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Chapter 1

Introduction

The Physics phenomena that we observe in the domain of elementary particles and

their interactions through vector particles are described by the gauge theory of quan-

tum fields. The quantum gauge theory lies at the core of our current understanding of

the strong, weak and electromagnetic interactions that is described by the standard

model of particle physics, to excellent accuracy.

String theory, on the other hand, is generally accepted as the strongest candidate

for a quantum theory that includes gravitational interactions. There are various

interesting phenomena in string theory that has the possibility of being realized in

nature. Among them is the realization of a long suspected correspondence between

the gauge and gravity theories. This correspondence renders string theory also as a

theoretical laboratory that allows one to study various aspects of gauge theories from

an alternative point of view. For example, it becomes possible to explore the strong

coupling dynamics of various gauge theories by mapping specific phenomena in the

gauge theory to its counterpart in the string theory side. In most cases the treatment

in the string theory side is much easier to tackle with, or it at least provides an

alternative description of the phenomena in terms of a completely different language.

This new window into the non-perturbative physics of QCD-like gauge theories, for

instance, may provide the key for an elegant solution of the long-standing problem of

understanding confinement.
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1.1 Early ideas

Since the seminal paper of 't Hooft [1] in 1974 people long suspected a correspondence

between string theory and gauge theories. 't Hooft considered a gauge theory with

or without matter in the large color limit, N - oo. In this limit he showed that the

effective coupling constant of the theory that governs the perturbative expansion of

the correlators becomes

A = g2N = fixed, (1.1)

where g is the original bare coupling constant of the gauge interactions. In addition,

the correlation functions admit a well defined "genus expansion" in powers of 1/N2

in this limit. The reason for the term "genus expansion" is that the contributions

to the correlation function from various Feynman diagrams can neatly be classified

according to their topology, i. e. number of genera, and the power of 1/N 2 corresponds

to this number: If one can draw a Feynman graph only on a genus-g surface so as to

avoid intersections of the propagator lines (apart from the interaction vertices), then

the Feynman diagram is called a non-planar graph with genus g.

On the other hand, closed string theory - in striking similarity with the aforemen-

tioned genus expansion in t' Hooft limit - is perturbatively defined again by a similar

topological expansion, but this time various topologies in question is that of the

two-dimensioinal string world-sheets embedded in the space-time. [2]. For example,

comparison of the aforementioned perturbative expansions, leads to the identifica-

tion of the inverse color parameter in gauge theory with the closed string coupling

constant:
1

N

Indeed 't hooft [1] argued that the gauge theory in this regime of parameters is

described by some kind of string theory. However, these general considerations do

not allow one to specify the candidate string theory that is conjectured to govern the

gauge theory dynamics. In particular, more detailed questions, e.g. the spectrum of

the candidate string theory, the geometry of background space-time that the strings
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propagate in, etc., goes unanswered in this framework.

1.2 The Maldacena Conjecture

A big step toward the realization of this idea came with the conjecture of Maldacena

in 1997 [3] where a concrete duality between the supersymmetric Af = 4 gauge theory

in four dimensional Minkowski space-time with gauge group U(N) and type IIB

closed string theory on a particular 10D manifold, namely the AdS5 x S5 space-

time was conjectured. This is called the AdS/CFT correspondence. Here, Anti-de

Sitter space is a maximally symmetric solution to Einstein's equations with a negative

cosmological constant. We describe the geometry of this space in section 2.1. S5 is

a 5D sphere. There is a well-defined and detailed prescription that matches the

parameters, operators and the interactions on the two sides of the correspondence.

At first sight, it may seem rather surprising that these theories that are completely

different in nature ( one a very specific gauge theory, other a gravitational theory on a

very particular background ) possess exactly the same physics content. However, there

is a slick argument ( that was in fact the original motivation behind the conjecture )

that relates the two theories through the use of the D-brane physics. In what follows,

we will review this argument [4] without getting into much detail. This will also serve

to introduce various definitions that shall appear frequently in the next chapters.

1.3 D-Branes as Gravitational Objects

Just as an electron in the presence of an electromagnetic field can be viewed as

a source particle whose world-line couples to the electromagnetic field though the

following particle action,

S= /dx,AP,

there exist in the superstring theory, some p-dimensional space-time defects, Dp-

branes, whose p + dimensional world-volume couple to various generalized p + 1

form fields that appear at the massless level of the string spectrum. Let us specify to

19



the case of N D3 branes in IIB string theory that are located at the same point in 10

dimensional Minkovski space-time. These space-time defects viewed as a background

solution to Einstein's equations, have the following properties:

* They carry N units of charge under the 4-form gauge field A,,,p of IIB closed

string theory.

* They preserve SO(1, 3) Lorentz symmetry along their world-volume and S0(6)

rotational symmetry in the six dimensional transverse space.

* They preserve half of the supersymmetries, namely 16 supercharges of the IIB

string theory.

* The solution becomes asymptotically flat as one approaches infinity in the radial

direction.

Space-time backgrounds with these properties resemble charged black-holes. So-

lutions to Einstein's equations with these properties were discovered in 1991 [5] where

they were called "Black 3-branes". The curvature scale that measures how much this

massive object curves the space-time around it is given by

R = (gN) c'2, (1.2)

where a' = l2 is the string length scale square. As shown in fig. 1-1, the solution has

two asymptotic regions, the "throat" and the "flat space" that are separated by the

curvature scale.

Maldacena observed the following [3]: in a double scaling limit where - 0

( so that the total energy of the solution is much smaller than the string energy

scale) together with the limit where the radial coordinate, r -+ 0 (so that one scales

the coordinate system to focus on the throat region ), in such a way that the wave

excitations in the throat region has constant energy, i.e. E r/l = const., the

geometry of the throat region becomes AdS 5 x S5 and the dynamics of closed strings

in the flat space completely decouples from the dynamics of closed strings in the throat

20



r
Flat space Throat region

r=Or>>R r=R

Figure 1-1: Two asymptotic regions of the D-brane.

region. 1 It is also well-known that in this low energy limit, IIB closed string theory

effectively reduces to IIB Supergravity theory (SG). Therefore, in this limit, the entire

theory reduces to two decoupled systems: IIB supergravity in 10D Minkowski space

(flat region) plus IIB supergravity on the geometry AdS5 x S5 (throat region).

1.4 Gauge Theory on the D-Branes

On the other hand, as shown by Polchinski in 1995 [71, D-branes in string theory

admit an alternative description as space-time defects that open strings can end on.

One can carry out the above decoupling limit analysis in this "open string picture"

as follows. Consider separating one of the D3-branes from the stack of N - 1 D3

branes by a distance r. Now, one takes the double scaling limit, Is -+ 0, r -+ 0.

As I - 0, only the massless string excitations survive in the string spectrum. In

the open string sector these massless fields are the massless excitations confined to

the world-volume of the branes. They consist of U(N) gauge fields, 6 scalar fields

in the adjoint representation of U(N) (we denote them as Xk) and their fermionic

superpartners. Together, they form an if = 4 supersymmetric U(N) gauge theory

living on the D3 brane. We shall refer to this quantum gauge theory as (Super Yang-

1For example the absorption cross section of an S-wave that is sent from infinity vanishes at the
throat region in this limit [6].
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Mills) "SYM4 " for short. Details of this theory shall be described in section 2.4. In

the closed string sector, that lives on the flat Minkowski space that is transverse to the

branes, the massless excitations consist of the massless IIB supergravity (SG) fields

(the graviton, two gravitinos, 4-form gauge field etc). Furthermore, the zero modes

of the open string that stretches between the stack of N - 1 D-branes and the one

that is separated from the rest provide an energy scale for the SYM theory, E r/12

that is kept constant in this limit. Maldacena further showed that the dynamics of

the closed string sector completely decouples from the open string sector in this limit.

Therefore, the total system is again described by two completely decoupled systems:

a supersymmetric gauge theory (A = 4 supersymmetric U(N) gauge theory in 4D

Minkowski space) and IIB SG on 10 dimensional Minkowski space. Comparison of

this result with that of the gravitational description given in the previous paragraph

yields the conclusion that IIB SG on AdS5 x S5 is the same theory as SYM theory

in 4D Minkowski space.

1.5 Weak and Strong Forms of the Conjecture

Comparison of two different descriptions that we described above, yields important

relations between various parameters that appear in the field theory (SYM) side and

the supergravity side: By studying the effective field theory action on the D-branes

and by comparing it with the action of SYM theory one learns that the string coupling

constant and the SYM coupling constant is related in the following way:

47gs = 92 (1.3)

The only other parameter in SYM, namely the number of colors, N, is related to the

curvature of the SG solution in the gravitational description by the formula, (1.2). By

using the definition of the 't Hooft coupling in eq. (1.1), it is very useful to summarize
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these relations in the following way:

R4 I gs
A = = -1 (1.4)ls 4 N A

It is instructive to write the relation in the above form because it points out dif-

ferent regimes of validity of the conjecture. The D-brane argument that we presented

above strongly relies on two facts: that the curvature scale of the solution is much

larger than the string scale (hence low energy) R >> ,, namely, A very large but

constant, and that one can ignore string interactions, i.e. g, -+ 0 which, by (1.4), is

equivalent to the large color limit: N -+ oo. Therefore, one can view above argument

as a "proof" of the Maldacena conjecture, only in the classical SG limit. It is clear

from (1.4) that, in this regime of parameters, one has a SYM theory with infinite

number of colors and with large 't Hooft coupling constant, A >> 1. In short one has

a SYM theory with infinite colors and in the strong coupling. On the gravity side this

limit yields classical (tree level) SG theory on AdS5 x S5. In fact, only in this regime

of parameters, most of the tests of the AdS/CFT duality has been performed and

succeeded. We shall refer to this regime of validity as the weak form of the AdS/CFT

correspondence.

However, Maldecana conjecture goes beyond the low energy limit that we de-

scribed above and further states that IIB closed string theory on AdS 5 x S5 is dual

to A = 4 Super Yang-Mills (SYM) theory for all values of N and g,. It states that

the relations between the parameters of two theories, eq, (1.4) is always valid. This

is why it is termed a "conjecture":

Type IIB String theory on AdS5 x S5 with N units of flux of the 4-form field is

dual to f = 4 super Yang-Mills theory with gauge group U(N) on D Minkowski

space-time.

Since 1997, many checks has been performed and the correspondence has been ex-

tended to other geometries, different number of supersymmetries and different matter

contents. A crucial development by the authors of [8] and [91 put the weak form of

the AdS/CFT correspondence in a very firm footing. In particular, the correspond-
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ing observables on the two sides is made clear and methods of computation of the

correlation functions in SYM theory using the SG quantities on the gravity side has

been outlined. It shall be useful to briefly discuss these aspects of the duality.

1.6 Some Aspects of the Duality

A necessary ingredient for duality to hold is the matching of various symmetries on

both sides. Let us consider the gravity side first. As we briefly mentioned, in the

decoupling limit, the gravity side of the correspondence is described by SG theory

on AdS5 x S5 . The isometries of AdS5 (space-time transformations that leave the

background invariant) form the group S0(2, 4). Similarly the five dimensional sphere

is left invariant under S0(6) rotations. In addition to these symmetries there are

supersymmetric transformations that are preserved by the background. It turns out

that the maximally symmetric AdS5 x S5 background preserve 32 supercharges.

Let us now consider the symmetries on the gauge theory side of the correspon-

dence, namely SYM4 in four dimensional Minkowski space. An ordinary quantum

field theory on 4D Minkowski space has Poincare symmetry that includes 4 transla-

tions and 6 Lorentz rotations. However, there is an extremely important property

of the special JV = 4 SYM theory: there is no mass scale in the theory even at the

quantum level. This is because of the fact that the p-function of the theory vanishes

as there is no UV divergences from the loop diagrams that enter into the computation

of the correlation functions of the canonical fields. As a result:

A = 4 SYM theory in D is conformal invariant at the quantum level.

Therefore the group of space-time symmetries in this theory is enhanced to that of

conformal group in 4D, which in addition to the 10 usual Poincare symmetries includes

the scale transformation x ' -+ px' and 4 special conformal transformations. All in

all, they form a 15 dimensional algebra of S0(2, 4). The theory is also maximally

supersymmetric, namely, there are 32 real supercharges that form 4 different types of

Majarona spinors: Qi, Qi, Si, Si. The first two supercharges are Poincare supercharges

and the latter two are called conformal supercharges. They all carry the index i =
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1, 2, 3, 4 that indexes 4 different types. They are Lorentz spinors of definite chirality,

hence each has two real d.o.f. Thus, in total there are 32 real supercharges. There

is also the so-called R-symmetry which is a global symmetry that rotates the index

i above. This gives rise to the R-symmetry group of SU(4) - S0(6). We therefore

conclude that, the total amount of bosonic and fermionic symmetries on the gauge

theory side is exactly the same as the amount of symmetry on the gravity side. The

entire symmetry group on both sides that contain both the bosonic and fermionic

symmetry generators form a supergroup that is denoted as SU(2, 214).

This observation is not only a necessary condition for the duality but also a practi-

cal guide in the classification of corresponding observables on two sides of the duality.

The Hilbert space of the composite gauge invariant operators that are formed by

the canonical fields of the N= 4 SYM theory carry representations of the symmetry

group SU(2, 214). Similarly the string states of IIB string theory on AdS5 x S5 , when

Kaluza-Klein reduced on S5 , can be classified according to their representations un-

der the same symmetry group. For example, the so called simplest chiral primary

multiplet of N= 4 operators are obtained from the scalar operators of the following

form

0 = trX2, (1.5)

by acting on them with various supercharges in the theory.2 These class of operators

play an extremely important role in the correspondence. Their counterparts in the

gravity side turns out to be the supergravity multiplet that is obtained by acting with

the supercharges on the scalar excitations ha + A 0 6,. Here, the first field is the the trace

of metric excitation on S5 and the second is the components of the 4-form field on

S5. One concludes:

The operators of the form, trX2, and their supersymmetric descendants are dual

to the supergravity multiplet that contain various massless supergravity fields.

2Here, we write the operator schematically. More precisely it is given as, str[X i Xi2], where X ik
are 6 scalar fields that are in the adjoint representation of the U(N) gauge group and transform as
vectors under the internal symmetry group S0(6). "str" denotes the symmetrized trace over the
U(N) matrices with the condition that the trace part over the S0(6) representations is subtracted
away.
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However, the correspondence goes beyond mere kinematic identification of various

operators of N= 4 SYM theory and dual fields on the gravity side. It further asserts

that the dynamics of these dual partners also match! In particular, there is a by now

well-established method [8][9], to compute the correlation functions of the composite

operators on the SYM side from the propagators of their dual fields on the gravity

side. Very non-trivial checks by using this idea has been performed and the conjecture

was confirmed. See e.g. [10] for one of the first non-trivial checks where three and

four point functions in SYM4 theory is computed by means of the SG dual.

1.7 Limitations of the Original Conjecture

Despite the enormous success of the original formulation of the AdS/CFT correspon-

dence, most of the progress has been made in the weak form of the duality that we

described above. Beyond the supergravity regime, one faces serious obstacles. Among

them, there are the following:

* The gravity method for computing the correlation functions is established only

for the massless supergravity excitations. In fact, the operators in the SYM

that are dual to string excitations have anomalous dimensions that diverge as

4 in the strong coupling limit.

* We do not know how to quantize and study the interactions of IIB string theory

on the AdS5 x S5 background. Therefore, use of gravitational theory on this

background to study the corresponding gauge theory is amenable only in the

supergravity limit, namely the weak form of the conjecture, at the moment.

1.8 The BMN Conjecture

Both of these obstacles have been circumvented to some extent by the discovery of the

BMN correspondence [11] by Berenstein, Maldacena and Nastase. The idea behind

this new duality is as follows. One begins with the AdS/CFT duality as explained
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above in the strong form. Namely that, IIB closed string theory on AdS5 x S5 with

N units of flux being the same theory as N= 4 SYM of gauge group U(N). Then,

one performs a special limit of this duality so as to decouple the supergravity and the

massive string excitations from each other and focus on the latter. On the gravity

side, this is accomplished by the so called Penrose limit of AdS5 x S5 : One blows up

the neighborhood of a null trajectory along the equator of S5. This is established by

focusing on the geometry that is seen by a particle rotating along the equator with

infinite angular momentum, J. The technical aspects of this limit will be discussed

in section 2.3. At the same time N is taken to infinity such that J2 /N is fixed. The

resulting geometry is known as a ten dimensional PP-wave.

Of course, the Penrose limit has a dual on the gauge theory side: The correspond-

ing limit in the gauge theory sweeps out all of the operators in the Hilbert space of

N= 4 SYM, except the ones which carry infinite R-charge J, and (A - J)/J - 0

where A is the anomalous dimension of the operator. These operators are called

BMN operators and are conjectured to be dual to the string excitations in the PP-

wave geometry. Details of this identification will be discussed in the next chapter.

The rationale of defining a modified 't Hooft limit in this way, is to focus on the

operators dual to the string excitations. Note that the operators dual to the massless

supergravity excitations (trX 2 operators of eq. (1.5)) satisfy A = J hence their scale

dimension is protected. On the other hand, the operators dual to the string excita-

tions had divergent scale dimensions in the original theory. Having introduced the

Penrose limit, hence a new divergent parameter J, the dimensions of these operators

become A = J + finite. In this controlled way of taking the limit, one can compute

the finite part in the desired order in the gauge coupling constant and the in the

genus expansion parameter.

A crucial fact which makes this limit attractive is that we know how to quantize

and study interactions of string theory on the PP-wave. Further research in the field

showed that the effective gauge coupling constant, A of eq. (1.1) is modified to

Al A (1.6)
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and the genus expansion parameter - which was A/N in the original theory - now

becomes,
J2

92 - (1.7)

Both parameters are finite and tunable. In order to compute the mass of a string

excitation in the dual prescription, one considers the two-point function of the BMN

operator that corresponds to this excitation and computes the anomalous dimension

A to a desired order in A' and g2. Higher order corrections in g2 are dual to higher

string loop corrections. Corrections to the anomalous dimensions beyond the planar

limit (i. e. g2 : 0) are dual to corrections to the mass of string excitations from string

interactions. This quantity can also be computed directly in the string theory side,

thanks to the solvability of IIB string theory on the PP-wave background. Comparison

yields exact match. It should be stressed that the new feature that this new limit of

the AdS/CFT correspondence achieves is the possibility to study string excitations

and their interactions in the gauge theory side.

Therefore one can think of the PP-wave/CFT correspondence as the first example

of the strong form of the AdS/CFT correspondence.

In the next chapter we describe the details of the BMN correspondence. The

Penrose limit is explained and the resulting geometry of the PP-wave is studied. We

briefly discuss the string spectrum on the PP-wave and basic results concerning their

interactions. The emphasis however is on the gauge theory side. We describe the

BMN operators as duals of string excitations and outline the computation of their

anomalous dimensions. Some subtle features as operator mixing beyond the planar

limit is also described.

The third chapter is devoted to a detailed study of our first example of the BMN

correspondence, namely the computations of the anomalous dimensions of a partic-

ular class of BMN operators: the vector operators [12]. They transform as vectors

under the Lorentz symmetry of the 4D Minkowski space and they are dual to string

excitations along i 56, 7, 8 transverse directions of the PP-wave. String theory tells

us that these operators should carry the same anomalous dimensions as the scalar
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BMN operators to first order in A'. We confirm this expectation and extend this result

to first order in non-planar corrections in 92. The equality of anomalous dimensions

of the scalar and vector BMN operators are also shown by the use of supersymmetry

that relates the two.

Chapter four investigates the role of the multi-trace BMN operators in the duality

[13]. These operators are conjectured to be dual to multi-string states. In particular

we extend the recent progress in this direction to the triple-trace operators. A careful

study of the multi-trace anomalous dimensions led to [14] a precise identification

between the matrix of anomalous dimensions A in the multi-trace BMN Hilbert space

with the matrix of light-cone energy operator P- in the space of multi-string states.

We compute the anomalous dimension of a scalar BMN operator to order 92 and A'

with arbitrary number of traces and related it to the dimension of the single-trace

operator. Based on the gauge-theory computations we also make a prediction for the

single-string/'three-string and double-string/double-string matrix elements of P-.

The eigenvalues of A are in fact degenerate among single and triple-trace BMN

operators. In order to study this degeneracy appropriately [151 we use an effective

time-dependent QM perturbation theory and compute the real and imaginary parts

of A in this sector. Imaginary part is conjectured to be dual to the decay rate

of single-string states into triple string states hence it provides a prediction for the

string perturbation theory. This computation is the subject of chapter 5. Each

chapter contains a separate discussion section. Finally, six appendices detail our

computations.
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Chapter 2

The BMN Correspondence

As discussed in the Introduction, the AdS/CFT correspondence, as an explicit re-

alization of string/gauge duality, passed many tests performed in the supergravity

approximation over the last eight years. Yet, this correspondence suffers, at least

quantitatively, from the obstacles in extending it into a full string theory/gauge the-

ory duality. This is mainly due to the lack of a clear dictionary between massive

string modes of IIB on AdS 5 x S5 and gauge invariant operators in the dual = 4

SYM at strong coupling. Specifically, the massive modes are dual to operators in

long supersymmetry multiplets of SYM and have divergent anomalous dimensions as

A = gyN --a o. This fact, among others, hinders our understanding of strongly

coupled gauge theory as a string theory.

However, Berenstein, Maldacena and Nastase has taken an important step in this

direction [11]. BMN focused on a particular sector of the Hilbert space of gauge theory

in which the observables themselves also scale with A, such that they remain nearly

BPS, namely their anomalous conformal dimension acquire only finite corrections.

They identified a class of operators in the Hilbert space of SYM4 the operators which

carry large R-charge, J, under a U(1) subgroup of SU(4)- the full R-symmetry of

SYM 4 ---and this R-charge is subject to a scaling law as, J N x/. As described in

section 2.7 in detail, these are essentially single trace operators that involve a chain

of J fields which are +1 charged under U(1) with a few U(1)-neutral impurity fields

inserted in the chain and the number of these impurities corresponds to the number
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of string excitations on the world-sheet.

The conjecture is that, BMN operators of SYM are in one-to-one correspondence

with the string states which carry large angular momentum, J, along the equator

of S5 . Below, we shall demonstrate the well-known relation between the states in

the bulk of AdS and the operators on the boundary. This requires a discussion of

the geometry of AdS. Then we discuss the so-called Penrose limit of the geometry

AdS 5 x S5 geometry and investigate the related scaling in the Hilbert space of the

dual SYM4 . The analysis of the scaling in SYM4 provides us with conditions that

are satisfied by the operators dual to the string excitations on the pp-wave. Then

we discuss the precise dictionary between the parameters of the gauge theory and

the string theory on the pp-wave. Finally we shall move on to discuss various new

features that arise in this duality.

2.1 The Geometry and Symmetries of AdS5

Lorentzian Anti-de-Sitter space is a maximally symmetric solution to Einstein's equa-

tions with negative cosmological constant A. In five dimensions, the space is a 5D

hyperboloid with radius R that is embedded in flat 6D space with (-,-, +, +, +, +)

signature:
4

_y2 _ y + y2 = R 2 (2.1)
i=l

The radius of the hyperboloid is related to the cosmological constant by,

12A 12 (2.2)

It is easy to see from (2.1) that the topology of this space is R x S1 x S3 where S1

corresponds to a compact "time" direction. In order to define particle dynamics on

this space in a meaningful way, one works with the "universal cover" of AdS where

one simply (decompactifies SI. We shall refer to the universal cover also as AdS

for simplicity. Then, the topology becomes, R x R x S3 . This space can best be

parametrized by globally well-defined coordinates as a solid cylinder in the following
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way:
R 2

ds2 = o 2 (-dt2 + dp2 + sin2 pdQ3) (2.3)
cos 

The geometry is depicted in fig. 2-1. One imagines that, at every point on this figure

there sits a three dimensional sphere, S3. Ranges of the coordinates are,

7-
-oo < t < oc, 0 < p < (2.4)

The boundary of AdS 5, as seen from fig. 2-1 is located at p = wF/2 and has the

geometry of R x S3 .

The symmetries of AdS 5 is most easily seen from the defining equation (2.1):

The geometry is invariant under rotations of the non-compact group of S0(2, 4). In

particular, the rotations in the Yo - Y5 plane corresponds (after decompactification)

to time translations. This isometry can also directly be seen from (2.3) as the metric

is invariant under shifts of t. The corresponding generator defines the energy of the

particle state s that propagate on AdS:

E = it. (2.5)

2.2 Energies of States vs. Conformal Dimensions

of Operators

As we mentioned in the Introduction, there is a very clean definition of the AdS/CFT

correspondence -- in the weak form - that is given by the map of states in the bulk

of AdS and the operators of the QFT that are inserted in the boundary of AdS [8, 9].

For every state of the bulk theory one associates an operator in the boundary QFT.

This matching is possible essentially because one can define the quantization of the

QFT on the boundary of AdS through the so-called "radial quantization". Here, we

describe this procedure without getting in much detail.

The QFT that lives on the boundary in the AdS/CFT correspondence is SYM4 ,

which is conformally invariant, hence it can couple to a background metric in a Weyl
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invariant manner. Therefore the quantization of SYM4 on R x S3 is equivalent to

quantization in a different geometry if the two are related by a Weyl transformation:

9p - Q(x)g',,. (2.6)

Of course, the corresponding physical quantities will have different interpretations.

Specifically, one can map R x S3 onto flat four dimensional space, R4 by the following

Weyl transformation:

ds2 = dr2 + r 2dQ2 = e2T (d 2 + dQ). (2.7)

Here, LHS is R4 and RHS is a Weyl scaling of R x 53 where the scaling factor is given

by, r = log(r). In a conformal field theory, all of the observables carry eigenvalues of

the scaling operator. This is an operation that scales all of the coordinates on R4 as,

xi -+ Axi.

This operation is also referred to as the Dilatation and the eigenvalues of the operators

under this symmetry is denoted as A. From (2.7) we clearly see that, dilatations

(r -- Ar in the parametrization of (2.7)) correspond to time translations in R x S3:

r -+r -++ T - + log A. (2.8)

(In order to define Lorentzian time, one needs to Wick rotate as t = iT.) Since the

time translations in the boundary is equivalent to time translations in the bulk (as

clearly seen from fig. 2-1) we have just demonstrated the crucial fact that, the time

translations in AdS is equal to dilatations on the boundary QFT.

Now, the idea of radial quantization is (see [16] for details) to use the relationship

in (2.7) to introduce the Hamiltonian quantization on R4 (or 4D Minkowski) by

defining the Hilbert space of the theory at constant radius slices. They correspond to

the constant time slices in R x 3. A crucial property is that for every state 14o) that
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is defined on R x S3 there is a one-to-one correspondence with an operator, 0, that is

inserted at the origin of R4. By the argument that we gave above--see eq. (2.8)-the

dilatation eigenvalue of 0 is equal to the energy of the corresponding state:

ERxS3 = AR4. (2.9)

This relation is at the core of our investigation of the relation between the states in

the gravitational theory and the corresponding operators in the gauge theory on R4:

For every state in the bulk of AdS5 one can associate a state at the boundary by,

OE() = lim E(P, ). (2.10)

This state corresponds in a one-to-one manner with a gauge-invariant operator of

SYM4 on R4 (or Minkowski space after the Wick rotation) where the energy of the

bulk state E and the conformal dimension of the operator, 0 are related as in (2.9).

The real problem is, of course, to find the explicit form of a gauge invariant

operator in SYM4 that is dual to a given specific state in the gravitational theory

in AdS5. As we discussed in the Introduction, the high degree of supersymmetry

allows one to associate particular BPS operators - that are protected from quantum

corrections by supersymmetry, hence have the same form at the weak and strong

coupling - to excitations of the fields in the supergravity multiplet of the IIB SG

theory. However, the real challenge is to find the operators that are dual to string

excitations. The only known way of accopmlishing this is in a particular limit of the

original correspondence that is called the PP-wave (or Penrose) limit.

2.3 The PP-wave Limit

The systematic way of taking this particular limit in the gravity side is to consider a

null geodesic along the equator and blow up the neighborhood of the geodesic through

constant scaling of the metric [17][18]. The homogeneity property of Einstein-Hilbert

action guarantees that end-product is also a solution of the Einstein equations, and in
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fact it is a plane-wave geometry supported by the RR 5-form. To discuss the pp-wave

limit, it is convenient to make the following coordinate transformation in (2.7):

tan p = sinh r.

Then the metric of AdS5 x S5 can be written as,

ds2 = R2 (-dt2 cosh2 r + dr2 + sinh 2 rdQ2 + dO2 + cos2 Od?2 + sin2 dQ'2) . (2.11)

Consider an excitation, e.g. a beat wave propagating on the geodesic that is shown

in fig. 2-1 with the speed of light. This geodesic is parametrized by,

r=O, = O, = t.

The pp-wave limit is obtained by scaling the coordinates

focus on the geometry that is seen by this particle:

R 2 t+ r' ·- -L ( - ), - , = 0 =
2 2pt R'

of (2.11) in such a way to

-R R -± oo. (2.12)

Here we introduced a parameter with the dimension of mass in order to make the

units right. When one affects this coordinate transformation in (2.11) and takes the

limit R -+ oo it is easy to see that the following PP-wave geometry follows:

ds2 = -4dx +dx- - _ 2 z2dx+2 + dZ2, (2.13)

Here, dz2 is the 8 dimensional flat space that is transverse to the pp-wave. It follows

from the original coordinates as follows:

dz2 = d 2 + 2dQ'2 + d 2 + 2dQ2.

