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Abstract

We use a multiscale natural pixel type representation of an object, originally developed for
incomplete data problems, to construct nearly orthonormal basis functions. The coefficients of
expansion of an object in these basis functions are obtained as the 1-D wavelet transform of the
(strip integral) projections of the object. This enables us to formulate a multiscale tomographic
reconstruction technique wherein the object is reconstructed at multiple scales or resolutions.
A complete reconstruction is obtained by combining the reconstructions at different scales.
The nearly orthonormal behavior of the basis functions results in a system matrix, relating
the input (the object coefficients) and the output (the projection data), which is extremely
sparse. The system matrix, in addition to being sparse, is well-conditioned and has a symmetric
block-Toeplitz structure if the angular projections are uniformly spaced between 00 and 1800° .

Fast inversion algorithms exist for these matrices. The multiscale reconstruction technique can
find applications in object feature recognition directly from projection data, tackling ill-posed
imaging problems where the projection data are incomplete and/or noisy, and construction of
multiscale stochastic models for which fast estimation algorithms exist. In this paper, we include
examples illustrating the above applications of our multiscale reconstruction technique.

'This work was supported by the Office of Naval Research under grant N00014-91-J-1004, by the US Army
Research Office under grant DAAL03-92-G-0115, and by the Air Force Office of Scientific Research under grant
F49620-92-J-0002.
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1 Introduction

The conventional, and most commonly used, method for image reconstruction from tomographic
projections is a transform method called Convolution Back-Projection (CBP) [1]. The CBP recon-
struction, though fast, is not suitable for imaging problems where the projection data are incomplete
(limited angle and/or truncated projections) [2, 7] or noisy and where the fundamental interest is
not in the actual pixel values themselves, but rather in something that is derived from these, such
as averages, boundaries [4] etc. These problems are encountered in many applications in medicine,
non-destructive testing, oceanography and surveillance. Here we present a transform method for
image reconstruction where we work in a multiscale transform space. This multiscale reconstruc-
tion method provides a framework that has the potential of overcoming the above limitations of
the CBP reconstruction. Specifically, we use a natural pixel type representation of an object [5, 6]
to construct nearly orthonormal basis functions. The coefficients of expansion of the object in
these basis functions can be computed from the projection (i.e. the strip integral) data by using
the wavelet transform.

The natural pixel method [5, 6] expands the object in the same basis functions along which the
projection data are collected, thereby using a basis representation for the object that is closer to the
measurement domain than the standard rectangular pixel basis. The natural pixel representation
results in a matrix based reconstruction method. Since matrix based reconstruction methods do
not utilize the space invariance assumption of the CBP, the natural pixel reconstruction is devoid of
the many limited data artifacts present in the CBP reconstruction. The disadvantage of the natural
pixel reconstruction, or the matrix based reconstruction methods in general, is that inversion of
very large, ill-conditioned matrices is required.

In this paper, we build on the natural pixel approach by using wavelet bases to transform the natural
pixel basis functions. The use of the wavelet bases enables us to formulate a multiscale tomographic
reconstruction technique wherein the object is reconstructed at multiple scales or resolutions. The
coarser scales contain the low frequency (i.e. the low resolution) information about the reconstructed
object and the finer scales contain the high frequency (i.e. the high resolution) information. The
standard reconstruction is obtained by combining the reconstructions at different scales. The
natural pixel transformation matrix, relating the input (the object coefficients) and the output
(the projection data), is full. The use of wavelet bases, in addition to providing a multiscale
framework, results in this transformation matrix being sparse. Also, the multiscale framework
allows us to use simple geometric arguments to partition the multiscale transformation matrix such
that the reconstruction method requires only the inversion of a sparse and well-conditioned matrix
which is symmetric block-Toeplitz if the projections are uniformly spaced between 00 and 180 °.

Note that fast inversion algorithms exist for these matrices.

Many imaging problems are ill-posed in the sense that we wish to reconstruct more degrees of
freedom than exist in the data. Noisy and/or incomplete projections (as in low dose medical imag-
ing, oceanography, and in several applications of nondestructive testing of materials) make the
reconstruction problem ill-posed. In these problems the lower resolution (i.e. the coarser scale)
reconstructions are more reliable than their higher resolution counterparts. The multiscale re-
construction approach provides estimates of the field (or the object) at a variety of resolutions
thus providing a natural framework for explicitly assessing the resolution-accuracy tradeoff. We
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show, through examples, that for an ill-posed reconstruction problem, some regularization can
be achieved by only combining coarser scale reconstructions instead of reconstructions at all the
scales. For noisy data problems, we specialize our multiscale reconstruction method to yield fast
MAP multiscale reconstruction estimates corresponding to a chosen prior on the multiscale object
coefficients.

Apart from this, the multiscale framework is useful in many other situations. It lends itself naturally
to situations where the projection data are collected at multiple resolutions. It also provides the
ability to reconstruct different parts of the object at different resolutions. This could be particularly
useful, for example, if the projection data is gathered with spatially varying density or if the desire
is to focus computational resources at certain points of interest.

Finally, the multiscale reconstruction method provides a means of object feature extraction directly
from the projection data. For instance, if we are only interested in imaging high frequency details
within the object (for example, boundariesl), then we could directly obtain these features by using
only the finer scale information in the data. Similarly, if averages2 of the pixel values in a region are
desired, then only the coarser scale information is needed. Using conventional, ad hoc techniques,
we would first have to reconstruct the object and then use post-processing to extract such features.
The disadvantages of the conventional approach are that (a) a good quality reconstruction (and
hence a complete projection data set) is required for post-processing [4], and (b) even though the
noise in projection measurements is white, the noise in the reconstructed image is colored, and
hence the necessity of using a 2-D whitening filter on the reconstructed image [3].

The paper is organized as follows. In Section 2 we describe the tomographic reconstruction problem.
In Section 3 we describe the natural pixel reconstruction technique and explore it's relationship
with conventional reconstruction methods. In Section 4, starting from the natural pixel object
representation, we develop the theory behind our multiscale reconstruction method. We present
some sample reconstructions in Section 5, and present conclusions in Section 6. Appendices 1-5
contain mathematical details of our multiscale reconstruction method, and Appendix 6 summarizes
the mathematical notations used throughout this paper.

2 The Tomographic Reconstruction Problem

In non-diffraction tomography, the goal is to reconstruct an object or a field, f, from the projection
data [1]. For a parallel-beam imaging geometry, the projection data consists of parallel, non-
overlapping strip integrals through the object at various angles (refer to Figure 1). Each angular
position corresponds to a specific source-detector orientation. Thus the projection data can be
mathematically represented as Yk,, where k = 1,..., M (M is the number of uniformly spaced

angular positions between 0 and 1800), and n = 1,..., N (N is the number of parallel strip integrals
in each angular position). Furthermore, we call thkn the indicator function of the strip labeled by

'Boundary detection has applications in medical imaging (detection and outlining of boundaries of organs and
tumors), nondestructive testing, oceanography and plant physiological studies [4].

