) its FFT. e) Shows the receptance calculated from d)
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is that the result no longer depends on the number of points used. To illustrate this point,
Figure B.4 shows the results for 1024 points instead of 512 points. It can be seen that the
resulting receptance is again in agreement with the result from the Fourier integral. Thus,
while the magnitude of an FFT of a transient signal is poorly defined, the ratio of the FFT's
of two related signals (e.g. receptance) are properly defined.

B.1 Application to Ball Drop

Although receptance can be experimentally determined using the above technique, a serious
problem is encountered if the force input signal cannot be measured. If an impulse hammer
is used to excite a structure, then the input waveform is readily available. However, if a ball
drop, or similar technique, is used, then the input waveform is not available.

One possible solution to this problem, is to estimate the input waveform. For the ball
drop technique, the input force waveform can be estimated using Hertz contact theory (see
Appendix A). The Hertz contact theory determines not only the magnitude and the contact
time for the force pulse, but it also determines the complete waveform. To make use of this
waveform, it must be digitized at the same frequency and with the same number of points as
the displacement output, similar to the signals in Figures B.4a and B.4c.

There still is one more variable to be determined; the time of contact. A decision must
be made as to when the impulse force input occurred, as shown in Figure B.5. Although the
impulse must occur some time prior to there being any response, the exact location must be
decided. By positioning the impulse in the wrong location, and error will be introduced into the
receptance calculation. Fortunately, the error is only in the phase of the receptance, as shown
in Figure BE.6. The results are shown for the same second order system previously discussed.
In Figure BE.6a, the exact solution for the receptance is given, both magnitude and phase. As
before, a simulation was done using MATLAB. This time however, after the simulation was
calculated, a one second time shift was added to the location of the impulse force input. Then
the receptance was determined with this error included. As shown in Figure B.6b, this error
only effects the phase of the receptance and not the magnitude. Figure B.6c, shows the result
for a negative one second offset.

These results are very encouraging because small errors in the location of the impulse input
only affect the receptance phase. Therefore the magnitude of the receptance can be calculated
with confidence using the force input waveform calculated from the Hertz contact theory. Of
course it is still better to measure the contact force simultaneously with the displacement
output, but this is not always possible. If the phase is needed for a modal parameter extraction
procedure, then the linear phase taper must be removed as discussed in Subsection 4.2.2.

174



U IUU I OJW 4W WU 
Ume (ec)

I

frequency (Hz)

100 200 300 400
time (c)

frequency (Hz)

500

i

600
frequency (Hz)

£

hfrequency (Hz)

Figure B.4: Simulation of receptance calculation. a) Shows the unit impulse force
input 1 second wide and b) its FFT. c) Shows the simulated displacement response
to the impulse force input and d) its FFT. e) Shows the receptance calculated from d)
divided by b). f) Shows the theoretically calculated receptance. Parameters, m = 1, c
= 0.1, k = 1, delta time = 0.5, 1024 points.

175

A) Force impulse input

1.0

0.9

0.8

0.7

0.6

0.5

_o 0.4

0.3

0.2

0.1

0

C) Simulated displacement calculation.

Or- W~~~~~~r
C
E

C.

I.u

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

.a.
I

.0

e w 

1X 
b · - - - - -

IM ~ M IM CM

rs . . . . . .

I

I

I 4



A) Force impulse input
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A) Frequency response calculated by Fourier Integral
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Appendix C

Input File for FEM Model of Slider

The following is the Abaqus input file for the FEM model of the actual (not enlarged) 3380 style
slider (read/write head). The model uses 20 node brick elements and calculates the natural
frequencies (eigenvalues) and mode shapes (eigenvectors) of the slider. The dimensions are given
in millimeters, even though the use of meters would have been preferred. There is a bug" in
the Abaqus software that causes the hidden-line removal routine to fail if the dimensions of the
part are too small. As a result, the dimensional units of this model are kg, mm , and seconds.

The Abaqus input file for the enlarged model of the slider is basically the same as the input
file for the actual slider. The main differences are that the dimensions are 44 times larger and
the properties are changed to the properties of aluminum rather than alumina titanium carbide
(Al2 03 TiC).

*HEADING

3380 SLIDER, 258 ELEMENTS, 4602 DEGREES OF FREEDOM

**DEFINE THE FIRST ROW OF SLIDER---------------------------

*NODE,NSET=SLIDER

** nodes for first end

1, 0.000,0.000,0.000

41, 0.000,0.000,0.089

81, 0.000,0.000,0.178

241, 0.000,0.000,0.876

13, 4.064,0.000,0.000

53, 4.064,0.000,0.089

93, 4.064,0.000,0.178

253, 4.064,0.000,0.876

*NGEN,NSET=EDGEONE

1, 41, 20

41, 81, 20

81, 241, 20
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*NGEN,NSET=EDGETWO

