
A System for Real-Time Gesture Recognition and

Classification of Coordinated Motion

by

Steven Daniel Lovell

Submitted to the Department of Electrical Engineering and Computer
Science in Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Electrical Science and Engineering and Master
of Engineering in Electrical Engineering and Computer Science at the

Massachusetts Institute of Technology

MASSACHUSFebruary 2005 OFTEC

Copyright 2005 Steven D. Lovell. All rights reserved JUL 1

LIBR
The author hereby grants to M.I.T. permission to reproduce and

distribute publicly paper and electronic copies of this thesis and to
vrant riithrQ t-hf vXA+ +- do so.

Autlt
vepartment ot P;I(AtrieI Vnci- £-i " puter Science

uary 28, 2005

C ertified by
a A. Paradiso

Sony Career Deveiopment 'rot. ot Media Arts and Sciences
dia Lab

-)ervisor

Accepted by

Chairman,
J. Smith

Department Committee on Graduate Students

BARKER

ETTS INSTITUTE
HNOLOGY

8 2005

ARIES

A System for Real-Time Gesture Recognition and

Classification of Coordinated Motion

by

Steven Daniel Lovell

Submitted to the
Department of Electrical Engineering and Computer Science

January 28, 2005

Bachelor of
In Partial Fulfillment of the Requirements for the Degree of
Science in Electrical Science and Engineering and Master of

in Electrical Engineering and Computer Science
Engineering

Abstract

This thesis describes the design and implementation of a wireless 6 degree-of-freedom
inertial sensor system to be used for multiple-user, real-time gesture recognition and
coordinated activity detection. Analysis is presented that shows that the data streams
captured can be readily processed to detect gestures and coordinated activity. Fi-
nally, some pertinent research that can be pursued with these nodes in the areas of
biomotion analysis and interactive entertainment are introduced.

Thesis Supervisor: Joseph A. Paradiso
Title: Sony Career Development Prof. of Media Arts and Sciences
Associate Professor, MIT Media Lab

3

4

Acknowledgments

Thanks to Joe Paradiso and the Responsive Environments Group for their guidance

and advice during my time here at MIT.

Thanks to all my friends who kept me going during the long hard slog.

Thanks to MIT Project ORCA, the world's best AUV team ever.

5

6

Contents

List of Figures

List of Tables

1 Introduction

1.1 Potential Applications .

1.2 Prior System s .

1.3 G oals .

2 Hardware

2.1 Architecture Overview

2.2 Sensor Selection

2.2.1 Sensor Performance

2.2.2 Communications .

2.3 Microcontroller

2.4 Signal Processing

2.5 Power Budget

2.6 Power Supply

2.7 Mounting Fixture

3 Firmware

3.1 Communications Protocol

3.2 Node Firmware

3.2.1 Initialization. . . .

. .

. .

Characteristics

. .

. .

. .

. .

. .

. .

. .

. .

. .

7

9

11

13

13

16

18

19

19

19

20

25

27

28

30

30

33

35

35

36

36

3.2.2 M ain Loop. .

3.3 Basestation Firmware. .

3.3.1 Initialization. .

3.3.2 M ain Loop. .

4 Analysis

4.1 System Performance .

4.2 Host Software .

5 Conclusions

5.1 Future Work

5.1.1 Platform Improvements

5.1.2 Detection Improvements

A Schematics and Pictures of Boards

B MSP430 Embedded Code

C MATLAB Code

Bibliography

8

39

40

41

41

43

43

44

57

57

57

58

61

67

87

101

. .

. .

. .

List of Figures

2-1 Overall System Block Diagram. 20

2-2 The device mounted on a users arm 34

2-3 The device mounted on a users leg 34

3-1 Depiction of TDMA scheme: T to T determine the nodes' time slot.

T, is the sampling period. 37

4-1 Stages of executed Tae Kwan Do move 46

4-2 Data captured from right hand during a Tae Kwan Do move. Circles

in data represent dropped packets. 47

4-3 Data captured from left hand during a Tae Kwan Do move. Circles in

data represent dropped packets. 48

4-4 Data captured from left foot during a Tae Kwan Do move. Circles in

data represent dropped packets. 49

4-5 Data captured from right foot during a Tae Kwan Do move. Circles in

data represent dropped packets. 50

4-6 Pictures of the progression of the wave 51

4-7 Raw data from the wave for the second accelerometer axis of each node.

Circles in data represent dropped packets. 52

4-8 Variance of raw data from the wave. Solid line is the original signal.

Dotted line is the variance of the signal 53

9

4-9 Region of interest selected from node I's second accelerometer axis

data. Node 1 was worn by the initiator of the wave, hence it is consid-

ered the gesture template. 54

4-10 The Wave: Covariance of first area of interest from node 1 with data

from other nodes. Data has been normalized by its maximum. There

are two peaks because the wave was performed twice. Peaks are rough

measures of similarity between the gesture template and the node data. 55

A-1 Main IMU Schematic . 62

A-2 Daughter Board Schematic . 63

A-3 Communications Board Schematic . 64

A-4 Front side of main board with daughter boards mounted 65

A-5 Back side of main board with daughter boards mounted 65

A-6 Communications board populated . 65

A-7 Main board on mounting with strap 66

A-8 Analog input terminals . 66

10

List of Tables

2.1 Overview of available inertial components. 21

2.2 Power Budget . 31

4.1 Table of time lag of maximum covariance and un-normalized covariance

value for each node. Notice that node 1, the template node, has a time

lag of 0. 45

11

12

Chapter 1

Introduction

Embedding inertial sensors in wearable systems has become a dominant theme in

at-home medical monitoring and state-recognition systems for ubiquitous computing.

These systems usually find the context or activity of the user, such as walking, walking

up steps, or lying down through data logging and post processing. Recently, there has

been significant work in using data from multiple points on a users body to determine

user activity. However, little work has been done on detecting activity in real time

from an ensemble of wireless sensors, either on a single person or on multiple people.

This thesis covers the design of the hardware for a many-node wireless inertial

sensor-based real-time activity detection system and presents examples of its utility

for coordinated activity detection. In this chapter, I will discuss the possible ap-

plications of this system, previous work in activity detection, and the goals of my

work. In the following chapters are a description of the hardware, a description of

the communications protocol and related firmware, data and results from the system

in action, and finally some future directions of investigation.

1.1 Potential Applications

A simple example of the potential of coordinated activity detection was developed by

Lester, Hanaford and Borriello in 2003[15]. Lester used a two node system that sensed

acceleration in three axes. His goal was to determine if the two nodes were carried by

13

the same person. This is perhaps the simplest form of coordinated activity detection:

two signals are assessed for similarity. In his case, the magnitude of the acceleration

vector was extracted from the node data and a coherence function was used to asses

their similarity over frequencies from 0-10Hz. They restricted the sensed objects to be

within the same belt-pack to simplify the analysis. Lester asserts that as the number

of devices that people carry grow so will the effort necessary to coordinate them, and

that therefore this type of detection is a necessary precursor to having the devices

coordinate themselves by determining what other devices the person is carrying.

In 2003, Hinckley used coordinated activity to allow users to interact in new ways

with tablet PCs[10]. This represents an interesting attempt at coordinated gestures:

gestures that require two nodes to take complimentary actions for the gesture to be

complete. Users could bump two tablet PCs together to tile their displays. The coor-

dinated gesture is sensed through the accelerations (equal in magnitude and opposite

in direction) of the two tablets. Hinckley argues that though we are developing new

tools for computation, we are not developing new ways of communicating informa-

tion between them. His synchronous bumping gesture is a first step at developing

new ways for devices and people to interact and transfer information using physical

gestures.

These two previous examples are solid efforts at coordinated activity detection.

However, they do not allow for very expressive inputs. Lester's application does

not explore the use of the 3-axis accelerometer as a control interface, and Hinckley's

interface is limited to tilting and bumping the tablet in the plane in which it lies.

These devices lack the expressive capability of devices with more degrees of freedom.

Merrill developed a device with many more degrees of freedom and therefore much

more expressive capability[17]. With this device he has shown real-time, single exam-

ple gesture learning to be feasible for a single node system and created an adaptive

musical interface with it. This thesis will explore such an interface with many nodes.

Some target applications of this system include interactive dance, performance

analysis in teams sports, interactive physical therapy, and full-body biomotion analy-

sis with networked wireless nodes. In prior work, a French group studying automated

14

annotation of contemporary ballet moves used a vision system to determine the dance

move performed by a dancer[6]. A multi-node wearable wireless sensing system has

potential to make similar analysis easier to conduct by making the data analysis sim-

pler: occlusions of the objects being tracked are not a factor and less infrastructure

needs to be mounted on the wearer than for precision vision-based gesture systems[21].

A non-video data source would allow the data to be captured anywhere, rather than

in a controlled environment set up for video capture. Also, a multi-node sensing

system would more readily allow multi-dancer interactive performances. Paradiso's

Dance Shoe was an early example of a rich multi-sensor wireless wearable node for

interactive dance[19]. However, it only supported two nodes, one for each foot of a

single dancer. This system will allow performances like those done with Paradiso's

Dance Shoe to be multi-user, and could be used to create a laboratory for collabora-

tive performances with nodes mounted at many places on the body and to begin to

develop principles for collaborative interfaces.

Sensing coordinated activity in sports has begun to be explored by a group study-

ing basketball teams[11]. Using a vision system for data capture, player movements

were tracked to detect maneuvers. The data were analyzed for the probability that

a maneuver occurred. They found that the probability that a maneuver occurred, as

determined by the data, was a strong indicator of the success of the maneuver, if it

did in fact occur. Thus, the probability that the maneuver occurred can be viewed

as a measure of how well the maneuver was performed. This shows that team per-

formance could be evaluated with such a system and that it could be used to assist

teams in training. This system was able to track absolute position and velocity with

reasonable accuracy (.6m and .2m/s respectively). However, whether more precise

tracking could improve maneuver detection remains to be seen. Indeed, for sports

such as rowing, where the environment is not suited to a fixed camera setup, absolute

position is not as important, and the athlete motion is much more nuanced, inertial

sensing would be far better.

These possible applications show the power that a wireless inertial sensing plat-

form might have: such a system could detect an individual's body gestures in a

15

variety of settings, simplifying current data collection or allowing data collection in

new settings that current systems can't accommodate. This system could also detect

rich coordinated activity such as the motions of interactive dance troupe with many

dancers or team sports performance.

1.2 Prior Systems

In the past, most research in activity detectioni systems has been on gesture recog-

nition systems that used video input or magnetic trackers. Such systems detect hand

gestures for sign language input[16], a pointing arm for commands[13], or the entire

body for motion capture[6]. This task is sometimes facilitated by attaching markers

to the body of the subject as reference points to allow the gesture to be tracked more

precisely. Recently, however, wearable sensors are beginning to be used as the data

source for these types of systems[8, 1, 12, 22, 23, 20, 5]. Technological innovations

have enabled dense, multi-sensor systems to become truly wearable2

An oft cited example of an inertial-sensor-based system that replaces the need for

a camera as the data source is the Acceleration Sensing Glove (ASG)[20]. The ASG

is a device that uses many accelerometers to detect activity of a single user's hand.

It uses an accelerometer on each finger tip on a glove to detect the orientation of the

fingers. This gives information about the hand gesture being performed. This device

was used as an input device, like a keyboard, with each hand gesture corresponding

to a character.

Though this device does more than adequately replace the need for a camera

as the data source, the manner in which it uses the sensors, to sense static pose,

does not leverage the ability of inertial sensor based systems for dynamic gestures.

Furthermore, the data the ASG captures could as readily be acquired with bend

sensors on the fingers and a single accelerometer to sense palm orientation. The ASG

1For the purpose of this discussion, "activity detection" will mean a pattern recognition system

that operates on data from human physical motion
2Wearable means the users' activity is not significantly changed by wearing the sensor system.

This usually implies small and lightweight. It should also imply low power so that the energy source

is also lightweight

16

is not sufficient as a starting point for the design proposed in this thesis for these

reasons.

Bao used a multi-node activity detection system, where all the nodes were worn by

the same individual to detect the individual's activity for context-aware systems[2].

His tests using this system were able to detect common activities, such as walking,

bicycling, and typing, with high probability in real-world settings. The nodes collected

and stored their data on on-board storage media for off-loading and post-processing.

Bao's study only used 2 axes of acceleration data per node. Though the system

is extensible through a daughter board connector, its large size (4"x2") makes it

unattractive for a wearable activity detection platform.

These previously-described systems all used accelerometers on one or more axes

to detect user activity. Work has also been done using other sensing modalities .

Benbasat recently developed an extensible and compact sensing platform called 'The

Stack[4],' named so because of its stackable architecture, where boards with different

functionality could be stacked on top of each other to add sensing capabilities. This

platform was specifically designed for wearable dense sensing. It has cards designed

to give it many sensing modalities, including a 6 degree of freedom (DOF)3 inertial

measurement unit (IMU) card and a tactile sensing card that provides bend sensing

and pressure sensing capabilities. Morris used this system, modified to be mounted on

a shoe, for her work in detecting gait pathologies in Parkinson's Disease patients[18].

This same system was used by Merrill in his adaptive musical interface [17]. The Stack

is a possible candidate for the hardware necessary for the sensing capabilities desired.

Its data link, however, is too slow to have many nodes streaming data at once and

it is somewhat large and heavy to be worn on locations other than the feet. It is

however, a good starting point to evaluate what is necessary in a many-node wireless

system.

33 axes of linear acceleration sensing and 3 axes of rotational rate sensing

17

1.3 Goals

The purpose of this system is to be a wearable, wireless, multi-node data capture

and gesture recognition system. Accordingly, the design goals are low power, high

bandwidth communications, small size, and lightweight realization, with the require-

ment that the data captured be sufficient to distinguish gestures. High bandwidth

communications is required to ensure that many nodes can transfer their data simul-

taneously, facilitating a real time system response. Small and lightweight are required

to make the device wearable so that it does not impede the normal activity of the

wearer. Low power is required to give the device a sufficient battery life with a small

and therefore lightweight battery.

Because the system is to be not noticed when worn, some of the physical con-

straints can be quantified by making them comparable to an item worn by many

people every day: a watch. Thus small form factor means less than lIn 3 , about the

size of, or slightly less than many watch faces. Lightweight means less than 150g, the

weight of an average digital sports watch.

Sufficiency of the data for gesture recognition is in the context of Benbasat's Stack,

and its use by Merrill and Morris, so the design goal will be a 6-DOF IMU and several

tactile inputs. The communications link should be able to support the communica-

tions requirement of the nodes worn by several people fully outfitted. Thus, at least

25 nodes should be able to stream data simultaneously to a basestation so that data

can be collected from 5 people wearing 5 nodes. From these requirements, we start

with some initial goals of the communications system: communications link capable

of transmitting sensor data (packets of 20 bytes) from 25 nodes at 100 Hz (400kbps

total). The battery life should be sufficient such that the frequency of battery changes

does not detract from the devices wearability, allowing 4 or 5 hours of continuous use.