2 Computation of average values in a region of the field has applications in functional medical imaging.
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Yln: projection at angle 1 (k=1)
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Figure 1: The projection measurements for an object, f (shaded), at two different angular positions
(k = 1 and k = 2 respectively). The number of parallel strip integrals in each angular projection,
N, is 8 in this case. Three basis functions, u11, 018, 28, which are the indicator functions of the
corresponding strips, are also shown.

(k, n) so that qkn has value one within that strip and zero otherwise. Given this notation,

Ykn =JJ f(uv) kn(Uv) dudv k = 1,...,M; n= 1,...,N (1)

where (u, v) are the rectangular coordinates and the integration is carried over a region of interest
Ql.

Due to practical considerations, we have to work with a discretized version of Equation 1. This is

y= [ yT () y T (2) ... y T (k) ... y T (M) ] = Of (2)

where y(k) is the projection data set collected at angle k, and is composed of the N strip integrals
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as shown below

y(k)=[k Yk2 ... YkN] (3)

The vector f is formed by first discretizing f(u, v) on a rectangular lattice (we will assume a p x p
square pixel lattice) and then stacking the discretized values in a lexicographic order into a vector

f= [f f2i .. fp2 ] (4)

and the MN x p2 matrix q is formed by first stacking all {~kn(u, v), k = 1,..., M; n = 1, ... , N}
into a vector followed by discretization in u and v (on the same square pixel lattice used for f) and
lexicographic ordering (to match that in f)

F 01,1 0,11,2 ..."' 11,p2

|2' 012,1 012,2 ... 12,p2
= (5)

OMN,1 OMN,2 ..."' MN,p2

The tomographic reconstruction problem then reduces to finding an estimate, f, of the discretized
object, f, given the projection data y.

3 The Conventional Reconstruction Techniques

In this section we discuss two conventional reconstruction techniques, the widely used convolu-
tion back-projection (CBP) reconstruction technique, and the natural pixel (NP) reconstruction
technique used by us as a starting point for our multiscale reconstruction.

In both the CBP and the NP reconstructions, the object is represented as a linear combination of
(non-orthogonal) basis functions b along which the projection data are collected. Mathematically,

M N

f(u,v) = E E Xkn kn(u V). (6)
k=l n=l

The discretized version of the above equation is

f = T x (7)

where

= [XT(1) xT() () ... T (k)... IT(M) ]T (8)

In the above equation, x(k) is the object coefficient set at angle k, and is composed of the N object
coefficients as shown below

x(k)= [ Xkl Xk2 ... XkN ] T (9)

In the NP reconstruction, the coefficients of expansion, Xkn, are called the natural pixels. Equa-
tion 7 can also be interpreted as the back-projection operation where the coefficients Xkn are
back-projected along the basis functions kn. Thus if the natural pixels, Xkn, are the same as the
ramp-filtered projection coefficients of the CBP, the natural pixel and the CBP reconstructions will
give identical results. We will come back to this later.
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3.1 The convolution back-projection (CBP) reconstruction

The CBP reconstruction assumes a space-invariant point spread function [7, 8, 9] and hence is
only valid for complete data problems. We borrow the definition of a complete data set from
Llacer. According to Llacer [7], "a complete data set could be described as sufficient number
of line projections at a sufficient number of angular increments such that enough independent
measurements are made to allow the image reconstruction of a complete bound region."

In the CBP reconstruction, the space invariance property is utilized to calculate x_(k) at each
angular position, k, by convolving the projection data at that particular angular position with the
inverse Fourier transform of a ramp filter [1]. Thus, for a fixed angular position k,

x(k) = F-'(p)*y(k)

= T y(k) (10)

where p is a vector containing the 1-D ramp filter coefficients, F - l (p) represents the 1-D inverse
fourier transform of the l-D ramp filter, * refers to 1-D convolution in the spatial domain, and the
matrix Ta performs the operation F- 1 (p)*. Let

T = IMM Ta (11)

where IMxM is an M x M identity matrix and 0 refers to the Kronecker product. The above
equation implies that T is a block-diagonal matrix with M blocks along the diagonal, all equal to
Ta. Thus, for the CBP reconstruction, the necessary steps are as follows3 (a) computation of the
basis coefficients x from projection data y by the equation

x = Ty (12)

where T is as defined in Equation 11, and (b) back-projection according to

Zf = = JTTy. (13)

Note that if all elements of p are replaced by unity, then Equation 13 reduces to simple back-
projection reconstruction (without any filtering). This reconstruction is approximately equal to the
true object, f(r, 0) in radial coordinates, blurred with a (circularly symmetric) l/r point spread
function.

3.2 The natural pixel (NP) reconstruction

In the NP reconstruction [5, 6], the space-invariance assumption of the point spread function is
not used to find the natural pixels, x, from the projection data, y, and hence it's applicability
to incomplete data problems. Equations 2 and 7 are used instead. Thus the CBP reconstruction
can be viewed as a special case of the NP reconstruction under space-invariance or complete data
assumptions. By substituting f from Equation 7 for f in Equation 2, we get

y = (OqT)_ = Gx where G = OOT. (14)

3In practice, for regularization purposes, a roll-off is applied to the ramp filter. This operation would include an
additional matrix Q and so F-'(p) will be replaced by F-'(Qp) [1].
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Figure 2: The elements of the matrix G are the areas of intersection of various strips. One such
area of intersection, corresponding to two strips delineated by bold lines, is shown shaded. The
matrix G is full as most of these areas are non-zero.

The elements of the matrix G are the areas of intersection of the strips defined by the basis functions
b. Most of these areas are not zero and hence the matrix G is full (refer to Figure 2). It can be

easily shown that G is symmetric block-Toeplitz if the M angular projections are uniformly spaced
between 00 and 180 ° , even though G may be quite ill-conditioned in general, as we will see later.
Figure 7, top, shows G for an imaging geometry with 32 angular projections (i.e. M = 32) and
with 32 strip integrals (i.e. N = 32) in each angular projection.

The advantage of the NP reconstruction over the CBP reconstruction is that (a) since the matrix
G can be calculated or measured for each specific geometry, the reconstruction can be customized
for any imaging system, and (b) the point spread function does not have to be space invariant
and hence a complete set of angular projection data is not required as in CBP. However, the NP
reconstruction suffers from some disadvantages as well, namely that (a) the large size of the matrix
G (MN x MN) imposes a limitation on storage and speed, and (b) the matrix G can be quite
ill-conditioned for some imaging geometries (see the following discussion and [7, 8, 9]).