13, 53, 20

53, 93, 20

93, 253, 20

*NFILL,NSET=PLANEA

EDGEONE,EDGETWO,12,1

*NCOPY,CHANGE NUMBER=2000,OLDSET=PLANEA,SHIFT,NEW SET=PLANEC

0.000,0.102,0.000
0.0,0.0,0.0,0.0,0.0,0.0,0.0

*NFILL,NSET=FILLIN

PLANEA,PLANEC,2,1000

*NCOPY,CHANGE NUMBER=4000,OLDSET=PLANEA,SHIFT,NEW SET=PLANEE

0.000,0.533,0.000

0.0,0.0,0.0,0.0,0.0,0.0,0.0
*NFILL,NSET=FILLIN

PLANEC,PLANEE,2,1000

*NCOPY,CHANGE NUMBER=6000,OLDSET=PLANEA,SHIFT,NEW SET=PLANEG

0.000,0.761,0.000

0.0,0.0,0.0,0.0,0.0,0.0,0.0
*NFILL,NSET=FILLIN
PLANEE,PLANEG,2,1000

*NCOPY,CHANGE NUMBER=12000,OLDSET=PLANEA,SHIFT,NEW SET=PLANEM

0.000,2.413,0.000
0.0,0.0,0.0,0.0,0.0,0.0,0.0

*NFILL,NSET=FILLIN

PLANEG,PLANEM,6,1000

*NCOPY,CHANGE NUMBER=14000,OLDSET=PLANEA,SHIFT,NEW SET=PLANEO

0.000,2.642,0.000

0.0,0.0,0.0,0.0,0.0,0.0,0.0
*NFILL,NSET=FILLIN

PLANEM,PLANEO,2,1000

*NCOPY,CHANGE NUMBER=16000,OLDSET=PLANEA,SHIFT,NEW SET=PLANEQ

0.000,3.073,0.000

0.0,0.0,0.0,0.0,0.0,0.0,0.0
*NFILL,NSET=FILLIN

PLANEO,PLANEQ,2,1000

*NCOPY,CHANGE NUMBER=18000,OLDSET=PLANEA,SHIFT,NEW SET=PLANES

0.000,3.175,0.000

0.0,0.0,0.0,0.0,0.0,0.0,0.0
*NFILL,NSET=FILLIN

PLANEQ,PLANES,2,1000
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*ELEMENT,ELSET=SLIDERE,TYPE=C3D20

37,2001,2003,4003,4001,2041,2043,4043,4041,2002,3003,4002,3001,2042,3043,4042,

3041,2021,2023,4023,4021

*ELGEN,ELSET=SLIDERE

37, 6,2,1, 2,40,6

43, 2,40,6

49, 2,-2000,-36

13, 6,2,1, 4,40,6, 9,2000,36

121, 2,-40,-6

115, 6,2,1, 3,2000,36

265, 3,-40,-6

253, 6,2,1, 2,40,6

** MATERIAL A1203-TiC

*SOLID SECTION,MATERIAL=A1203,ELSET=SLIDERE

*MATERIAL,NAME=A1203

** elastic modulus = 3.92ell Pa, or 3.92e8 kg/(mm sec^2)

*ELASTIC

3.92E8,0.35

** density = 4.280e3 kg/m^3 or 4.280e-6 kg/mm^3

*DENSITY

4.280E-6

*ELSET, ELSET=VISIBLE

37,38,39,40,41,42,

43,44,45,46,47,48,

13,14,15,16,17,18,

19,20,21,22,23,24,

25,26,27,28,29,30,

31,32,33,34,35,36,

67,68,69,70,71,72

103,104,105,106,107,108,

139,140,141,142,143,144,

175,176,177,178,179,180,

211,212,213,214,215,216,

247,248,249,250,251,252,

283,284,285,286,287,288,

319,320,321,322,323,324,

318,312,306,

258,264,270,276,282,

234,240,246,

192,198,204,210,

156,162,168,174,
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120,126,132,138,

90,96,102,

54,60,66

*ELSET, ELSET=FRAME

37,38,39,40,41,42,

43,44,45,46,47,48,

13,14,15,16,17,18,

19,24,

25,30,

31,32,33,34,35,36,

67,72

103,108,

139,144,

175,180,

211,216,

247,252,

283,288,

319,320,321,322,323,324,

318,312,306,

258,264,

234,192,156,120,90

** Plot the Initial SLIDER Geometry
** *********************************************************
*ELSET, ELSET=SMALL

37

** *********************************************************
** Plot the Initial SLIDER Geometry

*PLOT

*DETAIL, ELSET=SLIDERE

*VIEWPOINT

0.5,-1.0,0.5

*DRAW,HIDE

*DRAW,ELNUM

*DRAW,NODENUM

*RESTART,WRITE

*STEP,LINEAR

GET VIBRATION FREQUENCIES AND MODE SHAPES

*FREQUENCY

6,,4.57E11,,25
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*PLOT

*DETAIL

*VIEWPOINT

0.5,-1.0,0.5
*DISPLACED,HIDE

U,,1

*NODE FILE

U

*EL PRINT, ELSET=SMALL

Ell

*END STEP
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Appendix D

Programs for Modal Analysis and
Force Identification

D.1 Modal Analysis Programs

The following programs are used to convert ABAQUS output files into frequency response
functions (FRF's). In other words, they are used to convert the eigenvalues and eigenvectors
into a modal analysis.

The program ABAREAD.C searches through the ABAQUS output file for the eigenvalues
and eigenvectors. It writes each eigenvector into its own file, with file names like filel.,
file2., ... , file6.. It also writes one file with the eigenvalues, with a file name like
fileevl..

The matlab program S380TLAC.M uses the data in these files to calculate the frequency
response functions using Equation 3.31. The first step is to load the files into Matlab using
the program S380.M. The second step is to use MODAL.M and FRFACC.M to calculate the
accelerance (FRF) for any force input and sensor locations of interest. The sensor location
would be the subscript j in Equation 3.31 and the force input location would be the subscript
k

Obviously these programs are not very general purpose. They would only written to serve
the purposes of the research in this thesis.

D.1.1 ABAREAD.C

/* Program for extracting eigenvectors from ABAQUS data files */

#include stdio.h>

#include <string.h>

#include <ctype.h>
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#include <float.h>

#include <math.h>

main()

double sqrt(double);

double findevalue(char*);

int numbercount(char*);

int alphacount(char*);

int fgetline(FILE*,char*);

sizet strlen(const char*);

int strsearch(char*,char*);

void make.searchstring(char*,int);

void makeevaluestring(char*,int);

void shortenstring(char*,char*, int);

char c,inputfilename[80];

char outputfilename[80];

char output[80];

FILE *stream ,*stream2,*stream3;

char buffer[151];

int i,j,k;

int ch;

int skip;

int numberof_rows;

int bufferlen=O;

int searchstringlen=O;

char searchstring[80];

char startbuffer[9];
int notfound 1;
int location;

int endofevalues;

long unsigned linenumber=0;

int num_ofnum=0;

int num_of_alpha=0;
char *digits = "-+0123456789";
int numresult=O,result;
long unsigned nodel,node2;

float x,y,zl ,x2,y2,z2,eigenvalue[3C
long unsigned numofdatalines=0;

int evector = 1;

/* buffer for a line of text */

/* len of the text buffer */
/* length of search string */

/* first 8 char of buffer */
/* logical variable */

/* where the string was found */

/* Have all evalues been found */

/* current line in file */
/* number of digits in buffer */

/* number of letters in buffer */

)] ;