36



The original geometry also had constant RR field flux on S5:

F5 = 167N(vol(S5) + vol(AdS5))

where vol is the 5-dimensional volume element on the denoted space. N is the number

of flux that is related to the common radius, R, of AdS 5 and S5 by the Einstein's

equations in IIB SG as in (1.2). The method of taking the pp-wave limit of this

quantity is explained in [19] and one obtains the following result:

F+1234 F67 = P73 c/2 (2.14)
47-3 g sa 2

Let us briefly discuss the isometries of the pp-wave solution (2.13),(2.14). Both

the metric and the RR form are obviously invariant under the two translations along

x+ and x-:
2
-P- = -+p+ = i i( + ,), (2.15)

i i
2,P + = -p_- a_ R -( i) (2.16)

There are also the obvious rotational symmetries as seperate S0(4) rotations along

the 1234 and. 5678 transverse directions:

Jij, Jab (2.17)

where i, j take values in the 1234 and a, b in 5678 directions. For completeness let

us also mention the less obvious boost symmetries, under which one shifts one of the

transverse coordinates simultaneously with either x+ or x-:

J+, JI-, (2.18)

where I stands for a combined transverse index, I = i, a. In addition there is the

obvious discrete Z2 symmetry under the exchange of 1234 and 5678 indices. We shall

say more about the implications of this symmetry in the dual gauge theory in the
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next chapter. In addition to these bosonic symmetries, 32 supercharges are preserved

by this geometry, just as in the case of AdS 5 x S5. This is the maximum amount of

supersymmetry that one can have in 10 dimensions.

A

A

6,L

_k
P

- = t /2S
5

S5

A.dS 5

Figure 2-1: Five dimensional Anti-de-Sitter times 5 dimensional sphere. The geodesic
that the PP-wave limit blows up is obtained by identifying the the thick solid lines.

One can easily work out the algebra that is satisfied by these bosonic and fermionic

generators, see for example [20]. However, it will suffice for us to mention one im-

portant fact: P+ in (2.16) commutes with all of the other generators, hence is a

central charge. In other words its eigenvalue, the light-cone momentum p+, is just a

parameter of the theory. It is called a kinematical generator. On the other hand, the

light-cone energy, P-, satisfies non-trivial commutation relations with other genera-

tors: it is called a dynamical generator.

What makes the background (2.13)(2.14) very attractive for string theory is that

quantization of strings on the pp-wave background is known [21]. RR 5-form field

strength curves the space-time in such a way that oscillator modes of the 8 transverse

world sheet fields (and their fermionic partners) in the light-cone gauge acquire a

mass proportional to F. In turn, light-cone energy of string modes read,

00 

pw =N ih c Na nuI+e (2.19)
n=-o (sp+ca o')2

where N is the occupation number of -th oscillator mode. The detailed derivation
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of (2.19) can be found elsewhere, see for example [20].

2.4 SY:M4 theory in Components

The Lagrangian of SYM4 in the X = 1 component notation is given as follows:

F ,Fu2 1 [1AP + D ZiD Zi -+ li )i
L 4Pt g22 P d gfabc( r LO- _aRZbAc) a oc + a b c)

1z2 fabc adeijEimZZk m (2.20)
2g (f9 bZ~) 2 ~ Eijk1Ei1m/ZJbL /(2.20)

where DPZ ::= + ig[A,, Z] and L, R are the chirality operators. The component

fields that appear in this Lagrangian are as follows:

* The vector potential of U(N) gauge theory, Aa. Here a is the adjoint index of

the gauge group running from 1 to N2 .

* Six real scalar fields, Xa. These six fields transform as a vector (the vector index