In the next section, we use wavelet bases to transform the NP basis functions, b, into the multiscale
framework. As described in the Introduction, we gain many important features in going to the
multiscale framework. In addition, we overcome the above limitations of the NP reconstruction.
The multiscale system matrix, r 0, is related to G by a similarity transformation and is sparse. This
and the fact that r 0 is block-Toeplitz for the case of uniformly spaced angular projections, offsets the
first disadvantage of the NP reconstruction. Also, the geometry of the imaging system is naturally
captured in re. We exploit this feature to partition ro into well and ill-conditioned matrices such

7



MIT Technical Report LIDS-P-2196

that our reconstruction procedure requires inversion of only well-conditioned matrices. This offsets
the second disadvantage of the NP reconstruction.

Connection with the least-squares reconstruction

If the matrix 4 has full row rank, then the NP matrix G is invertible and in this case the NP
solution is given by f = qTG-ly. This is just a special case of the minimum 2-norm least squares
solution to y = qOf (Equation 2) and given by [12]

fLS = 4+Y (15)

where 4+ refers to the pseudo-inverse of 4b. However, as we discuss next, it is not possible in general
to invert G even when 4 has full row rank. This is because the matrix G is ill-conditioned due to
the inherent non-uniqueness in the NP representation.

Non-uniqueness in the NP representation

Because the NP object representation is tied to the collection of projection data, there is an in-
herent non-uniqueness in the representation which results in G not having full rank or being badly
conditioned. Specifically, G = ¢OOT has full rank (i.e. is invertible) if and only if 4 has full row
rank. Recall from Equation 5 that the rows of 4 are composed of discretized basis functions,

_Tf..., T .. " -MN Thus G has full rank if none of these basis functions can be written as a
linear combination of the others. This is not true if two disjoint subsets of {ten} span the same
object subspace. As an example, assume that all angular projection sets exactly span the entire
object space. Then obviously

N N

Akin k 2n = ° V k1 k2, and k, k2= 1,...,M (16)
n=l n=l

because the DC term in the object appears in all M angular projections. Thus, in this example, 4
does not have full row rank, resulting in a singular G. Throughout this paper, we assume that p = N
(i.e. the object is discretized in a p x p = N x N rectangular pixel lattice, where N = number of
strip integrals in each angular projection) and that the M angular projections are uniformly spaced
between 0 and 1800. Thus 4 and G are MN x MN square matrices. In this geometry, Equation 16
is true only if k1 and k 2 correspond to projections at 00 and 90 ° , since only projections at these
angles exactly span the entire object space. Now, angular projections at 0° and 900 exist if and
only if M is even because of our assumption of uniformly spaced angular projections. Thus if M
is even, 4 has rank MN - 1, otherwise it has a full rank of MN. Similarly, it can be shown that
G drops a rank for each pair of projections 900 apart. There are projection pairs 900 apart if and
only if M is even, in which case there are exactly M/2 of them. Thus if M is even, G has a rank
of MN - M/2, otherwise it has a full rank of MN.

Thus, if M is even, it is not possible to uniquely solve for x in y = Gx. Because of numerical
issues (we use 7 digit precision for calculation of elements of G), the matrix G has full rank for even
as well as odd M. The condition number is a good measure to use in this case. In Figure 3, we
show the condition numbers of G for imaging geometry with M = N and for values of M ranging
from 8 to 18. Notice the steep fluctuation in condition numbers between odd and even values of
M, and the steady increase of the condition number for increasingly odd values of M. This is
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Figure 3: The condition number of G as a function of M = N.

because projection pairs approach being 900 apart as M is increased in this case. Thus, due to this
ill-conditioning, it is not possible to uniquely solve for X in y = Gx even for odd values of M. We
show, in Section 4, that this non-uniqueness problem of the NP representation is easily dealt with
in the multiscale framework. As a result, the system matrix in the multiscale framework can be
partitioned into well and ill-conditioned matrices such that the reconstruction requires inversion of
only well-conditioned matrices.

The dropping of the rank of G for each projection angle pair 900 apart is illustrated in Figure 4.
For simplicity, consider a 2 x 2 object

f= [fi f2 f f4] T (17)

and projection measurements

[ Y11 Y12 Y21 Y22 ] (18)

- [ f1 + f3 f2 +4 if + f2 f3 +4 ]T (19)
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¥1 Y12

Y21
fl f2

Y22
f3 f4

Figure 4: Imaging geometry where the object, f, is discretized on a p2 = 4 pixel lattice. Here
M = N = 2 with the projections being 900 apart.

Here

=1 1 (20)

has a rank of 3, and

i2 0 (21)

1 1 10 22 

also has a rank of 3.

4 The Multiscale Reconstruction

The multiscale reconstruction is motivated by the following observations. In the previous section
we saw that the NP reconstruction involves solving for the natural pixels, x, from the projection

data, y, which are related by y = Gx and then back-projecting x, f = qT_. Also, the elements
of matrix G are the areas of intersection of the various strips along which the projection data are
collected. Suppose now that the strips are of the form shown in Figure 5. Each strip is a linear
combination of two NP strips, one given a positive weight and the other negative. The new matrix
relating x and y, according to the above choice of strips, will have as its elements the areas of
intersections of the newly defined strips. It is clear from Figure 5 that most of these elements will
be zero due to the cancellation of the positive and the negative terms. Only those elements that
correspond to strip intersections near the edge of the field-of-view will be non-zero. Thus one can
expect this new matrix to be sparse with the degree of sparsity increasing with the size of the
field-of-view.
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Figure 5: Each of the two delineated strips from figure 2 are broken down into two substrips, having
a positive and a negative weight respectively. The area of intersection of the two strips is zero in
this case due to the cancellation of the positive (lightly shaded) and the negative (darkly shaded)
terms.

The above redefinition of the strips with positive and negative weights is reminiscent of the finest
scale contribution from the Haar transform. However, an important point to note here is that the
Haar transform is taken only in one direction, i.e. the direction perpendicular to the long axis of
the strip. As an example, for a projection at a fixed angle, k = 1, and consisting of eight strips (i.e.
N = 8), the full Haar transform will look as shown in Figure 6. A notion of scale emerges from the
use of the Haar transform. The original strips have been broken down into strips at multiple scales
having positive and negative weights. The finest scale involves strips that have twice the width
of the original strips and the coarsest scale involves strips that have eight times the width of the
original strips. We will call the above transformation of the strips the natural wavelet transform
because of the adaptation to the natural pixel representation.