18

Chapter 2

Hardware

2.1 Architecture Overview

In order to meet the aforementioned goals, a compact wireless sensing unit was de-

signed, taking Benbasat's Stack as a starting point. This sensing unit consists of:

sensors, signal conditioning, processor, wireless communications link, power supply,

and mounting fixture.

2.2 Sensor Selection

Merrill[17] and Morris[18] have both shown 6-DOF IMUs with additional tactile in-

puts to be sufficient for different levels of gesture recognition when mounted at the

hands and feet. Both Merrill and Morris used the sensor stack designed by Benbasat

and Morris[4]. Sensors similar to those on Benbasat and Morris' sensor stack were

used for this project: a full 6-DOF set of accelerometers and rate gyros with ac-

commodation for pressure sensors. The number of tactile sensors supported on-card

has been reduced to make the board smaller, although provisions are made for easy

expansion.

There has been some progress in MEMS based inertial sensors since Benbasat's

initial work on his 6-DOF IMU and his subsequent sensor stack based IMU, so a

reevaluation of the available sensors was carried out. The table 2.1 shows some of the

19

External
Stimuli\// Sensor

External
Stimuli/\/\/ Sensor

External
Stimuli.Sno

Radio Module

Configuration and
Data passing

Signal .Microcontroller
Conditioning

Gain + Offset Control

Source select control

Figure 2-1: Overall System Block Diagram

key performance characteristics of the low cost MEMS accelerometers and gyros that

were considered for this design.

2.2.1 Sensor Performance Characteristics

The critical factors of sensor selection for this application are power consumption,

bandwidth, sensitivity, number of bits of information, and size. Power consumption

is determined by the supply voltage, current draw and turn on time. If the device

turn on time is small enough, then power cycling can be used to reduce the power

consumption by turning the device off when not in use, as long as the device can be

turned on in time to acquire the next sample. For example, if a device has a 10ms

turn on time and the desired sampling frequency is 20Hz then the device need only

be on 20(10ms + 6ms) every second, where 6 is the time required to take a reading

from the sensor.

The bandwidth of the device must be greater than desired bandwidth of the

20

Cost

Part and Type Supply Current Axes Turn on Sensitiv- Range Noise Band- Bt Size per
Voltage per axis time ity floor widtha 50 Hzb (mm 3) axis

I_ (US $)

Ana Devices 312mV t2 gig 6kHz 8.5 5x5x2 $7
3Analog Devices 3-5.25 V 0.3 mA 2 27 ms ±t g 2 kHz 8. 5x5x2 $74D ADXL202c rH

0 OO0mV 11Oi0 2.kz 115tx 1
o Anlo Deie 35.25 V .35 mA 2 20Omsg ±1.7g25kz 1 xx 1
0) ADXL203 6

MEMSIC 3-5.25 V 2 312mV 2 20/t g 17 Hz 10 5x5x2 $5S MXR2312E _ __1. 6 m Ak'u5 V __100 msU5V g 62

Silicon Devices 5V 6 mA 1 UNKd 800mV t5g 32/-tg 400 Hz 11 9x9x3 $1201210 g V Hz

ST Microelec- 2.4- 50,ig

tronics 3.6V .3 mA 3 18.5 ms 60O mV 03 +2,V 6 4.5 kHz Bits 7x7xI.8 $6
LIS3LO2AQ _

ST Microelec- 2.7-
tronics 3.6 V .35 mA 3 50 ms N/A t2,+ 6 N/Ae 4.5 kHz 8f 7x7x1.8 UNK9

LIS3LO2DQ

MNurata 5.25- 4.5 mA 1 UNKh .67mV 0.50/ sect 0H 1. 8
EN-03M 5.25 V 4300'/ sec (50Hz) 50Hz 10.2 12.2x7x2.6 $80

0Analog Devices 4.75mA 12.5mV .1 /seC 40 Hz 7.5 7x7x3.2 $40
ADXRS150 5.25V A/seC 150 0 /sec z

0
;4 Analog Devices 4.75 - 5 mV .050 scC 40 Hz 7.5 7x7x3.2 $40

10 ADXRS300 15.25 V ±iA 1 3 /e 300'/ sec, vll

'3dB point
blg 2.5 x Noise floor x v 50

092 Range
Digital and analog outputs

d±lO g version also available
dValue not given in datasheet
eSensor has digital output
fassumes device has sufficiently low noise floor so all 8 output
gDevice going through redesign as of 12/04, price not given
hValue not given in datasheet

'Not given on datasheet; value as measured by Benbasat[3]

bits are valid

Table 2.1: Overview of available inertial components.

phenomenon to be sensed. Sensitivity and number of bits of information together

determine how much information can be obtained from a device. The number of

bits is related to the logarithm of the the dynamic range, #Bits = log2 (DR) =

1092(R"9eoor). Though the dynamic range determines the theoretical limit of the

information content achievable for a device, the sensitivity will effect how much of

that information you can actually extract. For example, if all the bits of information

in the sensor range span only one bit of the A/D because of low sensitivity, you

would not be able to extract any information from the sensor. The limitation of the

sensitivity can be overcome by using analog signal conditioning, though the dynamic

range, and therefore number of bits of information, achievable from the device. Also,

the sensor must be small enough so that the overall design can fit within your size

constraints.

Benbasat has previously used the Analog Devices ADXL202 for accelerometer

sensors and the Murata ENC-03J for rate gyro sensors in his initial 6-DOF IMU[3].

For his microcontroller stack IMU he used a combination of two ENC-03Js and one

ADXRS150 so that all three gyros could be mounted on a single plane for fabri-

cation simplicity. The Murata performs comparably, perhaps even better than the

ADXRS150 (Its datasheet does not contain the information necessary to calculate

this information, however, Benbasat has measured the devices by hand and deter-

mined it to perform comparably). However, its major limitation is its size. Even

the ENC-03M, another rate gyro from Murata that performs comparably but comes

in a smaller package, would be too large for this design due to its length. Even the

ADXRS150 and ADXRS300 are a bit large; though they are the smallest rate gyro

devices that could be found. The largest negative aspect of the ADXRS150/300 is

its power consumption. They draw 6mA-8mA at 5V each. And because of their long

turn on time, 35ms, they cannot be power cycled to reduce their current draw. The

desired sampling rate of 100Hz requires a sample every 10ms. The ADXRS150/300's

turn on time of 35ms makes turning it off between samples impossible.

It could be said that choosing the ADXRS over the Murata gyro does not avoid

the size issue because the power draw of the ADXRS will cause the device to require a

22

larger energy source. However, the difference between the 40mW which is required by

three Murata gyros and the 90mW which is required by three Analog Devices gyros

will not make the energy source decision significantly easier, as will be seen in the

energy budget section. This fact, along with the fact that the Murata gyros require

external signal conditioning circuitry, which will itself draw power and require more

board space, makes the Analog Devices gyros the preferred choice for this design.

The main difference between the two Analog Devices gyros is the sensitivity and

range. The ADXRS300 has a larger range but a proportionally lower sensitivity 2,

giving the ADXRS150 and ADXRS300 the same dynamic range. The ADXRS300

was chosen for its greater range. Though the devices' range can be increased by

adding external passive components to the layout, the range can be increased to a

maximum of 4x the original range and as the range increases, so does the initial offset

and offset drift over temperature. Because these effects are not well documented, it

is preferable to use the ADXRS300 if sensing of rotations greater than or equal to

t300'/ sec is desired.

For the accelerometers there is a significantly increased range of choices as they

represent an established technology with wider incorporation into consumer devices

such as cameras and PDAs. Analog Devices, MEMSIC and ST Microelectronics all

have compelling, low-cost solutions. Silicon Devices also makes a precision accelerom-

eter, though the per axis cost is an order of magnitude higher than the other solutions

listed. The MEMSIC device is very similar to the ADXL202, having the same noise

floor, range and sensitivity. However, the ADXL202 has much lower power consump-

tion and turn on time, as well as higher maximum bandwidth. The MEMSIC chip

has a lower bandwidth because it exploits a technology based on a relatively slow

convection process, whereas Analog Devices accelerometers use MEMS technology.

The one advantage of the MEMSIC device is its slightly lower cost.

The Analog Devices ADXL203 is functionally similar to the their ADXL202

they are both 2 axis accelerometers in a 8-pin LCC package. However, they differ in

their performance characteristics. Though slightly higher cost than the ADXL202,

2 See table 2.1 for specifications

23

the ADXL203 has greater sensitivity and lower noise floor. This gives the ADXL203

a greater effective number of bits of information. Its main disadvantages over the

ADXL202 are its slightly smaller range and slightly higher cost. It has lower maximum

bandwidth as well, but its maximum bandwidth is still greater than the signals this

design must sense so this is not a problem.

A newer, but less well known device by ST Microelectronics, is the LIS3LO2AQ.

This device has comparable sensitivity compared to the ADXL203 and a lower noise

floor. In addition, it has user selectable range and three axes on one chip. The user

selectable range is very attractive for the varying degree of sensitivity possible, as

well as the increased range. Most attractive about the device, however, is the three

axes of sensing on one chip. This eliminates the need to have a pair of two-axis

devices. For a design that did not require rate gyros, this would make it possible to

use only one board, eliminating perpendicular daughter boards to sense all 3 axes.

Even more promising than the LIS3LO2AQ is the more recent LIS3LO2DQ. The DQ

is a version of the AQ with an A/D built into the device. Communications with the

device can occur either through an SPI or an 12C port (these are both microcontroller

serial communications protocols). Again, for a design that did not require rate gyros,

this could significantly reduce the overall cost, allowing the use of less expensive

microcontrollers without A/D's converters. Unfortunately, the LIS3LO2AQ was pre-

production throughout most of this project, hence was not not a viable option. The

LIS3LO2DQ is currently undergoing redesign and is no longer in production. These

devices, however, have tremendous potential for future low cost, low power, small

form factor designs.

Most pressure sensors are two terminal devices that vary their resistance with

applied pressure. Because they are wired to the board through a connector and are

not an integral part of the circuit board design, their are not discussed here. For a

discussion of pressure sensors, see [18].

Given the above analysis, the selection of sensors chosen was 2x ADXL203 and 3x

ADXRS300 and 2x resistive pressure sensors. An expansion port has been provided

to allow the user to add circuitry to accommodate additional sensors. The inertial

24

sensors must be mounted orthogonally to each other to sense all three axes. To achieve

this, two daughter boards were mounted perpendicular to the main board. This

configuration is shown in figure A-7. Considerations for imperfections in mounting

orthogonality is discussed in the PC host software chapter.

2.2.2 Communications

To a large degree, the success of a wireless sensor design depends on its communica-

tions link. In particular, this design requires that many nodes be able to transmit

periodically to a basestation that sends the information to a computer. This re-

quirement implies that the communications link must have high bandwidth and/or

a mechanism to assist in arbitrating the communications to efficiently use its band-

width.

Initially, the radio module from Benbasat's microcontroller stack, the RFM DR3000-

1 radio module, was considered for this system. The RFM DR3000-1 module is based

on the RFM TR1000 transceiver and comes conveniently populated onto a daughter

board with all the associated components necessary for the module. The module's

data rate, 115.2kbps, is still adequate for many applications. However, this data rate

did not seem quite adequate for a many-node system sampling at the rate needed to

recognize human gestures. For example, assume you want to transmit 10 byte-long

sensor readings at 100Hz per node. Also assume that because of inefficiencies in your

communications protocol, you can only get 50% efficient use of the bandwidth. Then

the total number of nodes that you can have transmitting on a 115.2kbps communi-

cations link is Oi/(50%) 7.2. Thus 7.2 nodes can transmit simultaneously

on a 115.2kbps link. We would like to have something on the order of 30 or more

nodes transmitting simultaneously. An application that might use this many nodes is

coordinated activity detection on a group of people, e.g. a dance troupe. Assume one

node is placed on a person's hands, feet and chest for a total of 5 nodes per person.

Thus fitting 6 people like this would require 30 nodes and require a bandwidth (as-

suming 50% efficiency) of at least 500kbps. A target communications rate of 1Mbps

would comfortably fit this many nodes and allow for future increases in the number

25

of nodes running simultaneously.

There is a wide range of data radio modules available. Laibowitz and Paradiso

have surveyed the recent options and tabulated a representative sampling of RF

solutions[14]. Currently, devices in the Mbps data rate range are outnumbered by

those that are more aptly rated in kbps. 115.2kbps is the max speed of most com-

modity data links. The devices that are 100's of kbps or more are either rather

new or rather expensive. Bluetooth modules have a data rate of 723kbps and have

a fully developed communications protocol[9]. However, these devices have higher

power consumption and tend to be physically larger than non-Bluetooth data radio

modules due to their flexibility. Additionally, the Bluetooth protocol only allows 7

slave devices to be connected which would severely limit this design. ZigBee is a rela-

tively new, moderate data rate protocol that uses a standardized physical layer with

a few modules commercially available[7]. Zigbee was designed for mesh networks,

where nodes communicate long distances by relaying data through other nodes, and

is not suited for the applications desired here. Of the non-Bluetooth devices, the

1Mbps capable devices include the Nordic semiconductor nRF2401, the RF Mono-

lithics TR1100 and the RF Waves RFW102-M. Of these, the nRF2401 was selected

for its unique ShockBurst mode, selectable channel frequency, dual receiver design

and low cost and small solution footprint.

The nRF2401 has a state machine inside the device that allows the microcontroller

to clock data in and out of the device at a rate determined by the microcontroller.

This state machine is utilized in ShockBurst mode. It allows the microcontroller to

preload data for transmit as well as hold received data until the microcontroller is

ready to read it. Both of these options are useful for minimizing power consumption

and microcontroller utilization by minimizing communication protocol constraints.

The nRF2401 is also capable of direct TX and RX which is the standard mode for

radio communications modules, similar to a serial port : bits are be processed as

they come out of and go into the device at the communications data rate. While this

mode has the disadvantage that received bytes must be processed as they come in

or they will be overwritten, it has the advantage that there is no protocol overhead

26

and any required parsing or processing of the raw data could be handled by the host

computer.

The nRF2401 has 128 different frequency channels that it can operate at. Thus,

the device can allow more than one channel of 1Mbps communication to occur si-

multaneously, whereas the other 1Mbps devices have no such option. The nRF2401

also has two receivers on the same chip. This allows one receiver to receive data from

two devices, such as a wireless mouse and keyboard. This allows multiple nodes to

transmit at the same time to the same receiver, allowing the total data received by a

single receiver basestation to be 2Mbps, provided that the basestation microcontroller

can process the incoming data.