/* number of currect eigenvector */
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int total_evector; /* total number of eigenvectors */

char sevector[17]; /* string of evector */

int len_s_evector; /* length of sevector */

/* open input file */

printf("\nEnter input file name: ");

scanf ("Xs" , inputfilename);

if ((streaml = fopen(inputfilename,"rt")) == NULL)

{
printf("Could not open file Ys\n",inputfilename);

exit(O);

}

/* get name of output file */

printf("\nOutput file names are limited to 4 letters with no extension\n");

printf("\nEnter output file name: ");

scanf("Xs",outputfilename);

/* open index file */

strcpy(output,outputfilename);

strcat (output, "_ind");

if ((stream3 = fopen(output,"wt")) == NULL)

{
printf("Could not open file Y.s\n",output);

exit(O);

}
else

printf("writing file to s\n",output);

/* FIND LABEL FOR EIGENVALUE OUTPUT */

strcpy(searchstring,"E I G E N V A L U E 0 U T P U T");

linenumber = 0; /* count lines in file */

notfound = 1;

while(notfound & (feof(streaml)==O) )

line_number++;

bufferlen=fgetline(streami,buffer); /* get a line of text */

location = strsearch(buffer,searchstring);
if(location != O)

{
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/* FIND EIGENVALUES */

endofevalues =1;

while(endofevalues && (feof(streaml)==O) )
{
/* create string to search for like " 1" */

makeevaluestring(searchstring,evector);

notfound = 1; /* start the search */

while(notfound && (feof(streaml)==O) )
{
linenumber++;

bufferlen=fgetline(streaml,buffer); /* get a line of text */

shortenstring(buffer,start_buffer,8); /* compare first 8 char */

result = strcmp(searchstring,startbuffer);

if(result == 0) /* found string */

{
notfound = 0;

eigenvalue evector]=findevalue(buffer);

printf("eigenvalue = .e (r/s)} %e Hz\n",

eigenvalue evector],

((float)sqrt(eigenvalue[evector]))/(2.0*3.14159));

evector++; /* increment to find next e-value */

}
else /* check for end of evalues */

{
location = strsearch(buffer,"P A R T");

if(location != 0)

{
endofevalues = 0;
notfound = 0; /* found PARTISIPATION FACTOR */

}
}

totalevector=evector-1;

printf("total number of evectors = %d\n",totalevector);
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/* FIND LABEL FOR FIRST EIGENVECTOR IN THE FILE */

evector = 1;

makesearchstring(searchstring, evector);

printf("Searching for Ys\n",searchstring);

notfound 1;

while(notfound && (feof(streaml)==O))
{
linenumber++;

bufferlen=fgetline(streaml,buffer); /* get a line of text */

location strsearch(buffer,searchstring);

if(location != 0)

{
notfound = 0;
printf("Found s\n",searchstring);

}

}

/* Now we are positioned in the file so that the data is all

sequencial from this point on. We do have to avoid the page

label heading. The program reads in a line and determines

the number of digits in the line with the numbercount()

function. If there is more than 30 digits than the program

assumes it is eigenvector data. If it is less than 30 then

it checks to see if there is a new eigenvector by looking for

"E I G E N V A L U E N U M B E R".

The criterion used to see if a line contains eigenvector data

is 1) less than 4 alpha, 2) greater than 16 numbers,

and 3) 50 characters long */

while((feof(streaml)==O)) /* loop for all eigenvectors */
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/* open output file */

strcpy(output,outputfilename);

itoa(evector,sevector,10);

strcat(output,sevector);

if ((stream2 = fopen(output,"wt")) == NULL)

{
printf("Could not open file Y.s\n",output);

exit(0);

}
else

printf("writing file to %s\n",output);

evector++;

makesearchstring(searchstring,evector);

numofdatalines=0;

notfound=1;

while((feof(streaml)==0)&&notfound)

{
linenumber++;

bufferlen=fgetline(streaml,buffer); /* get a line of text */

numofnum=numbercount (buffer);

numofalpha=alphacount(buffer);
if(numofnum>16 && (bufferlen==50) && (numofalpha<4))
/* it is eigenvector data */

{
numofdatalines++;
numresult = strcspn(buffer,digits);

sscanf(&bufferEnumresult],"Ylu" ,&nodel);

numresult += strcspn(&buffer[numresult ," ");

numresult += strcspn(&bufferEnumresult],digits);

sscanf(&bufferEnumresult ],"%f" ,&xl);

numresult += strcspn(&buffer[numresult]," ");

numresult += strcspn(&bufferEnumresult],digits);

sscanf(&buffernumresult],"%f" ,&yl);

numresult += strcspn(&buffer[numresult ," ");

numresult += strcspn(&bufferEnumresult] ,digits);

sscanf(&buffernumresult],"%f",&zl);

/* write data to file */

fprintf(stream2,"%+e\n%+e\n/+e\n",xl,yl,zl);
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fprintf (stream3, "lu\tlu\tX\n",

3*(numofdatalines-l)+l,nodel);
fprintf (stream3, "lu\tlu\tY\n",

3*(numofdatalines-1)+2,nodel);
fprintf(stream3, "Ylu\tXlu\tZ\n",

3*(numofdatalines-1)+3,nodel);

else /* labels in the ABAQUS file /

{ /* look for EIGENVECTOR label */

location = strsearch(buffer,searchstring);

if(location == 0)

not_found = 1;

else /* found EIGENVECTOR label */

{
notfound = 0;

printf("closing file to %s\n\n",output);

fclose(stream2);

printf("Xs\n", searchstring);

}

}
}

}

fclose(streaml);

fclose(stream2);
fclose(stream3);

/* open eigenvalue file */

strcpy(output,outputfilename);

strcat(output,"-_evl");

if ((stream3 = fopen(output,"wt")) == NULL)

{
printf("Could not open file %s\n",output);

exit(O);

}
else

printf("writing file to %s\n",output);
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/* write eigenvalues */

for(i=1;i<=totalevector;i++)

fprintf(stream3, "%+e\n" ,eigenvalueEi]);

fclose(stream3);

exit(0);

/* ******************* function to get a line of text ************* */

/* **************************************************************** */

int fgetline(stream,buffer)