Let the new strips be defined by the basis functions {(kn) (recall that the original strips were
defined by basis functions {Ikn))' We use lowercase for the original NP basis functions and up-
percase for the multiscale basis functions. Note that each multiscale basis function k,,n is labeled
by three subscripts, ksn, where k indicates the angle of the projection (k = 1,..., M), s indicates
the scale (s = 1,2,...,1 + lnN/ln2; N = 2i, i C Z+), and n indicates the shift within the scale
(n = 1, 2,...,n; n8 = N/2' for s = 1,2,...,lnN/In2 and n, = 1 for s = 1 + InN/ In 2). In the
future, we will refer to the finest scale (s = 1) as h (for high), the coarsest scale (s = In N/ ln2) as

11
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The natural pixel basis functions corresponding to projection k=1

1 12 13 14 15 16 17 18

Scale 1 decomposition Scale 2 decomposition

I I I I III III

I 112 113 114 121 122

Scale 3 decomposition The constant or DCI I I I II I I I I

+1-++1+_- +]- +- I +1+1+1+1+1+1+1+

11 1111

Scale 3 decomposition on a discrete sequence4. Then, at a fixed osangular positi or Dnew multiscale1111111 I I1 I11

4We use the Discrete Periodic Wavelet Transform (DPWT) [11] with the Haar and the various Daubechies com-+ I I I I II- I- I- I+ +l+
pactly supported wavelets [10] for our reconstructions. A Daubechies compactly supported wavelet Dm is character-
ized by m vanishing moments.
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basis functions and the previous NP basis functions are related by

Ykh1

2

. = Wa : (22)
qT

-kdl

with W 1-l = NWaT because of our choice of orthogonal wavelet basis normalized such that the
absolute values of elements in the multiscale counterpart of matrix G lie between 0 and 1 irrespective
of the size of the imaging system. As an example, for N = 8 and using the Haar basis (Figure 6),
the bases at a single angle are related by

4 T W (23)
T/

where
1 -1 0 0 0 0 0 0
o 0 1 -1 0 0 0 0
o o 0 0 1 -1 0 0

1 0 0 0 0 0 0 1 -1
Wa = -i ° ° -M- 0 0 0 0. (24)210 1 1 1 1a a al -- -

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
V V4 V4 4i 74' 7 4 i4 vi

Let

W = IMxM ® Wa (25)

i.e. W is a block-diagonal matrix with M blocks along the diagonal, all equal to Wa. Then

T = W+ (26)

with W - 1 = NWT, where

= [hl ---. - idi ...... Kh-l -... dl ...... Mhl -- Mdl ]T (27)
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and b is as defined in Equation 5.

Recall the natural pixel equations (2), (7) and (14). The multiscale decomposition of vectors z and
y, given by ~ and 9 respectively, is defined as

A _ NWx (28)

and
Wy (29)

where we use the subscript 0 to indicate ordering according to projection angles corresponding to
our choice of W in Equation 25. Thus, to illustrate 0 ordering,

p [V)T(1) OT(2) ./(k) *-- 3B(M) ]T (30)

where Ot(k) is the 1-D wavelet transform of the projection data set at angle k, y(k), and is composed
of the elements at different scales as shown below

V(k)= Way(k)= [ (k,h) (k,h+ 1) ... (k j)... (k,d) ]. (31)

In the above, _.(k, j) isthe vector containing the jth scale components of the 1-D wavelet transform
of y(k)

%(k,j) = [ j j ** ... j. ]T (32)

with
N for j 0 d

nj = { (33)
1 for j = d.

Similarly

= [ (1) jT(2) ... !_T(k) ... T (M) ]T (34)

where ,(k) is the 1-D wavelet transform of the object coefficient set at angle k, x(k), and is
composed of the elements at different scales as shown below

(k) = NWx(k) = [ j(k,h) kj(k,h+ 1) ... (k, j) ... OT(k,d) ]T. (35)

In the above, 4 (k, j) is the vector containing the jth scale components of the 1-D wavelet transform
of x(k)

(k, j) = kji kj2 ... * kjnj ] (36)

with
N for j d

j 1 for j = d. (37)

The three subscripts ksn, in bksn and ~kn above, convey the same meaning and take on the same
values as those for __n.-

In the multiscale coordinates, the input-output equation (14) changes to

y = Gz

Wy = WGW-1'Wx

= (WGW T )g

r,= r(38)

14
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where the symmetric block-Toeplitz matrix r0 is given by

ro = WGWT = W(GT)WT = (Wq)(Wq) T = T. (39)

The above equation implies that the elements of the matrix r 0 are the areas of intersection of the
various multiscale basis functions 4. We know from our earlier discussion that re is sparse. The
object representation equation (7) changes to

a = Tx = oTW-lWX = oTWT§ = (Wq)Tg

= IT. (40)

In some cases it is more intuitive to order according to scales rather than projection angles. We
will denote the scale ordering by subscript s. Thus

_,J = P3_, (41)
Ps = Pea, (42)

QJ = rs,, (43)

and
r, = Prp - 1 = PrT (44)

where P is the (orthogonal) permutation matrix which changes projection angle ordering into scale
ordering. Thus, to illustrate s ordering,

,~/~h = [ (h) T(h+l) ... T(j) ,T(I)1 T(d )]T (45)

where '',(j) contains projection data at scale j from multiscale projection data sets at all angles
and is given by

-()= [ ' OT(1,j) 3T(2,j) ... OT(k,j) ... 3TT(Mj) T (46)

Similarly

_T = [_T(h) _T(h + 1) ... _T(j) ... T(t ) T(d) ]T (47)

where ,S(j) contains object coefficients at scale j from object coefficient sets at all angles and is
given by

(j) [ T (1 j) T(2, j) ... T(k, j) ... _T(M,j) ]T. (48)

As explained in the beginning of this section, we expect the multiscale matrices to be sparse. The
number of non-zero elements in r, and r0 are the same and hence the degree of sparsity achieved
in the multiscale framework can be studied using either of these. Figure 7, bottom, shows r,
for an imaging geometry with 32 angular projections (i.e. M = 32) and 32 strip integrals in each
angular projection (i.e. N = 32). We have used the Haar wavelet for this multiscale representation.
Comparing with Figure 7, top, which shows the corresponding NP system matrix, G, we see that rI
is sparser than G. From the figure, most of the non-zero terms in r, correspond to the coarser scale
terms where the edge effects are more pronounced. It was claimed in the previous section that r,
becomes more sparse as the size of the field-of-view increases. This claim is validated by Figure 8
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Figure 7: Top: Natural pixel system matrix, G; Bottom: Multiscale natural pixel system matrix,
Pr for an imaging geometry with 32 angular projections (i.e. M = 32) and with 32 strip integrals
(i.e. N = 32) in each angular projection. The Haar wavelet is used for multiscale decomposition.