Nordic also makes a device called the nRF24E1. This is an nRF2401 integrated

with an 8051 microcontroller core with an A/D. This is an attractive option since

the it simplifies and reduces the size of the design by not needing any additional

microcontroller interconnect routing is required. Tapia and Intille have successfully

used the device to make a very compact 3 axis acceleration sensing device for wear-

able medical monitoring[24]. The nRF24E1 was an attractive solution, however, the

decision was made to go with a stand alone microcontroller for greater versatility and

capability in the design.

Additionally, the nRF2401 is the least expensive of all the solutions at approxi-

mately $8 for all parts. The solution footprint for the nRF2401 is not set, since they

are not sold as modules, but must be laid out by the designer instead. However, the

overall solution size is comparable to that of the RFM and RFW modules.

2.3 Microcontroller

The microcontroller chosen for the design was the Texas Instruments MSP430F147.

The MSP430 family of microcontrollers from Texas Instruments are 16-bit RISC

mixed-signal microcontrollers specifically designed for low power embedded applica-

tions such as this one. Its list of advantages include numerous low power sleep modes,

hardware peripherals, ample RAM and Flash memory, and a plethora of development

27

tools.

The MSP430 is well suited to this application for a variety of reasons. To minimize

power consumption the microcontroller will often go into low power sleep mode. The

microcontroller should be able to quickly wake up from external or internal events

such as timer overflows (for periodic wake-ups) and external signals (for wakeup from

radio upon data packet reception). The processor should also be able to do some data

processing for future development in distributed gesture recognition. The MSP430

has a hardware 16 bit multiplier as well as an efficient instruction set where most

operations take only 1 clock cycle to execute. The MSP430's main limitation is its

8MHz maximum clock frequency. Most 8051 based microcontrollers, though usually

having higher maximum clock rates, usually require multiple clock cycles to execute

common instructions. This levels the playing field a bit, but still places the MSP430

at a slight disadvantage unless 16 bit calculations are required, in which case the

MSP430 is far superior to 8 bit microcontrollers.

Additionally, the MSP430F147 has a 12-bit A/D converter with internal 2.5V and

1.5V references. Using the 2.5V reference as the upper limit of the voltage conversion

(VREF+), one bit of the A/D output value represents .6mV.

2.4 Signal Processing

The analog signal processing section of the board is comprised mainly of a variable

offset and gain op-amp stage. All low pass filtering of inertial sensor signals is done

using capacitors external to the sensor ICs, as specified on their data sheets. No low

pass filtering is done to the pressure sensors.

No external reference was used to reduce the number of components required (and

therefore reduce board space and cost of the design). Also, this would limit how low

the supply voltage for the microcontroller could go since AVcC, the analog supply

voltage, must be at least .15V greater than VREF+ for proper operation.

In connecting the inertial sensors to the A/D inputs of the microcontroller, it was

possible to simply connect all sensor outputs to the A/D inputs through a resistor

28

divider. The resistor divider is needed to scale the output voltage of the sensors to

something in the range of the A/D (0-2.5V). However, this would create two nuisances:

1) all A/D inputs would be occupied and 2) setting the voltage divider would require

16 resistors.

While this design's purpose is not to be an extensible platform, as it is with

Benbasat's microcontroller stack[4], having the ability to affix sensors for future de-

velopment is a desired feature. Therefore occupying all A/D inputs is not preferred.

Requiring 16 resistors in the signal path to the A/D inputs would be difficult to lay

out and time consuming to populate and change if need be. The resistors might have

to be changed if the internal reference need to be switched from 2.5V to 1.5V or vice

versa. An alternative to using a fixed resistor divider for each A/D channel is to use a

multiplexer, followed by a programmable gain op-amp stage. This way, only one A/D

channel is occupied and changing the offset or scale factor requires only changing one

resistor. Using an op-amp to buffer the sensor signal before it goes into the A/D is a

common practice because sensor outputs tend to be high impedance signals.

Instead of using fixed resistors for the op-amp offset and gain stage, a digital

potentiometer was used. This enables the microcontroller to control the offset and

gain of the sensor signal. This would be most useful if such a variable offset and

gain could be applied to signals going into the A/D ports left open for expansion,

however, all inputs to the multiplexer that is fed through the variable offset/gain op-

amp are used up. Using a larger multiplexer, or simply another multiplexer, so that

more inputs could be passed through the variable offset/gain stage was considered.

However, that was left for future consideration and not implemented in this design.

The proper conditioning of auxiliary signals is left up to the designer. The conditioned

signals can be routed through the terminals labeled 'A2' through 'A4' on the board

and are passed straight to A/D inputs of the microcontroller. See figure A-8 for a

diagram of the terminals.

29

2.5 Power Budget

To conserve power, some devices can be shut down when not in use. Thus, when not

sampling, the microcontroller and data radio can go into lower power mode and the

signal processing electronics and sensors could be shut down. What limits this is the

turn-on time of each of the components. Table 2.2 shows a power budget with each

of the devices' power consumption, turn-on time and possible % of time spent power

cycled/shut down. The long turn on times of the gyros and accelerometers preclude

power cycling when sampling continuous human activity at greater than 50Hz.

2.6 Power Supply

The power supply section of the design is constrained by three factors : input voltage,

output voltage, and range of current draw. The input voltage is set by the selected

battery and will determine what kind of voltage converter must be used (step-up or

step-down) as well as limit which voltage converters can be used. Voltage converters

typically can only accept a range of input voltages depending on what kind of appli-

cations they were designed for. The output voltage and current are requirements of

the circuits being powered and also constrain which voltage converters can be used.

Some batteries may not be able to provide the required peak current draw. Coin cells,

for example, are an attractive source of energy for their high energy density and slim

form factor, but have a low maximum current draw, making them insufficient for an

application that uses rate gyros (because of their large power consumption).

Linear regulators can usually supply ample current, but waste power because of

the ohmic nature of the pass element used to regulate the output voltage. Linear

regulators also require that the battery voltage be higher than the required supply

voltage. For these reasons, linear regulators are not considered. Switching regulators

can not always supply high currents, so attention must be paid that the regulator used

can supply the current required by the design's power budget. Also, if a switching

regulator is improperly laid out, the sharp switching signals can interfere with on-

30

Power

Input Voltage con-
Device Range : Current Draw Turn-on % power sumption

Voltage Used Time cycleda per
device

Texas Instruments MSP430F1497 1.9V-3.6V : 3V 200uA per MHz A 8MHz 6us 70 1.5mW

Texas Instruments MSP430F1497 ADC 1.9V-3.6V: 3V .8mA 17ms 0 2.5mW

Nordic nRF2401 1.9V-3.6V: 3V 20mA Rx, 13mA Tx 200us 90 6mW

Texas Instruments TLV2475 2.7V-6V 5V 600uA/Channel Sus 0 12mW

Analog Devices AD5162 2.7V-5.5V 3V 6uA 5us 0 18uW

Analog Devices ADG608 3V/5V: 3V .2uA 100ns 0 luW

Analog Devices ADXL203 3V-6V : 5V .7mA 20ms 0 3.5mW

Analog Devices ADXRS300 4.75V-5.25V 6mA 30ms 0 30mW
5V

aX percent power cycled means the device is off X% of the time

Table 2.2: Power Budget.

board radio or sensor signals. For this application, a properly selected and carefully

designed switching regulator is ideal.

This design will require at least two different supply voltages because the operating

voltage ranges for the data radio and the rate gyros do not overlap. The components

can be divided into three classes : components that work in the 1.8V-3.6V range (data

radio, microcontroller), components that work at 5V (rate gyros), and components

that work within either range (accelerometers, op-amps, mux, digital pot). Therefore,

it must be possible to generate these two voltage ranges from whatever battery that

is used.

Again, the power consumption of the devices and the desired battery life will

determine what battery must be used. Given the rather large power draw of the rate

gyros and the data radio, the battery must have considerable capacity. A common

choice for batteries is an alkaline cell. They have fairly high capacity and are cheap.

Another option would be more exotic, rechargeable cells, such as NiMH and Lithium

Polymer cells. The Li-Po cells were considered more attractive because of their flat,

thin form factor, very similar to the design's target board size. However, all Li-Po

cells that were smaller than the target design size did not have sufficient capacity

to be used. The eventual decision was between using a standard AAA alkaline cell,

using two small capacity Li-Po cells in parallel, or using a single medium capacity

Li-Po cell that was slightly larger than the eventual design size. The larger Li-Po

cell was ruled out since it would make the design larger and add to its complexity

by requiring a charging circuit and making the power section require two different

voltage converters : a step-up converter and a step-down converter. The reason that

two different voltage converters would be required is that the cell voltage was between

the two desired voltage rails for the 5V sensors and the low voltage data radio and

microcontroller. Using two smaller Li-Po cells in parallel was attractive, since they

would allow the design to nearly reach the target size of 1" cube. However, they

would also still require the two different voltage converters and battery chargers. A

design with a single alkaline cell (1.5V) could use two of the same step-up converters

with different output voltages. This design has the advantage of not requiring a

32

charging circuit, though it is also not as environmentally friendly since the batteries

are one-use. The smallest alkaline cell of adequate capacity available is the AAA cell.

The next size larger is the AA cell. The AAA cell was chosen for its smaller size.

Though it has lower capacity than the AA, its capacity is sufficient for the design

goal of several hours of continuous use.

Given that a AAA cell is to be used as the battery, a boost converter must be

selected that can provide sufficient current given the range of output voltages the AAA

has. Most boost converters are not specifically designed for single alkaline cell input

voltages, and therefore have cutoff voltages higher than 1.5V, the nominal alkaline

cell output voltage. Therefore, a boost converter must be specifically selected for its

single cell design. For this, the Linear Technology LT3400 was chosen. It can operate

with input voltages down to .7V and supply sufficient current at high efficiency (>80%

over the range of output voltages required).

2.7 Mounting Fixture

The device must be firmly attached to the user and should be readily mounted on

the arms and legs. An adjustable strap threaded through a Plexiglass plate was used

to secure the device to the body. The device was mounted to the Plexiglass plate

through its two mounting holes on opposite corners. The strap was secured with a

friction fit buckle, like those used on backpacks. This method of mounting the device

performed well during tests that included Tae Kwan Do moves. See figures 2-2, 2-3

for pictures of the device mounted during use.

33

Figure 2-2: The device mounted on a users arm

Figure 2-3: The device mounted on a users leg

34

Chapter 3

Firmware

This chapter discusses the firmware of the nodes and the basestation as well as the

communications protocol between the nodes and the basestation. Examples of the

capabilities of the nodes are given, but discussion of the overall capabilities of the

devices is left to the Future Work chapter of this thesis.

As wireless wearable sensors, this system's main task is to transmit data from the

nodes to the host computer. This data must be relayed to the computer through a

receiving basestation that communicates with the nodes. The basestation is imple-

mented using a node re-purposed for communications with the host computer: the

basestation uses a support board that allows the node to interface to the computer

using serial communications over RS-232 or using USB. Currently, the nodes only

collect and transmit sensor data and the basestation only relays commands from the

computer to the nodes and data from the nodes to the computer. Future implemen-

tations may have the nodes compress or do preliminary analysis on the data or have

the basestation actively manage the communications protocol.

3.1 Communications Protocol

The communications protocol is a TDMA scheme that uses the basestation broadcasts

as the time reference. Each node is assigned a time slot which is determined by its

programmed timer interrupt value. The nRF2401 is set to ShockBurst mode and each

35

packet is sent with an address. The receiving nRF2401 must be configured with the

same address or else the microcontroller is not notified of the packet and the packet

is dropped. All nodes are set to the same address, making all packets sent by the

basestation to this address a broadcast packet. It is possible to have the nRF2401's

second receiver set to a unique address and use this to send messages to specific nodes,

but the messaging happens with such low frequency that it is easier and quicker to

send messages in the broadcast packet's payload for this application. The TDMA

scheme is shown in figure 3.1.

3.2 Node Firmware

The node's main task is to collect sensor readings and transmit them to the basesta-

tion. On power-up, the node microcontroller must initialize its internal peripherals,

its analog signal processing circuits, and its data radio. After initialization, the node

turns on its data radio to listen for basestation broadcast messages and puts the pro-

cessor into a low-power sleep mode. Upon receiving a basestation broadcast message,

the radio pulls an I/O line high to wake the microcontroller. The node reads the

received data, collects its sensor data, parses the received data for commands, taking

action if necessary, then turns its radio off for power savings and then goes back to

sleep. This time, an internal timer will trigger an interrupt and wake the node up

when it is supposed to transmit its sensor data. Upon waking up the node powers

up its data radio, transmits it sensor data, sets its radio to listen for basestation

broadcast messages and goes back into low power sleep mode. This process continues

indefinitely. A listing of the node firmware is given in appendix B

3.2.1 Initialization

The microcontroller's internal peripherals that must be initialized are its I/O ports;

its internal timer; its communications ports which include an SPI port for the data

radio and an SPI port to control the digital potentiometer in the analog signal pro-

cessing section; and the microcontroller's internal A/D converter. The nRF2401,

36

O. q

c.7 Q

* 0

Indicates packet reception I Indicates packet transmission

Broadcast packet Broadcast packet

Radio RX I Serial Transmission Radio RX Serial Transmission
00 To Computer 000 To Computer

T T
, S lo t 1 -> S lo t 1

Radio Sleep Radio Rx Radio Sleep Radio RxI C sleep gC sleep gC sleep gC sleep

T2 Slot 2
Slot 2

Radio Sleep Radio Rx Radio Sleep Radio Rx
[C sleep pC sleep pC sleep pC sleep

L 0
0

Slot n Slot n
Radio Sleep Radio Rx Radio Sleep Radio Rx
gC sleep pC sleep gC sleep gC sleep

Basestation

Node 1

Node 2

Node n

ClD

0

I

when set to ShockBurst model, and the digital pot have no special requirements for

communications rates so their SPI port settings are straightforward. In this design,

the MSP430's A/D converter uses its internal voltage reference (VREF) for conversions

so special care must be paid to ensure it functions properly with the microcontroller's

analog supply voltage, AVCC. The analog supply voltage must be 0.15V greater than

the internal voltage reference. This design provides 3V for AVCC so either of its 1.5V

and 2.5V internal references can be used without concern. For ultra-low power oper-

ation, AVCC can be lowered to 1.8V, in which case the 1.5V reference must be used.

The internal timer is set to count down from a specified value and halt 2 and is used

for timing intervals between reception of broadcast packets and transmission of its

own packets.

The analog signal processing circuitry requires setting both of the digital poten-

tiometer's taps to control the offset and gain of the op-amp circuit used to bring the

sensor output into the range of the A/D. The configuration of the op-amp circuit is

such that the circuit outputs a safe voltage at turn-on due to the power up settings

of the potentiometer.

The data radio must be initialized with a sequence of bits to set the receiver's ad-

dress, the data width in bits, the communication mode (ShockBurst/Direct), the fre-

quency channel, the data rate, the output power and the mode of operation (TX/RX).