FILE *stream;

char buffer[ ;

{
int ij;

int ch;

ch = fgetc(stream);

for(i=0; (i<150)&&(feof(stream)==O)&&(ch != '\n');i++)

buffer[i] = ch;

ch = fgetc(stream);

bufferEi] = '\0';

return(i);

} 

/* ********************* String search function ************************** */

/* *********************************************************************** */

/* function returns the location of the string if it is found,
otherwise it returns a zero. */
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int strsearch(buffer,searchstring)

char buffer n;
char searchstring0;

{
int buffer_len;

int searchstringlen;

int i,k,notfound;

/* string to be search through */

/* string to be search for */

/* number of characters in string */

searchstringlen = strlen(searchstring);

bufferlen strlen(buffer);

not ound = 1;
for(i=O;i<buffer_len && notfound ;i++)

{
if (buffer i] == searchstring[O]) /* find first character */

k=1; /* check the rest of the characters */
while((buffer i+k ==searchstringEk]) && k<searchstringlen)

k++;

if(k == search_stringlen)

notfound = 0;
}

if(notf'ound == 0)
return(i);

else

/* did they all match */

return(O);

/* *********************************************************************** */
/* ****************** Count the number of Digits ************************* */
/* *********************************************************************** */

int numbercount (buffer)
char buffer[ ;

{
int bufferlen;

/* string */

/* number of characters in string */
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int i,numberofdigits=O;

buffer len = strlen(buffer);

for(i=O;i<bufferlen;i++)

if (isdigit (buffer i]))

numberof.digits++;

return(numberofdigits);

}

/* ***.****************** ********************************************* */
/* ****************** Count the number of alpha ************************* */

int alphacount(buffer)

char buffer ;

int bufferlen;

int i,number_of_alpha=O;

/* string */

/* number of characters in string */

bufferlen strlen(buffer);

for(i=O;i<bufferlen;i++)

if(isalpha(buffer i]))

numberofalpha++;

}
return(number-ofalpha);

/* *****$$******************************************************** */

/* Function to make a string to search for in the ABAQUS output file */

/* ***************************************************************** */

void makesearchstring(string,evector)

char *string;

int evector;

{
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char s_evectorEl7]; /* string of evector */

int lens_evector; /* length of sevector'*/

int i;

itoa(evector,sevector,10);

lensevector (int)strlen(sevector);
strcpy(string,"E I G E N V A L U E N U B E R");

for(i=O;i.<(6-lensevector);i++) /* pad with spaces */
strcat(string," ");

strcat(string,sevector);

/* Function to make a EIGENVALUE search string ,/
/* ***************************************************************** */

void make_.evalue. string(string, evector)

char *string;

int evector;

{
char sevector[17]; /* string of evector */

int len_sevector; /* length of sevector */
int i;

/* make a string like " " */

itoa(evector,sevector,10);

lensevector = (int)strlen(sevector);

strcpy(string, "" );
for(i=O;i<(8-lensevector);i++) /* pad with spaces */

strcat(string," ");
strcat (string,sevector);

/* ***************************************************************** */
/* Function to shorten a string */
/* ***************************************************************** */
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void shortenst:ring(string,returnstring,len)

char *string;

char *returnst:ring;

int len; /* amount to shorten */

{
int string_le:n;

int i;

stringlen = strlen(string);

if(stringlen >(len+l)) /* if long enough to shorten */

{ /* copy first 8 char to returnstring */

for(i=O; i<len; i++)

returnstring[i] = stringEi];

returnstring[len] = '\0';

}
else

strcpy(returnstring,string);

}

/* *************************************************************** */
/* find the value of the eigenvalue within a string */

/* *************************************************************** */

double findevalue (buffer)

char *buffer;

double eigenvalue = 0;

int location,:numresult;

char *digits = "-+0123456789";

location = 0; /* search for first digit */

numresult = strcspn(&bufferElocation] ,digits);

location = numresult+location;

numresu.lt = strcspn(&buffer[location] ," ");

location = numresult+location;

/* position now past the evalue number, e.g. 1,2,3,4,5,6 */
numresult = strcspn(&buffer [location],digits);

194



location = numresult+location;

/* position now at location of eigenvalue in (r/s)} */
sscanf (&bufferElocation],".Xle" ,&eigenvalue);

return(eigenvalue);

}
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D.1.2 S3;80TLAC.M

% CALCULATE MODAL ANALYSIS FOR s3806 SLIDER

, Data comes from ABAQUS output files

. The accelerance is calculated for a variety of input locations

clear

!erase s380.met

% load the e-value and e-vectors
s380

% Frequency vector in radians
w = (2*pi).*[0:500:1000000]';

1.

% FIRST POSITION

X. input 3013z, sensor 15251z

al = modal(evec,3816,804);

% calc data for drawing graph
rl = frfacc(al,eval,w);

axis( [0,1000000,1,9 );

semilogy(w./(2*pi),abs(rl))

title('accelerance 3816,804; input 3013z, sensor 15251z')

xlabel('Frequency (Hz)')

ylabel('Accelerance')

meta s380

. SECOND POSITION

% input 3011z, sensor 15251z

a2 = modal(evec,;3816,801);

r2 = frf_acc(a2,eval,w);

axis( [0,1000000,1,9]);

semilogy(w./(2*pi),abs(r2))

title('accelerance 3816,801; input 3011z, sensor 15251z')

xlabel('Frequency (Hz)')

ylabel('Accelerance')
meta s380
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h THIRD POSITION

. input 3009z, sensor 15251z

a3 = modal(evec:,3816,798);

r3 = frf..acc(a3,eval,w);

axis([O,:LOOOO00000,1,9]);

semilogylw./(2*pi),abs(r3))

title('accelerance 3816,798; input 3009z, sensor 15251z')

xlabel('lFrequency (Hz)')

ylabel( 'Accelerance')

meta s380

% FOURTH POSITION

% input 3007z, sensor 15251z

a4 = modal(evec,3816,795);

r4 = frf..acc(a4,eval,w);

axis( [0,OOC000000,1,9]);

semilogy(w./(2*pi),abs(r4))

title('accelerance 3816,795; input 3007z, sensor 15251z')

xlabel('lFrequency (Hz)')

ylabel( 'Accelerance')

meta s380

% FIFTH POSITION

. input 3005z, sensor 15251z

a5 = modal(evec,3816,792);

rS = frf..acc(a,eval,w);

axis( [O, OOOOO00, 1,9]);

semilogy(w./(2*pi),abs(r5))

title('accelerance 3816,792; input 3005z, sensor 15251z')

xlabel(''Frequency (Hz)')

ylabel ('Accelerance')

meta s380

% SIXTH POSITION
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Y. input 3003z, sensor 15251z

a6 = modal(evec,3816,789);

r6 = frfacc(a6,eval,w);

axis( O,1000000,1,9]);

semilogy(w./(2*pi),abs(r6))

title('accelerance 3816,789; input 3003z, sensor 15251z')

xlabel('Frequency (Hz)')

ylabel('Accelerance')

meta s380

X

. SEVENTH POSITION

.