where we plot the degree of sparsity of r, as a function of the parameter Mi (= N). We measure the
degree of sparsity by the percentage of elements in matrix r, which are below a certain threshold
(the maximum value in P8 is normalized to 1). Figure 8 reports the sparsity calculations for three
different values of threshold, namely 0, 0.005 and 0.02. It is empirically observed that setting all
values in r, below a threshold of 0.02 to zero, makes no visible difference to the reconstructions.
From Figure 8, we see that for the case of M = N = 128 and a threshold of 0.02, r, is 98.75%
sparse (or, equivalently, 1.25% full). In Figure 9, we show the degree of sparsity of Po or r,, for
M = N = 32, achieved by the Haar wavelet, and the Daubechies wavelets D 3 and D 8 . From the
figure we see that the number of elements that are exactly zero decrease as wavelets with larger
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Figure 8: The degree of sparsity (percentage of elements below a threshold) of multiscale system
matrix, r,, as a function of M (=N). The Haar wavelet is used here for multiscale decomposition.
The maximum value in r, is normalized to 1. Setting all elements in rs below 0.02 to zero makes
no visible difference to the reconstructions.

support are used. But, since we can always threshold all elements of the matrices below 0.005 to
zero without affecting the reconstructions, the effective sparsity achieved by the Haar, D 3 and D8
is approximately the same.

Next, we tackle the non-uniqueness issue of the NP representation. We had seen earlier that, with
our assumption of p = N (i.e. the object is discretized in a p x p = N x N rectangular pixel
lattice, where N = number of strip integrals in each angular projection) and M angular projections
uniformly spaced between 0 and 1800, G has a rank of MN - M/2 for M even and a (full) rank
of MN for M odd. re and r, have the same rank as G. Thus, if M is even, it is not possible to
uniquely solve for 6(() in , = reg(l,_ = rsP_). We again consider the same 2 x 2 example as
before (Figure 4). For this example, using the Haar basis,

1 0 0 0

r 0 (49)
0 0 1 1
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Figure 9: The degree of sparsity (percentage of elements below a threshold) of multiscale system
matrix, r,, as a function of threshold, for different wavelets. Here M = N = 32. The maximum
value in r, is normalized to 1. Setting all elements in r, below 0.005 to zero makes no visible
difference to the reconstructions.

has a rank of 3 because the two DC rows (and columns) corresponding to the two projections 900
apart are identical. In general for M projections, where M is even, M/2 of these rows and columns
will be identical resulting in a MN - M/2 rank matrix. This suggests a recipe for partitioning r,
into ill and well-conditioned matrices. Taking advantage of this, we devise an approximation to the
exact equation _ = rP ' which requires inversion of a relatively well-conditioned, full rank matrix.
This approximate reconstruction is valid for all M, even or odd, and yields reconstructions which
are almost identical to the CBP reconstruction for the complete data problem, and much better
for the incomplete data case. We partition s = rs according to

[___ =) [r, ] [ ]d E(5d) ]
where r 1 is an M(N - 1) x M(N- 1) symmetric matrix, r, 2 is an M x M(N - 1) matrix, and rd
is an M x M symmetric circulant matrix. The vectors 4 (d) and g_(d) have length M and contain
the DC terms. The vectors 4_ and __ have length M(N- 1) and are given by

_= [ g(h) f(h + 1) ... jf(j) ... T(i) (51)
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and

_ = [T(h) T(h + 1) .. (j) * .. ( ] (52)

The - in the subscript for 0,_ and -s_ indicates that these vectors do not contain the DC terms.

As a consequence of using the DPWT, the DC (i.e. the last) row of matrices Wa and the DC basis
functions Mtkdl are identical irrespective of the wavelet used. Thus, if we assume that the object is
fully covered by all M projections, all M elements of ? (d), which are the total number of counts
in the corresponding angular projections, are equal irrespective of the wavelet used. Let the total
number of counts be y. Thus

(d)= M (53)

where 1M refers to a vector of length M with all elements equal to unity.

As mentioned before, r, is singular for even M. For odd M, r, is invertible even though it may be
quite ill-conditioned because of projection pairs nearly 900 apart. In both cases, M being even or
odd, rl is well-conditioned. For even M, to overcome the problem of non-invertibility of r,, we
assume all M elements of the vector g (d) to be equal. Let this value be c. Then

,(d) = clM. (54)

Thus

[ _ r- ] P< d [M1 (55)
Zqf~~-M 1 r.2 r !, ]

[ @]r62 ~ [ c ] (56)

where v is a vector of length M(N - 1) the elements of which are the row sums of rT, and u is
a vector of length M containing the row sums of r,d. Now, the elements of matrix r,d are the
areas of intersection of basis function {t-dl; k = 1,..., M}, and because of our assumption of
uniformly spaced angles, r,d is a circulant matrix (refer to Appendix 1). Thus the row sums of
rsd, and hence all M elements of vector u, will be equal. Let this value be a. Thus

U = alM. (57)

Now, by manipulation of Equations 50 - 57 (refer to Appendix 2 for details), our multiscale
reconstruction method consists of the following steps.

1. Form the matrix

r [ 2 = s =ProePT = P(WGWT)PT (58)
Fs2 Fsd

which is sparse.

2. Transform the projection data in the multiscale basis

[s b -(d) = PWy. (59)
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3. Calculate the multiscale natural pixels

L_ = At_ + b (60)

where the constants A and b depend only on the parameters of the imaging system and the
total counts in the object, and are given by

(-= r-1T -- ) (61)= r - vTr--lv - aM

and
pM _r-1

= (S )( r 8- _M). (62)

Note that Equations 61 and 62 require the inverse of rl which is a full rank, relatively well-
conditioned matrix5 . The condition number of rl, using the Haar wavelet, for M = N = 16
is 209 and for M = N = 32, 1288. The condition number of r,, on the other hand, is 3 x 10 7

and 1.4 x 105 respectively, for these two configurations. Also, since elements of v are mostly
negligible (refer to Appendix 3), a good approximation to Equations 61 - 62 is

A - r-ll (63)

and
b 0 (64)

and thus

Us M r2%t . (65)

4. Back-project

f !scs_ +!L 1N2 (66)

where

[ ] = [P. (67)

To justify the above reconstruction algorithm for odd M, we have to simply justify the assumption
that all M elements of _~(d) are equal for odd M. This is done in Appendix 4.

To recapitulate, the multiscale reconstruction procedure as outlined above is based on the following
two assumptions.

1. The elements of the matrix r, 2 are mostly negligible. This is empirically seen to be true for
the Haar and the compactly supported Daubechies wavelets. In Appendix 3, we demonstrate
the validity of this assumption in the Haar case by calculating numerical bounds on the
absolute values of the elements of r, 2.

2. All M (DC) elements of _s(d) are equal if the object is entirely covered by all M projections.
We show, in Appendix 4, that this assumption is exactly true when r, has full rank, i.e. when
M is odd, irrespective of the wavelet used.