Currently, all these parameters are programmed into each node's flash memory and

are identical. These settings could be changed dynamically to avoid noisy channels,

to move to unoccupied channels when there is no more room or to conserve power.

'The data radio has some special requirements in its direct mode. In its direct mode, the

communications rate must be either 1Mbps or 250Kbps and the bit rate must be within i200ppm

for both rates for the data to be recognized by the radio and transmitted.
2 Not auto-reloading
3The potentiometer powers up with its wiper at half-scale. The op-amp is configured as a

subtractor with the scaled sensor value subtracted from the potentiometer's offset resistor divider

output. Because the potentiometer has DVoC, the digital supply voltage, as the voltage at the top

of the resistor divider it forms, it outputs DVcc at power up and the circuit can provide at most
DVcc to the microcontroller.

2

38

3.2.2 Main Loop

Though the node's main loop simply puts it to sleep, it actually goes through a

series of states by coming out of sleep through interrupts. I use the term main loop

to describe the repeating series of actions that the node goes through. The node

starts in a low power sleep mode with its data radio turned on and set to receive.

Upon reception of a basestation broadcast, the data radio signals the microcontroller

by pulling a data line high. The microcontroller exits its low power sleep mode

and executes its external interrupt handler. In the external interrupt handler, the

microcontroller immediately starts a timer that will later wake it to transmits its

sensor data. The received data is then read into the microcontroller's memory for

later processing and the radio is set to a low power mode. The microcontroller then

samples its sensor data. All steps up to this point are the same for all nodes to ensure

that all sensor data is sampled concurrently. This was tested by toggling an I/O pin

just prior to the sampling and noting that the toggling occurred within approximately

200ns of each other (about the span of one clock cycle).

After sampling the sensor data, each node checks the basestation broadcast for a

message directed to it. Each node is programmed with a unique ID, which it compares

to the ID in the received broadcast. If the IDs do not match, then the node proceeds

to low power sleep mode. If the ID does match then the microcontroller checks the

message for a command and executes it. Currently the only command is a command

to change the delay between receiving a broadcast message and transmitting sensor

data. This is implemented as a single byte for the command ID followed by two

bytes of data to set the timer register which controls the interrupt interval. The

microcontroller then proceeds to low power sleep mode.

The microcontroller stays in low power sleep mode until its timer interrupt occurs

and executes its timer interrupt handler. The timer resets its counter for the next

timing interval, writes its data to the radio, waits a short period of time and then sets

the radio to RX mode and goes into low power sleep. The microcontroller must wait

for a short period of time because its takes some finite time for the radio to create

39

a radio packet and then for the data to be transmitted4 . If the radio is configured

before the data is done transmitting then the radio packet is not sent or is incomplete.

The receiving radio cannot parse such a packet because its CRC is not correct, hence

the packet is dropped.

The microcontroller remains in sleep mode until the data radio receives a valid

packet, then pulls its data line to the microcontroller high. This causes the microcon-

troller to enter its interrupt service routine, bringing it to the state that it initially

started in. This loop continues ad infinitum.

3.3 Basestation Firmware

The basestation's main task is to relay communications between the nodes and the

computer. Similar to the node, the basestation must initialize its internal peripherals

and its data radio. The basestation is not outfitted with sensors so it does not need

to initialize any. After initialization, the basestation must send periodic broadcast

messages, receive all incoming data from the nodes, and transmit the node data to

the computer. The basestation does not go into a low power sleep mode like the

nodes because it is simpler not to do so, but could readily be made to do so. The

basestation differs from the nodes in that its timer interrupt is set to auto reload so

its period is always the same, regardless of how many incoming node data packets it

must handle. The node follows this pattern: broadcast message to nodes, set radio to

listen, receive and store all incoming node packets, trigger timer interrupt, transmit

all data to the computer, broadcast message to nodes, etc. Interspersed with this

activity, the basestation handles serial messages from the computer as they come in.

Note that the basestation does not need to know how many nodes are broadcasting,

it merely saves all data packets and transmits them to the computer. The nodes must

be preprogrammed with the proper time slots by the user to prevent collisions. A

4 This all happens in the radio hardware and is part of the nRF2401's ShockBurst mode. The
wait between the of writing the data to the nRF2401 and the beginning of transmission, Tsby2txSB
in the nRF2401 datasheet, is specified as 200us. The transmission length depends on the amount of
data to be sent and the data rate. Transmission length =#bits to be sent

data rate

40

listing of the basestation firmware is given in appendix B

3.3.1 Initialization

The microcontroller's internal peripherals which must be initialized are its I/O ports;

its internal timer and counter; its communications ports including an SPI port for the

data radio and a UART. The I/O ports and the SPI port serve the same functions as

on the node. The internal timer is set to be auto reloading and is used to trigger the

sensor packet requests. The internal counter is used to measure the time difference

between transmission of the broadcast packet and reception of the node packets. This

difference can be used to identify which node has sent the data (and is also useful

for debugging). The UART is set to 115.2kbps for high speed communications to

the computer through an RS-232 transceiver. The RS-232 transceiver is connected

to through the programming header on the node board.

Data radio initialization for the basestation is similar to that of the node.

3.3.2 Main Loop

Though the basestation's main loop just toggles an LED at 1Hz, it also goes through

a series of states via interrupt service routines. On a periodic timer interrupt, the

basestation checks to see how many data packets it has received from nodes during the

previous timer interval. It transmits a header over RS-232 to the computer to signify

the start of a new data record, followed by the number of packets it has received,

followed by its data buffer. The data buffer contains all reported data prepended

with the timer value at which it was received. The basestation configures the radio

for transmission and then starts a counter to time when the data comes in 5 . The

basestation then broadcasts a message to all nodes, to signify the start of a new data

collection cycle. This broadcast message is primarily used for time synchronization,

so its contents are not usually that important. If the basestation has received a

message from the computer via RS-232, it inserts this message into the broadcast

5 This is the timer value that is prepended to node data in the data buffer

41

message, otherwise the broadcast message is filled with OxFF. After the transmission,

the basestation waits for the transmit to finish, configures the radio to receive mode

and leaves the timer interrupt routine.

Every time a packet comes in the data radio raises a data line high, causing an

external interrupt to occur. The first thing that occurs in the external interrupt

handler is the basestation captures the counter value to determine when the packet

arrived and writes this value to its data queue. The basestation reads the data from

the radio, writes the data to the data queue, increments its message counter, and

returns from the interrupt.

Message reception from the host computer occurs via serial communications over

RS-232. The basestation uses its serial reception interrupt service routine to read

incoming messages byte by byte to a buffer. The computer sends its messages sand-

wiched between a header byte and a footer byte. Upon reception of a complete

message, the interrupt checks to see if the message is intended for the basestation or

the nodes. Currently the only message for the basestation is to set the rate at which

broadcast messages are sent. If the message is not for the basestation then it waits

till the next broadcast message and sends it to the nodes.

Because transmission of the received node data uses a blocking serial write, the

bandwidth of a single basestation system is currently limited to an average of 57.6kbps,

which can only support 7 nodes at 50Hz sampling rate. This could be raised to

115.2kbps, the maximum standard serial rate, by creating a non-blocking serial trans-

mission routine, and further raised to 1Mbps by implementing a USB interface through

SPI.

42

Chapter 4

Analysis

This chapter analyzes the system's performance and discusses the tests run for cor-

related activity detection.

4.1 System Performance

To test the range of the system, data was collected in an indoor setting with a node

at varying distances. The node was placed on a stool and the basestation on a

table. From ranges inside 10 feet, 100% of packets sent by nodes were received by

the basestation. From 20 feet, 94% of packets were received. From 30 feet 81% of

packets were received, with most of the dropped packets occurring in groups of about

10 packets spread in 30 packets.

As a test of the systems ability to capture data, a subject wore 4 nodes, one on

each hand and foot, while performing a Tae Kwan Do move : a punch, a punch, and

then a kick. This was performed twice in a row. This test evaluates both how well

the sensors capture a dynamic human gesture as well as how the data radio performs

in a dynamic environment. The basestation was approximately 5 feet from the nodes

during the test. Data from the experiment and pictures showing the body positions

gone through are in figures 4-1, 4-2, 4-3, 4-4, 4-5. These graphs are representations

of the motion that the node went through during data capture. Notice that at some

points the readings saturate. This is caused by rotation or acceleration outside the

43

range of the sensors. Dropped packet rate varied from 1% for the nodes on the feet

to 4% for the nodes on the hands. Points where packets were lost are marked on the

the graph by circles with x's inside them.

4.2 Host Software

The PC host software is implemented in Matlab. It captures a specified amount of

data from the serial port, parses the raw serial data and extracts packets, performs

linear interpolation between dropped packets for each node, plots the interpolated

data noting where interpolation occurred, and tests for correlated activity. No action

was taken to correct for misalignment of sensor axes. A calibration script was written

but axis error was found to be low enough to not impact activity detection. A listing

of the host software is given in appendix C.

For tests of correlated activity, 4 subjects wore a node on their left hand and did

'The Wave" twice in a row.

To find areas of interest, the magnitude of the windowed variance was used as in

Benbasat[3]. A threshold between activity and non-activity was selected by observing

the range of the variance of the sensor data between when the notes are moving

through gestures and sitting stationary. Once an area of activity is detected, the

cross-covariance between it and the same sensor data stream on other nodes is taken2 .

The peaks of the cross-covariance are found and noted as possible correlated activity.

The time lag between the highest cross covariance between the region of interest and

the other data stream is returned. From this you can determine the relative degree of

synchronicity of action between nodes. This test was performed on the data captured

from the second accelerometer axis while performing 'The Wave' and the data and

results are shown in figures 4-7, 4-8, 4-9, 4-10. Only one axis was used to simplify

iThe wave is a move often done by spectator at sporting events. Spectators raise and lower their
hands in succession creating a rippling effect across the crowd. The wave is depicted in figure 4-6

2If the cross-correlation were used, this would be a matched filter. The cross-correlation was

not used to try to remove the effects of the mean on the output. Each sensor has a different offset

voltage. Using the cross-correlation would make the quality of the match appear better for higher

mean sensors.

44

Node # Time lag of maximum covariance un-normalized covariance value
1 0 2.62E7
2 22 2.25E7
3 36 1.53E7
4 52 2.62E7

Table 4.1: Table of time lag of maximum covariance and un-normalized covariance
value for each node. Notice that node 1, the template node, has a time lag of 0.

the presentation of results.

45

(a) Initial stance (b) Punch!

(c) Punch! (d) Kick!

Figure 4-1: Stages of executed Tae Kwan Do move

46

I 1000

(a) Accelerome

4Wco

3Mo

(b) Accelerometer 2

(c) Accelerometer 3

laM
3aM

8 10 -

(e) Gyro 2

(f) Gyro 3

Figure 4-2: Data captured from right hand during a Tae Kwan Do move. Circles in
data represent dropped packets.

47

4aM

3aM

(d) Gyro 1

4aM

2aM

0-

b

ter I

0 2 4 1 0 4..

13000

50300

L
1600

0 2 4 1

(a) Accelerom

p2W0

eter 1 (b) Accelerometer 2

(c) Accelerometer 3

4Moo
2300

M20

(d) Gyro 1

13M0

120

(e) Gyro 2

(f) Gyro 3

Figure 4-3: Data captured from left hand during a Tae Kwan Do move. Circles in

data represent dropped packets.

48

$ 10

2 4 1

INK

IIX

14M0

3M00

(a) Accelerometer 1

52M0

I-C

(b) Accelerometer 2

(c) Accelerometer 3

isM3M

(d) Gyro

2M00

laMo
3Wo

1 (e) Gyro 2

(f) Gyro 3

Figure 4-4: Data captured from left foot during a Tae Kwan Do move. Circles in

data represent dropped packets.
49

14M30

5230

0 2 4 a 10 -0 2 S 10

0 2 4

A

1*11

1000

3W00

6 10 _0 2 6

(a) Accelerometer 1

2M0

(b) Accelerometer 2

(c) Accelerometer 3

12000

160

j1000

(d) Gyro

2M

100

1 (e) Gyro 2

(f) Gyro 3

Figure 4-5: Data captured from right foot during a Tae Kwan Do move. Circles in
data represent dropped packets.

50

1000
13M0

Ij
I

0 2 4 a

-A -7

-- j : -

(a) Wave: step 1 (b) Wave: step 2

(c) Wave: step 3 (d) Wave: step 4

Figure 4-6: Pictures of the progression of the wave

51

0 1 2 3 4
Sooonde

(a) Wave: Node 1 (b) Wave: Node 2

0 1 2 3 4

(c) Wave: Node 3 (d) Wave: Node 4

Figure 4-7: Raw data from the wave for the second accelerometer axis of each node.
Circles in data represent dropped packets.

52

4000

i 2500

2000

1500

1000

4000

3500

23000

25002000

5M0

5 6 7 3 4 5 6 7

4=00

3=oo

2500

1200

15
100

3SoM

3400

000

100

1000

6Wo

5 6 7 2 3 4
0004040

5 6 7

-n

4000

3500

13000
200

12000

1000

5 a 7

(a) Wave: Node 1

4000

300

1200
2000

1200
1000

00

0 1 2 3 4
Secnd

5 a 7

0 1 2 3 4

(b) Wave: Node 2

0 1 2 3 4

(c) Wave: Node 3 (d) Wave: Node 4

Figure 4-8: Variance of raw data from the wave. Solid line is the original signal.
Dotted line is the variance of the signal

53

4000

100

0 1 2 3 4 6 7

4M0

3000

100
2000

1500

100
00

5 6 7

0 0.2 0.4 0.8

Figure 4-9: Region of interest selected from node

Node 1 was worn by the initiator of the wave,
template.

l's second accelerometer axis data.
hence it is considered the gesture

54

4000

3500

3000

2500

2000

8 1500

1000

500

0.8 1
Seconds

1.2 1.4 1.8

I

I
I

0.
0.

-0.

S0.

-0.

-0.
-0.

-0.

(a)
2

1
0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

1

(b)
3

4 5
Seconds

1 2 3 4
Seconds

5 6 7 8

Wave: covariance of node 1 with node

(c) Wave: covariance of nodel with node 4

Figure 4-10: The Wave: Covariance of first area of interest from node 1 with data from
other nodes. Data has been normalized by its maximum. There are two peaks because
the wave was performed twice. Peaks are rough measures of similarity between the
gesture template and the node data.

55

0 1 2 3 4 5 6 7 8
Seconds

Wave: covariance of node 1 with node

0.8-

0.6-

0.4 -

0.2

0

-0.2-

-0.4-

-0.6-

-0.8

8

6

4

2

0

2

4

6

1.

0 7

56

Chapter 5

Conclusions

Most of the design goals of the design as stated in chapter 1 were met. The nodes

successfully detected coordinated activity from multiple nodes using algorithms that

could be executed in real time. Some aspects could be improved upon. These include

improving the communications link's reliability, finding a higher bandwidth replace-

ment for serial communications between the basestation and the computer, and de-

veloping a robust and accurate gesture recognition scheme that can fully utilize the

node's capabilities.