X input 3001z, sensor 15251z

a7 = moda:L(evec,3816,786);

r7 = frf.acc(a7,eval,w);

axis( [0,1000000,1,9);

semilogy(v./(2*pi) ,abs(r7))

title('accelerance 3816,786; input 3001z, sensor 1525iz')

xlabel('Frequency (Hz)')

ylabel('Accelerance')

meta s380

Y.

X

X REPEAT FOR TANGENTIAL FORCE, X DIRECTION

.1

. FIRST POSITION

. input 3013x, sensor 15251z

alx = modal(evec,3816,802);

Y. calc data for drawing graph

rlx frf..acc(alx,eval,w);
axis( [, 1000000, 1,9]);

semilogy (./(2*pi) ,abs(rlx))

title('accelerance 3816,802; input 3013x, sensor 15251z')

xlabel('Frequency (Hz)')

ylabel('Accelerance')

meta s380

.
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% SECOND POSITION

, input 0Ollx, sensor 15251z

a2x = modal(evec,3816,799);

r2x = frf'.acc(a2x,eval,w);

axis( [0,1.000000,1,9]);
semilogy(w./(2*pi),abs(r2x))

title('accelerance 3816,799; input 3011x, sensor 15251z')

xlabel('Frequency (Hz)')

ylabel( 'A.ccelerance')

meta s380

X

7. THIRD POSITION

X input 3009x, sensor 15251z

a3x modal(evec,3816,796);

r3x frf.acc(a3x,eval,w);

axis( [0,1000000,1,9]);

semilogy(w./(2*pi),abs(r3x))

title('accelerance 3816,796; input 3009x, sensor 15251z')

xlabel('Frequency (Hz)')

ylabel('Accelerance')

meta s380

y.

X FOURTH POSITION

X input 3007x, sensor 15251z

a4x modal(evec,3816,793);

r4x frfacc(a4x,eval,w);

axis( [0,10000000,1,9] );

semilogy(w./(2*pi),abs(r4x))

title('accelerance 3816,793; input 3007x, sensor 15251z')

xlabel('F:requency (Hz)')

ylabel('Accelerance')

meta s380

FIFTH P

X FIFTH POSITION
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'. input 3005x, sensor 15251z

a5x = modal(evec,3816,790);

r5x = frfacc(a5x,eval,w);

axis([0,1000000,1,9]);

semilogy(w./(2*pi),abs(r5x))

title('accelerance 3816,790; input 3005x, sensor 15251z')

xlabel('Frequency (Hz)')

ylabel('Accelerance')

meta s380

X SIXTH POSITION

1.

h input 3003x, sensor 15251z

a6x = modal(evec,3816,787);

r6x = frfacc(a6x,eval,w);

axis([0,1000000,1,9]);

semilogy(w./(2*pi),abs(r6x))

title('accelerance 3816,787; input 3003x, sensor 15251z')

xlabel('Frequency (Hz)')

ylabel('Accelerance')

meta s380

% SEVENTH POSITION

1.

X input 3001x, sensor 15251z

a7x = modal(evec,3816,784);

r7x = frfacc(a'7x,eval,w);

axis( [0,1000000,1,9]);

semilogy(w./(2*pi ),abs (r7x))

title('accelerance 3816,784; input 3001x, sensor 15251z')

xlabel('Frequency (Hz)')

ylabel('Accelerance')

meta s380
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D.1.3 S380.M

X load the eigenvectors output from ABAREAD.EXE program

X the units are in Kg, mm , sec

load s3801

load s3802

load s3803

load s3804

load s3805

load s3806

X load eigenvalues

load s380evl

eval=s380_evl;

X make them mass normalized, see Evins page 40-41
generalmass = [6.48845e-6

1.03677e-5

8.41808e-6

6.10529e-6

8.75976e-6

1.52078e-5];

evecl = s3801/sqrt(generalmass(i));

evec2 = s3802/sqrt(generalmass(2));

evec3 = s3803/sqrt(generalmass(3));

evec4 = s3804/sqrt(generalmass(4));

evecS = s3805/sqrt(generalmass(5));

evec6 = s3806/sqrt(generalmass(6));

evec = [evecl evec2 evec3 evec4 evec5 evec6];

pack
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D.1.4 MIODAL.M

function alpha modal(evector,j,k)

%, modal analysis based on equation 2.40 for D.J. Evins book
%. Modal Testing: Theory and Practice
Y.

% N rhj*rhk

Y, '(j,k) = d ----------

X, r=l (wr} - w})

.

. the function is used as follows

% alpha = modal(evector,j,k)

X alpha is the receptance for a force at k

, and a displacement at j.

' evector is the M-orthonormalized eigenvector matrix

[M,N] = size(evector);

X. create a vector to hold the rhj*rhk products (equ 2.40)

alpha = o:nes(N,:L);

X value o:f r determines the column of evector

for r = 1:N,

alpha(r,l) = evector(j,r)*evector(k,r);

end

202



D.1.5 FRFACC.M

function response = frfacc(alpha,eval,w)

Y, takes the alpha values from MODAL.M and calculate the

. response to a given range of frequencies w. The values

X of eval should be in (rad/sec)} and w should be in

X (rad/sec).