being i) under the internal R- symmetry group of SO(6). They also transform

in the adjoint representation of the gauge group, U(N). For convenience we

define three complex combinations of them as,

Z 5 + iX 6 X1 + iX 2 _ 3 + (221iX4
~~~Z1Z- Z2 (2.21)

* The fermions in the theory consist of the gluino field, A, and four fermions

0a both in the adjoint of U(N). In addition the 's transform under the four

dimensional spinor representation of internal SO(6).

Let us briefly describe the nature of interactions that appear in (2.20). First of

all there are the gauge interactions between the "matter" scalar and fermion fields,

with the gauge potential. These are contained in the kinetic terms of the fields. They

are represented by gluon exchange diagrams (see appendix A). Then there are the

Yukawa type cubic interactions between the scalar fields and the fermions, A and
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0's. They are given by the second line in (2.20). Finally there is the scalar potential

energy that is given in the last line of (2.20). The interactions that follow from this

potential are quartic and of two different type: The first term in the last line of (2.20)

is called D-term interactions and the last one is called F-term interactions. We shall

mostly be concerned with the Feynman graph calculations that involve these scalar

quartic vertices. The Feynman rules that follow from (2.20) are derived in Appendix

A.

2.5 BMN sector of the SYM4 Hilbert Space

The Hilbert space of SYM4 consists of all gauge invariant operators in the theory that

can be made out of the component fields that we listed above. 1

The most important class of operators are the BPS operators that are annihi-

lated by one of the supercharges in the theory and as a consequence protected from

radiative corrections. In other words, their conformal dimension A does not receive

anomalous corrections and it is equal to the engineering dimension. As mentioned in

the Introduction, these operators are dual to the fields in the supergravity multiplet

of the dual gravitational theory. The simplest example is the following BPS operator

that is composed of k scalar fields in a gauge invariant way:

Ok = tr (Z k) (2.22)

The normalization is chosen is such a way that the two point function (Ok k) is

finite as one takes N -+ o or k -+ oo. The reason for this requirement will be clear

below. One can obtain other scalar, fermionic or vector BPS operators by acting on

(2.22) with SO(6), conformal or supersymmetry lowering operators. This procedure

is detailed in the section 2.7.

Here, we would like to discuss how the PP-wave limit that we discussed above is

realized in the dual gauge theory Hilbert space. Let us single out a particular U(1)

1The term "Hilbert space" is not loosely used here. One can make the notion of Hilbert space
precise by using the one-to-one correspondence of operators on R4 with the states on R x S3 .
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subgroup of the internal R-symmetry group S0(6). Take this as the rotations in the

i, j = 5, 6 plane. According to (2.21), the complex scalar Z carries charge +1 under

this U(1). For example, the BPS operator in (2.22) has U(1) charge +k. Berenstein,

Maldacena and Nastase [11] identified this U(1) symmetry with the rotations along

the b direction of the S5. Denoting the U(1) R-charge as J, the precise identification

between these operators is:

J = -iOn.

The idea of [11]is that, the pp-wave limit in the Hilbert space of the gauge theory

is realized by sweeping out all of the operators from the Hilbert space, retaining only

the ones that satisfy,

ZJ LJ O. (2.23)J
This is the exact analog of "focusing on the geodesic" $ - t -+ 0 in the geometry side,

that was achieved by the redefinition of the coordinates and the infinite radius limit as

in eq. (2.12). Then, the precise identification of the energy and R-charge operators,

in the language of light-cone momentum of the pp-wave, (2.15)(2.16) becomes,

2
P- = i(Ot + &,) = (A - J), (2.24)

i' ic' A + J
2a',P + = R -= R2 -a A- (2.25)

In the last step of the bottom equation, we used the AdS5 x S5 relation, (1.2). For

fixed J, the only operators in the spectrum that retains finite conformal dimension as

N -+ oo, are the BPS operators that we discussed above. However in this modified

version of taking the 't Hooft limit where one also scales J (hence changing the form

of the operators themselves!) one obtains additional operators that receive only finite

radiative corrections to their anomalous dimensions, that also satisfy (2.23). In order

to keep the light-cone momentum, p+ in (2.25) finite, we see that from (1.1) that J

should scale as N1 as N -+ oo. BMN constructed these operators and conjectured

that they are dual to string excitations in the pp-wave geometry. Their construction

is discussed in section 2.7.
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We shall refer to the subspace of the original Hilbert space of SYM4 that is com-

posed of the only operators that satisfy (2.23) as the BMN sector of the Hilbert space.

This sector nly consists of the BPS operators and the BMN operators of section

2.7. These are single trace operators that are composed of J Z fields and a small

number of other component fields. In the limit J - o the engineering dimension

of these operators is given by adding up the classic dimensions of these component

fields which gives J.

2.6 Map of the parameters

Here we summarize the identification of the parameters in both sides of the corre-

spondence. We begin with what we already discussed above. As mentioned in section

2.3, P+ is a parameter of the string theory that is fixed. It is the light-cone momen-

tum that is carried by the string vacuum state. This is dual to the U(1) R-charge of

SYM4 in the BMN sector of the Hilbert space: In this sector, by (2.23), A - J as

J -- oc and from (2.16) we learn that P+ is J. In summary,

a+ I _ 
2Jp 2YM= 9s (2.26)lP+ A - J, ym = '26

Utilizing the AdS/CFT correspondence BMN found a relation between the anomalous

dimensions of the BMN operators and the oscillation number of the corresponding

string states. From eq. (2.19) and using (2.26) we learn that the anomalous dimen-

sions of the string operators are2:

gYMNn 2(A - J)n,N, = N/1 + (2.27)

We see that in the large N limit, only the operators whose R-charge scale as J N /

stays in the spectrum (along with chiral primaries) as the other observables decouple.

2The term "anomalous dimension" refers to the difference of the total quantum corrected con-
formal dimension, A, and the engineering dimension of the classical operator, which equals J in the
BMN sector.
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Therefore the BMN limit in detail is,

J
N -+ oc, with and gyM fixed. (2.28)

7N

This limit differs from the usual large N limit of gauge theory in that the ob-

servables are also scaled as J is not fixed. Therefore neither A - oc implies infinite

coupling in SYM nor 1/N -+ 0 implies planarity. In fact, a detailed study of free and

coupled correlation functions in the BMN sector of SYM revealed that [22][23][24]

theory develops a different effective coupling constant,

A'- gmN I (2.29)
j2 (pp+a1)2'

and a different genus expansion parameter,

2 - J2 2_ 22_+ 4
g92 = = 16w gs 292(/jp )4 . (2.30)

As a result, in the modified large N limit, (2.28), one has an interacting gauge theory

with a tunable coupling constant A'. However non-planar diagrams are not ignorable

necessarily. A direct consequence of this non-planarity in SYM interactions can be

observed as mass renormalization of string states[24]. In [24], 0(A') contribution to

the string state mass was related to torus level contribution to A - J and this value

was computed. They observed that the effective string coupling (which appears in

the physical quantities like A - J is not identical to the genus counting parameter 92

but modified with O(A') SYM interactions as3

s = 92-X'. (2.31)

Now, we observe a very significant fact about the BMN limit. Since A' and g' are

independent and both can be made arbitrarily small, in that regime one has a duality

between weakly coupled gauge theory and interacting perturbative string theory. This

3In [25], a generalization of g' to arbitrary values of A' was proposed.
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provides not only a duality between observables in SYM and string states on pp-wave

background but also an explicit map between gauge and string interactions.

2.7 Construction of BMN operators

In this section we shall first review the BMN state/operator map between first few

bosonic excitations of IIB string on the pp-wave background and corresponding oper-

ators in SYM on R x S3. First of all, string vacuum corresponds to the BPS operator

(with appropriate normalization) 4,

OJ= 1 Tr(ZJ) 10, p+) (2.32)
X(N/2) 

To discuss the excitations it is convenient to form complex combinations of the 6

scalars of SYM as,

X5+ iX6 Xl + iX2 X + iX4
Z = = , Z 2 , 3 (2.33)

Operators corresponding to the supergravity modes, n = 0, are obtained from OJ+1

by the action of SO(6), conformal or SUSY lowering operations. For example, the

particular SO(6) operation 6,OZ = X acting on OJ+1 yields (by the cyclicity of trace),

OJ 1 OJ_ 1 Tr(qZ). (2.34)
6sO/J -- O(N/2)J+

This is in correspondence with the supergravity mode aO 1O, p+) where co0 = f(a 1 -

ia 2 ). Similarly 6,Z = 4 and the translation D, yields other bosonic supergravity

modes,

= /2+ Tr(OZJ) > aotlO,p+ )

4We use the common convention Tr(TaTb) = 6 ab6
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O- = (1 2 Tr(D ZZ J) < > Cot10, p+ ) (2.35)

where pu = 5, 6, 7, 8 and t0 = X2 (cv3 -ioi4) . To find the operator dual to a supergravity

state with N( excitations one simply acts on OJ+No with No lowering operators.

Turning now to the string excitations n 4 0, we see that momentum conserva-

tion on the world-sheet prohibits creation of a single-excitation state with nonzero

n. Therefore the next non-trivial string state involves two creation operators. Corre-

sponding nearly BPS operators are introduced in [11] and discussed in detail in the

later literature but we would like to present here a slightly different approach with a

more compact notation. This will prove very useful when we discuss interactions of

BMN operators. To generalize from supergravity to string modes let us introduce a

"quantized" version of the derivation rule and define a q-variation by

6 (fl(x)f 2(x) ... fk(x)) -= 6qf(x)f2(x) ... fk(x) + qfl(x)6qf 2(x)... fk(x)

+... +q k-fl()... fk_l(x)sqfk(x) (2.36)

where fi are arbitrary operators and q is an arbitrary complex number to be deter-

mined below. With this notation, the operator dual to single-excitation state, say

Ot 0,p+), can be obtained by acting on OJ + l with q-variation A5 with q depending

on n. By cyclicity of trace one gets,

1- * J7 (/ q) TrQ(Z:).

As mentioned above, this should vanish by momentum conservation for n 0 and

should reduce to (2.34) for n = 0. This determines q at once,

q = e2 in/(J+1)

Let us now determine the operator dual to the two-excitation state, °vtOt 0 ,p±+).

This is obtained by action of 62c51 on OJ+ 2 with q and q2 depending on n, m re-
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spectively. A single q-variation should vanish as above, hence fixing q = e27rin/(J+2),

q2 = e2 7rim/(J+ 2). Double q-variation does not vanish in general because q-variation

do not commute with cyclicity of trace. Trivial algebra gives,

J ± 2 6 oqJ+ 2 (J + 2)3/2(N/2)J+2 (2(qlq2) 1 qTr(Z LZ -).

The first sum vanishes unless qlq2 = 1. Thus we reach at momentum conservation

on the world-sheet, m = -n. Also, one can simply omit the phase factor q2 in front

since the corresponding state is defined only up to a phase. Therefore one gets the

BMN operator with two scalar impurities,

1 1 2iiny

n -_ qloJ+2 - Tr(zpz J-p) (2.37)J+2 6O0 JY(N/2)J+2 =O

where we omitted 1/J corrections in large J approximation. In what follows, we will

refer to the specific scalar impurity operator, (2.37) as the "BMN operator".

Generalization to N string states in any transverse direction is obvious: Take

corresponding N qi-variations (which might be SO(6) transformation, translation or
27rin

SUSY variation) of OJ+N where qi are fixed as qi = e JN , and momentum conserva-

tion E nNn = 0 will be automatic.

2.8 Operator Mixing

As emphasized above, a striking aspect of PP-wave/SYM correspondence is that, in a

regime where both the effective GT coupling A' and string coupling g, are small, one

has a duality between effectively weakly coupled gauge theory and perturbative string

theory. This goes beyond the aforementioned duality between observables in SYM and

string states on pp-wave background in the free string theory and provides an explicit

map between gauge and string interactions. However, a clear understanding of the

correspondence at the level of interactions still remains as an interesting challenge.

One essential reason which hinders a complete understanding is the fact that, while
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states with different number of strings are orthogonal in SFT Hilbert space at all

orders in gs, one gets a non-trivial mixing between BMN operators of different number

of traces when one turns on the genus-counting parameter of SYM,

J2

92=
N'

which correspond to g, on the string side. Namely,

-Oj j ~ gii-il(oi j )2 g-, i j.

This is true even in the free theory, i.e. for A' = 0.

Therefore, although it is true that when g92 is set to zero, a single-trace BMN

operator corresponds to a single string state, the identification of multi-string states

with multi-trace BMN operators is plagued by this mixing between BMN operators of

different trace number. To overcome this problem, a basis transformation was found

[26, 27] that takes the multi-trace BMN operators (this is called the BMN basis) to a

different basis (that is called the string basis) in which the operators are disentangled.

The idea of [27] is simple: To find the transformation U which diagonalizes the

matrix of inner products between BMN operators, order by order in g2. In the free

theory, we define the following matrix,

Gij3 = (OjOj).

Here n is a collective index for a generic n-trace BMN operator. One identifies the

basis transformation, U by requiring that G is diagonal in the new, "string basis":

UikGklUj = dij, Oi - UijOj.

The basis change U is specified only up to an arbitrary unitary transformation. One

can fix this freedom by requiring that U is real and symmetric. Call this transforma-
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tion, UG. Then the solution of the above equation up to O(g2 ) reads,

I ( 1 (2) 3 2 3
UG = 1 + 92 ( G(1)) + 9 22 ( G(2) + (G(1))2) + (2.38)2 22 8

where G(i) denotes O(g') piece of the metric.

The requirement of reality and symmetry completely fixes the freedom in the

choice of the transformation. It was independently shown in [26] and [27] that this

simple choice leads to an agreement with string theory calculations. In particular

the inner product of a single and double trace operator in the interacting theory in

this basis, agrees with the cubic string vertex. Recently, [28] also gives evidence for

an agreement between the 0(g22A') eigenvalue of A - J and the matrix element of

light cone Hamiltonian in single string sector. However, despite the agreement at

this order, there is no reason to believe that this simple choice should hold at higher

orders in 92 or for higher trace multi-trace operators.

2.9 Anomalous dimensions of BMN operators

Viewed purely as a field theory problem, our task is to obtain the anomalous dimen-

sions, A - J of the BMN operators. As discussed in the precious section, when the

mixing parameter 92 is turned on, one faces a harder problem of first identifying the

true eigenstates of the operator A - J and then to find its eigenvalue.

For the simplest case of single-trace operators, the mixing is between single and

double-trace BMN operators. In order to compute the anomalous dimension of the

single-trace BMN operator (2.37), at the torus level, we need the following data: The

two-point funcion of the single trace operator at order (g2), the two point function

of the single-and double trace operator that it mixes with at 0(9 2) and the two-point

function of the double-trace operator only at 0(92). The combined result of these

computations for the case of (2.37) is as follows [29][30]:

A- J = 2 + A' ,n + 4 12 327r2n 2. ] =+6 2+(1 3252n2] (2.39)

48



In the next chapter we compute the same quantity (more precisely the two-point

function of the single-trace operator) for the case of the more complicated vector

operator, eq. (3.3) and show that it gives rise to the same result as (2.39).

Finally, we would like to show here the result for the anomalous dimension of a

general i-trace BMN operator that is formed out of one single-trace BMN operator and

i - 1 BPS type operators of section 2.7. This computation also requires entangling the

mixing with lower and higner trace operators. This analysis is the subject of chapter

4 and the result for the anomalous dimension turns out to be surprisingly simple:

2 2222so+ K g2s 1 35A-J = 2 + A [ s_ + 4w2 ( 12 + 32f2rl2 )] (2.40)

where so = Jo/J is the ratio of the length of the single trace BMN to the total length

of the multi-trace operator.

2.10 Identification of String Hamiltonian with the

Dilatation Operator

Several important steps were taken in relation to the aforementioned mixing problem.

In order to unddestand the implications of the mixing for the correspondence between

field theory and string theory quantities, one needs a precise identification of the

corresponding quantities at the interacting level. A natural route to take is to identify

the dynamical generators P- and A - J as,

2P- = -J

also for non-zero values of g2 and gs [14]. Since these operators act on completely

different Hilbert spaces, an unambiguous identification is achieved only by equating

the eigenvalues of P- and A - J in the corresponding sectors of the Hilbert spaces.

In case of one-string states this problem was considered in a number of papers. On

the gauge theory (GT) side, O(g2) eigenvalue of BMN operators that correspond
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to single-string states was obtained in [14][30][29]. On the string theory side, one-

string eigenvalue of P- at O(g2) was first addressed in [26] where a computation that

partially uses the language of String Bit Formalism (SBF) [31] was performed and

exact agreement with the GT result was reported. As noted in that paper however,

an ultimate check of the correspondence requires a purely string field theory (SFT)

computation [32]. This calculation was carried out in [28] and also perfect agreement

with GT eigenvalue was established.5

Apart from the correspondence of eigenvalues, it is also desirable to have an iden-

tification of the matrix elements of P- and A - J. This, of course requires, first to

establish an isomorphism between the complete bases that these elements are evalu-

ated in. We shall discuss this and related problems in chapter 4.

5 Up to an ambiguity which arise from a particular truncation of the intermediate string-states.
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Chapter 3

The Analysis of Vector Operators

3.1 Vector BMN Operators and Conformal Sym-

metry

In this chapter, we will mainly be concerned with the vector operator which involves

two impurity fields and constructed in analogy with the BMN operator (2.37) but

with impurity replaced with D,Z = Z + ig[A,, Z]. It should be defined such

that it reduces to a descendant of the chiral primary operator, ,,Tr[ZJ+2], when the

phases are set to zero and it should be a conformal primary when the phases are

present. Below, we will show that our general prescription for constructing BMN

operators will do the job.

Before that, let us recall that two-point function of conformal primary vector

operators O,(x) and O,(y) should have a specific transformation law under conformal

transformations-particularly under inversion x -+ A. The only possible tensorial

dependence on x and y can be through the determinant of inversion,

J( - y) = x-y - 2(- y ) . (3.1)
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Therefore the two-point function is restricted to the form,

(z y)2a

where A is the scale dimension. On the other hand, translation descendants of scalar

conformal primaries 0,1(x) = 0,O(x), will have the following correlator,

(O,(x)Ov(y)) ( y)2(-1)
2(A-1 )

( 2( y)1) - 2 (x- Y)( - Y)v'
(x- y))2A (x-y) ) 

We would like to see whether the vector operator constructed with our prescription

obeys these restrictions. We will not assume large J until we discuss correlators at

the torus level and our construction will hold for any J. Therefore our prescription

gives an analog of (2.37),

1 1 J
n 1 - 1 26lJ+2 q'Tr (ZD,ZZ') ± q 1Tr (D,1qZJ+l)

J+2 ,1 J (J + 2)(N/2)J+2 0 1)}

where D q is the gauge covariant "q-derivative" obeying the quantized derivation rule,

(2.36). For q = 1, q-derivation coincides with ordinary derivation. We will use the

following two forms of vector operator interchangeably,

Jon +q (qZJ±1) (3.2)
o~ = V/(J + 2)(N/2)J+2Dp ( ) (3.2)

(J + 2)(N/2)J+2 { q'Tr (Z'D,ZZ J- t) + qJ+lTr (DizZJ+1) (3.3)

where,

q = e2 rin/(J+2) (3.4)

Note that in (3.2) the position of 0 would matter generally since the trace looses

its cyclicity property under q-derivation. However one can easily check that only for

the particular value (3.4), the cyclicity is regained: under an arbitrary shift, say by m
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units, in the position of q0, On changes only by an overall phase qll which is irrelevant

to physics.

Having fixed the definition, it is now a straightforward exercise to compute the

planar, tree level contribution to the two-point function (On(x)Om(y)) directly from

(3.3) (or the one with shifted arbitrarily). Note that one can drop the commutator

term in D, since it gives a gYM correction to tree level. Denoting the scalar propagator

by G(x, y) = 4 1r2(x_ 2, the result is

/n JI ( - Y) ~ y +2(Ol(x)OW(y)) = 2 m J () y)G+2 (3.5)

for arbitrary nonzero m, n. The appearance of inversion determinant J,,, (3.1) clearly

shows that vector operator is a conformal primary for arbitrary J, not necessarily large

(at the tree level). In fact, a slight change in the definition of q (for example qJ = 1)

would generate terms like O(1/J)6,L, which spoils conformal covariance for small J.

Conformal covariance will be a helpful guide in the following calculations, therefore

we shall stick to the definition, (3.4).

We also note that momentum on the world sheet is conserved at the planar level,

but we will see an explicit violation at the torus-level just like in the case of BMN

operators. At this point we want to point out an alternative way to obtain above

result directly by using (3.2) with r = e27im/(J+2)'

1
(On(x)Om(Y)) =,91q +f (Tr(z""1)Tr2J+1

(N/2)J+2(J + 2)

J + 2 (x _- y) 2(J+2) (4 7r2)J+2
(1 1 ) 1

= 26nm J/(X Y)G(x, y)J+2
(X - Y)2

using the planar tree level two-point function of chiral primaries and the definition

of q-derivation, (2.36). This curious alternative way is a consequence of the fact that

q-derivation and contraction operations commute with each other. We will use this

fact to greatly simplify the calculations in the following sections. We also note that
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when the phases are absent above result trivially reduces to two-point function of

translation descendants since q-derivation reduces to ordinary derivation for q = 1.

3.2 Free Two-point Function at Torus Level

Torus contribution to free two-point function of BMN operators was calculated in

[24]. Analogous calculation for vector operators is achieved simply by replacing one

of the scalar impurities, say field with the vector impurity D,Z. Since our aim

in this section is to obtain the free contribution, we can drop the commutator term

in the covariant derivative which is (g) and take the impurity as ,,Z. Consider

the generic torus diagram in fig. 3-1 where we show the 0-line together with ,,Z

impurity of the upper operator, OJ, inserted at an arbitrary position and denoted by

an arrow on a Z-line. This arbitrary position is to be supplied with the phase ql and

summed from I = to = J + 1. To obtain (OJOJ)torus one simply takes f-derivative

of this diagram. One should consider the following two cases separately.

[ I _I I I I I I I

J1 J4 J3 J2 J5

Figure 3-1: A typical torus digram. Dashed line represents and arrow on a solid
line is , Z. The derivative , can be placed on any line.

First consider the case when r-derivative hits the same Z-line as with A,. Then

the phase summation will be identical to the phase sum for BMN operators, which

was outlined in section 3.3 of [24] with a O(1/J) modification coming from the fact

that double derivative line can also coincide with the -line for vector operators. Here
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we will summarize the calculation of [24] for completeness. For simplicity let us first

consider operators of same momentum, i.e. q = r. The double derivative line may be

in any of the five groups containing J1 + -. + J5 = J + 2 lines. If it is in the first or

the last group of J1 + J 5 possibilities, then there is no net phase associated with the

diagram. If it is in any of the other three groups there will be a non-trivial phase,

e.g. qJ2+J3 for the case shown in fig. 3-1. Combining all possibilities the associated

phase becomes J1 + JqJ3 -+ J 3 J4J2 J 4 q - J2- J3 + J5. One should sum this phase

over all possible ways of dividing J + 2 lines in five groups,

1

1 )5 (J1 + J2qJ3+J4 + J3 q- J4+J2 + J4qJ2+J3 J5)(J + 2 Ji+...+J5 =J+2

N--oo 1 dj1' dj56(i + + j5-1)

X (il + j 2 e- 27rin(j3+j4) + j3 e227rin(-j4+2) + j 4e27rin(2+) + 35)

424 1 =, (3.6)
1 1 + 7 n 0 .

60 6(27rn)2 (2irn)4 2 74 0.

In taking the limit N - o the fractions ji = Ji/(J + 2) go over to continuous

variables. Apart from this phase factor there is the obvious space-time dependence

1
x f~(X- y)2(J+l)

where fJ _= , (X 1)

Now consider the second case when q-derivative hits on a different Z-line than A,.

For a fixed position of 9,,, say 1, r-derivative generates the phase sum

J+1

Z -1' =-c
1'=0; 1'tf(1)

where we defined or(1l) as the position at which ,Z connects the bottom operator,

e.g. v(l) = I --- (J3 + J4) for the case shown in fig. 3-1, and used the definition qJ+2 = 1

to evaluate the sum over 1'. Including the summation over the total associated phase
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factor becomes,
J+1

-E qa(l) (3.7)
1=0

which is obviously the same as (3.6) up to a minus sign. The associated space-time

dependence is different however,

(w -y) x ffv

where f - i ( )2. It is now easy to see that the torus phase factor of the vector

and BMN operators will exactly be the same also for generic momenta m, n, not

necessarily equal. This general phase factor was computed in [24] and we merely

quote the final result,

Amn = 

1 ~2~~' r~m = n = 0;

0, m = 0, n : 0 or, n = 0, m 0;

60 6u
2

+4 7 m = n 0;

4u ( + 5) 7 m =-n 0;
(u-V)2 (3 +2 U2 U, (V2)2) all other cases

(3.8)

where u 27rm, u 27rn. Note also that space-time dependences of two separate

cases that were considered above nicely combine into the conformal factor, (3.1), as

fill _- f L, -M 2 (XIt ( 9! (3.9)
( - Y) 2 (x - y)6'

Combining above results, free two-point function of the vector operators including

genus one corrections can now be summarized as

.OL(, J)O (X))freetorus - (c6nm + 92 Anm) (X ) G(X,y)J+2 (3.10)

This result clearly shows the mixing of 0n operators at the torus level since the

correlator is non-zero for n m (unless either n or m is zero). This operator mixing

is described by the O(922) matrix g22Anm. This particular momenta mixing issue of
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the BMN operators was first addressed in [22]. The eigenoperators corresponding to

the true string eigenstates can be obtained diagonalizing the light cone Hamiltonian

at g22 order. We will not need this diagonalization explicitly for our purposes. There

is another type of mixing of the BMN operators at the torus level: single trace

operators mix with the multitrace operators at O(g2) [29]. Roughly, this corresponds

to the fact that single string states are no longer the true eigenstates of the light-

cone Hamiltonian when one considers string interactions but mixing with multi-string

states should be taken into account. As in [24] we shall ignore these mixing issues in

this paper.

3.3 Planar interactions of the two-point function

One of the main results of this manuscript is that vector operators possess the same

anomalous dimension with the BMN operators. In this section we prove this result

at; the planar level and develop the techniques necessary to handle the interactions of

vector operators which will also be used in the next section when we consider O(A')

interactions at genus one. These techniques can easily be used for O(A') interactions

at higher genera as well. However higher loop corrections would require non-trivial

modifications.

Interactions of the vector operators are far more complicated than BMN operators

because there are three new type of interactions that has to be taken into account. Re-

call A = 4 SYM Lagrangian (with Euclidean signature) written in I = 1 component

notation [33],

1 2 I 1 i iL : + F2 PA + DZiD Z 1-+
4 [L 2 2

1i /2gfabc( AaZPL0' - 6aRZA, ) fab( EjkOaLZbj ± EijkeaRZbOC

~~2 2~~~~ ~ 212(fabcizi2 YM fabc ade Zjk m (3.1
2g fb ) ' 2 s2(ijki ZbZc Zde (3.11)

where D,1Z -:= Oi + ig[A1,, Z] and L, R are the chirality operators. For convenience we

use complex combinations of the six scalar and fermionic fields in adjoint representa-
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tion,

X5+ x 6 X + 2 X3 iX 4
z1 Z v= Z2 = = Z 3 = =

with analogous definitions for fermions, Oi.

Recall the result of [24], (also see [33]) that, the only interactions involved in

correlators of BMN operators were coming from F-terms since D-term and self-energy

contributions exactly cancels each other out. That was due to a non-renormalization

theorem for two-point functions of chiral primary operators and unfortunately, this

simplification will no longer hold for the correlators involving vector operators because

of the covariant derivatives. It will be convenient to group interactions in three main

classes because the calculation techniques that we use will differ for each separate

class:

1. D-terrn and self energies

2. Interactions of external gluons in On

3. F-term.s

In the following subsection we will show that interactions in the first class can be

rewritten as a correlator of the non-conserved current, (Tr(JJ)) where

J = Z 01, Z. (3.12)

This will be a consequence of the non-renormalization theorem mentioned above.

Second class of interactions which are coming from the commutator term in the

covariant derivative will then promote the ordinary derivative in J, to a covariant

derivative, hence total contribution of the interactions in first and second class will

be represented as the correlator of a gauge-covariant (but non-conserved) current

U = Z Dr Z. Computation of this correlator by differential renormalization method

[34] is given in Appendix A. Last class of interactions originating from F-term in (3.11)

are easiest to compute. This quartic vertex is only possible between a scalar impurity,
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0 and an adjacent Z-field (at planar level), and its contribution to the anomalous

dimension of BMN operators was already computed in [24]. We can confidently

conclude that F-term contribution to vector anomalous dimension is half the BMN

anomalous dimension because the BMN operator involves two scalar impurities which

contribute equally whereas the vector operator involves only one scalar impurity.

However, a rigorous calculation for vector operators is provided in Appendix B for

completeness.

3.3.1 Non-renormalization of chiral primary correlator

Let us begin with recalling the non-renormalization theorem of the chiral primary

correlator,

(Tr(qZJ+ 1 )Tr7(ZJ+ 1 )) (3.13)

For our purposes it will suffice to confine ourselves to planar graphs. D-term part of

(3.11) includes the quartic interaction Tr([Z, Z]2) (or Tr([, q][Z, Z])) and the gluon

exchange between two adjacent Z-lines,

a--' b + (fpabfpa'b' + fPab'f pa'b)B(x, y)G(x, y)2

(3.14)

where a, a', b, b' indicate adjoint color indices, G(x,y) = 1/(4-r2 (x _ y)2) is the free

scalar propagator and B(x, y) is a function which arise from the integration over

vertex positions and contains information about the anomalous dimension. self-energy

corrections to Z and v propagators arise from a gluon exchange, chiral-chiral and

chiral-gaugino fermion loops. We represent this total self-energy contribution as,

a a' 5'aaNA(x, y)G(x, y) (3.15)

where A(x, y) again contains (g(2 M) contribution to anomalous dimension.

Planar contributions to (3.13) are obtained by inserting (3.14) in between all

adjacent Z-Z and -Z pairs and summing over self energies on all J lines including

b. Since every term in (3.11) is flavor blind except than the F-term, eqs. (3.14) and
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(3.15) also hold for A. Therefore, from now on we do not distinguish interactions of

¢ and Z fields and in all of the following figures a solid line represents either C or Z

(unless X is explicitly shown by a dashed line).

A convenient way to represent sum of all these interactions is to define a total

vertex as shown in fig. 3-2 and sum over J + 2 possible insertions of this vertex in

between all adjacent lines. Note that in Fig. 3-2 the self-energy contributions on each

a a' a a'

b b' b b'

Figure 3-2: Combination of gyM corrections under a total vertex.

line are taken as half the original value, A(x, y)/2, to compensate the double-counting

of self energies by this method. One of the J + 2 possible contributions is shown in

Fig. 3-3. Using the trace identities given in Appendix B. it is straightforward to

compute the amplitude represented by Fig. 3-3. One obtains,

Fig.3 - 3 : G(x,y)J { (N/2)J-3Tr(TaTa'TbTb' (fpabfpa'b' + fpab'fPa'b)B(xy)+ (N/2)'Ay

= G(x,y)j(N/2) +1 'B(x,y )( + N2) J+A(x, y)

- G(x,y)J(N/2)J+ {B(x,y) + A(x, y) .

O(1/N 2) term in second line is coming from the second permutation in (3.14) and

is at torus order hence negligible in the BMN limit taken in the last line. Clearly,

insertions in all other spots give equal contributions and the final answer becomes,

(Tr(0ZJ -1)Tr(-ZJ1)) = G(x, y)J(J + 2)(N/2) J+1 {B(x, y) + A(x, y)}. (3.16)
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Then, the non-renormalization theorem of this correlator [35][33] tells that,

(3.17)4.33cx Tr (: ) cx (B + A) = 0

This identity greatly simplifies the following calculations.

a a'

b b'

Figure 3-3: Planar interactions of chiral primaries can be obtained by placing the total
vertex between all adjacent pairs. To find the vector correlator one simply dresses
this figure by 0q and &A.

3.3.2 D-term and self-energies

Now, consider the D-term and self-energy contributions to planar two-point function

of vector operators,

(3.18)