5.1 Future Work

5.1.1 Platform Improvements

Performance of the data radio was adequate at best, our tests indicated that the data

radio solution needs to be re-evaluated. Levels of dropped packets when the nodes are

in a static position are acceptable, but the dropped packet rate for a given distance

increased when the nodes were moving. The current reliable transmission range is too

short for a dance stage, making it unusable for one of its main applications. Several

factors could be the cause. The antenna layout and design could require redesign.

Currently, the antennae is a 2.4GHz quarter-wave dipole made out of a single piece of

26AWG single conductor wire. This could be replaced with a 50 Ohm printed circuit

57

antenna. The particular frequency channel used could be a noisy one, though this is

doubtful since some nodes transmitted with low dropped packet rates while others

transmitted with high dropped packet rates during the same short time duration. It

is possible that other data radio solutions may need to be considered. During the

process of this design, several new data radio modules have come out with similar

capabilities as the nRF2401: products in this field are evolving rapidly and a new

evaluation of these modules is in order.

The wearability of the module was sufficient for the short duration tests performed,

indicating they will be sufficient for target applications like dance performances and

gestural input. Some redesign may be necessary for activities like coordinated activity

detection in sports. The next revision of the board should increase clearance for the

mounting screws and add mounting holes on all four corners of the board to increase

stability of the board on the mount.

To capitalize on the communication link's high bandwidth, a fast and efficient

method to get the data from the MCU to the computer must be found. Serial data

communications will allow a maximum of 115.2kbps, whereas USB or Ethernet will

allow higher rates. An attempt at USB communications was made where the MSP430

talked to a USB enabled MCU over SPI, with the USB enabled MCU as the slave.

This method was not sufficient since the USB MCU's USB interrupts would prevent

it from receiving SPI data. Future attempts could implement the MSP430 as the

slave SPI device or use nested interrupts. Both these methods might prove fruitful in

getting the data from the MSP430 to the USB MCU.

5.1.2 Detection Improvements

The detection methods discussed in the Analysis chapter are sufficient for activity de-

tection, but does not discriminate gestures well. For gestural inputs, DTW techniques

like those used by Merrill could be used. These techniques were too computationally

intense for real-time recognition, but could be modified by pre-processing on the node.

In particular, non-uniform sub sampling of the data stream could be performed on

the nodes. This would reduce the size of the input to the DTW algorithm run on the

58

host computer.

59

60

Appendix A

Schematics and Pictures of Boards

61

JIO1Oj 100131 11(IP

L11111 i

diii i~tEIiL -

A E0 2

301111 -1 .-lox1

B9011 -11111d U IS10

9110 ' Y1IL 9d
ZEDI 90/ -

Wi0 9d 9 &
IIDEM Ed IIU m

RWPWA MCI HSO 11H IJ46

it
of

alru 11 6

flmC)s ZI ri

mms7-ti It

'Fus- m

SI
9

SKL

a"'r- 4, LI I LM)

91
I TI.)JJIGL

Xj-A,.d---77 61 Z IGI'OaL

ri

j 7

b~ylE 100 0110~l~o

0011 5. Ln 3m I
11019 0000 U A

If -190 %190 00901 moo1

A01 ME1X0 10100010001111 d 19_ _ _ _ kc1

0000m mms fl tv010

91.1 09 1100(0 1101_______II SIA
'iF-Il-. A~ M A I- 000 A 101

IS~ ~~~ na'oo ~ ~ x

MII 00~ SSA ur lI' 0-
011 SEA miI 00v [y. dVI

A1 IV0111 GO A-0 AP I Oz, 0S 0 191 E011 1
is10. It.11100 1li 19%1

-V9, 93

91 I 1 000 4 01

rp. MR -

9 F- i I V L 1 -1 1

IFr 111 r0' 00

100 o0v 'A IO 0 ~ (0 0

-9 1 1

1191 '1T 0It 0 10

P-L
LIOLOvi

a

I ________________ ~

SO J a a5

55555 usS,

S1. FT W s

isr

;Illo

a

"NOD arvasmilonva MIN

UN9
vad -

W

.1-.~N I9: -%

61 -13 .'

",H I HI Urs'l I. [II. m 9 .6

Ia,19(t5

#MA IN119 16016

~~j...
4
1Yl~l 006 HlI" 04

9I 0 .

05I66lI.Sl60A~2I0031
R

6014 ol L6 l'CIA ---T

546 Id

U140

9N (II Z4zn x n

.Can

JJA (TN9
z

(IN'IIV(GZ v vc

2

It

XJZ3 LIN 1

91
Ijao

are) w -01

t

z

t1att

v la~

L. 6

XI('60 91

or0z 61 H l s ;

FFM- ---- M -

G

Figure A-4: Front side of main board with daughter boards mounted

Figure A-5: Back side of main board with daughter boards mounted

Figure A-6: Communications board populated

65

Figure A-7: Main board on mounting with strap

Figure A-8: Analog input terminals

66

Appendix B

MSP430 Embedded Code

67

//mainBaseStation. c
//Written by Dan Lovell 9/8/04 for GestureBox Project, MiT Media Lab
I/This file contains functions and variables specific to Basestation operation

#include <__crossestudioio.h>
*include <msp430xi4x.h>
#include <in430.h> //has a -NOP()
#include "nRF2401.h"
#include "peripherals.h"
#include "config.h"

#include "mainBasestation.h"
#include "global.h"

const unsigned char ID - Ox00;

Configuration Bytes:
Byte 0: 16 Bit payload length for RX channel 2
Byte 1: 16 Bit payload length for RX channel 1
Byte 3-5: Address for RX channel 2
Byte 6-10: Address for RX channel 1
Byte 11, upper 6 bits: Address width in # bits
Byte 11, lower 2 bits: CRC settings
Byte 12: Various settings including Two Channel Receive, RF power output
Byte 13, upper 7 bits : Frequency channel selection
Byte 13, lower 1 bit: RX?

unsigned char TXCONFIGBYTES[15] - {INITRFPACKETBITLENGTHINITRFPACKETBITLENG
,0xBB,OxBB,0xBBOxBBxBB,OxBB,0xBBOxBB,0xBBOxAA,OxA1,0x6F,0x04};

C const int TXCONFIGBYTESLENGTH - 15;
cc const unsigned char TXSHORTCONFIG_BYTES[1] - {0x04};

const int TXSHORT-CONFIGBYTESLENGTH - 1;
unsigned char RX-CONFIGBYTES[15] - {INITRFPACKET-BITLENGTHINITRFPACKETBITLENG

,0xBBOxBB,OxBB,0xBB,OxBB,OxBB,OxBB,OxBBOxBB,0xAA,OxAl,Ox6F, 0x05};
const int RX-CONFIGBYTESLENGTH - 15;
const unsigned char RXSHORTCONFIGBYTES[1) - {0x05};
const int RX-SHORTCONFIGBYTESLENGTH - 1;
const unsigned char ADDRBYTES[MAXIADDRBYTESLENGTH] - {OxBB,OxBB,OxBB,0xBB,OxBB};
const int ADDRBYTESLENGTH - MAXADDRBYTES-LENGTH;

extern const unsigned char HEADER[];
extern const int HEADERLENGTH;

//used when the basestation has no message to send the nodes
const unsigned char FILLERBYTE - 0xFF;

//used to store the message received from the F320
unsigned char RXMESSAGE[16);
int RXMESSAGELENGTH - 0;
//are you processing a message?
char RX-MESSAGEFLAG = 0;

//used to store all the data received from the nodes during once lUiU4 cycle
unsigned char RXDATA [256);
int RXDATALENGTH - 0;

//used to temporarily store the data received from all the nodes during one
/1IMA cycle , therefore must have
union {

//two bytes allocated for ID and timestamp
int intVal[MAXNUMNODES*(NUM_SENSORVALS+1)];

//two char's per int
unsigned char charVal[2*MAXNUM_NDES*(NUMSENSORVALS+1)];

} intChar;

int globalCounter-0;
int packetCounter-0;
int zeroLengthCounter-0;
char passMessage-0;

void main(void) {
long i;

/set up MSP430
CONFIG();
CONFIGSPIO();
CONFIGUART1 ();
CONFIG.UART1_RX);
CONFIGIO();
nRFRESET);
nRFSetStdBy~ode 0;

//CONFIG-TIMERA-INT(0x2700,1); //100Hz
CONFIGTIMERAINT(Ox4EOO.1); //~50Hz

//CONFIG-IMER.A-INT(0z3400, 1);

CONFIGTIMERB_COUNTERO();
_EINT);

TH

//CONFIG-TIMER-BJNT(;
//give nRF time to go to PWHIUP mode before going to stand by
//nRF.PWRUP has already been set high in CONFIGIO()
for(i-O;i<5000;i++) {}

TH

nRFCONFIG(RX_CONFIGBYTES,RX_CONFIGBYTESLENGTH);
nRFSetTXRXMode 0;

while(1) {
P20UT -= Ox0l; //toggle LED

//for(i=0;i<30000;i++) {} // 6.25ms to execute, ~5 clocks for one loop
}

}

void processMessage(unsigned char * message, int messageLength) {

* Form of message is {HEADER0,DESTINATIONJD,MM4NIAN .. .,BEADERW}
* indices 0 1 2 N

//check header to see if its for me
char i;

if(message[1]--ID) {
switch(message[2]) {

case (OxOO):

//change the poll rate of the sensors
CCRO - 256*message[3]+message [4];
break;

default:
break;

}
//if so, process the message

} else {
//else set the passMessage flag so we know to send it to the Nodes

passMessage - 1;

void nRFData-Waiting(void) __interrupt[PORT1_VECTOR] {
int i;
intChar.intVal[(NUMSENSOR-VALS+1)*packetCounter] - littleFromBig(captureTimerB());

if(P1IFG & BIT4){ //clear the interrupt flag
P1IFG &- ~BIT4;

}

//could probably just read into RXDATA+2*packetCounter*NUMSENSO-VAIS
//but I'll try that later
nRFSHOCKBURST.BLOCKING-READ(RXDATAkRXDATA.LENGTH); //read the received data

if(RX-DATALENGTH !- 0) {
//copy all the data bytes
//advantage of not copying straight into RXDATA is that you could process
//any received data here, though you could still process in place in RXDATA
for(i-0;i<2*NUMSENSORVALS;i++) {

intChar.charVal[(2*NUM_SENSOR_VALS+2)*packetCounter+(i+2)] - RXDATA[i];

}
packetCounter++;

} else {

zeroLengthCounter++;
}

}

C void TimerA (void) __interrupt[TIMERA0_VECTOR] {
int i;
int temp-0;
globalCounter++;

P20UT I- 0x02; /toggle LED to indicate reception

1/this is just for testing to see if its going into timer interrupt with a

//packet waiting

if(globalCounter > 0) {

globalCounter - 0;
if(packetCounter>0) {

#ifdef SERIAL
//configure the USART for serial and transmit the received data

//CONFIR-UAR'VI() ;
//serial at this speed seems to always have trailing garbage
usartlWrite(HEADER,2);
usartlWrite(&packetCounter,2);
//usartO Write (intChar. charVal, 2* (NUMSENSOR.VAIS+1)*packetCounter);
usartlWrite(intChar.charVal,2*(NUMSENSORVALS+1)*packetCounter);
//usartO Write (&zeroLengthCounter, 2);
//write the timestamps and ID's of nodes

for(i=O;i<packetCounter; i++){
usartO Write (intChar. char Val+i * (2* (NUMSENSORVALS+ 1)),4);

//configure the UART for SPI, write RX configuration to nRF and enter RX mode
//CONFIG-SPIO ();

#endif

#ifdef USB
//write data to cygnal USB via SPI
f320Write(intChar.charVal,2*(NUMSENSOR-VALS+I)*packetCounter);
f320Write(HEADER,2);

#endif

I
packetCounter - 0;

//broadcast to all nodes
nRFCONFIG(TX_SHORTCONFIGBYTES ,TXSHORTCONFIG_ BYTESLENGTH);
nRFSetTXRIMode 0;

//reset timer for counter
CONFIGTIMER-BCOUNTERO();
if(passMessage) {

if (RX_MESSAGE_ LENGTH <-RFPACKETBYTELENGTH) {

//need to write RX-IE4SAGELNGTHBYTWOFRCMESSAGE!!!
nRFSHOCKBURSTBLOCKING-WRITE(RMESSAGE, RFPACKET-BYTE-LENGTH , ADDRBYTES , ADDR-BYTESLENGTH);
RXMESSAGELENGTH - 0;
passMessage - 0;

} else {
//shouldn't be here!
iShouldntBeHere 0;

} else {
nRFSHOCKBURSTBLOCKING.WRITEREPEATED (FILLERBYTE, RF-PACKETBYTELENGTH , ADDRBYTES , ADDR_BYTESLE

}

//return to receive mode

//probably need to make sure that this config doesn't occur too close to
//the previous 7X since you can't config while TX is occuring
for(i-0;i<1000;i++) {
//this wait might need to change

//-NOP(;
I

nRF.CONFIG(RX_SHORTCONFIGBYTES .RXSHORTCONFIGBYTESLENGTH);

uRFSetTIRXMode();

P20UT &- ~0x02; //toggle LED to indicate reception

void usartl-rx (void) __interrupt[UART1RIVECTOR]

{
char temp - RIBUF1;
switch(temp) {
case(HEADERO)
RXMESSAGEFLAG - 1;
RXMESSAGE[0] = temp;
RXMESSAGELENGTH - 1;
break;

case(HEADERI)
if (RX_MESSAGE_FLAG --1) {

//process the message
RXMESSAGE[RXMESSAGELENGTH++] - temp;
RXMESSAGEFLAG - 0;
processNessage(RXMESSAGERX_MESSAGELENGTH);

} else {
RXMESSAGE-FLAG - 0;
RXMESSAGELENGTH - 0;

}
break;

default
if (RXMESSAGEFLAG--1) {
RXMESSAGE[RIMESSAGELENGTH++] - temp;

} else {}
break;

}
}

void Timer-B (void) .. interrupt [TlvfRBaVECOR] {

while (1){}
}

//mainBaseStation. h
//Written by Dan Lovell 9/8/04 for GestureBox Project, MIT Media Lab

#define SERIAL
//#define USB
#define BASESTATION
void process~essage(unsigned char * message, int messageLength);

//mainNode. c
//Written by Dan Lovell 9/8/04 for GestureBox Project, MiT Media Lab

#include <__cross-studio-io.h>
#include <msp430xl4x.h>
*include <in430.h> //has a .NOP()
#include "nRF2401.h"
#include "peripherals.h"
#include "config.h"
*include "mainNode.h"
#include "global.h"

#define NODE
//For nodes, ID should be one of the following 0x11,0x22,0x33,0X44,0x55
//For basestation , ID should be OxOO
const unsigned char ID - OxlI;