5If Fr, is rearranged according to projection angles, the resulting matrix is symmetric block-Toeplitz.
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4.1 Specialization for noisy projection data

The noisy projection data is represented as

y = bf + n (68)

where n is the noise vector which we model as zero-mean, white and Gaussian with variance A'.
Thus n - N(O, A'IMNxMN). This results in the input-output equation (compare with Equation 43)

% = rJ,, + m (69)

where

= PWn. (70)

Since P is an orthogonal matrix and W - 1 = NWT, v - N(O, AIMNxMN) where

A = . (71)

As before, we can partition Equation 69 as (compare with Equation 50)

___ _ r,1 r.2 (7[IW - j F2 rad d + . ](d)]( (72)

Now, by invoking the earlier assumptions that the elements of the matrix r,2 are mostly negligible
and that all M (DC) elements of _(d) are equal if the object is entirely covered by all M projections,
we obtain the following two equations

oa_ rlg,_ + b- (73)

pM cM 2 + us (74)

where vU - N(O, MA). From Equation 74, the maximum likelihood estimate of c is p/(MN). This
is the same as the value of c we had used earlier in the case of no noise (Equation 88). The MAP
estimate of g__, from Equation 73, is given by

= argmax[P(s- _-,)] (75)
C _, _

-1 rT R- r -1 T (76)= [Pi 1 + rL'R~._rP1 ]- -1,R-:_z4_ (76)

where R,_ = AIM(N-1)xM(N-1), and P&,_ is the prior covariance of _ _ N(O, P, ). We as-
sume _,_- to be uncorrelated (or, equivalently, P&,_ to be a diagonal matrix) with a geometrically
decreasing variance from coarse to fine scales. Thus the diagonal elements of PC,_ are given by

E(T ,,ksn,) = 2 -p(l-J) for s = h, h +1,...,l (77)

where p is a regularization parameter. This implies that the projection data mostly influences the
reconstruction of coarse scale features and the prior model influences the reconstruction of fine
scale features. This is desired since the high frequencies (i.e. the fine scales) are mostly corrupted
by noise. Equation 76 can now be simplified to (compare with Equation 60)

!,_ = A _ + b (78)
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Figure 10: Left: A 32 x 32 Phantom. Middle: CBP reconstruction using a ramp filter and M =
N = 32. Right: Complete multiscale reconstruction.

where
A = (r + AP' _)-lrS (79)

and
b = 0. (80)

Thus the only change in the reconstruction algorithm from the noiseless case is that different expres-
sions for A and b, given by Equations 79 and 80 respectively, are to be used now for reconstructions
from noisy data, with A and p serving as regularization parameters. An increased regularization
results by increasing A for a fixed p, or by increasing p for a fixed A.

5 Results

5.1 Demonstration of the reconstruction method

Figure 10 shows a phantom along with the CBP and the complete multiscale reconstruction. The
size of the phantom is 32 x 32 and the imaging geometry is defined by M = N = 32. We have
used a ramp filter (i.e. we have not introduced any regularization) in the CBP reconstruction.
Thus, for this complete data case, the CBP and the multiscale reconstructions should be similar.
This is precisely what is seen in Fig 10 and confirmed in Fig 11 which shows a section through
the reconstructions6 . It is observed that the maximum absolute difference in the reconstructed

pixel intensities is of the order of 10- 5 when different wavelets are used to reconstruct this same
phantom.

In Figure 12 we show the reconstruction of a 32 x 32 phantom from projection data collected using
M = N = 32. The D3 wavelet is used for multiscale reconstruction. Figure 12 is the combined
scale reconstruction where the reconstruction at a particular scale includes the contributions from

6 The discrepancy between the CBP and the multiscale reconstructions near the edges is due to the fact that we
are reconstructing on a circle in case of the latter rather than on the entire square field-of-view as in the former.
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Figure 11: A horizontal section through the phantom (solid line) and the CBP (circles) and mul-
tiscale (broken line) reconstructions.

all scales coarser to and including that scale. In Figure 13 (the separate scale reconstruction) we
show the individual contributions at different scales.

5.2 Reconstruction of fine scale features by approximating r,l as an identity
matrix

In Figure 14, we show the CBP reconstruction, the complete multiscale reconstruction and the
finest scale contribution from the reconstruction of a 32 x 32 phantom using the Haar basis. We use
only the diagonal elements of matrix r,l for reconstruction and assume that they are all equal to
1. It can be shown with relative ease that the complete multiscale reconstruction in this case is the
same as simple back-projection reconstruction having a 1/r blurring. We can see, from the finest
scale contribution, that if the goal is edge reconstruction, it is enough to approximate rl by an
identity matrix. This reduces the computational complexity enormously. The edge reconstruction,
in the multiscale framework, only involves the 1-D Haar transform of the strip integral data and
subsequent back-projection of fine scale coefficients.
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Figure 12: Combined scale reconstructions, using the D 3 wavelet, of a 32 x 32 phantom with
M = N = 32. Top row, left: Phantom. Top row, middle: CBP reconstruction using a ramp filter.
Top row, right: Multiscale reconstruction. Reconstruction including contributions from all scales
at and coarser to: Middle row, left: Scale 1. Middle row, middle: Scale 2. Middle row, right: Scale
3. Bottom row, left: Scale 4. Bottom row, middle: Scale 5. The reconstructions in top row, right
and bottom row, middle are identical.

5.3 Reconstruction from incomplete data

In Fig 15 we show a 32 x 32 phantom reconstructed using the Haar wavelet and M = 5 and N = 32,
i.e. using 5 uniformly spaced angular projections, each containing 32 parallel strips. This is the
incomplete data case and hence the multiscale reconstruction is expected to be free of the many
artifacts which arise in the CBP reconstruction due to the space-invariance assumption. This is
exactly what is seen in the figure. This figure also indicates the resolution-accuracy tradeoff. The
reconstruction at Scale 3 (middle row, right, in the figure) does not enable one to distinguish between
the two circles, but the reconstruction has very few artifacts. The distinguishability increases,
accompanied by an increase in the artifacts, at Scale 5 (i.e. full multiscale reconstruction). Fig 16
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Figure 13: Separate scale reconstructions, using the D 3 wavelet, of a 32 x 32 phantom with M =
N = 32. Top row, left: Phantom. Top row, middle: CBP reconstruction using a ramp filter. Top
row, right: Multiscale reconstruction. Reconstruction including contributions from all scales at and
coarser to: Middle row, left: Scale 1. Middle row, middle: Scale 2. Middle row, right: Scale 3.

Bottom row, left: Scale 4. Bottom row, middle: Scale 5.

shows another example of the incomplete data case. The parameters here are the same as in Fig 15
and the same suppression of artifacts is seen.