where we used the fact that q-derivation and commutation operations commute with

each other to take q-derivatives out of the correlator. Once again, we note that

minimal coupling in the covariant derivative can be dropped as its contribution will

be of order (g 3). Now it is clear that calculation is reduced to taking lq of Fig.

3-3 and summing over all possible locations of the total vertex in Fig. 3-3. In taking

OqOr of Fig. 3-3, one encounters three possibilities.

If both of the derivatives hit lines other than the four legs coming into the total

61

(O0n(x)O (y)), 0,l,9](Tr(ZJ+ rwZ.++1



vertex, than graph is proportional to (B + A)O,1G(x, y)OG(x, y) hence vanishes by

(3.17). Second possibility is when one of the q-derivatives hit the vertex and other

outside. Supposing aq hits the vertex, trivial algebraic manipulations show that the

graph will be proportional to,

0,G(x, y)l, Tr {3J } = v9,G(x, y) [(1-q)Tr{ }

+ (1 + q)8.Tr { C }]

-2&G(x, )( - q)((Tr(JZZ)) + (1 + q) {(B + A)G(x, y)2J

where J, was defined in (3.12). The second term in the last line again vanishes

by (3.17) whereas the first term is the self energy and D-term corrected two point

function of a vector operator J. with a scalar operator Z2. Now, it is immediate to

see that by the antisymmetry of derivative in J, both D-term quartic vertex and self

ebergy corrections to (JZ 2 ) vanishes. With a little more afford one can also see that

the gluon exchange contribution is identically zero as well and the second possibility

givevs no contribution.

Therefore we are only left with the third possibility where both and are

acting on the vertex in Fig. 3-3. With similar algebraic manipulations of this graph

and the use of (3.17) one obtains,

&,0 Tr {A } = (1 - q)(1 - )(Tr(J,(x)J (y))). (3.19)

Recall that there is a phase factor depending on the position of the vertex in Fig.3-3.

If this position is I then this factor equals (qf)l and one should sum over the vertex

position from 1 = 0 to = J + 1 to obtain the total contribution. Using our definition

of the vector phase, (3.4), this phase summation generates the multiplicative factor

(J + 2),,m. Furthermore, use of the trace identities of Appendix B one squeezes

the whole trace clown to the trace of interacting part with a multiplicative factor of

2(N/2) J - ' (See Appendix B for a similar application of the trace identities). The
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final answer can be written as,

(IT'(q1 t (.IT r (+ )Tr ))

= G (x, Y)J (N 2) -1(J + 2)Mn (1 - q)(1 - )(Tr(J,(x)J(y))).

(3.20)

Radiative corrections to this current correlator arise form three sources: D-term quar-

tic vertex, gluon exchange and self energies. It is easy to see that D-term contribution

vanishes identically by the antisymmetry of J,, under exchange of two incoming Z

particles. This is shown in Appendix A. self-energy contributions are straightfor-

ward to calculate with Differential Renormalization method [34] and calculations are

explicitly shown in Appendix A.

However, gluon exchange contribution to (JJ) is notoriously difficult to evaluate

by direct methods. Fortunately, there is the following trick 1: Suppose that one

computes the true flavor-current correlator of scalar QED, (j) with j = Z Z

instead. Feynman rules treat these two correlators equivalently except than an overall

minus sign (J and j differs only by replacement of a Z with a Z then color factors

at external vertices give rise to a minus sign) and the appropriate color factors at

the vertices. Hence one can obtain the anomalous dimension which arise from gluon

exchange graph by considering the vacuum polarization graphs of scalar QED at two-

loop order as we exlain below. There are four Feynman diagrams that are shown in

Fig. 3-4. Note that, the anomalous dimension arises from the sub-divergent pieces

of the gluon exchange graph (when the internal vertices come close to x or y.) Now,

the Ward identity of scalar QED requires that the sub-divergent logaritmic pieces

of graph I, II and III cancels each other out (IV do not contribute to anomalous

dimension.) This fact allows us to compute gluon exchange in terms of I and II which

are easy enough to evaluate directly as shown in Appendix A. When the smoke clears

one obtains the total anomalous dimension arising from D-term and self-energy part

1We are grateful to Dan Freedman for pointing out this idea.
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of the Lagrangian as,

2 (y)2 2= Jn5n ( G( )J+2
(O(x)O-- (y))l --A n 0log ((x - y)2A2) J"(x' G(x,y)IL . 8 (x-y) 2 (3.21)

with the correct normalization of the vector operators.

I II III IV

Figure 3-4: Two-loop diagrams of vacuum polarization in scalar QCD. Treatment
of other four diagrams obtained by replacing the scalar lines with gluons can be
separately and do not affect our argument.

3.3.3 External gluons

There are two topologically different classes of planar diagrams which involve external

gluons at 9(gYM) order. First class, shown in Fig. 3-5, which arise from contracting

external gluons of and O- do not involve any internal vertex to be integrated over,

hence do not give rise to log terms. By considering all possible Wick contractions and

employing the trace identities of Appendix B, sum over all of these diagrams yield

(in Feynman gauge),

(° (X)(Y))2 - 92 M(1 - q)(1 -r) n (J + 2)(N/2)J+3G(x, y)J+2. (3.22)PIx)O Y- g 1 (x - y)2

Therefore this class does not contribute to the anomalous dimension.

Second class of diagrams which involve one external gluon and one internal cubic

vertex are depicted in Fig. 3-6. Diagrams where external gluon belongs to O2 will give
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1/2

Figure 3-5: First class of O(g}M) diagrams involving external gluons. These do not
yield anomalous dimension as there are no internal vertices.

identical contributions to those in fig. 3-6, hence need not be considered separately.

Minimal coupling in the covariant derivative in UT can again be dropped since we

are interested in O(g2M). Let us first consider graph I in Fig. 3-6. Total contribution

to correlator is obtained by taking d0 of this diagram and performing the phase sum

over all possible positions 1 E {O,..., J + 1}. Define,

a' , ob _ N(6abCp(X, y) . (3.23)

Using the identity, rJ+2 = 1 one easily obtains the d0 of Graph I with the result,

(q)l'G(x, y)J (N/2) JN3 {0 ,C/(x, y) G(x, y) - ,G(x, y)C,(x, y)}

where we again used the trace identities of Appendix B. Summation over I yields,

G(x, y)J (N/2)JN3(J 2)mn {G(x, y) 0, Cz . (3.24)

Graph II gives identical contribution except than a factor of q. In Appendix A, we

compute C(., y) and conclude that graphs I and II give the following contribution to

the anomalous dimension (including the equal contribution from the reflected graph

where external gluon belongs to ),

Graph I + II+ -- (1 + q) MN m (xy)
8 47r2 (X - y)2 log ((x - y)2A2) G(x, y)J+2
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1+1 I

I II III IV

Figure 3-6: Second class of diagrams which involve one external gluon. Derivative of
the OJ can be placed at any position. Integration over the internal vertex yields a
contribution to anomalous dimension.

To handle graph III in Fig. 3-6, let us write,

iab~ ' _ (fpabfpa'b' + fPab'fpa'b)C (X, y)G(x, y).
a b

(3.26)

By the same token, X0 of graph III can be written as (at planar level),

1

2(N/2)J2
1G(x, )) - (- 4) (q) {(G(x, y)C,(x, y))G(x, ) -

-(1 + i)aG(x, y)G(x, y)C(x, y)}

= 8(N2)J-'G(x,y)J(qf)lf (- ,y) a,, C (x, )

where 7N comes from the the color factor, fabfpa b Tr(TaTaTb' Tb). Second color

combination in (3.26) gives torus level contribution hence negligible at planar level.

Summing over 1 and using the expression for C, which is evaluated in Appendix A,

one gets the following contribution,

Graph III 8 - - 2 mn ) log ((x8 4 2 m (x-y)2
- y)2A 2) G(x, Y)J+2

where we included the equal contribution coming from the horizontal reflection of

graph IV. Graph IV and horizontal reflection of III gives (3.27) with is replaced by
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q, giving all in all,

3 yM2 (1 _ q)( - )m log ((- y)2A2) JL( Y)G(,)J+2
8 4w2 (X - Y)2

- - q1 ,, log (( - Y/A ) J,(x, Y2G(x, y/~+~
8 4 2 ( - )

-3'2mn log ((x - y)2A2) J(' (XI YG(x, y)J+2 (3.28)
8 (x- Y) 2

as the total contribution to anomalous dimension from external gluons, after normal-

izing according to (3.2).

As an aside let us make an important observation which will be used in section

4. In the previous section we concluded that D-term and self-energy contributions

to the vector correlator can be organized in terms of the current two-point function

(J,JV) where J, = Z 08, Z. Curiously enough, the external gluons result, eq. (3.28)

can exactly be reproduced (in order O(g2YM)) by promoting the ordinary derivative

of J,, in (3.20) to the covariant derivative. Therefore, one can neatly represent the

contributions of D-term, self-energy and external gluons to the anomalous dimension

in terms of radiative corrections to the current correlator (Tr(U,(x)U,(y))) where

U, is the gauge-covariant but non-conserved current, U, = Z D, Z. Had U, been

conserved there would not be any radiative corrections to the correlator and the corre-

sponding non-F term contributions to anomalous dimension would vanish identically.

By using the equations of motion one can easily see that the "non-conservation" of

U, is of O(gyM) hence one expects first order corrections to (UU) be O(A'). Indeed,

combining (3.21) and (3.28) one obtains,

(°O(:)C> (Y)) 1+2 = G(x, y)J6smn-(1 - q)(1 - )(Tr(U,,(x) U,(y))) (3.29)4

-+ -A'n 2 6mn log ((x - y)2A2) J, (x ) G(x, y)J+2 (3.30)( - )2

Notice that anomalous dimension is in units of the correct effective 't Hooft coupling

associated with the BMN limit i.e. ' = gMN/J 2 , and tensorial form of the corre-

lator indicates that conformal primary nature of Oj operators is preserved by planar~uUIIIUIVIU\IV III)V VIIVLIIW rllll~il I~IUU~ V A
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radiative corrections.

This result proves our previous claim that F-term contribution (which is calculated

in Appendix B) and the rest (D-term, self-energy and external gluons) are equal

hence the total planar two-point function of vector operators with O(A') radiative

corrections can be written as,

(x) ))= (I - A'n2 log ((X y)2A2)) 6n 2 (,)G(x, )J+2 (3.31)

which shows that the vector operators possess the same anomalous dimension as BMN

operators, as required by the consistency of the BMN conjecture. This concludes our

first test on the BMN conjecture.

3.4 Anomalous dimension on the torus

In the previous section we noted that F-term contribution to planar anomalous di-

mension of vector operators is just half of the BMN case because vector operators

involve one scalar impurity field compared to two impurities of BMN operators. Sim-

ilarly, one can easily show the effect of F-term interactions on the torus which arise

from the impurity produces half of the BMN torus dimension. Furthermore, we

will show that D-term and external gluon contributions combine neatly into the form

(Tr(UU)) as in the planar case, hence yield the same torus anomalous dimension as

the F-terms. Therefore, the total torus anomalous dimension of BMN and vector op-

erators are the same as well. As in the previous section we will group the interactions

into D-term, external gluon and F-terms but before that it is convenient to classify

topologically different torus diagrams which will show up in each of these interaction

classes. Notice that all of these interactions will result in two interaction loops which

are in contact with each other at the interaction vertex, fig. 3-7. Therefore, one can

classify torus; diagrams [24] which are leading order in J, i.e. O(J 3), according to

whether

1. both of the loops are contractible,
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Figure 3-7: A generic O(gM) interaction on a torus diagram. The internal vertex
generates two interaction loops in space-time graphs.

2. only one is non-contractible,

3. both are non-contractible on the same cycle of torus,

4. both are non-contractible on different cycles of torus.

We will call these groups as contractible, semi-contractible, non-contractible and spe-

cial respectively. We called the last class special because it is possible only for D-term

interactions as we demonstrate below. First three of these classes were discussed in

[24] in detail where they were called as nearest, semi-nearest and non-nearest respec-

tively. In what follows, we shall demonstrate that only the "non-contractible" class

gives rise to a torus anomalous dimension.

3.4.1 Contractible diagrams

A generic contractible diagram is displayed on the cylinder and on the periodic square

in Figs. 3-8 and 3-9 respectively. As in planar interactions, we combined D-term

quartic vertex with gluon exchange and self energies into the total vertex, see fig.

3-2.

Let us first consider the contractible contribution to the chiral primary correla-

tor, (O'Ot) where O is defined in (2.34). This of course will vanish by the non-

renormalization theorem of section 4.1. Still, it will be helpful for illustrative purposes
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I I I I I I I I
J2 J1 J4 J3

Figure 3-8: A generic contractible diagram. Total vertex includes, D-term quartic
vertex, gluon exchange and self-energy corrections.

to discuss this case first because we will obtain (OnO) by taking q-derivatives of the

chiral primary correlator. To obtain this contribution we would sum the diagrams

similar to Fig. 3-8 with all possible contractible insertions of the this vertex. By the

use of trace identities of Appendix B, one gets,

(O'(x)O(y)) c ( B(x, y) + A(x, y) )G(x, y)J+2NJ-1J5 . (3.32)

Total vertex gives the B+A factor as in (3.16), power of N indicates that this is a torus

level (to be compared with N J+3 dependence at planar level) and the dependence on

J is coming from two observations: there are - J4 free diagrams that can be drawn

on a torus and the interaction vertex can be inserted at -- J different positions

respecting the contractibility of the diagram. This, of course vanishes by the non-

renormalization theorem, (3.17). One obtains correlator of vector operators simply

by taking 0 q and 1 of fig. 3-8. By the same reasoning as in our planar calculation,

one sees that the only non-vanishing case occurs when both of the derivatives hit legs

of the total vertex. In that case one arrives at the following expression,

4qlr(1)(1 - q)(1 - )(Tr(Jj,))GJ J- 3

Phase summation EJ'+l qlr(l) is identical to (3.7) yielding the phase factor, A, m, inPhase ummatin z_1=0,,
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eq. (3.10). As we are interested in the anomalous dimension, we consider the case

n = m and get,

(O2(x)-n(y)) An, (1 - q)(1 - )Tr(JJ,))GJN J-3
P ~~4 (3.33)

Apart from the phase factor associated with the topology of these diagrams the

Figure 3-9: Same diagram as Fig.8, but represented on a periodic square.

calculation is identical to the planar case. Therefore, together with the contribution

from external gluons and F-term quartic vertex (which is only possible between X and

adjacent Z's) the final answer can be written as,

O2(Xn)Ou(Y))contractible -g2A'n log [(x - y)2A2] An ) G (x, y )+ (3 34)

where we included the normalization associated with the torus correlator. We con-

clude that contractible diagrams do not contribute to torus anomalous dimension

because their sole effect is to modify the normalization of the two point function by

the factor of An,.

3.4.2 Semi-contractible diagrams

An example of the second class of diagrams which might potentially contribute to

torus anomalous dimension is shown on the cylinder and the periodic square in figs.
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3-10 and 3-11. However, we will now show that sum over all possible semi-contractible

diagrams actually vanishes. Last figure explicitly shows that the interaction loop

which is formed by two adjacent Z lines connected to O is contratible whereas the

other interaction loop formed by Z lines connected to Omn is surrounding a cycle of

the torus. A glance at either figures show that there are 8 possible positions that one

can put in such a semi-contractible vertex as opposed to J possible insertions of con-

tractible vertex--hence the multiplicity of this class of graphs is order J less than the

contractible class, that is O(J4 ). As we explain next, the phase summation provides

a factor of O(1/J) rendering semi-contractible class leading order in J i.e. O(J3 ). To

I I I I I I I
J2 J1 J4 J3

Figure 3-10: A semi-contractible diagram shown on the cylinder.

compute the contribution of fig. 3-10 to the total anomalous dimension one can use

the same trick as above. One first combines D-term, gluon exchange and self energies

under the total vertex of fig. 3-2. Then, insertion of derivatives in all possible ways

with the phases shows that,

(On(x)O(y)) x (1 - q)(1 -J+ J2)(Tr(JJ,))

for the fixed position of as in fig. 3-10 and fixed J1 ... J4. Contributions from

the external gluons are shown in fig. 3-12. Not surprisingly, they add up with total
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vertex to modify the above result as,

(On(x)O(y)) (1 - q)(l -Jl+J2)(Tr(U U))

One similarly computes the contributions from 7 other semi-contractible graphs with

Figure 3-11: Same diagram as Fig. 3-10, but represented on a periodic square.

the same J1 ... J4 and the fixed position of 0, and finds that phase factors conspire

exactly to cancel out the total result. F-term contributions also give rise to same

phase factors and cancel out in exactly the same way as described above.

/2 1/2

I i IT1 IV

1

Figure 3-12: External gluon interactions with semi-contractible topology.

3.4.3 Non-contractible diagrams

As advertised in the beginning of this section, we will now show that non-contractible

diagrams, figs. 3-13 and 3-14, yield a finite contribution to torus anomalous dimen-
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sion. As one can observe in fig. 3-14, to join the legs of the interaction vertex while

both interaction loops surround the same cycle of the torus, it is necessary that one

of the 4 possible Z-blocks be absent (block 3 is absent in fig. 3-14). Therefore the

multiplicity of this class is 1/J lower than the semi-contractible class, that is 0(J 3 ).

However phase summation will not change this order essentially because upper and

lower legs of the interaction vertex are separated by a macroscopic number of Z lines.

One concludes that non-contractible diagrams are also 0(J 3 ) i.e. leading order.

J1 J4 J2

Figure 3-13: Non-contractible diagrams on the cylinder.

fig. 3-15 shows non-contractible external gluon diagrams. Having gained experi-

ence with previous calculations one can immediately write down the contribution of

the total D-vertex and external gluons ( for the fixed position of X shown in figures )

as,
1

(1 - qJ1)(1 -qJ)qJ2 (Tr(U,(x)U,(y)))G(x,y) N
4

This result should be summed over all positions of the scalar impurity X and finally

over J1 ! ... J.. Clearly no relative phase will be associated when is in the first

vertical block in fig. 3-13. When it is in the second block, relative distance of i and

X to the interaction vertex is J3 , hence a nontrivial phase, qJ3 arises. The last case,

when X propagator is in the third block was already considered above and yields the

phase q-J". Replacing the sum over Ji (with J1 + J2 + J3 = J) by an integral over
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ji = Ji/J (with jl + j2 + j 3 = 1), one arrives at the integral

djdjdj3 6(jl+j2+j3-1)(j2e2 inj 3+j 3e_2 linj2+l)1_-e21"i 2 1 _+ (3235)

(for n / 0). Using the result for current correlator from Appendix A, one finds the

following D-term and external gluon contribution from the non-contractible diagrams,

1 5 (x - Y)-+ + 2- )G(x, y)J ln(A 2(x - )2)J/ ,(X Y)A01 (3 2X~ n2Gxy ( -)(3.36)

Figure 3-14: A Non-contractible diagram on the periodic square.
of Z-lines is missing.

Note that 3rd block

The non-contractible F-term contribution in fig. 3-13 arises when (and )

impurity is at the first or last positions of the first block where one replaces the total

vertex with an F-term quartic vertex. Note that the integral over this vertex gives

the logarithmic scaling,

/1 - d4u = 2 2 ln(A2(x - y)2)G(x, y)2
(47r2)4 ( - U)4(y - U)4 

(3.37)

Now, one should dress this diagram by all possible locations of the derivatives. When

both ,, and 9v hit the same line, the phase summation is equivalent to the situation

discussed above. A double derivative line replaces the impurity whose position is

to be summed over as in (3.35) and one again finds out the factor (½ + 25-2) together
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with the space-time dependence, d(, (X y)
2 The case where 9, and A, hits different

lines is handled in the same way as in section 2. One first considers a fixed position

of 9,, say 1, and sum over position of , from 1' = 0 to J + 1 with the condition

1' a(1l). This yields a factor -qlq(l) which is then summed over I and finally over

J1,... J4 resulting in the same phase factor (3.35) up to a minus sign but with a

different space-time dependence, , y)2 , ( y)2. Combining these cases one gets,

1 5 J,,(x- y)

3 27r2 n2 (x-y) 2

where we used (3.9). Therefore F-term contribution to anomalous part of the torus

correlator is exactly the same as (3.36) and the total result involving D-term, external

gluon and F-term contribution simply becomes,

4g22 1 5 2J,,(x - y)
(O(x)o (y))Dterm - (3 2 2 2)G(x,y)Jln(A2(x- y)2) (3.38)

This torus dimension is exactly the same as torus anomalous dimension of BMN

operators, [24].

Figure 3-15: External gluon interactions with non-contractible topology.

3.4.4 Special diagrams

All of the topological classes of Feynman graphs that have been discussed so far were

available both for F-term and D-term parts of the Lagrangian (3.11). However, the

special Feynman graphs on the torus are formed when the interaction loops wind

around different cycles and are present only if the interaction is a D-term quartic
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vertex (and their external gluon cousins). To see this, one should specify the orien-

tation of the scalar propagator line ZZ (and 14) by putting an arrow on it (not to

be confused by derivatives). We choose the convention where scalar propagation is

from O towards 0. With specification of the orientations, the F-term and D-term

quartic vertices can be represented as in fig. 3-16. One observes that the vertex where

adjacent lines have the opposite orientation is only possible for D-terms. Using such

a vertex one can draw 4 different special graphs on a torus. One of these possibilities

is shown in figs. 3-17 or 3-18. Here the shaded circle represents the total vertex, fig.

3-2 as before. Special graphs can also be formed by external gluons as in fig. 3-19.

In general, special graphs are formed by combining either first or last lines of blocks

1 and 3 or blocks 2 and 4.

+

Figure 3-16: Orientations of F-term and D-term quartic vertices.

However, one makes a disturbing observation about special graphs: They are

0(J 4 ) therefore all of the graphs we have considered so far are sub-leading with respect

to them! Even worse, this extra power of J seems to be unsuppressed in the BMN

limit, hence the presence of such graphs imply the breakdown of BMN perturbation

theory!? Hopefully, as we shall demonstrate next, contribution of special graphs to

the anomalous dimension is zero when one adds up all such possible graphs (fig. 3-17)

just as in the semi-contractible case.

Let us consider a fixed position of b at the last line of the first block and fixed

J,...,, J4. By use of trace identities given in Appendix B and q-derivation tricks

described above, one can easily boil down the special D-graphs into our familiar

(JJ) correlator. Let us first consider the special contribution to the chiral primary
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Figure 3-17: Special diagrams shown on a cylinder.

correlator, O. The trace identities show that fig. 3-17

(B + A)GJ+2N J+ 1

hence special graph contribution to chiral primary correlator vanishes by non-renormalization

theorem. Reader will find the details of this calculation in Appendix B. Next we put

in the q-derivatives on this graph to obtn this graph to obtain the special contribution to (On, ) and

observe that the only positions which yield a non-vanishing result is when both ,,

and A, act on the total vertex. Proof of this fact is exactly analogous to our argument

in section 4.2. The algebraic tricks familiar from previous calculations are then used

to express the result as

q-J2ri (1( 1J2-J3 -J4)(J(x)J(Y))GJNJ+l.

Similarly, the external gluon contributions shown in fig. 3-19 can be shown to have

the same form and total result-which follows from combining D-term, external gluon

and self-energy contributions-becomes,

, q-J2 rJ (1 - q-J2-J3)(1 _ -J3-J4) (Uu(x)U(y))GJNJ+.

This was for the diagram in fig. 3-17. A second special graph is obtained when
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Figure 3-18: Periodic square representation of Special diagrams.

the legs of the total vertex stretchs out into the last line of block 1 and last of block

3. Similarly a third graph is formed by first line in block 2 with first of 4 and a fourth

graph by the first of 1 with first of 3. Let us now read off the phase factors of these

four graphs respectively,

(1 - q-J4-J3)(1 - -J1-J4)q-J2Jl (1 - q-J2-J3)(1 _ -J3-J4)

(1 - q-J2-J3)(1 - f-J-J 2)Tj-J3-J4, (1 _ q-J2-J )(1 _ -J1-J4)qJlfJ,

respectively. Hence the contribution from 1st graph cancels out 4th graph and the

2nd cancels out th 3rd. We conclude that contribution of special diagrams to both

the vector anomalous dimension (the case n = m) and the operator mixing ( the case

n 7L m) vanishes although it seems to be divergent as J -+ o at first sight. This

shows that the only non-vanishing contribution is arising from non-contractible class

of diagrams and the total correlator including O(A') corrections both at the planar

and the torus levels can now be written as,

A'g 1 5
(On(x)O(y)) = ((l+ 2A nn)(1-- ln(A2(x-y)2)+ _42 272n2

J+22J(x, y)
xG(x, y) +2J(x, y(3.39)

This result clearly shows that the total contribution to the anomalous dimension
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of the vector type operator at O(g M) and up to genus-2 level is exactly the same as

the BMN anomalous dimension, that is,

47r- 2 2 r2n-
47r 2 2-r 2 n2

As mentioned before, from the string

dimension is identified with the genus-one

state.

1/2

_J1

1/2

theory point of view, the torus anomalous

mass renormalization of the corresponding

I

I II IVIII

Figure 3-19: External gluons with special diagram topology.

Let us briefly describe how the non-vanishing of torus level anomalous dimension

implies the non-vanishing of the O(A') interacting three-point functions,

(On, J0m, J'J-J )A ~V I and ('O JO J, - s )

through the unitarity sum. Here the relevant supergravity operators are defined in

(2.34) and (2.35). As mentioned in the introduction, this is puzzling since string field

theory result of [36] shows that the three point function coefficient vanishes for vector

operators.

It was argued in [24] that one can handle the string interactions effectively with

non-degenerate perturbation theory of a quantum mechanical system. Unitarity sum

gives the following 2nd order shift in the energy of the string state with momentum

n,

E(2)= E (i Pl j'k' (3.41)
m n EnO) - En ) '

Here i') is the string excitation with momentum n and Ij'k') represents all possible
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intermediate states with momentum m. In the case of i') = aO tlOp+) which

is the dual of vector operator (3.3), there are two possibilities for the intermediate

states:

1. Ij') = aqmta"lO,p +) and Ik') = IO, p+ ) with p+ + p+ = p+. Corresponding

operators are, Om'J" and OJ- J respectively.

2. Ij') = ao tlO,p +) and Ik') = a~tO,p+). Corresponding operators are the BPS

operators, OJ" and O -J'

Therefore the sum in (3.41) involves a sum over these two cases together with sub-

summations over m and J'. Vanishing of (i'IP-Ij'k') for both of the cases above

implies that E2) = ( - J)torus = 0 for the vector operator. A loophole in this

argument is that we only considered the cubic string vertex in the effective description

whereas the contact terms may also contribute the mass renormalization of the string

states hence give rise to a non-zero torus level anomalous dimension in the dual theory.

VAe come back to this issue in the last section.

3.5 A SUSY argument

The fact that BMN and vector operators (which belong to separate S0(4) sectors

of the gauge theory) have equal anomalous dimensions both at planar and torus

levels suggests that there might be a F = 4 SUSY transformation relating these

two operators. Whereas the equality of the planar anomalous dimensions of these

operators is required by the consistency of BMN conjecture, there is no a priori

reason to believe that this equality persists at higher genera. A SUSY map, however,

would protect ABMN - vector = -1 at all loop orders and all genera.

In this section, we will see that indeed there is such a transformation which maps

the BMN operator onto vector operator plus a correction term. We will argue that the

correction is negligible in the BMN limit and hence expect the equality of anomalous

dimensions, both at planar and torus levels.
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The supersymmtery transformations of Af = 4 SYM has recently been derived

in [16]. In SU(4) symmetric notation, the transformations of the scalars and chiral

spinors read,

6eXA = - i(_EA+O + eBA + ABCD ) (3.42)
1

, A 2 "' vEA + 2DI XAB 7IIE-B + 2i[X AC, XCB]+. (3.43)

in which A = 1,.. .4 is an SU(4) index and XAB = XBA.

We will use these transformation rules in a somewhat schematic way, since the

information we need can be obtained more simply by classifying all fields and super-

charges with respect to the decomposition SU(4) -+ U(1) x U(1) x U(1). The three

commuting U(1) charges can be viewed as J12, J3 4 and J56 in SO(6). All fermionic

quantities are taken as 2 component Weyl spinors. The four spinor fields are de-

noted by 0,, y z, A, = A where the subscript indicates their bosonic partner in

an A = 1 decomposition of A = 4 SUSY. The fermionic transformation rule above

may be interpreted as,

{Q+B, A } F AlVIU6A +**,

showing that Q+A has the same U(1) quantum numbers as 0A. In general fermions

and anti-fermions have opposite U(1) charges, as in the case of conjugate bosons.

The product of these 3 charges is positive on the Q+A. With these remarks in view,

we can write the following table of U(1) charges.

We now apply the transformation rules (3.42) and (3.43) in the U(1) x U(1) x

U(1) basis in which all transformations which conserve the U(1) charges are allowed.

Consider the action of Q2 on the BMN operator (2.37). We see that X and Z's are
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|0 Z At, o0 O~ 9z A Q1 Q 2 Q3 Q4

J12 1 0 0 0 1/2 -1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2

J34 0 1 0 0 -1/2 1/2 -1/2 1/2 1/2 -1/2 1/2 -1/2

Js6 0 0 1 0 -1/2 -1/2 1/2 1/2 1/2 1/2 -1/2 -1/2



left unchanged whereas 4b is transformed into a gaugino A, i.e.

J

[Q2 , 0,] o e2rJnTr(qZ'AZJ-l)
1-0

-3
Next we act on this with another anti-chiral supercharge Q, with quantum numbers

(-1/2, -1/2, +1/2). According to table 1 and transformation rules given in (3.43),

Z's again remain unchanged, A is transformed into D, Z2 and 0 is transformed into

, i.e.

J

{Q [Q2]} oc e J"l Tr(Zz(DZ)ZJ-) (3.44)
1=0

2rini ++ Ee J Tr(#,Z'AZJ-) - 0+ 07.
1=0

Therefore supersymmetry guarantees that (O + O has the same - J with the

BMN operator.

Note that the first term is not quite the same as the vector operator of (3.3) but

there are two differences. However, for large but finite J, the difference between con-

tributions of 0" and to to the correlators is ((1/J). This is because the exceptional

piece in (3.3) where D, is acting on the impurity is 0(1/J) with respect to the first

term of (3.3) hence negligible in the dilute approximation. Secondly, the difference

between the definitions of q for Qf and On, i.e. qJ = 1 and qJ+2 _ 1 respectively, is

also O(1/J).

Now consider computing the dimension of O( + O at the planar level. This would

be the same as the dimension of only O provided that the transition amplitude

(OnO7) is negligible. Let us first consider the correlator (Oom) instead. Above

we explained that the difference between the contributions of oL and to the

anomalous dimension is 0(1/J), therefore conclusions made for (OnO,-) will also

be valid for (OOf) as J - 00o in the BMN limit. The leading contribution to

this transition amplitude in O(A') arises from Z-A-0 (5th term in (3.11)) and the

2The last term in (3.43) which is quadratic in the scalars does not give correct quantum numbers
for J1 2 ... J 5 6 hence is not present.
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Yukawa interaction (6th term in (3.11)): One of the Z's in OH splits into a Oz and

A and z gets absorbed by turning into 86 through the Yukawa interaction. See

fig. 3-20 for the analogous interaction at the torus level. Note that contribution

to the planar dimension requires the Z that is taking place in the interaction and

X be adjacent. Note also that the derivative in O can be at any position. Before

acting with the q-derivative, the integration over the internal vertices together with

the scalar propagators yields,

ln((x - y)2A2 )GJ.

Since the anomalous dimension is the coefficient of the log term, anomalous contri-

butions arise when the a, act on G's but not on the log. Therefore any position of

the derivative in O in the planar diagram (also any position of the derivative in fig.

3-20 in torus case) gives the same contribution,

- ln((x - y)2A2)GJ+1,

regardless it is acting on the fields participating in the interaction or not. Then the

phase sum over the position of ,, gives (using qJ+2 = 1),

J+1
CEq = 0.
1=0

Therefore the transition amplitude (OO 7f )planar vanishes identically! As we de-

scribed above this implies that, for large but finite J, (OnOm )planar do not vanish

but supressed with a factor of 1/J with respect to (OnO,)planar in the BMN limit.

Therefore we see that supersymmetry together with large J suppression is capable to

explain why vector and BMN anomalous dimensions are equal at the planar level.

This argument can easily be extended to the torus level. In section 5.4 it was

proven that the only torus level contribution for the vector correlator (n-m)torus

comes from the non-contractible diagram, fig. 3-13. Recall that this diagram is of

O(J3 ) because there are three blocks of Z lines and no phase suppression (unlike
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I l lI I I
J1 J4 J2

Figure 3-20: Torus level non-contractible contribution to (OnO7 ) transition ampli-
tude. Derivative in O can be placed on any line connected to O', although it is not
shown explicitly. There is a similar graph obtained by interchanging internal vertices.

contractible or semi-contractible cases). Including the 1/(JN 2 ) normalization factor