Configuration Bytes:
Byte 0: 16 Bit payload length for RX channel 2
Byte 1: 16 Bit payload length for RX channel 1
Byte 3-5: Address for RX channel 2
Byte 6-10: Address for RX channel 1
Byte 11, upper 6 bits: Address width in # bits
Byte 11, lower 2 bits: CRC settings
Byte 12: Various settings including Two Channel Receive, RF power output
Byte 13, upper 7 bits: Frequency channel selection
Byte 13, lower 1 bit: RX?

conet
const
const
const
const
const
const
const
const
const

union {
int intVal[NUM_SENSORVALS];
unsigned char charVal[2*NUMSENSORVALS];

} intChar;

int eventCounter-0;

/set node here

void main(void) {
int i,j;
unsigned char potSetting - 0x00;
unsigned char muxlndex - 0;

for(i-0;i<20;i++) {
intChar.charVal[i] - ID;

}

//set up MSP430
CONFIG 0;
CONFIGSPIO ();
CONFIGSP11();

CONFIGIO();
CONFIGADCAVCC 0;
nRFSetStdByMode();

//change the interval to be timed
unsigned char TXCONFIGBYTES[15] - {0x60,0x60,OxBB,0xBB,0xBB,OxBB,OxBB,OxBB,0xBB, a .zM)0:GB,0xAl,0x6F.0x04};
int TXCONFIGBYTESLENGTH - 15; case Ox1l :
unsigned char TXSHORT-CONFIGBYTES[1] - {0x04}; CONFIG-TIMERAINT(0x0600.0);
int TXSHORTCONFIGBYTESLENGTH = 1; break;
unsigned char RXCONFIGBYTES[15] - {ox60,Ox60,oxBBOxBB,0xBB,0xBBoxBB,OxBB,0xBB,0xRBhz2fzBtkgxRB,xA,Ox6F,0x05};
int RXCONFIGBYTES-LENGTH - 15; CONFIGTIMER_A_INT(0x0800,0);
unsigned char RXSHORTCONFIGBYTES[1] - {0x05}; break;
int RXSHORTCONFIG.BYTESLENGTH - 1; case 0x33
unsigned char ADDRBYTES[5] - {OxBB,OxBBOxBB,0xBB,OxAA}; CONFIGTIMER_AINT(OxOCO0,0);
int ADDRBYTESLENGTH - 5; break;

//used to store the message received from the basestation
unsigned char RXMESSAGE[16];
int RXMESSAGELENGTH - 0;

extern const unsigned char HEADER[];
extern const int HEADER-LENGTH;

const
const
const
const
const
const
const
const

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

char
char
char

char
char
char
char
char

ACCELI - 1;
ACCEL2 - 0;
ACCEL3 - 3;
PRESSUREi -
PRESSURE2 -
GYR01 - 7;
GYR02 - 2;
GYRO3 - 6;

//the input number on ADG608
//the input number on ADG608
//the input number on ADG608
4; //the input number on ADG608
5; //the input number on ADG60
/the input number on ADG608
//the input number on ADG608
//the input number on ADG608

case Ox44 :
CONFIGTIMER_A_INT (OxiOO,0);
break;

case Ox55
CONFIGTIMERA.INT(0x1400,0);
break;

default
//hopefully you're never here
iShouldntBeHere 0;

}
_EINT(0;

//node that pressurel is also accel4, its the one we want nRFCONFIG(RXCONFIGBYTES,RXCONFIG.BYTESLENGTH);
const unsigned char muxArray[8] - 1/*A CEL1/,0/*ACCEL2*/,4/*ACCEL4-PRESSURE1*/,7/*GYROM. ,6WgeRAode84%GYR3/.3/*AWCEI*/,5/*PRESSURE*/};

const unsigned char muxArrayLength - 8;

//used to store the sensor data from this node for transmission
//setPot(1,0x0C); 1/0x0C gives gain of .5 when Rset is 1.2K
setPot (1,OxFF);

so lets freeze the AKUJ

//give nRF time to go to PWiRLUP mode before going to stand by
//hRFPWRUP has already been set high in CONFIG-O()
for(i-0;i<5000;i++) {}

I I

setPot(0,0x69); //0x69, with gain of .5 gives 1.5V quisecent output
//when Vin is centered on 2.5V and Vlogic = 3.128V

setmux (0);
#ifdef PWR-LED

P20UT I- OxOl;
Sendif
while(1) {

for(i=;i<30000;i++) {
for(j=O;j<100;j++) I
}

I // ~6.25ms to execute, ~5 clocks for one loop

LPMO;

void sampleData(void) {
char i;
int j;

for(i-0;i<6;i++) {
setMux(muxArray[i]);
intChar.intVal[i] - adcBlockingConversion 0;

}

intChar.char Val [01 = ID;
intChar. charVal[1] = ID;
for(i=1;i<6;i++) {

intChar.intVal[i] = OxEBBB;
}I

void processMessage(unsigned char * message, int messageLength) {

Form of message is {IEADERLDESTINATIONJD,JMMAlN... ,IEADMI}
* indices 0 1 2 N

//check header to see if its for me
if(message[1--ID) {
//the message is for me
switch(message[2)) {

case (Qxu):
//change the delay before reporting
CCRO - 256*message[3]+message[4];
break;

default:
break;

}
}

}

void nRFDataWaiting(void) __interrupt[PORT1_VECTOR] {
long i;

#ifdef TX_LED
P20UT I- Ox02;

Sendif
//toggle LED to indicate reception

TACTL I- HCO; // Start timing the interval
#ifdef TXLED

P20UT -- OxOl; //toggle LED
Sendif

if(P1IFG & BIT4){ //clear the interrupt flag
P1IFG &- ~BIT4;

nRFSHOCKBURSTBLOCKINGREAD(RXMESSAGE,&RXMESSAGELENGTH); //read the received data
nRFCONFIG(TX SHORT-CONFIG_ BYTES TXSHORTCONFIG_BYTESLENGTH);
nRFPSetTXRIMode 0;

#ifdef TXLED
P20UT ^- OxOl; //toggle LED

Sendif

//fill up intChar with the sampled data
sampleData);
_NOP();

if(RXESSAGE[O] -- HEADER[O]) {

//process the received message
processNessage(RX.MESSAGE,RXMESSAGELENGTH);

}
}

void TimerA (void) __interrupt[TIMERA0_VECTORJ {
int i;
//send packet to basestation
//turn off/reset timer A
//return to receive mode

#ifdef TX_LED
P20UT &- ~0x02; //toggle IED to indicate reception

tendif
//for counter to look for lost packets
//intChar. intValfOJ++;

//reset timer A
TACTL &= NMCO;
TACTL I- TACLR; // Stop timer A, clear TAR
TACTL - TASSELO + ID1 + IDO; //ACIK/8
//just need to start timer with TACTL I= MUJ to count off interval

//broadcast to all nodes, assume already in TX mode
nRF.SHOCKBURSTBLOCKING-WRITE(intChar. charVal ,12, ADDRBYTES, ADDRBYTES LENGTH);

//return to receive mode
//probably need to make sure that this config doesn't occur too close to
//the previous 7X since you can't config while 7X is occuring
for(i-0;i<500;i++) {}
nRFCONFIG (RX_SHORT-_CONFIGBYTES , RX_SHORTCONFIG_ BYTES LENGTH);
nRFSetTIRXMode(0;

void Timer-B (void) -- interrupt[TMERB.VEIOR]
}

*/

tL

//mainNode. h
//Written by Dan Lovell 9/8/04 for GestureBox Project, MIT Media Lab
void process~essage(unsigned char * message, int messageLength);

C.TI

//nRF2401. c
//This file used for functions and variables related to interaction with the nRF2401

#include <msp430xl4x.h>
#include "peripherals.h"

#ifndef nRF2401
#include "nRF2401.h"
#define nRF2401

void nRFSetTXRXMode(void) {
//Make sure the pins used are set for output
//Clear bits then set bits to make sure you're

PlOUT k- ~nRFCS;
PlOUT I- nRFCE I nRFPWRUP;

}

void nRF-SetConfigMode(void) {
//Make sure the pins used are set for output
//Clear bits then set bits to make sure you're

PIOUT - nRFCE;
PlOUT I- nRFCS I nRFPWRUP;

}

void nRFSetStdBy~ode(void) {

//Make sure the pins used are set for output
//Clear bits then set bits to make sure you're

PlOUT &- (nRFCE I nRFCS)
PlOUT I- nRFPWRUP;

}

void nRFSetPrDownMode(void) {

//Make sure the pins used are set for output
//Clear bits then set bits to make sure you're

PlOUT &- -nRFPWRUP;
}

not in CB=CS=PWR1UP= 1

not in CECS=PWR.UP = 1

not in CB=CS=PWRLUP = 1

not in CU=CS=PWR.UP = 1

void nRFBLOCKINGWRITE(unsigned char * data, int length) {

//write via SPI to the nRF
I/does not use SPI interrupt
//configuration of PWR-UP, CE, CS pins assumed
char temp;
int counter - 0;
while (length - counter > 0) {

while ((IFG1 & UTXIFGO) - 0); // USAR'I TX buffer ready?
TIBUFO - data[counter];
counter++;

}

//make sure the last byte has been received
temp - RXBUFO; //clear the URXFUGO flag
while ((IFG1 & URXIFGO) -- 0){}; // transmission completed?

void nRF-BLOCKINGWRITEREPEATED(unsigned char data, int length) {

//write via SPI to the nRF
/does not use SPI interrupt

//configuration of PWlUP, CE, CS pins assumed
int counter - 0;
while (counter < length) I

while ((IFG1 & UTXIFGO) -- 0); // USAR'D TX buffer ready?

TXBUFO - data;
counter++;

}
//make sure the last byte has been received before you pull CS low
data - RXBUFO; //clear the URXIFCO flag
while ((IFG1 & URZIFGO) -- O){}; // transmission completed?

void nRFSHOCKBURST-BLOCKING-WRITE(unsigned char * data, int dataLengthunsigned char * addr,int addrL*

//NOTICE that the nRF is left in Stand By Mode when done//
int i;

//prepare nRF for data write
nRFSetTXRXNode);

//5us delay required between CE high and beginning of data
for(i-0;i<40;i++) {}

//write dest address
nRF-BLOCKINGWRITE(addr,addrLength);

//write data
nRFBLOCKINGWRITE(datadataLength);

//if this wait is only 10 then transmission comes back as UUUS (when its supposed
//to be UUUU or doesn't come across at all
for(i-O;i<20;i++) {}

//take CE low to indicate data is ready
nRFSetStdByMode();

}

void nRFSHOCKBURSTBLOCKINGWRITEREPEATED(unsigned char data, int dataLengthunsigned char * addr,int

I/NOTICE that the nRF is left in Stand By Mode when done//
int i;

//prepare nRF for data write
nRFSetTXRXNode);

//5us delay required between CE high and beginning of data
for(i-O;i<40;i++) {}

//write dest address
nRF-BLOCKING.WRITE(addr,addrLength);
//write data
nRFBLOCKINGWRITEREPEATED(datadataLength);

}

//if this wait is only 10 then transmission comes back as UUUS
//to be UUUU or doesn't come across at all
for(i-0;i<20;i++) {}

//take CE low to indicate data is ready
nRFSetStdByMode();

(when its supposed

void nRFSHOCKBURSTBLOCKING-READ(unsigned char * data, int * dataLength) I
I/THIS IS ONLY FOR SPI SINCE IT WRITE '0 TXBUF
//clear the URXZFGO flag so you know when reception complete
//char temp;
IFG1 &- ~URIIFGO;

I I

*dataLength - 0;
while(PiIN & Ox1i) {

//should be checking URXIFUO instead
//received the info you want
TXBUFO - OxBB;
while ((IFG1 & URXIFGO) -- 0);
//temp = RXBUFO;
data[(*dataLength)++] - RXBUFO;

}

#endif

of TX since you need to make sure you've

//write to receive
// RX Complete?

//usart0Read (data, dataLength);

}

void nRF.CONFIG(unsigned char * DATA,int DATALENGTH) {
//why does i need to be a long?
long i;

Configuration Bytes:
Byte 0: 16 Bit payload length for RX channel 2
Byte 1: 16 Bit payload length for RK channel 1
Byte 3-5: Address for RX channel 2
Byte 6-10: Address for RX channel 1
Byte 11, upper 6 bits: Address width in # bits
Byte 11, lower 2 bits: GC settings
Byte 12: Various settings including Two Channel Receive, RF power output
Byte 13, upper 7 bits: Frequency channel selection
Byte 13, lower 1 bit: RX?

//during configuration: PWRUP = 1, CE = 0, CS = 1
nRF-SetConfigMode 0;

//5us delay required between CS high and beginning of data
for(i-0;i<40;i++) {

}

nRFBLOCKINGWRITE(DATADATALENGTH);

//I don't know why this wait is necessary
for(i-0;i<8;i++) {}

//return nRF to Stand by when done
nRF.SetStdByMode();

}

void nRFRESET(void) {
//reset the nRF to bring it into a known state
int i;
//power down the nRF
nRF.SetPwrDownMode 0;
//wait some amount of time to make sure nRF powers down
for(i-0;i<50;i++) {}

//power the nRF back up
nRFSetConfigMode 0;
//don't release control till the nRF is ready to go
for(i-O;i<5000;i++) {}

//nRF2401. c
//This file used for functions and variables related to interaction with the nRF2401

#define nRFCS OxO8
#define nRFCE 0z40
#define nRFPWRUP 0x80

//DEFAULT 70 XTALFRQ = 8MHz IF NOT ALRFADY DEFNED
#ifndef XTALFREQ
#define XTALFRYQ 8000000;
#endif

void nRFSetTXRIMode(void);
void nRF.SetConfigMode(void);
void nRFSetStdByMode(void);
void nRFSetPvrDovnMode(void);
void nRF-BLOCKINGWRITE(unsigned char *, int);
void nRF.BLOCKINGWRITEREPEATED(unsigned char, int);
void nRFSHOCKBURSTBLOCKINGWRITE(unsigned char *, intunsigned char *,int);
void nRFSHOCKBURST-BLOCKINGWRITEREPEATED(unsigned char, int,unsigned char *,int);
void nRFSHOCKBURST.BLOCKINGREAD(unsigned char *, int *);
void nRFCONFIG(unsigned char *,int);
void nRF-RESET(void);

//config. c
//This file used for all configuration related functions and variables

#include <msp430xl4x.h>
#include "nRF2401.h"

#ifndef config

#include "config.h"
#define config

void CONFIGIO(void) {

//I/O SETUP

//make sure nRF pins are set to a valid state when msp430 pins become outputs

//enable the nRF control pins and put the nRF into standby mode
nRFSetStdByMode 0;
PIDIR I- nRFCS I nRFCE I nRFPWRUP;