[M,N] = size(alpha);

CM1,N1I = size(w);

% M is the number of modes
response -- zeros(Ml,l);
for i = :M,

response = response -(w.*w).*( alpha(i)./(eval(i) -w.-2) );

end
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D.2 Force Identification using Magnitude and Phase

The following Matlab programs were used in the force identification process using magnitude
and phase.. The raw data comes from the Unkelscope program, is converted for use in Matlab,
and is processed in Matlab.

The steps for the procedure are the following.

1. Convert the Unkelscope data files to Matlab files using the UTRANS.EXE program that
comes with Unkelscope.

2. Use the USCO2MAT.M program to patch the time split files together. (Note that
the UJTRANS.EXE program splits up the data files into two parts like filel.mat and
file2.mat.) But the following must be changed in the USCO2MAT.M program.

(a) Gain of the amplifier used.

(b) Filename

(c) End of the filename, for example change all occurrences of 11 and 21 to 21 and 22
or al and a2, respectively.

3. Clear away any unwanted variables. Set up the frequency vector, e.g.

f = 50000*(0:4095) '/8191; and set up a vector with the locations of the peaks, e.g.
peaks = [596;840;1287;1348;.

4. Calculate the FFT and remove the linear phase taper, e.g.

AldOl = re_taper(f,aldOl,peaks);

5. find modal constants, e.g.

mpOla findall(peaks,f,AldOl);

6. Save data, e.g.

save set2_a

7. Begin pattern matching

8. Load the database of modal constants, A, into DATABASE.MAT.

9. Use the PATMATCH.M program to compare the modal constants from an individual ball
drop test with the database, e.g.

[loc:(1),for(1),errO1] = patmatch(mpOla(3,:).*sign(mpOla(4,:)))');
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D.2.1 USCO2MAT.M

. USC02MAT.M translates uscope (utrans) files into more

. reasonable matlab files

gain = 50; X amplifier gain

file = 'da'; %. part file name
for i = 1:14,

ai = num2str(:i); % index of test number

if i<10

ai= ['O',int2str(i)]; Y, pad with a zero

end

eval(['load ',file,ai,'1']); % load a31

uclear

eval(['t',file,ai,' = T1;']); Y, td3 = T1;

eval(['al',fi:Le,ai,' = Vi;']); 7 ad3 = V1;

eval(['a2',fi:Le,ai,' = V2;']); % ad3 = V2;

eval(['load ',file,ai,'2']); % load a32
uclear;

eval(['t',file,ai,' = [t',file,ai,';T1];']);

% td3 = [td3;T1];

eval(['al',file,ai,' = 9.8/(0.010*gain)*Eal',file,ai,';V1];']);
eval(['a2',file,ai,' = 9.8/(0.010*gain)*[a2',file,ai,';V2];']);

. a2d3 = (:L.0/0.010)*9.8*(1.0/100)*[a2d3;V1];

% 0.010 V/g and 9.8 m/sec^2/g and gain 100

clear T1 V1 V2

eval(C['save ',file,ai,' t',file,ai,' al',file,ai,' a2',file,ai])

%.save a3 td3 ad3 a2d3

whos

end
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D.2.2 FLETAPER.M

function frf = :re.taper(f,acceler,peaks);

% Keep changing the angle until all the resonant circles

% are at +/- 90 degrees.

% name = 'a2d04';

. Usage

,% frf = rtaper(freqHz,acceler,peaks);

% find the starting point of the vector

offset = mean(acceler(1:100));

maxacc = max(acceler-offset);

i = 1;

while (acceler(i)-offset) < (maxacc*0.05),

i= i + 1;
end

disp(i)

frfnew = fft(sh:ift(acceler,i-10))/(length(acceler)/2);

frfnew = frfnew(1:1600);

f = f(1:1600);

frfnew(1) = 0;

parameters=peaksf it (peaks ,f, frfnew);

clear perr;

i= 1;
perr = 90/360*(:2*pi);

while((perr/(2*pi)*360 > 10) & (i <=20)), 10 degree error limit

frfnew=rtape:r(parameters ,peaks, f, frfnew);

parameters=peaksfit(peaks,f,frfnew);

perr = peakerr(parameters);

perr=mean(abs(perr));

if abs(frfnew(peaks(4)))/max(abs(frfnew)) < 0.05,

disp('peak 4 eliminated from error');

perr=mean(abs(p_ err(1:3)));

end

if abs(frfnew(peaks(2)))/max(abs(frfnew)) < 0.05,

disp('peak 2 eliminated from error');
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perr'-mean(abs([perr(l) ;perr(3);perr(4)));

end

i = i + 1;
end

if i > 20,

error('could not line up circles after 20 tries, RETAPER.M')

end

frf = frfnew;

%axis([1,10,0,60C));

Y.axis( 'no:rmal');

Y.eval('meata ',name, 'err'])

%eval(C'meta n',,name,int2str(i)]);
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SHIFT.M

function x2 = shift(xl,shifta);

, Turns a vector around

A% x2 = shift(xl,amountofshift);

xlen = length(xl);

x2 = ones(xlen,l);

xsize = size(xl);

if shifta < 0,

error('shift must be positive, SHIFT.M')

end'

if xsize(l) < xs:ize(2),

error('row vector given when column expected, SHIFT.M')

end

x2 = xl(shifta+l:xlen,:);xl(l:shifta,:)];
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PEAKSFI:T.M

function parameters = peaksfit(peaks,freq,frf);

, Function PEAKSFIT.M fits circles the peaks in the frequency

, response function

. Usage

% parameters = peaksfit(peaks,freq,frf);

npeaks = length(peaks);

para=' ones3(4,npeaks); . space for results

for i = :npeaks,

x = ea:L(frf(peaks(i)-10:peaks(i)+10));

y = imag(frf(peaks(i)-10:peaks(i)+10));

para(:,:i)=circ_fit(x,y);

end

parameters = para;

K make plot of original data and fit circle

yp = ones(0ll,npeaks);

xp = ones(0ll,npeaks);

for j = l::npeaks,
RO = para(l,j);

xO = para(2,j);

yO = para(3,j);

for i 1:101,

thet;a = (i-1)/100*2*pi;

xp(:i,j) = RO*cos(theta)+xO;

yp(i,j) = RO*sin(theta)+yO;

end

end

axis( 'square')

xrange=max([abs (max(max(xp))),abs(min(min(xp)))]);

yrange=max([abs(max(max(yp))),abs(min(min(yp)))]);

trange = max([xrange,yrange]);

axis( E-trage, +trange, -trange,+trange]);

plot(reall'frf),i.mag(frf),'+w',xp,yp,'-r');
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R_TAPER.M

function frfnew = rtaper(parameters,peaks,freq,frf);

% Function RTAPER.M removes a linear phase taper from the frf

% data. It does this by making sure that the centers of the

% circle line up with +/- 90 degrees.