we found out that the diagram is of O(g2). We want to see how the transition am-

plitude at the torus level, (O°OT)torus goes with J. Instead, let us again consider

the correlator (On,7 ) torus. One can easily see that (with the same argument pre-

sented in the beginning of section 5) all possible torus diagrams of (OnOm) can be

divided into four seperate classes of section 5. Let us consider the non-contractible

diagram for example. The diagram is shown in fig. 3-20. The derivative in can

be at any position. Hence the phase summation over the position of the derivative

vanishes identically just as in the planar case. For the same reason the external gluon

contribution vanishes as well (together with other torus diagrams: contractible, semi-

contractible and special). One concludes that for large but finite J, (pOOm)torus is

again 1/J suppressed with respect to (OOm)torus. We see that supersymmetry in

the BMN limit, is also capable to explain the equality of vector and BMN anomalous

dimensions at the torus level. However we emphasize that this equality is not exact

but only holds in large J limit. Therefore, whether this reasoning can be extended

to higher orders in genus remains as an interesting question.

As an aside we state another important conclusion. The fact that the transition

amplitude is negligible with respect to (Onom) shows that the vector operator on and

the fermionic impurity BMN operator Of has the same planar and torus anomalous
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dimensions. This gives an easy method to generate all BMN operators which carry the

same anomalous dimension as the scalar operator by acting on it with the supercharges

QI arbitrary times and making sure that the transition amplitudes among all of the

pieces in the end-product is negligible in the BMN limit.

3.6 Discussion and outlook

In this chapter we computed the two-point function of vector impurity type BMN

operator at planar and torus levels, for small A' (large /tp+o'). In this regime, SYM

is weakly coupled and we only considered interactions at O(A') order in SYM inter-

actions. Our result for the total anomalous dimension is given in eq. (3.40). This

turns out to be exactly the same as scalar impurity type anomalous dimension which

was computed in [24] both at planar and torus levels. This result provides two tests

on the recent conjectures. This equality at the planar level constitutes a non-trivial

check on the BMN conjecture. Secondly, the non-zero torus anomalous dimension is

a field theory prediction which should match the string theory result for the mass

renormalization of the vector states. We mentioned at the end of section 5 however

that this non-zero torus dimension raises a puzzle since the string field theory cubic

vertex for vector the string states vanishes[36]. Our results are further supported by

the SUSY argument given in the previous section.

We would like to briefly address some possible resolutions of this contradiction

between string field theory and gauge theory results. Generally speaking, there is

another type of interaction in light-cone string field theory [37] apart from the cubic

string vertex. This arises from the contact terms and was not taken into account

in the calculation of [36]. In the context of IIB strings in pp-wave background this

issue was discussed in [38]. Contact terms arise from a quartic string vertex whose

presence is required by supersymmetry [39][40]. Contribution of contact terms to

mass renormalization is O((g2) and there seems no a priori reason to ignore it. In

case these terms are indeed non-negligible they might give rise to a non-zero torus

anomalous dimension in the dual field theory.
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Another resolution 3 of the gauge/string contradiction would be that peturbative

gauge theory calculations for the interacting three-point function are not capable to

probe the short distance (< 1/up) physics on the world-sheet. Recall that [36] it is the

prefactor of cubic vertex which suggests the vanishing of (i'lP-j')k') in case of the

vector state: Spradlin and Volovich have pointed out that the short distance limit on

the world-sheet and the weak gauge coupling limit ( -+ oc) do not commute. To

be able to obtain the prefactor one should first take the short distance limit. Then

one takes large limit to obtain an expression for the weakly coupled three-point

function. This procedure expects vanishing of (i'lP-Ij')lk'). On the other hand,

exchanging the limits, hence loosing the contribution of prefactor would suggest non-

zero interacting three-point function also for the vector operator. It is a possibility

that perturbative SYM is not able to "discover" the prefactor of string field theory

but able to see only a 1/p expansion of the delta-functional. This would be another

line of reasoning to explain why our perturbative calculation produced a non-zero

torus anomalous dimension for the vector operator. Clearly, a perfect understanding

of the map between weakly coupled string/gauge theories should resolve this apparent

contradiction.

31 am Grateful to L. Motl for mentioning this idea to me.
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Chapter 4

Analysis of Multi-Trace Operators

In this chapter, we consider the family of single- and multi-trace operators with two

scalar "impurity" fields 0(x), +(x) and J "substrate" fields Z(x),

-JO Jo 2-rinl°= /oo+ 2 : eJO-- Tr(0Z' ZJ-l). (4.1)

and

OJOJ ... Jk- OJOOJ .. 0 k ·-: n .. Jk : (4.2)

with J = Jo + J2 + ' " Jk. Here O J is the chiral primary operator,

1
OJ = Tr(ZJ). (4.3)

The states of superconformal A/ = 4 gauge theory on R x S3 which correspond to

these operatorsl are dual to states of the Type IIB superstring quantized in light-cone

gauge in the background pp-wave metric and 5-form (2.13)(2.14).

The dual string states are those obtained from the ground state Ip+ ) with light-

cone momentum p+ by the action of creation operators a(n), a(n) with world-sheet

momentum n. More specifically one considers single- and multi-string states:

ae (n) as (-n) Ip+) (4.4)

1We use the terms states and operators as if synomymous in the gauge theory.
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and

a;*(n)a*(-n)lp+ ) I +) C)... I ) (4.5)

where light-cone momenta p+ of individual string states are related to corresponding

R-charges by pp+ao' -= 
\g2-MN '

After establishing the validity of our method for the single-trace BMN operators,

one can ask for the O(g2) eigenvalues of higher trace BMN operators. We consider

this problem in this chapter. A rigorous investigation yields an unexpected result:

Eigenvalues of all multi-trace BMN operators are solely determined by the eigenvalue

A 1 of single-trace operator as,

This result is essentially due to the suppression of connected GT correlators (OiOi)

by a power of J as J -+ oo in the BMN limit. It is found that disconnected GT

diagrams are less suppressed in this limit and in fact only non-zero contributions

to a generic correlator of BMN operators arise from fully disconnected pieces. The

connected correlators will contribute to eigenvalues to higher order in g2.

Utilizing the correspondence of A - J with P- in the string theory we show that

this fact translates into the absence of O(g2 ) contact terms between states higher than

single-string states. If the correspondence with P- at the level of matrix elements

holds, this also implies that a particular class of tree-level string processes that would

contribute to the matrix elements on the PP-wave are suppressed in the large , limit.

This conclusion is valid for processes in which the the external string states that have

two excitations along i = 1, 2, 3, 4 transverse directions (that correspond to scalar

impurities in BMN operators).

It is also interesting to investigate the the duality of P- and A - J at the level of

matrix elements. Using the method of [27] to fix the basis transformation into "string

basis" at O(g2), we study the correlators of double and triple operators in this basis

and obtain predictions for the matrix elements of P- at O(g92), in double-double

and single-triple sectors. These matrix elements are given by remarkably simple
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expressions and solely determined by the "non-contractible" contribution to (OiOj)

correlator just as in the case of single-single matrix element [26] [27]. On the ST side, in

the single-string sector the matrix element is determined by the "contact" interaction

between two single-string states [28][26]. Our study suggests a generalization of this

fact: a one-to-one map between non-contractible contributions to GT correlation

functions and contact interactions of the corresponding states in SFT. These are

explicit gauge theory results that are subject to check by a direct SFT calculation.

We organize the chapter as follows. In the next section we demonstrate the inva-

lidity of non-degenerate perturbation theory in determining the eigen-operators and

eigenvalues of A - J. Taking into account the mixing with triple-trace operators

we obtain the mostly single-trace eigen-operator at O(g 2). We briefly outline our

conjecture that use of degenerate and non-degenerate perturbation theory leads us to

the same results concerning the anomalous dimensions of particular eigen-states that

correspond to J and QJ in the BMN limit. This section also introduces necessary

notation and presents single-double, single-triple and double-triple trace BMN corre-

lators. In section 2, we discuss the scaling behavior of arbitrary multi-trace correlators

of BMN operators with g2 and J. We demonstrate that connected contributions to

all of the correlators of this sort are suppressed as J - oo. In section 3, we utilize

this result to obtain the anomalous dimension of an i-trace BMN operator at O(g 2A').

We also discuss some implications for the corresponding processes in string theory in

this section. Last section studies the duality between P- and A - J at the level of

matrix elements.

Appendix C proves the scaling behaviour that we discuss in section 2. Appendix D

deals with the basis transformation which takes from the BMN basis into string basis

in GT. Using the inputs from [26] and [27] we derive new decomposition identities

relating various multi-trace inner products with the product of smaller order inner

products. In particular, the free single-triple inner product decomposes into single-

double and double-triple inner products as,

13 1G12G23

2
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Similarly we derive the identity,

G2 2 = (G21G12 G 2 3G3 2 )
2

and discuss immediate generalizations. We emphasize that these identities are derived

by relating the basis transformations proposed in [27] and [26], therefore subject to

explicit GT computations. These computations which involve non-trivial summations

are outlined in Appendix E and these identities are proven there. In this appendix, we

also explain evaluation of other sums that are used in sections 2,4 and 5. Appendix

F computes 0(g2) and ((g2A') contributions to single-triple and 0(9 2 ) and O(g2A')

contributions to double-triple correlation functions.

4.1 Operator mixing at g2 level

In this section we shall carry out the diagonalization procedure of the multi-trace

BMN operators including the mixing with triple trace operators. This is achieved by

extending the method of [29] to include the 0(g92) and (g2A') effects in the diago-

nalization. In [29], it was shown that the procedure of determining the eigenvectors

and eigenvalues of the mixing matrix of single and double trace operators (which is

O(g2A')) is equivalent to first order non-degenerate perturbation theory. To include

the mixing with triple trace operators one needs to go one step further in perturbation

expansion, i.e. to second order perturbation theory.

Let us first outline the method of [29] briefly. Consider the eigenvalue problem,

Mje(k) = (k)ek) (4.6)

where M is the 3 x oc dimensional mixing matrix of single, double and triple trace

operators. 2 Here i,j is a collective index labeling the state of a BMN operator,

e.g. for a triple trace, i = {m, y, z} where y = J1 /J and z = J2 /J in (4.2) for i = 3.

2In the next section we explain why BPS type double and triple trace operators do not affect the
following discussion.
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The order in 92 of the various blocks of M is indicated by,

1 92 922

M 92 1 92 .

92 12 

Therefore it is possible to solve the eigenvalue problem order by order in 92. Expand-

ing M, e and A as

e k) = Pd +2e® (1 ) + - 2 2 M (2)

i di (l)i 2 (2)

A(k) = A(k) + 92>() + g2,(2)= Y2(k) U2(k),

we obtain,

/-(Ic) (k) () - A(')(Pk A(k)) dk + 92 kPie(i k) + M()k- (k) (k) (1 )

2 ( i(2) + (2) ) (i e(l) )(4.7+g2 Pi e 2 k ) k M(1)'e(1) (°(2k) (1)°(1) id (A. 7(k) ~ (k) (k ) (k)

At zeroth order one gets (k) = Pk. Using this in the next order for i $ k yields the

first order eigenvectors,

e(1)ik) -

Pk - Pi

whereas for i = k we learn that X(1) = 0.
(k)

Using these results, O(g2 ) piece of (4.7) for i = k gives,

-J(1)k nf(1)j
(k2) j k (4.8)

Pk - Pj

and for i k we obtain the second order contribution to the eigenvectors,

(2)2 _ E i k) (4.9)
(k) Pk -Pi k j Pk- Pj
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Using above expressions for e(1) and e(2), we obtain the single-trace eigen-operator

modified at O(g92) as,

rmy
°n = °n+ 92 n2 _ (m/y) 2 my

rmyz rpmly'

+g2 y n2 - (m/y) 2 rn 2 ( 2 yz ) (4.10)

Here,

1r = G ikj

are the matrix of anomalous dimensions where G ij denotes the inverse metric on the

field space. The metric, Gij is determined by the correlation functions (iOj) at the

free level whereas O(A') radiative corrections to this correlator yield rij. To wit,

(OiOj) = Gij - A'rij ln(x2A2). (4.11)

G and r should be expanded in powers of g2. Instead of denoting the order in g2 on

G and F, we will show g2 dependence explicitly in what follows.

Again, using above expressions for first and second order eigenvectors, e(l) and

e(2), one obtains the double-trace eigen-operator as,

rm rmyz
6J Oy = ° g2 Zny/y + 92ny2 _0m 2 (/y) (4.12)

m (n/O)2 - m2 myz (n/y) 2 - (m/y') 2 my'z' 

A very important point is to notice that these expressions are valid when the

coefficients in front of Oi on the RHS are finite for all values of external and internal

momenta. In particular one needs to check the finiteness of (4.10) when the incoming

and outgoing world-sheet energies are equal, n = ±(m/y) and also at n = (m'/y')

for the internal denominator in the third term. Note that, the danger of degeneracy

is absent only for the case n = 1. Therefore without checking the finiteness at 0(g2)

one can assume the validity of (4.10) and (4.12) only for the very particular case of

n = 1! We will now demonstrate that the last term in (4.10) is indeed divergent at

the pole![41]
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Finiteness of the 0(92) piece of (4.10) was demonstrated in ([29]) where the coef-

ficient was found to be,

pm y m/y
n _f12 (4.13)n2 - (m/y) 2 n + (m/y) n;my (4.13)

Here, Gn;my denotes the tree-level inner product between single and double trace

operators which was first computed in [24],

G12 92 1-y sin2 (irny)
n;my /j y 7r2 (n- (m/y)) 2 (4.14)

We will also make abundant use of the radiative corrections to single-double correlator

which was also obtained in [29],

rn;my = (() - ny + n2 (4.15)

Let us now investigate O(g2) part of (4.10). First of all, it is not hard to show that

there is no divergence at n = ±m'/y' in the second sum of the second term. These

internal poles are canceled out by zeros of the numerator. Similarly one can show

that (4.10) is finite at the external pole n = -m/y. This is done at the end of this

section. However we shall shortly demonstrate that the external pole at n = +m/y

give rise to a divergence [41] hence render the use of non-degenerate perturbation

theory invalid for n > 1.3

To go further we need (in addition to matrix elements already computed in the

literature) the O(g2) contributions to

G13 " and r l 3n;myz, n;myz

and 0(92) contributions to

G23 and r23Gny;myz, nyand ;my'z .

3 For n = 1 it is impossible to satisfy the degeneracy condition n = m/y.
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Necessary computations are summarized in Appendix F and the results read,

G 1 3 g2 1 2 2 2; r2 ( - k)2 (1 - y) sin2(rny) + y(sin (rnz) + sin (rni))

-2n- 1k) (sin(27rny) + sin(27rnz) + sin(27rni)) (4.16)27r(n - k)
r3myz A'(n2 + k2 nk)Gnmyz + B13myz (4.17)

Here k = m/y is the world-sheet momentum of the double-string state and we defined

= 1 - y - z.

Let us digress to underline an important detail. As we showed in Appendix

F, among the contributions to the radiative corrections to single-triple correlator

there are contractible, semi-contractible and non-contractible Feynman diagrams (see

Appendix F for definition of contractibility in planar diagrams). The contributions

of the first two are summarized in the first term above, whereas B3myz denotes the

non-contractible contribution,

n;13 myz J - sin(rnz) sin(7rni) sin(irn(1 - y)). (4.18)n;m~y = r3J (n - m/y) y

Double-triple coefficients receive (g2) only from disconnected diagrams where

the 2-3 process is separated as 1-1 and 1-2. Therefore these require somewhat simpler

computations and the results are,

Gn3y;m 3/2nmy/y,(dy,y+z + dy, dmdyy, V(1 - y)zi (4.19)
yt2

rny,;myz = 23 + y3/2(dy',y+z + dy,iz)(m/y - n/y') (4.20)

n2 nm M
-I _nm 2 G23 (4.21)Yg' 2y' Y 2 /ny;my z ·

We now move on to compute the O(g 2) term in (4.10). First of all one shows the

curious fact4 that

rnMZ = 0. (4.22)

4which finds a natural explanation in the formulation of [41]
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Fryz is decomposed as,n

rmyz _ Gmyz;m' Fmn + Gmyz;m 'rm,,;n + Gmyz;m' y'z'rm yfz';n- (4.23)

One can easily invert 3 x ooc dimensional matrix Gij, by solving the equation GikGkj =

dj order by order in 92. To O(g2) one finds,
J 

!
dmn + G n;py"' Gpy" ;n 2 n;py" GUpy" ;ny'z' 2 ;ny' z'

G12
-Gy ;n

1G23 G12 1G13- myz;py" py;n -- myz;n

dmndy,y, + G12 G12 ,+

+1 G 2 3 G23
2 my;py" py z";ny'

1 23
2 myz;ny' 4 dmndy,y, (dz,z + dz, ) +

1 23 G23
4 myz;py" py";ny'z'

By the use of decomposition identities listed in Appendix E, one can prove that (4.23)

vanishes (see App. E for details).

Let us now consider the last term in (4.10). A calculation similar to the one that

leads to (4.13) gives,

rmyz = l k(k'
py, 2

12
- P pAS/y (dy,y+z + dy,y+z), (4.24)

where k' = my'/y. The other necessary ingredient, Fp y was already computed in [29]

FPY' = k(k - n)Gn;py/

where k = p/y'. Inserting these expressions into (4.10), we get the whole coefficient

in front of Omyz as,

i 1 J1 dy, Z k'(k' - p)k(k - n)d
=2 (m/y) 2 Jopdy' I 2v(n 2 - (p/yl)2) p;my/y, Gn;py (dyi,y+z + -dy,,y+).

(4.25)
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Despite the appearance of n2 - (p/y') 2 in the denominator there is no divergence at

n = ±p/y' because Gn;py' in the numerator also vanishes at these intermediate poles.

We will now show however that I is divergent at n = m/y[41]. The residue of I at

n = m/y is,

(n /y)I_ 92 4rm/ dy' (dy,,y+z + dy,,y+j) sin2 (7rny')

00 p sin2(rpy/y')
P=_0 Y' (n2 - (p/y')2)(n _ p/yl)2'

We emphasize that the infinite series in this expression is a prototype for the non-

trivial sums that appear in the computations involving triple-trace BMN operators.

We explain the computation of this one and other similar sums which will be necessary

for the next section in Appendix E. 5 The result is,

00 p sin2(rpy/y') = ( ir3y2 q7r2y' (4.26)
p=_- Y, (712 - (p/y')2)(n _ p/yl)2 2 4)

Inserting this in the above expression for the residue and evaluating the integral gives,

(in - m/)2 Y sin(7rnz) sin(rni).
n=m/y J 8nir2

Since the residue does not vanish at n = +m/y, (4.10) becomes divergent at this

pole.

To see that there is no further divergence in (4.10) let us consider what happens

at the other pole n = -m/y. It is easy to see from (4.13) that the second term is

finite because G1 2 in the numerator linearly goes to zero as well as the denominator.

The complicated second piece in the last term of (4.10) seems to be divergent at the

first sight. Let us look at the residue at this pole,

(n +t/y)1 2n 2 - J dy - (dYy',y+z + dy, y+) sin2(irmy'/y)

5 Unfortunately none of the well-known symbolic computation programs is helpful.
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0o p sin 2 (7rpy/y')

p =_y y ((m/y) 2 - (p/y) 2)2 '

This sum vanishes thanks to the antisymmetry of the summand. Thus we saw that

all of the terms in (4.10) is finite at the pole n = -m/y 6.

The fact that I = oo at n = m/y, hence (4.10) is ill-defined at this pole hints that

one should rather use degenerate perturbation theory to handle the diagonalization

problem [41]. Although somewhat disappointing, this result is by no means unex-

pected. On the GT side one can reason as follows.7 't Hooft limit suggests that

anomalous dimensions of observables be expanded in powers of g 2 where g2 = 1/N

in 't Hooft limit and g2 = J2 /N in the BMN double scaling limit. Had single-trace

BMN operators been degenerate with double-trace BMN operators one would expect

an 0(g 2) shift in the single-trace anomalous dimension. This would be unexpected

for the 't Hooft expansion of the observables hence might have indicated an incon-

sistency in the BMN theory. However the degeneracy of sigle and triple-trace BMN

operators, at most, gives rise to an 0(g 2) shift in A1 which is not inadmissible. By

the same token, one generally expects degeneracy among BMN operators with only

odd-numbered traces and only even-numbered traces seperately. At order g2 , this

result indeed follows by the scaling law of GT correlators derived in the next section

provided that there is no degeneracy between single and double-traces and there is

degeneracy between single and triple traces. Hence, at this order the degenerate sub-

space of BMN operators are divided into two subspaces which include odd and even

numbered traces seperately.

On the string theory side the degeneracy of single and triple-trace operators indi-

cate that a single-string state can decay into a triple-string state the same world-sheet

momentum m = ny. Furthermore, as we mentioned in the introduction, correspon-

dence of trace number in GT and string number in ST loses its meaning for finite

g2. Therefore the general conclusion is that an initial string state that is composed

of states of different string number but all on the same "momenta-shell", n m/y,

6 0f course one has to worry about finiteness of (4.12) at n = m/y. But this requires much
little effort to see from the expressions for r23 and pl 2.

7 This is a suggestive argument due to Dan Freedman.
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is generically unstable and can decay into states that are stable at O(g2). These

stable states should be in correspondence with the eigen-operators of the degenerate

subspaces in GT side. This conclusion is hardly surprising.

We shall not pursue this degeneracy problem further in this paper, but based

on some preliminary calculations we make the following conjecture. Consider the

degeneracy problem for finite J (which we choose as an odd number for convenience).

Then two degenerate subspaces involve 1,3,... ,J-trace and 2,4,... ,J-l-trace operators

seperately. To find whether degeneracy gives rise to a shift in the eigenvalues one

should diagonalize the order g2 "transition matrix", Mii+2 (finite J version of (4.6))

at n = m/y seperately for odd and even i. We conjecture that regardless the exact

form of M, there exist an eigenstate O0 that tend to the BMN operator 61 (at

order g2) as J -+ oo where 0i is the mostly i-trace eigen-operator of the dilatation

generator that is obtained by the non-degenerate formulation at 0(g 2). Futhermore

there exist i-trace eigenstates, O' in the degenerate subspace whose eigenvalues tend to

the anomalous dimensions of Oi that are obtained by naively using the non-degenerate

formulation. Therefore the eigenvalues of these particular O' will coincide with the

anomalous dimensions which can be obtained via non-degenerate theory ignoring the

aforementioned mixing. For the case of i = 1 this can be understood as a justification

of (2.39). For i > 1 this leads to a simplification in determination of the higher-trace

anomalous dimensions which we employ in section 4. We prefer to leave this assertion

as a conjecture in this paper.

In section 4 we will use this conjecture to make predictions about string-theory

amplitudes. We will first compute the anomalous dimension of a general i-trace

BMN operator, Ai - J by the method of non-degenerate perturbation theory. Since

dilatation generator is supposed to correspond to P-, this will give a prediction for

the eigenvalue of P- in the two-string sector. Next, we will move on to compute the

modified mixing matrices, f 22 and if13 in the string basis. This will allow us to make

predictions for the corresponding matrix elements of P-.
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4.2 Dependence on g2 and J of an arbitrary gauge

theory correlator

As shown by detailed investigation in the recent literature n-point functions of the

observables in the BMN limit come with definite dependence on the dimensionless

parameters, A' and 92. 8 Generally, the correlators also have an explicit dependence

on J which will turn out to be crucial in drawing conclusions about the corresponding

string processes.

In this section we will discuss the g2 and J dependence of a two-point correlator

of multi-trace BMN operators with two scalar impurities:

Cij (: J1J . ..o.. i( i+2 ... O +j(O) :) (4.27)
connected

This scaling law that we find is also valid for the correlators of a more general class

of operators,

OJ1... oJioJ+l ... oJi+joJi+j+l ... Ji+j+k Ji+j+k+l . . OJi+j+k+l

for arbitrary i, j, k, I and also for the n-point functions involving same type of opera-

tors. This should be clear from the discussion in Appendix C.

The space-time dependence of (4.27) is trivial: (47r2x 2 )-J - 2 in free theory and

(47r2 x2)-J-2 ln(x2 A2 )/(8r 2 ) at 0(A') where J is the total number of Z fields, i.e. J =

J1 + + Ji = Ji+l + -- + Ji+j in (4.27). Without loss of generality, one can assume

j < i. There are various connected and disconnected diagrams with different topology

that contribute to (4.27). Since the results for disconnected contributions will be given

by (4.27) for smaller i and j, it suffices to consider the fully-connected contribution

to (4.27). In Appendix C we prove that the fully-connected piece of (4.27) has the

8For finite g2 proof exist only at linear order in ' although it is very likely to hold at higher
loops. For 92 = 0, [42] showed that sum of radiative corrections to single-single BMN correlator at
all orders in O(9gM) can be expressed as a function only A'.
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following general form,

92 1 -2nrA

C = j(i+j)/2-1 Gi (422)J+2 - Arij (4r2x2)J+2 ln(x2A2) (4.28)

Here the "free" and "anomalous" matrix elements, G and F are functions of world-

sheet momenta, m, n and of the ratios Js/J for s = 1,... i + j. Disconnected pieces

are less suppressed by J. Note that suppression of Cij in the BMN limit is absent

only when i = j = 1. We state the conclusion as,

* Connected contributions to Cij are suppressed in the BMN limit for i and/or j

larger than 1.

Let us briefly discuss the case of BPS type multi-trace operators. A BPS type

multi-trace operator which involve two scalar type impurities is defined as,

OJ = OooJ20J3 ... 0 J (4.29)

where,

O= Tr(qZJ) (4.30)

and a similar definition for Of.

One observes that a generic matrix element between BMN and BPS i-trace oper-

ators (both having the same number of traces) at all orders in g2 are suppressed by

a power of J. This can be seen by noting that these correlators should necessarily be

partially connected (since both O, and O0J in the BPS type i-trace operator should

connect to the same OJ' in the i-trace BMN operator) and therefore suppressed by

at least a factor of J with respect to BPS-BPS or BMN-BMN correlators of the same

number of traces. Above scaling law tells us that, in the latter cases suppression at

an arbitrary order in g2 can only be avoided by completely disconnected graphs with

an arbitrary number of loops. This simple observation allowed us to ignore BPS type

double and triple operators in the previous section that would otherwise contribute

in the intermediate sums.
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4.3 Anomalous dimension of a general multi-trace

BMN operator at O(g 2)

The fact that disconnected contributions to the multi-trace correlators are suppressed

as J - oo has direct consequences for the scale dimension of multi-trace operators

both at order g2 and higher.

Call the i-trace BMN operator in (4.27) as Oi. Here i is a collection of labels,

i = n, yl,.., yi} with y j , etc. Because of the non-vanishing mixing, (OiOj)

with multi-trace operators of different order (i # j), Oi is not an eigen-operator of

A - J and a non-trivial diagonalization procedure is required to obtain the true scale

dimension. Eigenvectors at (92) is affected only by mixing of Oi with Oi±i. The

diagonalization procedure is essentially equivalent9 to non-degenerate perturbation

theory [29] and as in section 2 one obtains the mostly i-trace eigen-operator as,

Oi =- Oi + 92 E ' Oj, (4.31)
j=i-1 Pi - Pi

where Fr = Gjikki and Pk is the 0(g) eigenvalue of the k-trace operator (Pi = (n/y 1)2

in case of Oi in (4.27))10. To compute the eigenvalue we need, (using (4.31)),

qr rk
(OiOi) = (OiOi) + 292 E i (jOi) +g 2 i i (Ojk). (4.32)

j=il Pi - Pj j,k=i+l Pi - Pj Pi - Pk

Call the O(g2) part of this quantity as,

(Ooi)2 = Gii - A'ii ln(x2A2). (4.33)

Generalizing the method described in [29] to the case of multi-trace operators, we

9see the discussion at the end of section 2 for the effects of mixing with higher trace BMN
operators

10The proof of the validity of non-degenerate perturbation theory at O(g92) is illustrated in case of
single-trace and double-trace operators in section 2. However this proof immediately generalizes to
the general case of i-trace operators because of the suppression of connected correlators. Requirement
of disconnectedness boils down the required computation to the one presented in section 2.
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express the true scale dimension at this order in terms of the above quantities as,

Aii 9 2 = Fii - PiGii (4.34)

It is not hard to see that (4.34) is equivalent to (4.8) as it should be. To compute Ai

from either (4.34) or (4.8) one needs Gij and rij to the necessary order. Although

second method is a short-cut we prefer to start from (4.34) because this method

makes it clear that modified operators, Oi are true eigen-operators of the dilatation

generator.

Now, the crucial point is to recall that the connected contributions to ii and

Gii are suppressed as J -+ o and the evaluation of these quantities reduce to the

evaluation of only the fully disconnected pieces. For example the quantity Gii re-

ceives non-zero contributions only from the following completely disconnected Wick

contractions,

Gii = (OiOi)g = (/ )92 ((J2 J2 ) . i 

(Oi- i2 -5 {OoJ.. (OJiOJi)go+ -n n 2 92 (JioJi)o 

+ (C,h J1n) )9 (J2oJ2 )90 * 0 xioi) 2z (4.35)Mn 2g ... (OJ O92g'

J +2

J2

------- ----------- ------------------------- - J4

J4

a b

Figure 4-1: Left figure shows that connected contribution to 2 -+ 3 -+ 2 process is
suppressed by 1/J. Right figure shows similar suppression of mixing of double trace
operators with single-traces.
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Now, we shall compute Ai at O (g2) for arbitrary i. One first observes that j = i-1

channel in (4.32) necessarily gives connected diagrams hence suppressed by the power

of J given by (4.28). More explicitly, the summands in the (i-1) channel are O(g2/J)

but the intermediate sums do not provide a compensating factor of J unlike in the

(i + 1) channel. This is illustrated in Fig. 4-1 in case of i = 211. Similarly the

summands in (i + 1) channel are also (g2/J), therefore only disconnected i -+

(i + 1) - i processes can contribute. This is also illustrated in Fig. 4-2. The

conclusion is that,

1. i-(i - 1) mixing does not affect i-trace eigenvalue,

2. Only disconnected i - (i + 1) -+ i processes in i-(i + 1) mixing matter. (see

Fig. 4-2)

One obtains the quantities, Gii and Fii that are necessary to evaluate (4.34) from

(4.32). The former reads,

ri+l ri+l ri1+1
Gii = Gii + 2 E i Gi+1,i + z i Gi+l,i,+l

i+1 Pi - Pi+1 i+1,i',+ Pi - Pi+1 Pi - Pi'+l

ri+lri+\
= Gii + E + 2Gi+1,i + i! . (4.36)

i+1 Pi - Pi+l Pi - Pi+l

Here, we use the indices in a schematic sense, for example (i' + 1) and (i + 1) are

independent indices that both refer to a collective index which labels an (i + 1)-trace

operator, i.e. i 1 = {m, y,..., yi} and i' +1 = {m', y,..., y}. In the second

line above, we used the expression for the lowest order, free two-point function of

(i + 1)-trace BMN operators. For general i, this is easily obtained by recalling the

fact that only disconnected pieces contribute. Thus to lowest order, O(g°), Gii is

product of its disconnected pieces summed over all ways of Wick contracting various

BPS operators:

Gii, = Gmyl ...yi;my .. = dmm dyly Edy2y(2) ... dyiy/(i) (4.37)
P

"1For an explanation for these "string-like" transition diagrams see the end of this section
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where P runs over all permutations of the set {2,... i}. We stress that we need the

0(g2) expression for Gii in (4.36) rather than (4.37). Using this formula for Gi+,i,+l

in the first line of (4.36) and summing over the indices i' + 1 produces a factor of i!.

To go further we need

Pi - Pi+l

The only 0(92) contributions to the matrix element come from the following two

terms,

i+1 = Gi+l'j+Flj+l,i + Gi+l'j j,i

We need to invert the 2 x oc dimensional matrix of inner products between i-trace

and (i + 1)-trace operators. 12 It is not hard to find the inverse perturbatively at

0(92) with the result,

Gi'ilT! O(i2)
(i-)!(i-i1)! 2 (~(2)

GA,B =

Gi+l,it + 3)
(i-)!i! 2 ( (3)

We also need free i-(i + 1) correlator at

disconnected contribution, it is obtained as a

Gi+, +0 (9(g3)

Gi+,i,+l + O(-2)
fi!] ~ ( (2 1

0(92). Since it is given by the fully-

simple generalization of (4.19):

= dmm 'dyly dyp(2),1Y(2) '' 'dyP(i-)y,(i)dYP(i),Y',(i)+yP(i+l)

x (1 - Pd )YP(i)YP'(i+l)

+ Y3/2Gm12 Mt dyi ' . d (4.38)+~Yl Um,m'y/ 1 Y2,Y(2) Y(d, Y i+l
P

Here the first term is a generalization of the second term in (4.19) and the second

terms is the generalization of the first term in (4.19). The sum P in the first term

is over cyclic permutations of the set {2,.. ., i} i.e. it has dimension i - 1 and sum

P' is over all possible ways of choosing two indices out of the set 1,.. . i + 1 (to form

the single-double BPS correlator with P(i)th BPS operator in Oi) and than taking

12See section 3 for a justification of our omitting BPS type i-trace and (i + 1)-trace operators in
the evaluation of the eigenvalue.
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all possible permutations in the rest of the indices, i.e. dim(P') = (i- 2)!i(i - 1)/2.

Finally we need the first order radiative corrections to this correlator. Much as in