PIIES k- -(BIT4 + BIT5); //make interrupts occur on low to high transitions
P1IFG k- ~(BIT4 + BIT5); //clear the interrupt flag before enabling them

#ifdef BASESTATION
PIIES I- 0x04; //external signal from F320 for SPI handling interrupts high
P1IFG &- ~0x04; //clear external interrupt signal
//don't enable interrupts for P1.2, SPI ISR will poll the P1IFG flag

#endif

PIIE I- BIT4+BIT5;

UBR1O x00 ;
UMCTLO OxOO;
P3SEL I- OxOE;
P3SEL A- 0x30;
MEi = USPIEO;

//
// no modulation
// P3.1-3 SPI option select
// Disable UAR7V

// Enable USAR7t SPI mode

UCTLO &- ~SWRST;
//enable interrupts outside this function to prevent uninteded nesting of interrupts
//-EINTO; // Enable interrupts

void CONFIGUARTO(void) {
UCTLO I- SWRST;

UCTLO - CHAR;
UTCTLO = SSELO;
UBROO Ox45;
UBRIO Ox00;
UMCTLO - Ox2C;
P3SEL - Ox30 ;
P3SEL - OxOE;
MEl - UTXEO + URXEO;

to lotNCTLO A- SWRST;

//IE1 |= URXIEO + UTXIEO;

//enable interrupts on P1.4,P1.5 for DR{1,2} from nRF void CONFIGSPI1(void) {
UCTL1 I- SWRST;

P20UT - Ox8O; //make sure F320 /NSS is high
P2DIR I- 0x83; //Ts LEDs and F320 /NSS are on port 2

PSOUT &- ~0x10; //make sure the mua isn 't enabled on power up
PMDIR I- OxFO;

P60UT I- 0104;
P6DIR I- Ox04;

void CONFIG(void) {
unsigned int i;
WDTCTL - WDTPW + WDTHOLD;
BCSCTL1 I- ITS;

do {
IFG1 A- OFIFG;
for (i - OxFF; i > 0; i--);

} while ((IFG1 & OFIFG) 1- 0);

BCSCTL2 I- SELM1+SELMO;
}

void CONFIGSPIO(void) {
//SPI SETUP
UCTLO I- SWRST;

UTCTLO - CKPH+SSELO+STC;
UCTLO - CHAR+SYNC+MM;
UBROO 0x0 9;

// Stop WE'
// ACLK = LFXT1 = BF XTAL

// Clear OSCFault flag
// Time for flag to set
// OSCFault flag still set?

//MLK= LFXT1 (safe)

// ACLI(3-pin mode
//8-bit SPI Master **SWRfT*
// CLKO = ACIK/9

UTCTL1 - CKPL+SSELO+STC;
UCTLl - CHAR+SYNC+NM;
UBROl - x09;
UBRIl - 0x00;
UMCTLI - OxOO;
P5SEL J- OxOA;
P3SEL &= ~OxCO;
NE2 - USPIEI;

UCTLl &= -SWRST;

//8-bit character
// UCIK = ACLK
// 8Mfz 115200
//
// no modulation
// P3.4,5 = USAR7V TXD/RXD
// Disable SPI0

// Enable USAR7V TXD/RXD

// Enable USAR'2D TX/RX interrupt

// ACLI(3- pin mode
//8-bit SPI Master **SWRfT**
// CLK1 = ACLK/9
/

// no modulation
// P5.1,5.3 SPI option select
// Disable UART1

// Enable USART7 SPI mode

//enable interrupts outside this function to prevent uninteded nesting of interrupts
//-EINTO; // Enable interrupts

}

void CONFIGUART1(void) {
UCTL1 I- SWRST;

UCTL1 - CHAR;
UTCTL1 = SSELO
UBROI - Ox45;
UBRI1 - 0x00;
UMCTL1 - Ox2C;
ME2 - UTIE1 + URIEl;
P3SEL I- OxCO;
P3DIR I- Ox20;
P5SEL A- ~OxOA;

UCTL1 A- "SWRST;

//8-bit character
// UCIK = ACLK

// 8Mfz 115200
//
// no modulation

// Enable USART1 TXD/RXD
// P3.6,7 = USART option select
// P3.6 = output direction
// Disable SPI1

--4

void CONFIGUART1_RX(void) {
//clear the interrupt flag
IFG2 &- ~URIIFG1;
//RX interrupt set !!!! make sure to handle it
IE2 I- URXIE1; // Enable USARTJ RX interrupt

}

void CONFIGTIMER_A_INT(int timerValchar startNow) {
TACTL - TASSELO + TACLR + IDI + IDO; //ACK/8, clear TAR
CCTLO - CCIE; // CRO interrupt enabled

/* Need the following two lines to set up an interrupt
CUR = 20000; // Wait 20000 counts (with %8)
TACJL I= M ;// Start Timer.a in upmode

CCRO - timerVal;

if(startNow) {
TACTL I- MCO; // Start Timer-a in upmode

}
//enable interrupts outside this function to prevent uninteded nesting of interrupts

}

void CONFIG-TIMERBINT(void) {
TBCTL - TBSSELO + TBCLR + ID1 + IDO; //ACIK/8, clear TAR
TBCCTLO - CCIE; // TBCRO interrupt enabled

/* Need the following two lines to set up an interrupt
TBCURO = 20000; // Wait 20000 counts (with %8)
TBCTL I = MCO; // Start Timer.b in upmode

00 */
//enable interrupts outside this function to prevent uninteded nesting of interrupts
//.EINT(; // Enable interrupts

}

void CONFIGTIMER_B_COUNTERO(void) {
TBCCTLO - CM_3 + CCISi + SCS + CAP; //capture on both edges, synchronously

//interrupts are disabled

TBCTL I- TBCLR; //clear TBR, mode and divider settings
TBCTL I- TBSSELO + ID1 + IDO + MC1; //ACLK/8, start timer-b in cont. mode

}

void CONFIGADCAVCC(void) {
ADC12CTLO - ADC120N+SHTO_2; //ADC12ON
P6SEL I- OxO; // P6.0 ADW option select
ADC12CTLI - SHP; // Use sampling timer
ADC12CTLO I- ENC; // Enable conversions

}

#endif

I I

//config.h
//This file used for all configuration related functions and variables

void CONFIGIO(void);
void CONFIG(void);
void CONFIG.SPIO(void);
void CONFIG.UARTO(void);
void CONFIGSPI1(void);
void CONFIG-UART1(void);
void CONFIG-UART1_RX(void);
void CONFIG-TIMERA-INT(int,char);
void CONFIGTIMERBINT(void);
void CONFIG-TIMERBCOUNTERO(void);
void CONFIG.ADCAVCC(void);

00

//peripherals .c
//This file used for all functions and variables related to the peripherals on
//the MSP430

#ifndef peripherals

#include <msp
4 30xl 4

x.h>
*include "mainBaseStation.h"
#include "peripherals.h"
#define peripherals

#ifdef BASESTATION
extern unsigned char RXMESSAGE[1;
//message length can be used as state
//length =0 -> not receiving, else receiving
//length = # bytes received already
extern int RXMESSAGELENGTH;
extern const unsigned char SPI_RXHEADER[];

#endif

extern const unsigned char ACCEL1,ACCEL2,ACCEL3,GYRO1,GYRO2,GYRO3,PRESSURE1,PRESSURE2;

char waiting - 1;

void disableMux(int state) {
P50UT &- ~0x10;

void setMux(unsigned char sensor) {
//set pins on ADG608 to output the chosen sensor
//this function sets the mur enable line (P5.4) high

if (sensor--ACCELl) {
P50UT k- OxOF;
P50UT I- Ox30;

} else if(sensor--ACCEL2) {
P50UT &- OxOF;
PSOUT I- Ox10;

} else if(sensor--ACCEL3) {
P50UT k- OxOF;
P50UT I- OxB0;

} else if(sensor--GYR0l) {
P50UT I- OxFO;

} else if(sensor--GYR02) {
P50UT &- OxOF;
P50UT I- 0190;

} else if(sensor--GYRO3) {
P50UT &- OxOF;
P50UT I- 0xDO;

} else if(sensor--PRESSURE1) {
P50UT & OxOF;
P50UT I- Ox50;

} else if(sensor--PRESSURE2) {
P50UT k- OxOF;
P50UT I- 0x70;

int i;

if (addr I- 1 && addr - 0) {
//invalid addr
return;

}

P60UT &- ~0x04; //pull CS low
while ((IFG2 & UTIIFG1) -- 0);
TIBUF1 - addr;

for(i-0;i<400;i++) {
//delay some time to allow byte to finish writing
}

while ((IFG2 & UTXIFG1) -- 0);

//clear the URXIFO flag so you know when reception complete
IFG2 &- ~URXIFG1;

TXBUF1 - setting;

for(i-0;i<400;i++) {
//delay some time to allow byte to finish writing
}

//use the following line once the shiite is working
//while ((IFG2 & URXTFG1) == 0);
for(i=0;i<400;i++) {
//delay some time to allow byte to finish writing
}

P60UT I- Ox04; /set CS high
}

void usartORead(unsigned char * data,int * dataLength) {
I/THIS IS ONLY FOR SPI SINCE IT WRITES 'I0 TBUF
//clear the UR2IFG flag so you know when reception complete
IFG1 &- ~URXIFGO;

*dataLength - 0;
while(PIIN & OxlO) {

//should be checking URXTFGO instead of TX since you need to make sure you've
//received the info you want
TXBUFO - OxBB; //write to receive
while ((IFG1 & URIIFGO) -- 0); // RX Complete?
data[(*dataLength)++] - RXBUFO;

}
}

void usartOWrite(unsigned char * dataint dataLength) {
I/forget what the wait in the loop is for
//maybe to seperate the characters so they come across cleanly?
int waitCounteri;
for(i-0;i<dataLength;i++) {
while((IFG1&UTXIFGO) -- 0) {}
TXBUFO-data[i];
for(waitCounter-0; waitCounter<300;waitCounter++) {}

void setPot(char addr, unsigned char setting) {
//requires that USART1 be set properly to SPI

// USARTY TX buffer ready?

// USART1 TX buffer ready?

void f320Write(unsigned char * data,int dataLength) {
//forget what the wait in the loop is for
//maybe to seperate the characters so they come across cleanly?
int i;
int j-0;
unsigned char tempChar;
while((IFGi&UTXIFGO) - 0) {}
IFG1 &- ~URXIFGO;

for(i-a;i<dataLength;i++) {
P20UT &- Ox7F; //take /NSS low to signal byte coming
TXBUF0-data[i];
while((IFGI&URXIFGO) -- 0) {}
tempChar - RIBUFO; //same as "IFG1 &= ~URXLFGO;"

P20UT I- 0x80; //take /NSS high to signal end of byte

//process the received data
if(teapChar -- SPI_RX_HEADER[0]) {
RXMESSAGELENGTH - 1;
RX_MESSAGE[0] - tempChar;

} else if(RXMESSAGELENGTH !- 0) {
//make sure not to overrun bounds!
if(tempChar -- SPI.RXHEADER[1]) {

//you have received the whole message, process it
//indexing here is funky, make sure you understand it
RXMESSAGE[RIMESSAGELENGTH] - tempChar;
processMessage(RXMESSAGERXMESSAGELENGTH);

} else if(RXMESSAGE_LENGTH--16) {
//about to write the 16th byte but it isn't the final header!

//message has overrun bounds! so just reset it
RXMESSAGELENGTH - 0;

} else {
RXMESSAGE[RXMESSAGELENGTH++] - tempChar;

}
}
//don't release until the F320 tells you its read the SPI character
//WARNIWG: could hang here if F320 does not respond!!!!
j-0;
while(!(PIFG & 0x04) && j<1000) {

//While F320 hasn't caused high to low transition on P1.2
j++;

}
if(j--1000) {

//if you hang here then MSP430 hangs whenever F320 isn't responding
//this means on bootup too!
//iShouldntBeHere ();
_NOP);

}
}

}

void usartIRead(unsigned char * dataint * dataLength) {

//THIS IS ONLY FOR SPI SINCE IT WRITES 71 TXBUF
//this should be verified operational the first time used

//clear the URX1FGO flag so you know when reception complete
IFG2 k- ~URXIFG1;
*dataLength - 0;
while(PIIN & 0x10) {

//should be checking URXTFOO instead of TX since you need to make sure you've

//received the info you want
TXBUFO - OxBB; //write to receive
while ((IFG2 & URXIFGI) -- 0); // RX Complete?

data[(*dataLength)++] - RIBUF1;

void usartlWrite(unsigned char * data,int dataLength) {

//forget what the wait in the loop is for
//maybe to seperate the characters so they come across cleanly?