% Usage

frfnew = rtaper(parameters,peaks,freq,frf);

Y, The PARAMETERS parameter is whos columns are

% ERO;XO;YO;sumof.error] and each column is for an new peak in
, the PEAKS vector. This PARAMETERS is provided

I, by the PEAKSFIT.M function. The PEAKS vector contain the index

% location of the peaks in FREQ and FRF. The FREQ vector is

, in Hz.

1.

Y, calculate angle of the center of the first peak

xO = parameters(2,1);

yO = parameters(3,1);

G = atan2(yO,xO);

X this dG is how close the circle can be to +/- 90

?, before it is rotated 180 degrees

dG = 0.01;

% determine its quadrent
if (pi/2-dG < G) & (G <= pi),

%disp('CASE A')

Gerror = 3*pi/2-G;

elseif (-pi < G) & (G <= -pi/2-dG),

%,disp('CASE 1B')

Gerror = -pi/2-G;

elseif (-pi/2-dG < G) & (G <= pi/2-dG),

Y,disp('CASE 2')

Gerror = pi/2-G;

else

error('RTAPER.M, angle of circle does not meet conditions')

end

%,disp(Gerror)

tO = Gerror/(2*pi*freq(peaks(1)));
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%disp (tO)

. Create a new FRF by dividing by an expontial taper
frfnew = frf./exp(-sqrt(-1)*2*pi*freq*tO);

plot(real(frf),imag(frf),real(frfnew),imag(frfnew))
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PEAKERR.M

function perror = peakerr(parameters);
Y. Function PEAKERR.M determines how well the resonant circles
% line up with the +/- 90 angle.

%. Usage

7. peakerror = peakerr(parameters);

X

temp=size(parameters);
npeaks = temp(2);
Gerror = ones(npeaks,l);

I

for i = l:npeaks,

xO parameters(2,i);

yO = parameters(3,i);

G = atan2(yO,xO);

X determine its quadrent

if (O < G) (G <= pi),

Gerror(i) = pi/2-G;

elseif (-pi < G) t (G <= 0),

Gerror(i) = -pi/2-G;

else

error('PEAKERR.M, angle of circle does not meet conditions')

end

end

perror = Gerror;
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D.2.3 FINDALL.M

function modalp = findall(peaks,f,frf)

% FINDALL.M uses FINDFREQ.M to find all the modal constants

, for a frf. The function FINDFREQ.M only finds the modal

X constants for a single peak. This function takes a vector

, of peak locations (as an index) and runs them through the

% FINDFREQ.M function one at a time and assembles them into

% a matrix of modal constants
% Usage

, modalp = findall(peaks,freqHz,frf)
X where

/% modalp = [ frl fr2 frn
. etarl etar2 etarn
I. Arl Ar2 Arn
% phir phphir2 phirn ]

. frn is the resonance frequency in Hertz, etarn is the

X loss factor, Arn is the modal constant, and phi_r is the

%, angle of the modal constant.

Y, The function MAKEACC.M can be used to make a graph of the

%, frf from the modal parameters.

for i = :length(peaks),

modalp(1:4,i) = findfreq(peaks(i),f,frf);

end

213



FINDFREQ.M

function modalp = findfreq(idd,f,frf);

X find the peaks frequency when given 4 points around the

7 resonance frequency.
, Usage

V. modalparameters = findfreq(peaklocation,freqHz,:

. where

X modalparameters = [f-r;etar;Ar;phir]

.
X It look for a change in sign in the second derivative of

/, of the angle theta in a range of +/-10 of the user given

7. peak location. It uses this result to select 2 data points

. before and after the resonant frequency for use in second

,. order interpolation scheme.

. ***** set up a table of finite differences ********

7. ***************************************************
ind = (idd-2:idd+2); X select data points near peak

theta = angle(frf(ind)); phase angle of frf

n = length(theta); X number of data points

dtheta = theta(1:n-i)-theta(2:n);

ddtheta = dtheta(1:n-2)-dtheta(2:n-1);

dddtheta = ddtheta(l:n-3)-ddtheta(2:n-2);

clg;subplot(ll);clg;subplot(221);

plot(ddtheta);

Xplot(dddtheta);

junk,ipeak]-max(abs(dddtheta)); . find maximum change

Z. ******** Begin second order interpolation *********
. ***************************************************
idd idd + ipeak - 2;

ind'= (idd-l:idd+2);

omega = 2*pi*f(ind);

theta = angle(frf(ind));

omega2 = omega.'2;

vO = omega2(0+1);

vi = omega2(1+1);

X select 4 data points near peak

. convert to radian frequency

. phase angle of frf
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v2 = omega2(2+1);

v3 = omega2(3+1);

fvO = theta(O+1);

fvl = theta(i+1);

fv2 = theta(2+1);

fv3 = theta(3+1);

fvOvi = (fvO - fvl)/(vO-vi);

fvlv2 = (fvl - fv2)/(vi-v2);

fv2v3 = (fv2 - fv3)/(v2-v3);

fvOvlv2 = (fvOvi-fvlv2)/(vO-v2);

fvlv2v3 = (fviv2-fv2v3)/(vi-v3);

fvOvlv2v3 = (fvOvlv2-fvlv2v3)/(vO-v3);

X create a range of omega*2 to plot the data over.
v = (vO:(v3-vO)/50:v3)';

, make interpolation function
fv= fvO + ..

(v-vO)*fvOvl + ..

(v-vO).*(v-vi).*fvOvlv2 + ..