(4.21) this is given as,

m 2

_ G"i,i+y2 myl...yi;m'y
Y1

X dy2,y/p(2)'

(m2 mm'
= 2 - -x +

_ ( m Yi~

Eqs. (4.38) and (4.3) are sufficient to determine ri +l at 0(9 2):

= Gilj+rj+l,i + Gi+lrj,i
= 3/2G12

.Y1 !m,m'y/Y1yI m) {.dy2,y... (2)i,, did+Yi (4.40)

We insert this expression in (4.36) and perform the sum over the intermediate

(i + 1) channel. Most of the terms in the contraction of delta-functions will be

suppressed (e.g. first term in (4.38) multiplied with ri+ and summed over (i + 1) is

suppressed by 1/J). Result is,

(n)(n + m + m)
-j, 1 y3 G12 G1 2 \Y'/Y Y1

Gii, = Gi i -ii Gm ny/yj m',ny/y ( + 1n
ny y t~m'ny/ylt':rm~ Y Y1 Y

Y /

+ y/ J
(4.41)

Here, jii, is a shorthand for the delta functions that arise from disconnected Wick

contractions:

6jii = dyl,y, E dy2yp(2) .. dyiy(i)A= competel ZdY2,Y'P(2) yi, s,
P

A completely analogous computation yields , as,

n n 3 m3 
ii' - i 6ii12 G1 2 + Y Y3 m+ t

r , M,ny/yl m',ny/y ( + ) ( + )
ny ~y 1 Y Y1

(4.42)
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Ym'

tY I1

I Y3/2G 12 mt
..Y,+l + Y 1m,my/yl

'' dy,Y(idYl,Y l+YP(i+l) 

m G i i+l

2 ) myl ...yi;m' l .y:+1Y I2 ~,~

Y1)

(4.39)
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For the same reason as above we only need disconnected contributions to Gii and Fii

which are trivial to evaluate. In case of i = 2 required diagrams are illustrated in Fig.

4-2.b,c and d. In terms of the known expression for single string correlator at O(g2)

and radiative corrections to this [24][22], one readily gets (see (4.35))

Gii, = g26ii' (y4Amm' + d2 4 (4.43)

and

r ' m2 i )1 2 -4
24=Y1 r=2

where A and B matrices are first defined in [24] and are reproduced in eqs. (E.1) and

(E.2).

Let us digress for a moment to discuss a simpler type of degeneracy in energy

eigenvalues that is referred as momenta-mixing. So far, we formulated our discussion

in terms of the multi-trace BMN operators as given in eqs. (4.2) and (2.37). In doing

so we ignored a degeneracy in the energy eigenvalues corresponding to operators with

opposite world-sheet momenta, namely OJ and OJn carry the same energy that is

n2. To incorporate the effects of this momenta-mixing one should disentangle the

degenerate states by going to ± basis,

J= J?(nJ ± O-). (4.45)

In ± basis BMN operators with two scalar impurities transform in the singlet and

triplet representation under the SU(2) subgroup of the full SO(4) R-symmetry. One

can easily reformulate our results in this basis. For example the eigenvalue equation

reads,

myl...my; ...y i 2 myl...yi ; myl...yi 2 yl -my1... (4.46)
92 92 92
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Using eqs. (4.43), (4.44),(4.41) and (4.42), it is straightforward to see that,

ml ... i; -myl...i 2 = 0. (4.47)
92

Thus, our first observation is that

Scaling dimension of all multi-trace BMN operators remain degenerate in i

channels at O(g2).

This fact can be explained by relating the multi-trace BMN operators in + and -

channels by a sequence of supersymmetry transformations[12][29][43]. However, we

would like to emphasize that this explanation holds only in the strict BMN limit

where J -+ oo. The reason is that, although supersymmetry is exact for any J, BMN

operators do not exactly transform under long multiplets unless J is strictly taken to

oo. We would also like to emphasize that degeneracy of multi-trace BMN operators

can be viewed as a consistency check on our long computation because our results

are valid also for single-trace BMN operators for i = 1, where this degeneracy is

well-established [30][29].

Having established the degeneracy in ± basis, we can compute the eigenvalue by

using (4.43), (4.44),(4.41) and (4.42) in

P = rii - iGii
2

Straightforward computation gives,

00~ mn=--, (k+m)2
i = Y (192Bmm-J ; dx E (GM2, )2 (k + n)2)

where k = m/x. Using (4.14) one gets,

y 12 1 35A±35 (448)
2 4r2 2 32r2m2 (4.48)

This is exactly the single-trace anomalous dimension that were computed in [30]

and [29] up to the normalization factor y2. This is hardly surprising given the fact

109



that all Feynman diagrams that contribute to the evaluation of Ai separate into

completely disconnected pieces. Since the only piece that can contribute to anomalous

dimension is coming from the single-trace BMN sub-correlator (BPS sub-correlators

are protected), we obtain the single-trace anomalous dimension as a result. However,

from a general point of view this is a striking result and is one of the main conclusions

of this paper:

* Scaling dimension of all multi-trace BMN operators are determined by the di-

mension of the single-trace operator as

A±= ()All.

We believe that this result will also hold at higher orders in g2 because the fact

that only disconnected Feynman diagrams survive the BMN limit is still valid for

higher orders in genus expansion. We see this by noticing that each g2 comes along

with a factor of 1/vN in the expansion, (see eq. (4.28), also Fig. 4-2 below). This

should become more clear in the following.

This result establishes a firm prediction for O(g2) eigenvalues of the light-cone

SFT Hamiltonian. When translated into string language, this prediction reads,

(,Oi I i)= + (0 P

We would like to emphasize that this prediction is completely independent of the field

theory basis which identifies operators that are dual to the string states.

Let us now discuss the implications of our findings for some of the string ampli-

tudes. For this let us represent our discussion about the scaling of correlators with

g2 and J in a diagrammatic way that is suggestive for light-cone SFT. For instance

we represent the double-trace correlator in the BMN basis, (202)g92A', as in Fig.

4-2 where Fig. 4-2.a shows the connected contribution to this correlator while Fig.

4-2.b,c d, represent the disconnected contributions at this order. Here each vertex
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J +2

J2

* 'J3 + 2

g$ -P-49, 0
4 _ J4

2.a

* 0 

2.b 2.c 2.d

Figure 4-2: A representation of planar contributions to (: OJOJ2 :: O30 4 :) at
O(g2 A'). Dashed lines represent scalar impurities. We do not show Z lines explic-
itly. Vertices are of order g2 A'/J. a Connected contribution. b, c, d Various
disconnected contributions.

represent a factor of r12 which is defined as,

((x)O2(O)) 9 =-F12~ ln(x 2A2 )(°1(X)02(°))92 = -r12,l (Al z '2)

This quantity was first computed in [29] and given in eqs. (4.15), (4.14) which show

that each vertex scale with a factor of 2. It is now clear that one can reproduce all of

the information contained in the scaling law of (4.28) by representing the correlators

with these diagrams. For instance the connected diagrams in Fig. 4-2.a is 0(g2/J)

hence vanishes in BMN limit whereas the disconnected diagrams of the same order in

Fig. 4-2.b,c and d scale as g2 therefore they are finite because of the extra J factor

provided by the integration over the loop position.

To make contact with light-cone SFT we take this diagrammatic representation

seriously with one qualification: The matrix elements of the light-cone Hamiltonian

should correspond to the matrix in the string basis, not in BMN basis. As discussed

in Appendix D, this matrix element is obtained from ij with a unitary transforma-

tion, r _ UFUt. Whatever the correct identification of U is, this transformation will
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not change the scaling of F because it is independent of J. Therefore we can take

the diagrams in Fig. 4-2 seriously as string theory diagrams' 3 , where the vertices r

replaced with F which scale in the same way as before. For instance, the vanishing

of Fig. 4-2.a implies that there is no double-double "contact term" that contributes

to ('2,P-'lf02) at O(g2). This observation immediately generalize as,

* There are no O(g2), i-i contact terms that contribute to (ilP-[ij).

However, these contact terms do give contributions at higher orders in g2. In other

words, the suppression of the correlators in (4.28) does not imply the absence of

physical information contained in these quantities. They certainly yield non-zero

contributions to single-single loop corrections as illustrated in Fig. 4-3.

Let us also observe that the suppression of the diagram in Fig. 4-1.b implies that

there is also no 2 -+ 1 -+ 2 contribution to this matrix element in string perturbation

theory. This fact generalizes as,

* String theory processes where the number of internal propagations is less than

i, do not contribute (ilPjloi).

These assertions might seem strong, however one should note the important as-

sumptions that were made in the above discussion. First of all the correspondence

with GT, at the perturbative level only holds when A' < 1 which translates into the

condition p >> 1 in string theory. Therefore our discussion is valid for large values

of /a. Secondly, the string amplitudes we consider involve a very particular class of

external string states, namely the states with only two excitations along i = 1, 2, 3, 4

directions (corresponding to scalar impurities in the BMN operators). Note how-

ever that our discussion does not make any restriction to these particular two scalar

excitations in the internal string states.

13 0f course one should replace strips in these 2D figures with tubes for closed SFT
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Figure 4-3: Connected contribution to double-triple correlator, (OnymyZ) does give

Figure 4-3: Connected contribution to double-triple correlator, (0nyOmyz), does give
non-zero contribution in 1 - 1 process. For example this diagram will show up in
the computation of O(g6) scale dimension of single-trace operators.

4.4 Matrix elements of pp-wave Hamiltonian in 2-

2 and 1-3 sectors

We will first compute the matrix elements of P- in the two-string sector by the

method of [27]. Assuming the validity of the basis transformation UG that we dis-

cussed in Appendix D, this will allow us to make a gauge theory prediction for SFT.

Then, by the same method we will obtain the matrix elements in single-triple string

sector. Let us briefly review the method.

In Appendix D we presented a prescription to identify the string basis in field

theory by transforming the basis of BMN observables with a real and symmetric

transformation which renders the metric Gij diagonal. The conjecture is that, matrix

elements of P- should be in correspondence with the matrix of O(A') piece of the

field theory correlators in the string basis. This is related to the same quantity in the

old basis as,

r = uGru.

We are interested in the O(g2A') piece of F. Using (D.2), this reads [27],

r(2) = r(2) _ 1 {G(2), r() } 1 {G( ) ) 3 )2 () +2 - I{G(l), 1) + {(G(1))2 f} + G(1)(o)G(1), (4.49)2 2 8 ~~~~~~~~~4
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where the superscript denotes the order in g2. Straightforward algebra gives,

r22 =r 22 I (_)2 + ( )2) G22 y;my 1 (G21r12 + r2 1G12 + G23F32 + F23G32)
2 2 y y2 my;m'y

3 G2G12 + G23G32) m (m)2 (+ M/)2 1 (G12G12n2 G23r33G32)+ q- tG G +
8 mym + y 4 my;m''

r22 and G22 in the first two terms are O(g2) pieces of the corresponding matrices and

r
3 3 in the last term is the O(1) piece. Repeated intermediate indices mean summing

over all possible operators that may appear in that intermediate process e.g. in the

expression G23G32 one should sum over both BPS type and BMN type triple trace

operators. Remarkable simplifications occur, when one recalls that only non-vanishing

contributions in the double-double sector comes from disconnected diagrams. A term

like G21G12 and G21r 12 cannot be disconnected hence of ((1/J) and decouples in the

BMN limit. Similarly one only keeps the disconnected contributions to G22 and F22.

All of the necessary ingredients to compute this expression except,

r33 (= (y) 2dm,mdy,yt(dz,z, + dz,l-y-z) 0
0 O

were presented in section 2. This matrix tells us that there is no anomalous mixing

among BPS type and between BMN and BPS type triple-trace operators at the zeroth

order in g2.

With the help of the decomposition identity (D.4), one obtains,

-22 2 y2
rm ,y, - g2 dyy, - Bm,m,. (4.50)

For the definition of matrix B, see Appendix E.

A similar calculation yields the single-triple matrix element in the string basis as,

r13 r13 1 2G13 G13F33) 1 (G12r23 + r12G23'
m;my IZI- m;my'z' -]2 m' + m;my z 2 Jm;m'y'z 

3 (1G12G23 + G12G23r33) m;m + G12 )2 ny;my'z
- G + + 4Gm;ny,,(n/y") 02nv;myz,.
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Again, repeated indices in the intermediate sums imply the inclusion of all possible

operators of that given type. For instance in the term G1 2G2 3r33, one should use

both BMN and BPS type double and triple operators in the intermediate process.

A simplification occurs however when one notes that there is no 0(9 2) contribution

to G23 and r23 for a BPS type double-trace operator, the lowest order non-zero

contribution appearing at 0(g3). By repeated use of the decomposition identities

(D.5), (E.12) and (E.13) one obtains the amazingly simple expression,

~13 92 13
m;m'y'z' - 4 m;m y z

Here B1 3 is the contribution to r1 3 from non-nearest neighbour interactions, given by

(4.18). Thus we obtain the following GT prediction for the matrix elements of P- in

1 string-3 string sector:

132 gA' 1 zirm;m'y'z'= 2 3J(n 1- ) sin(7rnz) sin(rni) sin(7rn(1 - y)). (4.51)m;mY z' -2r3J (n - m/y) y

Some comments are in order. First of all we note the striking similarity of P22 and

j13 to ll that was obtained in [26][27]:

11 1
m;m 4m,m

In the 2-2 sector this just follows from the disconnectedness of the GT diagrams,

hence the 2-2 matrix element just reduces to 1-1 case up to an overall factor y2

therefore is hardly surprising. But our result for the 1-3 matrix elements indicates

the following generalization. As first computed by Vaman and Verlinde [31] using SBF

and then by Roiban, Spradlin and Volovich [28] using rigorous SFT the matrix element

rll represents the "contact term" i.e. the 0(g 2 ) matrix element of P- between two

single-string states in the ST side. On the GT side, in all of the cases we considered

this matrix element is determined solely by the "non-contractible" contribution to

Frj. It is tempting to conjecture that the "non-contractible" GT diagram encodes the

information for the 0(g92) contact term in PP-wave SFT. To check this conjecture
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one should compute O(g 2) matrix element of P- between a single and a triple-string

state and compare with (4.51).

4.5 Discussion and outlook

There are three main results in this chapter. First of all, we demonstrated that non-

degenerate perturbation theory becomes invalid at order g2, as single-trace operators

are degenerate with triple-trace operators. This result casts some doubt on the previ-

ously computed anomalous dimensions in [29][30]. However we conjectured that some

particular eigenstates of the degenerate subspace for finite J, tend to the modified

BMN operators Oi in the BMN limit whose eigenvalues coincide with the dimensions

of Oi. Therefore the use of non-degenerate perturbation theory can be justified for

these particular dilatation eigen-operators. This problem requires further investiga-

tion and it will be interesting to explore new effects related to this degeneracy problem

in future.

Our second main conclusion is the determination of the anomalous dimensions

of all multi-trace BMN operators that include two scalar impurity fields in terms

of the single-trace anomalous dimension. We proved this interesting result to order

g92A' but the fact that connected field theory diagrams are suppressed also at higher

orders in g2 suggests that the conclusion holds at an arbitrary level in perturbation

theory. (Of course, one has to first establish the validity perturbation theory at

higher orders.) These predictions for the eigenvalues of P- are basis independent and

therefore provide a firm prediction for SFT. It would be interesting to understand

the string theory mechanism that is analogous to the BMN suppression that leads to

vanishing of connected field theory diagrams. A natural next step in this analysis is

to consider the anomalous dimensions of BMN operators that include higher number

of impurities. We believe that suppression of the disconnected GT diagrams will lead

to remarkable simplifications also in that problem.

Finally, we obtained predictions for the matrix elements of the light-cone Hamil-

tonian in 2-2 and 1-3 string sectors. We emphasize that these predictions are sensitive
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to the way the string basis in GT is identified, unlike the predictions of section 3 for

the eigenvalues of P-. We fixed the basis with the assumption that the form of the

basis transformation at O(92) is also valid at O(g22). Although this assumption passed

a non-trivial test in predicting the correct O(g2) contact term of single-string states

[28], there is no obvious reason to believe its validity for instance in the single-triple

sector. Thus, our predictions can also be used as a test of the basis identifications of

either [26] or [27] which are equivalent to each other at O(g2).

117



118



Chapter 5

Instability and String Decay in

BMN Correspondence

5.1 Introduction

Despite the correspondence of notation the string states listed in (4.4,4.5) are not the

direct maps of the individual operators in (4.1,4.2). The reason is that the operators

mix through nonplanar graphs [29, 30, 44] even in the free field theory whereas the

eigenstates of the free string Hamiltonian in (4.5) containing different numbers of

strings are orthogonal. An operator S effecting a change of basis in the gauge theory

has been identified [14, 45] which makes the gauge theory states in (4.2) orthogonal

in the free theory and it is the states obtained by applying S-1 to those of (4.2) which

map into the string states of (4.5).

Quantitative tests of the correspondence are based on the assumption that the

light-cone Hamiltonian P- = H of string theory corresponds to the field theory

operator A - J, the difference between dilation and R-charge, through the relation

A\- J = H (5.1)

In planar order the eigenstates of A - J are the individual states listed in (4.2), and
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the order go eigenvalues are

w(n, Jo, J1 , ..Jk) = 2 + A' 2 (5.2)
so

with so = Jo/J. Operator mixing appears in order 92, and to this order the k-trace

eigenoperator acquires order g2 admixtures of (k ± 1)-trace operators [29, 30]. The

eigenvalue is first corrected in order g2 to

n2 2 2 1 35
w(n, Jo, J1, ..Jk) - 2 + A'[-2 + 92 (_ + (5.3)

S2 4-7r2 1 2 327r2n2

For k = 1 the correction was found in [29, 30] and in [13] for k > 1. For k = 1, the

correction exactly matches the genus 1 energy shift of single-string states calculated

in light-cone string field theory [26, 28]. This match provides a basis independent test

of the relation (5.1). It has also been shown that related matrix elements of H agree

with those of A - J after the basis change is made [26, 27].

The computations of (5.3) in gauge theory used a formalism equivalent to non-

degenerate quantum mechanical perturbation theory. Yet it is obvious from (5.2) that

the zero order eigenvalues of single-trace operators of momentum n are degenerate

with multi-traces of momentum m if nso = ±m. The n = 1 state is non-degenerate,

since so = 1 would be required, and J1, J2,. , Jk would vanish. But the n = 2 single-

trace operator is degenerate with multi-traces with m = +2, so = 1/2. For n = 3 we

have degeneracy with multi-traces when m = +2, so = 2/3 and when m = t1, so =

1/3, and so forth. One must thus question the validity of non-degenerate perturbation

theory, and this was discussed in [29]. One signal for breakdown of perturbation

theory is a divergence due to a vanishing energy denominator in the summation

formulas for shifts of eigenvalues. It was pointed out in [29] that perturbation theory

would remain valid if the matrix elements in the numerator happened to vanish at

degeneracy, and that the matrix element of the effective interaction between single-

and double-trace states does indeed so vanish. This is a necessary condition for the

validity of the order g2 calculation leading to (5.3), but it is not sufficient. The

single/triple mixing matrix element is of order g2. If it does not vanish at degeneracy,
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it would also require [29] the use of degenerate perturbation theory with possible

modification of the result (5.3) even though a divergence would not appear until

order g2.

An effective quantum mechanical formulation for the gauge theory, which simpli-

fies previous computations was developed in [41]. The single/triple matrix element

was computed in this formalism, and it does not vanish at degeneracy. It is this fact

that motivates the present note in which we discuss the consequences for the physics

of the BMN correspondence. In string theory single-string states (n, -n)p + ) with

n > 1 would be expected to be unstable, with decay to the continuum of (k+ 1)-string

states (m, -m)p +, p, *p+) in which the total light cone momentum is divided con-

tinuously among the k + 1 strings. The lowest case k = 1 should correspond to sin-

gle/double trace mixing in gauge theory, and it has been shown [46] that the relevant

string theory matrix element vanishes at order g2 in agreement with the vanishing

gauge theory result mentioned above. Instability would then be expected in string

theory via a composite (order g2) process in which the single string first splits into

two "virtual" strings and by a further interaction into three final state strings. The

non-vanishing single/triple trace mixing matrix element, which is also composite in a

sense described below, is the signal of this instability in gauge theory.

More generally the gauge theory has discrete single-trace states OJ embedded in

a continuum of multi-traces, since the ratios Ji/J become continuous variables with

range 0 to 1 in the BMN limit. It is a well known phenomenon in quantum mechanics

that a state which is purely in the discrete sector at time t = 0 undergoes irreversible

decay to the continuum of states which are degenerate in energy. This phenomenon

can be derived using time-dependent perturbation theory [47]. The standard deriva-

tion must be generalized in the present case because the relevant process is composite.

We make this generalization and compute the order g4 contributions to the energy

shift and decay width of single trace states with n > 2. The energy shift is the less

significant datum when there is instability, but it agrees with the principal value cal-

culation of [41]. The value we find for the decay width would also emerge from the

formalism of [41] if an i prescription had been used rather than principal value (as
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suggested recently in [48]). We show that the decay amplitude is invariant under the

basis change discussed above. It should therefore agree with the amplitude computed

in string theory.

The development of the continuous spectrum in the string theory is intimately

connected with the Penrose limit which produces the pp-wave spacetime from AdS5 x

S5. For finite radius R of S5, the null circle in x- is compact [38] and there is a discrete

spectrum of stable states. In the limit R - o the null circle becomes non-compact,

producing a continuous spectrum and the possibility of instability.
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5.2 The Effective Gauge Theory Hamiltonian

Let us denote an operator in the set (4.2) using the generic notation Oi(x). With

one-loop interactions included, the general form of two-point functions is

1

(Oi(x)Oj(y)) - ( - y)2J+4 [gij - hij ln(x - y)2 M2 ] (5.4)

where gij = gji is the free-field amplitude which defines a positive-definite inner

product or metric, and hij = hji describes the order A' = gMN/J interactions.

We use a real notation for simplicity, but it is accurate since the correlators of our

operators are real. The diagonal elements of gij, hij are of order 1 + O(g2) while off-

diagonal elements between operators containing k and k' traces are of order gk' .

One diagonalizes this system via the relative eigenvalue problem

hijv, = yagijv- (5.5)

There is a complete set of eigenvectors va which are orthogonal with respect to the

metric, viz. vgijvj = saB. The system (5.5) is equivalent to the conventional eigen-

value problem for the "up-down Hamiltonian" h = gihkj, namely

hv = va, (5.6)

but one must remember that h is not naively Hermitean (symmetric), but Hermitean

with respect to gij, i.e. gikh = hgkj.

It is easy to show that the eigenoperators are O,(x) = vOi(x)) and have diagonal

2-point functions:

Oa(x)O(y )) 2J+ 4 [1 - y ln(x - y)2M2] (5.7)(X - y)2J+4

6(x (5.8)
from- )which one can read the scale dimension 2A = J + 2 + 

from which one can read the scale dimension A, = J + 2 + y,.
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A simpler method for field theory computations was developed in [41]. It is a

method to compute h directly with no need for the complicated combinatorics of

Feynman diagrams required in earlier work. The resulting effective Hamiltonian has

a quite simple and striking structure. The method applies to 2-point functions of

the operators of (4.2) and has recently been extended [49] to a wider class of scalar

operators.

We refer readers to [41] for an explanation of the method, and we begin our

discussion with (11) of that paper. Certain "end-point terms" and other terms which

vanish in the BMN limit are neglected in (11), and we note that the omitted terms

actually vanish in the channel which is symmetric under exchange 0+ i/ of the two

impurities, so (11) is exact in this channel. Although the BMN limit is taken at an

early stage in [41], we use a discrete finite J version of the method and take the limit

J -+ oo at the final stage of computation.

In this method h is replaced by matrix elements of an effective Hamiltonian

H = Ho H+ +H_. The action of H on gauge theory states/operators is given in (11)

of [41] in which the operators contain impurities of fixed spacing 1, i.e. O,Jl...Jk 

Tr(Z'b0ZJ°-)TrZJ1 ... TrZJk. After a discrete Fourier transform with respect to 1,

which is equivalent to that in (4.2) for large J, one obtains the following equations:

2
H0,oJoJ, 1 ".Jk A_ 2 Jom,J1,,Jkm 2-m

So

H+OJO,J1",Jk 192 V 0J0k+lJO- Jk+l,J1,"Jk+l (5.9)

k+l

H_OJm°J1,,Jk = 'g2 Z Vak- Jo+Ji,J1,'J,-Jk

i,aC-_1

where we introduce a collective index notation in the matrix elements V,k±l) namely

ak = {m, so, ... , Sk}. Here si = Ji/J satisfy Ei si = 1.

The right sides of the equations for H define contributions to matrix elements

h'. Symbolically, the structure is HOj = h Oi. Note that the interaction terms

are purely of order g2 and describe the splitting/joining of a (k + 1)-trace operator

into superpositions of (k + 1 + 1)-trace operators. The Hamiltonian H = SHS -1
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transformed to string basis agrees [48] with the Hamiltonian of string bit formalism

which contains order 92 splitting/joining interaction and an order g2 contact term.

For large finite J the matrix elements are

2el SO + 1) sin (7rmso/so)A (5.10)

Iwk+l /7So-S m' sin rms'so/s) (5.1,~k+ m A' (5.11)
_ s-o' s-so/

where Ass, is a product of delta functions,

Ass, = E 6SS1()s ' Sk,Sp(k) SO'S+Spkl) (5.12)
PESk+l

It is in this form that we will use these equations. In the BMN limit, matrix

elements we calculate agree with those of the continuum formulation of ([41]).

We have also obtained a version of (5.9) valid at any finite J in the +4 '
symmetric channel. Eigenoperators of Ho are superpositions of those of fixed spacing,

namely

JO,J ... Jk 1 (21 1))OJOJ1 ... Jk (5.13)
- x/J0 ± 1 cos( +1=0 J+l

These operators have eigenvalues of Ho given by g sin2 ) which approaches

the eigenvalue in (5.9) as Jo - oo. These results agree with those of [43, 50]. The

interaction terms still describe order g2 splitting/joining of traces, but they are more

complicated than those of (5.9). For example when H+ acts on the the single-trace

OJ one obtains a superposition of double-trace operators O(9J,J where Jo = J- J1

with expansion coefficients

.iYMvlI sin( M )A(n, Tm, J1) (5.14)
7r2 (J + J1) Jo + 1

1 7rrnJ1 sin(7r( nJ ' ))

A2n -'- t sents + reduce to (5.10)

One notes that these coefficients exactly reduce to (5.10) in the symmetric channel
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in the J -+ oo limit. Another thing to note here is that working at finite J does

not resolve the degeneracy problem. For example, single- and double-trace operators

are degenerate when n = i , and there is a similar degeneracy condition for

(k + 1)-trace operators. One may also observe that A(n, m, J') does not vanish at

degeneracy for finite J, although it does vanish as J -+ oo. In principle, one should

apply degenerate perturbation theory to the calculation of eigenvalues of H even

before triple-trace operators are included. However, we will ignore this complication,

which very likely disappears in the large J limit.

Our primary goal is to apply time-dependent perturbation theory to study the

time evolution of a state which is purely single-trace at time t = 0. We will calculate

the decay rate of such a state into degenerate triple-trace states. We have found it

useful to illustrate the essential physics in quantum mechanical toy models and then

adapt the results in the models to the BMN limit of the Hamiltonian (5.9).

5.3 Quantum Mechanical Models

Our calculation of the decay rate is based on the treatment of the decay of a discrete

state embedded in a continuum in [47]. This treatment needs to be modified for our

case, but we first review it to set the basic technique in the context of the present

up-down matrix formalism.

We thus consider a quantum mechanical system with a set of discrete states In)

and continuum states la) where a denote the continuous labels of the state. The

Hamiltonian is H = Ho + V where Ho and V are given by the following matrices:

H0 = ( (5.16)
0O E56(a - )

V = V.t (5.17)

Note that V has vanishing matrix elements between pairs of discrete or pairs of

continuum states in agreement with the interactions H± of (5.9). We look for the
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solution of the Schr6dinger evolution equation it I@(t)) = HlI(t)), with I(t)) given

by the formal vector:

ai(t)e iEi t
|I(t)) = (t~a (t)e-i Et )

and the initial conditions am(O) = 6m, qe(0) = 0.

It is easy to see that the discrete and continuum components of @(t)) satisfy:

idan(t) = J dcVi exp i(E -EE)t ot(t) (5.18)

ide(t) = yEVm expi(Ea -Em)t am(t) (5.19)dt = (5.19)

We integrate the second equation using the initial conditions above and substitute the

resulting expression for 0a(t) in the first equation, obtaining an equation involving

only the discrete components, namely

dta (t) =-J da Ec dt' expi(En - E,)t expi(E, - Em)t' VVm' am (t') (5.20)da (t) -d

Next we separate the energy variable in the continuum measure by writing doi =

dEdf3p(3, E) and define the matrix

Km(E) = f d/p(/, E) VjnVm. (5.21)

We assume that Kn (E) is a slowly varying function of energy whose scale of variation

is AE. Substituting (5.21) in (5.20), we find

-ta(t) = - dEKn(E) exp i(E - E,)t dt' expi(E, - Em)t'am(t'). (5.22)

We now follow [47] and make the short-time approximation an(t') - 1, am(t ') 0

for m n in (5.22). We encounter the well known integral

j dt' expi(E -E)(t-t) = expi(E - E)t - 1fo~ ~ ~ ~ ~ ~~~(~-E
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7r6(E - E) + iP(E - ) (5.23)

The last result is strictly correct in the limit t -+ oo, but it is effectively valid within

integrals of functions f(E) for times much larger than the inverse scale of variation

AE.

This approximate treatment of (5.22) thus leads to the result

a (t) 1 - ( + iAw,)t (5.24)
2

Fr = 2r Knn(E = En) (5.25)

AWn P f dEEn(E-' (5.26)

The quantities Fn, AWn are interpreted as the decay width and energy shift of the

unstable state to lowest order in the interaction V. The approximations made in the

derivation are valid under the conditions: 1/AE << t << l/F,, i.e. the time t must

be long compared to the inverse scale of variation of Kn(E) and sufficiently short

to justify the short-time approximation to (5.22). Note that it was not necessary

to specify a scalar product in Hilbert space. It is necessary to define the measure

da = dEdy(, E) explicitly. In our problem this measure is determined by the

BMN limit of the discrete formulation.

There are additional checks of the self-consistency of the method. One can show

that the components am (t), m n satisfy am(t) t2 for small t, and that the

unitarity constraint lanl2 + f da o" = 1 is satisfied to order t.

Applied to our problem the treatment above gives the result Fn = 0, since Kn (E,)

vanishes at degeneracyl. This is because triple-trace states enter the dynamics only

at higher order in the coupling 92. The toy model above must be generalized to

include this effect. Note that the energy shift Awn in (5.24) agrees with the order g22

contribution to the scale dimension of single-trace BMN operators in (5.3).

The generalized model includes three types of states: i) the discrete "single-trace"

In), ii) continuous "double-trace" ka2), and iii) continuous "triple-trace" c 3). The

'It is curious that Kn(E) < 0 because V1V2 is not Hermitean.
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free Hamiltonian Ho is diagonal with energy eigenvalues E,, E 2, and Ee 3,, respec-

tively. The interaction matrix and time-dependent state vector which generalize those

of the model above are:

V = V~a2 0 Va2 I , (5.27)o 0

0 VaI23 0

ai(t)e-iEit

|@I(t)) = ,(a2, t)e-iE2 t (5.28)

( (a3, t)e-i E 3 t

Again we need the solution of the Schrodinger equation id/dt I'(t)) = (Ho + V) I(t))

with initial conditions: am (O) = 6m, qC52(0) = 0, a3(0) = 0. The equations linking

the components of I(t)) are

id an(t) = dov2eiEn2t qE2t 2(t) (5.29)
d (t) = E V e 'E 2mt am (t) + Jd 2 e a 3(t) (5.30)

m

id 3 3(t) = Jda2 V:3 eiEc3
a

2 t a2 (t) (5.31)

'We use the notation En, = E, - E,, etc. for differences of energy.

We now wish to process the information in (5.29-5.31) to obtain a relation describ-

ing the coupling of the discrete components of I'(t)) alone. Rather than the exact

equation (5.20) in the simpler model, we will obtain a relation which is accurate to

fourth order in the potentials. For this purpose we begin in straightforward fashion to

integrate (5.31) obtaining an expression for a 3 in terms of 0 2. We then substitute

this in (5.30) and integrate that, and substitute the result in the first equation which

becomes

dan(t) = -Jdc E a dtleiEn 2t+iEQ 2mt' VV , am' (t') (5.32)~aj(t ) a= - a
dt 0~~~m
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+ifda2 da3 da' dtt dteiEn a2tiEQ2a3tz'+iEa3a2t" n V2a t)

The next step is to substitute for q5 (t") in the equation above the value obtained

by integrating the first term of (5.30) with "source" am. The term with "source" "0 2

is of higher order in the potentials through (5.31) and can be dropped. This gives us

the net contribution of triple-trace intermediate states, denoted by

d a-an (t)triple = da2 da [tdt' E t' dt+t"IeiE2t+iE 2 3 t

iE t"+iE tami