5.4 Reconstruction from noisy data

Figure 17 shows a phantom along with the unregularized and regularized (MAP) complete mul-
tiscale reconstructions after adding 5 dB noise to the projection data. The size of the phantom
is 32 x 32 and the imaging geometry is defined by M = N = 32. We have used the D 3 wavelet
for multiscale reconstructions. The two regularized reconstructions correspond to regularization
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Figure 14: From left (a) 32 x 32 Phantom, (b) CBP reconstruction with M = N = 32 (c) Complete
multiscale reconstruction, and (d) The finest scale contribution.

parameters A = 1, p = 0.5 and A = p = 1 respectively. Figure 18 shows a section through the
reconstructions. From Figures 17 and 18 we see that, as is expected, an increased regularization

results when the value of p is increased from 0.5 to 1, keeping A constant at 1.

6 Conclusions

We have used the natural pixel object representation, where the object is expanded in the same

basis functions along which the strip integral data is collected, as the starting point of our multiscale
reconstruction method. In the natural pixel representation, the natural pixels (i.e. the expansion

coefficients) and the strip integral data are related by the system matrix G. We decompose the

natural pixels and the strip integral data in a multiscale basis so that they are related by a new

system matrix re which is sparse and, in addition, has a symmetric block-Toeplitz structure if

the M angular projections are uniform between 0 and 1800. Fast inversion algorithms exist for

these matrices. For the incomplete data case, the multiscale reconstruction is relatively free of the

many artifacts that plague the CBP reconstruction. We have shown, through examples, that for an

ill-posed reconstruction problem, some regularization can be achieved by only combining coarser

scale reconstructions instead of reconstructions at all the scales. For noisy data problems, we have
specialized our multiscale reconstruction method to yield MAP multiscale reconstruction estimates
corresponding to a chosen prior on the multiscale object coefficients. We have also shown that a
fast method of detecting fine scale features, like edges and boundaries, in an object is by taking the

Haar transform of the projection data and subsequently back-projecting the fine scale coefficients.

Currently, we are concentrating on regularizing ill-posed reconstruction problems by incorporating
different stochastic priors in our multiscale reconstruction method. We use the multiscale framework
to construct regularizing tree-based models in scale reflecting stochastic prior information about the

object. Since fast algorithms exist for performing estimation on such multiscale trees (i.e. scale-
recursive estimation algorithms which are a generalization of the Rauch-Tung-Striebel optimal

smoothing algorithm) [14], our multiscale reconstruction method enables us to tackle ill-posed
reconstruction problems at a speed much faster than existing methods. In addition, our technique
provides object estimates at multiple scales along with corresponding error covariance information.
This information is essential for assessing the resolution-accuracy tradeoff and determining an
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Figure 15: Combined scale reconstructions, using the Haar wavelet, of a 32 x 32 phantom with
M = 5 and N = 32. Top row, left: Phantom. Top row, middle: CBP reconstruction using a ramp
filter. Top row, right: Multiscale reconstruction. Reconstruction including contributions from all
scales at and coarser to: Middle row, left: Scale 1. Middle row, middle: Scale 2. Middle row, right:
Scale 3. Bottom row, left: Scale 4. Bottom row, middle: Scale 5. The reconstructions in top row,
right and bottom row, middle are identical.

optimal scale for reconstruction of each portion of the object.
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Figure 16: Combined scale reconstructions, using the Haar wavelet, of a 32 x 32 phantom with
M = 5 and N = 32. Top row, left: Phantom. Top row, middle: CBP reconstruction using a ramp
filter. Top row, right: Multiscale reconstruction. Reconstruction including contributions from all
scales at and coarser to: Middle row, left: Scale 1. Middle row, middle: Scale 2. Middle row, right:
Scale 3. Bottom row, left: Scale 4. Bottom row, middle: Scale 5. The reconstructions in top row,
right and bottom row, middle are identical.

Appendices

Appendix 1: The matrix r,d is circulant

rd has the form

< <ldd, ldi > < _idi,_`2d1 > < tidi,__3d1 > ... < !di,_!Md >

I< '2da~, !.di > < ±2d1,!2d1 > < 2d1, -3di > .. < 2d1, -.. Md > 
- -~~~~~..-~~.-~~~.>~~~. c..(81)

< ... dl, ldl > < IMdl,t2d 1 > < .. Mdl,.._dl > ... < IMdl,..dl >
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Figure 17: From left (a) 32 x 32 Phantom, (b) Unregularized complete multiscale reconstruction
with M = N = 32 and 5 dB noise, (c) Regularized complete multiscale reconstruction with A = 1
and p = 0.5, and (d) Regularized complete multiscale reconstruction with A = 1 and p = 1.
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Figure 18: A horizontal section through the phantom (solid line) and the various reconstructions
of the previous figure.
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where < e, g > refers to the inner product or, equivalently, the area of intersection of e and g.
Clearly, since < idl, !jdl > = < jdl, Idli >, rd is symmetric. Also, all < lidl,--dl >, i =

1, 2,..., M are equal to 1 because of our usage of normalized basis functions. Further, because
of our assumption of uniformly spaced projection angles, < idl, jdl > is a function of only
I(i)mod(M)- (j)mod(M)j. This results in a symmetric circulant r,d.

Let the constant row sum of rsd be a. Then

M

a = < < 1d, id1 > * (82)
i=l

It can be shown, by elementary geometry, that

sin + cos - 1 for0 < < 900

sin 0 cos 0
< Idl, tdl >= 1 for 0 O 900, (83)

<c ldl,-(M+2-i)d1 > for i = 1, 2,...,M/2 if M is even, and
for i = 1, 2,...,(M + 1)/2 if M is odd.

From Equation 83, it can be shown that < 1dl, .idl > achieves a minimum value equal to 2(v2 -
1) = 0.83 when i corresponds to a projection at 450 or 1350. The maximum value of < .Idle, -Idl > is
1 when i corresponds to projections at 00 or 900. For most applications, it is enough to approximate
the row sum of rsd, a, by M. For M = 16, a has a value 14.2, and for M = 32 a value of 28.3.

Appendix 2: Details of the NP based multiscale reconstruction method

By adding the last M equations in the matrix partitioned equation (56), we get

[ [ ] a ] [ c ] (84)

Now, by applying the matrix inversion lemma to above [13],

£ _ = r- s - I] (85)

Also, from Equation 84,

PM = 'T_ + aMc. (86)

Now the elements of v are the row sums of rT. Since the elements of r, 2 are the areas of intersection
of basis functions {-dli; k = 1,...,M} with {ikn,,; k = 1,...,M; s = h,h + 1,...,1; n =
1,..., n,}, they are mostly negligible7. Thus we can approximate

/IM
H aMc (87)

N

7Appendix 3 demonstrates the validity of this assumption for the Haar case. For arbitrary compactly supported
Daubechies wavelets, this assumption is seen to be valid even though it is difficult to calculate numerical bounds as
is done in the Haar case.
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or
C ~ X MN (88)

using the approximation a ; M (refer to Appendix 1).