(v-vO).*(v-vi).*(v-v2)*fvOvlv2v3;

. calculate the minimum of the function.

vmin (/3)*((vO+vl+v2)-fvOviv2/fvOviv2v3);
omegar = sqrt(vmin); . resonance frequency (radian)

fr 5 omegar/(2*pi); X. resonance frequency (Hz)

fvmin= fvO + ..
(vmin-vO)*fvOvl + ..

(vmin-vO).*(vmin-vl).*fvOvlv2 + ..

(vmin-vO). * (vmin-vi).*(vmin-v2)*fvOvlv2v3;
plot(sqrt(omega2)/(2*pi),theta/(pi)*180,..

sqrt(v)/(2*pi),fv/(pi)*180, ..

sqrt(vmin)/(2*pi),fvmin/(pi)*180, 'bo');

ylabel('angle(degrees)');xlabel('freq (Hz)');

df = fvOv + ..

(2*v-(vO+vl))*fvOvlv2 + ..

(3*(v.^2)-2*(vO+vl+v2)*v+(vO*v2+vO*vl+vi*v2))*fvOvlv2v3;

plot(sqrt(v)/(2*pi),d);

ylabel('d(theta)/d(omega^2)');xlabel('freq (Hz)');

peakfreq = fr;
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% ***************************************************
Y. ******** find peak magnitude of frf **************

r. find the magnitude of the FRF at the resonant frequency by
X. finding the intersection of the line to the resonant frequency
o, and the circle fit to the data.

pa= circfit(real(frf(idd-10:idd+10)),imag(frf(idd-10:idd+10)));

RO = pa(1); xO pa(2); yO = pa(3);

[xr,yr] = linecirc(fvmin,RO,xO,yO);

frfpeak = xr+sqrt(-i)*yr;

plot(f(idd-5:idd+5),abs(frf(idd-5:idd+5)),..

[frfr], [max(abs(frf(idd-5:idd+5))) ;0] ,fr,abs(frfpeak) ,'go')
ylabel('vibration');xlabel('freq (Hz)');title('Peak Frequency')

', *************** find loss factor ****************

xr = xr; yr = yr; %. location of resonance

xc xO; yc = yO; Y, location of center

subplot(111);clg;axis('square');

for i = 1:5,

for j 1:5,

xa=real(frf(idd-i)); location of a point before resonance

ya=imag(frf(idd-i));

omegaa f(idd-i)*2*pi;

xb=real(frf(idd+j)); Y. location of a point after resonance
yb=imag(frf(idd+j));

omegab = f(idd+j)*2*pi;

maxplot-max(abs( [xc,yc,xa,ya,xb,yb,xr,yr ) )*1.20;
axis( -maxplot,maxplot,-maxplot,maxplot]);

plot(xc,yc, 'go',xa,ya,'r+',xb,yb,'r+',xr,yr,'g+');

if i == I j == 1, hold; end

gammaa = -atan2(yr-yc,xr-xc) + atan2(ya-yc,xa-xc);
gammab -atan2(yb-yc,xb-xc) + atan2(yr-yc,xr-xc);
eta(i,j)= (omegab-2-omegaa-2)/omegar-2 ..

*1/(tan(gammaa/2)+tan(gammab/2));

end

end

hold;axis('normal');

pause(l);

V, free axis
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mesh([ [O*ones(5,2) ,eta] ;O*ones(2,7)1);

pause(1);

axis( [1 ,5, O,max(max(eta))])

plot(eta);pause(1)

axis;

Y.disp(eta)

etar = mean(mean(eta));

X ***************************************************

X ************** find Modal Constant ****************

%Ar = 2*RO*omegar^2*etar for receptance
Ar = 2*RO*etar; X for accelerance
phiratan2(yr-yc,xr-xc);

Y *****\**********************************************

. ************ compare fit by plotting **************

Y, ***************************************************

omega = 2*pi*f; % radian frequency

omegat = 0.05*2*pi*max(f):2*pi*max(f)/2000:2*pi*max(f);

Inert = - omegat.^2 * Ar*sign(sin(phir)) ..
./(omegar.^2 - omegat.^2 + sqrt(-l)*omega_r.^2*eta_r);

subplot (211);

semilogy(omegat/(2*pi),abs(Inert),..

f(5:length(frf)),abs(frf(5:length(frf))));

plot(omegat/(2*pi),angle(Inert),..

f(5:length(frf)),angle(frf(5:length(frf))));

subplot(11);

modalp=[fr;etar;Ar;phir]; X vector of returned constants
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MAKEACC.M

function [f,frf] = makeacc(modalp);
Y, function MAKEACC.M takes modal parameters and turns
Z them into a vector of frequency and accelerance. This

% is useful for plotting the results of extracted modal

X parameters.

X Usage

X. [f,frf] = makeacc(modal.parameters)

X where

X modalparameters = [ frl fr2 frn
% etari etar2 etarn
. AArl Ar2 Arn
% phirl phir2 phirn ]

X frn is the resonance frequency in Hertz, etarn is the

% loss factor, Arn is the modal constant, and phi_r is the

% angle of the modal constant.

npeaks = size(modalp);

npeaks = npeaks(2);

fmax = 1.2*modalp(1,npeaks);
f = (O:fmax/2048:fmax)';

omega = 2*pi*f;

frf = O*ones(length(f),l);

for i = :npeaks,

omegar = 2*pi*modalp(1,i);

etar = modalp(2,i);
Ar modal_p(3,i);
phir = modalp(4,i);

frf frf - (omega.'2 * Ar*sign(sin(phir))) ..
./(omegar.'2 - omega.-2 + sqrt(-1)*omegar.2*etar);

end
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D.2.4 PATMATCH.M

function [location,force,er] = patmatch(unknown)
X Function PATMATCH.M takes four unknown modal constants
X and compares them with database in file DATABASE.MAT.
X it reports the estimated impact location.

, Usage
X [location,force,error] = patmatch(modalconstants);

load database

if(max(size(unknown)) ' 4)

disp('function PATMATCH requires 5 modal constants')
end

for i 1:14,

AA A(1:4,i);

b = iknown(1:4);

x(i) = inv(AA'*AA)*AA'*b; X pseudo inverse

e = b - AA*x(i);

er(i) · e'*e;

end

plot(er)

[location,l.index] min(er(1:14));

location l.index;

force x(l.index);
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