eiEac[t"+i2m v " ~C' v C3C2 am(t " ) (5.33)

To obtain the contribution of single-trace intermediate states at order g4, we

integrate the first term of (5.32) to find an expression for a(t) (with n - m). This

expression is then reinserted for am' (t') in (5.32) to obtain the iterated contribution

d n
-a n(t)single = >E fda 2da'dt'o dt" dt"'ei E 2t+iEI2mt'

m,m t I 2

t+iE t"-iE Vn a a 2 a )
e'"";" 2""''~ vv,-v~[v am " (5.34)

The full expression for da (t) to fourth order is

dtn = -Jda 2 ft dtteiEn2,t+iE a
2mt' V2 Vndta (t) Jo2

m,

d d
+ an(t)triple + an (t)single (5.35)dt dt

The first term is just the short-time approximation to (5.22) in the simple model in

different notation. We will not discuss it further since it does not contribute to the

fourth order amplitudes of primary concern in the generalized model.

We now make the short-time approximation an(t') _ 1, am(t') - 0 for m n

in (5.33) and (5.34). We will present the treatment of the triple-trace part explicitly

and then summarize the rather similar steps needed for the single-trace part.

The nested set of time integrals in (5.33) can easily be done, and the result (in-
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cluding the overall factor exp i(E,. 2)t) is

eiEnQ3t _ 1 eiEna2t I eiEna2t eiEna2t _ eiEna3t
-E2 E+ + (5.36)

Ee 3nE L2 a3 Ea2nEa2a3 Ec2c'2 Ea3a'2 ER2a3Ea3'(3

In an obvious fashion we subtract and add 1 in the last two terms of (5.36). We thus

obtain six terms with the structure exp iEt - 1 divided by energy denominators.

In our discussion of the contribution of these six terms to (5.33) in the short-time

limit, we need the fact that all the interaction matrix elements of the actual problem

vanish at degeneracy due to the trigonometric factors in (5.10). We assume the same

property in the toy model so that all energy integrals which appear when (5.36) is

inserted in (5.33) converge despite the singular denominators.

We apply the i prescription of the last line of (5.23) in each of the six terms,

multiplying and dividing by the energy denominators which are missing in the last

four terms. It is easy to see that all contributions cancel pairwise in third and fourth

and in the fifth and sixth terms. In the first and second terms we obtain

d = f 1 VL3V 1
an(0)triple - d 2 da3 dc2 Vja2V ,,2 E 3 2 E

[r6(En,3) + iP( - (En 2) - iP( )E
fa3 Ena2

(5.37)

We now note that the term with 6(En, 2) vanishes because V, = 0 at degeneracy.

Because of this vanishing one can combine the two principal value terms without

ambiguity. The triple-trace contribution to the decay amplitude can then be written

as

dta(0)triple = - d 3U3[6(Ea3n) + iP( Ea3n (5.38)

where we have introduced the effective composite interactions which couple single-

and triple-traces, namely

Un3 = J doe2 E 3 (5.39)
Enat2
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Un3 = da V (5.40)
EQ

The single-trace contribution (5.34) can be treated similarly. One makes the

short-time replacement am(t") - 6m. The time integrals are then easily done, but

separately for the two cases m Z n and m = n. The contributions of the various

terms to dtan(t) at small t are then analyzed as above. In each case there is one

term which contributes at t = 0 via the i prescription. In each there is a (Enc2)

which drops because Vln2 = 0. The contributions of two (non-singular) principal value

integrals remain in the final result

d n U 1 EnmUm
a (0)single = i E U l (5.41)

Vn U2

-iUn dC 2 n2 (5.42)

which is largely written in terms of the composite interaction

an Va2
Um= d'2 V m (5.43)

Ena2

We can now interpret the results (5.37,5.41) in terms of (5.24). We find the decay

width

rn = 27r d 36(Ea3 n)Un U a (5.44)

and energy shift

w = -Z 1 - ntm rTM
m Emn

an ve2
+Unn J dV2 nj

- dc3Uf n 3 P E )Un3 (5.45)

We are primarily interested in the decay width, which will be evaluated for the

BMN system (5.9, 5.10) in section 5. However, we note that the energy shift agrees

with the result of fourth order non-degenerate (time-independent) perturbation theory
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for any quantum-mechanical system whose state space and interaction structure are

the same as the present model as defined in (5.27) and the discussion above it2. Of

course, the principal value derived here to resolve the divergence in the last term is

not present in conventional perturbation theory. The physical interpretation of our

result is that the pole of the resolvent operator 1/(Ho - E) at E = En due to the

discrete state In) is shifted to E = E, + \Awn - ir/2 in the complex plane by the

interaction in 1/(Ho + V - E). The state In) is unstable in the full theory.

The goal of the Hamiltonian formulation of [41] was the calculation of anomalous

dimensions of BMN operators. In our opinion the calculations undertaken for this

purpose should be revised to incorporate degenerate rather than non-degenerate per-

turbation theory. One may note that the various contributions to our energy shift

(5.45) agree exactly with those of (25) of [41]. So the result there should be inter-

preted as the real part of the shift of a pole rather than the anomalous dimension of

an eigenstate of the dilatation operator.

It is interesting that the present time-dependent treatment provides justification

for the recent suggestion in [48] of an S-matrix approach to the BMN system (see

also [51]) which would require an i prescription in the genus two calculations of [41].

The idea of an S-matrix is fully compatible with our interpretation of the instability

of the states In).

5.4 Basis Independence

It is our intention to derive a formula for the decay widths which can be compared with

future calculations in light-cone string field theory. We must therefore determine the

effect of the change to the basis in which gauge theory and string theory calculations

should match. It turns out that the result is not changed by the basis transformation

(at least to order g4). Basis independence would be a triviality if it were implemented

as a standard "change of representation" in quantum mechanics, since matrix elements

2Most treatments of perturbation theory assume a hermitean Hamiltonian, but the standard
formulas remain valid when rewritten in terms of hii
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are invariant. However, things are not entirely trivial since states and operators

actually transform contragrediently. We follow the recent paper [48], although the

same result should emerge from the similar formalism of [27].

The metric gij defined by the free two-point functions of the Oi of (5.4) can be

referred to local frames using the vielbein

gij = ei 6kle (5.46)

We found the usual practice of different fonts for the "frame" and "coordinate" indices

confusing in the present application, so we prefer to emphasize that the same physical

variables are indexed by both upper and lower indices. The inverse vielbein is denoted

by f, so that e.g. fkej = j. The operators with diagonal free two-point functions

are

Ok = fOi - S- 1Ok (5.47)

where we have defined the Hilbert space operator S -1 by the last equality. Our S- 1

has exactly the properties of S- 1/ 2 in [48]. In particular the string basis Hamiltonian

is

H = SHS- 1 (5.48)

which was shown to be exactly the Hamiltonian of the string bit formalism [31, 45]

whose order g2 splitting/joining interaction agrees with string field theory and order

92 contact term also agrees (if a certain truncation of intermediate states is made)

[28].

The toy models of Section 3 can now be described in a new notation in which the

states (Oi and Oj span different bases of the Hilbert space, the gauge theory basis

and the string basis, respectively. The time evolution problems treated in Section 3

as models for gauge theory can be described as follows. We found (approximately)

the state

IlI(t)) = E ai(t)Oi (5.49)

which evolves with time by the Hamiltonian H and satisfies an initial condition
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ai(O) = 1 for i = io and ai(O) = 0 for i io.

.d l@(t)) = H[~(t)) we easily derive the component

From the Schr6dinger equation

evolution

di i - a (t) = Haj(t). (5.50)

In string basis we would instead be interested in the state

(5.51)(t) = E ai(t)Oi
i

which evolves in time by the Hamiltonian H with the initial conditions ai(0) = 1 for

i = io and ai(O) = 0 for i io.

We now attempt to relate the time-dependent expansion coefficients ai(t) and

&i(t). The Schrddinger equation i (t)) = Hl'i(t)) can be expanded as

d
i- Z i (t)s- li = E ai (t)HS- 1 Oi.
dt ai n the component equations

We apply S to both sides and obtain the component equations

d
-E ad(t) = (S-HS-1)ai (t)

(S2HS-2) j(t)

We now consult Sec. 4 of [48] and learn

components evolve via
id (
i- E a (t)dt 

that S 2HS- 2 = Ht. Thus the string basis

= (Ht)iaiJ(t), (5.55)

a curious and useful fact!

To apply this fact we simply go back to the expressions for the decay amplitude

in (5.38 - 5.45) and observe that these results remain unchanged if we replace every

matrix element Vji of the potential by that of the adjoint (Vt) = V13. Thus the results

obtained in Section 3 in the gauge theory basis exactly describe the decay amplitude

in string basis!
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5.5 Computation of the decay rate

In Section 3 we derived a formal expression for the decay rate that we reproduce here,

r,, = 27rf da3U, U 36(E,, - En). (5.56)

We explain the evaluation of this expression in some detail. Let us begin with the

computation of the effective composite interaction matrices U~3 and U 3 . Triple-trace

state is labelled as a 3 = {m, so, sl }. For convenience, let us also define s2 = 1- so0 - l.

Because of the 6-function in (5.56), we need this matrix element only at degeneracy,

E, 3 = En, where the computation simplifies and has already appeared in [13] and

[41]. Using the perturbation coefficients (5.10) in (5.40) one finds,

A'g2n s1s2 fl 1umsosl = 2n- d o(sso+s-sso+s2)sin 2(rns)

Z iP sin2 ( rpso/s0)
p=_- sO (n2 - (p/lsb)2)(n- pls) 2 '

The evaluation of the sum in the second line is explained in Appendix C of [13].

Finally performing the integral over sO one arrives at the result,

US= A'g~
n - 4 2 J -- 1 2 sin2 (7rnsl). (5.57)

A similar computation using (5.11) in (5.39) gives the result3 U, 3 = 2Un3 when

E, 3 = E. Inserting (5.57) into (5.56) one obtains,

A"' 4 00 /s

r 4 2 Z s0J dso J ds1 sls 2sosin 4 (7rnsl)6(n 2 - ( 2). (5.58)

We evaluate this expression for n > 0 for simplicity but the final expression will be

valid also for n < 0. The integral over sl can be done analytically with the result,

F = 128 2 r5 dso (n2 - () 2 )so(1 - so)(15 + 4wr2n2 (1 - SO)2). (5.59)

3 The factor of 2 arises from the (k + 1)! and k! prefactors in (5.10) and (5.11).
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Let us denote the solutions to the degeneracy condition,

2 2
2 = 2'

by m*, s}. One then performs the integral over so using the 6-function,

(n2 _ ()2)= 6 (SO _ m)

This gives,
A'g 4 -1

rn = 25695n 7 E m*2(n - m*)(15 + 47r2(n - m*)2). (5.60)
m*=l

Here range of the sum is set by positive solutions to the degeneracy condition above.

For example, when n = 3 there are two solutions {m*, s} = {1, 1/3} and {2, 2/3}.

The sum in (5.60) is easily done for general n and one arrives at the final result,

Al_ _4 75r = _ (n2 _ 1)(n 2 + 1 + 1+ 2) (5.61)
38407r3n5 -

We observe that decay width vanishes for n = i1 and it shrinks as the excitation

mode n increases.

5.6 Discussion

The viewpoint we have taken is somewhat simplified in that we have incorporated the

degeneracy of single- and triple-trace operators O(9 and (9Jo J,1J2 when m = +nJo/J,

but we have ignored further degeneracies, such as that of j0 , J' , J2 with the five-trace

CJJP, J2J3,J4 when p = mJ~/Jo. Indeed the state -JAJJ2 is stable only when

m = +1, so our calculation gives the true order g92 amplitude for decay of OJ to

=Jo=J/Iln,Ji,J2. The rate is given by the m* = 1 term in the sum (5.60). For Inl > 2

and ml > 2, one must envisage a sequential decay process, e.g.

c9r -+ (JoAJ1,J 2 ( oJ,J1,J2,J3,J4(n=3 -+ 2 u=2
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with J/J = 2/3 and J/Jo = 1/2. For general n, there can be a cascade up to

(2n - 1)-trace states. We have not studied transition amplitudes such as 3 - 5

or sequential decays explicitly, but we expect that the amplitude of the 1 -+ 3 5

process is of order g. Thus we believe that the order g2 decay amplitude we have

calculated is meaningful for general n, m and that it can be readily compared with

string field theory calculations.

Readers should note that most statements made in this paper about vanishing

amplitudes hold for the lowest order contributions only. One expects non-vanishing

higher order corrections. For example, the decay amplitude for 1 -+ 2 of order g2

is expected to be non-vanishing at degeneracy, and there should be a non-vanishing

1 -+ 4 amplitude of the same order. On the other hand the elementary order g92

amplitude V,4 in (5.10) vanishes at degeneracy because it is disconnected, viz. the

delta functions in (5.12).

As we stated in the Introduction, the computation of anomalous dimensions of

BMN operators requires degenerate perturbation theory with possible modification

of the order g2 result (5.3). We now briefly describe our preliminary study of this

question in which we work at large finite J. In general there are order g2 transition

amplitudes which do not vanish at degeneracy between a single trace operator OnJ of

momentum n and triple-trace operators with several values of m. The triple-traces

in turn mix with 5-trace operators, 5-trace with 7-trace, etc., with termination only

at the maximal J-trace level. Note that each "band" of k-trace operators involves

a finite fraction of J distinct operators. Nevertheless one can derive the precise

statement that to order 'g92 the anomalous dimensions of operators in this large set

are the eigenvalues of Ho + A'g2U where U is the effective composite interaction whose

non-vanishing matrix elements are,U'k±2 fa______ akl ' Vd;-Vk+ 3
ak 2 + dak± k = jd+j E dOk+j (5.62)

nakil j=±l nak+j

Note that single-triple matrix elements appeared in Sec. 3. For large J this is a very

large but sparse matrix.
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We have studied a reasonably accurate "model" of this matrix to determine the

large J limit of eigenvalues and eigenvectors. The results indicate that there is a

single eigenvector which is "mostly single trace" as g92 0, and its eigenvalue is

that of (5.3) for k = 0. Similarly, there are some "mostly k-trace" eigenvectors for

which (5.3) is also correct. But there are also some "collective" eigenvectors which

are superpositions of many multi-trace operators and whose eigenvalues do not agree

with (5.3). Thus our model indicates that (5.3) is correct for most states in the system

but not correct for all multi-trace states.

We close by noting that the gauge theory result (5.3) for "mostly k-trace" oper-

ators has not yet been confirmed in light cone string field theory. The complication

of degenenerate perturbation theory described above in the gauge theory will be

mirrored in string theory. Thus we expect that the string theory computation can

be organized to produce a composite interaction matrix at degeneracy which should

agree with (5.62) after change to string basis.
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Appendix A

D-term and external gluon

contributions at (A')

The aim of this appendix is to prove equation (3.21) showing the planar level contri-

bution to the vector anomalous dimension which arise from the D-term part of the

lagrangian, (3.11). In section 3 we explained how one can express this result in terms

of the the correlator of a non-conserved current, J,, = Z a Z. Here, we shall compute

D-term contributions to this correlator at the one loop level. In the following we will

first show that D-term quartic vertex do not contribute to (JJ) at all. Then we will

explain how to compute the self-energy contributions. Finally we shall consider the

contribution arising from the gluon exchange graph fig. 3-4I by employing the trick

of relating it to simpler diagrams figs 3-411, 3-4111, 3-4IV as we described at the end

of section 3.2.

The most direct and painless way to compute these Feynman diagrams is the

beautiful method of differential renormalization (DR) [34]. The main idea is to com-

pute n-point functions (O1(xl) ... Ok(xk)) directly in space time rather than Fourier

transforming to momentum space, and adopting a certain differential regularization

scheme when the space-time expressions become singular, i.e. as xi - xj. Note that,

away from the contact points xi -+ xj, the n-point function is well-defined and can

be Fourier transformed back to momentum space. However as xi approachs to xj

for i $ j, most expressions become too singular to admit a Fourier transform. Yet,
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one can easily rewrite the singular expressions in terms of derivatives of less singular

expressions hence render the Fourier transform possible. The only such rewriting we

will use here is the following formula [34],

1 - lln((xl - x2)2A2)
(x 1 - x2)2 4 (xl - 2)2

(A.1)

where A2 is the renormalization scale. We also remind the Green's equation in our

conventions,

E ( 1 =-47r 26(X1 - x 2).
(X1 - X2 )2

(A.2)

A nice feature of DR is that one can adopt a renormalization scheme where one

ignores all tadpole diagrams, simply by setting them to zero. We will work with the

Euclidean signature throughout the appendices in which case the space-time Feynman

rules for Af = 4 SYM are read off from (3.11). Scalar, gluon and fermion propagtors

read
6ab 6abClv

47r2( _- y) 2 ' 4r 2(x - y)2'

The interaction vertices are shown in fig. A-1.

b
A\,

-g fabc t

2 T
Zb

I0C

-,
Za = - g f abcL

-- T~ L

r
'b
03

6 ab 1

47r2 (x -y) 2

2=-7- (fabpfcd + fcbpfaap)

Zd

Xc

za = i gf bCR
Z~~~

01'

Figure A-i: Feynman rules for vertices. Same rules hold when Z is replaced by .
In the -Z-O vertex, exchanging chiral fermion flavor 2 with 3 gives a minus sign and
replacing Z with Z changes the chirality projector from L to R. The analogous Z-A-0
vertex is obtained by replacing R with -L.
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It is very easy to see that D-term contribution vanishes.

(Tr(J,J,))D = gYM (fabdface + fabefacd)Tr(TaTbTcTd)
47r 2

d4 ((X -u) 2 0 g (y U)2 (y - U)2

To find the self-energy contribution to (JJ) let us first compute self-energy cor-

rections to scalar propagator. These arise from three sources: a gluon emission and

reabsorbtion, chiral-chiral fermion loop and chiral-gluino fermion loop. We will not

need the exact value of the first contribution as will be explained below. Let us begin

with chiral-criral loop which is shown in fig. A-2. Calling this graph SE 1, Feynman

rules yield,

1 acd g )fbdc( )d 4 ud 4 1 1 2 Tr[L 1 2]SE1 = -2- f dT(- ud (x _ u)( - 2
472 V2_ V2_ f ( - U)2 5 V)2 ( - )2 (u - v )2

1 1 1 1
2 b= -2 9YM | d4ud4v ua4wr2 (x- u) 2 (y- v) 2 u-v) (u-v) 2

where factor of 2 in the first line comes from summing over two fermion flavors 01

and 02. We will show the evaluation of integral here for future reference. By parts in

u gives,

r 4 4 ( 1 l(2 _ _ __4_2)( u- v1Ii(x, y) du1 d )V 2 4r(U - v)+ (
-8 d4ud4 1 ln((u - v)2A2)

8 J V ( - ) 2 (y - )2 ( - )2

I (-4r)2 d4ud4v6(x-u)6( -v) ln((u- v)2A2)---4dv ( uI (U -V)2
(47r2)2 ln((x - y)2 A2 )

8 (x - y) 2

In passing to second line we omitted the first term which is supposed to cancel out

with tadpole contributions in DR. Second and third equalities use (A.1) and (A.2).

Hence,

SE g 6MN ln((x - y)2A 2)
E1 4(42)2 (r - )2 (A.4)
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An analogous computation for the gluino-chiral fermion loop gives,

gSE 2 N ln((x - y) 2A2)
SE2 = 2(4r2)2 ab - 2 (A.5)

Although we will not need it, let us give here the total self-energy correction to

the scalar propagator for reference (including gluon emission-reabsorbtion),

gy~N ln((x - y) 2A2)
SE = 8(47 2)2 ab ( (A.6)

2 2

x U ' , v y- x u' ' v YzZa Uay + Za
- - _ z _ -

0 d 0 d

Figure A-2: Chiral fermion loop contributions to self-energy of Z.

Turning to gluon exchange contribution to (JJ), we recall our trick to express it

as gluon exchange correction to gluon propagator in scalar QED, fig. 3-41II,

6 ab(Tr(Ji(x)J(y)))g.e. = ab(J"(X)t()))geo
2 ;(x)J~(y)))g.e.

N4

= - M (A,,()Av(y))g.e. (A.7)

where Ja = ifabcZboZc. In the second line we divided out by a factor of (g/2)2 to

compensate for the coupling of incoming and outgoing gluons to the loop and there

is an overall -1 w.r.t. (JJ) because of the antisymmetric derivative in scalar-gluon

vertex. We also took into account the color factors at four vertices,

fcgefdacffdgfehf = abN 2

2

Now, the sub-divergent piece of this diagram cancels out the sub-divergent pieces of
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graphs I and II in fig 3-4. Hence the contribution to anomalous dimension is,

(A,(x)A,(y))g.,. -+ -4 x Fig.3 - 4I - 2 x Fig.3 - 4II.

When we include th self-energy corrections to (JJ) second term will be canceled out

by gluon emission-reabsorbsion part of the self energies and one is left with,

N4

(Tr(JJ))g.e.+s.e. =- N (-4 x Fig.3 - 4a - 2 x F.S.E.}
gYM

(A.8)

with "FSE" being only the fermion loop contributions to the self energy of (JJ),

FSE gMN JV ln((x - y)2A2)G(x, y)2
167r2 ( - y)

(A.9)

Note that we included 1/2 factor coming from our counting of self energies, (see fig.

3-2). Arousal of conformal factor, J,,, is explained below. Let us now compute the

contribution of fig. 3-4a including the color factors in conversion to (JJ). Using the

Feynman rules for in fig. A-i,

Fig 3 - 4a _+ _ gyM (facp fdhp + f dcp fahp)(_ 9 f edh) ( 9 cbe)
2 2 21(4 

(47r2)4 f
d4u

(x - U)2
( Y1
(x - y)2

-*Y 1

, (y - U)2 . (x- )2

9 g4 1

32 (47r2)4 (x y)2

where the integral is

I2(x, y) = f
d4 u 1 _ 21n((x - y)2A2)

-= 7T i
(X - )4 (y - U)2 (x - y)2

again by use of (A.1) and (A.2). The anomalous contribution is obtained by keeping

terms proportional to In in (A.10) which gives,

9 g4Fig 3 - 4a - i 6-abN2
64 4r 2 (x - Y) 2 G(xy) 2
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Putting this in (A.8) together with (A.9) one gets,

2 9 1 2

(Tr(JJ,))g.e.+s.e. = - 2 64 - ab YMN2
9yM 64 4 47r2

ln((x - y)2A2) JX - Y) G(X, )2

5gyMN ( )3 ln(( - y)2A 2 )
47r 2 2

~(x, Y) G(x, Y)2.
(X - y)2

(A.11)

This is the total contribution to (JJ) from D-term, gluon exchange and self energies.

Insertion of this result into (3.20) yields the desired result, (3.21).

Our next task is to fill in the details in the computation of section 3.3 that leads to

the contribution of external gluons to the O(A') anomalous dimension, (3.28). These

contributions are shown in fig. 3-6. To evaluate Graph I and II of fig. 3-6, we will

need the function C, which was defined in (3.23). Recall that external gluon is coming

from the commutator ig[A,, Z] which contributes _gfacd at the external vertex where

c is associated with the gluon, d with Z-line and a is the color factor of the external

vertex. Use of the Feynman rule in fig. A-1. for the internal vertex gives,

- acd\ if d 4U 1 I
- (-gf ) (-2 f(2Jdu 1 (1u)

2 1I2(X, Y)

- gYMNS6 b ) (1n( I2(x, y)

163 gMNNby (ln((x -A)G(x, y))
16 47r2

Hence we read off

C 3 YMay (ln((x y)2A2)G(x,y))

Inserting this into (3.24) yields the total contribution to (OnOm) from Graph ,{OuV v } f1rom Gra p I,

N\ J+2

~2 (J +2)6316 g 4M2 G(X y)JG(,,y) A, a (ln((x -y) 2A2)G(x, y)).(J+ )5~ 16 47 _,X
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We add to this the contribution of Graph II which is identical except a phase factor

of q and their horizontal reflections which doubles the total answer. Anomalous

contribution is obtained by keeping terms proportional to log which is (3.25) after

correctly normalizing according to (3.3). Contributions of Graph III and IV (and

their horizontal reflections) are identical to above except one the factor 1 + q is

replaced by -q - f, hence the final answer is (3.28).
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Appendix B

Trace identities and F-term

contribution at O(A)

Here, we first present the trace identities which were used throughout the calcula-

tions and work out an example to show how to use them in calculations of n-point

functions. The example we choose is the special diagram-section 4.4-which arises

in D-term contribution to torus two-point functions. As another application of the

trace identities we compute the F-term contribution to anomalous dimension of vector

operators.

Let us fix the convention by,

Tr(TaTb)= 1
6 ab2

and trivially extend SU(N) structure constants, fabc, to U(N) by adding the N x N

matrix TO = i. For notational simplicity let us denote all explicit generators by

their index values, i.e. T a -+ a and replace explicit trace of an arbitrary matrix M

by Tr(M) -+ (M).

Results derived in [52] can be used to prove the following trace identities.

1 1
(MaM'a) = 2( (M)() (ab)= I6ab

2 2

(Ma)(aM') = -(Mm,) (a) = N/26j0 (B.1)
2
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1
aa = -NI () = N

2

a1 ... al a ajl+l... a2 a aj2+l... aJ3 b aJ3+l ... aj

Figure B-1: A torus level diagram with "special" topology.

Let us use these identities on the example of fig. B-1. This shows a D-term

interaction in a special diagram. We would like to show that the total trace involved

in this graph boils down to a trace over the four interacting legs and eventually to show

that this diagram is indeed at torus level by algebraic methods. In fig B-1, the color

indices carried by the block of Z-lines are al,'"... aJ, aJl+,, aJ2 aJ2+,- aj3 and

aJ3+1, · · aJ respectively. Color indices of the interacting lines are denoted as a, b, c, d.

Then the color factor associated with the vertex is facpfdbp. Interestingly, untwisting

the b and c lines in fig. B-1 which give the other color combination, fabpfdcp turns

out to be a genus-2 diagram! That's why we draw the special and semi-contractible

diagrams of section 4 with twists. Use of (B.1) in fig. B-1 goes as follows,

(al ... ala aJ+l ... 2a 2aJ2+l ... a 3 b a 3+1 ... aJ)

.(ca 3 ... aJ2+laJ ... a 3+1 d a1l ... alaJ2 .. .aJ+l)
1

= -(N/2)J-J3-(al ... aJ a a+l ... a 2a2+1 ... a 3 b d al ... alaJ2 .. ' aJ+l caJ3 a 2+1)
2
1

= (N/2)J-3-1 (b d al * * alaJ2 . .aJl+ c)
2

.(aJ3-i1' a,+lal... a a ajaaj+ .. a2aJa2+1 .. aj-l)
1
- (N/2)J-J2-2(bdal ... ala2 ... a l c)(al...aJ1 aajl+..aj 2)2
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1
= (N/2)J-J2+J-3(aJ2 ... aj +cbdaaj+1 ... aJ2)

2

= (N/2) J-3(cbda).

Contraction with the vertex color, facpfdbp gives (N/2)J+1.

Same interaction in a planar diagram, fig. B-2 would give,

1
(al ... aj abaJl+i ... a)(aJ... al+ cd a ... a) = (N/2)J-(abcd)

2

Contraction with the color factor of the vertex, fadpfbcp gives, (N/2)J+3 as the final

color factor. Comparison of this result with the special graph result shows that special

graph is indeed at torus level.

d c

Figure B-2: A planar diagram with same interaction vertex as fig. B-1.

Let us move on to compute the F-term contribution at the planar level. Since we

are interested in the anomalous dimension we consider equal momenta, n = m for

simplicity. Unlike in the case of D-terms there is a nice algebraic method to tackle

with the calculation: Effective operator method [24]. We define the effective operator

as the contraction of the vector operator

on= c (z J +l) = (qZ J + ) + q E q (OZ ZZJ-I)
1=0
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with fPabZadb:

Oeff
J

= -i Z ([a, p]ZmaZJ-m)GO,G
m=O
J 1-1

- iq q E ([a, p]ZmaZ-m-l,ZZJ-l)G 2

1=0 m=O
J J-1-1

- iqyql ([a,p]Zlaa,ZZJ-m-lZ )G 2
1=0 m=O
J

- iq E q([a, p]ZaZJ- )G,, G.
1=0

(B.2)

Planar level contribution arises from the nearest-neighbour interactions, m = O, J in

the first term, m = 0 in the second and third terms and 1 = 0, J in the last term:

J-1
oieff = i(q - q)(N/2)G,G(pZ J ) + iq(q - 1)(N/2)G2 E ql(pZlOZZJ-l-1)

1=0

(B.3)

where we used (B.1) and qJ+2 = 1. We obtain the two-point function as, (OnOn) =

(OffOeff). To compute various terms we will need additional contraction identities,

Tr(ZaZa) = Na+l + O(Na- l)

Tr(Za)Tr(Za) = aNa + O(Na-2) (B.4)

which are derived by counting the number of ways one may perform the Wick con-

tractions within each trace structure while obtaining a maximal power of N. Leading

order terms show the planar level contributions.

Among the four pieces in (eff) eff) the term arising from contraction of second

term in Oeff with second term in COf f is the easiest to evaluate. One gets,

(B.5)

Contraction of first term in Off with second term in Ovff gives,

J-1
-(N/2)2(q - q)q(q- 1)GaG yE ql(ZlavZZJ--lp)(pZJ)

1=0
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--(N/2)+(q -q)q(q - )G0,a,q-1
1=0

= (q - )2 GGGJ(N/2) J +3 (B.6)

(B.7)

The other cross-term yields the same expression hence doubles (B.6). Contraction of

first terms of Off and Oeff is,

G (N/2)2(1- q)
2

J-1
(1 - q) E q (Z t0ZZJ- -1 Z- -l ~ ZZI').

l,l'=O

One can break up the trace into two pieces by contracting o9 Z with a Z in the first

group, with 9,Z or with a Z in the last group. First possibility gives, (up to the

factors in front of the sum)

1 J-1'-2
2G E (ZJ-1-')(2J-'-P-2&VZZ'Z ')

p=O

1

4

J-1'-2 1-1

E E(ZJ--1zp)(Zr21'
p=O r=O

N3

(N/ 2)J-2 GJ-2GG G qtQ,
4

1<1'

Including the factors in front, one has,

(1 - q)(l - q)(N/2)J+3GJOGaG E qle'.
1<1'

whereas the second possibility gives,

(1 - q)(l - q)(N/2)J+3GJ+lo9,G.

A similar calculation shows that third possibility yields,

(1 - q)(l - q)(N/2)J+3GJaGavG E qlq",
1>1'
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giving all in all,

(N/2)J+3GJ+2 J ( - )2 + (1 + q)(1 + )O1GO9G} . (B.8)

Combining the various pieces we have computed, we see that (B.5), (B.6) and the

second term in (B.8) cancels out, leaving us with,

(N/2)J+3GJ+2J 2Jv (B.9)
( - )2'

Taking into account the integral over the interaction vertex, (3.37), one arrives at the

final contribution of the F-terms,

,/mi~~nm,,, i. I ((X_ _)~tr(O'(x)O (Y))F = -An ((y)2A2) v(XY)G (x,)+2 (B.10)

which exactly equals the sum of the contributions from D-terms, self-energy and

external gluons. Therefore total anomalous dimension is twice the dimension in B.10).

One can use the effective operator method also to calculate the F-term contri-

bution to torus anomalous dimension. For that purpose one should keep the second

order terms in the expansion of (B.4). This calculation was computed in Appendix

D of [24] and one gets the same expression as (3.38).
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Appendix C

Disconnectedness of GT correlators

In this appendix we will derive eq. (4.28). A study of the corresponding Feynman

diagrams suffice to obtain the leading order scaling of a generic correlator with 92

and J. Dependence on 92 of a correlator is fixed by power of N in a Feynman

diagram. This can be determined either by direct evaluation of the traces over the

color structure (all fields are in adjoint rep. in Af = 4 SYM) or by loop-counting.

Since we are interested in the leading order 92 dependence, the latter is easier. Explicit

J dependence is determined by working out the symmetry factors in a Feynman

diagram. As a warm-up consider the free extremal correlation function,

Ci ' = (J : J J ...· O :).

Leading order diagram drawn on a plane is shown in Fig C-1. Taking the normaliza-

tion factor 1/NJ +2 into account, trivial loop counting teaches us that,

I _
COcx N 1 - (C.1)Ci Nil j2i-2 (C.1)

Now, consider the combinatorics in Fig. C-1 to determine the power of J. Planarity

requires Wick contraction of OJ's into 0J as a whole. Fix the position of, say J2

in O. Then one has to sum over positions of other OJi operators for i > 2 within

OJ obtaining a factor of Ji-2. There is a phase summation over positions of X and

impurities in 0J, giving a factor of J 2 . Cyclicity of OJ , i > 1, provides a factor
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)

Figure C-I: A typical planar contribution to C1,i. Circles represent single-trace op-
erators. Dashed lines denote impurity fields. Z lines are not shown explicitly and
represented by "- - ".

of Ji-1. Taking into account the J-(i+1)/2 suppression from the normalization and

O((J- 2 i+2 ) suppression in (C.1), we learn that,

i-1
Ci,j1 92 (C.2)

Next task is to obtain similar information for a general, non-extremal free corre-

lator in (4.27). Without loss of generality, one can assume j < i. There are various

connected and disconnected diagrams with different topology. Since the results for

disconnected contributions will recursively be included in the fully connected pieces

for smaller i and j, it suffices to consider the fully-connected contribution to (4.27).

We first ask for the dependence on g2 for the leading order (planar) fully connected

diagram. As an example, a list of all distinct topologies for fully connected i = 3,

j = 2 correlator is shown in Fig. C-2. It is immediate to see that conservation of

number of legs for each operator in the correlator (for each node in Fig. C-2) requires

that all planar fully-connected diagrams have same 92 power irrespective of the topol-

ogy (here, by topology we refer to different type of diagrams that are exemplified in
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Fig. C-2, not the order in 92). Then, it is sufficient to count the loops in a connected

diagram that is the simplest for loop counting purposes. This simplest diagram is

shown in Fig. C-3. Each outer leg in Fig. C-3 represent a bunch of J propagators

(inner line has J1 - - - Ji+j + 2 propagators). Drawn on a plane, this means

that there are a total of (J + 2) - (i + j - 1) + 1 loops in Fig. C-3, including the

circumference loop. Finally, a factor of NJ+2 from normalizations and we obtain that,

1 +j-2
Ci~J oc 1 = Q . (C.3)Ni+j-2 J2(i+j-2) (C.3)

Apart from the dependence on J coming from singling out the g2 dependence as

above, there are additional contributions from the combinatorics and normalizations.

Determination of the power of J from the combinatorics works much as in the case

of C1 ,i. Fixing position of one OJi inside another operator that it connects to, we

are left with sum over position of i + j - 3 operators. This reasoning holds only for

tree-type diagrams like in the first diagrams shown in Fig. C-2.a and Fig. C-2.b.

4 1 3 2 5

c ++- -++
5.a

59.b< 4

5.b

Figure C-2: All distinct topologies of planar Feynman diagrams that contribute to
(: mJ01Q2 :: OJ3.J4J ). Nodes represent the operators while solid lines represent
a bunch of Z propagators. Line between the nodes 1 and 3 also include two scalar
impurities and A. All other topologies are obtained from these two classes by
permutations among 3,4,5 and 1,2 separately. Other planar graphs are obtained from
these by moving the nodes within the solid lines without disconnecting the diagram.
For example 4 in the first diagram can be moved within the solid line 1-3.

But it is not hard to see that the combinatorial factor for diagrams involving loops
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e.g. second diagram in Fig. C-2. is also equal to i + j - 3. This is because for each

factor that one loses from the sum over positions of OJi because of the appearance of

a loop, one gains a compensating factor of J for the loop summation. Also, cyclicity