Thus the multiscale reconstruction reduces to calculating and back-projecting

[MN1M ]L (89)

where -s- is given by Equation 85. Let Ui, = PP, where 4 is the matrix containing the multiscale
basis functions arranged according to projection angles and P is the same permutation matrix as
discussed earlier. The multiscale reconstruction is then given by

f 8d p im 8 + (90)
[ r] [ MN ] MNM

Since we assume that the object is fully covered by all M projections, we are only interested in
reconstructing the intersection of the field-of-views of the M projections. Thus

- ' P T +

= '-_( + N1-N2. (91)

Appendix 3: The elements of the matrix r, 2 are mostly negligible - demonstration
for the Haar case

The elements of r, 2 are the areas of intersection of basis functions {-kdl; k = 1,..., M} with
{l-kn; k = 1,..., M; s = h, h + 1,...,1; n = 1,..., n,}. The maximum absolute value in r, 2
corresponds to < _ kldl, ..c(s=-l)l > (or < -kldl, - 2(s=/-1)n, >), where projections kl and k2 are
separated by 450° . This value is equal to 5X/2/8 - 1 = 0.12. But the majority of the terms in r,2
correspond to the areas of intersection with fine scale basis functions, which are negligible. As an
example, for fine scales s = h and h + 1, the absolute value of < Sidli, j* > is bounded by

S)/ 2 )(z) (sinO + cos 0 - 1) 1 /1+ 8z 162 (2
4 (sin cos0) (1) ( sin 0 + c o s - 1) 2

where
z -(0 5)1+1-s (93)

and projections i and j are separated by angle 0 with 0 < 0 < 900. It is enough to consider
0 < 0 < 900, as for 900 < 0 < 1800 the same bounds apply. For 0 = 0 or 900, the areas of
intersection < lidl, j,, > are identically zero.

Thus, as an example, for 8 = 11.250, < sidl,ij,* > has a maximum absolute value of 0.02 for
s = h and 0.05 for s = h + 1. For 0 = 450, these values are 0.008 and 0.02 respectively.
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Appendix 4: Justification for odd M

In case of odd M, [r,2 rPd] has full row rank. Now

M_ = - [ r 2 r .d][ (94)

= r, 2 ,_ + r]d_,(d). (95)

Invoking the earlier assumption that the elements of r, 2 are mostly negligible

y1M -- r'd_,(d) (96)

or

!,(d) rid M = Nr (97)

where r is a vector containing the row sums of rF-1. Now, as proved in Appendix 5, a circulant
matrix and it's inverse both have constant row sums. Moreover, the row sum of the inverse is the
reciprocal of the row sum of the matrix itself. Since rd is circular and it's row sum a - M, all M
elements of r are approximately equal to 1/M. Hence

(d) " !M (98)

= CM. (99)

Thus all M elements of E (d) are equal for odd M.

Appendix 5

Claim: The inverse of a circulant matrix C, if it exists, has constant row sums which are reciprocal
of the constant row sum of C.

Proof: Consider a M x M circulant matrix C. We can always diagonalize C as follows [15]

C = F*DF (100)

with

1 1 ... 1
F 1 1 exp [-j(2/M) ] exp [-j(2'/M)(M - 1)] (101)

1 exp [-j(2r/M)(M- 1)] ... exp [-j(2'r/M)(M- 1) 2]

where * denotes complex conjugation, F*F = FF* = I and D = diag(dl, d 2 ,... , dM). Now

C1M = F*DF1M = F* x diag(d, d2,, ...,dM) x (102)
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since
M-1

E exp [±j(2r/M)ki] = 0 for k an integer and 1 < k < M - 1. (103)
i=O

Hence

CLM = VdlF* d]l M. (104)

Now
C - 1 = F-1D-I(F*)- 1 = F*D-F. (105)

Hence

1 o 1
C-11M = dv-F* = I M (106)

Thus, from Equations 104 and 106, the proof is complete.

Appendix 6: Summary of notations

Tables 1 and 2 summarize the notations developed for the conventional and the multiscale recon-
struction techniques, respectively.
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Table 1: Notations developed for conventional reconstruction techniques.

Notation Explanation
M Number of angular projections.
N Number of strip integrals in each angular projection.
f The discretized object, defined on a p x p square grid. We set p = N.
f The reconstructed object.
y(k) Projection data set at angle k, k = 1,..., M.

y(k) = [Ykl Yk2 ... YkN]T.
y Full projection data set.
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Table 2: Notations developed for multiscale reconstruction technique.

Notation Explanation
ksn Multiscale quantities are indexed by ksn.

k is the angle of projection, k = 1,..., M.
s is the scale, s = 1, 2,...,1 + lnN/ In2; N = 2i, i E Z +.

n is the shift within the scale, n = 1, 2,..., ns;
n, = N/2Sfors = 1,2,...,InN/in2andn, = lfors = 1 + InN/ln2.

h The finest scale, s = 1 = h.
I The coarsest scale, s = In N/ln2 = 1.

d The DC component, s = 1 + lN/ ln2 = d.
Wa The matrix realization of the 1-D wavelet transform operation.
W W = IMXM ® Wa.
~e(k) The 1-D wavelet transform of y(k), _.(k) = Way(k).

~B ~ = Wy = [gT(1)tT(2) ... .T(M)]T

~(k) The 1-D wavelet transform of x(k), 6(k) = Wax(k).
ff = Wx = [rT(1) T(2) ... T(M)]T.

The multiscale projection operator, A = _f, · = Wq).

The multiscale back-projection operator, f = - oT.
re The multiscale input-output matrix arranged according to projection

angles. . = rem, re = HAT.
P The orthogonal permutation matrix that changes projection angle

ordering to scale ordering.
_ (ji) Contains all projection data at scale j.

(j) = [T(1, j)(2 j) ... *T(M, j)] T .

~_~ Contains projection data arranged according to scales.
= Pt = [t T (h) 'T(h + 1) ... T( T(d)]T.

_(j$i) Contains all object coefficients at scale j.
_(j) = [T_(1 j) __T(2, J) ... _T(M, j)] T

Contains object coefficients arranged according to scales.

L:= = I[ T (h) T(h + 1) ... +(I) T(d)]_
. f The multiscale input-output matrix arranged according to scales.

._ , = rs_, r, = PrPT .

[14] K. C. Chou, A. S. Willsky, and A. Benveniste, "Multiscale Recursive Estimation, Data Fusion,
and Regularization," To appear in IEEE Transactions on Automatic Control, March 1994.

[15] P. J. Davis, Circulant Matrices, John Wiley & Sons, 1979, pp. 72-73.

35