//this should be verified operational the first time used

int waitCounter,i;
for(i-0;i<dataLength;i++) {
while((IFG2&UTXIFGI) -- 0) {}
TXBUFi-data[i];
for (waitCounter-0; waitCounter <300; waitCounter++) {}

}
}

void delayUSec(int delay) {
waiting - 1;
TBCCRO - delay;
TBCTL I- MCO; // Start Timer-b in upmode
while(waiting) {}

}

int captureTimerB(void) {
//the capture requires a few clock cycles for the timer value to be

//written to the register TBOCRO, so must have a few NOP's
TBCCTLO - CCISO;
_NOP();

_NOP();
_NOP(0;

NOP 0;
_NOP(0;

_NOP(0;
return TBCCRO;

int adcBlockingConversion(void) {
ADC12CTLO I- ADC12SC;
while ((ADC12IFG & BITO)--0);
return ADC12MEMO;

}
#endif

// Start conversion

00

//peripherals. h
//This file used for all functions and variables related to the peripherals on
//the MSP430

#ifdef BASESTATION
extern unsigned char RXMESSAGE[;

//message length can be used as state
//length = 0 -> not receiving, else receiving
//length = # bytes received already
extern int RIMESSAGELENGTH;
extern const unsigned char HEADER[];
#endif
extern const unsigned char ACCELl,ACCEL2,ACCEL3,GYRO1,CYRO2,GYRO3,PRESSUREl,PRESSURE2;

void disableMux(int);
void setMux(unsigned char);
void setPot(char, unsigned char);
void usartORead(unsigned char *,int *);
void usartOWrite(unsigned char *,int);
void f320Write(unsigned char *,int);
void usartiRead(unsigned char *,int *);
void usartlWrite(unsigned char *,int);
void delayUSec(int);
int captureTimerB(void);
int adcBlockingConversion(void);

/global. h void iShouldntBeHere(void) {
//This file used for variables that need to effect both mainNode and mainBasestation int ij;

while(l) {
#define XTALFREQ 8000000; for(i-0;i<30000;i++) {
#define INITRFPACKETBYTELENGTH 12 for(j-0;j<100;j++) {
#define
#define
#define
#define

INITRFPACKET-BITLENGTH Ox60
MAXADDRBYTESLENGTH 5
NUMSENSORVALS 6
MAXNUMNDDES 15

#define PWRLED
//#define TXLED

unsigned char RFPACKETBYTELENGTH - INITRFPACKET.BYTE-LENGTH;
unsigned char RFPACKET.BITLENGTH - INITRFPACKETBITLENGTH;

//used to delimit the start and end of all packets
#define HEADERO 0x96
#define HEADERI 0x69

const unsigned char HEADER[4] = {HEADERO,HEADER1,HEADERO,HEADER};
const int HEADERLENGTH - 4;
const unsigned char SPIRXHEADER[2] - {0x62,Oz6D};
const int SPIRX_HEADER-LENGTH - 2;

} // ~6.25ns to execute, -5 clocks for one loop
P20UT -- 0z03;

}
}

int littleFromBig(int inVal) {
union {

int intVal;
unsigned char charVal[2];
unsigned char tempChar;

} intChar;
intChar.intVal - inVal;
intChar.tempChar - intChar.charVal[0];
intChar.charVal[0] - intChar.charVal[1];
intChar.charVal[1] - intChar.tempChar;
return intChar.intVal;

98

Appendix

MATLAB Code

C

87

%this script captures data from the serial port and prints it up
%the data capture occurs from typing the command till you type r-e-t-u-r-n
%[nodeData, out,numNodesArrJ serialReader;
%plotData (nodeData)

[nodeData,out,numNodesArr] = serialReader;
[fixedDatalostPacket] - interpolateLostPackets(nodeData);
plotData(nodeData)

00
00

function nodeData - findNodeData(packetData, headerVal, dataLength)
%given some data, a header to look for, and the length of substring wanted, find
%the substring
for i - 1:length(packetData)-1,

if(packetData(i) -- headerVal && packetData(i+1) -- headerVal)
if(length(packetData) >- i+2+dataLength-1)

nodeData - packetData((i+2):(i+2+dataLength-1));
return

else
nodeData - -1;
return

end
end

end
nodeData - -1;
return

00
(C

function nodeData - packNodeData(datanumSensors)
if(length(data)--l kk data -- -1)

nodeData - zeros(1,numSensors);
return

else
for i-1:numSensors,

nodeData(i) - data(2*i-1)+256*data(2*i);
end
return

end
return

function plotData(data)

numNodes - size(data,1);
numSensors - size(data,2);
numDataPoints - size(data,3);

[data, lostPacket hugeData] - interpolateLostPackets (data);

for i - i:numNodes
figure(i);
cif;
plotNodeData(reshape(data(i,:,:),numSensors,numDataPoints));
badIndices - find(lostPacket(i,:));
plot(badIndices,lostPacket(ibadIndices),'bx')
moreBadlndices - find(hugeData(i,:));
plot(moreBadIndices,hugeData(imoreBadIndices),'iro');

end

return

function plotNodeData(data)

colors - ['r','g','b','c','M','y' ,'k'];
if(size(datai)>7)

display('Only plotting first seven rows of data')
end

hold
for i - i:min(size(datai),7),

plot(data(i,:),colors(i))
end

return

t'Q

function [out lostPacket hugeData] - interpolateLostPackets(in)
%function out = interpolateLostPackets(in)
%format of in is (numNodes,numSensors,numDatums)
[numNodes,numSensors,numDatums] - size(in);

out - in;

lostPacket - zeros(size(in));
hugeData - zeroe(size(in));
%first pass to determine where lost packets are
for i-1:numNodes

for j-1:numDatums
if isequal(in(i,:,j) -- O,ones(1,numSensors))

lostPacket(i,j) - 1;
end
if ~isequal(in(i,:,j) > 2-12,zeros(1,numSensors))

lostPacket(i,j) - 1;
hugeData(i,j) - 1;

end
end

end

%second pass to determine where first valid packet is
for i-1:numNodes

for j-1:numDatums
if lostPacket(i,j) -- 0

validBounds(i,1) - j;
break;

end
end

end

%third pass to determine where last valid packet is
for i-1:numNodes

skip(i) - 1;
for j-1:numDatums

if lostPacket(i,numDatus + 1 - j) -- 0
validBounds(i,2) - numDatums + 1 - j;
skip(i) - 0;
break

end
end

end

%currently doesn't work when one of the nodes are off
Thow to fix, figure out what valid bounds are

gaps-zeroa(1,numNodes);
%fourth pass to determine gaps to interpolate over
for i-1:numNodes

if skip(i) -- 1
%if there is no valid data for this node then
continue

end
j - validBounds(i,1);
while j<-validBounds(i,2)

if lostPacket(ij) -- 1
gaps(i) - gaps(i) + 1;
gapBounds(i.2*gaps(i)-1) - j;
while lostPacket(i,j) -- 1

j - j+i;

end
end

end
gapBounds(i,2*gaps(i)) - j-1;

end
j-j+1;

%fifth pass to fill in gaps
for i-1:numNodes

if skip(i) -- 1
%if there is no valid data for this node then don't process it
continue

end
for j-1:gaps(i)

tempStart - gapBounds(i,2*j-1); %index of first missing datum
tempEnd - gapBounds(i,2*j); %index of last missing datum
startBound - reshape(in(i.: ,tempStart-1).1.numSensors); %value of last valid datum before gap
endBound - reshape(in(i,:,tempEnd+l),l,numSensors); %value of first valid datum after gap
boundsDiff - endBound - startBound;
numSteps - tempEnd - tempStart + 1; %number of steps to interpolate over
boundsDelta - boundsDiff/(numSteps+1); %size of each step to be added
for k - i:numSensors,

for a - 1:numSteps
out(i,ktepStart+m-1) - startBound(k) + boundeDelta(k)*m;

end
end

end
end

return

don't process it

function [matchIndex value] - bestMatch (data, gestureNode , gestureSensor ,dataNode , dataSensor)
%function index = bestMatch(data)

indices - regionsOfInterest(findWindowVariance(data(gestureNode ,gestureSensor :),15));

if isequal(size(indices),[0,0])
matchlndex - -inf;
value - -inf;
return

end
%testing only first sensor on first node right now
gesture - data(1,i,indices(1,1,1):indices(1,1,2));
[indexes values] - bestMatchIndex(gesture,data(dataNode ,dataSensor,:));
indexes - indexes - size(data,3) - indices(1.1,I) + 1;

%rmatchIndex = indexes (end);
%value = values(end);

i - 0;
maxIndex - length(values);
while i<maxIndex

if values(end-i) > 100
if abs(indexes(end-i)) > 100

i-i+1;
else

matchIndex - indexes(end-i);
value - values(end-i);
return

end
else

matchIndex - -inf;
value - -inf;
return

end
end

function [indexvalue] - bestMatchIndex (gesture data)
%function index = bestMatchIndez(gesture , data)

xcovDat = xcovFunc(gesture.data);
[value.index] - sort(xcovDat);

CD

function vinVar - findWindovVariance(datawindowSize)
%function find Window Variance (data, windowSize)

if mod(windowSize,2) -- 0
windowSize - vindowSize + 1;

end
vindowShift - (vindowSize-1)/2;

for i-1:size(data,1)
for j-1:size(data,2)

for k-1:(size(data,3) - vindowSize + 1)
vinVar(i,j,k) - var(data(i,j,k:k+vindowSize-1));

end
end

end

function plotWinVar (data,nodes, sensors)
%function plot Win Var(data, nodes, sensors)

windowSize - 15;
if(mod(windovSize.2)--O)

windowSize - windowSize+1;
end
windowShift - (vindovSize-1)/2;

vinVar - findWindowVariance(datavindowSize);

numNodes - length(nodes);
numSensors - length(sensors);
numDatums - size(data,3);
%winVar data needs to be shifted by (N+1)/2 when plotted
for i-1:numNodes

for j-1:numSensors
%figure((i-1)*numNodes + j);
clf;hold;
tempData - reshape(data(nodes(i),sensors(j),:),1,numDatums);
plot(tempData, 'r);
tempVarData - reshape(vinVar(nodes(i),sensors(j),:),1,size(vinVar,3));
plot((1+vindowShift):(numDatums-vindowShift),tempVarData)
title(strcat('Node: ',num2str(i),' Sensor: ',num2str(j)));

end
end

function indices - regionsOfInterest(data)
%function indices = regions OfInterest (data)

threshold - 35*1000;

numNodes - size(data,1);
numSensors - size(data,2);
numDatums - size(data,3);

threshData - data > threshold;

indices - [];
for i-1:numNodes

for j-1:numSensors
k-1;
currNumIndices - 0;
while k<-numDatums

if threshData(i,j,k) -- 1
indices(i,j,currNumIndices+1) - k;
while k<-numDatums && threshData(i,j,min(k,numDatums)) -- 1
%while threshData(i,j,k) == 1

k - k + 1;
end
indices(i,jcurrNumIndices+2) - k-1;
currNumlndices - currNumIndices + 2;

end
k - k+1;

end
end

C, end
00

function saveFigs(data)

numNodes - size(data,1);
numSensors - size(data,2);
numDataPoints - size(data,3);

[datalostPacket hugeData] - interpolateLostPackets(data);

figure(1);
for i - 1:numNodes

%badIndices are same for all sensors of a given node
badIndices - find(lostPacket(i,:));
moreBadIndices - find(hugeData(i,:));
for j - 1:numSensors

cif;hold;
currData - reshape(data(i,j,:),1,numDataPoints);
plot(currData);
%plot (badIndices, lostPacket (i, badIndices) , 'b
%plot(moreBadIndices,hugeData(i,moreBadIndices),Pro
plot(badlndicescurrData(badIndices),'bo');
plot(moreBadIndicescurrData(moreBadlndices),'rx');
print('-fl','-deps',strcat('node',num2str(i),'sensor',num2str(j)));

end
end

return

function output - xcovFunc(gesturedata)
%function output = zcovFunc(gesture , data)

gesture - reshape(gesture 1,size(gesture ,3));

data - reshape(data,1,size(data,3));

output - xcov(datagesture);

I I

Bibliography

[1] Bao, L. and Intille, S. S. Activity recognition from user-annotated acceleration

data. In Proceedings of Pervasive 2004: the Second International Conference on

Pervasive Computing, April 2004.

[2] Bao,Ling. Physical Activity Recognition from Acceleration Data under Semi-

Naturalistic Conditions. M.Eng., EECS Department, MIT, 2003.

[3] Benbasat, A.Y. An Inertial Measurement Unit for User Interfaces. M.S., MIT

Media Lab, September 2000.

[4] Benbasat, A.Y., Morris, S.J., and Paradiso, J.A. A wireless modular sensor archi-

tecture and its application in on-shoe gait analysis. In Sensors, 2003. Proceedings

of IEEE, October 2003.

[5] Graeme S. Chambers, Svetha Venkatesh, Geoff A. W. West, and Hung Hai Bui.

Segmentation of intentional human gestures for sports video annotation. In 10th

International Multimedia Modelling Conference, pages 124-129, 2004.

[6] Frederic Cheneviere and Samia Boukir. Deformable model based data compres-

sion for gesture recognition. In International Conference on Pattern Recognition,

volume 4, pages 541-544, 2004.

[7] Cross, P. Zeroing in on zigbee (part 1). Circuit Cellar, (175):16-23, February

2005.

[8] Fontaine, D., David, D., and Caritu, Y. Sourceless human body motion cap-

ture. In Smart Objects Conference Proceedings, Grenoble, France, May 2003.

101

Available on the Internet: http://www.grenoble-soc.com/proceedings03/Pdf/30-

fontaine.pdf.

[9] Haartsen, J. The bluetooth radio system. IEEE Personal Communications,

7(1):28-36, 2000.

[10] Ken Hinckley. Synchronous gestures for multiple persons and computers. In

UIST '03: Proceedings of the 16th annual ACM symposium on User interface

software and technology, pages 149-158. ACM Press, 2003.

[11] Marko Jug, Janez Pers, Branko Dezman, and Stanislav Kovacic. Trajectory

based assessment of coordinated human activity. In Computer Vision Systems,

Third International Conference, ICVS 2003, Graz, Austria, April 1-3, 2003,

Proceedings, pages 534-543, 2003.

[12] Holger Junker, Paul Lukowicz, and Gerhard Tr6ster. Continuous recognition of

arm activities with body-worn inertial sensors. In 8th International Symposium

on Wearable Computers (ISWC 2004), 31 October - 3 November 2004, Arlington,

VA, USA, pages 188-189, 2004.

[13] R. Kahn, M. Swain, P. Prokopowicz, and R. Firby. Technical report tr-96-

04: Real-time gesture recognition with the Perseus system. Technical report,

University of Chicago, 1996.

[14] Laibowitz, M. and Paradiso, J. Wireless wearable transceivers. Circuit Cellar,

(163):28-29, February 2004.

[15] Jonathan Lester, Blake Hannaford, and Gaetano Borriello. "Are you with me?" -

using accelerometers to determine if two devices are carried by the same person.

In Proceedings of the 2003 Conference on Pervasive Computing, pages 33 -50,

2004.

[16] R. Lockton and A. W. Fitzgibbon. Real-time gesture recognition using deter-

ministic boosting. In Proceedings of the British Machine Vision Conference,

2002.

102

[17] Merrill, David. FlexiGesture: An sensor-rich real-time adaptive gesture and af-

fordance learning platform for electronic music control. M.S., MIT Media Lab,

June 2004.

[18] Morris, S.J. A Shoe-Integrated Sensor System for Wireless Gait Analysis and

Real-Time Therapeutic Feedback. Sc.D., Harvard-MIT Division of Health Sci-

ences and Technology, June 2004.

[19] J.A. Paradiso. Design and implementation of expressive footwear. IBM Systems

Journal, 39:511-529, 2000.

[20] John Kangchun Perng, Brian Fisher, Seth Hollar, and Kristofer S. J. Pister.

Acceleration sensing glove (ASG). In Fifth International Symposium on Wearable

Computers (ISWC), pages 178-180, 1999.

[21] Qian, G., Guo, F., Ingalls, T., Olson, L., James, J., and Rikakis, T. A gesture-

driven multimodal interactive dance system. In Proceedings of the Interna-

tional Conference on Multimedia and Expo, June 2004. Available on Internet:

http://ame2.asu.edu/faculty/qian/Publications/icmeO4-ame.pdf.

[22] Cliff Randell and Henk Muller. Context awareness by analysing accelerometer

data. In Blair MacIntyre and Bob Iannucci, editors, The Fourth International

Symposium on Wearable Computers, pages 175-176. IEEE Computer Society,

2000.

[23] J. Rekimoto. Gesturewrist and gesturepad: Unobtrusive wearable interaction

devices. Fifth International Symposium on Wearable Computers, 2001.

[24] Tapia, E.M., Marmasse, N., Intille, S.S., and Larson, K. MITes: Wireless

portable sensors for studying behavior. In Proceedings of Extended Abstracts

Ubicomp 2004, 2004.

103