of BPS type operators within (4.27) provides a factor of Ji+j-2. Finally, including

the powers of J coming from the normalizations and (C.3) we arrive at the general

result,
i+j-2

Ci , 92 (C.4)

Note that this is for the connected contribution to (4.27). To obtain the 92 and J

dependence of disconnected contributions, one simply uses (C.4) for smaller i and/or

j which shows that disconnected diagrams have lower powers in 92 and they are less

suppressed by a power of J. For example a disconnected contribution to Cij where

the process i -4 j is separated into two disconnected processes, the scaling would be,

i+j-2
j(i+j)/2-2 '

i+2

S

S

S

S

S

S

i+j

Figure C-3: Simplest connected tree diagram for the loop counting purposes. The
solid line between I and i + 1 includes X and 4'.

With a little more effort one can show that,

theorem 1 For scalar impurity BMN operators O(g2M) interactions will not change

the scaling law of (C.4) at all.
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Let us outline the proof shortly. As a first step, one can show that the only interactions

involved in scalar impurity BMN operators are coming from F-terms in Jf = 4 SYM

lagrangian. F and D type interaction terms written in = 1 component notation

reads,

F o (fabci 7i)2, D fabcfadeijkEilmZj kZ z - (C.5)

Here, a,... are the color indices while i,... denote flavor. Note that when one specifies

the orientation in a scalar propagator ZiZ i as from Z to Z, these quartic vertices can

be represented as in Fig C-5. In [53] it was shown that, correlation functions of BPS

type multi-trace operators,

Tr(Z) ... Tr(Z) (C.6)

do not receive any radiative corrections. To see this one first notes that F-type quartic

vertex vanishes when fields are all have the same flavor. Secondly one discovers that

contribution of D-type quartic vertex exactly cancels out the contributions from self

energies and gluon exchange [53].

Figure C-4: A quartic interaction in a typical diagram introduce two interaction loops.
Here, loop is contractible while loop 2 is non-contractible, therefore this diagram
represents a semi-contractible interaction.

Now consider replacing some of the BPS operators in (C.6) with BMN operators,
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(2.37). Since the scalar impurities in BMN operators are distinguished from Z fields

by their flavor, F-terms are now allowed. However, unlike F-type interactions D-term

quartic vertex, gluon exchange and self energies are all flavor blind, therefore one

can replace the and 4' impurities with Z fields for the sake of studying possible

contributions from these interactions. After this replacement the phase sum over the

position of impurities in OJ becomes trivial and factors out of the operator, hence

BMN operators reduce to BPS type operators times an overall phase factor. Therefore

the theorem of [53] for BMN type multi-trace operators becomes,

theorem 2 The only radiative corrections to n-point functions of multi-trace BMN

operators come from F-type interactions.

Second step in the proof of theorem 1 is the classification of topologies of Feynman

diagrams with one F-term interaction. Any O(A') interaction that one inserts in (4.27)

introduces two "interaction loops" on the plane diagrams. A generic example is shown

in Fig. C-4. According to the contractibility of these interaction loops one can classify

planar F-term interactions as,

1. Contractible: Both interaction loops are contractible,

2. Semi-Contractible: Only one of the loops is contractible,

3. Non-Contractible: None of the loops are contractible.

Requirement of contractibility means that two incoming lines and two outgoing lines

in the F-term vertex of Fig. C-4 i) belong to the same operator and ii) adjacent

to each other when drawn on a plane. Now, we note that this classification of in-

teractions would hardly make any difference if we were not dealing with BMN type

operators which involve a non-trivial phase summation over the position of the im-

purity. Structure of the F-term interactions in (C.5) makes it clear that interactions

of adjacent lines yield a phase factor

2in. 11-e J1 J
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Therefore we learn that the phases in BMN operators provide a factor of 1/J 2 for

"contractible" interactions, 1/J for "semi-contractible" interactions, 1/J ° for "non-

contractible" interactions.

+

Figure C-5: Orientations of F-term and D-term quartic vertices.

As the last step in our proof of theorem 1, let us show that non-contractibility

of each interaction loop supplies another factor of 1/J. It should be clear from

above requirements for contractibility that there are two distinct situations that non-

contractibility of an interaction loop can arise:

1. the incoming (or outgoing) lines in Fig. C-5 belong to different operators within

a multi-trace operator or

2. belong to the same operator but are not adjacent to each other.

Let us now recall that among various contributions to the power of J in free corre-

lators, there is a combinatorial factor of Ji+j-3 coming from summing over positions

of the insertions of OJi operators inside OJi's. In case 1 above, clearly, one of these

position sums will be missing, hence a suppression by 1/J. On the other hand case

2 can only arise in a situation where there is at least one operator inserted in be-

tween the incoming or (outgoing) lines which take place in the interaction. Since the

position of this inserted operator is required to have a fixed position in between the

interacting legs one also arrives at a suppression by 1/J. These two situations are

illustrated in an example of G3 ,2 in Fig. C-6.

When combined with the powers of J coming from the phase factors that we de-

scribed above, we see that they compensate each other and one gets a universal factor
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41 A

- X 4 / 4 \ / 5

4 1 3 2 5

9.a 9.b

Figure C-6: In a both of the interactions loops are non-contractible due to case 1:
incoming and outgoing line pairs of the quartic vertex connect to different operators.
In b one interaction loop is non-contractible due to case 1 the other due to case 2.

1/J 2 for all of the different topologies in an F-term interaction, namely contractible,

semi-contractible and non-contractible. Finally note that all interactions come with

a factor of g2MN. Combined with 1/J 2 this yields A' and therefore we concluded the

proof of theorem 1: One-loop radiative corrections to (4.27) is of the form,

i+j-2
Cij 92 Al

J(i+j)/2-1

The reason that this theorem might fail in case of BMN operators with non-scalar

impurities is that D-term interactions might give non-vanishing contributions (see

[12]).
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Appendix D

Field theory basis change at finite

g2

Apart from the purely field theoretical task of determining the eigenvalues and eigen-

operators of A - J, one can ask for the identification of the string basis in field theory

for non-zero g92 [26][27]. For non-zero 92, the inner product in field theory becomes

non-diagonal in the original basis of BMN where there is an explicit identification

of n-string states with n-trace operators. On the other hand, to identify the "string

theory basis" in field theory one should require the field theory inner product to be

diagonal for all 92. However, this requirement alone does not uniquely specify the

necessary basis change from BMN basis to string theory basis for finite 92. One always

has the freedom of performing an arbitrary unitary transformation.

In the recent literature, two independent but compatible approaches for the iden-

tification of string basis were presented. In the string bit formalism (SBF), it is

possible to capture the kinematics and dynamics of gauge theory amplitudes by the

discretized theory of bit strings. 1 According to the conjecture of [26], in the string

bit language, the basis transformation which takes from BMN basis to string basis

for all 92 reads,

i) = (e 2)i jlj) (UE)ij Ojf) (D.1)

'Strictly speaking this has been shown only at 0(g2A') and only for scalar impurities[45].
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where n, denotes an n-string state. Here Z is the sum over all distinct transpositions

of two string bits,

2 (mn)
mn

Z has the effect of a single string splitting or joining , i.e. it can map an i string

state into an i ± 1-string state. Note that the transformation matrix e- 2L is real and

symmetric.

Another method [27] which leads an identification of the string basis is simply to

find the transformation U which diagonalizes the matrix of inner products between

BMN operators, order by order in g2. In the free theory, we define the following

matrix,

Gij= (ojOj)

Here n is a collective index for a generic n-trace BMN operator. One identifies the

basis transformation, U by requiring that G is diagonal in the new, "string basis":

UkGklUj = dij, Oi - UijOj.

As in the SBF basis change U is specified up to an arbitrary unitary transforma-

tion. One can fix this freedom by requiring that U is real and symmetric. Call this

transformation, UG. Then the solution of the above equation up to O(g92) reads,

+ g2 _1 G(2) 3
UG = 1 + g2(_ 1 2)(- G + (G(1))2) +.- (D.2)2 2 8

where G(i) denotes (gi) piece of the metric.

The requirement of reality and symmetry completely fixes the freedom in the

choice of the transformation. It was independently shown in [26] and [27] that this

simple choice leads to an agreement with string theory calculations. In particular the

inner product of a single and double trace operator in the interacting theory in this

basis, agrees with the cubic string vertex. Recently, [28] also gives evidence for an

agreement between the O(g2X') eigenvalue of A - J and the matrix element of light

cone Hamiltonian in single string sector. Despite the agreement at this order, there
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is no reason to believe that this simple choice should hold at higher orders in 92 or

for higher trace multi-trace operators.

Here, we will confine ourselves to checking the compatibility of this basis trans-

formation with free field theory correlators at g2, including the effects of triple-trace

operators. As a bonus we obtain new deconstruction identities decomposing some

multi-trace inner products in terms of smaller multi-trace inner products. Since the

requirement of reality and symmetry of the basis transformation matrix completely

fixes the definition of the new basis, the two prescriptions described above should be

equivalent. Equating various matrix elements of UG and Us we will obtain identities

involving free field theory correlators which are subject to should be check in field

theory.

The first non-trivial requirement is coming from the single-trace operators at

(l'lP)G = (1+1) -

LHS is, (we suppress indices labeling a multi trace operator),

(1 IUG I -- ±g1) 22( - G11 + G12G21).
2 2 8

G1l is the torus level, free single-single correlator with the space-time dependence

removed. Similarly G12 is 0(9 2 ) level single-double correlator which is presented in

eq. (4.14). RHS reads,

(X6111 + 2(-92)22llg) = G1 2G21,
2 2 8

where we used the fact that E changes the string number by ±1. Hence we obtain,

G !=Z1 G 12G12 (D.3)

Here i is a collective index labeling either of the two types of double-trace operators

which can appear in the intermediate process i.e. i = ny} for BMN double-trace
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and i = y for BPS double-trace.

This identity indeed holds in the gauge theory as first shown in [54]. With the

inverse reasoning we can view this simple calculation as the derivation of this non-

trivial sum formula. As a next application let us derive identities involving triple

trace operators. We require,

(I 311)G = (31l1).-

Much as above, O(g') term in LHS is,

-1G13 + G12G23
2 8

and the RHS is,
292 3E211) = 2 1223

8 8

We learn that

G13 = 1G12G23
2

Notice that "2" in the intermediate step can not be a BPS double-trace operator,

because the lowest order G23 between a BPS double-trace and a BMN triple trace is

at O(g3). 2 Therefore we arrive at the formula,

G13 12 23m;nyz = - Gm;py' Gpy ;nyz (D.4)
py'

The single-triple correlation function G13 is computed in Appendix F. Again this

identity is subject to check by a direct field theory computation. This is done in

Appendix E and (D.4) passes the test. A similar calculation with the requirement

2It is easy to see (either by using trace algebra or by counting the loops in Feynman diagrams)
that there exists only disconnected 0(g2) contributions to any double-triple correlator where the 2-3
correlator separates as 1-2, and 1-1. This obviously cannot happen for a correlation function of a
BPS double-trace operator and a BMN triple-trace operator.
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('212)G = (2'2)E, one reaches at another useful identity,

22my;m' ' -1 12y;n 12 23 23 Gy;myt 2 A(. Gmy;nGn;my +E Gmy;iGi;my' (D.5)
n i

Here i = ny"z"} or i = {y"z"} for BMN and BPS triple-trace operators. An

expression for the free O(g2) double-double correlator, G22 , is given in eq. (4.43) We

also checked this by direct computation in Appendix E. We emphasize that these are

highly non-trivial identities viewed as representation of a trigonometric function, say

G13 in (4.17) as an infinite series of products of simpler functions. In comparison

to (D.3) the non-triviality comes from the fact that summands are trigonometric

functions rather that rational functions as in the RHS of (D.3). These identities will

prove extremely useful for the computations of the next sections. Finally we note

immediate generalizations,

Gm,m+2 = Gm,m+lGm+l,m+2

2

Grm_ l (Gm m-Gm-lm + Gmm±+'Gm±m)
2 
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Appendix E

Sum formulas

Let us first reproduce the matrices A,,mm, and Bmm' that appear in the O(g ) and

(g2A') pieces of the single-trace two-point function. These were defined in [24]:

1
24'

0,

1 1 7
60 6u2 U4 

1 1 35 

(u-v)2 (3 + v2 + 2

4 r2Bm,n -

6 2(_)2
UV (u-V)

2
, I

0,

1 10
3 u2 

15
2u 2 '

6 2
uV (u-V) 2

m-n = 0;

m = O, nh 0 or, n = O, m 0;

m = n 0;

m = -n : 0;

all other cases
(E.1)

m = n = 0;

m = n 0; (E.2)

m = -n : 0;

all other cases

where u = 2rm, u = 2rn.

The rest of this appendix outlines the computation of non-trivial summations that

appear along the computations in sections 4-2, 4-3, 4-5 and the previous appendix.

We will first prove that (D.4) and (D.5) indeed hold in GT. These were obtained in

the previous appendix simply by equating the basis transformations UY and UG. A

second task is to derive (4.26) of section 4. Finally we will define and evaluate the
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last term in (4.51) of section 5.

We reproduce (D.4) here for completeness:

G13 -- G12 23m;nyz - " m;pyI py' ;nyz'
py'

LHS of (E.3) is computed in Appendix F and presented in eq. (4.16).

(E.3)

G23 that

appear on the RHS gets (g 2) contributions only from disconnected diagrams as

2 -- 3 decouples as, 1 -4 2 and 1 -+ 1. This quantity is also computed in Appendix

F, result is given in (4.19). One gets two contributions to RHS of (E.3) from first and

second pieces in (4.19). Second contribution gives,

jo1 dy'
p

( 12 921 - G2dY, -(1 _y) zGm,ny.1: GmpYJ, dpdnPdY ,n:_00 yj 2 Y)
(E.4)

First piece in G23 gives,

2 y fo
sin 2(m7ry') {+ d ) 4 =_co

IT =-0

sin2 (piry/y')
(p - my')2(p- nyl/y) 2

We will now describe the evaluation of the sum in this expression. Let us separate

the sum into two pieces as,

S = S1 + S 2
1

e (p a)2(p_ b)2-p=0 p- ----c

00

p=_-O (P

cos2 (px)
- a)2(p - b)2'

where we defined,

x ry/y', a _ my', b _ ny'/y.

S1 is easy to evaluate (can be done with a computer code) and the result is,

I (a-13 (2 tra) - 2rcot(+ (a - b)ir2S1 - ' (a - b)3 27r cot(wa) - 2 7r cot(b) ± sin 2(7ra)
(a - b)7r2)

+ sin2 (7rb)

It is not possible to evaluate S2 neither with a well-known computer program nor it can

be found in standard tables of infinite series (like Gradhsteyn-Rhyzik or Prudnikov).
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(E.7)

-
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To tackle with it we reduce it into a product of two sums as,

=d2 ( cos(px) 
S2 - dadb = (p-a) cos(r)d )

d2 1 f27 dt
dadb 27 Jo

0 coS(px)ei) P(p=_00 (p-a) )

00

=-00

cos(rx)eirt
(r-b) '

where in the second step we used the integral representation of dpr. Expanding the

exponentials in terms of cos and sin we now reduced the sum into sums of the following

form,

cos(p(x ± t))
p-a

= - + 2a cos(p(x + t)) =
a Ep 2 a2

p=l

1-- + 2afm(X + t, a).
a

We can read off the function f(z, a) from e.g. [55],

1
fm(Z, a) 2 -2a2

7r cos(a(z- (2m + 1)7))
2a sin(7ra)

(E.9)

where m is an integer defined as, 2rm < z < 27r(m + 1). With the given information

it is straightforward to evaluate these sums. Integrating over t and combining with

S1 in (E.7), one gets,

sin2 (ra)S = 2(a - b) [sin(27ra) - sin(2ax) - sin(2a(7r - x))]2(a - b)3

+ ( )2 [x sin2(7ra) + x sin 2(a(7 - x)) + (7r - x) sin2(ax)]+ (a - b)2

We insert this expression into (E.5), carry out the trivial integration over y'. Using

the definitions of x, a and b given above one gets,

2(m - k)3 {sin(2?rmz) + sin(2[mz) + sin(2irrmy)} + (m - k)2y(sin2 (rmz) + sin2 (rmz))

72
+ 2(m - k) (1 - y) sin2 (7rmy),

where k = n/y. Comparison of this expression with (4.16) shows that this expression

171

00

(E.8)



equals,

G13 92 /ZZ(1- Y)G12
m;nyz 2 J mny

Adding up to this the first contribution in (E.4) we proved (E.3).

Now, let us move on the proof of the second decomposition identity, (D.5) that

we reproduce here,

G22 1 t"12 G12 2323 G23 E 0mG,y;mty' = 2 G m,y;n n;m yt + Evy;i i;my, (E.10)
n i

As mentioned before, there are disconnected and connected contributions to both LHS

and RHS of this equation. Since connected contributions differ from the disconnected

ones by a factor of 1/J, one should match 0(1) and O(1/J) pieces on both sides

separately. Here we will present the equality of 0(1) parts of LHS and RHS and leave

the question of O(1/J) pieces for future. We did not need O(1/J) terms anywhere

in our computations. O(g22) disconnected contribution to G2 2 is just

( J1s'O3)2 (0J20J) o

plus

( OJ3>)o (OJ2 Q g)2·

All required terms here were already computed in the literature (see [22][24]) and the

total result is,

g2 y4Amm, d
~g2 (Ytimr + 24 (1-

Turning to the RHS of (E.10) now, we first note that 2 - 1 -+ 2 process can not

be disconnected hence does not contribute at this order. Evaluation of the second

term in RHS is straightforward by using (4.19) that is derived in the next appendix.

The triple-race that appears in the intermediate step can either be a BMN or a BPS

operator. Let us first consider the former case. We need to compute,

G23Mp G 23 =/3/2G12 dC23Ps- C2 (Y2Y Gm;psy(dy,s+t -] dyl-t) -~ddys(X - y)t "
my~pst pstm'y' - + 71, + ~/jp
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x (Yt3/2G12;psyi(dys+t + dy',,-t) + dmpdys (-Y')tt)

where one sums over pst. When last term in the first parenthesis goes with the last

term of the second we have the expression,

2 C j (1 y)4
g2 E dpmdpr, (J ds)( dt)dsydsy,/(1 -y)( - y')t(-y-t) = dyydmm (24

p=-oo 
(E.11)

where in the integral over t we divided by a factor of 2 to reconcile with the double-

counting (note that t -4 1 - t is not distinguishable at the level of Feynman diagrams

when triple trace is BPS, and one should divide out the symmetry factor). When

first term in the first parenthesis goes with second or third terms of the second, both

of the integrals over s and t are constraint by the delta-functions and one gets a 1/J

suppression. A similar remark apply the case when second goes with third. Therefore

we see that all cross terms are suppressed and only other non-vanishing contribution

comes by matching second with second and third with third. This is,

1 00 00 
-2(YY) 3/2d d EA dsG 12 G1 2 = Y4 dxG 12 G12

-2y)2 J $ ymp ,ps/y Y .Xm,px m ,px
p--oo p--=-oo

where we again divided out a similar symmetry factor. It is easy to see that when

the intermediate triple-trace operators are BPS type one gets the expression,

00 I 12

y4 E | dJ m,x m ,

instead of the above expression. Adding these two up and using (D.3), one gets

2y4 G m,. Combining it with the contribution from (E.11) and comparing with (4.43)

for the case of i = 2 we proved (D.5) at the leading order.

Next, we shall present two new "interacting level" decomposition identities which

are essentially the analogs of the identities given in Appendix F of [29]:

E GTGnpyGpy ,myz = (n + -')Gn,myz, (E.12)
p,y' y, Y
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p2
YE 2 Gn,py'Gpy',myz
py' 

= (n2 +( )2)Gnmyz + Bmyz

where B1 3 is given in (4.18). These identities can easily be proven by the methods

described above.

As an application of these decomposition identities let us prove (4.22). For no-

tational simplicity we will no show the indices fully in the following e.g. we denote

Fmyz as r3, etc. Eq. (4.23) gives,

r 3 = G33r 31 + G32r21 + G31l1=2" 1

= 1 m m3 + 1 3 1
- 2 - n)G13+ B 13 e2y y 2 2 r

where the second line follows after trivial algebra.

P(P
yy _ n)G12G23

Now, using (D.4), (E.12) and

(E.13) it is immediate to see that

r3 =0.

Let us now describe the evaluation of (4.26) in section 2. We separate the LHS of

(4.26) into two parts as,

P(-nA(p) + B(p)) (
P P

sin2 (7rpy/y')

(n - p/y') 2 (n2 - (p/y') 2)
sin2(ry/y') 
(n -p/y)3 

Evaluation of Ep B(p) is easier. It can be written as,

1 1 d 2

p-oo (p- a)3 2 da2
2a cos(px)
l p 2 a2

Each of the sums can be found in standard tables such as [55] and the result is,

E B(p) = r3 y 2y' cot(7rny'). (E.15)
p

To compute Ep A(p) we write it as,

A(p) 2 (p - a)2(p2 - a2)
1

(p - a)2(p2 - a2) '
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Yi3
E7B(p) = P 2~

1

a)

_
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Second can be done by a standard computer code. First can be written as,

1 d 2cos(px)
P (p- a)2 (p2 - a2)

2 d2 cos(px)
db2 1 (p2 - b)

where b = /a. This can be looked up in [55]. Combining the result with (E.15) one

obtains (4.26).
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Appendix F

Computation of G13 G23 F13 and

F2 3

We will first describe the evaluation of free planar single-triple correlator at the planar

level, (OJ : 01OJQ20J 3 :). We will refer to the operators that appear in this expression

as "big operator", "operator 1", "operator 2" and "operator 3", respectively. Let us

also denote the ratios of the "sizes" of these operators by

J1 J2 - J3Y -j- z=- Zj = (F.1)

Since the space-time dependence of two-point functions of scalar operators is trivial we

will only be interested in the coefficient that multiplies the space-time factors, i. e. G13

and F13 . Nevertheless, let us show the space-time factors here, for completeness. For

the free case it is just product of J + 2 scalar propagators,

(47r2x2)J+2'

In case of one-loop interactions, one needs to perform the following interaction over

the position of the vertex,

1 f d4y ln(A 2 x2 )

167r4 y4 (y - )4 87r2X4
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Therefore the space-time dependence at O(A') is,

8r2 (4r2 ln(A2 x2).
872(47r2x2)J+ 2

Let us now describe the evaluation of the coefficients that multiply these space-time

factors.

-n
On

Class A Class B

Figure F-l: Two different classes of free diagrams. Dashed lines denote propagators
of impurity fields.

General strategy is first to fix the position of one operator, say 2 inside the big

operator. Then we are left with phase sums over positions of both of the impurities

and the position of operator 3 inside the big operator. Of course one still has to take

into account the cyclicity of 2 and 3 which yield a multiplicative factor of J2 J3. After

fixing the position of 2, we can divide the planar diagrams into two classes.

In class A (see Fig. F-1.) operator 2 is "outside" the bunch of lines connecting

operator 1 to operator the big operator, hence the phase sum over 0 and 4' is trivial:

j12f1 dao dbe2ir(m-ny)ae-2ir(m-ny)b sin2 (27rny)
Jo Jo -r 2 (ny - m)2'

One also has to sum over the position of operator 3 "under" 2 and position of operator

2 "under" 3. This gives a combinatorial factor of J2 + J3. As apparent from Fig.

A-. class A is equivalent to single-double correlator up to the aforementioned overall
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combinatorial factor. Therefore the left diagram in Fig. A-1. equals,

GA = 2 (1_ z) sin (21iny) (F.2)J Y 7F - )(F.2)

where we took into account the normalization of operators and defined k m/y.

In class B (see Fig. A-1), operator 3 is inserted inside the bunch of lines con-

necting 1 to the big operator, hence the phase summations become non-trivial. One

fixes the position of 2 inside the bunch, then sums over the positions of and 4A.
As one impurity jumps over operator 3 one gets an enhancement in the phase of the

big operator by a factor of -27rini. One evaluates the sums taking this point into

account, than one sums over the position of operator 2. This procedure gives,

2 - /
G13 = 2 z 1 ((sin2(7nz) + sin2 (7rni))

w2 J y (n - k) 2 \ S n

_2 - k) (sin(27rny) + sin(27rnz) + sin(27rni))). (F.3)
27 (n - k)

Adding up (F.2) and (F.3) gives eq. (4.16)1

There are two consistency checks that one can perform. First of all -as apparent

from the diagrams- the final expression should be symmetric in J2 ++ J3 .(4.16) nicely

passes this test. A more non-trivial test is to check whether G13 reduces to G 12 as

one takes J3 --+ 0. Straightforward algebra shows that,

G13 G /12
n,myz j n,my

and confirms our expectation.

Now let us discuss how to add interactions to Figs. A-1, by preserving planarity.

As already mentioned for the evaluation of general correlators in Appendix C, there

are three distinct classes of planar interactions: contractible, semi-contractible and

non-contractible. Above we noted that evaluation of class A diagrams are completely

1We thank Neil Constable who computed this quantity by a completely different method (direct
evaluation of the traces over the color structure and extracting out the O(g) piece) and who obtained
the same result.
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equivalent to single-double correlator. This continues to be the case when one intro-

duces planar interactions. There are only contractible and semi-contractible contribu-

tions in this case and since O(A') corrections to this correlator was already computed

in [29] (that we reproduced in eq. (4.15)), we will only show the final result,

gA'(1 y) s in 2 (2
7
r ny )

Class A interactions X J(12 - 2 (k2i-nnk(+ n2) (F.4)
J'r y w7(n-k) 2 -

Let us explain the evaluation of interactions in class B in some detail. Con-

tractible interactions are coming from the situation where an impurity interacts with

its nearest-neighbor in such a way that both interaction loops are contractible. As

described in Appendix C this gives a phase factor of

- 2irn 2/rrm 472(I -e nk (F.5)J2

for each possible nearest-neighbour interaction. One should sum over the insertions

of this interaction between all adjacent line pairs between operator 1 and the big

operator in Fig. A-l.b, except the particular position when this line pair coincides

with the position of operator 3. In this particular case one gets a semi-contractible

diagram (see Fig. A-2.a). This sum procedure obviously gives the phase factor in

(F.5) times (F.3).

Semi-nearest interactions in class B arise in two possible ways. First possibility

is already mentioned above and shown in Fig. A-2.a. Another possibility arise when

one of the interaction loops is non-contractible for another reason: the line pair that

is incoming to the vertex connect to different operators. This is illustrated in Fig.

A-2.b. Evaluation of the phase factors in both of these cases is simple:

In case 1, when one takes all possible orderings of the interacting pairs of lines,

one gets a factor of
2irm

(1 - e2in)(1-e j )

in place of (F.5). Next, one has to sum over all possible positions of operator 3 in

Fig. A-2.a. Finally one evaluates the phase sum over . There is an analogous
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-f

Case I Case 2

Figure F-2: Two different types of semi-contractible diagrams. One should also con-
sider the cases when two incoming and outgoing lines are interchanged. Also analo-
gous contributions come from exchanging operator 2 with operator 3.

contribution where impurity takes place in the interaction instead of 0. But that

is obviously obtained from the former just by taking the complex conjugate.

In case 2. Fig. A-2, one has to sum over the possibilities where 0 interacts with

the leftmost and the rightmost Z line in operator 3. Considering also the two different

orderings of the 0 and Z that are outgoing from the vertex, one obtains an overall

phase factor of,

(1-e ) (1 -e 2 n )-

Next, just as in the case 1 above, one sums over all possible insertions of operator

3 and positions of , impurity. Similarly one considers the conjugate case where '

takes place in the interaction instead of A. Finally one gets similar expressions to the

ones obtained in case 1 and case 2 by exchanging the roles played by operator 3 and

operator 2.

Combining all of the results above, namely both contractible and semi-contractible

contributions in class A given in (F.4), contractible contributions in class B and all

semi-nearest contributions in class B, one obtains a surprisingly simple expression.

All of the factors conspire to give,

r13 + rnt. + r13sem = (n2 nk + k2)G13. (F.6)
A B,cont- B,semi-cont. -
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A few observations are in order. Notice that one obtains the same form for the inter-

acting single-double correlator as shown in [29], see eq. (4.15). The proportionality

to G12 (or G13 in our case) is obvious from the beginning. Because eventually, the

effect of interactions is to dress the free expression with an overall phase factor. The

surprise is that this phase factor,

n2 - nk + k2,

is the same in the cases of single-double and single-triple correlators! One appreciates

the non-triviality of this after seeing the delicate conspiring of many different terms in

our case. We also see the same phase dependence, in case of double-triple correlator,

eq. (4.21). It is tempting to believe that this remains to be true in case of general

i-trace j-trace correlator. Namely we believe that the result of contractible and

semi-contractible interactions at O(A') for more general extremal correlators can be

summarized as,

cont.+semi-cont. = At(n2 - nk + k2)Gi j .

Actually it suffices to see this behaviour in case of extremal correlators of the type

F l' i since Fri' can be related to this by the disconnectedness argument.

However, this is not the whole story. There is a very important new class of planar

diagrams which contributes to G13: non-contractible diagrams. This was absent in

the case of F 12 because there was not enough number of operators to create this new

interaction topology. This will become clear in the following.

We show all possible non-contractible diagrams in Fig. A-3. Note that both of the

interaction loops are non-contractible in this case. The loop formed by incoming lines

is non-contractible because they belong to different operators. The loop formed by

the outgoing lines is non-contractible because there is an operator inserted between

them. This exemplifies our schematic discussion about the non-contractibility of

planar diagrams in Appendix C where we referred to these possibilities as case 1

and 2. At first sight one expects that these diagrams be suppressed by a factor

of 1/J 2 when. compared with the contractible diagrams or by a factor of 1/J when
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V

-J

Case I1 Case 2

-J
Or

Case 3 Case 4

Figure F-3: Contributions form non-contractible planar interactions. There are four
more diagrams which are obtained by exchanging operator 2 with operator 3.

compared with the semi-contractible diagrams, because the sums over the position

of the operator 3 and the position of b impurity are missing. However as noted in

the general discussion of Appendix C, there is a compensating enhancement coming

from the overall phase factors associated with these diagrams, namely the O(1/J 2 )

phase suppression given by (F.5) is absent. Therefore these diagrams are on the equal

footing with the rest i.e. (F.6).

The evaluation of non-contractible diagrams is the simplest. One adds up all

possible contributions that are displayed in Fig. A-3, and include the analogous cases

where one interchanges operator 2 with operator 3. Finally one performs the phase

summation over 4A. Adding this result with the conjugate one which is obtained by

interchanging the roles of 0 and 4', one gets (4.18).
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Adding up (4.18) with (F.6), one obtains the total 0(g2A') single-triple correlator,

(4.17). Again, there are two consistency checks that one can perform. Firstly it is

easy to see that, (4.17) is symmetric in J2 + J3 . Secondly when one takes the limit

J3 - 0, B 13 vanishes (as it should) and the rest of the expression boils down to the

single-double result,

r 13
12r

Let us now explain the computations that lead to the expressions in (4.19) and

(4.21). When compared with the evaluation of single-triple correlators, evaluation

of lowest order G23 and r23 is almost trivial. This is because only the disconnected

diagrams contribute to these correlators at O(92). We now describe the evaluation of

G23 . It will suffice to describe possible ways that 2 -4 3 correlator can be separated

into 1 and 1 and 1 2. Consider the correlator : Jl J 2 :: OJ30J40J5 :) define the

ratios of lengths of the operators,

J1 J3 ' J4 z, J5y= y=- J, z =- z= .(F.7)= ' = ' =' J

Since the impurity fields in operator 1 and operator 3 should be Wick contracted

with each other, the only disconnected contributions arise when,

1. 1 connects to 3, 2 connects to 4 and 5,

2. 1 connects to 3 and 4, 2 connects to 5,

3. 1 connects to 3 and 5, 2 connects to 4.

A simple loop counting shows that all other contractions will result in higher orders

in 92 Cases 2 and 3 are easily expressible in terms of the results already reported in

the literature, (see [24]). Therefore we only show case 1 which turns out to be the

simplest,

oJ1 J2 J:: 3 0 J4 0 J5 )1 3)( : OJ4J 5 :)

where one needs the lowest order contributions to the correlators on RHS. First one is

just dm. One evaluates the BPS correlator above by noting that the cyclicity factor
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of J2J4 J5 and the normalizations; hence one gets,

92 ( - y)zli.

Combining this contribution with cases 2 and 3, one easily obtains, (4.19).

Computation of r23 at the lowest order, O(g2 A'), goes by inserting planar inter-

actions into the cases 1,2, and 3 that we listed above in all possible ways. In case

1, interactions can only be inserted in the correlator 1-3 since 2-4+5 -being a BPS

corrrelator- does not receive radiative corrections. For the same reason interactions

can be inserted only in the first correlators in cases 2 and 3. Necessary computations

were already done in the literature (see e.g. [24], [29]) and one immediately gets,

(4.21).
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